Sample records for convergent plate boundary

  1. Plate Tectonics: Diverging, Converging, and Transform Boundaries

    NSDL National Science Digital Library

    In this lesson, students will learn to distinguish the different layers of the Earth, observe the effects of plate movements, and explore the reasons for earthquakes and volcanoes. They will label and measure the thicknesses of each layer of the Earth (lithosphere, asthenosphere, etc.) and record their results, construct models from sand and clay to illustrate what happens at the three types of plate boundaries (transform, diverging, and converging), and investigate convergent plate boundaries to see which scenarios may create earthquakes and/or volcanoes.

  2. Composite transform-convergent plate boundaries: description and discussion

    USGS Publications Warehouse

    Ryan, H.F.; Coleman, P.J.

    1992-01-01

    The leading edge of the overriding plate at an obliquely convergent boundary is commonly sliced by a system of strike-slip faults. This fault system is often structurally complex, and may show correspondingly uneven strain effects, with great vertical and translational shifts of the component blocks of the fault system. The stress pattern and strain effects vary along the length of the system and change through time. These margins are considered to be composite transform-convergent (CTC) plate boundaries. Examples are given of structures formed along three CTC boundaries: the Aleutian Ridge, the Solomon Islands, and the Philippines. The dynamism of the fault system along a CTC boundary can enhance vertical tectonism and basin formation. This concept provides a framework for the evaluation of petroleum resources related to basin formation, and mineral exploration related to igneous activity associated with transtensional processes. ?? 1992.

  3. The proximity of hotspots to convergent and divergent plate boundaries

    NASA Technical Reports Server (NTRS)

    Weinstein, Stuart A.; Olson, Peter L.

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.

  4. Convergent Plate Boundary Processes in the Archean: Evidence from Greenland

    NASA Astrophysics Data System (ADS)

    Polat, A.

    2014-12-01

    The structural, magmatic and metamorphic characteristics of Archean greenstone belts and associated TTG (tonalite, trondhjemite and granodiorite) gneisses in southern West Greenland are comparable to those of Phanerozoic convergent plate margins, suggesting that Archean continents grew mainly at subduction zones. These greenstone belts are composed mainly of tectonically juxtaposed fragments of oceanic crust including mafic to ultramafic rocks, with minor sedimentary rocks. Volcanic rocks in the greenstone belts are characterized mainly by island arc tholeiitic basalts, picrites, and boninites. The style of deformation and geometry of folds in 10 cm to 5 m wide shear zones are comparable to those occur on 1 to 50 km scale in the greenstone belts and TTG gneisses, suggesting that compressional tectonic processes operating at convergent plate boundaries were the driving force of Archean crustal accretion and growth. Field observations and trace element data suggest that Archean continental crust grew through accretion of mainly island arcs and melting of metamorphosed mafic rocks (amphibolites) in thickened arcs during multiple tectonothermal events. Fold patterns on cm to km scale are consistent with at least three phases of deformation and multiple melting events generating TTG melts that intruded mainly along shear zones in accretionary prism and magmatic arcs. It is suggested that Archean TTGs were produced by three main processes: (1) melting of thickened oceanic island arcs; (2) melting of subducted oceanic crust; and (3) differentiation of basaltic melts originating from metasomatized sub-arc mantle wedge peridotites.

  5. Plate Boundaries

    NSDL National Science Digital Library

    This site provides information on plate boundaries, which are found at the edge of the lithospheric plates and are of three types: convergent, divergent and conservative. Wide zones of deformation are usually characteristic of plate boundaries because of the interaction between two plates. The three boundaries are characterized by their distinct motions which are described in the text and depicted with block diagram illustrations, all of which are animated. There are also two maps that show the direction of motion of the plates. Active links lead to more information on plate tectonics.

  6. The proximity of hotspots to convergent and divergent plate boundaries

    Microsoft Academic Search

    Stuart A. Weinstein; Peter L. Olson

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspots distributions. The same analysis also reveals that the hotspots

  7. The proximity of hotspots to convergent and divergent plate boundaries

    Microsoft Academic Search

    Stuart A. Weinstein; Peter L. Olson

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots

  8. The proximity of hotspots to convergent and divergent plate boundaries

    Microsoft Academic Search

    Stuart A. Weinstein; Peter L. Olson

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's [1972] original list of 19 to Vogt's [1981] list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots

  9. Tectonic Plates and Plate Boundaries

    NSDL National Science Digital Library

    WGBH Educational Foundation

    2005-12-17

    This interactive activity adapted from NASA features world maps that identify different sections of the Earth's crust called tectonic plates. The locations of different types of plate boundaries are also identified, including convergent, divergent, and transform boundaries.

  10. External Resource: Plate Tectonics: Diverging, Converging, and Transform Boundaries

    NSDL National Science Digital Library

    1900-01-01

    This activity allows learners to explore the meaning of plate tectonics, to distinguish the different layers of the Earth, to model the effects caused by plate movements, to explore the reasons for earthquakes and volcanoes, and to discovering how conver

  11. Subduction at Convergent Boundary

    NSDL National Science Digital Library

    The representation depicts subduction. The narrated animated movie (simulation) shows subduction of the Indian Plate as the Indian Plate and the Eurasian Plate converge at the plate boundary. The segment begins showing a world view of the Earth's plates and zooms in on the highlighted Indian and Eurasian plate activity. The animation transitions to a cross-sectional view, giving an inside-the-Earth look at what happens as these plates converge. The movie can be viewed in two ways- in continuous play or step by step.

  12. Negligible convergence and lithospheric tearing along the Caribbean-South American plate boundary at 64°W

    NASA Astrophysics Data System (ADS)

    Clark, S. A.; Levander, A.; Magnani, M. B.; Zelt, C. A.

    2008-12-01

    Prior studies of the Caribbean-South American plate boundary have suffered from poor constraint on the structure of the crust and uppermost mantle. We use a recent wide-angle velocity model from the Broadband Ocean-Land Investigation of Venezuela and the Antilles arc Region project to constrain new seismic reflection data and previously published line drawing interpretations of the Caribbean-South American plate boundary at 64°W. Though commonly characterized as obliquely convergent, we determine that convergence is negligible in our study area. Previous estimates of Miocene to present north-south shortening onshore eastern Venezuela have commonly been 115 km or higher, but we constrain shortening to ˜35 km onshore, with an additional ˜30 km offshore. With such minor convergence, we conclude that uplift and basin subsidence in eastern Venezuela does not derive from typical collisional orogeny. Instead, the largely vertical tectonics likely result from mantle dynamics associated with an eastward propagating, near-vertical tear in the lithosphere along the former passive margin.

  13. Viscous flow and deformation of regional metamorphic belts at convergent plate boundaries

    NASA Astrophysics Data System (ADS)

    Iwamori, Hikaru

    2003-06-01

    Viscous flow and deformation of a Newtonian fluid between rigid boundaries have been modeled for investigating deformation of a forearc wedge and a regional metamorphic belt as a weak deforming zone between the plates at convergent boundaries. Three types of analytic formulations together with numerical formulations for a Newtonian fluid with a constant viscosity are used for investigating various flows and deformation: (1) flows induced by squeezing between two parallel boundaries, (2) flows induced by squeezing and heterogeneous mass influx in the wedge between two oblique boundaries (e.g., accretionary wedge over the subducting plate with the continental plate as a backstop), and (3) flows induced by dragging along the boundaries and by homogeneous mass influx in the wedge as in type 2. All cases include strike-slip movements of the boundaries, which allows us to investigate three-dimensional (3-D) deformation (e.g., 3-D corner flow). The corresponding flow, deformation of infinitesimal and finite elements, and the timescale of flow are calculated for each configuration with various mechanical boundary conditions. The model results show that configuration and mechanism of the flow can be inferred from the spatial variation of finite deformation (e.g., deformed radiolarians as a strain marker and geometry of folding as finite deformation of a large block). In particular, prolate strain nearly parallel to the strike of subduction zone, together with a large-scale folding, can be a good indicator for deformation in the forearc wedge associated with 3-D corner flow induced by oblique subduction. Deformation observed in the Cretaceous regional metamorphic belts in southwest Japan can be explained by this mechanism.

  14. Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Le Pichon, X.; Mazzotti, S.; Pubellier, M.; Chamot-Rooke, N.; Aurelio, M.; Walpersdorf, Andrea; Quebral, R.

    1999-11-01

    The western boundary of the Philippine Sea (PH) Plate in the Philippines and eastern Indonesia corresponds to a wide deformation zone that includes the stretched continental margin of Sundaland, the Philippine Mobile Belt (PMB), extending from Luzon to the Molucca Sea, and a mosaic of continental blocks around the PH/Australia/Sunda triple junction. The GPS GEODYSSEA data are used to decipher the present kinematics of this complex area. In the Philippines, the overall scheme is quite simple: two opposing rotations on either side of the left-lateral Philippine Fault, clockwise to the southwest and counterclockwise to the northeast, transfer 55 per cent of the PH/Sundaland convergence from the Manila Trench to the northwest to the Philippine Trench to the southeast. Further south, 80 per cent of the PH/Sunda convergence is absorbed in the double subduction system of the Molucca Sea and less than 20 per cent along both continental margins of northern Borneo. Finally, within the triple junction area between the Sundaland, PH and Australia plates, from Sulawesi to Irian Jaya, preferential subduction of the Celebes Sea induces clockwise rotation of the Sulu block, which is escaping toward the diminishing Celebes Sea oceanic space from the eastward-advancing PH Plate. To the south, we identify an undeformed Banda block that rotates counterclockwise with respect to Australia and clockwise with respect to Sundaland. The kinematics of this block can be defined and enable us to compute the rates of southward subduction of the Banda block within the Flores Trench and of eastward convergence of the Makassar Straits with the Banda block. The analysis made in this paper confirms that this deformation is compatible with the eastward motion of Sundaland with respect to Eurasia determined by the GEODYSSEA programme but is not compatible with the assumption that Sundaland belongs to Eurasia, as was often assumed prior to this study.

  15. Seismicity at the convergent plate boundary offshore Crete, Greece, observed by an amphibian network

    NASA Astrophysics Data System (ADS)

    Becker, D.; Meier, T.; Bohnhoff, M.; Harjes, H.-P.

    2010-04-01

    We investigate microseismic activity at the convergent plate boundary of the Hellenic subduction zone on- and offshore south-eastern Crete with unprecedented precision using recordings from an amphibian seismic network. The network configuration consisted of up to eight ocean bottom seismometers as well as five temporary short-period and six permanent broadband stations on Crete and surrounding islands. More than 2,500 local and regional events with magnitudes up to M L = 4.5 were recorded during the time period July 2003-June 2004. The magnitude of completeness varies between 1.5 on Crete and adjacent areas and increases to 2.5 in the vicinity of the Strabo trench 100 km south of Crete. Tests with different localization schemes and velocity models showed that the best results were obtained from a probabilistic earthquake localization using a 1-D velocity model and corresponding station corrections obtained by simultaneous inversion. Most of the seismic activity is located offshore of central and eastern Crete and interpreted to be associated with the intracrustal graben system (Ptolemy and Pliny trenches). Furthermore, a significant portion of events represents interplate seismicity along the NNE-ward dipping plate interface. The concentration of seismicity along the Ptolemy and Pliny trenches extends from shallow depths down to the plate interface and indicates active movement. We propose that both trenches form transtensional structures within the Aegean plate. The Aegean continental crust between these two trenches is interpreted as a forearc sliver as it exhibits only low microseismic activity during the observation period and little or no internal deformation. Interplate seismicity between the Aegean and African plates forms a 100-km wide zone along dip from the Strabo trench in the south to the southern shore-line of Crete in the north. The seismicity at the plate contact is randomly distributed and no indications for locked zones were observed. The plate contact below and north of Crete shows no microseismic activity and seems to be decoupled. The crustal seismicity of the Aegean plate in this area is generally confined to the upper 20 km in agreement with the idea of a ductile deformation of the lower crust caused by a rapid return flow of metamorphic rocks that spread out below the forearc. In the region of the Messara half-graben at the south coast of central Crete, a southward dipping seismogenic structure is found that coalesces with the seismicity of the Ptolemy trench at a depth of about 20 km. The accretionary prism south of Crete indicated by the Mediterranean Ridge showed no seismic activity during the observation period and seems to be deforming aseismically.

  16. Holocene turbidites reveal earthquake supercycles at a slow convergence plate boundary (Northern Algeria)

    NASA Astrophysics Data System (ADS)

    Ratzov, Gueorgui; Cattaneo, Antonio; Babonneau, Nathalie; Yelles, Karim; Bracene, Rabah; Lateb, Tassadite; Déverchere, Jacques

    2014-05-01

    Ongoing evidence for earthquake clustering calls upon records over numerous earthquake cycles to improve seismic hazard assessments, especially at places where recurrence times overstep historical records. Here, we show that meaningful information of large earthquakes recurrence intervals over several seismic cycles may be obtained using turbidite record offshore the Algerian margin. The Africa-Eurasia plate boundary is slowly convergent (~3mm/yr), with deformation in the investigated margin segment accommodated mainly onland, along thrusts and strike-slip faults. Historically, two relatively large earthquakes stroke the area in 1954 (Orléansville M6.7) and 1980 (El Asnam M7.3). Holocene turbidites emplaced offshore are triggered by thirteen earthquakes. Most of them tune to paleoseismic record of the El Asnam fault onland, whereas two are slightly diachronous (<100 yrs), and likely result from bursts of activity on nearby faults. Turbidites depict a bimodal distribution over ~8 kyrs that support the concepts of earthquake supercycles and rupture synchronization between nearby faults. Thirteen coastal paleoquakes underpin clusters of 3 to 6 events with mean recurrence intervals of ~300-600 years, separated by two periods of quiescence of ~1.7 ka without major events on any fault. They imply alternation of broad phases of strain loading and shorter phases of strain release along the fault network. More generally, our results demonstrate that fault slip rates are time-dependent and that earthquake occurrence might be strain-predictable rather than time- or slip-predictable. Turbidite paleoseismology investigation is ongoing on an adjacent margin segment where the Boumerdes M6.9 earthquake occurred in 2003. Preliminary results retrieved the traces of historical earthquakes, and established Holocene time-series. They support a similar bimodal seismic distribution, suggesting that earthquake supercycling should be a major strain release process along the Africa-Eurasia plate boundary.

  17. Tectonic Plates and Plate Boundaries (WMS)

    NSDL National Science Digital Library

    Eric Sokolowsky

    2004-06-14

    The earths crust is constantly in motion. Sections of the crust, called plates, push against each other due to forces from the molten interior of the earth. The areas where these plates collide often have increased volcanic and earthquake activity. These images show the locations of the plates and their boundaries in the earths crust. Convergent boundaries are areas where two plates are pushing against each other and one plate may be subducting under another. Divergent boundaries have two plates pulling away from each other and indicate regions where new land could be created. Transform boundaries are places where two plates are sliding against each other in opposite directions, and diffuse boundaries are places where two plates have the same relative motion. Numerous small microplates have been omitted from the plate image. These images have been derived from images made available by the United States Geological Surveys Earthquake Hazards Program.

  18. Plate convergence measured by GPS across the Sundaland\\/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia

    Microsoft Academic Search

    C. Rangin; X. Le Pichon; S. Mazzotti; M. Pubellier; N. Chamot-Rooke; M. Aurelio; Andrea Walpersdorf; R. Quebral

    1999-01-01

    The western boundary of the Philippine Sea (PH) Plate in the Philippines and eastern Indonesia corresponds to a wide deformation zone that includes the stretched continental margin of Sundaland, the Philippine Mobile Belt (PMB), extending from Luzon to the Molucca Sea, and a mosaic of continental blocks around the PH\\/Australia\\/Sunda triple junction. The GPS GEODYSSEA data are used to decipher

  19. Continental Margin Tectonics Along the Convergent Plate Boundary of Central Chile

    NASA Astrophysics Data System (ADS)

    Weinrebe, W.; Ranero, C. R.; Diaz, J.; Reichert, C.; Vera, E. E.

    2003-12-01

    Multibeam bathymetry along central Chile provides a detailed map of recent tectonic deformation of the margin and incoming oceanic plate from about 28? S to 36? S. The data were collected during R/V SONNE cruises 101, 102, 104 and 161 and a cruise with R/V Vidal Gormaz. Individual pings were edited and cleaned and the different surveys have been merged after depth calculations using a different measured velocity function for each of them. The oceanic Nazca plate is covered by about 100 m of pelagic sediment and the morphology of the igneous basement is displayed well in the bathymetric maps. The oceanic plate topography changes markedly along the subduction zone and exerts a first order control in the distribution of trench sediment infill and in the tectonic style of deformation of the margin. A major boundary occurs at latitude 32?-33? S where the hotspot volcanic chain of Juan Fernadez is currently subducting. The chain subducts oblique to the margin strike and thus the tectonic boundary has been migrating along the subduction zone through time. South of the area of ridge subduction the trench is filled with turbidites and a 20-40 km wide accretionary prism occurs at the front of the continental slope. The upper slope has a smooth morphology indicative of a quiet tectonic domain. At the current area of ridge subduction and north of it (28?-33?S) the trench has a reduced turbiditic infill. The trench infill seems to be at minimum at 31-32S and slightly larger to the north as the trench axis becomes deeper. Here, a small ridge at the slope toe may indicate that reduced accretion is active. The continental slope is deeper and more rugged that to the south displaying a series of small midslope basins. Here, the continental slope morphotectonic structure is the product of tectonic erosion due to the passage of the volcanic ridge.

  20. Isotopic composition of helium, and CO 2 and CH 4 contents in gases produced along the New Zealand part of a convergent plate boundary

    Microsoft Academic Search

    W. F. Giggenbach; Y. Sano; H. Wakita

    1993-01-01

    New Zealand straddles an active tectonic boundary between the Indo-Australian and Pacific plates. To the NE and SW oblique convergence of oceanic and continental crusts leads to the establishment of subduction zones; in the center continental crusts collide along a transform boundary. With regard to mantle degassing, and on the basis of chemical and He isotopic analyses of 140 samples

  1. Mapping Plate Tectonic Boundaries

    NSDL National Science Digital Library

    Michael Kerwin

    To prepare for this activity, students do background reading on Plate Tectonics from the course textbook. Students also participate in a lecture on the discovery and formulation of the unifying theory of plate tectonics, and the relationship between plate boundaries and geologic features such as volcanoes. Lastly, in lecture, students are introduced to a series of geologic hazards caused by certain plate tectonic interactions. The activity gives students practices at identifying plate boundaries and allows them to explore lesser known tectonically active regions.

  2. Discovering Plate Boundaries

    NSDL National Science Digital Library

    Alison Henning

    Students are initially assigned to one of four maps of the world: Seismology, Volcanology, Geochronology or Topography. They are also given a map of the world's plate boundaries and are asked to classify the boundaries based upon the data from their assigned map. Students are then assigned to a tectonic plate, such that each plate group contains at least one "expert" on each map. As a group, they must classify their plate's boundaries using data from all four maps. Recent volcanic and seismic events are discussed in the plate tectonic context. Has minimal/no quantitative component Uses geophysics to solve problems in other fields

  3. Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models

    Microsoft Academic Search

    Udo Barckhausen; Cesar R. Ranero; R. von Huene; Steven C. Cande; Hans A. Roeser

    2001-01-01

    The oceanic Cocos Plate subducting beneath Costa Rica has a complex plate tectonic history resulting in segmentation. New lines of magnetic data clearly define tectonic boundaries which separate lithosphere formed at the East Pacific Rise from lithosphere formed at the Cocos-Nazca spreading center. They also define two early phase Cocos-Nazca spreading regimes and a major propagator. In addition to these

  4. Tectonic Plates and Plate Boundaries

    NSDL National Science Digital Library

    Continents were once thought to be static, locked tight in their positions in Earth's crust. Similarities between distant coastlines, such as those on opposite sides of the Atlantic, were thought to be the work of a scientist's overactive imagination, or, if real, the result of erosion on a massive scale. This interactive feature shows 11 tectonic plates and their names, the continents that occupy them, and the types of boundaries between them.

  5. Mountain Maker- Earth Shaker (Convergent Boundary: oceanic-continental)

    NSDL National Science Digital Library

    The representation depicts plate boundary interactions. The convergent boundary is one part of a larger interactive diagram (the 2nd slider/ arrow from the left), that focuses on an ocean plate pressing against a continental plate. This review specifically addresses the part of the resource dealing with what happens when plates pull apart. The "show intro" link provides instruction for diagram manipulation.

  6. Front Cover. (Upper) Perspective view of the Juan de Fuca plate showing plate boundaries and the convergence between the Juan de Fuca and North American plates

    E-print Network

    Wilcock, William

    and North American plates across the Cascadia subduction zone. (Lower) Map be real-time monitoring along the entire length of the subduction zone and the Cascadia subduction zone labeled. (Inset) Schematic cross section of the Cascadia

  7. Discovering Plate Boundaries

    NSDL National Science Digital Library

    Rice University's Earth Science Department offers the Discovering Plate Boundaries educational activity. The exercise is described as a "data rich exercise to help students discover the processes that occur at plate tectonic boundaries" and has been used successfully with 5th graders to undergraduates. The site provides the necessary downloads of maps; earthquake, volcanic, seafloor, topographic, and bathymetric data; and teacher guides and complete instructions. Because the activity can be geared towards such a large range of students, is well designed, and is easily accessible, educators will definitely appreciate the site.

  8. Discovering Plate Boundaries

    NSDL National Science Digital Library

    Dale Sawyer

    1997-09-15

    Discovering Plate Boundaries is based on 5 world maps containing earthquake, volcano, topography, satellite gravity, and seafloor age data. The novel aspect of the exercise is the "jigsaw" manner in which student groups access the maps and use them to discover, classify, and describe plate boundary types. The exercise is based only on observation and description, which makes it useful at a wide variety of levels; it has been used successfully in 5th grade classes, as well as in non-major earth science classes. The exercise is based on a set of wall maps that are not consumed during the exercise. Other inexpensive materials required include two 11x17 black and white copies per student and colored pencils. Because the exercise is not based on student access to the web, it is not dependent on classroom technology equipment. The exercise takes three 50-minute class periods to complete, and involves the students in making presentations to one another in small groups as well as to the whole class. The students come away from the exercise with knowledge of the key features of each type of plate boundary and a sense of why each looks and acts the way it does.

  9. Seismic gaps and plate tectonics: Seismic potential for major boundaries

    Microsoft Academic Search

    W. R. McCann; S. P. Nishenko; L. R. Sykes; J. Krause

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by

  10. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Montes, C.; Ayala, C.; Bustamante, C.; Hoyos, N.; Montenegro, O.; Ojeda, C.; Niño, H.; Ramirez, V.; Valencia, V.; Rincón, D.; Vervoort, J.; Zapata, S.

    2012-12-01

    A Paleogene conglomeratic-sandy succession preserves the complex record of arc-continent collision, orogen collapse and basin opening, followed by inversion related to renewed oblique convergence. This record is unique because both arc and continental margin are now severely fragmented and only partially exposed along the southern Caribbean-South American boundary in northern Colombia. We studied these clastic sequences in the San Jacinto deformed belt using an integrated provenance study that includes conglomerate clast counting, geochemistry and U-Pb and Hf isotopic analysis in magmatic clasts, together with sandstone petrography, heavy mineral analysis and detrital zircon U-Pb geochronology. The record of events extracted from these coarse clastic rocks includes the formation and approach of an allochthonous Upper Cretaceous intra-oceanic arc active from 88 Ma until 73 Ma. This arc collides against the upper Paleozoic to Triassic continental margin after 73 Ma, but before late Paleocene times. Poorly exposed remnants of serpentinized peridotites and middle pressure metamorphic detritus are related to closure of an intervening oceanic basin between the continent and the colliding arc. This orogen was emerged in late Maastrichtian-early Paleocene, and then collapsed as recorded by the thick upper Paleocene and younger succession of the San Jacinto deformed belt where the coarse clastics, subject of this study, are exposed. Orogenic collapse may have been the result of subduction zone flip, with incipient subduction of the buoyant Caribbean Plate under South America.

  11. Modeling the Philippine Mobile Belt: Tectonic blocks in a deforming plate boundary zone

    Microsoft Academic Search

    G. A. Galgana; M. W. Hamburger; R. McCaffrey; T. C. Bacolcol; M. A. Aurelio

    2007-01-01

    The Philippine Mobile Belt, a seismically active, rapidly deforming plate boundary zone situated along the convergent Philippine Sea\\/Eurasian plate boundary, is examined using geodetic and seismological data. Oblique convergence between the Philippine Sea Plate and the Eurasian plate is accommodated by nearly orthogonal subduction along the Philippine Trench and the Manila Trench, as well as by strike-slip faulting along the

  12. Observe animations of processes that occur along plate boundaries

    NSDL National Science Digital Library

    TERC. Center for Earth and Space Science Education

    2003-01-01

    Here are three animations that reveal how tectonic plates move relative to each other at three types of plate boundaries--transform, convergent, and divergent boundaries. Key features such as the asthenosphere are labeled in the animations. In addition, each animation is equipped with movie control buttons that allow students to play, pause, and move forward and backward through each clip. The animation of a transform boundary shows the North American and Pacific plates sliding past one another, while an oceanic plate subducts under a continental plate producing volcanic activity in the convergent boundary animation. Two coordinated movie clips are used to demonstrate what occurs at a divergent boundary from different viewpoints. Copyright 2005 Eisenhower National Clearinghouse

  13. Magmatic activity tends to concentrate at tectonic plate bound-aries. At rapidly convergent margins, such as the Andes, intense mag-

    E-print Network

    Galland, Olivier

    of magma influences the deformation pattern in the brittle crust. The influence of deep magma bodies deformation structures in the upper crust, we describe the structure of an active volcano (Tromen, Argentina activity mostly occurs at plate boundaries, where tectonic deformation also concentrates. Because magmatic

  14. The seismotectonics of plate boundaries

    NASA Technical Reports Server (NTRS)

    Berger, J.; Brune, J. N.; Goodkind, J.; Wyatt, F.; Agnew, D. C.; Beaumont, C.

    1981-01-01

    Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.

  15. HMK 1_Plate Boundaries: Present, future, & past

    NSDL National Science Digital Library

    Brian Hampton

    Prior to this homework assignment, students will have been exposed (for ~2-3 in class activities and lectures) to general concepts in plate tectonics, plate boundaries, hot spot volcanoes, use of earthquake/volcano trends at plate boundaries, as well as GPS as a modern use to document plate motion. Students receive this activity as a homework assignment to be completed outside of class. Their task is to use provided topographic/bathymetric data, earthquake and volcano distribution, GPS data, as well as ocean floor and hot spot age trends to characterize plate motion in modern, future, and ancient plate boundaries. This is a three-part exercise that involves a modern plate boundary study form the eastern margin of the Pacific plate, a potential future plate boundary in eastern Africa, and a identification of possible ancient plate boundaries in the Eurasian plate.

  16. Effective strength of incoming sediments and its implications for plate boundary propagation: Nankai and Costa Rica as type examples of accreting vs. erosive convergent margins

    NASA Astrophysics Data System (ADS)

    Kopf, Achim

    2013-11-01

    The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (?res = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to ?res = 0.43; ?peak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (?res = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity strengthening at the conditions tested.

  17. Seismic link at plate boundary

    NASA Astrophysics Data System (ADS)

    Ramdani, Faical; Kettani, Omar; Tadili, Benaissa

    2015-06-01

    Seismic triggering at plate boundaries has a very complex nature that includes seismic events at varying distances. The spatial orientation of triggering cannot be reduced to sequences from the main shocks. Seismic waves propagate at all times in all directions, particularly in highly active zones. No direct evidence can be obtained regarding which earthquakes trigger the shocks. The first approach is to determine the potential linked zones where triggering may occur. The second step is to determine the causality between the events and their triggered shocks. The spatial orientation of the links between events is established from pre-ordered networks and the adapted dependence of the spatio-temporal occurrence of earthquakes. Based on a coefficient of synchronous seismic activity to grid couples, we derive a network link by each threshold. The links of high thresholds are tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.

  18. 3D Thermochemical Numerical Model of a Convergent Zone With an Overriding Plate

    NASA Astrophysics Data System (ADS)

    Mason, W. G.; Moresi, L.; Betts, P. G.

    2008-12-01

    We have created a new three dimensional thermochemical numerical model of a convergent zone, in which a viscoplastic oceanic plate subducts beneath a viscous overriding plate, using the finite element Geoscience research code Underworld. Subduction is initiated by mantle flow induced by the gravitational instability of a slab tip, and buoyancy of the overriding plate. A cold thermal boundary layer envelopes both plates, and is partially dragged into the mantle along with the subducting slab. The trench rolls back as the slab subducts, and the overriding plate follows the retreating trench without being entrained into the upper mantle. The model is repeated with the overriding plate excluded, to analyse the influence of the overriding plate. The overriding plate retards the rate of subduction. Maximum strain rates, evident along the trench in the absence of an overriding plate, extend to a greater depth within the subducted portion of the slab in the presence of an overriding plate.

  19. Question of the Day: Plate Boundary Characteristics

    NSDL National Science Digital Library

    What kind of plate tectonic process or boundary would you expect if you find a seafloor region with: 1. A long, narrow linear or gently curving deep valley, earthquakes to depths of several hundred km, and ...

  20. Understanding Plate Motions

    NSDL National Science Digital Library

    The representation shows divergent boundaries, convergent boundaries, transform boundaries, and plate boundary zones through a series of diagrams. Some of the diagrams are accompanied by a photographs. Accompanying text explains plate movement at each type of boundary.

  1. Turbulences in Boundary Layer of Flat Plates

    NASA Astrophysics Data System (ADS)

    Tesar, Alexander

    2014-06-01

    The aeroelastic assessment of turbulences appearing in boundary layer of flat plates tested in the wind tunnel is treated in present paper. The approach suggested takes into account multiple functions in the analysis of flat plates subjected to laminar and turbulent wind forcing. Analysis and experimental assessments in the aerodynamic tunnel are presented. Some results obtained are discussed

  2. Plate stability by boundary element method

    SciTech Connect

    Elzein, A.; Brebbia, C.A.; Orszag, S.A.

    1991-12-31

    As indicated by the title, this publication is devoted to the application of the Boundary Element Method (BEM) to the analysis of elastic plastes subjected to inplane forces. Three classes of plate problems associated with the buckling phenomenon are considered, viz: The state of plane stress, buckling of plates caused by edge loads, and moderately large deflections of slightly warped plates. The first (introductory) chapter gives an historical background and the behavior, theory, and analyses of plates. Chapter 2 briefly comments on the phenomenon of buckling and clearly presents the universal expressions and equations of the linear and nonlinear theories established by Kirchhoff for thin plates. A prominent place is assigned to the airy plane-stress function introduced into the nonlinear flexural theory of plates by A Foeppl and Th von Karman.

  3. Parameters Affecting Seismic Moment Release Rates Along Plate Boundaries

    Microsoft Academic Search

    C. Frohlich; L. R. Wetzel

    2005-01-01

    We have undertaken a survey of seismic moment release along Earth's major plate boundaries. For each plate boundary, the moment release rate R is the sum of scalar moments divided by the length of the boundary and by the relative plate velocity V; we evaluate R for both the Harvard CMT and a global historical catalog. The survey confirms that

  4. Comparison of seismic moment release rates along different types of plate boundaries

    Microsoft Academic Search

    Cliff Frohlich; Laura Reiser Wetzel

    2007-01-01

    This is a global survey of seismic moment release rates (scalar moment\\/length\\/time) along five categories of plate boundaries; for shallow earthquakes we evaluate divergent, transcurrent and convergent boundaries; for deep earthquakes we consider separately boundaries where the deepest seismicity is intermediate (<300 km) or deep-focus (500-600 km). The objective is to evaluate the typical range of rates observed and present

  5. Plate TectonicsPlate Tectonics Plate TectonicsPlate Tectonics

    E-print Network

    Siebel, Wolfgang

    Plate TectonicsPlate Tectonics #12;Plate TectonicsPlate Tectonics · Lithosphere ­ strong, rigid, transform boundaries ­ travel 1 to 11 cm/yr relative to one another #12;14 tectonic plates today #12;Mid asthenosphere that flows · 8 large lithospheric plates and 6 smaller ones ­ separated by divergent, convergent

  6. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and geometry and secular rates across the plate boundary segments, reveals a deep magma chamber under Hekla and gives a geodetic estimate of the current location of the North-America Eurasian plate boundary in south Iceland. Different geometries were tested for Hekla's magma chamber: spherical, horizontally elongated ellipsoidal, and pipe-like magma chambers. The data could not reliably distinguish the actual geometry; however, all three models indicate magma accumulation near the Moho (˜20-25 km) under Hekla. The February -- March 2000 eruption of Hekla gave another opportunity to image the magmatic system. In Chapter 5, I used co-eruptive GPS and InSAR displacements, borehole strain, and tilt measurements to jointly invert for co-eruptive deformation associated with the 2000 eruption and found a depth of approximately 20 km for the magma chamber, in accordance with my previous results. Telica is a highly seismically active volcano in Nicaragua. The seismicity is mostly of shallow (<2 km deep) origin, and shows a high variability in terms of the number of seismic events per time unit. The highest rates exceed one earthquake per minute averaged over 24 hours, but overall trends in seismic activity, as observed since 1993, do not have an obvious correlation with eruptive activity. This variability causes difficulties for hazard monitoring of Telica. Telica erupted in a small (VEI 2) explosive eruption in 2011. Eruptions of this style and size seem to occur on decadal time scales at Telica. In Chapter 3, I used an extensive multidisciplinary data set consisting of seismic and GPS data, multivariate ash analysis, SO2 measurements, fumarole temperatures, and visual observations, to show that the eruption was essentially an amagmatic eruption of hydrothermally altered materials from the conduit, and that short-term sealing of hydrothermal pathways led to temporary pressure build-up, resulting in the explosions. No significant crustal deformation was detected before or during the eruption, in accordance with low (<2 km) plume heights and small (<105 m3) eruptive

  7. Neotectonic and structural characteristics along the Chaochou fault system in SW Taiwan: implications for tectonic escape during oblique plate convergence

    Microsoft Academic Search

    Y. Chan; J. Lee; C. Lu; J. Hu; H. Chu; C. Hou; R. Rau; K. Ching

    2002-01-01

    Tectonic escape has been recognized as a common geologic process that relates to the lateral expulsion of a tectonic block during oblique plate convergence and collision. To better understand fault behaviors in such tectonically active regions, we characterized short-term and recent deformation in the SW Taiwan, where deformation largely associates with tectonic escape. This study focuses on a prominent boundary

  8. GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics

    E-print Network

    Kellogg, Louise H.

    motivated to construct a numerical simulation technology that will allow us to study earthquake physics via Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than through observations alone is complicated by our inability to study the problem in a manner familiar

  9. Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2015-04-01

    The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.

  10. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored

    E-print Network

    Cerveny, Vlastislav

    A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries November 2001; accepted 15 November 2001 Abstract We developed a plate tectonic model for the Paleozoic rates and major tectonic and magmatic events. Plates were constructed through time by adding

  11. Analysis of Oblique Plate Convergence along the Manila Trench and the Philippine Trench

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Galgana, G. A.; Bacolcol, T.; McCaffrey, R.; Yu, S.

    2010-12-01

    The Manila Trench, a >1,200 km long, seismically active N-S trending trench located along the western margin of the Philippine archipelago, acts as the main convergence zone between the Philippine Mobile Belt (PMB) and the Sunda Block (a mobile fragment of the Eurasian Plate). We compare the ongoing subduction along the Manila Trench with that occurring along the opposing Philippine Trench/East Luzon Trough in the east, the boundary which separates the Philippine Mobile Belt from the Philippine Sea Plate. We use joint inversions of published geodetic velocity fields and focal mechanism data to obtain best-fit kinematic block models. From seismicity data, known geometries of faults and subduction dip angles, we construct models of tectonic blocks and their boundaries. We model the Manila and Philippine Trenches as opposite-dipping planes that confine rotating elastic blocks composing the Philippine Mobile Belt. We find that the convergence rate along the Manila Trench decreases progressively southwards, from >70 mm/yr near 19° N, to less than 20 mm/yr at its southern termination at Mindoro Island (~13° N). The systematic slowing reflects the ongoing collision process between Mindoro and the Palawan block; this region acts as a fulcrum, resulting in as much as 7°/My counterclockwise rotation of blocks of the Luzon arc with respect to the Sunda block. The near-orthogonal convergence along the Manila Trench contrasts with the ~40 mm/yr oblique convergence at the Philippine Trench, where the convergence angle changes from nearly westward in the southern PMB to NW near its northern termination in SE Luzon. We find that the Manila Trench is relatively poorly coupled compared to the moderately coupled Philippine Trench. Based on the rates and directions of convergence, we find that the northern Philippine Fault system accommodates the shear component of convergence along the two margins of the PMB, resulting in strain partitioning. The lower inferred seismic coupling along the Manila Trench as compared to the Philippine Trench may explain its relative low rate of historical seismic moment release in earthquakes. However, additional GPS sites close to the Manila and Philippine trenches are needed to reliably resolve coupling rates along these subduction boundaries.

  12. Polarization Anisotropy Along the Anatolian African Plate Boundary

    NASA Astrophysics Data System (ADS)

    Sandvol, E.; Polat, G.; Lough, A.; Sahin, S.; Turkelli, N.

    2006-12-01

    This study focuses on mantle flow beneath and around the Anatolian plate using measurements of seismic anisotropy. Observations of shear wave splitting across the Anatolian plate have a NE-SW fast direction and lag time similar to that observed from temporary broadband stations within the plate, indicating that the anisotropic fabric may be relatively uniform throughout the upper mantle beneath the Anatolian plate. The extensive young basaltic volcanism, regional travel time tomography, and regional phase attenuation tomography all indicate that the lithospheric mantle beneath most of the Anatolian plate has largely been removed or is very thin. Unless exceptionally high anisotropy exists in the thinned lithosphere, the main contribution to the observed delay times (of order 1 s) must therefore be asthenospheric and thus reflect recent asthenospheric flow patterns. One exception appears to be a change in the fast direction across a region of concentrated extension in western Anatolia. We observe a change in the orientation of the splitting that is consistent with the direction of crustal extension. The African-Anatolian plate boundary is made up of two very different convergent margins: the Hellenic arc to the west and the Cyprian arc to the east. There is substantial evidence that the Hellenic arc is retreating and the Cyprian arc is relatively stationary. Furthermore, both earthquake hypocenters and tomographic models indicate that the Cyprian angle of subduction is much less steep than the subduction occurring along the Hellenic arc. This substantial geometric difference implies that there is a tear or gap in the subduction of African oceanic lithosphere beneath the Anatolian plate along what is called the Isparta Angle. We are investigating mantle dynamics and mantle flow around and through this possible tear in the lithosphere. We will use a combination of seismic tomographic methods (surface wave, body wave, and attenuation) as well as neotectonics studies to help constrain the extent, timing and amount of deformation in and around the Isparta angle. We have initiated this study by deploying another array of seismometers across the western Cyprean arc and extending to the easternmost Hellenic arc and the Burdur fault zone. We will combine these stations with a number of newly established permanent stations in the region to map the asthenospheric flow through this possible stab tear.

  13. Identifying Plate Tectonic Boundaries for a Virtual Ocean Basin

    NSDL National Science Digital Library

    Stephen Reynolds

    Students observe a virtual ocean basin and two adjacent continental margins. From the characteristics of the sea floor and adjacent land, students infer where plate boundaries might be present. They then predict where earthquakes and volcanoes might occur. Finally, they draw their inferred plate boundaries in cross section.

  14. Models for rupture mechanics of plate boundaries and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, A.

    1983-01-01

    The role of pull aparts and pushups in transcurrent systems, the rotation of faults and blocks within transcurrent fault systems, the role of accretion tectonics in plate boundary deformation, and power law creep behavior and the yielding at plate boundaries were investigated.

  15. The Plate Boundary Observatory: Data Management Progress and Highlights

    Microsoft Academic Search

    G. Anderson; B. Blackman; J. Eakins; K. Hodgkinson; J. Matykiewicz; F. Boler; M. Beldyk; B. Henderson; B. Hoyt; E. Lee; E. Persson; J. Smith; D. Torrez; J. Wright; M. Jackson; C. Meertens

    2007-01-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three- dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 880 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser

  16. Earthquakes, Plate Boundaries, and Depth Indiana Standard Indicators

    E-print Network

    Polly, David

    , volcanoes, trenches, and mountains. ES.1.24 ­ Understand and discuss continental drift, sea-floor spreading of the ocean and continental crust and the depth of earthquakes, and types of plate boundaries where or continental crust? · What is the explanation behind the earthquakes that do not occur at plate boundaries? #12

  17. A boundary element solution to the vibration problem of plates

    Microsoft Academic Search

    J. T. Katsikadelis

    1990-01-01

    A boundary element method is presented for the dynamic analysis of thin elastic plates of arbitrary shape. In addition to the boundary supportes the plate may be also supported on point or line supports in the interior. Both free and forced vibrations are considered. The case of support excitation is also taken into account. The method utilizes the fundamental solution

  18. A fast convergent iterative boundary element method on PVM cluster

    Microsoft Academic Search

    N. Mai-Duy; P. Nguyen-Hong; T. Tran-Cong

    1998-01-01

    This paper reports a fast convergent boundary element method on a Parallel Virtual Machine (PVM) (Geist et al., PVM: Parallel Virtual Machine, A Users' Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge, 1994) cluster using the SIMD computing model (Single Instructions Multiple Data). The method uses the strategy of subdividing the domain into a number of smaller subdomains

  19. Medical sociology and epidemiology: Convergences, divergences and legitimate boundaries

    Microsoft Academic Search

    Ingeborg P. Spruit; Daan Kromhout

    1987-01-01

    For the purpose of exploring the existence of problem areas that may give rise to the question whether there is a tendency to (illegitimately) trespass across boundaries between medical sociology and epidemiology, important convergences and divergences between both disciplines are described. To assemble arguments for the legitimacy of fields of study we trace comparatively the history of both disciplines, definitions

  20. Shock wave convergence in water with parabolic wall boundaries

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-04-01

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ˜45 kA and rise time of ˜80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger.

  1. Study on plate silencer with general boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Gongmin; Zhao, Xiaochen; Zhang, Wenping; Li, Shuaijun

    2014-09-01

    A plate silencer consists of an expansion chamber with two side-branch rigid cavities covered by plates. Previous studies showed that, in a duct, the introduction of simply supported or clamped plates into an air conveying system could achieve broadband quieting from low to medium frequencies. In this study, analytical formulation is extended to the plate silencer with general boundary conditions. A set of static beam functions, which are a combination of sine series and third-order polynomial, is employed as the trial functions of the plate vibration velocity. Greens function and Kirchhoff-Helmholtz integral are used to solve the sound radiation in the duct and the cavity, and then the vibration velocity of the plate is obtained. Having obtained the vibration velocity, the pressure perturbations induced by the plate oscillation and the transmission loss are found. Optimization is carried out in order to obtain the widest stopband. The transmission loss calculated by the analytical method agrees closely with the result of the finite element method simulation. Further studies with regard to the plate under several different classical boundary conditions based on the validated model show that a clamped-free plate silencer has the worst stopband. Attempts to release the boundary restriction of the plate are also made to study its effect on sound reflection. Results show that a softer end for a clamped-clamped plate silencer helps increase the optimal bandwidth, while the same treatment for simply supported plate silencer will result in performance degradation.

  2. The Plate Boundary Observatory Borehole Seismic Network

    NASA Astrophysics Data System (ADS)

    Hasting, M.; Eakins, J.; Anderson, G.; Hodgkinson, K.; Johnson, W.; Mencin, D.; Smith, S.; Jackson, M.; Prescott, W.

    2006-12-01

    As part of the NSF-funded EarthScope Plate Boundary Observatory, UNAVCO will install and operate 103 borehole seismic stations throughout the western United States. These stations continuously record three- component seismic data at 100 samples per second, using Geo-Space HS-1-LT 2-HZ geophones in a sonde developed by SONDI and Consultants (Duke University). Each seismic package is connected to an uphole Quanterra Q330 data logger and Marmot external buffer, from which UNAVCO retrieves data in real time. UNAVCO uses the Antelope software suite from Boulder Real-Time Technologies (BRTT) for all data collection and transfer, metadata generation and distribution, and monitoring of the network. The first stations were installed in summer 2005, with 19 stations installed by September 2006, and a total of 28 stations expected by December 2006. In a prime example of cooperation between the PBO and USArray components of EarthScope, the USArray Array Network Facility (ANF), operated by UC San Diego, handled data flow and network monitoring for the PBO seismic stations in the initial stages of network operations. We thank the ANF staff for their gracious assistance over the last several months. Data flow in real time from the remote stations to the UNAVCO Boulder Network Operations Center, from which UNAVCO provides station command and control; verification and distribution of metadata; and basic quality control for all data. From Boulder, data flow in real time to the IRIS DMC for final quality checks, archiving, and distribution. Historic data are available from June 2005 to the present, and are updated in real time with typical latencies of less than ten seconds. As of 1 September 2006, the PBO seismic network had returned 60 GB of raw data. Please visit http://pboweb.unavco.org for additional information on the PBO seismic network.

  3. The Plate Boundary Observatory: Data Management Progress and Highlights

    Microsoft Academic Search

    G. Anderson; K. Hodgkinson; M. Jackson; J. Wright

    2005-01-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 891 continuous GPS stations, up to 174 borehole strainmeter stations, and five laser strainmeters,

  4. The Plate Boundary Observatory: Data Management Progress and Highlights

    Microsoft Academic Search

    G. Anderson; J. Eakins; K. Hodgkinson; J. Matykiewicz; F. Boler; M. Beldyk; B. Hoyt; E. Lee; E. Persson; D. Torrez; J. Wright; M. Jackson; W. Prescott

    2006-01-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 852 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters,

  5. A new dynamic model of divergent plate boundary

    Microsoft Academic Search

    C. Yu

    2010-01-01

    The dynamics of divergent plate boundary, including continent rift and mid-oceanic ridge, is insufficiently understood. A new dynamic model is presented in this paper, which describes the motion of plate evolving continuously in space and time. The model is based on the three-dimensional Navier-Stokes equation with Boussinesq approximation. Two significant terms are added to the model to describe the plate

  6. Air flow in the boundary layer near a plate

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L

    1937-01-01

    The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.

  7. Diffuse Plate Boundary Seismicity and Triple Junction Stability

    NASA Astrophysics Data System (ADS)

    Wetzel, L. R.; Frohlich, C.

    2005-12-01

    Diffuse plate boundaries extend over broad deformation zones hundreds to thousands of kilometers wide. For example, the boundaries are diffuse between Australia and India, North America and South America, and Nubia and Somalia. Relative velocities are slow across these regions because the pole of rotation for the plate pair is located within or near the diffuse plate boundary. This geometry causes extension on one side and compression on the other side of the pole; earthquake focal mechanisms confirm this observation. Diffuse triple junctions exist where a diffuse plate boundary meets a regular narrow plate boundary. Diffuse triple junction stability can be assessed by extending the McKenzie and Morgan (Nature, 1969) velocity vector method. In this method, lines on a map represent narrow plate boundaries and a triangle of vectors indicates relative motions between plates. In contrast, a diffuse (D) plate boundary differs from a narrow ridge (R), transform fault (F), or trench (T); it cannot be represented as a single line on a map or a unique vector on a velocity vector diagram. Because ongoing deformation is distributed over a broad zone, the diffuse boundary is drawn as a broad zone on the velocity vector diagram, and a range of stability lines is necessary to represent motions that remain in this zone. This "stability zone" usually encompasses the stability lines of the remaining two plate boundaries where they intersect. This indicates that diffuse triple junctions are stable for a wide range of plate boundary orientations. For example, in a standard velocity vector diagram, the three plate boundaries meeting at the Australia-Eurasia-India triple junction are represented as trenches. The diffuse Australia-India plate boundary, however, may be drawn along an edge or through the center of the diffuse deformation zone. On a velocity vector diagram, the diffuse plate boundary is represented as a broad "stability zone" extending between the northern and southern edges of the diffuse deformation. Because the stability zone encompasses the intersecting lines representing the other two plate boundaries, this trench-trench-diffuse (TTD) triple junction is stable. The diffuse plate boundary extends west to the Central Indian ridge where it forms either a ridge-ridge-diffuse (RRD), ridge-fault-diffuse (RFD), or fault-fault-diffuse (FFD) triple junction. All combinations are stable. Similarly, the Caribbean-North America-South America TTD triple junction and all RRD, RFD, and FFD combinations at the Africa-North America-South America triple junction are stable. The RFD and FFD triple junction combinations are stable for an Antarctica-Nubia-Somalia triple junction extending between 26 and 32 degrees east along the Southwest Indian ridge. The RRD geometry is stable through most of this region, but is unstable near 26 degrees east.

  8. The Plate Boundary Observatory Borehole Network: Combining Geodetic, Seismic and Environmental Data to Understand Plate Boundary Deformation

    Microsoft Academic Search

    K. M. Hodgkinson; D. Mencin; D. B. Henderson; A. A. Borsa; W. Johnson; M. H. Gottlieb; E. van Boskirk; W. Gallaher; O. Fox; J. Smith; M. E. Jackson

    2010-01-01

    The Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program, is designed to capture the continuous three-dimensional deformation field across the western US plate boundary. Installed and maintained by UNAVCO, the observatory currently consists of over 1100 continuously operating GPS stations and 79 borehole installations. PBO boreholes are multi-instrumented sites containing a combination of strainmeters, seismometers, pore

  9. Plate boundaries in the Woodlark Basin and Solomon Sea Region, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goodliffe, A. M.; Cameron, M.

    2009-12-01

    The Solomon Sea and Woodlark Basin region of eastern Papua New Guinea is a tectonically complex region between the obliquely converging Pacific and Australian plates. Despite numerous marine geophysical surveys in the region, the exact nature of the tectonic boundaries between the Solomon Sea and the Woodlark Basin remains controversial. Marine geophysical data collected in the last decade provides additional insight into this region and clearly defines the boundaries of the Solomon Sea, Trobriand, Woodlark, and Australian plates. Multibeam bathymetry data collected in 2004 along the Trobriand Trough, together with seismic profiles across the trough, show a prominent deformation front in the trench that defines the southern boundary of the Solomon Sea plate. Petrologic data from volcanoes to the south of this boundary indicate that they have a subduction affinity. Heat flow profiles to the south of the plate boundary show a clear subduction signature. At the eastern termination of the Trobriand Trough the plate boundary forms a triple junction with the NE-SW trending Nubaru strike-slip fault. To the NE this major fault separates the Solomon Sea plate from the Woodlark plate. The morphology of this fault and a CMT solution indicate that it is right-lateral. To the SW the Nubaru strike-slip fault passes to the south of the Trobriand Trough, forming the southern boundary of the Trobriand plate (with the Trobriand Trough as the northern boundary). Further west the trend of the strike slip fault becomes more ENE-WSW. A significant extension component is evident as the fault passes to the north of Egum Graben and meets the Woodlark Basin spreading system at the current rifting to seafloor spreading transition directly to the east of Moresby Seamount. The revised tectonic model for this region has important implications for tectonic reconstructions that include an active rifting to spreading transition and prominent core complexes. In the past, models have assumed a simple two-plate system. The inclusion of the Trobriand plate at the rifting to spreading transition will change estimates of extension that have assumed that the system can be described by a single Euler pole directly to the WSW.

  10. Iberian plate kinematics: A jumping plate boundary between Eurasia and Africa

    USGS Publications Warehouse

    Srivastava, S.P.; Schouten, Hans; Roest, W.R.; Klitgord, Kim D.; Kovacs, L.C.; Verhoef, J.; Macnab, R.

    1990-01-01

    THE rotation of Iberia and its relation to the formation of the Pyrenees has been difficult to decipher because of the lack of detailed sea-floor spreading data, although several models have been proposed1-7. Here we use detailed aeromagnetic measurements from the sea floor offshore of the Grand Banks of Newfoundland to show that Iberia moved as part of the African plate from late Cretaceous to mid-Eocene time, with a plate boundary extending westward from the Bay of Biscay. When motion along this boundary ceased, a boundary linking extension in the King's Trough to compression along the Pyrenees came into existence. Finally, since the late Oligocene, Iberia has been part of the Eurasian plate, with the boundary between Eurasia and Africa situated along the Azores-Gibraltar fracture zone.

  11. A diffuse plate boundary model for Indian Ocean tectonics

    NASA Technical Reports Server (NTRS)

    Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.

    1985-01-01

    It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.

  12. Long-distance multistep sediment transfer at convergent plate margins (Barbados, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Limonta, Mara; Garzanti, Eduardo; Resentini, Alberto; Andò, Sergio; Boni, Maria; Bechstädt, Thilo

    2015-04-01

    We present a regional provenance study of the compositional variability and long distance multicyclic transport of terrigenous sediments along the convergent and transform plate boundaries of Central America, from the northern termination of the Andes to the Lesser Antilles arc-trench system. We focus on high-resolution bulk-petrography and heavy-mineral analyses of modern beach and fluvial sediments and Cenozoic sandstones of Barbados island, one of the places in the world where an active accretionary prism is subaerially exposed (Speed et al., 2012). The main source of siliciclastic sediment in the Barbados accretionary prism is off-scraped quartzose to feldspatho-litho-quartzose metasedimentaclastic turbidites, ultimately supplied from South America chiefly via the Orinoco fluvio-deltaic system. Modern sand on Barbados island is either quartzose with depleted heavy-mineral suites recycled from Cenozoic turbidites and including epidote, zircon, tourmaline, andalusite, garnet, staurolite and chloritoid, or calcareous and derived from Pleistocene coral reefs. The ubiquitous occurrence of clinopyroxene and hypersthene, associated with green-brown kaersutitic hornblende in the north or olivine in the south, points to reworking of ash-fall tephra erupted from andesitic (St. Lucia) and basaltic (St. Vincent) volcanic centers in the Lesser Antilles arc transported by the prevailing anti-trade winds in the upper troposphere. Modern sediments on Barbados island and those shed by other accretionary prisms such as the Indo- Burman Ranges and Andaman-Nicobar Ridge (Garzanti et al., 2013) define the distinctive mineralogical signature of Subduction Complex Provenance, which is invariably composite. Detritus recycled dominantly from accreted turbidites and oceanic mudrocks is mixed in various proportions with detritus from the adjacent volcanic arc or carbonate reefs widely developed at tropical latitudes. Ophiolitic detritus may be locally prominent. Quantitative provenance analysis is a basic tool in paleogeographic reconstructions when multicyclic sediment dispersal along and across convergent plate margins occur. Such analysis provides the link between faraway factories of detritus and depositional sinks, as well as clues on subduction geometry and the nature of associated growing orogenic belts, and even information on climate, atmospheric circulation and weathering intensity in source regions. REFERENCES Garzanti, E., Limonta, M., Resentini, A., Bandopadhyay, P.C., Najman, Y., Andò, S., Vezzoli, G., 2013. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth Sci. Rev., 123, 113-132. Speed, C. and Sedlock, R. 2012. Geology and geomorphology of Barbados. Geol. Soc. Am. Spec. Pap., 491, 63 p.

  13. Linking mantle dynamics, plate tectonics and surface processes in the active plate boundary zones of eastern New Guinea (Invited)

    NASA Astrophysics Data System (ADS)

    Baldwin, S.; Moucha, R.; Fitzgerald, P. G.; Hoke, G. D.; Bermudez, M. A.; Webb, L. E.; Braun, J.; Rowley, D. B.; Insel, N.; Abers, G. A.; Wallace, L. M.; Vervoort, J. D.

    2013-12-01

    Eastern New Guinea lies within the rapidly obliquely converging Australian (AUS)- Pacific (PAC) plate boundary zone and is characterized by transient plate boundaries, rapidly rotating microplates and a globally significant geoid high. As the AUS plate moved northward in the Cenozoic, its leading edge has been a zone of subduction and arc accretion. The variety of tectonic settings in this region permits assessment of the complex interplay among mantle dynamics, plate tectonics, and surface processes. Importantly, the timescale of tectonic events (e.g., subduction, (U)HP exhumation, seafloor spreading) are within the valid bounds of mantle convection models. A record of changes in bathymetry and topography are preserved in high standing mountain belts, exhumed extensional gneiss domes and core complexes, uplifted coral terraces, and marine sedimentary basins. Global seismic tomography models indicate accumulation of subducted slabs beneath eastern New Guinea at the bottom of the upper mantle (i.e., <660km depth). Some of the deeply subducted material may indeed be buoyant subducted AUS continental margin (to depths of ~250-300 km), as well as subducted continental material that has reached the point of no return (i.e., > 250-300 km). Preliminary global-scale backward advected mantle convection models, driven by density inferred from joint seismic-geodynamic tomography models, exhibit large-scale flow associated with these subducted slab remnants and predict the timing and magnitude (up to 1500 m) of dynamic topography change (both subsidence and uplift) since the Oligocene. In this talk we will explore the effects of large-scale background mantle flow and plate tectonics on the evolution of topography and bathymetry in eastern New Guinea, and discuss possible mechanisms to explain basin subsidence and surface uplift in the region.

  14. Secondary flow and enhancement of heat transfer in horizontal parallel-plate and convergent channels heating from below

    Microsoft Academic Search

    C. Gau; C. W. Liu; T. M. Huang; Win Aung

    1999-01-01

    Experimental studies of secondary air flow structure and enhancement of heat transfer in horizontal parallel-plate and convergent channels have been carried out. The bottom wall is horizontal and heated uniformly, while the opposite wall is insulated and inclined with respect to the horizontal plate so as to create a convergence angel of 3° for the convergent channel. The aspect ratio

  15. In-Plane Vibration Analysis of Annular Plates with Arbitrary Boundary Conditions

    PubMed Central

    Qin, Zhengrong; Wang, Qingshan

    2014-01-01

    In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions. PMID:24688416

  16. Azores–Tunisia, A Tectonically Complex Plate Boundary

    Microsoft Academic Search

    Elisa Buforn; Agustín Udías

    2010-01-01

    The seismically active region from Tunisia to the Azores Islands constitutes the westernmost part of the plate boundary between Eurasia and Africa. From the point of view of tectonics, this is a complex structure which involves volcanism and rifting at the Azores, strike-slip motion at the center of the Atlantic, and horizontal N-S compressions at its eastern part, with complex

  17. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would enable global comparisons of plate boundary structures and processes and could facilitate a more coordinated approach to optimizing the future acquisition of these high-value data by the global research community.

  18. Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and the western Pacific

    NASA Technical Reports Server (NTRS)

    Fitch, T. J.

    1971-01-01

    A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

  19. Modeling the Philippine Mobile Belt: Tectonic blocks in a deforming plate boundary zone

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; Hamburger, M. W.; McCaffrey, R.; Bacolcol, T. C.; Aurelio, M. A.

    2007-12-01

    The Philippine Mobile Belt, a seismically active, rapidly deforming plate boundary zone situated along the convergent Philippine Sea/Eurasian plate boundary, is examined using geodetic and seismological data. Oblique convergence between the Philippine Sea Plate and the Eurasian plate is accommodated by nearly orthogonal subduction along the Philippine Trench and the Manila Trench, as well as by strike-slip faulting along the Philippine Fault system. We develop a model of active plate boundary deformation in this region, using elastic block models constrained by known fault geometries, published GPS observations and focal mechanism solutions. We then present an estimate of block rotations, fault coupling, and intra-block deformation, based on the best-fit model that minimizes the misfit between observed and predicted geodetic vectors and earthquake slip vectors. Slip rates along the Philippine fault vary from ~22 - 36 mm/yr in the Central Visayas and about 10 to 40 mm/yr in Luzon, trending almost parallel to the fault trace. In northern Luzon, Philippine Fault splays accommodate transpressional strain. The Central Visayas block experiences convergence with the Sundaland block along the Negros Trench and the Mindoro-Palawan collision zone. On the eastern side of Central Visayas, sinistral strike-slip faulting occurs along the NNW-SSE-trending Philippine Fault. Mindanao Island in southern Philippines is dominated by east-verging subduction along the Cotabato Trench, and strain partitioning (strike- slip faulting with west-verging subduction) in eastern Mindanao along the southern Philippine Fault and Philippine Trench, respectively. Oblique active sinistral strike slip faults in Central and Eastern Mindanao that were hypothesized to be responsible for basin formation are obvious boundaries for tectonic blocks. Located south of Mindanao Island we define an adjoining oceanic block defined by the N-S trending complex dual subduction zone of Sangihe and Halmahera, primarily delineated by seismicity, bathymetric profiles and E-W thrust mechanisms. In our preferred model, the Philippine Mobile Belt can be represented by at least 12 independently moving rigid tectonic blocks, separated by active faults and subduction zones.

  20. Evolution of the Southern Caribbean Plate Boundary

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Schmitz, Michael; Lallemant, Hans G. Avé; Zelt, Colin A.; Sawyer, Dale S.; Magnani, Maria B.; Mann, Paul; Christeson, Gail; Wright, James E.; Pavlis, Gary L.; Pindell, James

    2006-02-01

    It is generally accepted that the cores of the continents, called cratons, formed by the accretion of island arcs into proto-continents and then by proto-continental agglomeration to form the large continental masses. Mantle-wedge processes, combined with higher melting temperatures during the Archean (2.5-3.8 billion years ago) and possibly thrust stacking of highly depleted Archean oceanic lithosphere, produced a strong, buoyant, upper mantle chemical boundary layer. This stabilizing mantle layer, known as the tectosphere, has shielded the Archean cratons from most subsequent tectonic disruption and is highly depleted in iron, providing the positive buoyancy that is required to `float' the continents more than four kilometers above the surrounding ocean basins. What is not clear is whether today the continental mass is growing, shrinking, or is at steady state. A number of continental growth curves have been proposed; the most widely accepted models call for rapid continental growth in the late Archean and Paleoproterozoic (between 3.0 and ~1.7 billion years ago), followed by slow growth to the present. Whether modern continental accretion and something akin to tectosphere formation are occurring today is an open question. It is not clear how island arcs accrete to the continents, or if modern arcs contribute to continental growth. Seismic observations of arcs worldwide show that the crustal velocity structure is too fast, and hence the chemical composition too silica-poor, to generate an average continental crust without substantial chemical and/or mechanical refining during or subsequent to accretion.

  1. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons

    Microsoft Academic Search

    G. M Stampfli; G. D. Borel

    2002-01-01

    We developed a plate tectonic model for the Paleozoic and Mesozoic (Ordovician to Cretaceous) integrating dynamic plate boundaries, plate buoyancy, ocean spreading rates and major tectonic and magmatic events. Plates were constructed through time by adding\\/removing oceanic material, symbolized by synthetic isochrons, to major continents and terranes. Driving forces like slab pull and slab buoyancy were used to constrain the

  2. Your Mission: To become familiar with the major plate boundaries through exploration of plate tectonic features using Google Earth.

    E-print Network

    Smith-Konter, Bridget

    boundaries through exploration of plate tectonic features using Google Earth. Your Supplies: (1) A computer with internet access and the Google Earth program of Earth's tectonic plates using Google Earth. To do this, login

  3. Fluid budgets at convergent plate margins: Implications for the extent and duration of fault-zone dilation

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1999-01-01

    Faults at convergent plate boundaries are important conduits for fluid escape, and recent evidence suggests that fluid expulsion along them is both transient and heterogeneous. For the Nankai and Barbados convergent margins, we have used numerical models to investigate the long-term partitioning of expelled fluids between diffuse flow and flow along connected high-permeability fault conduits. For a simple case of spatial heterogeneity, we estimated the extent of high-permeability conduits necessary to maintain a balance between incoming and expelled fluids. For the case of transient expulsion, we constrained the duration of elevated permeability required to balance the fluid budgets. Comparison of modeled and observed geochemical profiles suggests that the initiation of connected flow conduits is delayed with respect to the time of accretion into each accretionary complex and may be related to burial below a critical depth, either where the overlying wedge is sufficiently thick to prevent fluid escape to the sea floor or where sediments behave brittlely.

  4. Boundary element method for 3-D cracks in a plate

    NASA Technical Reports Server (NTRS)

    Fares, N.; Li, V. C.

    1988-01-01

    Fundamental solutions which automatically satisfy boundary conditions at the interfaces of an elastic plate perfectly bonded to two elastic halfspaces are implemented in a three-dimensional BEM for crack problems. The BEM features a new integration scheme for highly singular kernels. The capability is achieved through a part analytic and part numerical integration procedure, such that the analytic part of the integration is similar for all slip/opening variations. Part-through elliptic cracks in an elastic plate with traction-free surfaces are analyzed and the SIF values along the crack front are found to compare favorably with the numerical SIF results of Raju and Newman (1979).

  5. Kinematics of the Western Africa-Eurasia Plate Boundary From Focal Mechanisms and GPS Data

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Vannucci, G.; Pondrelli, S.; Argnani, A.; Casula, G.; Anzidei, M.; Baldi, P.; Gasperini, P.

    2006-12-01

    We used earthquake and GPS data to study the present-day kinematics and tectonics of the Africa-Eurasia plate boundary in the Western Mediterranean. Crustal seismicity and focal mechanisms outline the geometry of major seismic belts and characterise their tectonics and kinematics. Continuous GPS data have been analyzed to determine Euler vectors for the Nubian and Eurasian plates and to provide the global frame for a new Mediterranean GPS velocity field, obtained by merging continuous and campaign observations. GPS velocities and displacements predicted by the Nubia-Eurasia pole provide estimates of the deformation accommodated across the tectonically active belts. Our analysis reveals a more complex fragmentation of the plate boundary than previously proposed. The roughly E-W trending mainly compressive segments (i.e., southwestern Iberia, northern Algeria and southern Tyrrhenian), where plate convergence is largely accomodated across rather localized deformation zones, and partially transferred northward to the adjacent domains (i.e., the Algero-Balearic and Tyrrhenian basins), are interrupted by regions of more distributed deformation (i.e., the Rif-Alboran-Betics, Tunisia-Libya and eastern Sicily deformation zones), or limited seismicity (i.e., the Strait of Sicily), which are characterized by less homogeneous regimes (mainly transcurrent to extensional). In correspondence of the observed breaks, tectonic structures with different orientation interfere, and we find belts with only limited deformation (i.e., the High and Mid Atlas, the Tunisian Atlas and the offshore Tunisia-Libya belt) that extends from the plate boundary into the Nubian plate, along pre-existing tectonic lineaments. Our analysis suggest that the Sicilian-Pelagian domain is moving independently from Nubia, according to the presence of a right-lateral and extensional decoupling zone corresponding to the Tunisia-Libya and Strait of Sicily deformation zone. Despite the space variability of active tectonic regimes, plate convergence still governs most of the seismotectonic and kinematic setting up to the central Aeolian region. In general, local complexities derive from pre-existing structural features, inherited from the tectonic evolution of the Mediterranean region. On the contrary, along Calabria and the Apennines the contribution of the subducted Ionian oceanic lithosphere and the occurrence of microplates (i.e., Adria) appear to substantially modify both tectonics and kinematics. Finally, GPS data across the Gibraltar Arc and the Tyrrhenian-Calabria domain support the hypothesis that slab rollback in these regions is mostly slowed down or stopped.

  6. An Introduction to Plate Tectonics

    NSDL National Science Digital Library

    This page is a brief introduction to plate tectonics. It starts with a discussion of the evolution of the theory of plate tectonics and the arguments supporting it. It then discusses the processes associated with tectonics and the types of plate boundaries: divergent, convergent and transform boundaries. It concludes with a discussion of the current hypotheses of what causes plates to move.

  7. Extension along the Australian-Pacific transpressional transform plate boundary near Macquarie Island

    E-print Network

    Daczko, Nathan

    a preexisting divergent plate boundary and that the overall extensional kinematics shown by faults alongExtension along the Australian-Pacific transpressional transform plate boundary near Macquarie 78712, USA (tameckel@colby.edu) [1] The Australian-Pacific transform plate boundary fault zone along

  8. Tectonics of the Nazca-Antarctic plate boundary

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, Sandra; Larson, Roger L.; Engeln, Joseph F.; Lundgren, Paul; Stein, Seth

    1987-01-01

    A new bathymetric chart of part of the Chile transform system is constructed, based mainly on an R/V Endeavor survey from 100 deg W to its intersection with the East Ridge of the Juan Fernandez microplate. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109 deg W to approximately 104 deg 30 min W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104 deg and 102 deg W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate-motion data from the eastern portion of the boundary, produce a new best-fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.

  9. Lower plate deformation structures along the Costa Rica erosive plate boundary - results from IODP Expedition 344 (CRISP 2)

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Micheuz, Peter; Krenn, Kurt

    2015-04-01

    The primary objective of Integrated Ocean Drilling Program (IODP) Expedition 344 offshore the Osa Peninsula in Costa Rica was to sample and quantify the material entering the seismogenic zone of the Costa Rican erosive subduction margin. Fundamental to this objective is an understanding of the nature of both the subducting Cocos plate crust and of the overriding Caribbean plate. The subducting Cocos plate is investigated trying to define its hydrologic system and thermal state. The forearc structures recorded by the sediment deposited on the forearc, instead, document periods of uplift and subsidence and provide important information about the process of tectonic erosion that characterizes the Costa Rica margin. Offshore the western margin of Costa Rica, the oceanic Cocos plate subducts under the Caribbean plate, forming the southern end of the Middle America Trench. Subduction parameters including the age, convergence rate, azimuth, obliquity, morphology, and slab dip all vary along strike. The age of the Cocos plate at the Middle America Trench decreases from 24 Ma offshore the Nicoya Peninsula to 15 Ma offshore the Osa Peninsula. Subduction rates vary from 70 mm/y offshore Guatemala to 90 mm/y offshore southern Costa Rica. Convergence obliquity across the trench varies from offshore Nicaragua, where it is as much as 25° oblique, to nearly orthogonal southeast of the Nicoya Peninsula. Passage of the Cocos plate over the Galapagos hotspot created the aseismic Cocos Ridge, an overthickened welt of oceanic crust. This ridge is ~25 km thick, greater than three times normal oceanic crustal thickness. During IODP Expedition 344, the incoming Cocos plate was drilled at sites U1381 and U1414. Site U1381 is located ~4.5 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. It is located on a local basement high. Basement relief often focuses fluid flow, so data from this site are likely to document the vigor of fluid flow in this area. Site U1414 is located ~1 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. Primary science goals at Site U1414 included characterization of the alteration state of the magmatic basement. Brittle structures within the incoming plate (sites U1380, U1414) are mineralized extensional fractures and shear fractures. The shear fractures mainly show a normal component of shear. Within the sedimentary sequence both types of fractures dip steeply (vertical to subvertical) and strike NNE-SSW. Deformation bands trend roughly ENE-WSW, sub-parallel to the trend of the Cocos ridge. Structures in the Cocos Ridge basalt mainly comprise mineralized veins at various orientations. A preferred orientation of strike directions was not observed. Some veins show straight boundaries, others are characterized by an irregular geometry characterized by brecciated wall rock clasts embedded within vein precipitates. The vein mineralization was analysed in detail by RAMAN spectroscopy. Precipitation conditions and fluid chemistry were analysed by fluid inclusions entrapped within vein minerals. Vein mineralizations mainly consist of carbonate (fibrous aragonite, calcite), chalcedony, and quartz. Vein mineralization is mainly characterized by zoned antitaxial growth of carbonate fibres including a suture along the central vein domains. Quartz is often characterized by fibre growth of crystals perpendicular to the vein boundaries, too. These zoned veins additinally have wall rock alteration seams consisting of clay minerals. The precipitation sequence basically indicates that fluid chemistry evolved from an CO2-rich towards a SiO2- rich fluid.

  10. Buckling transition and boundary layer in non-Euclidean plates

    E-print Network

    Efi Efrati; Eran Sharon; Raz Kupferman

    2009-05-29

    Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending of the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, amongst all configurations with zero stretching content (isometric immersions of the mid-surface). For small but finite plate thickness we show the formation of a boundary layer, whose size scales with the square root of the plate thickness, and whose shape is determined by a balance between stretching and bending energies.

  11. Coupling, fluids and foreshocks - preparing megathrust ruptures at the Chilean plate boundary

    NASA Astrophysics Data System (ADS)

    Oncken, O.; Moreno, M.; Schurr, B.

    2014-12-01

    Recent studies have suggested that geodetic locking at convergent plate boundaries is closely related to slip distribution of subsequent megathrust earthquakes. The nature of locking and its evolution towards rupture, however, remains a matter of debate. The international initiative IPOC (Integrated Plate Boundary Observatory Chile; ipoc-network.org) addresses these goals at the Chilean margin. We explore geophysical and geodetic data collected in the decade before an event to identify the petrophysical state as well as change along the plate interface leading up to a megathrust event. Seismological data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that released the M=8.8Maule earthquake of 2010. High Vp/Vs domains, interpreted as zones of elevated pore fluid pressure, spatially correlate with lower locking degree, and exhibit higher background seismicity as expected for partly creeping domains. In turn, unstable slip associated to a higher degree of locking is promoted in lower pore fluid pressure domains. We speculate that hydraulic loading during the terminal stage of a seismic cycle to close to lithostatic pore pressure with an equivalent reduction of effective strength may be as relevant for earthquake triggering as stress loading from long-term plate convergence. In contrast to the Maule earthquake, the Pisagua Mw=8.1 earthquake of 2014, while also rupturing a geodetically well-defined major asperity, was preceded by a protracted series of foreshocks. Since July 2013 three seismic clusters hit this part of the plate boundary with increasing magnitudes in a domain that was transitional between a fully locked and a creeping portion. Leading up to this earthquake the b-value of the foreshocks gradually dropped during the years prior to the earthquake, reversing its trend a few days before the Pisagua earthquake. We conclude that gradual weakening of the central part of the Northern Chile seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure. In spite of similar geodynamic conditions, processes leading up to the rupture were distinct for the Pisagua and the Maule earthquake suggesting a diversity of evolutionary paths towards megathrust rupture.

  12. Spatially developing turbulent boundary layer on a flat plate

    E-print Network

    Lee, J H; Hutchins, N; Monty, J P

    2012-01-01

    This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_\\tau \\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would requ...

  13. Defects and boundary layers in non-Euclidean plates

    E-print Network

    John Gemmer; Shankar Venkataramani

    2012-09-07

    We investigate the behavior of non-Euclidean plates with constant negative Gaussian curvature using the F\\"oppl-von K\\'arm\\'an reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers -- deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet.

  14. Global positioning system measurements of Indian plate motion and convergence across the Lesser Himalaya

    Microsoft Academic Search

    J. Freymueller; R. Bilham; R. Bürgmann; K. M. Larson; J. Paul; S. Jade; V. Gaur

    1996-01-01

    We use Global Positioning System (GPS) measurements acquired from 1991 to 1995 to constrain the motion of sites in Bangalore, in southern India, and Kathmandu, Nepal, relative to a global GPS network. These measurements permit estimates of the northward motion of the Indian plate and convergence between the southern Himalaya and the Indian subcontinent. The velocities of Bangalore and Kathmandu

  15. Analysis of Oblique Plate Convergence along the Manila Trench and the Philippine Trench

    Microsoft Academic Search

    M. W. Hamburger; G. A. Galgana; T. Bacolcol; R. McCaffrey; S. Yu

    2010-01-01

    The Manila Trench, a >1,200 km long, seismically active N-S trending trench located along the western margin of the Philippine archipelago, acts as the main convergence zone between the Philippine Mobile Belt (PMB) and the Sunda Block (a mobile fragment of the Eurasian Plate). We compare the ongoing subduction along the Manila Trench with that occurring along the opposing Philippine

  16. Formation of plate boundaries: The role of mantle volatilization

    NASA Astrophysics Data System (ADS)

    Seno, Tetsuzo; Kirby, Stephen H.

    2014-02-01

    In the early Earth, convection occurred with the accumulation of thick crust over a weak boundary layer downwelling into the mantle (Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963-966.). This would have transitioned to stagnant-lid convection as the mantle cooled (Solomatov, V.S., Moresi, L.-N., 1997. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907-1910.) or back to a magma ocean as the mantle heated (Sleep, N., 2000. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105(E7): 17563-17578). Because plate tectonics began operating on the Earth, subduction must have been initiated, thus avoiding these shifts. Based on an analogy with the continental crust subducted beneath Hindu Kush and Burma, we propose that the lithosphere was hydrated and/or carbonated by H2O-CO2 vapors released from magmas generated in upwelling plumes and subsequently volatilized during underthrusting, resulting in lubrication of the thrust above, and subduction of the lithosphere along with the overlying thick crust. Once subduction had been initiated, serpentinized forearc mantle may have formed in a wedge-shaped body above a dehydrating slab. In relict arcs, suture zones, or rifted margins, any agent that warms and dehydrates the wedge would weaken the region surrounding it, and form various types of plate boundaries depending on the operating tectonic stress. Thus, once subduction is initiated, formation of plate boundaries might be facilitated by a major fundamental process: weakening due to the release of pressurized water from the warming serpentinized forearc mantle.

  17. Boundary Controllability of Thermoelastic Plates with Free Boundary George Avalos \\Lambda Irena Lasiecka y

    E-print Network

    be taken to be arbitrarily smooth in time and space, and the thermal control region may be any nonempty such boundary control, and with initial data in the basic space of wellposedness, one can simultaneously control the displacement of the plate exactly, and the temperature approximately. Moreover, the thermal control may

  18. Boundary Controllability of Thermoelastic Plates with Free Boundary George Avalos Irena Lasieckay

    E-print Network

    be taken to be arbitrarily smooth in time and space, and the thermal control region may be any nonempty such boundary control, and with initial data in the basic space of wellposedness, one can simultaneously control the displacement of the plate exactly, and the temperature approximately. Moreover, the thermal control may

  19. Long Paleoseismic Records at Plate Boundaries: Clustering, Segmentation, Supercycles and More (Invited)

    NASA Astrophysics Data System (ADS)

    Goldfinger, C.

    2010-12-01

    Long paleoseismic records from plate boundary earthquake series afford uncommon opportunities to examine recurrence models, clustering, segmentation, interaction with other faults, and long term strain history. For example, the 10,000 year marine record in Cascadia suggests at least four seismic segments defined by correlation of turbidites along strike and compatible temporal links to onshore evidence. The linkage makes use of subsurface log correlation techniques, radiocarbon ages, and the similarity of records in isolated settings along the Cascadia margin. The temporal and spatial record reveals a pattern of decreasing recurrent time southward, from ~ 500-530 years in northern Cascadia, to ~ 240 years or less in southern Cascadia. The decrease in recurrence times southward is consistent with a southward tapering sediment supply, which in turn allows lower plate roughness to define segment boundaries. The temporal record also reveals clusters of 4-5 events, with gaps of 700-1200 years between clusters. These temporal clusters are supported by regional high-resolution seismic reflection records, and appear to extend to Late Pleistocene time, deeper than reachable with gravity and piston coring. Long temporal records also afford opportunities to test linkages between adjacent fault systems. Long turbidite records for Cascadia and the Northern San Andreas Fault suggest that these two faults have virtually the same average recurrence interval through the Holocene. The physical connection at the Mendocino Triple Junction may be augmented by a stress connection between the earthquake cycles of these two great faults. This connection is suggested by a close event by event temporal correlation. Finally, energy in plate boundary fault zones may have long term cycling involving many seismic cycles. Several lines of evidence, both direct and indirect suggest that the connection between interevent time and earthquake magnitude, and models predicated on this relationship, may be very weak. If a measure of earthquake magnitude can be inferred from a paleoseismic record, then recurrence models and long term-cycling can be explored. In Cascadia, coseismic energy may be modeled as proportional to the mass of turbidites triggered in seismic shaking. We infer that turbidite mass is a suitable proxy for energy release because of its consistency along strike at multiple sites. If turbidite mass (energy release) is plotted to balance plate convergence (energy gain) the result is a 10ka energy time series for Cascadia. The pattern reveals that the earthquake clusters apparent in the time series have variable behavior. Some events appear to release less, while others release more energy than available from plate convergence (slip deficit). Those that are larger may have borrowed stored energy from previous cycles. Cycle variations may explain mismatches between deformation models based on interevent times in the last 4600 years and coastal paleoseismic data.

  20. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Vannucci, G.; Pondrelli, S.; Argnani, A.; Casula, G.; Anzidei, M.; Baldi, P.; Gasperini, P.

    2007-06-01

    The Western Mediterranean displays a complex pattern of crustal deformation distributed along tectonically active belts developed in the framework of slow oblique plate convergence. We used earthquake and Global Positioning System (GPS) data to study the present-day kinematics and tectonics of the Africa-Eurasia plate boundary in this region. Crustal seismicity and focal mechanisms, analysed in terms of seismic moment release and seismic deformation, outline the geometry of major seismic belts and characterize their tectonics and kinematics. Continuous GPS data have been analysed to determine Euler vectors for the Nubian and Eurasian plates and to provide the global frame for a new Mediterranean GPS velocity field, obtained by merging continuous and campaign observations collected in the 1991-2005 time span. GPS velocities and displacements predicted by the Nubia-Eurasia rotation pole provide estimates of the deformation accommodated across the tectonically active belts. The rather simple deformation occurring in the Atlantic region, characterized by extension about perpendicular to the Middle Atlantic and Terceira ridges and right-lateral motion along the Gloria transform fault, turns into a complex pattern of deformation, occurring along broader seismic belts, where continental lithosphere is involved. Our analysis reveals a more complex fragmentation of the plate boundary than previously proposed. The roughly E-W trending mainly compressive segments (i.e. southwestern Iberia, northern Algeria and southern Tyrrhenian), where plate convergence is largely accomodated across rather localized deformation zones, and partially transferred northward to the adjacent domains (i.e. the Algero-Balearic and Tyrrhenian basins), are interrupted by regions of more distributed deformation (i.e. the Rif-Alboran-Betics, Tunisia-Libya and eastern Sicily) or limited seismicity (i.e. the Strait of Sicily), which are characterized by less homogeneous tectonics regimes (mainly transcurrent to extensional). In correspondence of the observed breaks, tectonic structures with different orientation interfere, and we find belts with only limited deformation (i.e. the High and Middle Atlas, the Tunisian Atlas and the offshore Tunisia-Libya belt) that extends from the plate boundary into the Nubian plate, along pre-existing tectonic lineaments. Our analysis suggest that the Sicilian-Pelagian domain is moving independently from Nubia, according to the presence of a right-lateral and extensional decoupling zone corresponding to the Tunisia-Libya and Strait of Sicily deformation zone. Despite the space variability of active tectonic regimes, plate convergence still governs most of the seismotectonic and kinematic setting up to the central Aeolian region. In general, local complexities derive from pre-existing structural features, inherited from the tectonic evolution of the Mediterranean region. On the contrary, along Calabria and the Apennines the contribution of the subducted Ionian oceanic lithosphere and the occurrence of microplates (i.e. Adria) appear to substantially modify both tectonics and kinematics. Finally, GPS data across the Gibraltar Arc and the Tyrrhenian-Calabria domain support the hypothesis that slab rollback in these regions is mostly slowed down or stopped.

  1. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge)

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Limonta, Mara; Resentini, Alberto; Bandopadhyay, Pinaki C.; Najman, Yani; Andò, Sergio; Vezzoli, Giovanni

    2013-08-01

    Subduction complexes large enough to be exposed subaerially and become significant sources of terrigenous detritus are formed by tectonic accretion above trenches choked with thick sections of remnant-ocean turbidites. They thus need to be connected along strike to a major collision zone, where huge volumes of orogenic detritus are produced and conveyed via a major fluvio-deltaic system to the deep sea. In this article we investigate sediment generation and recycling in the archetype of such settings, the eastern prolongation of the Himalayan collisional system. We illustrate the petrographic and heavy-mineral suites of modern sands produced all along the Indo-Burman-Andaman-Nicobar subduction complex, which includes accreted abyssal-plain sediments overthrust by ophiolites and unconformably overlain by volcaniclastic forearc strata. "Subduction Complex Provenance" is thus composite, and overwhelmingly consists of detritus recycled from largely turbiditic parent rocks (Recycled Clastic Provenance), with local supply from obducted ultramafic and mafic rocks of forearc lithosphere (Ophiolite Provenance) or recycled paleovolcanic to neovolcanic sources (Volcanic Arc Provenance). In order to specifically investigate the effect of recycling, we characterize the diverse detrital signatures of Cenozoic sandstones originally deposited during subsequent stages of "soft" and "hard" Himalayan collision and presently exposed from Bangladesh to the Andaman Islands, and discuss the reasons for compositional discrepancies between parent sandstones and their recycled daughter sands. Long-distance, multistep and multicyclic sediment transfer along and across convergent plate boundaries follows complex trajectories in space and time, which must be resolved whenever we want to obtain a reasonably faithful paleogeographic reconstruction for the recent and less recent geological past.

  2. Tsunami Signals Recorded By Plate Boundary Observatory Borehole Strainmeters

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K.; Mencin, D.; Borsa, A.; Henderson, B.; Johnson, W.

    2012-04-01

    The Plate Boundary Observatory (PBO), the geodetic component of the US National Science Foundation funded Earthscope program, is designed to capture the continuous three-dimensional deformation field across the western United States plate boundary. Installed and maintained by UNAVCO, the observatory currently consists of over 1100 continuous GPS sites, 6 long-baseline laser strainmeters and 75 borehole strainmeters. PBO borehole strainmeters have recorded the arrival of tsunamis generated by the 2009 M8.0 Samoa, 2010 M8.8 Chile and 2011 M9.0 Tohoku earthquakes on the Pacific coast of North America. In our analysis of the strain data we find the following: the tsunami arrival times recorded by the strainmeters are consistent with those recorded by nearby tide-gauges, the data are of sufficient quality to compare the frequency content of the tidal signal in the days before and after the tsunami and, the strain measurements are comparable with those predicted by theory. In each case the strain measurements can be translated to water height estimates which are within centimeters of those recorded by tide gauges. It is possible that borehole strainmeters could play a role in providing a land-based, continuous, high-rate tsunami measurement system.

  3. Stress accumulation and release at complex transform plate boundaries

    SciTech Connect

    Verdonck, D.; Furlong, K.P. (Pennsylvania State Univ., University Park (United States))

    1992-10-01

    Finite element methods are used to model the dynamics of deformation along complex transform plate boundaries, specifically the San Andreas fault system, California. Effects of mantle rheology and fault geometry on the stress buildup and release are investigated. No prior knowledge of the earthquake cycle time or amount of fault slip is assumed that the results suggest that the San Andreas fault slips at low shear stress (about 15 MPa). Although the maximum stress on the fault is 15 MPa, models with an upper mantle shear zone deforming entirely by dislocation creep accumulate stresses that exceed 100 MPa, a stress level high enough to drive localized dynamic recrystallization and a shift in dominant deformation mechanism to diffusion creep. Models in which the mantle shear zone deform locally by diffusion creep reach a dynamic steady state where lithospheric shear stresses never exceed the specified fault stress anywhere in the model and indicate that the strength of the upper mantle is an important parameter in the dynamics of plate boundary deformation. 17 refs.

  4. The GEORED and Plate Boundary Observatory Engineer Exchange Program

    NASA Astrophysics Data System (ADS)

    Feaux, K.; Mora-Paez, H.

    2007-05-01

    In early 2007, the Colombian Institute of Geology and Mining - INGEOMINAS initiated GEORED (Geodesia: Red de Estudios de Deformación) in order to increase the knowledge of the geodynamics of northwestern South America. GEORED is an essential tool for determining crustal deformation and is primary in the analysis of inter- plate and intraplate deformation and the present seismic cycle. Some of the objectives of the project are to improve the technical, scientific, and operational capabilities of Colombian scientists regarding tectonic and volcanic deformation in Colombia, to implement a Colombian GPS permanent network for the study of geodynamics, with near real-time data retrieval and processing, and to establish a high precision geodetic reference frame for multipurpose activities within INGEOMINAS. Phase 1 of GEORED, which includes the installation of 30 permanent GPS stations in Colombia, will commence in early 2007. The Plate Boundary Observatory (PBO), part of the larger NSF-funded EarthScope project managed by UNAVCO, will study the three-dimensional strain field resulting from active plate boundary deformation across the Western United States. PBO is a large construction project involving the reconnaissance, permitting, installation, documentation, and maintenance of 875 permanent GPS stations scheduled for completion in September 2008. PBO is currently in the fourth year of the project, with over 550 GPS stations completed to date. INGEOMINAS recently became a member of the UNAVCO consortium. UNAVCO has been working with INGEOMINAS by providing technical support for the GEORED project relating to GPS receiver specifications. In the spirit of collaboration and outreach, INGEOMINAS and UNAVCO will begin an engineer exchange program starting in early summer 2007. The purpose of this outreach program is to provide a mechanism for the exchange of ideas relating to GPS station construction techniques, hardware designs, data communications, and data archiving based upon the UNAVCO PBO experience and based upon the extensive INGEOMINAS experience in installing scientific instrumentation in remote locations and difficult conditions. The Plate Boundary Observatory and GEORED will provide a natural laboratory for training in GPS construction techniques.

  5. Kinematics of subduction and plate convergence under Taiwan and its geomorphic, geodetic and seismic expressions

    NASA Astrophysics Data System (ADS)

    Suppe, J.; Carena, S.; Kanda, R. V.; Wu, Y.; Huang, H.; Wu, J. E.

    2013-12-01

    Deciphering the kinematics of ongoing subduction and rapid plate convergence under Taiwan is neither trivial nor straightforward. A 3D synthesis of diverse constraints is required, for example tomography, geodesy, tectonic geomorphology, stress inversion, and Philippine Sea plate motions. Eurasian-Philippine Sea plate convergence is ~90mm/y in a mildly oblique 300° azimuth relative to the ~NS nearly vertically subducting Eurasian mantle lithosphere which extends to ~500km depth. If all the current plate convergence were consumed in subduction of Eurasian mantle, the subduction flexural hinge would migrate westward at ~80mm/y, which is fast relative to the ~30mm/y long-term slip rate on the Taiwan main detachment that represents the Eurasian subduction interface under the Taiwan Central Mountains. If this fast simple subduction were occurring, subduction would too quickly outrun the mountain belt in conflict with data. Instead we estimate that subduction of Eurasian lithosphere is proceeding at ~50mm/y with the remaining ~40mm/y convergence at a lithospheric level consumed by secondary subduction above and to the east of the main plate interface. This secondary subduction is largely transient deformation that is most obvious under the Coastal Range, which represents the deforming western margin of the Philippine Sea plate during the last ~1-1.5 Ma. The thrust faults of the Coastal Range function as subduction faults with the long-term net motion of their footwalls moving largely down relative to their only slowly uplifting hanging walls, with a net secondary subduction of ~40-50km in the last ~1-1.5Ma as estimated from seismic tomography and other data. In addition we find evidence for ongoing subduction of the eastern Central Mountains of Taiwan. The crest of the mountains coincides with the western edge of the migrating plate flexure, a band of extensional geodetic strain coincides with the flexure, and an extensional stress state in the upper 5-10km coincides with the zone of flexure. Kinematic modeling of leveling and gps data is consistent with a migration rate of the hinge of ~50mm/y, which would be the subduction rate of Eurasian mantle lithosphere. This rate is somewhat faster than the long-term rate of ~30mm/y since ~15Ma, but less than the current slab-normal plate rate of ~80mm/y, which is thought to represent a speed-up in the last ~1-2Ma. This kinematic modeling also suggests that the main subduction interface under the eastern Central Mountains could be widely locked; if so it has substantial seismic potential at its ~12-13km depth.

  6. Comparison of Modern Zn-Ba-Pb Ore Deposits at Convergent Plate Margins and Fe-Cu-Zn Deposits at Divergent Plate Margins

    Microsoft Academic Search

    G. P. Glasby

    2008-01-01

    At divergent plate margins, black smoke forms immediately on contact of ascending hydrothermal solutions with sea water. The black smoke, consisting mainly of black ore (BO) and barite ore (BaO), is rapidly dispersed in seawater leaving behind a dominantly yellow ore (YO). At convergent plate margins, on the other hand, zinc sulfides and associated chalcophilic elements start depositing within the

  7. Coseismic slip resolution along a plate boundary megathrust: the Nankai Trough, southwest Japan

    USGS Publications Warehouse

    Sagiya, Takeshi; Thatcher, Wayne

    1999-01-01

    Geodetic survey measurements are used to estimate the coseismic slip distribution in the 1944 Tonankai (Mw=8.1) and 1946 Nankaido (Mw=8.3) earthquakes and to assess quantitatively the degree to which this slip is resolved on the plate boundary megathrust. Data used include 798 angle changes from triangulation surveys, 328 leveling section differences, and 5 coseismic tidal gage offsets. Many of the nominally coseismic triangulation data span ?50 years, nearly half the earthquake cycle, and correction for interseismic deformation using post-1950 observations is applied. Microseismicity is used to define the configuration of the plate boundary interface and approximate it with a continuous, multisegment fault model. Because the onshore geodetic data have very limited resolving power for offshore fault segments, offshore coseismic slip was constrained by Satctke's [1993] estimation based on tsunami data. The majority of the coseismic slip occurs between 15 and 25 km depth. Although resolution declines toward the trench axis, it is sufficiently good to define two distinct high-slip regions, one off southeastern Shikoku Island (11 m maximum) and the other offshore of Kii Peninsula (3 m maximum). The slip magnitude off southeastern Shikoku, coupled with the plate convergence rate, would imply an recurrence interval of about 270 years, much-longer than the average repeat time of ?120 years for historical great earthquakes on the Nankai Trough. However, the maximum coseismic slip is sensitive to the assumed fault geometry, and slippage on trough-parallel splay faults could significantly decrease the maximum slip to about 6 m.

  8. Evolution of faulting and plate boundary deformation in the Southern Taranaki Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Reilly, Cathal; Nicol, Andrew; Walsh, John J.; Seebeck, Hannu

    2015-05-01

    Faulting and folding in the Southern Taranaki Basin constrain the evolution of the New Zealand plate boundary since ~ 80 Ma. Sedimentary rocks up to 8 km thick record multiple phases of deformation which have been examined using 2D and 3D seismic reflection data, resulting in fault displacement-time curves and basin-wide isopach maps with temporal resolutions of 5-10 Myr and 1-4 Myr pre- and post-~ 23 Ma respectively. Three main phases of tectonic activity have been recognised; Late Cretaceous and Palaeocene extension (~ 80-55 Ma), mainly Oligocene and younger contraction and Plio-Pleistocene (~ 3.7-0 Ma) extension. Most of the largest faults (e.g., Cape Egmont Fault) accrued displacement during the Late Cretaceous and were reactivated one or more times during subsequent episodes of deformation. The oldest phase of extension occurred during Gondwana break-up and was ubiquitous throughout the basin. Contraction along the eastern boundary of the basin, associated with the onset of Hikurangi Margin subduction, commenced as early as Late Eocene. The zone of contraction widened and migrated westward during the Miocene with reverse faults and folds in westernmost parts of the basin formed in the Late Miocene (~ 7-5 Ma). Initiation and episodic widening of this zone of contraction may have been partly triggered by changes in the rate of plate convergence. Contraction is now mainly confined to the northern South Island and has been succeeded to the north by Plio-Pleistocene extension. The present day transition zone between extension in the north and contraction in the south is defined by a WNW-trending line across the basin. The extension-contraction transition migrated southward during the Late Miocene and Pliocene consistent with steepening of the subducting plate and associated southward movement of the southern termination of the Hikurangi subduction system.

  9. Investigating Possible Boundaries Between Convergence and Divergence Frederick Hartmann (frederick.hartmann@villanova.edu) and David Sprows

    E-print Network

    Hartmann, Frederick

    Investigating Possible Boundaries Between Convergence and Divergence Frederick Hartmann (frederick 1 n acts like a boundary between convergence and divergence. Since multiplying n in the denominator that there is no specific series that can be used to establish a boundary between the set of all divergent positive

  10. Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method

    E-print Network

    Butcher, Eric A.

    Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation for the free vibration analysis of slender Kirchoff plates with both mixed and damaged boundaries an important role in applications of mechanical, aerospace and civil engineering. Studying the free vibration

  11. Post-rifting stress relaxation at the divergent plate boundary in Northeast Iceland

    Microsoft Academic Search

    G. R. Foulger; C.-H. Jahn; G. Seeber; P. Einarsson; B. R. Julian; K. Heki

    1992-01-01

    INTERACTION of the elastic lithosphere with the underlying anelastic asthenosphere causes strain to propagate along the Earth's surface in a diffusion-like manner following tectonism at plate boundaries. This process transfers stress between adjacent tectonic segments and influences the temporal tectonic pattern along a plate boundary. Observations of such strain transients have been rare, and have hitherto been confined to strike-slip

  12. Plate dynamics near divergent boundaries - Geophysical implications of postrifting crustal deformation in NE Iceland

    Microsoft Academic Search

    Kosuke Heki; G. R. Foulger; B. R. Julian; C.-H. Jahn

    1993-01-01

    The bulk of a tectonic plate is thought to move continuously at a rate consistent with the geologic average. On the other hand, movements are highly episodic at plate boundaries. We study the plate dynamics that relate to these two different modes by modelling the displacements observed using the global positioning system in Northeast Iceland 1987-1990. These observations were made

  13. Plate Dynamics Near Divergent Boundaries: Geophysical Implications of Postrifting Crustal Deformation in NE Iceland

    Microsoft Academic Search

    Kosuke Heki; G. R. Foulger; B. R. Julian; C.-H. Jahn

    1993-01-01

    The bulk of a tectonic plate is thought to move continously at a rate consistent with the geologic average. On the other hand, movements are highly episodic at plate boundaries. We study the plate dynamics that relate to these two different modes by modelling the displacements observed using the global positioning system in Northeast Iceland 1987-1990. These observations were made

  14. Kinematics of Plate Convergence Deduced from Mesozoic Structures in the Western Cordillera

    NASA Astrophysics Data System (ADS)

    Oldow, John S.; Lallemant, Hans G. Avé; Schmidt, William J.

    1984-04-01

    Mesozoic structures in the western Cordillera of the United States yield important constraints for kinematic reconstruction of plate motions relative to North America. Structures in the Mesozoic arc(s) of the northern Sierra Nevada and of northeastern Oregon are remarkably uniform in timing, style, and with Late Cretaceous and/or Cenozoic rotations removed, orientation. Rocks of both regions experienced three major episodes of contraction occurring in the Triassic-Early Jurassic, the Late Jurassic, and the Early Cretaceous. Cross folds were developed after the first two deformations but were not associated with significant shortening. The three major deformations are nearly homoaxial and have shortening axes oriented subperpendicular (NE-SW) to the regional trend of the arc system. In the back arc region of the northwestern Great Basin, deposition was continuous during the Triassic and Early Jurassic, and the region was shielded from tectonism in the arc to the west. Development of a regional fold-thrust belt associated with major NW-SE shortening was initiated in the back arc region during the Middle or Late Jurassic and continued through the Early Cretaceous. Corresponding deformation did not occur in the arc, and the arc and back arc were decoupled by a major left-lateral fault system that subparallelled the arc axis. In the mid-Cretaceous (approximately 100 m.y. B.P.), regional compression in the back arc abruptly changed to NE-SW, and both the arc and back arc experienced major shortening. Development of homoaxial structures in the Sierran arc is probably analogous to shortening in present-day arc systems undergoing oblique subduction, in which the shortening axis is parallel to the normal component of convergence. Thus the dominant structures in the Sierran arc simply may be a reflection of the orientation of the trench and may not constrain the sense of obliquity of convergence. Strike-slip faults and related compressional structures, such as the back arc left-lateral fault and associated fold-thrust belt, are probably the response to the strike-slip component of convergence and indicate a period of left-oblique subduction. Relative plate motions constrained by paleomagnetic data are in agreement with regional structures and indicate strong right-lateral components of motion for the last 100 m.y. Before 100 m.y. B.P., relative plate motions are inadequately constrained by paleomagnetic data and regional structures indicate a period of left-oblique convergence from the Middle or Late Jurassic to approximately 100 m.y. B.P. During the Triassic and Early Jurassic the relative sense of convergence is equivocal and the possibility exists that continuous left-oblique convergence occurred throughout the late Paleozoic and early Mesozoic (until 100 m.y. B.P.). Based on the available data, we cannot discount the possibility that a complex convergence history existed, however, with changes from right to left convergence in the Middle or Late Jurassic and from left to right convergence in the mid-Cretaceous.

  15. Viscoelastic Postseismic Rebound to Strike-Slip Earthquakes in Regions of Oblique Plate Convergence

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.

    1999-01-01

    According to the slip partitioning concept, the trench parallel component of relative plate motion in regions of oblique convergence is accommodated by strike-slip faulting in the overriding continental lithosphere. The pattern of postseismic surface deformation due to viscoelastic flow in the lower crust and asthenosphere following a major earthquake on such a fault is modified from that predicted from the conventual elastic layer over viscoelastic halfspace model by the presence of the subducting slab. The predicted effects, such as a partial suppression of the postseismic velocities by 1 cm/yr or more immediately following a moderate to great earthquake, are potentially detectable using contemporary geodetic techniques.

  16. The Plate Boundary Observatory: Data Management Progress and Highlights

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Hodgkinson, K.; Jackson, M.; Wright, J.

    2005-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 891 continuous GPS stations, up to 174 borehole strainmeter stations, and five laser strainmeters, over the next five years. In addition, 209 previously existing continuous GPS stations will be incorporated into PBO through the PBO Nucleus project, and there will be a pool of 100 portable GPS receivers available for survey-mode observations. To date, 209 PBO GPS stations have been installed, of which 182 have returned data. In addition, PBO now handles data flow for 29 PBO Nucleus stations. Most of these stations return data to the PBO data center in Boulder on a daily basis. These data are then processed by the PBO GPS Analysis Centers, at Central Washington University and the University of California, Berkeley, and the PBO GPS Analysis Center Coordinator at MIT. These groups create a range of GPS products, including station position time series, GPS velocity vectors, and related information. At present, these centers are processing data on a daily basis from about 300 stations; typical position uncertainties are approximately 1.5 mm horizontally and 4 mm vertically, both of which will improve as more data are analyzed. All PBO GPS data products are archived at and available from the UNAVCO Facility, with a second archive under development at the IRIS Data Management Center. PBO now has six borehole strainmeters and one laser strainmeter installed, with data returned at least once per day, and PBO handles data flow for a previously installed laser strainmeter as well. These data are analyzed on a daily basis by the Borehole Strainmeter Data Analysis Center in Socorro, New Mexico, and the Laser Strainmeter Data Analysis Center at the University of California, San Diego. These groups transform the raw strainmeter observations into cleaned individual strain gauge components; time series of shear, areal, and linear strain; and related products. All strainmeter data products are archived at and available from the Northern California Earthquake Data Center and the IRIS DMC.

  17. Convergence to Equilibrium for the Cahn-Hilliard Equation with Wentzell Boundary Condition

    E-print Network

    Wu, Hao

    2007-01-01

    In this paper we consider the Cahn-Hilliard equation endowed with Wentzell boundary condition which is a model of phase separation in a binary mixture contained in a bounded domain with permeable wall. Under the assumption that the nonlinearity is analytic with respect to unknown dependent function, we prove the convergence of a global solution to an equilibrium as time goes to infinity by means of a suitable \\L ojasiewicz-Simon type inequality with boundary term. Estimates of convergence rate are also provided.

  18. A Numerical Case Study of Convection Initiation along Colliding Convergence Boundaries in Northeast Colorado.

    NASA Astrophysics Data System (ADS)

    Lee, Bruce D.; Farley, Richard D.; Hjelmfelt, Mark R.

    1991-11-01

    A numerical cloud model has been used to simulate convective storm development on 17 July 1987 in northeast Colorado. The study involves the simulation of convergence along atmospheric boundaries and the subsequent development of convection. The model was initialized using observed conditions for this case day from the Convection Initiation and Downburst Experiment (CINDE).A two-dimensional version of the Clark NCAR nested grid model is employed. Results indicate that convection in boundary line collision cases can be successfully simulated by using actual observed atmospheric data. Gradual deepening of the moisture layer in the convergence zone was shown to destabilize the local atmosphere leading to the initiation of deep convection on this day. The modeled storm approximated the depth and intensity of the observed storms and displayed many of the features of the actual event.Sensitivity studies revealed that the timing and intensity of convection along boundaries is greatly affected by alterations in cross-line values of boundary-layer moisture or convergence and by variations in the vertical wind-shear profile within and above the boundary layer. Increasing the low-level moisture created a much stronger and taller modeled storm that developed much more rapidly. Variations in boundary-layer convergence were shown to affect the timing and character of the modeled storm. Horizontal vorticity in the boundary layer, associated with low-level vertical wind shear, was important for the production of deep convection. When the two air masses collided, deeper lifting was obtained if the opposing vorticity of the moving boundaries was balanced than if one of the vorticity sources was significantly stronger than the other. A threshold value of shear above the boundary layer was shown to inhibit the convective development of the modeled storm. These sensitivity studies emphasize the importance of considering the mesoscale variability of these key parameters in nowcasting convection.

  19. The Philippine Mobile Belt: a complex plate boundary

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    The Philippine archipelago is regarded as the product of the Late Cenozoic oblique collision of the Philippine Plate with the thinned margin of Eurasia. The Philippine Mobile Belt is presented, mainly composed by the Philippine arc, a Paleogene volcanic arc belonging to the Philippine Sea Plate and crustal fragments belonging to the Eurasian Plate. Kinematic and geological data are presented for this collision history.

  20. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, ?, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and by incipient subduction beneath the Bellingshausen Gravity Anomaly on the western edge of a salient of the Antarctic plate near 94°W. West of 102°W, relative motion was extensional and occurred in a diffuse zone occupied by the Marie Byrd Seamounts that are dated at 65-56 Ma and extend 800 km along the continental margin near the base of the continental rise.

  1. Seismic investigation of the plate boundary beneath Mt. Fuji, the Izu collision zone, central Japan

    NASA Astrophysics Data System (ADS)

    Sato, H.; Iwasaki, T.; Ishiyama, T.; Abe, S.; Kato, N.

    2012-04-01

    The Philippine Sea plate (PHS) is being subducted beneath Honshu, associated with the buoyant subduction of the Izu-Bonin arc. In the Izu collision zone, the buoyant subduction and collision produced the complicated strain partitioning along the active faults. To evaluate the seismic hazards produced by these active faults, to reveal the strain budget is crucial. However, covered by thick volcanic products by Mt. Fuji, northwestern plate boundary of the Izu collision zone is poorly understood. We performed deep seismic reflection profiling across the flank of Mt. Fuji and Hakone volcanoes to reveal the boundary between Eurasia (EUR) and Philippine Sea plate. To obtain the seismic image through highly attenuative volcanic products, we used four vibroseis trucks and explosives (<50 kg). For recording, we used 780 channels along the 34 km long seismic line. To obtain high-resolution image of the shallow part of the fault, we performed shallow high-resolution seismic reflection profiling, using Mini-vib (IVI) and a 200 channels recording system. The shot and receiver intervals were 10 m. Velocity profile obtained by refraction tomography portrays the westward dipping thrusts beneath the eastern flank of Mt. Fuji. The frontal thrust can be traced down to 4 km in depth on the reflection profile. The high-resolution seismic section suggests that the thrust displaced the shallow sediments just below the Gotemba debris avalanche deposits dated 2.9 ka (Miyachi et al., 2004). Covered by the thick mudflow deposits, there are no morphotectonic evidences along the fault, suggesting that the final seismic event is older than 2.9 ka. At the northwestern part of the Izu collision zone, based on the lack of seismicity associated with down-going slab, some researchers were estimated the lack PHS-slab. Also, due to the lack of morphotectonic evidence, this boundary was thought to be completely locked. However, aseismic PHS slab was clearly demonstrated by wide-angle reflection down to 40 km in depth in the northwestern part of the Izu collision zone (Sato et al., 2006). The existence of active fault accords well with the existence of slab. Judging from the age of final seismic event, the slip-rate of this newly found fault is smaller than that of other PHS-EUR margin, suggesting that the main convergence of PHS and EUR may accommodate along other faults covered by volcanic products and the mid-crustal detachment in the crust of Izu peninsula.

  2. Overview on the Plate Boundaries Along the Western Mexican Pacific Margin

    NASA Astrophysics Data System (ADS)

    Mortera-Gutierrez, C. A.; Bandy, W. L.; Michaud, F.; Ortega Ramírez, J.

    2013-05-01

    The cinematic of the Pacific, Rivera and Cocos oceanic plates have a significant impact on the subduction process and seismic cycles occurring along the western Mexican Pacific margin of the North American and Caribbean plates. Sections of Pacific (PAC), Rivera (RIV), Cocos (COC), North American (NAM) and Caribbean (CAB) plate boundaries along the western margin of Mexico are not well constrained. From north to south: the transform-rift system at Gulf of California has been generally considered as part of PAC-NAM plate boundary. However results of the FAMEX cruise at 2002 evidenced that Tosco-Abreojos Fault System along the western margin of Baja California Peninsula is active. Should this tectonic structure be considered as a plate boundary? At the RIV plate northern corner (including Mazatlan Basin), the scatter seismicity recorded between Tamayo FZ and the Marias Islands restricts the characterization of the plate boundary between the RIV and NAM plates. Some authors have proposed that Tamayo FZ and Marias I. Escarpment are the RIV-NAM plate boundary. Recently other authors have called that RIV-NAM boundary is a geomorphology lineament that runs from a Rivera Rise transform at 23N to the northern end of Marias I. Escarpment. Even so this concept is not sustained with seismic activity. Further this thought would imply that the oceanic lithosphere of Mazatlan Basin would form part of NAM plate. Other thoughts are either that there is a diffuse RIV-NAM plate boundary to the north of the Maria Archipelago, or Middle America Subduction Zone is gradually extending northward of the Maria Is. While the plate boundary at SE corner of the RIV plate is neither well defined morphologically nor seismically constraint, offshore Colima Coast. Some authors have proposed that this zone is a diffuse plate boundary between RIV and COC plates, result of a NE-SW shear plate motion. Other authors have proposed that the RIV-COC boundary extends E-W from the El Gordo Graben (EGG) at the Middle American Trench (MAT) to northern tip of the East Pacific Rise (EPR). Results of recently multibeam and magnetic surveys indicate that this boundary is possible segmented as an echelon E-W structure, north of EGG. Clearly these hypotheses on the RIV-COC plate boundary show that its configuration is neither well seismic nor morphology constrained. To the south, the triple junction point of COC, NAM, and CAB plate boundaries is also another case where the boundaries are poorly constrained seismically and morphologically. Traditionally, the COC-NAM-CAB triple junction point has been positioned where the MAT trend bends by the Tehuantepec Ridge (TR) collision, but no offshore geophysical data sustain that NAM-CAB plate boundary extends to MAT-TR point. In the last decade, the Servicio Sismológico Nacional (SSN) has extended its seismic station network at the southern Mexican territory. From this data, the distribution of offshore earthquakes covers a broad marine zone in front the Chiapas and Guatemala coastline and does not show a defined earthquake concentration associated to the proposed offshore extension of the Polochic-Motogua Fault through Guatemala and Mapastepec Fault through Chiapas, Mexico.

  3. Convergence of spectral methods for hyperbolic initial-boundary value systems

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Lustman, L.; Tadmor, E.

    1986-01-01

    A convergence proof for spectral approximations is presented for hyperbolic systems with initial and boundary conditions. The Chebyshev collocation is treated in detail, but the final result is readily applicable to other spectral methods, such as Legendre collocation or tau-methods.

  4. The Plate Boundary Observatory: Data Management Progress and Highlights

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Eakins, J.; Hodgkinson, K.; Matykiewicz, J.; Boler, F.; Beldyk, M.; Hoyt, B.; Lee, E.; Persson, E.; Torrez, D.; Wright, J.; Jackson, M.; Prescott, W.

    2006-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 852 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations through the PBO Nucleus project. As of 1 September 2006, the PBO GPS network was halfway completed with 426 stations installed, of which 400 have returned data, and PBO handled data flow for 120 PBO Nucleus stations. Most of these stations return data to the UNAVCO Boulder Network Operations Center (NOC) on a daily basis, with 16 returning data on an hourly basis. Overall, the combined PBO and Nucleus networks had returned almost 150 GB of raw GPS data as of September 2006. These data are then processed by the PBO GPS Analysis Centers, at Central Washington University and the New Mexico Institute of Mining and Technology, and the PBO GPS Analysis Center Coordinator at MIT. These groups create a range of GPS products, including station position time series, GPS velocity vectors, and related information. As of September 2006, these centers processed data on a daily basis from about 590 stations; typical position uncertainties are under 1.5 mm horizontally and 4 mm vertically. All PBO GPS data products are archived at and available from the UNAVCO Facility, with a second archive at the IRIS Data Management Center (DMC). All these products may be accessed via the PBO web page at http://pboweb.unavco.org/?pageid=88. As part of PBO, UNAVCO will also install and operate the largest borehole seismic and strainmeter networks in North America, as well as tiltmeters and laser strainmeters. As of September 2006, 19 PBO borehole stations had been installed and two laser strainmeter stations were operating, with a total of 28 borehole stations and 3 laser strainmeters expected by the end of 2006. Seismic data flow in real time to the Boulder NOC for initial quality checks, and thence to the IRIS DMC for final quality checks, archiving, and distribution; all PBO seismic data flow is via the Antelope software suite. Strainmeter data flow hourly and daily to the Boulder NOC and thence to the Borehole Strainmeter Analysis Center in Socorro, New Mexico, and the Laser Strainmeter Analysis Center at the University of California, San Diego. These groups transform the raw strainmeter observations into cleaned individual strain gauge components; time series of shear, areal, and linear strain; and related products. All strainmeter data products are archived at and available from the Northern California Earthquake Data Center and the IRIS DMC, in both the native raw formats and SEED format; all seismic data products are archived at and available from the IRIS DMC, in SEED format. By September 2006, the PBO seismic network had provided 60 GB of raw data, and the PBO strainmeter network had provided 27.5 GB of raw data. Please visit http://pboweb.unavco.org/?pageid=89 for more information on data products from the PBO strainmeter and seismic networks.

  5. Obliquely convergent plate motion and its relation with forearc sliver movement, El Salvador volcanic arc

    NASA Astrophysics Data System (ADS)

    Tikoff, B.; DeMets, C.; Garibaldi, N.; Hernandez, W.; Hernandez, D.

    2012-12-01

    The magmatic arc in El Salvador is interpreted to result from the subduction of the Cocos plate underneath the Caribbean plate along the Middle America trench. In addition, El Salvador contains a fore-arc sliver that moves 11 mm/yr westward relative to the back-arc. Well-defined strike-slip faults along the magmatic arc accommodate forearc sliver motion, but are offset at several locations by en echelon pull-apart step-overs with abundant normal faults. All basaltic-andesitic magmatic centers (San Miguel, San Vincente, San Salvador, Santa Ana) are located within these step-overs, while the two major rhyolitic calderas (Ilopango, Coatepeque) occur directly along the strike-slip faults. There are two puzzling aspects about the strike-slip tectonism. First, a silicic, shallow magma body that intrudes the San Miguel fault zone (part of the El Salvador fault system) was emplaced syn-tectonically (sigmoidal field and magnetic foliations, subhorizontally plunging magnetic lineations and dextral shear at the microscale). Within the dextrally sheared portion of the intrusion, an obsidian band with a 40Ar/39Ar age of 7.46 Ma indicates that dextral strike-slip tectonism in the Salvadoran arc has been an ongoing process for ~7.5 Ma. This casts significant doubt on whether Cocos ridge subduction (that started ~1 Ma ago) is the cause of the ongoing forearc movement. The potentially more significant problem is that the fore-arc sliver in El Salvador moves 11 mm/yr westward relative to the back-arc despite a nearly orthogonal angle of convergence (with a convergence rate of ~77 mm/yr) near El Salvador and absence of significant frictional coupling along the subduction interface. Further, GPS indicates that the Nicaraguan and Salvadoran forearcs define a semi-rigid sliver moving at nearly the same trench-parallel rates despite along-trench changes in the subduction angle. Consequently, it is tempting to attribute the movement of both forearc slivers to Cocos ridge subduction. However, as mentioned above, initiation of strike-slip movement during collision of the Cocos ridge appears incompatible with Miocene strike-slip deformation that occurs. These examples serve to highlight the difficulties in understanding forearc movement in obliquely convergent systems, even in relatively modern belts where the plate motions are well constrained.

  6. Coupling volcanism and tectonics along divergent plate boundaries: collapsed rifts from Central Afar, Ethiopia

    Microsoft Academic Search

    Valerio Acocella

    2010-01-01

    Magma along divergent plate boundaries is erupted from fissures or vents from central volcanoes, with limited impact on rift architecture. Here I summarize the geological and structural features accompanying the eruption of part of a km-thick volcanic sequence (\\

  7. Finite Element Modeling of Crustal Deformation in the North American Caribbean Plate Boundary Zone

    NASA Technical Reports Server (NTRS)

    Lundgren, P.; Russo, R.

    1995-01-01

    We have developed 2-dimensional spherical shell finite element models of elastic displacement in the North American-Caribbean (NA-Ca) plate boundary zone (PBZ) in order to quantify crust and fault motions in the PBZ.

  8. Inter- and intra-plate deformation at North American plate boundaries

    NASA Technical Reports Server (NTRS)

    Beavan, John

    1986-01-01

    Alaska tectonics and earthquake hazard studies; Southern California tectonics (block rotation); spreading near the Salton Trough; California plate motion (fault zone kinematics); and Caribbean plate motion investigations are examined.

  9. Modeling of Plate Boundaries and Intra-arc Active Fault Systems in and around Japanese Islands

    Microsoft Academic Search

    Naoshi Hirata; Takaya Iwasaki; Hideo Aochi

    To construct a regional crustal model of Japanese Island for an earthquake cyclewe need a consistent and detailed model for realistic plate boundaries. Alsoa crustal deformation due to intra-arc seismicity should be properly modeled.We model plate boundaries from hypocentral distribution data and crustalstructure data obtained by seismological study including controlled and passivesource studies. A deformation process of the intra-arc crust

  10. The dynamics of plate boundaries over a convecting mantle Laurent Hussona,b,

    E-print Network

    Paris-Sud XI, Université de

    The dynamics of plate boundaries over a convecting mantle Laurent Hussona,b, aG´eosciences Rennes, France Abstract5 Trench motion and upper plate deformation ultimately respond to mantle flow. In order to explore the dynamic relationship between the two aspects, I build upon the mantle flow model results

  11. How extensional structures at divergent plate boundaries become oblique to the geodetic spreading vector

    Microsoft Academic Search

    A. Gudmundsson

    2005-01-01

    Since the establishment of the regional plate-tectonic spreading vectors using geodetic measurements, it has become apparent that many extensional structures at divergent plate boundaries are oblique to the associated spreading vectors. In fact, entire ridges, such as the Mohns Ridge and the Reykjanes Ridge, are oblique to their spreading vectors. The spreading vector normally coincides with the regional direction of

  12. Recovering physical property information from subduction plate boundaries using 3D full-waveform seismic inversion

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Morgan, J. V.; Warner, M.

    2013-12-01

    Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across this basin in 1999 suitable for future 3D FWI. We build a 3D model of the sub-surface based on an existing velocity model that was used to migrate these data (Tsuji et al. 2000, JGR). We then add a low P-wave velocity layer along the décollement, which is supported by ODP core data but does not feature in the current seismic velocity model, to test if it could be recovered using 3D FWI. We use the same acquisition parameters as in the 1999 seismic survey (including a 6 km long streamer) to generate a fully-elastic synthetic seismic dataset, added noise and inverted the windowed transmitted arrivals only. We also ran a suite of resolution tests across the model. The results show that 3D FWI of conventionally collected 3D seismic data across the Muroto Basin would be capable of resolving variations in P-wave velocity along the décollement of the order of half the seismic wavelength at the plate boundary. This is a significant improvement on conventional travel-time tomography which resolves to the Fresnel width. In this presentation we will also postulate on the optimal 3D FWI experiment design for the next generation of 3D seismic surveys across subduction margins as a guide for those embarking on new data collection.

  13. Isla del Coco, on Cocos Plate, Converges with Isla de San Andrés, on the Caribbean Plate, at 78 mm/yr

    NASA Astrophysics Data System (ADS)

    Protti, M.; Gonzalez, V. M.; Freymueller, J. T.; Doelger, S.

    2013-05-01

    Isla del Coco is the only land mass of the Cocos Plate that emerges above sea level. This makes it the only place where Cocos Plate motion can be measured using Global Navigation Satellite System (GNSS) monitoring. Global Positioning System (GPS) observations have been carried out sporadically over more than two decades on Isla del Coco, allowing precise measurement of the motion of the Cocos Plate. Recently, in May 2011, a continuous GPS station was built and instrumented at Isla del Coco, in Wafer Bay, by OVSICORI UNA and UNAVCO, as part of the COCONet regional GNSS network. Position time series from this CGPS station (ISCO: Isla del Coco) show a steady motion of Isla del Coco at a speed of 90.9±1.5mm/yr in the N35oE direction in ITRF2008 and convergence with the Caribbean Plate at 78±1mm/yr. This result is consistent with the findings of the earliest GPS studies, and agrees within uncertainty with the estimated convergence rate of 76.4±2.6 mm/yr of the MORVEL plate motion model. MORVEL is based on an average over the last 780,000 years, and our result suggests that Cocos Caribbean plate motions have been constant over that time interval.

  14. Kinematics and dynamics of the northern North American Cordillera: deformation related to plate convergence, flat-slab subduction, and gravitational potential energy

    NASA Astrophysics Data System (ADS)

    Finzel, E.; Flesch, L. M.; Ridgway, K. D.

    2009-12-01

    We use finite element models to investigate the deformational driving forces in Alaska and northwestern Canada as they relate to flat-slab subduction, tectonic extrusion, and existing block models. First, long-term velocity and strain rate fields are quantified using continuous spline functions to interpolate between observed strain rate data inferred from: 1) select GPS sites interpreted to represent the long-term signal of deformation, 2) plate and microplate motion models, 3) ridge spreading rates, 4) seismicity, and 5) Quaternary fault slip rates. Our calculated fault slip rates indicate that ~82% of the mostly dextral motion between the Pacific and North American plates is accommodated along the Queen Charlotte fault system to the east, whereas the Aleutian Megathrust accommodates ~60% of the oblique convergence between the Pacific and North American plates to the west. The highest strain rate magnitudes are located along plate margin faults and above the region of flat-slab subduction of the Yakutat microplate. Furthermore, results from our best-fit kinematic model suggest that the interaction between the Pacific, North American, and Bering plates may be the dominant driver controlling southwestward rotation of the velocity field in southern Alaska. Whereas this outcome cannot conclusively rule out the possibility of tectonic extrusion in the study area, it does not support it either. Next, we calculate the two primary sources of deviatoric stress responsible for driving deformation in Alaska, namely deviatoric stresses associated with gravitational potential energy (GPE) variations in the lithosphere (buoyancy forces) and relative plate motions and basal tractions (boundary forces). We find the affects of incorporating, versus excluding, a subducting slab in GPE calculations for this region to be minimal. Deviatoric stress magnitudes associated with the vertically averaged GPE within a 100-km-thick lithosphere are on the order of 5-10 MPa, whereas magnitudes of deviatoric stresses generated by plate boundary interactions and basal tractions are on the order of 5-15 MPa. The smallest misfits between GPE variations and the strain style quantified in the kinematic model are located in northwestern Alaska and northwestern Canada, suggesting that lateral variations in GPE may be the dominant driver for deformation in those regions. We solve for stress field boundary conditions, such that the sum of the deviatoric stresses associated with GPE variations and the stress field boundary conditions yields a total deviatoric stress field that produces a best fit to the style of the surface deformation field determined above. This allows us to explore the lateral strength variations across the region.

  15. Inter- and intra-plate deformation at North American plate boundaries

    NASA Technical Reports Server (NTRS)

    Beavan, John; Gilbert, Lewis E.; Scholz, Chris

    1992-01-01

    A geodetic network which spans the region between San Francisco and Lake Tahoe has been measured 5 times completely with triangulation in 1880, 1922, 1929, 1943, 1963. A resurvey with the Global Positioning System (GPS) in 1991 allows the formation of 1 coseismic and 4 interseismic epochs. The data from this network provide a unique opportunity to examine the temporal and spatial evolution of the strain field associated with the 1906 San Francisco earthquake in particular and with the Pacific-North American plate boundary in general. Calculations of strain rate from the network data lead to the following conclusions. (1) There is no resolvable (greater than 0.05 microradians/yr) strain in between Sutter Buttes and the Sierra Nevada. (2) Throughout the time since the 1906 earthquake, a region extending at least as far east as the westernmost Great Valley has been undergoing deformation related to Pac:Nam interaction and the associated earthquake cycle. (3) In the time and space of overlap, our results agree with those from the United States Geological Survey (USGS) trilateration data. Both data sets indicate that strain must be accumulating to the east of Vaca. (4) The San Andreas discrepancy cannot be accommodated in the Great Valley at the 1 sigma level of our results. It is possible to absorb it in that region at the 2 sigma level. (5) Strain rate is elevated in the years following the earthquake and decays slowly with time. It is possible that the rate in the Coast Ranges increases until around 1950 and then decays. With the exception of one epoch, strain rate in the Coast Ranges is consistently fault parallel, shows no sign changes, and is consistent with monotonic strain accumulation.

  16. ConcepTest: Cross-Sections of Plate Boundaries

    NSDL National Science Digital Library

    The map below shows the plate configurations along the western margin of North America. Which of the four diagrams on the right best represents a cross section through the outer layers of Earth along the line X-Y?

  17. ConcepTest: Cross-Section of Plate Boundaries

    NSDL National Science Digital Library

    The map below shows the plate configurations along the western margin of North America. Which of the four diagrams on the right best represents a cross section through the outer layers of Earth along the line X-Y?

  18. Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography

    E-print Network

    Niu, Fenglin

    Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave velocity structure of the crust and upper mantle of the Caribbean-South American boundary region American continental lithosphere, the Venezuelan archipelago, and the Caribbean oceanic lithosphere

  19. Effect of Pressure Gradients on Plate Response and Radiation in a Supersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader

    1997-01-01

    Using the model developed by the author for zero-pressure gradient turbulent boundary layers, results are obtained for adverse and favorable pressure gradients. It is shown that when a flexible plate is located in an adverse pressure gradient area, it vibrates more than if it were in a favorable pressure gradient one. Therefore the noise generated by the plate in an adverse pressure gradient is much greater than that due to the plate in a favorable pressure gradient. The effects of Reynolds number and boundary layer thickness are also analyzed and found to have the same effect in both adverse and favorable pressure gradient cases. Increasing the Reynolds number is found to increase the loading on the plate and therefore acoustic radiation. An increase in boundary layer thickness is found to decrease the level of the high frequencies and therefore the response and radiation at these frequencies. The results are in good qualitative agreement with experimental measurements.

  20. Boundary Layer Induced Noise in Aircraft, Part II: the Trimmed Flat Plate Model

    NASA Astrophysics Data System (ADS)

    Graham, W. R.

    1996-04-01

    The influence of the cabin interior treatment on boundary layer noise levels is known to be significant, and we thus extend the model of Part I '1' to include it. The extended model consists of the boundary layer excited flat plate, with its internal surface covered by two dissipative layers (representing insulation) and an elastic plate (the trim panel). By comparison with the bare plate, the trimmed plate has much higher modal damping, due to the ability of the insulation to absorb energy at the wavenumbers associated with resonant modes, and greatly reduced radiation efficiency, due to the insulation's attenuating effect on supersonic wavenumber disturbances. Most of the conclusions of Part I are essentially unaffected by this behavioural modification, but structural damping treatments are now expected to have a negligible effect on the sound radiated by the plate.

  1. Distinct apical and basolateral mechanisms drive PCP-dependent convergent extension of the mouse neural plate

    PubMed Central

    Williams, Margot; Yen, Weiwei; Lu, Xiaowei; Sutherland, Ann

    2014-01-01

    Summary The mechanisms of tissue convergence and extension (CE) driving axial elongation in mammalian embryos, and in particular, the cellular behaviors underlying CE in the epithelial neural tissue, have not been identified. Here we show that mouse neural cells undergo mediolaterally biased cell intercalation and exhibit both apical boundary rearrangement and polarized basolateral protrusive activity. Planar polarization and coordination of these two cell behaviors is essential for neural CE, as shown by failure of mediolateral intercalation in embryos mutant for two proteins associated with planar cell polarity signaling: Vangl2 and Ptk7. Embryos with mutations in Ptk7 fail to polarize cell behaviors within the plane of the tissue, while Vangl2 mutant embryos maintain tissue polarity and basal protrusive activity, but are deficient in apical neighbor exchange. Neuroepithelial cells in both mutants fail to apically constrict, leading to craniorachischisis. These results reveal a cooperative mechanism for cell rearrangement during epithelial morphogenesis. PMID:24703875

  2. Kinematics to dynamics in the New Zealand plate-boundary zone

    NASA Astrophysics Data System (ADS)

    Lamb, S. H.

    2013-12-01

    New Zealand straddles the boundary between the Australian and Pacific plate, with a transition from subduction of Pacific oceanic lithosphere beneath North Island, to oblique continental collision in South Island. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation in a zone up to 250 km wide, with displacements on individual faults up to 100s of kilometres. Active deformation must be driven by a combination of plate-boundary forces and internal buoyancy forces. I use a compilation of seismic reflection/refraction studies and high quality receiver function analyses, together with simple Airy isostasy, to determine regional crustal and mantle structure. Integration of the vertical normal stress to the base of the deforming layer yields the buoyancy stress. Horizontal gradients of this can be compared with horizontal gradients of strain rate, using the method of England & Molnar (1997), in the context of a simple thin sheet model of deformation. Thus, if deformation is that of a Newtonian fluid, then appropriate combinations of the horizontal gradients of vorticity and dilatation are related to gradients of buoyancy stress by the fluid viscosity. However, the short term geodetic deformation is strongly biased by elastic strain accumulation related to locking on the plate interface, and cannot be used to determine the plate-boundary velocity field averaged over many seismic cycles (see Lamb & Smith 2013). Therefore, I derive here a velocity field for the plate-boundary zone, which is representative of deformation over tens of thousands of years. This is based on an inversion of fault slip, strain rate azimuth and paleomagnetic data, in the context of the short term relative plate motions, solved in a network of triangles spanning the plate-boundary, using the method of Lamb (2000). A comparison of gradients of buoyancy stress with the appropriate combinations of gradients of vorticity and dilatation shows that deformation in the plate-boundary zone does have features that are fluid-like, characterized by a variable viscosity in the range 1 - 10 x 10^21 Pa s. Given the strain rates in the plate-boundary zone, viscosities imply plate-boundary deviatoric stresses < 20 MPa, and are consistent with previous low estimates of shear stresses in subduction zones based on a simple force balance (Lamb 2006). References: England, P.C., and P. Molnar, (1997), Science, 278, 647-649. Lamb, S. (2000), J. Geophys. Res., 105, 25,627-25,653. Lamb, S., (2006), J. Geophys. Res., 111, B07401, doi:10.1029/2005JB003916. Lamb, S., and E. Smith (2013), J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50221.

  3. Topology of the ambient boundary and the convergence of causal curves

    E-print Network

    Antoniadis, Ignatios

    2015-01-01

    We discuss the topological nature of the boundary spacetime, the conformal infinity of the ambient cosmological metric. Due to the existence of a homothetic group, the bounding spacetime must be equipped not with the usual Euclidean metric topology but with the Zeeman fine topology. This then places severe constraints to the convergence of a sequence of causal curves and the extraction of a limit curve, and also to our ability to formulate conditions for singularity formation.

  4. A convergence-to-boundary segmentation method combining GVF with GAC

    Microsoft Academic Search

    Yanqing Guo; Meiqing Wang; Choi-Hong Lai

    2011-01-01

    In recent decades, image segmentation based on PDE is used widely in industry. Geodesic active contour (GAC) model is a common used method. But one drawback of this model is that it's difficult to control the number of iterations and sometimes may produce an over-segmentation result. In this paper, a convergence-to-boundary method is proposed. In this method, the model combining

  5. Lithospheric Evolution of the Pacific-North American Plate Boundary Considered in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Biasi, G. P.

    2006-12-01

    Tomographic imaging indicates that the heterogeneity observed in the crust of westernmost North America is underlain by mantle structures of a similar scale and heterogeneity. When likely scaling relationships are used to interpret mantle velocity images, it becomes clear that much of the boundary is explained by mantle lithospheric processes and the crustal evolution is just the surficial expression of strength beneath the surface. The Sierra Nevada block provides something of a Rosetta stone for this interpretation. We note first that Sierra Nevada terrain is not distinguished at the surface from faulted and even shattered batholithic rocks in southern California. It does differ in the upper mantle, because the Sierra Nevada is underlain by a high- velocity root along almost its entire strike. Where that root is missing, roughly south of the White Wolf fault, and east of the Kern Canyon fault, the surface rocks are deforming. The origin of the strong upper mantle component is self-evident near 39.5N latitude, where the contact between the subducting Gorda Slab and the Sierran mantle root can be imaged directly. The upper plate structure dates to latest Mesozoic through Laramide times, with the pattern apparently reinforced on the west to some extent during post-Laramide subduction. Since the genesis of batholithic rocks and the subsequent Laramide history are similar south of the Sierran block, we extrapolate that a similar mantle root would have been present also. This assumption is confirmed with two lines of evidence. First, the mechanical evolution of southern and central California blocks seems to require it. Second, the volumes of the "drips" beneath the Transverse Ranges and southern Sierras exceed reasonable bounds for material scavenged from the mantle lithosphere unless it had distinct initial conditions. The local sources of mantle lithospheric material that could have delaminated around the southern Sierran drip are volumetrically insufficient by a factor of 4 to 7 to account for the drip itself. These problems are resolved if the primary source for southern California drips is Sierran-like mantle roots scavenged from beneath batholithic terrains farther south by dominantly convergence-related plate-boundary processes.

  6. Structural architecture of a highly oblique divergent plate boundary segment

    Microsoft Academic Search

    Amy E. Clifton; Simon A. Kattenhorn

    2006-01-01

    The Reykjanes Peninsula in southwest Iceland is a highly oblique spreading segment of the Mid-Atlantic Ridge oriented about 30° from the direction of absolute plate motion. We present a complete and spatially accurate map of fractures for the Reykjanes Peninsula with a level of detail previously unattained. Our map reveals a variability in the pattern of normal, oblique- and strike-slip

  7. Ocean crust deformation at the North America-South America plate boundary: Results of the 2007 ANTIPLAC marine survey

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Benard, F.; Deville, E.; Le Drezen, E.; Loubrieu, B.; Maltese, L.; Roest, W.; Thereau, E.; Umber, M.; Vially, R.

    2007-12-01

    East of the Lesser Antilles active margin, the area of the Barracuda and Tiburon ridges is resulting from of a multidirectional and polyphase tectonic history at the diffuse plate boundary between the North and South American plates. These WNW-ESE trending ridges control the sediment distribution and they are bounded by sedimentary trenches, both ridges and trenches trending parallel to the Mid-Atlantic oceanic fracture zones. A marine survey (called ANTIPLAC) conducted in the beginning of the year (January 2007) has provide new evidences (multibeam and seismic acquisition) of the deformation processes which occurred at this plate boundary. On the seismic lines, a major angular unconformity can be recognized in the whole area of the survey. Interpreting the acquired seismic grid, the lower part of the stratigraphic series can be easily tied to the DSDP/ODP holes of legs 78A, 110, 156, 171A, especially with wells 543 and 672. Thus a Maastrichtian-Pliocene age can be attributed to the geological formations located below the regional unconformity. The very recent geological formations located above the unconformity (attributed to the Late Pliocene-Pleistocene) tend to fill the main depressions of the area and show very heterogeneous thickness. These recent deposits can be more than 3 s(TWT) thick in the Barracuda trough (north of Barracuda ridge). Globally they show clear onlapping characters above the older levels, but in some places these levels show spectacularly evidences of syntectonic deposition. This is notably the case of a narrow WNW-ESE trending fold and fault system trending along the axis of the Barracuda trough. South of Barracuda ridge the recent deposits show also locally spectacular fan geometries characterizing deposition during significant tilting. Also, between Barracuda and Tiburon ridges several fracture zones show evidences of very recent (and probably active) reactivation. This recent deformation is also characterized by recent basin inversion structures. Finally and more generally, the data acquired during the ANTIPLAC survey demonstrate that high deformation occurred at the boundary between the North and South American plates during much more recent times than previously thought, and that notably spectacular compressional structures resulting from the convergence between the two american plates developed recently during Late Pliocene-Quaternary times. The subduction of this structural pattern and its partial incorporation within the Barbados tectonic wedge has widely influenced the deformation processes within the accretionary prism and has also induced segmentation within the overriding Caribbean plate.

  8. Kinematics to dynamics in the New Zealand plate-boundary zone

    NASA Astrophysics Data System (ADS)

    Lamb, Simon

    2014-05-01

    New Zealand straddles the boundary between the Australian and Pacific plate, with a transition from subduction of Pacific plate oceanic lithosphere in the North, beneath North Island to oblique continental collision in South Island. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation in a zone up to 250 km wide, with displacements on individual faults up to 100s of kilometres. Here, I use a compilation of seismic reflection/refraction studies and high quality receiver function analyses, together with simple Airy isostasy, to determine the regional crustal and mantle structure. The buoyancy stress in the deforming layer is calculated by integrating the vertical normal stress with depth. This, in combination with plate-boundary stresses, must drive deformation. Horizontal gradients of buoyancy stress can be compared with horizontal gradients of strain rate, using the method of England & Molnar (1997), in the context of a simple thin sheet model of lithospheric deformation. I derive a velocity field for the New Zealand plate-boundary zone, using the method of Lamb (2000). This is representative of deformation over tens of thousands of years, based on fault slip, strain rate azimuth and paleomagnetic data, in the context of the short term relative plate motions. Comparison of appropriate combinations of horizontal gradients of vorticity and dilatation with horizontal gradients of buoyancy stress shows that deformation has some of the features of a Newtonian fluid. In detail, the minima in buoyancy stress, calculated from the vertical density structure, are offset horizontally from that calculated from gradients of strain rate, suggesting strong lateral contrasts in viscosity if deformation is strongly coupled at all levels in the lithosphere, with viscosities in the range 1 - 10 x 10**21 Pa s. However, subduction of Pacific plate lithosphere along the Hikurangi margin, and evidence for underthrusting beneath the Southern Alps, implies decoupling of deformation at depths > 50 km in these regions. In this case, best-fit viscosities for the top 50 km are in the range 1 - 5 x 10**21 Pa s. Given the characteristic strain rates in the plate-boundary zone, all these viscosities imply plate-boundary deviatoric stresses generally < 20 MPa, and are consistent with previous low estimates of shear stresses on the subduction plate interface based on a simple force balance (Lamb 2006). Fluid-like behaviour of the New Zealand plate-boundary zone is consistent with both geodetic data and the observed pattern of shear wave splitting. References: England, P.C., and P. Molnar, Science, 278, 647-649, 1997. Lamb, S., JGR, 105, 25,627-25,653, 2000. Lamb, S., JGR, 111, B07401, doi:10.1029/2005JB003916, 2006.

  9. Intraplate Deformation Adjacent to the Macquarie Ridge South of New Zealand - The Tectonic Evolution of a Complex Plate Boundary

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Furlong, K. P.

    2007-12-01

    The response of lithospheric plate boundaries to rapid changes in plate motions provide constraints used to determine the manner in which transitions in plate motions and plate boundary configurations can occur. In the case of the Australia - Pacific plate boundary in the Macquarie Ridge region south of New Zealand a substantial change in plate motions has occurred since the Oligocene. Over a period of less than 15Ma, this boundary changed from mid-ocean ridge spreading to simple translation, the record of which is recorded in the fabric and fracture zones of the oceanic lithosphere. Application of available well-constrained plate motions imply that substantial deformation of the oceanic lithosphere must have occurred after fracture zone formation to create the arcuate structure of these fracture zones today. Plate reconstructions of this plate boundary system from the Oligocene through the Early-Mid Miocene are used here to isolate the timing of transitions in plate motion from divergence to translational motion. These reconstructions identify rapid rotations in plate motions after approximately 25Ma. By 20Ma, the majority of crust created along this plate boundary was already in place, and the Australian Plate was translating northwards relative to the Pacific towards New Zealand, where a corner of Australian Plate is ultimately subducted. The timing of this transition in plate motions implies that the onset of subduction at the Puysegur Trench may have been as early as approximately 20Ma. These reconstructions also identify the shape of fracture zones either side of the relic mid-ocean ridge through the time of their formation. Comparison of these restored fracture zones with their present-day appearance delineates a broad zone of deformation extending ~150km into the plate interior from the Macquarie Ridge Complex, the modern plate boundary structure. This area of deformation coincides with a broad distribution of seismicity in the Australian Plate on both inter- and intra-plate structures, including two great (M8+) earthquakes over the past twenty years, one of which occurred over 130km from the plate boundary. The persistence of this deformation through time indicates a link with the evolution of the plate boundary from divergence to translation and subduction, and may be a result of stress build-up within the Australian Plate as a consequence of the impingement of the subducting plate on the thickened lithosphere of southern New Zealand. Such a collision may act as a resisting force to subduction, and if it continues, further deformation internal to the Macquarie Block may lead to a southward migration of the Australia:Pacific subduction interface and the capturing of this section of lithosphere onto the Pacific Plate.

  10. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  11. Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.; Ustinov, M. V.

    1997-01-01

    Work is devoted to study of free-stream vorticity normal to leading edge interaction with boundary layer over plate and resulting flow distortion influence on laminar-turbulent transition. In experiments made the wake behind the vertically stretched wire was used as a source of vortical disturbances and its effect on the boundary layer over the horizontally mounted plate with various leading edge shapes was investigated. The purpose of experiments was to check the predictions of theoretical works of M.E. Goldstein, et. al. This theory shows that small free-stream inhomogeneity interacting with leading edge produces considerable distortion of boundary layer flow. In general, results obtained confirms predictions of Goldstein's theory, i.e., the amplification of steady vortical disturbances in boundary layer caused by vortex lines stretching was observed. Experimental results fully coincide with predictions of theory for large Reynolds number, relatively sharp leading edge and small disturbances. For large enough disturbances the flow distortion caused by symmetric wake unexpectedly becomes antisymmetric in spanwise direction. If the leading edge is too blunt the maximal distortion takes place immediately at the nose and no further amplification was observed. All these conditions and results are beyond the scope of Goldstein's theory.

  12. Boundary homogenization and reduction of dimension in a Kirchhoff-Love plate

    E-print Network

    Paris-Sud XI, Université de

    Boundary homogenization and reduction of dimension in a Kirchhoff-Love plate Dominique Blanchard+, of the transverse dis- placement of a Kirchhoff-Love plate composed of two domains + - , contained in the (x1, x2'hypoth`ese de Kirchhoff-Love) dont la g´eom´etrie d´epend d'un petit param`etre de la fa¸con suivante (voir la

  13. Plate-tectonic boundary formation by grain-damage and pinning

    NASA Astrophysics Data System (ADS)

    Bercovici, David

    2015-04-01

    Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.

  14. Evidence of left-lateral active motion at the North America-Caribbean plate boundary

    NASA Astrophysics Data System (ADS)

    Leroy, S. D.; Ellouz, N.; Corbeau, J.; Rolandone, F.; Mercier De Lepinay, B. F.; Meyer, B.; Momplaisir, R.; Granja, J. L.; Battani, A.; Burov, E. B.; Clouard, V.; Deschamps, R.; Gorini, C.; Hamon, Y.; LE Pourhiet, L.; Loget, N.; Lucazeau, F.; Pillot, D.; Poort, J.; Tankoo, K.; Cuevas, J. L.; Alcaide, J.; Poix, C. J.; Mitton, S.; Rodriguez, Y.; Schmitz, J.; Munoz Martin, A.

    2014-12-01

    The North America-Caribbean plate boundary is one of the least-known among large plate boundaries. Although it was identified early on as an example of a strike-slip fault in the north of Hispaniola, its structure and rate of motion remains poorly constrained. We present the first direct evidence for active sinistral strike-slip motion along this fault, based on swath seafloor mapping of the northern Haiti area. There is evidence for ~16.5 km of apparent strike-slip motion along the mapped segment of the Septentrional fault zone off Cap Haitien town which is terminated to the east onland Dominican republic and in the west to southern Cuban margin. By evaluating these new constraints within the context of geodetic models of global plate motions, we estimate an activity of the fault since 2 Ma with an angular velocity for the Caribbean plate relative to the North America predicted 6-12 mmyr?1 sinistral motion along the Septentrional fault zone. This transform fault was initiated around 20 million years ago in its western segment and since 2 Ma in its eastern segment in response to a regional reorganization of plate velocities and directions, which induced a change in configuration of plate boundaries.

  15. Seismic Imaging of the Cascadia Plate Boundary with Four Source Array Configurations

    NASA Astrophysics Data System (ADS)

    Fortin, W. F.; Holbrook, W.; Kent, G.; Keranen, K. M.; Trehu, A. M.; Johnson, H. P.; Everson, E. D.

    2012-12-01

    Imaging the plate boundary in the Cascadia region has great importance for understanding seismic hazards in the coastal margin of the Pacific Northwest. The Cascadia margin is a potential earthquake and tsunami threat to the many millions who live in the area, yet the location and shape of the subducting oceanic plate boundary remains poorly understood. This is due in large part to the plate boundary being relatively aseismic and difficult to constrain through passive-source seismic methods. In July 2012, the COAST project acquired 15 seismic transects of the Cascadia margin intended to image the plate boundary. Four of the seismic transects were acquired over the same location with different source arrays: 36 air guns towed at 9m depth, 18 air guns towed at 9m depth, 36 air guns towed at 15m depth, and 18 air guns towed at 15m depth. These changes were chosen to represent possible configurations for 2D and 3D seismic data acquisitions with emphasis on identifying deep Earth features lying below complicated folding sediments of the accretionary wedge. Thirty-six air guns represents the full volume of the R/V Marcus G. Langseth source used when collecting 2D seismic data, while eighteen represents the half volume that would typically be fired for a 3D survey. Nine meters and fifteen meters are common source depths but have very different outputs in the frequency domain due to the "ghost notch" created by acoustic reflection off the sea surface. Here we present four identically processed, pre-stack depth migrated images of the Cascadia plate boundary and an analysis of the benefits and drawbacks of each seismic acquisition parameter set. While expressions of the plate boundary exist in all data acquired, preliminary results indicate that a deeper tow depth, and its lower frequency source output, captures more continuous representations of the plate boundary. However, a more shallow tow depth increases the resolution of the overlying sediments and the plate boundary itself helping to better define its precise location and shape.

  16. Rayleigh phase velocities in the upper mantle of the Pacific-North American plate boundary in southern California

    NASA Astrophysics Data System (ADS)

    Escobar, L.; Weeraratne, D. S.; Kohler, M. D.

    2013-05-01

    The Pacific-North America plate boundary, located in Southern California, presents an opportunity to study a unique tectonic process that has been shaping the plate tectonic setting of the western North American and Mexican Pacific margin since the Miocene. This is one of the few locations where the interaction between a migrating oceanic spreading center and a subduction zone can be studied. The rapid subduction of the Farallon plate outpaced the spreading rate of the East Pacific Rise rift system causing it to be subducted beneath southern California and northern Mexico 30 Ma years ago. The details of microplate capture, reorganization, and lithospheric deformation on both the Pacific and North American side of this boundary is not well understood, but may have important implications for fault activity, stresses, and earthquake hazard analysis both onshore and offshore. We use Rayleigh waves recorded by an array of 34 ocean bottom seismometers deployed offshore southern California for a 12 month duration from August 2010 to 2011. Our array recorded teleseismic earthquakes at distances ranging from 30° to 120° with good signal-to-noise ratios for magnitudes Mw ? 5.9. The events exhibit good azimuthal distribution and enable us to solve simultaneously for Rayleigh wave phase velocities and azimuthal anisotropy. Fewer events occur at NE back-azimuths due to the lack of seismicity in central North America. We consider seismic periods between 18 - 90 seconds. The inversion technique considers non-great circle path propagation by representing the arriving wave field as two interfering plane waves. This takes advantage of statistical averaging of a large number of paths that travel offshore southern California and northern Mexico allowing for improved resolution and parameterization of lateral seismic velocity variations at lithospheric and sublithospheric depths. We present phase velocity results for periods sampling mantle structure down to 150 km depth along the west coast margin. With this study, we seek to understand the strength and deformation of the Pacific oceanic lithosphere resulting from plate convergence and subduction beneath Southern California 30 Ma as well as translational stresses present today. We also test for predictions of several geodynamic models which describe the kinematic mantle flow that accompanies plate motion within this area including passive mantle drag due to Pacific plate motion and toroidal flow in the western U.S. region that may extend offshore.

  17. Plate boundary evolution in the western-central Mediterranean: From the past to the present.

    NASA Astrophysics Data System (ADS)

    Wortel, Rinus; Faccenna, Claudio; Govers, Rob; Polonia, Alina; Baes, Marzieh

    2013-04-01

    The evolution of the Calabrian and Gibraltar arcs and that of the margins of northern Africa and Sicily are part of the final phase of opening of the western Mediterranean basins. Jointly, they are the central topic of the TopoMed project concerning the plate boundary reorganization of the western-central Mediterranean, one of the projects of the TOPO-EUROPE programme (EUROCORES/ESF). The structure and evolution of the Gibraltar arc region are discussed in a separate presentation. This final stage of opening shows intriguing lateral variations from the Calabrian Arc, via the northern margin of Sicily to the North-African (Algerian) margin. In concert, they provide an excellent opportunity to study the evolution of an expanding oceanic realm that may be at the verge of entering a new phase of closure. Our studies encompass detailed analyses of deep penetration seismic data, multibeam bathymetry and field observations, and numerical model experiments addressing lithospheric scale process-oriented aspects. Special attention is given to the aspect that the region is embedded in a context of ongoing Africa-Eurasia plate convergence and to the role of structures, inherited from earlier stages of basin opening, in controlling the recent and ongoing evolution. For the Calabrian accretionary wedge the focus is on assessing the present state of deformation, including seismic activity, and other accompanying processes. We show that the Calabrian wedge is segmented (in direction along the arc) in two different lobes, the western and eastern lobe corresponding with detached and still continuous parts of the subducting slab, respectively. For the Northern Sicily margin we propose that its earlier history involving STEP faulting has preconditioned the lithosphere structure to the extent that it promotes initiation of a new southward-dipping subduction zone. The northern African margin is in a very special transitional situation in which the retreating northward subduction has come to an end, and new southward-dipping subduction may possibly be initiated. The study area is a regional scale natural laboratory in which the principal features of a Wilson cycle and their effect on surface tectonics, can be identified and investigated.

  18. Comparison of turbulence models for the natural convection boundary layer along a heated vertical plate

    Microsoft Academic Search

    R. A. W. M. Henkes; C. J. Hoogendoorn

    1989-01-01

    A numerical code for solving the boundary-layer equations is used to evaluate the performance of various turbulence models for the natural convection boundary layer along a heated vertical plate. The Cebeci-Smith (1974) model yields wall-heat transfer and turbulent viscosity values that are lower than the experimental values, while the standard k-epsilon model with wall functions for k and epsilon yields

  19. Tectonics of the Scotia-Antarctica plate boundary constrained from seismic and seismological data

    NASA Astrophysics Data System (ADS)

    Civile, D.; Lodolo, E.; Vuan, A.; Loreto, M. F.

    2012-07-01

    The plate boundary between the Scotia and Antarctic plates runs along the broadly E-W trending South Scotia Ridge. It is a mainly transcurrent margin that juxtaposes thinned continental and transitional crust elements with restricted oceanic basins and deep troughs. Seismic profiles and regional-scale seismological constraints are used to define the peculiarities of the crustal structures in and around the southern Scotia Sea, and focal solutions from recent earthquakes help to understand the present-day geodynamic setting. The northern edge of the western South Scotia Ridge is marked by a sub-vertical, left-lateral master fault. Locally, a narrow wedge of accreted sediments is present at the base of the slope. This segment represents the boundary between the Scotia plate and the independent South Shetland continental block. Along the northern margin of the South Orkney microcontinent, the largest fragment of the South Scotia Ridge, an accretionary prism is present at the base of the slope, which was possibly created by the eastward drift of the South Orkney microcontinent and the consequent subduction of the transitional crust present to the north. East of the South Orkney microcontinent, the physiography and structure of the plate boundary are less constrained. Here the tectonic regime exhibits mainly strike-slip behavior with some grade of extensional component, and the plate boundary is segmented by a series of NNW-SSE trending release zones which favored the fragmentation and dispersion of the crustal blocks. Seismic data have also identified, along the north-western edge of the South Scotia Ridge, an elevated region - the Ona Platform - which can be considered, along with the Terror Rise, as the conjugate margin of the Tierra del Fuego, before the Drake Passage opening. We propose here an evolutionary sketch for the plate boundary (from the Late Oligocene to the present) encompassing the segment from the Elephant Island platform to the Herdman Bank.

  20. Tectonics and plate boundary processes along the Southeast Indian Ridge and the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Conder, James Andrew

    Classical plate tectonics describes crustal deformation in a simple kinematic way, with deformation occurring only at narrow boundaries of plates with rigid interiors. Many dynamic processes at these boundaries are not well understood. There are also apparent deviations from classical plate tectonics where significant intraplate deformation occurs. In this thesis, we analyze and model geophysical data from the Southeast Indian Ridge (SEIR) and the East Pacific Rise (EPR) to address some of these issues. Hotspots often affect the dynamics of nearby spreading centers. As shown by bathymetry, side-scan sonar, and magnetic anomaly data, the Amsterdam-St. Paul (ASP) hotspot has altered the spreading history and geometry of nearby SEIR spreading axes. The hotspot thickened the oceanic crust near the spreading center and reorganized the plate boundary through rift propagation and ridge jumps, creating the youngest known transform fault in the process. The region near the ASP plateau has been suggested as where a wide, diffuse, NW-SE trending oceanic plate boundary meets the SEIR. Using data from the SEIR, we perform a statistical analysis and examine predictions of the model to test its validity. The boundary is not confirmed on statistical grounds, but evidence suggests that it does exist. However, it does not extend south of the St. Paul Fracture Zone, narrowing the previously proposed boundary by 800 km where it meets the SEIR. We also test the hypothesis that deformation near the eastern end of the SEIR, including a large intraplate earthquake can be explained by an additional plate boundary. If the earthquake lies on a plate boundary, its sense of slip should be right-lateral rather than the observed left-lateral motion, ruling out the hypothesis. Asymmetric geophysical properties of the EPR near 17°S suggest more melt beneath the Pacific side than the Nazca side. Numerical modeling results indicate that the asymmetry may be produced by pressure-driven across-axis mantle flow from the Pacific superswell. Across-axis flow extends upwelling and melting to the west of the axis, but limits upwelling to the east, shutting off melting and accounting for the observed asymmetry.

  1. Geometrically nonlinear dynamic response of stiffened plates with moving boundary conditions

    NASA Astrophysics Data System (ADS)

    Ma, NiuJing; Wang, RongHui; Han, Qiang; Lu, YiGang

    2014-08-01

    An approach is presented to investigate the nonlinear vibration of stiffened plates. A stiffened plate is divided into one plate and some stiffeners, with the plate considered to be geometrically nonlinear, and the stiffeners taken as Euler beams. Lagrange equation and modal superposition method are used to derive the dynamic equilibrium equations of the stiffened plate according to energy of the system. Besides, the effect caused by boundary movement is transformed into equivalent excitations. The first approximation solution of the non-resonance is obtained by means of the method of multiple scales. The primary parametric resonance and primary resonance of the stiffened plate are studied by using the same method. The accuracy of the method is validated by comparing the results with those of finite element analysis via ANSYS. Numerical examples for different stiffened plates are presented to discuss the steady response of the non-resonance and the amplitude-frequency relationship of the primary parametric resonance and primary resonance. In addition, the analysis on how the damping coefficients and the transverse excitations influence amplitude-frequency curves is also carried out. Some nonlinear vibration characteristics of stiffened plates are obtained, which are useful for engineering design.

  2. Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications

    E-print Network

    Niu, Fenglin

    Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic seismic network of Venezuela to study the mantle transition zone structure beneath the Caribbean Caribbean, the 410-km is featured by a narrow (200 km EW) 25-km uplift extending in the NS direction around

  3. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    Microsoft Academic Search

    Daniel Jean Stanley

    1982-01-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the entire African continental landmass as

  4. UNAVCO Plate Boundary Observatory 2007 Student Field Assistant Program in the Alaska Region

    Microsoft Academic Search

    A. Marzulla; S. Gasparich; B. Pauk; K. Feaux; M. Jackson

    2007-01-01

    The UNAVCO, Inc. Plate Boundary Observatory (PBO) Student Field Assistant Program strives to engage students in further study and careers in the Earth Sciences. Student Field Assistants from a variety of educational backgrounds ranging from high school graduates to master's level students spend a three to five month field season working in tandem with UNAVCO regional Field Engineers. The students

  5. Boundary conditions and mode jumping in the buckling of a rectangular plate

    Microsoft Academic Search

    David Schaeffer; Martin Golubitsky

    1979-01-01

    We show that mode jumping in the buckling of a rectangular plate may be explained by a secondary bifurcation — as suggested by Bauer et al. [1] — when “clamped” boundary conditions on the vertical displacement function are assumed. In our analysis we use the singularity theory of mappings in the presence of a symmetry group to analyse the bifurcation

  6. Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif

    Microsoft Academic Search

    Matthew Parry; Karel Schulmann; Alfred Kröner

    1997-01-01

    A tonalitic sill has been examined at the Variscan transpressive boundary of the Lugian and Silesian plates at the NE margin of the Bohemian Massif. A structural, petrological and geochronological study reveals that it was emplaced syn-tectonically with major ductile shearing in lower crustal rocks. Magmatic and pre-rheological critical melt percentage (RCMP) fabrics are concordant with the hanging wall structures

  7. Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, southwest Iceland

    Microsoft Academic Search

    M. Keiding; B. Lund; T. Árnadóttir

    2009-01-01

    We investigate the seismicity and the state of stress along the obliquely divergent Reykjanes Peninsula plate boundary and compare the directions of stress from inversion of earthquake focal mechanisms with the directions of strain rate from GPS data. The seismicity on the peninsula since early instrumental recordings in 1926 shows a systematic change from primarily earthquake swarms in the west

  8. Upper mantle deformation beneath the North American–Pacific plate boundary in California from SKS splitting

    Microsoft Academic Search

    Mickael Bonnin; Guilhem Barruol; Götz H. R. Bokelmann

    2010-01-01

    In order to constrain the vertical and lateral extent of deformation and the interactions between lithosphere and asthenosphere in a context of a transpressional plate boundary, we performed teleseismic shear wave splitting measurements for 65 permanent and temporary broadband stations in central California. We present evidence for the presence of two anisotropic domains: (1) one with clear E–W trending fast

  9. ORIGINAL ARTICLE GPS snow sensing: results from the EarthScope Plate Boundary

    E-print Network

    Larson, Kristine

    ORIGINAL ARTICLE GPS snow sensing: results from the EarthScope Plate Boundary Observatory Kristine rather than snow depth. Existing GPS networks are a potential source of new snow data for climate scientists and water managers which complements existing snow sensors. Geodetic-quality GPS networks often

  10. Post-rifting stress relaxation at the divergent plate boundary in Northeast Iceland

    USGS Publications Warehouse

    Foulger, G.R.; Jahn, C.-H.; Seeber, G.; Einarsson, P.; Julian, B.R.; Heki, K.

    1992-01-01

    Interaction of the elastic lithosphere with the underlying anelastic asthenosphere causes strain to propagate along the Earth's surface in a diffusion-like manner following tectonism at plate boundaries. This process transfers stress between adjacent tectonic segments and influences the temporal tectonic pattern along a plate boundary. Observations of such strain transients have been rare, and have hitherto been confined to strike-slip and underthrusting plate boundaries1. Here we report the observation of a strain transient at the divergent (spreading) plate boundary in Iceland. A Global Positioning System survey undertaken a decade after an episode of dyke intrusion accompanying several metres of crustal spreading reveals a spatially varying strain field with the expected diffusion-pulse shape and an amplitude three times greater than the 5.7 cm that would be expected from the average spreading rate2. A simple one-dimensional model with a thin elastic layer overlying a viscous layer fits the data well and yields a stress diffusivity of 1.1 ?? 0.3 m2 s-1. Combined with struc-tural information from magnetotelluric measurements, this implies a viscosity of 0.3-2 ?? 1019 Pa s - a value comparable to that derived for Iceland from post-glacial rebound23, but low compared with estimates for mantle viscosity obtained elsewhere3.

  11. Raman scattering measurements within a flat plate boundary layer in an inductively coupled plasma wind tunnel

    Microsoft Academic Search

    Damien Studer; Pierre Vervisch

    2007-01-01

    High temperature air chemistry is a crucial issue concerning next reusable space vehicle thermal protection system. The aim of this paper is to measure N2 and O2 densities and characteristic temperatures thanks to spontaneous Raman scattering within the boundary layer of a stainless steel flat plate cooled down at 300 K. This shear-flow test configuration is considered as a nonequilibrium

  12. A parametric study of boundary layer receptivity for an acoustic wave\\/porous plate interaction

    Microsoft Academic Search

    A. Pal; W. W. Bower; G. H. Meyer

    1991-01-01

    An analysis is made of the coupling of a plane sound wave in the incompressible limit to the growth of Tollmien-Schlichting waves in a laminar, parallel boundary layer over a flat plate containing a porous strip. The strip is a receptivity site and links the Blasius layer to a fluid-filled cavity that can act as a resonator. The receptivity problem

  13. Seismotectonics of plate boundaries. Final report, 1 November 1973-30 June 1981

    SciTech Connect

    Berger, J.; Brune, J.N.; Goodkind, J.; Wyatt, F.; Agnew, D.C.; Beaumont, C.

    1981-06-01

    Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.

  14. Low heat flow inferred from .4 Gyr zircons suggests Hadean plate boundary interactions

    E-print Network

    Manning, Craig

    LETTERS Low heat flow inferred from .4 Gyr zircons suggests Hadean plate boundary interactions that era. Detrital Hadean igneous zircons from the Jack Hills1 , Western Australia, however, can­4,7,8 and con- tinental crust9,10 before 4 Gyr. An underexploited characteristic of the .4 Gyr zircons

  15. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  16. Block kinematics of the PacificNorth America plate boundary in the southwestern United States from inversion of GPS,

    E-print Network

    McCaffrey, Robert

    Block kinematics of the Pacific­­North America plate boundary in the southwestern United States­North America plate boundary in the southwestern United States from inversion of GPS, seismological of the southwestern United States (30°­41°N) is represented by a finite number of rotating, elastic-plastic spherical

  17. Plate Borders and Mountain Building

    NSDL National Science Digital Library

    Schlumberger Excellence in Educational Development, Inc.

    This page features animations of four different types of plate boundaries, including one animation of the collision of two pieces of continental crust, forming steep mountain ranges. The animations are all presented in flash, and the plate convergence offers a useful, generic view of orogeny.

  18. Forced and mixed convection boundary layer flow along a flat plate with variable viscosity and variable Prandtl number: new results

    Microsoft Academic Search

    A. Pantokratoras

    2005-01-01

    The steady laminar boundary layer flow along a flat plate is studied taking into account the variation of fluid viscosity and fluid Prandtl number with temperature. In the forced convection case the plate moves with constant velocity and its temperature varies in power law with x. In the mixed convection case the plate temperature is constant and the fluid moves

  19. Frozen-plasma boundary-layer flows over adiabatic flat plates

    SciTech Connect

    Ben-Dor, G.; Igra, O.

    1984-07-01

    The boundary-layer equations for a partially ionized frozen flow over a flat plate has been solved using a new approach in which the problem is reduced from a two-point boundary value problem to a Cauchy problem, thus offering a simple, stable, and relatively inexpensive solution technique. The method is applied to a strong shock-induced argon flow over an adiabatic flat plate. The dependence of the flow inside the boundary layer on the Prandtl number Pr, and Lewis number Le, and on the exponential dependence n of the density viscosity product on the temperature are explored, and it is found that while Pr and n strongly affect the obtained flow field, the influence of Le is negligibly small.

  20. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates.

    PubMed

    Kawakatsu, Hitoshi; Kumar, Prakash; Takei, Yasuko; Shinohara, Masanao; Kanazawa, Toshihiko; Araki, Eiichiro; Suyehiro, Kiyoshi

    2009-04-24

    The mobility of the lithosphere over a weaker asthenosphere constitutes the essential element of plate tectonics, and thus the understanding of the processes at the lithosphere-asthenosphere boundary (LAB) is fundamental to understand how our planet works. It is especially so for oceanic plates because their relatively simple creation and evolution should enable easy elucidation of the LAB. Data from borehole broadband ocean bottom seismometers show that the LAB beneath the Pacific and Philippine Sea plates is sharp and age-dependent. The observed large shear wave velocity reduction at the LAB requires a partially molten asthenosphere consisting of horizontal melt-rich layers embedded in meltless mantle, which accounts for the large viscosity contrast at the LAB that facilitates horizontal plate motions. PMID:19390042

  1. Seismic Anisotropy Along the Eurasian-Arabian Plate Boundary

    NASA Astrophysics Data System (ADS)

    Sandvol, E. A.; Skobeltsyn, G.; Turkelli, N.; Polat, G.; Yetirmishli, G.; Godoladze, T.; Mellors, R. J.; Gok, R.

    2014-12-01

    The Anatolian plateau and Caucasus are part of the orogenic belt that formed as the result of the closure of the Neo Tethys Ocean and the ensuing continental collision of Arabian and Eurasian plates. Multiple tomographic studies of both P and S wave velocities all show a broad low velocity zone beneath East Anatolian and North Iranian plateaus. The low velocity zone appears to range from the Moho to a depth 150 km, which suggests asthenospheric material underlying a very thin lithosphere of eastern Anatolia. This low velocity zone coincides with widespread Late Miocene - Quaternary calc-alkaline volcanic products of mantle origin. This very shallow asthenosphere strongly implies that any present day anisotropy is likely to reflect very recent mantle deformation. In order to image seismic anisotropy and improve understanding of the nature of mantle deformation in young continental collision zone we analyzed data from the IRIS station KIV and the regional seismic networks of Turkey, Azerbaijan and Georgia to determine shear wave splitting fast polarization directions and delay times in the region. Our results show that the fast polarization directions are quite uniformly parallel to NE-SW across the East Anatolian Plateau and the westernmost part of the Greater Caucasus. The observed delay times decrease northward with the shortest located in the western Greater Caucasus. However, to the east, the fast polarization direction rotates clockwise until it becomes parallel to the EW topographic? trend in the Lesser Caucasus where the delay times are the largest in the region. The situation becomes more complex north of the Lesser Caucasus, in the central and eastern parts of the Greater Caucasus, where the fast polarization directions shift abruptly to the NNE-SSW. Furthemore, we find relatively strong evidence of layered anisotropy using a new method we have developed to image multi-layered polarization anisotropy from teleseismic core phases such as SKS.

  2. Accretionary margin of north-western Hispaniola: morphology, structure and development of part of the northern Caribbean plate boundary

    USGS Publications Warehouse

    Dillon, William P.; Austin, James A., Jr.; Scanlon, K.M.; Terence, Edgar N.; Parson, L.M.

    1992-01-01

    Broad-range side-scan sonar (GLORIA) images and single- and multi-channel seismic reflection profiles demonstrate that the margin of north-western Hispaniola has experienced compression as a consequence of oblique North American-Caribbean plate convergence. Two principal morphological or structural types of accretionary wedges are observed along this margin. The first type is characterized by a gently sloping (???4??) sea floor and generally margin-parallel linear sets of sea-floor ridges that gradually deepen towards the flat Hispaniola Basin floor to the north. The ridges are caused by an internal structure consisting of broad anticlines bounded by thrust faults that dip southwards beneath Hispaniola. Anticlines form at the base of the slope and are eventually sheared and underthrust beneath the slope. In contrast, the second type of accretionary wedge exhibits a steeper (???6-16??) sea-floor slope characterized by local slumping and a more abrupt morphological transition to the adjacent basin. The internal structure appears chaotic on seismic reflection profiles and probably consists of tight folds and closely spaced faults. We suggest that changes in sea-floor declivity and internal structure may result from variations in the dip or frictional resistance of the de??collement, or possibly from changes in the cohesive strength of the wedge sediments. The observed pattern of thickening of Hispaniola Basin turbidites towards the insular margin suggests differential southwards tilting of the Hispaniola Basin strata, probably in response to North America-Caribbean plate interactions since the Early Tertiary. Based upon indirect age control from adjacent parts of the northern caribbean plate boundary, we infer a Late Eocene to Early Miocene episode of transcurrent motion (i.e. little or no tilting), an Early Miocene to Late Pliocene period of oblique convergence (i.e. increased tilt) during which the accretionary wedge began to be constructed, and a Late Pliocene to Recent episode of increased convergence (i.e. twice the Miocene to Pliocene tilt), which has led to rapid uplift and erosion of sediment sources on the margin and on Hispaniola, generating a submarine fan at the base of the insular slope. ?? 1992.

  3. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.

    1994-01-01

    Recent progress in both the linear and nonlinear aspects of stability theory has highlighted the importance of the receptivity problem. One of the most unclear aspects of receptivity study is the receptivity of boundary-layer flow normal to vortical disturbances. Some experimental and theoretical results permit the proposition that quasi-steady outer-flow vortical disturbances may trigger by-pass transition. In present work such interaction is investigated for vorticity normal to a leading edge. The interest in these types of vortical disturbances arise from theoretical work, where it was shown that small sinusoidal variations of upstream velocity along the spanwise direction can produce significant variations in the boundary-layer profile. In the experimental part of this work, such non-uniform flow was created and the laminar-turbulent transition in this flow was investigated. The experiment was carried out in a low-turbulence direct-flow wind tunnel T-361 at the Central Aerohydrodynamic Institute (TsAGI). The non-uniform flow was produced by laminar or turbulent wakes behind a wire placed normal to the plate upstream of the leading edge. The theoretical part of the work is devoted to studying the unstable disturbance evolution in a boundary layer with strongly non-uniform velocity profiles similar to that produced by outer-flow vorticity. Specifically, the Tollmien-Schlichting wave development in the boundary layer flow with spanwise variations of velocity is investigated.

  4. Discovering Plate Boundaries Update: Builds Content Knowledge and Models Inquiry-based Learning

    NASA Astrophysics Data System (ADS)

    Sawyer, D. S.; Pringle, M. S.; Henning, A. T.

    2009-12-01

    Discovering Plate Boundaries (DPB) is a jigsaw-structured classroom exercise in which students explore the fundamental datasets from which plate boundary processes were discovered. The exercise has been widely used in the past ten years as a classroom activity for students in fifth grade through high school, and for Earth Science major and general education courses in college. Perhaps more importantly, the exercise has been used extensively for professional development of in-service and pre-service K-12 science teachers, where it simultaneously builds content knowledge in plate boundary processes (including natural hazards), models an effective data-rich, inquiry-based pedagogy, and provides a set of lesson plans and materials which teachers can port directly into their own classroom (see Pringle, et al, this session for a specific example). DPB is based on 4 “specialty” data maps, 1) earthquake locations, 2) modern volcanic activity, 3) seafloor age, and 4) topography and bathymetry, plus a fifth map of (undifferentiated) plate boundary locations. The jigsaw is structured so that students are first split into one of the four “specialties,” then re-arranged into groups with each of the four specialties to describe the boundaries of a particular plate. We have taken the original DPB materials, used the latest digital data sets to update all the basic maps, and expanded the opportunities for further student and teacher learning. The earthquake maps now cover the recent period including the deadly Banda Aceh event. The topography/bathymetry map now has global coverage and uses ice-free elevations, which can, for example, extend to further inquiry about mantle viscosity and loading processes (why are significant portions of the bedrock surface of Greenland and Antarctica below sea level?). The volcanic activity map now differentiates volcano type and primary volcanic lithology, allowing a more elaborate understanding of volcanism at different plate boundaries. The volcanic activity map also now includes seafloor hydrothermal vents to extend the volcanic data set into the oceans. The new maps also more completely represent the polar regions, improving, for example, the students understanding of the ridge system running across the Arctic Sea. We have expanded the teacher’s guide to assist both novice and experienced teachers “see what an Earth Scientist sees” in the data. We have found repeatedly that the real strengths of the DPB activity are that (1) the course materials readily adapt to as well as appropriately challenge all levels of student abilities, leading to very natural differentiated levels of instruction, and (2) students of all levels develop a real ownership in their “plate tectonic” expertise.

  5. Target Plate Conditions During Stochastic Boundary Operation on DIII-D

    SciTech Connect

    Watkins, J; Evans, T; Moyer, R; Lasnier, C; Rudakov, D

    2006-05-15

    A major concern for large tokamaks like ITER is the presence of edge localized modes (ELMs) that repeatedly send large bursts of particles and heat into the divertor plates. Operation with resonant magnetic perturbations (RMP) at the boundary of DIII=D has suppressed ELMs for values of q95 {approx} 3.7. At the target plate, the conditions during ELM suppressed operation for both high and low collisionality are observed by a set of radially distributed Langmuir probes. At high collisionality (n*{approx}1), the target plate particle flux and temperature drops by > 30% during ELM suppression. At low collisionality (n*{approx}0.1), the core density, target plate density, and target plate particle flux drop but the plate electron temperature increases after the ELMs are suppressed. The ELM-suppressed target plate heat flux is nearly the same as the heat flux between ELMs but the (5X higher) transient heat flux peaks due to ELMs are eliminated.

  6. Investigating the mechanics of the seismic cycle along plate boundaries

    NASA Astrophysics Data System (ADS)

    Avouac, J.; Perfettini, H.; Chlieh, M.

    2004-12-01

    The seismic cycle concept offers a convenient kinematic framework to integrate geodetic and geological observations. Generally the integration is made through elastic dislocation modeling, eventually based on Savage's backslip model. This sort of kinematic description is valid insofar as there is no permanent strain accumulating off the main fault zone. This approximation applies well to subduction zones and strike-slip faults but can also be applied to orogenic contexts providing some caution regarding the modeling of vertical displacements. The kinematic description of strain over the seismic cycle in orogenic contexts such as the Himalaya or Taiwan seems to make sense in view of the rheology of continental rocks and it dependence on temperature. In this context the thermal structure might be the key factor determining the transition with depth from a seismogenic fault portion obeying rate-weakening friction, where motion is presumably dominantly stick-slip, to a zone undergoing predominantly strain strengthening brittle creep, which slip steadily during the interseismic period or produce transient afterslip in the postseismic period, and finally to a zone of aseismic ductile flow at depth. For subduction zone the physical factors for the variations with depth of fault properties is more enigmatic. In particular, the fact that the plate interface generally creeps at depth below about 50km does cannot be easily explained by thermally enhanced ductility nor by serpentinization of the mantle wedge. Some simple model of stress transfers during the seismic cycle is used to analyze jointly seismicity rate and crustal strain in the interseismic period and during post-seismic relaxation. We show that reloading of the upper brittle crust, due to postseismic afterslip and viscous relaxation is a viable mechanism to explain jointly geodetic data and the decay rate of aftershocks. This is substantiated by the analysis of a few cases such as the Chi-Chi 1999 earthquake, or the 2001 Peru earthquake. The model is also used to assess the possibility of non-stationary strain in the interseismic period. It turns out that depending on the viscosity and thickness of the viscous shear zone at depth stress transfer during the seismic cycle may induce significant variation of interseismic strain that could be measured from geodetic techniques, and explain possible discrepancies between geological slip rates and geodetic slip rates.

  7. Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Dietmar Müller, R.; Whittaker, Joanne; Flament, Nicolas; Seton, Maria

    2013-04-01

    The late Cretaceous to mid Eocene history of the southwest and southernmost Pacific has been subject to starkly contrasting interpretations, ranging from relative tectonic quiescence with the Lord Howe Rise (LHR) being part of the Pacific plate to a dynamic subduction setting. In the first scenario the Tasman Sea would have formed as a consequence of divergence between the Pacific and Australian plates, whereas in the second scenario it would have formed as a marginal basin associated with subduction. The first scenario is supported by a number of arguments, including a lack of evidence for deformation and tectonic activity in New Zealand during this period and a geodynamic modelling inference, namely that the bend in the Hawaiian-Emperor chain can be better reproduced if the LHR is part of the Pacific plate. The second scenario is supported by regional plate kinematic models reconciling a variety of observations including back-arc basin formation and destruction through time and the history of arc-continent collisions. The primary problem with the first scenario is the use of a plate circuit that leaves relative motion between East and West Antarctica unconstrained, leading to an improbable history of periodic compression and extension. The main problem with the alternative scenario is a lack of sampled late Cretaceous volcanic arc rocks east of the LHR. We analysed available geological and geophysical data to constrain the locations of and movements along the plate boundaries in the southwest and southern Pacific from the late Cretaceous to mid Eocene, and assessed how Pacific plate motion is best quantified during this period. Geological and geophysical evidence suggests that a plate boundary separated the Pacific plate from the LHR. The distribution of lower mantle slab material that is imaged by seismic tomography beneath New Zealand is best explained if subduction occurred to the east of the LHR during the entire late Cretaceous to mid Eocene period. Rocks from ophiolitic nappes in the North Island of New Zealand, New Caledonia and Papua New Guinea show evidence of having formed in a back-arc basin during this period, consistent with a subduction zone near the LHR. Although New Zealand is commonly viewed as tectonically quiescent at this time, deformation at several locations to the east and west of the present-day Alpine Fault suggests that a plate boundary cut through Zealandia during Tasman Sea opening. As the LHR was not attached to the Pacific plate and subduction occurred to the east and north of the LHR we suggest that Pacific plate motion is best quantified using a plate circuit through East and West Antarctica, avoiding this zone of southwest Pacific subduction. Future work should focus on better constraining the location of and motion along the late Cretaceous-mid Eocene plate boundary through New Zealand to enable the use of a plate circuit via Australia.

  8. Flow around a rotating circular cylinder with an end plate near a plane wall boundary

    NASA Astrophysics Data System (ADS)

    Panchal, Jay K.

    The objective of the present study is to investigate the characteristics of a flow around a rotating circular cylinder with and without an end plate near a wall boundary. The different cases which are taken into consideration in the current investigations were with gap ratios of 0.1d, 0.5d, 1.0d, 1.5d and 2.0d. A symmetric end plate is attached behind the rotating circular cylinder at a distance of 0.1d from the cylinder and a gap ratio of 1.5d. We performed Computational Fluid Dynamics (CFD) simulation of the flow around a rotating circular cylinder near a plane wall boundary using a CFD solver, STAR-CCM+. Free-stream velocity is kept constant at 5 m/s and the Reynolds number calculated is 3.24X104. We then studied the flow characteristics such as lift and drag generated on the circular cylinder with and without an end plate and the wake structure. We observed that the vortex suppression is increased when the gap ratio is reduced, i.e., when the circular cylinder is nearer to the plane wall boundary. As the gap ratio increases the drag force generated decreases and the lift force increases considerably. In the case of rotating circular cylinder with an end plate, the wake area has moved upwards and the lift generated has increased manifold.

  9. The nature of the plate interface and driving force of interseismic deformation in the New Zealand plate-boundary zone, revealed by the continuous GPS velocity field

    NASA Astrophysics Data System (ADS)

    Lamb, Simon; Smith, Euan

    2013-06-01

    New Zealand straddles the boundary between the Australian and Pacific plates. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation, with displacements on individual faults up to hundreds of kilometers. However, over periods of several years, GPS measurements show a remarkably smooth pattern of velocities. We show here using a new method of back slip analysis, that almost the entire plate-boundary continuous GPS velocity field can be predicted within measurement error from a simple model of elastic distortion due to deep slip on a single plate interface (megathrust in the Hikurangi and Putsegur subduction zones or fault through continental lithosphere beneath the Southern Alps) at the relative plate motion rates. This suggests that the main driving force of plate-boundary deformation is slip on the deeper moving part of the plate interface, without buried creep in localized shear zones beneath individual surface faults. The depth at which this deep slip terminates (locking point line) determines the width of deformation. Along the Hikurangi margin, there is also clockwise rotation of ~150 km long segment of the fore arc (Wairoa domain) at 4.5° ± 1 Ma, relative to the Australian Plate, about a pole in western North Island; model residuals in the velocity field are mainly a result of incomplete averaging of the cycle of slow slip events on the plate interface, downdip of the locking point.

  10. Subcontinental-scale crustal velocity changes along the Pacific-North America plate boundary.

    PubMed

    Davis, J L; Wernicke, B P; Bisnath, S; Niemi, N A; Elósegui, P

    2006-06-29

    Transient tectonic deformation has long been noted within approximately 100 km of plate boundary fault zones and within active volcanic regions, but it is unknown whether transient motions also occur at larger scales within plates. Relatively localized transients are known to occur as both seismic and episodic aseismic events, and are generally ascribed to motions of magma bodies, aseismic creep on faults, or elastic or viscoelastic effects associated with earthquakes. However, triggering phenomena and systematic patterns of seismic strain release at subcontinental (approximately 1,000 km) scale along diffuse plate boundaries have long suggested that energy transfer occurs at larger scale. Such transfer appears to occur by the interaction of stresses induced by surface wave propagation and magma or groundwater in the crust, or from large-scale stress diffusion within the oceanic mantle in the decades following clusters of great earthquakes. Here we report geodetic evidence for a coherent, subcontinental-scale change in tectonic velocity along a diffuse approximately 1,000-km-wide deformation zone. Our observations are derived from continuous GPS (Global Positioning System) data collected over the past decade across the Basin and Range province, which absorbs approximately 25 per cent of Pacific-North America relative plate motion. The observed changes in site velocity define a sharp boundary near the centre of the province oriented roughly parallel to the north-northwest relative plate motion vector. We show that sites to the west of this boundary slowed relative to sites east of it by approximately 1 mm yr(-1) starting in late 1999. PMID:16810252

  11. A model of convergent plate margins based on the recent tectonics of Shikoku, Japan

    NASA Technical Reports Server (NTRS)

    Bischke, R. E.

    1974-01-01

    A viscoelastic finite element plate tectonic model is applied to displacement data for the island of Shikoku, Japan. The flow properties and geometry of the upper portions of the earth are assumed known from geophysical evidence, and the loading characteristics are determined from the model. The nature of the forces acting on the Philippine Sea plate, particularly in the vicinity of the Nankai trough, is determined. Seismic displacement data related to the 1946 Nankaido earthquake are modeled in terms of a thick elastic plate overlying a fluidlike substratum. The sequence of preseismic and seismic displacements can be explained in terms of two independent processes operating on elastic lithospheric plates: a strain accumulation process caused by vertical downward forces acting on or within the lithosphere in the vicinity of the trench, and a strain release process caused by plate failure along a preexisting zone on weakness. This is a restatement of Reid's elastic rebound theory in terms of elastic lithospheric plates.

  12. Plate boundary forces in the vicinity of Trinidad-the-transition from transpression to transtension in the Southern Caribbean plate boundary zones

    SciTech Connect

    Algar, S.T.; Pindell, J.L. (Dartmouth College, Hanover, NH (United States))

    1993-02-01

    Deformation in the southern Caribbean plate boundary zones as recorded in the Northern Range of Trinidad initiated in the Oligocene with northward vergent gravity sliding of Northern Range sediments due to uplift and oversteepening of the previously passive margin by the eastward migration of the Caribbean flexural forebulge. Progressive east-southeast transvergence of the Caribbean Plate with respect to South America overthrust incorporated the Northern Range sediments into the Caribbean accretionary prism, thrusting them south-southeast to produce a Middle Miocene transpressive foreland fold and thrust belt in southern Trinidad. Late Miocene deformation within Trinidad was increasingly dominated by right-lateral strike-slop (RLSS) faulting, at the expense of transpressive compressional features. Right-stepping of RLSS motion initiated the Gulf of Paria and Caroni pull-apart basins, Since Early Pliocene these basins and other areas to the north of Trinidad have undergone north-south extension in addition to east-west trending RLSS. Such extension caused the northward withdrawal of Caribbean terranes from atop of the Northern Range, Resulting in rapid isostatically induced uplift (approximately 0.5 mmyr[sup -1]). This change in deformation style may relate to a hitherto unrecognized shift in the relative motion of the eastern Caribbean Plate with respect to South America: from east-southeast-directed transpression to east-northeast-directed transtension.

  13. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  14. Turbulent boundary layer over a flat plate with strong stepwise heating

    NASA Astrophysics Data System (ADS)

    Ng, T. T.; Talbot, L.; Robben, F.

    1982-07-01

    The turbulent boundary layer over a flat plate with stepwise wall temperature rise from room temperature to 1250 K and free stream velocity of 10.5 m/s was studied. Thermal structures in the heated boundary layer were observed using high speed schlieren cine. Mean and rootmean-square (rms) density distributions were obtained from Rayleigh scattering intensity measurements. Velocity statistics were provided by a single component laser Doppler velocimetry system. Mean and rms velocity profiles, the Reynolds stress, the streamwise and the cross stream turbulent kinetic energy diffusion were determined. Data were collected by a computer based data acquisition and control system. The overall shape of the thermal structures observed in the schlieren pictures of the heated boundary layer is similar to that of the large scale turbulent structures in an isothermal turbulent boundary layer.

  15. Boundary layer flow for a nanofluid over a flat plate with a convective boundary condition

    NASA Astrophysics Data System (ADS)

    Mansur, Syahira; Ishak, Anuar

    2013-09-01

    The steady flow over a static plate immersed in three different nanofluids (CuO-water, Al2O3-water, TiO2-water) with the bottom surface of the plate is heated by convection is investigated numerically. Similarity solutions for the flow and thermal fields are possible if the convective heat transfer from the hot fluid on the lower surface of the plate varies like x-1/2, where x is the distance from the leading edge. The governing partial differential equations are first transformed into a system of ordinary differential equations, before being solved numerically. The results indicate that the inclusion of nanoparticles into the base fluid produces an increase in the skin friction coefficient and the heat transfer rate at the surface. The rate of heat transfer in the Al2O3-water nanofluid is found to be higher than the rate of heat transfer in the CuO-water and TiO2-water nanofluids.

  16. Evidence for divergent plate-boundary characteristics and crustal spreading on Venus

    NASA Technical Reports Server (NTRS)

    Head, James W., III; Crumpler, L. S.

    1987-01-01

    Detailed examination of the topography and morphology of western Aphrodite Terra reveals numerous features that are similar to terrestrial divergent plate-boundary characteristics. Individual domains between fracture-zone-like discontinuities contain a variety of bilaterally symmetrical topographic elements that suggest that topographic features have been created at rise crests, rifted and separated, and moved laterally to their present symmetrical positions. The topographic and morphologic similarities, together with strikingly similar mirror-image map patterns on both sides of the rise axis, suggest that western Aphrodite Terra shares the characteristics of oceanic divergent plate boundaries, and is the site of crustal spreading on Venus. Topographic profiles are consistent with spreading rates of the order of several centimeters per year.

  17. Tectonic plate under a localized boundary stress: fitting of a zero-range solvable model

    E-print Network

    Petrova, L

    2008-01-01

    We suggest a method of fitting of a zero-range model of a tectonic plate under a boundary stress on the basis of comparison of the theoretical formulae for the corresponding eigenfunctions/eigenvalues with the results extraction under monitoring, in the remote zone, of non-random (regular) oscillations of the Earth with periods 0.2-6 hours, on the background seismic process, in case of low seismic activity. Observations of changes of the characteristics of the oscillations (frequency, amplitude and polarization) in course of time, together with the theoretical analysis of the fitted model, would enable us to localize the stressed zone on the boundary of the plate and estimate the risk of a powerful earthquake at the zone.

  18. Tectonic plate under a localized boundary stress: fitting of a zero-range solvable model

    E-print Network

    L. Petrova; B. Pavlov

    2008-01-18

    We suggest a method of fitting of a zero-range model of a tectonic plate under a boundary stress on the basis of comparison of the theoretical formulae for the corresponding eigenfunctions/eigenvalues with the results extraction under monitoring, in the remote zone, of non-random (regular) oscillations of the Earth with periods 0.2-6 hours, on the background seismic process, in case of low seismic activity. Observations of changes of the characteristics of the oscillations (frequency, amplitude and polarization) in course of time, together with the theoretical analysis of the fitted model, would enable us to localize the stressed zone on the boundary of the plate and estimate the risk of a powerful earthquake at the zone.

  19. Thrust -wrench interference tectonics in the Gulf of Cadiz (Africa -Iberia plate boundary in the North-East Atlantic): insights from

    E-print Network

    Paris-Sud XI, Université de

    Thrust - wrench interference tectonics in the Gulf of Cadiz (Africa - Iberia plate boundary to a segment of the Africa- Eurasia plate boundary previously described as tectonically diffuse (e.g. Sartori key segment of the Africa-Iberia plate boundary (North- East Atlantic ocean), three main different

  20. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    Microsoft Academic Search

    Daniel Jean Stanley

    1982-01-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before\\u000a the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed\\u000a emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the\\u000a entire African continental landmass as

  1. The Baja California Borderland and the Neogene Evolution of the Pacific-North American Plate Boundary

    Microsoft Academic Search

    J. M. Fletcher; B. W. Eakins

    2001-01-01

    New observational data on Neogene faulting in the borderland of Baja California places important constraints on tectonic models for the evolution of the Pacific-North American (P-NA) plate boundary and rifting in the Gulf of California. Neogene faults in the borderland range from strike slip to normal slip and accommodate integrated transtension. Most have east-facing escarpments and likely reactivate the former

  2. Deep structural setting of the North American-Caribbean plate boundary in eastern Guatemala

    Microsoft Academic Search

    E. Lodolo; M. Menichetti; M. Guzmán-Speziale; G. Giunta; C. Zanolla

    2009-01-01

    Two-dimensional inverse gravity modeling is presented to help determine the deep structural framework of the left-lateral Polochic-Motagua fault systems. They represent a major segment of the North American-Cari- bbean plate boundary. These seismically active tectonic lineaments, crossing broadly E-W Guatemala, are super- imposed over a narrow suture where slices of ophiolitic assemblages crop out. Within the principal displacement zone of

  3. Plane Wave Diffraction by a Finite Plate with Impedance Boundary Conditions

    PubMed Central

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in. PMID:24755624

  4. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    PubMed Central

    Mehmood, Ahmer; Ali, Asif; Saleem, Najma

    2014-01-01

    This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ? ? < ?. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060

  5. The fissure swarm of the Askja volcanic system along the divergent plate boundary of N Iceland

    Microsoft Academic Search

    Ásta Rut Hjartardóttir; Páll Einarsson; Haraldur Sigurdsson

    2009-01-01

    Divergent plate boundaries, such as the one crossing Iceland, are characterized by a high density of subparallel volcanic\\u000a fissures and tectonic fractures, collectively termed rift zones, or fissure swarms when extending from a specific volcano.\\u000a Volcanic fissures and tectonic fractures in the fissure swarms are formed during rifting events, when magma intrudes fractures\\u000a to form dikes and even feeds fissure

  6. Evidence for divergent plate-boundary characteristics and crustal spreading on Venus

    Microsoft Academic Search

    J. W. Head; L. S. Crumpler

    1987-01-01

    Detailed examination of the topography and morphology of western Aphrodite Terra reveals numerous features that are similar to terrestrial divergent plate-boundary characteristics. Individual domains between fracture-zone-like discontinuities contain a variety of bilaterally symmetrical topographic elements that suggest that topographic features have been created at rise crests, rifted and separated, and moved laterally to their present symmetrical positions. The topographic and

  7. Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow

    Microsoft Academic Search

    H. L. Petrie; S. Deutsch; T. A. Brungart; A. A. Fontaine

    2003-01-01

    Experimental results from a study of surface roughness effects on polymer drag reduction in a zero-pressure gradient flat-plate turbulent boundary layer are presented. Both slot-injected polymer and homogeneous polymer ocean cases were considered over a range of flow conditions and surface roughness. Balance measurements of skin friction drag reduction are presented. Drag reductions over 60% were measured for both the

  8. Leading-edge receptivity of a hypersonic boundary layer on a flat plate

    Microsoft Academic Search

    A. A. Maslov; A. N. Shiplyuk; A. A. Sidorenko; D. Arnal

    2001-01-01

    Experimental investigations of the boundary layer receptivity, on the sharp leading edge of a at plate, to acoustic waves induced by two-dimensional and three- dimensional perturbers, have been performed for a free-stream Mach number M[infty infinity] = 5.92. The fields of controlled free-stream disturbances were studied. It was shown that two-dimensional and three-dimensional perturbers radiate acoustic waves and that these

  9. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions

    Microsoft Academic Search

    Yanbao Ma; Xiaolin Zhong

    2003-01-01

    This paper is the first part of a two-part study on the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST). The main objective of the current paper is to study the linear stability characteristics of the boundary-layer wave modes and their

  10. Neogene tectonic stress fields of northeast Honshu Arc and implications for plate boundary conditions

    NASA Astrophysics Data System (ADS)

    Otsuki, Kenshiro

    1990-09-01

    More than 3300 metalliferous veins were analyzed to reconstruct the Neogene tectonic stress field of the northeast Honshu Arc using basic fracture mechanics. The veins are grouped into a dominant NE system and subordinate E-W, N-S and NW systems. The NE system is associated with assemblages of conjugate strike-slip faults and extension joints or normal faults which were formed during a period from 15 to 5 Ma. The fractures suggest that ?1or?2 was oriented ENE and ?3 was oriented NNW. ?3 is thought to have been tensional, because no veins are associated with thrust faults. This stress orientation is neither perpendicular nor parallel to the axis of the Japan Trench where the Pacific plate was moving west-northwest and was subducted under the northeast Honshu Arc. The inconsistency between the stress orientation and the plate kinematics can be explained by the dynamic effects related to other plate boundaries surrounding the northeast Honshu Arc, namely compression on the Hokkaido Axial Zone and the Itoigawa-Shizuoka Tectonic Line. In addition, the triple junction of the Japan Trench, Izu-Bonnin Trench and the Sagami Trough was probably located 300-400 km northeast from its present position and the subduction zone of Nankai Trough-Sagami Trough is assumed to have been a tensional plate boundary. The reconstructed stress field is consistent with transtensional backarc rifting at about 15 Ma.

  11. Preservation of contrasting geothermal gradients across the Caribbean-North America plate boundary (Motagua Fault, Guatemala)

    NASA Astrophysics Data System (ADS)

    Simon-Labric, Thibaud; Brocard, Gilles Y.; Teyssier, Christian; Beek, Peter A.; Fellin, Maria Giuditta; Reiners, Peter W.; Authemayou, Christine

    2013-07-01

    Strike-slip plate boundaries juxtapose crustal blocks that may have different geodynamic origins and therefore different thermal structures. Thermo-kinematic modeling of this type of strike-slip plate boundary predicts an asymmetric signature in the low-temperature thermochronologic record across the fault. Age-elevation profiles of zircon (U-Th)/He ages across the Motagua Fault, a 500 km long segment of the transform boundary between the North American and Caribbean plates, document a sharp cooling age discontinuity across the fault. This discontinuity could be interpreted as a difference in denudation history on each side of the fault. However, a low-relief Miocene erosional surface extends across the fault; this surface has been uplifted and incised and provides a geomorphic argument against differential denudation across the fault. By integrating magmatic, volcanic, and heat flow data, age-elevation profiles, and thermo-kinematic modeling, we propose that large horizontal displacement along the Motagua Fault has offset a persistent geothermal asymmetry across the fault and explains both the age discontinuities and the age-elevation patterns. This study illustrates how thermochronology can be used to detect large strike-slip displacements and more generally opens new perspectives in understanding the impact of nonuniform thermal structures on thermochronologic results.

  12. Raman scattering measurements within a flat plate boundary layer in an inductively coupled plasma wind tunnel

    SciTech Connect

    Studer, Damien; Vervisch, Pierre [UMR 6614-CORIA, Technopole du Madrillet, BP12, Avenue de l'Universite, 76801 Saint Etienne du Rouvray, Cedex (France)

    2007-08-01

    High temperature air chemistry is a crucial issue concerning next reusable space vehicle thermal protection system. The aim of this paper is to measure N{sub 2} and O{sub 2} densities and characteristic temperatures thanks to spontaneous Raman scattering within the boundary layer of a stainless steel flat plate cooled down at 300 K. This shear-flow test configuration is considered as a nonequilibrium air plasma test case. Vibrational and rotational temperatures are determined by comparing experimental spectra with computed ones. The density calculation is performed using the ratio of first vibrational transition intensities for both cases with and without plasma at 38 hPa. Several sections were investigated between 15 and 40 mm from the leading edge. All these sections exhibit a classical boundary layer pattern. The rotational temperature is completely in equilibrium with the plate and reaches 2500 K at the outer edge of the boundary layer. On the contrary, the vibrational temperature drops to 1500 K near of the plate and is about 5000 K in the freestream. Molecular densities are smaller than expected at equilibrium, about 60% of the equilibrium value in the freestream for N{sub 2}.

  13. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    PubMed

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  14. Were the Great April 2012 Indian Ocean Earthquakes Triggered by the 2004 Plate Boundary Event?

    NASA Astrophysics Data System (ADS)

    M P, R.; Rajendran, K.

    2013-12-01

    The Andaman-Sumatra subduction zone is the only plate boundary known to have generated two great strike-slip earthquakes following a great plate boundary earthquake. Thus, the 2004, Mw 9.2 thrust event and the Mw 8.6 and Mw 8.2 pair of earthquakes on 11 April, 2012 on the subducting oceanic plate form an intriguing sequence. The April events throw up some interesting questions. Could the twin earthquakes ~430 km from the Aceh coast of Northern Sumatra (~100 km away from the plate boundary) and at a depth of ~45 km be a consequence of the post-2004 visco-easltic processes and consequent changes in static stress? In a stress regime altered by a great plate boundary earthquake, can the pre-existing fractures be activated to generate great earthquakes? Based on our observations of the pre and post 2004 seismicity, we divide the subduction zone in to two segments- the northern Andaman segment (10-15 N) and the southern Nicobar segment (0-10 N). We focus more on the southern segment which features one of the most active oceanic plates in the world, being part of the diffused Indo-Australian plate boundary. The northern portion of this diffused plate boundary consists of the north-east or NNE trending linear feature known as the Ninety-east ridge. The 2012 sequence of great earthquakes occurred to the east of this ridge. The faulting mechanisms of these earthquakes remain debated. The Ninety-east ridge and paleo-transform faults that run parallel to the ridge justify the near N-S fault plane. Rupture models based on back projection of seismic data however suggests predominance of E-W faults, although they are not geomorphologically well expressed. The next important question is how these events are linked to the 2004 earthquake and how they are related to each other. We use the static stress change due to the 2004 event and alternate fault geometries to compute the static stress changes based on Coulomb's criterion, caused by the 2004 earthquake. Stress changes are computed for both the fault planes and at different depths (10km, 45km). Our studies suggest that the Mw 8.6 event occurred in a region of higher stress and one could argue that it was triggered by the stress changes that followed the 2004 earthquake. The subducting oceanic plate west of the Nicobar segment had actually been experiencing an increase in moment release after the 2004 earthquake. What triggered the Mw 8.2 soon after is another interesting question. Could it be similar to its predecessor, in response to the static stress changes caused by the 2004 event, but on a different fault? Or was it a static or dynamic response to the first earthquake?

  15. What controls the shallow structure of divergent plate boundaries? Insights from field and modelling data

    NASA Astrophysics Data System (ADS)

    Trippanera, Daniele; Acocella, Valerio; Ruch, Joel; Abebe, Bekele; Norini, Gianluca; Thordarson, Thor; Urbani, Stefano; Gudmundsson, Agust

    2014-05-01

    The interest in the role of magma in splitting plates at divergent plate boundaries through discrete rifting episodes has been re-invigorated. However, despite the renewed enthusiasm for this topic, the precise mechanism by which the magma affects the geometry, the kinematics, and the temporal evolution of a rift is still poorly understood. Here we address several of the related issues, focusing on the surface deformation along plate boundaries, and then comparing the observed deformation with the results of analogue models on dike intrusion. We investigated surface deformation at divergent plate boundaries via field surveys in the Neovolcanic Zone of Iceland and the Main Ethiopian Rift, with focus on: 1) single eruptive fissures (Laki and Eldgjá, South Iceland), 2) mature rifts where several diking events have occurred comparatively recently (i.e. Sveinagjá and Krafla in North Iceland and Fantale in Ethiopia) and 3) on fissure swarms where strike-slip component is also present (Vogar and Þingvellir swarms, Southwest Iceland). Systematic measurements of fault and extension-fracture geometries and kinematics were carried out, including the analysis of the morphology of the fault terminations as possible indicators of the propagation direction of the faults. In addition, we conducted measurements across the fossil Álftafjörður dyke swarm, of late Tertiary age, in East Iceland, exposed at a depth of about 1.2 km below the original surface of the rift zone within which the dikes were emplaced. We use this dataset to calculate the crustal dilation due to diking and faulting at depth at 1-2 km. Analogue models are used as a complementary tools to aid understanding of the geometry and the kinematics of dike-induced structures, under systematically varied boundary conditions (intrusion depth, number of dikes per unit length of profile, etc). Laser-scanner and Particle Image Velocimetry (PIV) techniques were used to quantify the surface deformation in the analogue models and to reconstruct the time evolution of the rift-zone development. The field and analogue results make it possible to provide a general model which considers the role of tectonics and magma (diking) in the development of the axial part of divergent plate boundaries.

  16. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited)

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2013-12-01

    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical characteristics suggest that the zone of strike-slip faults related to past plate boundary deformation extends eastward into SW Arizona and beneath the Sonoran coastal plain. 3) 'New' crust and mantle lithosphere at the plate boundary, in the Salton Trough and the non-oceanic part of the northern Gulf of California, varies in seismic velocity structure and dimensions, both within and across extensional segments. Details of within-segment variations imaged by SSIP (e.g., Ma et al., and Han et al., this meeting) are attributed to active fault patterns and small scale variations in hydrothermal activity and magmatism superposed on a more uniform sedimentation. Differences between the Imperial Valley rift segment and the north Gulf of California segments may be due to more involvement of low angle normal faults in the marine basins in the south (Martin et al., 2013, Tectonics), as well as differences in lower crustal or mantle lithospheric flow from the adjacent continental regions.

  17. Extension and transtension in the plate boundary zone of the northeastern Caribbean

    SciTech Connect

    Speed, R.C. (Northwestern Univ., Evanston, IL (United States)); Larue, D.K. (Univ. of Puerto Rico, Mayaguez (Puerto Rico))

    1991-03-01

    The authors propose that the Caribbean (Ca)-North American (NA) plate boundary zone (pbz) from the Puerto Rico Trench to the Venezuelan Basin from Mona Canyon east has been in left-transtension over the last 15-20 ma. A boundary-normal component of extension occurs throughout the pbz and is a principal cause of the Puerto Rico Trench. Such extension is due to WNW velocity of NA-Ca and the northward pullaway of NA from its S-dipping slab, which is below Puerto Rico. Strike slip motion may be taken up among terranes in the pbz by rigid CCW rotation and by oblique slip at their boundaries. Rotation of the largest terrane, Puerto Rico-Virgin Islands (PRVI), has caused such major structures as the Muertos thrust and Anegada Passage. The model implies NA-Ca velocity estimated from Cayman transforms is more accurate than that from slip vectors from seisms in the NA slab.

  18. The effect of periodic unsteady wakes on boundary layer transition and heat transfer on a curved plate 

    E-print Network

    Wright, Lance Cole

    1996-01-01

    The effect of unsteady periodic wakes on heat transfer and boundary layer transition was investigated on a constant curvature heat transfer curved plate in a subsonic wind tunnel facility. The local heat transfer coefficient ...

  19. Polynomial decay rate of a thermoelastic Mindlin–Timoshenko plate model with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-02-01

    In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

  20. Seismotectonics of the Lwandle-Nubia plate boundary between South Africa and the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Hartnady, Chris; Okal, Emile; Calais, Eric; Stamps, Sarah; Saria, Elifuraha

    2013-04-01

    The Lwandle (LW) plate shares a boundary with the Nubia (NU) plate, extending from a diffuse triple junction with the Rovuma plate in Southern Mozambique to a triple junction with the Antarctic plate along a segment of the Southwest Indian Ridge (SWIR). The LW-NU boundary terminates in the ~750 km-long, complex transform of the Andrew Bain Fracture Zone (ABFZ), but its exact locus is still unclear. Recent works locate it along the eastern boundary of the submarine Mozambique Ridge, parallel to the pre-existing, oceanic transform-fault fabric. However, an early concept of the LW block ('ambiguous region' of Hartnady, 1990, Fig. 2) indicates a more westerly trajectory in the north that includes parts of South Africa, with a southerly extension across old oceanic crust of the submarine Natal Valley and Transkei Basin. This proposed boundary is marked by several, aligned epicentres of moderate to strong earthquakes (1941, 1942, 1956, 1969, 1972, 1975, 1981 and 1989). Our re-examination of seismographic records from the 1975 'intraplate' earthquake (-37.62°N, 30.98°E, mb5.0), in the oceanic crust of the distal Transkei Basin, shows a thrust-faulting focal mechanism along a nodal plane striking N272°E. The largest (ML4.2) of a series of three small earthquakes in the Natal Valley in 2009, close to a zone of recent seafloor deformation mapped in 1992, has similar first-motion patterns at Southern African seismograph stations. When the 1975 slip-vector result (N173°E) is combined with a normal-faulting slip vector (N078°E) from a 1986 onland earthquake (-30.53°N, 28.84°E, mb5.0) near the Lesotho-KZN border, and both are incorporated into the wider data-set previously used to solve for East African Rift kinematics, they produce a LW-NU rotation pole that is located south of Africa, near the Agulhas Plateau, and approximately 950 km from the Natal Valley deformation zone. The modeled low rate of right-lateral, LW-NU slip (~0.50-0.75 mm/yr) across this LW-NU boundary segment suggests that the 1972, 1981 and nearby 2009 earthquakes are instances of a 'long aftershock sequence' in the source zone of the 1850 'i-Nyikima' event, which was felt over a very wide region of the Eastern Cape Colony, and the adjacent territories of British Kaffraria and Pondoland. This remarkable historic shaking appears to have been caused by a great (Mw8.0+), oceanic event along a segment of the LW-NU boundary, resembling the 1942 SWIR event along the ABFZ and the recent (2012 March 11) North Indian Ocean events along the incipient boundary between the Indian and Australian plates. This new interpretation has implications for the re-assessment of seismic and submarine-landslide (tsunami) hazard along the SE continental margin of South Africa. Reference Hartnady CJH (1990). Seismicity and plate boundary evolution in southeastern Africa. S. Afr. J. Geol. 93, 473 484.

  1. Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-and-thrust belt (Iran)

    Microsoft Academic Search

    Christine Authemayou; Dominique Chardon; Olivier Bellier; Zaman Malekzadeh; Esmaeil Shabanian; Mohammad Reza Abbassi

    2006-01-01

    The NW trending Zagros fold-and-thrust belt is affected by two major dextral faults: (1) the NW trending Main Recent Fault that accommodates partitioning of oblique convergence at the rear of the western Zagros and (2) the north trending Kazerun Fault located in the central Zagros. Combined structural and fault kinematics studies and SPOT images analysis have shown a Pliocene kinematic

  2. On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer

    Microsoft Academic Search

    Uwe Ehrenstein; François Gallaire

    2005-01-01

    Temporal linear stability modes depending on two space directions are computed for a two-dimensional boundary-layer flow along a flat plate. The spatial structure of each individual temporally stable mode is shown to be reminiscent of the spatial exponential growth of perturbations along the flat plate, as predicted by local analyses. It is shown using an optimal temporal growth analysis, that

  3. The 2000 Mw 6.8 Uglegorsk earthquake and regional plate boundary deformation of Sakhalin from geodetic data

    Microsoft Academic Search

    M. G. Kogan; R. Bürgmann; N. F. Vasilenko; C. H. Scholz; R. W. King; A. I. Ivashchenko; D. I. Frolov; G. M. Steblov; Ch. U. Kim; S. G. Egorov

    2003-01-01

    Interseismic GPS velocities in Sakhalin indicate that the island moves to the west at 3–4 mm\\/yr with respect to the Eurasian plate, which is about half of the relative Eurasia - North America plate convergence rate. GPS measurements across the central Sakhalin fault system provide evidence of compressive and strike-slip strain accumulation at a rate ?3 mm\\/yr. Coseismic vertical displacements

  4. GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Rundle, P. B.; Klein, W.; de sa Martins, J.; Tiampo, K. F.; Donnellan, A.; Kellogg, L. H.

    The last five years have seen unprecedented growth in the amount and quality of geodetic data collected to characterize crustal deformation in earthquake-prone areas such as California and Japan. The installation of the Southern California Integrated Geodetic Network (SCIGN) and the Bay Area Regional Deformation (BARD) network are two examples. As part of the recently proposed Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than a thousand GPS, strainmeters, and deformation sensors along the active plate boundary of the western coast of the United States, Mexico and Canada (http://www.earthscope.org/pbo.com.html). The scientific goals of PBO include understanding how tectonic plates interact, together with an emphasis on understanding the physics of earthquakes. However, the problem of understanding the physics of earthquakes on complex fault networks through observations alone is complicated by our inability to study the problem in a manner familiar to laboratory scientists, by means of controlled, fully reproducible experiments. We have therefore been motivated to construct a numerical simulation technology that will allow us to study earthquake physics via numerical experiments. To be considered successful, the simulations must not only produce observables that are maximally similar to those seen by the PBO and other observing programs, but in addition the simulations must provide dynamical predictions that can be falsified by means of observations on the real fault networks. In general, the dynamical behavior of earthquakes on complex fault networks is a result of the interplay between the geometric structure of the fault network and the physics of the frictional sliding process. In constructing numerical simulations of a complex fault network, we will need to solve a variety of problems, including the development of analysis techniques (also called data mining), data assimilation, space-time pattern definition and analysis, and visualization needs. Using simulations of the network of the major strike-slip faults in southern California, we present a preliminary description of our methods and results, and comment upon the relative roles of fault network geometry and frictional sliding in determining the important dynamical modes of the system.

  5. The World Stress Map Project - Stress Orientations Near Plate Boundaries From Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Heidbach, O.; Reinecker, J.

    2004-12-01

    The World Stress Map (WSM) is a global compilation of contemporary tectonic stress in the Earth's crust using a wide range of geophysical and geological stress indicators. In general there is no systematic deviation of SH azimuth (maximum horizontal stress) between the different stress indicators. However, near the San Andreas fault the SH azimuth from focal mechanisms give conflicting information to those derived from borehole breakouts. This had led to the hypothesis that the San Andreas fault is a `weak' fault and casts doubt on the accuracy of focal mechanisms as stress indicators. Assuming that all plate boundaries are potentially weak affects the data quality of stress data from focal mechanisms nearby. We proceed a statistical analysis of the data from the WSM release 2004 to develop criteria which detect focal mechanisms which are probably inaccurate for deducing the SH azimuth. We conclude that the SH azimuth from focal mechanisms is at a greater risk of being inaccurate if the earthquake has a) prevailing strike-slip component, b) occurred within a 100 km corridor around a presumably weak transform plate boundary, and c) if the azimuth from one of the two possible horizontal slip vectors of the focal mechanism is within 20° of the relative plate motion azimuth. This applies for 605 out of approximately 9000 focal mechanisms used in the WSM database. We mark these data sets as `possible plate boundary events', or PBE herein, indicating that these events are probably controlled by the fault geometry and not by the stress field. Case studies at transform plate boundaries reveal that the mean SH azimuth changes in the 100 km corridor by deselecting the PBE. Along the El Pilar fault in Northern Venezuela the change of mean SH azimuth is 33°. The impact on the San Andreas fault is very small (2.4°) due to the exceptionally high amount of stress data available from other sources than focal mechanisms. Examples from the southern Pacific ocean and the central Atlantic ocean show a change in mean SH azimuth of 22.0° and 33.3° respectively.

  6. How diking affects the longer-term structure and evolution of divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    Trippanera, Daniele; Acocella, Valerio; Ruch, Joel; Rivalta, Eleonora

    2015-04-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma enhancing transient plate separations. However, the role of diking on a longer term (> 102 years) and its influence on the structure and the evolution of a divergent plate boundary is still poorly investigated. Here we use field surveys along the oceanic Icelandic and continental Ethiopian plate boundaries, along five eruptive fissures and four rift segments. Field observations have also been integrated with analogue and numerical models of dike emplacement to better understand the effect of dike emplacement at depth and at the surface. Our results show that the dike-fed eruptive fissures are systematically associated with graben structures formed by inward dipping normal faults having throws up to 10 m and commonly propagating downward. Moreover, rift segments (i.e. mature rift zones), despite any asymmetry and repetition, are characterized by the same features as the eruptive fissures, the only difference lying in the larger size (higher fault throws, up to 40 m, and wider deformation zones). Analogue and numerical models of dike intrusion confirm that all the structural features observed along the rift segments may be dike-induced; these features include downward propagating normal faults bordering graben structures, contraction at the base of the hanging walls of the faults and upward propagating faults. Simple calculations based on the deeper structure of the eroded rift segments in eastern and western Iceland also suggest that all the fault slip in the active rift segments may result from diking. These results suggest that the overall deformation pattern of eruptive fissures and rift segments may be explained only by dike emplacement. In a magmatic rift, the regional tectonic stress may rarely be high enough to be released through regional faulting, suggesting that regional tectonics has negligible direct impact compared to diking in shaping the studied plate boundaries on the longer-term.

  7. Velocity field across the southern Caribbean plate boundary and estimates of Caribbean\\/South-American plate motion using GPS geodesy 1994-2000

    Microsoft Academic Search

    Omar J. Pérez; Roger Bilham; Rebecca Bendick; José R. Velandia; Napoleón Hernández; Carlos Moncayo; Melvin Hoyer; Mike Kozuch

    2001-01-01

    Global Positioning System (GPS) observations between 1994 and 2000 at twenty-two sites in the Lesser Antilles and northern South-America indicate that the Caribbean plate, along its southern boundary, slips at a rate of 20.5+\\/-2mm\\/a with an azimuth of N84°+\\/-2°E at 65°W, relative to the South-American plate. East of 68°W, 80% of the dextral slip is contained within a 80-km wide

  8. Quasi-simultaneous interaction method for solving 2D boundary layer flows over plates and airfoils

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2012-11-01

    This paper studies unsteady 2D boundary layer flows over dented plates and a NACA 0012 airfoil. An inviscid flow is assumed to exist outside the boundary layer and is solved iteratively with the boundary layer flow together with the interaction method until a matching solution is achieved. Hereto a quasi-simultaneous interaction method is applied, in which the integral boundary layer equations are solved together with an interaction-law equation. The interaction-law equation is an approximation of the external flow and based on thin-airfoil theory. It is an algebraic relation between the velocity and displacement thickness. The interaction-law equation ensures that the eigenvalues of the system of equations do not have a sign change and that no singularities occur. Three numerical schemes are used to solve the boundary layer flow with the interaction method. These are: a standard scheme, a splitting method and a characteristics solver. All schemes use a finite difference discretization. The three schemes yield comparable results for the simulations carried out. The standard scheme is deviating most from the splitting and characteristics solvers. The results show that the eigenvalues remain positive, even in separation. As expected, the addition of the interaction-law equation prevents a sign change of the eigenvalues. The quasi-simultaneous interaction scheme is applicable to the three numerical schemes tested.

  9. Flat plate boundary layer transition induced by a controlled near-wall circular cylinder wake

    NASA Astrophysics Data System (ADS)

    He, Guo-Sheng; Wang, Jin-Jun

    2015-02-01

    The flat plate boundary layer transition induced by the wake of a circular cylinder close to the wall is experimentally investigated using particle image velocimetry (PIV) and hydrogen bubble visualization techniques. The wake of the circular cylinder is controlled by a slot synthetic jet at the rear stagnation point of the circular cylinder. It is found that when the synthetic jet is actuated, the wake can be greatly modified. When the excitation frequency of the synthetic jet is set at the natural shedding frequency of the cylinder wake, the symmetrical shedding pattern can be observed. While the excitation frequency increases to be twice of the natural shedding frequency, the wake appears to be antisymmetrical again, but with the shedding frequency locked onto half of the excitation frequency. Flow visualizations show that spanwise secondary vortices can be induced in the near wall region by these large scale vortices in the wake. It is found that the secondary vortices destabilize into streamwise stretched ? vortices as they convect downstream. After the introduction of the synthetic jet, the destabilization process is promoted. By investigating the disturbance growth inside the boundary layer, it reveals that the synthetic jet can cause earlier initialization of the disturbance growth, thus promoting the transition process of the boundary layer. An explanation is provided that the low frequency components of the wake disturbances, which interact with the boundary layer, are enhanced by the introduction of the synthetic jet. Therefore, the destabilization of the secondary vortices is promoted, and disturbance growth in the boundary layer initiates earlier.

  10. Prehistoric earthquakes on the Caribbean-South American plate boundary, central range fault, Trinidad

    USGS Publications Warehouse

    Prentice, C.S.; Weber, J.C.; Crosby, C.J.; Ragona, D.

    2010-01-01

    Recent geodetic studies suggest that the Central Range fault is the principal plate-boundary structure accommodating strike-slip motion between the Caribbean and South American plates. Our study shows that the fault forms a topographically prominent lineament in central Trinidad. Results from a paleoseismic investigation at a site where Holocene sediments have been deposited across the Central Range fault indicate that it ruptured the ground surface most recently between 2710 and 550 yr B.P. If the geodetic slip rate of 9-15 mm/yr is representative of Holocene slip rates, our paleoseismic data suggest that at least 4.9 m of potential slip may have accumulated on the fault and could be released during a future large earthquake (M > 7). ?? 2010 Geological Society of America.

  11. Prehistoric earthquakes on the Caribbean-South American plate boundary, central Range Fault, Trinidad

    USGS Publications Warehouse

    Prentice, Carol S.; Crosby, Christopher J.; Weber, John C.; Ragona, Daniel

    2010-01-01

    Recent geodetic studies suggest that the Central Range fault is the principal plate-boundary structure accommodating strike-slip motion between the Caribbean and South American plates. Our study shows that the fault forms a topographically prominent lineament in central Trinidad. Results from a paleoseismic investigation at a site where Holocene sediments have been deposited across the Central Range fault indicate that it ruptured the ground surface most recently between 2710 and 550 yr B.P. If the geodetic slip rate of 9–15 mm/yr is representative of Holocene slip rates, our paleoseismic data suggest that at least 4.9 m of potential slip may have accumulated on the fault and could be released during a future large earthquake (M > 7).

  12. Paleoseismicity of the North American-Caribbean plate boundary (Septentrional fault), Dominican Republic

    USGS Publications Warehouse

    Prentice, C.S.; Mann, P.; Taylor, F.W.; Burr, G.; Valastro, S.

    1993-01-01

    The Septentrional fault zone, the major North American-Caribbean plate-boundary fault in Hispaniola, is a likely source of large earthquakes in the Dominican Republic. An excavation into a Holocene alluvial fan deposited across the fault in the central Cibao Valley, Dominican Republic, provides evidence that it has been at least 430 yr and probably more than 740 yr since the last ground-rupturing earthquake along this segment of the fault. On the basis of these data and published estimates of the plate-tectonic slip rate, it is proposed that the Septentrional fault is a source of high seismic potential in the densely populated and rapidly developing Cibao Valley in the northern Dominican Republic. -Authors

  13. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Skramstad, H K

    1948-01-01

    This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.

  14. Paleoseismicity of the North American-Caribbean plate boundary (Septentrional fault), Dominican Republic

    NASA Astrophysics Data System (ADS)

    Prentice, Carol S.; Mann, Paul; Taylor, F. W.; Burr, G.; Valastro, S.

    1993-01-01

    The Septentrional fault zone, the major North American-Caribbean plate-boundary fault in Hispaniola, is a likely source of large earthquakes in the Dominican Republic. An excavation into a Holocene alluvial fan deposited across the fault in the central Cibao Valley, Dominican Republic, provides evidence that it has been at least 430 yr and probably more than 730 yr since the last ground-rupturing earthquake along this segment of the fault. On the basis of these data and published estimates of the plate-tectonic slip rate, we propose that the Septentrional fault is a source of high seismic potential in the densely populated and rapidly developing Cibao Valley in the northern Dominican Republic.

  15. The Northern Caribbean Plate Boundary Offshore Hispaniola: Strike-slip and Compressive Tectonic Processes

    NASA Astrophysics Data System (ADS)

    Corbeau, J.; Rolandone, F.; Leroy, S. D.; Mercier De Lepinay, B. F.; Meyer, B.; Ellouz, N.

    2014-12-01

    The boundary between the Caribbean plate and the North American plate is transpressive due to the oblique collision between these two plates. The transpressive movement is partitioned and accommodated in the Hispaniola region along two left-lateral strike-slip structures surrounding a fold-and-thrust belt. New multibeam bathymetry data and multichannel seismic reflection profiles have been recently collected during the Haiti-SIS and Haiti-SIS 2 cruises, along part of the northern Caribbean plate boundary between Cuba, Jamaica and Hispaniola. From the north to the south, three types of deformations are observed. In the Windward Passage, the analysis of the data set reveals that the movement on the Oriente fault between Cuba and Hispaniola is purely left-lateral strike-slip according to the GPS measurements. In the Gonave basin, west of Hispaniola, the deformation is compressive. A series of folds is identified and moves toward the southwest. The Enriquillo-Plantain-Garden Fault (EPGF) is localized in the Jamaica Passage, between Jamaica and Hispaniola. The analysis of the data set reveals that the left-lateral EPGF recently intersects inherited basins from the eastern Cayman Trough margin. The study of the actual EPGF active trace shows that this fault moves with a pure strike-slip component, at least in its western part: the presence of a little push-up structure and a set of three en echelon folds is highlighting in the western part of the Jamaica Passage. The shortening rate in the inherited basins crossed by the EPGF increases from west to east (5.8% to 8.5%), indicating that a thrusting component is also accommodated around the EPGF.

  16. Tour of Park Geology: Plate Tectonics

    NSDL National Science Digital Library

    This National Park Service (NPS) site provides links to geology field notes providing information about National Parks, National Monuments, and National Recreation Areas that have to do with plate tectonics. The site also has illustrations and descriptions of different plate boundaries. The parks are divided into categories depending on which type of plate boundary they are located on. This includes divergent boundaries(active and ancient), convergent boundaries (ocean-ocean, continent-continent, continent-ocean), transform faults, hot spots, and accreted terrains. Parks referenced include Virgin Islands National Park, Florissant Fossil Beds National Monument, Hawaii Volcanoes National Park, and many more.

  17. Plate Boundary Observatory Borehole Strainmeter Recordings Of The 29 September 2009 Tsunami

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen; Mencin, David; Borsa, Adrian; Jackson, Mike

    2010-05-01

    On 29 September 2009 a M8.3 earthquake on the Australian-Pacific plate boundary generated a tsunami that caused widespread damage in Samoa, American Samoa, and Tonga. Peak to trough wave heights of 314 cm were recorded 250 km from the epicenter at Pago-Pago, American Samoa approximately 20 minutes after the event. NOAA's West Coast and Alaska Tsunami Warning Center predicted the tsunami would arrive at Tofino, Vancouver Island, British Columbia, at 05:12 UTC, 30 September 2009. The Plate Boundary Observatory has installed 74 borehole strainmeters along the western United States for the purpose of recording short-term strain transients associated with plate boundary deformation. Two of these strainmeters, Ucluelet and Bamfield, are located on the west coast of Vancouver Island within a few hundred meters of the shore. A third, Port Alberni, is located at the eastern end of Port Alberni Inlet, ~ 50 km inland. The Ucluelet and Bamfield strainmeters recorded signals associated with the arriving tsunami at times consistent with that recorded by tide gauges at Tofino and Bamfield, ~05:45 UTC. A much smaller signal was recorded about 24 minutes later at Port Alberni. The tsunami strain signals were below the detection level of PBO GPS on the Oregon coast and seismometers in the strainmeter boreholes. Strainmeters, or lower coast tiltmeters, could potentially, provide a reliable onshore detection of a tsunami. In this presentation we document the nature and frequency content of the tsunami signal as recorded by PBO strainmeters and compare these strain measurements against the crustal loading signature predicted by water height changes at nearby tide gauges

  18. Plate Boundary Observatory Borehole Strainmeter Recordings Of The 29 September 2009 Tsunami

    NASA Astrophysics Data System (ADS)

    Henderson, D. B.; Hodgkinson, K. M.; Borsa, A. A.; Mencin, D.; van Boskirk, E.; Jackson, M. E.

    2009-12-01

    On 29 September 2009 a M8.3 earthquake on the Australian-Pacific plate boundary generated a tsunami that caused widespread damage in Samoa, American Samoa, and Tonga. Peak to trough wave heights of 314 cm were recorded 250 km from the epicenter at Pago-Pago, American Samoa approximately 20 minutes after the event. NOAA’s West Coast and Alaska Tsunami Warning Center predicted the tsunami would arrive at Tofino, Vancouver Island, British Columbia, at 05:12 UTC, 30 September 2009. Tide gauges at Tofino recorded a 7.3 cm amplitude wave arriving at 05:45 UTC. As part of the Plate Boundary Observatory, UNAVCO has installed 74 borehole tensor strainmeters along the western United States for the purpose of recording short-term strain transients associated with plate boundary deformation. Two of these strainmeters, Ucluelet and Bamfield, are located on the west coast of Vancouver Island within a few hundred meters of the Pacific shore line. A third, Port Alberni, is located at the north-east end of Port Alberni Inlet, ~ 50 km inland. The strainmeters at Ucluelet and Bamfield recorded strain signals associated with the arriving tsunami at times consistent with arrival times recorded by tide gauges at Tofino and Bamfield, ~05:45 UTC. A much smaller signal is recorded about 10 minutes later at Port Alberni. The largest strain signals were recorded at Ucluelet between 06:19 and 06:24 UTC. For this study we document the arrival times, nature and frequency content of the tsunami signal as recorded by PBO strainmeters on Vancouver Island and compare these strain measurements against the crustal loading signature predicted by water height changes at nearby tide gauges.

  19. Structural Architecture and Evolutionary Plate-Boundary Processes along the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2012-12-01

    Problems of continental dynamics are typically studied with frameworks that assume smooth continuous processes. Such models provide important insights on large-scale phenomena far from plate boundaries, but they are not useful near the plate boundaries themselves where deformation processes and structures exhibit highly episodic, complex, and ultimately localized patterns in space and time. In such regions small and large scale structural features develop in the brittle crust by the accumulation of slip on seismogenic faults. An understanding of continental dynamics near plate boundaries requires an approach that accounts explicitly for the interplay between earthquakes and fault evolution. Seismic ruptures lead to the modification of the geometry, internal structure and material properties of fault zones. Conversely, the nucleation, growth and arrest of earthquake ruptures, seismic radiation, inter- and post-seismic deformation, and local seismicity patterns are controlled by the fault zone structure. To address these feedback mechanisms it is important to study the coupled evolution of earthquakes and faults. This is done with funding from the CD program of NSF in the context of the San Jacinto fault zone and surrounding environment in southern California. The project includes collection, analyses and joint interpretation of seismic, geodetic and geological data within and around the internal structure of the San Jacinto fault zone. Recent results include detailed tomographic images of fault zone damage, bimaterial interfaces and basins in the fault zone area, earthquake source properties in different fault sections, analysis of geodetic data accounting for the 3D variations of elastic moduli in the tomographic images, detailed geological mapping of rock damage, paleoseismic records at several sites along the fault, and computer simulations of long seismic catalogs that account for the available seismic and geological data. Examples results will be presented in the meeting.

  20. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    NASA Astrophysics Data System (ADS)

    Stanley, Daniel Jean

    1982-03-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the entire African continental landmass as a reference unit and views geography, geomorphology and bathymetry as relevant as geology. The Court pronounced that “It is the outcome, not the evolution in the long-distant past, which is of importance.” Moreover, it is the present-day configuration of coasts and seabed that are the main factors, not geology.

  1. The linear stability of a flat plate boundary-layer approaching a cylindrical obstacle

    NASA Technical Reports Server (NTRS)

    Spall, R. E.; Malik, M. R.

    1992-01-01

    The linear stability of the low-speed three-dimensional flow over a flat plate with an attached cylinder is studied. The region of interest is upstream of the initial separation point and includes the effects of both adverse and favorable pressure gradients, as well as crossflow. The resulting boundary-layer is subject to both the Tollmien-Schlichting (TS) and crossflow instabilities. Linear stability calculations, using N-factor correlations, indicate that the transition process would be dominated by TS instabilities, although for low frequencies crossflow-type disturbances are important.

  2. Evolution of southern Caribbean plate boundary, vicinity of Trinidad and Tobago

    NASA Technical Reports Server (NTRS)

    Robertson, Paul; Burke, Kevin

    1989-01-01

    The tectonic evolution of the southeastern corner of the Caribbean is examined, using field data from the El Pilar fault zone of Trinidad and offshore seismic data. It is found that the dominant process in the region's tectonic evolution is strike-slip motion on at least five major fault systems in a 250-km wide east-west-trending plate-boundary zone extending from Grenada in the north to the Orinoco River in the south. The geological effects of this evolution over the past 30 m y are described.

  3. Using GPS, tide gauge and altimetry data to constrain subduction parameters at the Vanuatu plate boundary.

    NASA Astrophysics Data System (ADS)

    Ballu, V.; Bouin, M.; Baillard, C.; Calmant, S.; Pelletier, B.; Crawford, W. C.; Kanas, T.; Garaebiti, E.

    2012-12-01

    The Vanuatu subduction zone, Southwest Pacific, combines several features that makes it a particularly useful place to study seismic cycles. The convergence rate is high - approximately 12 cm/yr - and the seismic cycle relatively short. Measurements of interseismic motions are helped by relatively high vertical rates, the close proximity of some islands to the plate interface and the existence of very shallow seamounts on either side of the plate interface. The Vanuatu archipelago is part of the Pacific Ring of Fire: the Australian plate subducts eastward beneath the North Fiji basin, on the western border of the Pacific Plate. High topographic features on the diving plate may contribute to locking of the plates, which can play a major role in the genesis of destructive earthquakes. GPS network points were installed in the early 1990s and the geodesy network has been densified through the years, enabling us to map interseismic horizontal and vertical deformation rates throughout the archipelago. More recently, 8 continuous GPS stations were installed, along with 3 continuous seafloor pressure gauges very near to the plate interface. We show results from GPS data collected from 1996 to 2011, that we re-processed and combined into the ITRF2008 reference frame, and altimetry and seafloor pressure data from 1999 to 2010. The GPS results show that vertical deformation rates vary both across and along the archipelago. We believe that these variations result from variable distance to the plate limit and variable locking parameters. In some areas, subsidence rates are close to one centimeter per year. In the Torres islands (at the northern end of the archipelago) where villagers face recurrent coastal flooding, we showed that this flooding is due more to ground motion than to rise in the absolute sea level, even though the sea-level rise rates are locally high and the islands uplift over the long term. In the Central area of Vanuatu, we augmented the on-land network with two offshore sites using absolute pressure gauges. The sites - Wusi and Sabine Banks - are installed beneath altimetry satellite tracks, Wusi Bank on the over-riding plate and Sabine Bank on the subducting plate. The difference in the pressure records between the sites shows that Wusi Bank subsides by 11 +/- 3 mm/yr with respect to Sabine Bank. We combined the water depths derived from the pressure measurements with altimetry-derived sea-surface heights to tie these heights to a global reference frame: Wusi Bank subsides and Sabine Bank's vertical motion is near zero. Using a 2D elastic model and a finite-element code, we used the gradient of vertical deformation between the coast and the Wusi Bank site to discriminate between possible locked zone geometries. The best simple approximation is a 25° dipping, 30 km long fully locked zone, indicating that stress is currently accumulating west of Santo, Central Vanuatu. The movement of Wusi Bank is a key factor in constraining the dip and length of the locked zone, demonstrating the importance of offshore geodesy measurements.

  4. Interaction of a synthetic jet with a flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Rampunggoon, Prakit

    The interaction of a 2-dimensional modeled synthetic jet with a flat plate boundary layer is investigated numerically using an incompressible Navier-Stokes solver. A simple, two-dimensional synthetic jet configuration along with a flat plate, laminar Blasius boundary layer was used in the current study. The oscillating diaphragm of the actuator is modeled in a realistic manner as a moving boundary in an effort to accurately compute the flow inside the jet cavity. The primary focus of the current study is on describing the dynamics of the synthetic jet in the presence of external crossflow. However, in addition, simulations of the jet with quiescent external flow have also been performed. A systematic framework was put forth for characterizing the jet that consists of computing the various moments of the velocity profile along with an integral measure of the profile skewness. A comprehensive parametric study has been carried out where the diaphragm amplitude, external flow Reynolds number, boundary layer thickness, and slot dimensions are varied; and the scaling of the jet characteristics with parameters is examined. The simulations also allow us to extract some interesting flow physics associated with the vortex dynamics of the jet and to elucidate the effect of external cross flow on jet development. In addition, a low-dimensional model for jet velocity profile is proposed and tested. Finally, the so-called "virtual aero-shaping" effect of synthetic jets is examined and the current simulations indicate a simple scaling of this effect with the dynamical characteristics of the jet and external crossflow.

  5. Numerical investigation of transition control of a flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kral, Linda Dee

    A numerical model has been developed for investigating boundary layer transition control for a three-dimensional flat plate boundary layer. Control of a periodically forced boundary layer in an incompressible fluid is studied using surface heating techniques. The spatially evolving boundary layer is simulated. The Navier-Stokes and energy equations are integrated using a fully implicit finite difference/spectral method. The Navier-Stokes equations are in vorticity-velocity form and are coupled with the energy equation through the viscosity dependence on temperature. Both passive and active methods of control by surface heating are investigated. In passive methods of control, wall heating is employed to alter the stability characteristics of the mean flow. Both uniform and nonuniform surface temperature distributions are studied. In the active control investigations, temperature perturbations are introduced locally along finite heater strips to directly attenuate the instability waves in the flow. A feedback control loop is employed in which a downstream sensor is used to monitor wall shear stress fluctuations. A receptivity study is performed to study how localized temperature perturbations are generated into Tollmien-Schlichting waves. It is shown that narrow heater strips are more receptive in that they maximize the amplitude level of the disturbances in the flow. It is also found that the local temperature fluctuations cause mainly a strong normal gradient in spanwise vorticity.

  6. Numerical investigation of transition control of a flat-plate boundary layer

    SciTech Connect

    Kral, L.D.

    1988-01-01

    A numerical model has been developed for investigating boundary layer transition control for a three-dimensional flat-plate boundary layer. Control of a periodically forced boundary layer in an incompressible fluid is studied using surface heating techniques. The spatially evolving boundary layer is simulated. The Navier-Stokes and energy equations are integrated using a fully implicit finite difference/spectral method. The Navier-Stokes equations are in vorticity-velocity form and are coupled with the energy equation through the viscosity dependence on temperature. Both passive and active methods of control by surface heating are investigated. In passive methods of control, wall heating is employed to alter the stability characteristics of the mean flow. Both uniform and nonuniform surface temperature distributions are studied. In the active control investigations, temperature perturbations are introduced locally along finite heater strips to directly attenuate the instability waves in the flow. Passive control of small-amplitude two-dimensional Tollmien-Schlichting waves and three-dimensional oblique waves are numerically simulated with both uniform and nonuniform passive heating applied.

  7. Flowfield measurements in a separated and reattached flat plate turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Patrick, William P.

    1987-01-01

    The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.

  8. Paleoelevation of the Tibetan Plateau Relative to Plate Convergence, Crustal Shortening and Conservation of Crustal Mass

    NASA Astrophysics Data System (ADS)

    Clark, M. K.; Yakovlev, P. V.; Staisch, L.; Chang, H.; Niemi, N. A.

    2014-12-01

    Topographic evolution can be used to infer geodynamic processes involved in orogensis. But, for a long time, the topographic history of the Tibetan orogen has remained controversial because of competing ideas of how the proxy record for elevation is interpreted and how exactly topography change can be related to geodynamic processes. Mounting evidence in the structural record across northern and eastern Tibet calls for the onset of crustal shortening to either precede or closely follow the ~ 50 Ma continental collision. Surficial records of climate proxies for paleoelevation also have been interpreted as the development of modern elevation of the Tibetan Plateau at an early stage in orogenesis. However, if the attainment of early high-elevation is reflective of achieving modern crustal thicknesses, then much of the continental convergence in the last 30-40 Myr did not contribute to thickening the Asian crust and as such, produces a paradox of missing crustal mass within the orogen. So, if modern elevations were reached in early Cenozoic time, we should be concerned with the mechanisms by which crust can be removed from the convergent system in large quantities. Alternatively, early deformation could produce local topography and proxy records could record these local elevation changes rather than the attainment of regional high topography.

  9. Seismicity of the diffusive Iberian/African plate boundary at the eastern terminus of the Azores-Gibraltar Transform fault

    NASA Astrophysics Data System (ADS)

    Lange, D.; Grevemeyer, I.; Matias, L. M.

    2014-12-01

    The plate boundary at the eastern terminus of the Azores-Gibraltar transform fault between Africa and Iberia is poorly defined. The deformation in the area is forced by the slow NW-SE convergence of 4 mm/yr between the oceanic domains of Iberia/Eurasia and Africa and is accommodated over a 200 km broad tectonically-active deformation zone. The region, however, is also characterized by large earthquakes, such as the 1969 Mw=7.9 Horseshoe event and the November 1, 1755 Great Lisbon earthquake with an estimated magnitude of Mw~8.5. The exact location of the source of the 1755 Lisbon earthquake is still unknown. Recent work may suggest that the event occurred in the vicinity of the Horseshoe fault, an oblique thrust fault. However, estimates of tsunami arrival times suggested a source near the Gorringe Bank, a ~180 km-long and ~70 km-wide ridge that has a relieve of ~5000 m. Deep Sea Drilling (DSDP) and rock samples indicated that the bank is mainly composed of serpentinized peridotites with gabbroic intrusions, perhaps being created by overthrusting of the Horseshoe Abyssal Plain onto the Tagus Abyssal Plain in NW direction. Further, the Horseshoe Abyssal Plain is marked by the presence of compressive structures with a roughly NE-SW orientation and E-W trending, segmented, crustal-scale, strike slip faults that extend from the Gorringe Bank to the Gibraltar Arc in the eastern Gulf of Cadiz, which were called "South West Iberian Margin" or SWIM faults. The fault system may mark a developing Eurasia-Africa plate boundary. Two local seismic networks were operated in the area. First, a network of 14 ocean-bottom seismometers (OBS) was operated between April and October 2012 in the vicinity of the Horseshoe fault between 10°W to 11°W, and 35°50'N to 36°10'N. From October 2013 to March 2014 a second network of 15 OBS monitored seismicity at the Gorringe Bank. Both networks benefitted from seismic stations operated in Portugal. The first network provided in the order of 100 locale earthquakes occurring with the network. Most earthquakes in the abyssal plain occurred at a depth of 40-60 km, either in oceanic or unroofed continental mantle. The large source depth of events in the Horseshoe Abyssal Plain supports the idea that large catastrophic earthquakes, like the Great Lisbon earthquake of 1755, may indeed occur in the area.

  10. Chemical and isotopic evidence of gas-influenced flow at a transform plate boundary: Monterey Bay, California

    USGS Publications Warehouse

    Martin, J.B.; Orange, D.L.; Lorenson, T.D.; Kvenvolden, K.A.

    1997-01-01

    Chemical and isotopic compositions of pore fluids document upward flow through communities of vesicomyid clams in Monterey Bay, California. Within the clam communities, the sulfate reduction zone is only 10 cm thick, and Ca and Mg concentrations decrease to values as low as 2.2 mM and 34.5 mM, respectively, at depths less than 30 cm below the sediment-water interface. Less than 5 m outside the communities, the base of the sulfate reduction zone is deeper than the greatest penetration of the cores (-30 cm), and Ca and Mg exhibit only minor changes from seawater values. The sediment exhibits no significant variation in grain size, mineralogy, organic carbon, nitrogen, or carbonate content throughout the region. The composition of pore fluid within clam communities results from upward flow of altered fluid rather than different diagenetic reactions within and outside the communities. Isotopically light dissolved inorganic carbon (DIC), with ??13C values ranging from -3.2 to -54.1???, could reflect carbon sources from either oxidized thermogenic methane and/or a mixture of oxidized microbial methane and solid organic carbon. The C1/(C2+C3) ratios (ranging from 34 to 1142) and the hydrogen and carbon isotopic compositions of methane (??D values of -109 to -156???; ??13C values of -30.6 to -86.6???) suggest that methane is primarily microbial but that a minor component could be thermally generated. Any thermogenic methane would have migrated from great depths, possibly >2 km. The presence of methane is likely to contribute to fluid flow by reducing the density of the fluids. Past fluid migration and venting are reflected by widespread carbonate mineralization at the sediment-water interface. This mineralization and the geographic distribution and proportions of microbial and thermogenic methane suggest that vent sites migrate when permeability is reduced during carbonate cementation. These results demonstrate that along with convergent and divergent plate boundaries, transform plate boundaries are characterized by fluid flow and that the flow may be widespread, occurring at sites away from fault zones.

  11. Characterization of the Absolute Crystal Polarity across Twin Boundaries in Gallium Phosphide Using Convergent-Beam Electron Diffraction.

    PubMed

    Cohen; McKernan; Carter

    1999-05-01

    : The measurement of absolute crystal polarity is crucial to understanding the structural properties of many planar defects in compound semiconductors. Grain boundaries, including twin boundaries, in the sphalerite lattice are uniquely characterized by the crystallographic misorientation of individual grains and the direction of the crystal polarity in domains adjoining the grain boundary. To evaluate crystal polarity in gallium phosphide (GaP), asymmetrical interference contrast in convergent-beam electron-diffraction (CBED) patterns was used to ascertain the nature and direction of polar bonds. The direction of the asymmetry in the electron diffraction reflections was correlated with the crystal polarity of a sample with known polarity. The CBED technique was applied to determine the polar orientation of grains adjoining Sigma = 3 coherent and lateral twin boundaries in polycrystalline GaP. PMID:10383990

  12. The Plate Boundary Observatory as a Network for Water Cycle Studies

    NASA Astrophysics Data System (ADS)

    Larson, K. M.; Small, E. E.; Braun, J. J.; Gutmann, E. D.; Williams, M. W.; Zavorotny, V. U.; Munson, B.; Bilich, A. L.; Nievinski, F. G.; Normandeau, J.; Doelger, S.

    2009-12-01

    Measurements of soil moisture, snow, and vegetation are needed at various spatial and temporal scales to study the water and carbon cycle. Here we outline ways in which the ~1100 GPS receivers that make up the Plate Boundary Observatory can be used to provide daily measurements of soil moisture, snow, and vegetation water content. Our work is based on using GPS signals that reflect from the ground surface before the signal is received at the antenna. Known as "multipath," the reflected signals are a significant source of error for positioning. We find good correlation (r^2 0.76-0.9) between GPS multipath data collected at a PBO site near Boulder and surface soil moisture data collected with water content reflectometers. We also find good agreement (within 10%) between GPS multipath data and ultrasonic snow depth sensors for two recent snowstorms. Changes in vegetation water content are related to changes in multipath amplitudes and strongly correlate (0.75-0.90) with vegetation indices such as Normalized Difference Vegetation Index (NDVI). These new GPS studies indicate that the Plate Boundary Observatory (and other GPS networks) can provide important constraints for climate models and seasonal hydrologic forecasts.

  13. Divergent plate boundaries and crustal spreading on Venus: Evidence from Aphrodite Terra

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, James W.

    1989-01-01

    The modes of lithospheric heat transfer and the tectonic styles may differ between Earth and Venus, depending on how the high surface temperature (700 K = 430 C), dense and opaque atmosphere (approx. 10 MPa = 100 bars), lack of water oceans, and the other known ways in which Venus differs from Earth, influence basic lithospheric processes, thermal gradient, upper mantle temperature, thermal and chemical evolution, and convection. A fundamental question is whether the lithosphere of Venus is horizontally stable, like the other terrestrial planets, or is mobile like that on Earth. The variety of characteristics, their integrated relationships, and their predictable behavior throughout Western Aphrodite Terra are similar to those features known to occur in association with the terrestrial seafloor at spreading centers and divergent plate boundaries. It is concluded that Western Aphrodite Terra represents the site of crustal spreading centers and divergent plate boundaries. The extent of similar characteristics and processes elsewhere on Venus outside of the 13,000 km long Western and Eastern Aphrodite Terra rise is unknown at the present, but their presence in other areas of the equatorial highlands, suggested from recent analysis, may be tested with forthcoming Magellan data.

  14. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary

    NASA Astrophysics Data System (ADS)

    Khan, W. A.; Khan, Z. H.; Rahi, M.

    2014-06-01

    Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307, 2005) model has been used and the results are compared with the existing theoretical models. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using suitable similarity transformations. These equations are solved numerically using a very efficient finite difference method with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are investigated and presented in graphical and tabular forms. The numerical results of skin friction and Nusselt numbers are compared with the available data for special cases and are found in good agreement.

  15. A Three-Dimensional Seismic Model of the Dead Sea Plate Boundary From Active Source Data

    NASA Astrophysics Data System (ADS)

    Flores, C. H.; ten Brink, U. S.

    2007-12-01

    The Dead Sea fault system is a north-south striking left-lateral shear zone separating the African and Arabian tectonic plates. The southern part of the plate boundary is located within the Dead Sea valley. The valley, much of it below sea level, is surrounded by highlands on both sides, and contains subsurface sedimentary basins, including the large (~150 km long) a deep (6-8 km) Dead Sea basin. A wide-angle seismic reflection and refraction experiment was carried out in the Dead Sea Region in October 2004 to study the deep structure of the plate boundary. The experiment consisted of two perpendicular profiles a 280-km long profile along the valley and the international border between Jordan, Israel and the Palestinian Territories, and a 250 km long profile from Gaza strip to eastern Jordan across the Dead Sea basin. Modeling of the West-East line shows a low velocity zone extending to a depth of 18 km below the basin, which includes >6 km of "syn-rift" sediments (ten Brink et al., GRL, 2006). The lower crust and Moho are not perturbed. The uplift surrounding the Dead Sea Transform also appears to be an upper crustal phenomenon. The shear deformation, associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust (Ibid.). Two-dimensional modeling of the South-North line is more complex due to the fact that sedimentary basins do not occupy the entire width of the valley hence some sources and some receivers are located within the basins whereas others are located outside. This heterogeneous near-surface structure explains why a simple 2-D velocity model does not fit the observed travel times from all shots. Therefore, we are using 3-D travel-time tomography to model the heterogeneous near-surface and deeper structure of the Dead Sea. Preliminary models indicate that some ray-paths from sources near the basin use the edges of the basin as a wave-guide and generate earlier than expected arrivals at receivers near the shot. We find seismic confirmation of sub-basins along the Dead Sea Transform that have been identified using gravity and aeromagnetic surveying (ten Brink, et al., G-cubed, 2007, ten Brink, et al., Geology, 1999), and will present a preliminary model for variations in the crustal structure.

  16. A Chlorine-Centric Perspective on Fluid-Mediated Processes at Convergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Selverstone, J.

    2014-12-01

    The release and migration of metamorphic fluids from subducting slabs into overlying mantle is widely recognized as a major mechanism in producing arc geochemical signatures and returning fluid-mobile elements to earth's crust and surface environments. Although the magnitudes of many geochemical fluxes are well constrained, the processes whereby mass transfer occurs in different portions of the subduction system are less well known. Chlorine stable isotopes provide a new perspective on some of these processes: Cl is hydrophilic, but decarbonation reactions favor Cl retention in minerals. Cl also shows less isotopic fractionation than other fluid-sensitive systems and may thus preserve evidence of specific fluid sources and/or fluid mixing events. Detailed studies of sedimentary sequences show that individual beds are isotopically homogeneous but large heterogeneities in ?37Cl exist across beds on a cm to m scale and vary as a function of depositional environment. Compositionally correlative medium-, high-, and ultrahigh-pressure metamorphic sequences in the Alps record decreases of 30-50% in Cl contents in the earliest stages of metamorphism, but little change thereafter. No statistically significant change in isotopic composition occurs during prograde metamorphism of individual horizons, and the same large degree of isotopic heterogeneity (up to 6‰) persists throughout the prograde devolatilization history of the rocks. Likewise, analysis of HP/UHP serpentinites and altered oceanic crust show that heterogeneous protolith compositions are preserved during transport to sub-arc depths, despite large-scale devolatilization. However, upward transport of rocks within the subduction channel results in highly localized interaction with isotopically distinct, Cl-bearing fluid packets. Overlying forearc wedge rocks also record heterogeneous and channelized interaction with distinct fluid components with different ?37Cl. Within-layer fluid compartmentalization during continuous devolatilization reactions must thus be reconciled with discontinuous, cross-layer fluid percolation out of the slab and into the wedge. The resulting implications of the chlorine data for recent mechanical models of slab-to-wedge fluid transport will be discussed.

  17. Trace element geochemistry of magmatic rock series of converging and diverging plate boundaries

    Microsoft Academic Search

    M. Treuil; J. L. Joron; H. Jaffrezic

    1977-01-01

    The new results and developments of trace element geochemistry of magmatic processes are discussed. The interest and limits\\u000a of neutron activation analysis for studies of trace element distributions in magnetic rocks are shown.

  18. Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Inoue, Michio

    The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.

  19. Fault Structure Along the North America-Caribbean Plate Boundary in the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Pulliam, J.; Ocasio-Campos, D.; Huerfano-Moreno, V.; von Hillebrandt-Andrade, C.; Camacho, I.; Odonel-Gomez, L.; Payero, J.

    2005-12-01

    The Northern Caribbean Plate Boundary Zone is a complex region that has been modified extensively by the relative eastward movement of the Caribbean Plate and the plate's impact with the buoyant Bahama carbonate platform (see Figure). The results include extensive subduction of oceanic crust belonging to the North American Plate, a broad zone of deformation to accommodate strain, the development of several new transform and normal faults to relieve stress after collisions, the formation and rotation of microplates, and the rearrangement and aggregation of crustal fragments into new islands. On 22 September 2003, a large (mW=6.5) earthquake struck the Dominican Republic, causing widespread damage that included partially collapsed buildings and bridges in the cities of Santiago and Puerto Plata and landslides in the mountainous outlying areas. Aftershocks reaching mW=5.1 followed for weeks afterward. This earthquake sequence is the strongest to affect the Dominican Republic since a series of powerful thrust events, including five earthquakes ranging in magnitude from 7.1 to 8.1, occurred between 1943 and 1953. Prior to 1943, significant earthquakes occurred in 1564 (in which the city of Santiago was destroyed), 1783, 1842, 1887, and 1897. Following the 2003 Puerto Plata main shock we deployed 10 broadband seismographs borrowed from IRIS' PASSCAL Instrument Center around the aftershock zone for a period of two months and analyzed the data jointly with data from two permanent seismic networks in the DR. Analyses included estimating a new 1D model of earth structure, re-locating more than 300 aftershocks, producing a 3D tomographic model of the fault zone from phase arrivals, and computing focal mechanisms. We will report the results of these analyses and their implications for regional structure and processes.

  20. Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone

    USGS Publications Warehouse

    van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego

    2010-01-01

    Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its southern margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the southern Caribbean Plate boundary zone. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ?1 km. Late Miocene–recent transpression caused inversion and ?1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.

  1. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  2. Plate Tectonics

    NSDL National Science Digital Library

    Mrs. Rohlfing

    2011-02-03

    Students will go over the main points of plate tectonics, including the theory of continental drift, different types of plate boundaries, seafloor spreading, and convection currents. We have been spending time learning about plate tectonics. We have discussed the theory of continental drift, we have talked about the different types of plate boundaries, we have also learned about seafloor spreading and convection currents. Plate Boundary Diagram Now is your chance ...

  3. Plate Tectonics Learning Module

    NSDL National Science Digital Library

    Rita Haberlin

    This plate tectonics unit was designed to be used with a college course in physical geography. Subject matter covered includes: the development of the theory including Wegener's Continental Drift Hypothesis and the existence of Pangaea, Harry Hess and his work on sea-floor spreading, and the final theory. It points out that global features such as deep oceanic trenches, mid-ocean ridges, volcanic activity, and the location of earthquake epicenters can now be related to the story of plate tectonics, since most geological activity occurs along plate boundaries. Divergent, convergent and transform plate boundaries are discussed in detail. This module contains a study guide and outline notes, study questions, and practice quizzes. One feature of the module is a web exploration section with links to twelve outside sites that augment the instruction.

  4. Comments on the Parameters and Processes that Affect the Preservation Potential and Style of Oblique-Divergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.

    2014-12-01

    Oblique-divergent or transtensional zones present particular challenges in ancient belts because of the poor preservation potential of the thinned continental crust and young oceanic crust. Many oblique belts will preferentially preserve their boundary zones that lie within continents rather than the main plate boundary zone, which will be at a much lower elevation and composed of denser crust. Zones of tectonic escape or strike-slip overprinting of arcs or plateaus deform continental crust and may be better preserved. Here I highlight parameters and processes that have major effects on oblique divergent belts. Strain partitioning is common, but not ubiquitous, along and across oblique boundaries; the causes of partitioning are not always clear and make this especially vexing for work in ancient belts. Partitioning causes complexity in the patterns of structures at all scales. Inherited structures commonly determine the orientation and style of structures along oblique boundaries and can control the pattern of faults across transtensional belts. Regionally, inherited trends of arcs or other 1000-km-scale features can control boundary structures. Experiments and natural examples suggest that oblique boundary zones contain less of a record of strike-slip faulting and more extensional structures. The obliquity of divergence produces predictable families of structures that typify (i) strike-slip dominated zones (obliquity <~20°), (ii) mixed zones (~20° - ~35°), and (iii) extension dominated zones (>~35°). The combination of partitioning and mixed structures in oblique zones means that the boundaries of belts with large-magnitude strike-slip faulting will commonly preserve little of no record of that faulting history. Plate boundaries localize strain onto the main plate boundary structures from the broader plate boundary and therefore the boundary zones commonly preserve the earlier structures more than later structures, a major problem in interpreting ancient belts. Sediment input is critical in some oblique plate boundaries because these belts become more pronounced sediment sinks over time. The evolving topography of oblique boundaries means that they have great variability of sediment flux into differing parts of the system; large rivers enter these belts only in special circumstances.

  5. Effect of unsteady wake passing frequency on boundary layer transition on the concave surface of a curved plate 

    E-print Network

    Read, Robert Kevin

    1997-01-01

    of Department) August 1997 Major Subject: Mechanical Engineering ABSTRACT Effect of Unsteady Wake Passing Frequency On Boundary Layer Transition on the Concave Surface of a Curved Plate. (August 1997) Robert Kevin Read, B. S. , Texas A&M University Chair... the surface of the curved plate 16 25 35 39 Figure 10. Instantaneous velocity traces for II= 1. 725 (5 rods) for different s/s, locations at y= 0. 3 mm above the surface of the curved plate. . . . . . . . . . . . 42 Figure 11. Instantaneous velocity...

  6. Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Parry, Matthew; S?típská, Pavla; Schulmann, Karel; Hrouda, Frantis?ek; Jez?ek, Josef; Kröner, Alfred

    1997-10-01

    A tonalitic sill has been examined at the Variscan transpressive boundary of the Lugian and Silesian plates at the NE margin of the Bohemian Massif. A structural, petrological and geochronological study reveals that it was emplaced syn-tectonically with major ductile shearing in lower crustal rocks. Magmatic and pre-rheological critical melt percentage (RCMP) fabrics are concordant with the hanging wall structures but discordant with those of the footwall. The AMS study shows the predominance of flattening strain at the margins and plane strain fabrics in the core. Numerical modelling of AMS fabrics is in good agreement with the hypothesis of magma flow and deformation in oblique transpression. A tectonic model was developed explaining emplacement and syn-tectonic deformation of progressively cooled tonalitic intrusion.

  7. Marangoni Driven Boundary Layer Flow past a Flat Plate in Nanofluid with Suction/Injection

    NASA Astrophysics Data System (ADS)

    Arifin, Norihan Md.; Nazar, Roslinda; Pop, Ioan

    2010-11-01

    The problem of Marangoni convection boundary layer flow past a flat plate in a nanofluid when the wall is permeable, where there is suction or injection effect, is studied using different types of nanoparticles. The general governing partial differential equations are transformed into a set of two nonlinear ordinary differential equations using unique similarity transformation. Numerical solutions of the similarity equations are obtained using the Runge-Kutta-Fehlberg (RKF) method. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 are considered by using water as a base fluid with Prandtl number Pr = 6.2. The effects of the suction or injection parameter on the flow and heat transfer characteristics are discussed.

  8. Recording Plate Boundary Deformation Processes Around The San Jacinto Fault, California

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K.; Mencin, D.; Borsa, A.; Fox, O.; Walls, C.; Van Boskirk, E.

    2012-04-01

    The San Jacinto Fault is one of the major faults which form the San Andreas Fault System in southern California. The fault, which lies to the west of the San Andreas, is one of the most active in the region. While strain rates are higher along the San Andreas, 23-37 mm/yr compared to 12-22 mm/yr along the San Jacinto, there have been 11 earthquakes of M6 and greater along the San Jacinto in the past 150 years while there have been none of this magnitude on the San Andreas in this region. UNAVCO has installed an array of geodetic and seismic instruments along the San Jacinto as part of the Plate Boundary Observatory (PBO). The network includes 25 GPS stations within 20 km of the surface trace with a concentration of borehole instrumentation in the Anza region where there are nine boreholes sites. Most of the borehole sites contain a GTSM21 4-component strainmeter, a Sonde-2 seismometer, a MEMS accelerometer and a pore pressure sensor. Thus, the array has the capability to capture plate boundary deformation processes with periods of milliseconds (seismic) to decades (GPS). On July 7th 2010 a M5.4 earthquake occurred on the Coyote Creek segment of the fault. The event was preceded by a M4.9 earthquake in the same area four weeks earlier and four earthquakes of M5 and greater within a 20 km radius of the epicenter in the past 50 years. In this study we will present the signals recorded by the different instrument types for the July 7th 2010 event and will compare the coseismic displacements recorded by the GPS and strainmeters with the displacement field predicted by Okada [1992]. All data recorded as part of the PBO observatory are publically available from the UNAVCO, the IRIS Data Management Center and the Northern California Earthquake Data Center.

  9. A unified GPS-based earthquake catalog for the Sumatran plate boundary between 2002 and 2013

    NASA Astrophysics Data System (ADS)

    Feng, Lujia; Hill, Emma M.; Banerjee, Paramesh; Hermawan, Iwan; Tsang, Louisa L. H.; Natawidjaja, Danny H.; Suwargadi, Bambang W.; Sieh, Kerry

    2015-05-01

    We have compiled the first self-consistent GPS-based earthquake catalog for the Sumatran plate boundary. Using continuous daily position time series from the Sumatran GPS Array (SuGAr), we document 30 earthquakes which occurred within or outside the SuGAr network from August 2002 through the end of 2013, and we provide estimates of both vertical and horizontal coseismic offsets associated with 1 M9.2, 3 M8, 6 M7, 19 M6, and 1 M5.9 earthquakes, as well as postseismic decay amplitudes and times associated with 9 M > 7 earthquakes and 1 M6.7 earthquake. For most of the previously studied earthquakes, our geodetic catalog provides more complete coseismic displacements than those published, showing consistent patterns of motion across a large range of distances. For many of the moderate to large earthquakes, we publish their coseismic displacements for the first time, providing new constraints on their locations and slip distributions. For the postseismic time series, we have tackled the challenge of separating the signals for individual events from the overlapping effects of many other earthquakes. As a result, we have obtained either new or much longer time series than previously published. Based on our long time series, we find logarithmic decay times ranging from several days to more than 20 years, and sometimes a second decay time is needed, suggesting that when studying large to great Sumatran earthquakes, we need to consider multiple postseismic mechanisms. Our geodetic catalog provides rich spatial and temporal Sumatran earthquake cycle information for future studies of the physics and dynamics of the Sumatran plate boundary.

  10. Logistical Support for the Installation of the Plate Boundary Observatory GPS and Borehole Strainmeter Networks

    NASA Astrophysics Data System (ADS)

    Kurnik, C.; Austin, K.; Coyle, B.; Dittmann, T.; Feaux, K.; Friesen, B.; Johnson, W.; Mencin, D.; Pauk, B.; Walls, C.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three- dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 880 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters by October 2008. Such a broad network presents significant logisitical challenges, including moving supplies, equipment, and personnel around 6 million square kilometers, and this requires accurate tracking and careful planning. The PBO logistics chain includes the PBO headquarters at UNAVCO in Boulder, Colorado and five regional offices in the continental United States and Alaska, served by dozens of suppliers spread across the globe. These offices are responsible for building and maintaining sites in their region. Most equipment and supplies first arrive in Boulder, where they are tagged and entered into a UNAVCO-wide equipment database, assembled and quality checked as necessary, and sent on to the appropriate regional office. Larger items which are costly to store and ship from Boulder, such as batteries or long sections of stainless steel pipe and bar required for monuments, are shipped directly from the supplier to each region as needed. These supplies and equipment are also tracked through the ordering, delivery, installation, and maintenance cycle via Earned Value Management techniques which allow us to meet NSF and other Federal procurement rules. Early prototypes and assembly configurations aid the development of material and supply budgets. A thorough understanding of Federal procurement rules at project start up is critical as the project moves forward.

  11. Convergence results for pseudospectral approximations of hyperbolic systems by a penalty type boundary treatment

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele; Gottlieb, David

    1989-01-01

    A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.

  12. An updated digital model of plate boundaries Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA

    E-print Network

    Bird, Peter

    , Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge, oceanic

  13. The Formation of the Betic-Alboran System in the Iberia-Africa Plate Boundary: a New Kinematic Evolution Model

    NASA Astrophysics Data System (ADS)

    Fernandez, M.; Verges, J.

    2013-12-01

    Several geodynamic models have been proposed so far to explain the origin and evolution of the Betic-Rif arcuate orogeny and the inner Alboran back-arc basin. Many of these models propose that the Alboran domain underwent a large westward drifting (> 600 km) driven by a subduction rollback, eventually resulting in a symmetric configuration in both the S-Iberia and N-African margins. Alternative models with a more autochthonous component assume that the Oligocene subduction trench extended continuously along the whole Iberian Mediterranean margin from the present Gibraltar arc to the Alps. Common assumptions to all these models are: i) the initial time is about 35 Ma (Eocene-Oligocene), ii) the plate boundary is continuous and non-segmented, iii) the initial subduction polarity is NW-dipping, and iv) the slab must underwent a twisted roll-back to explain the present position of the HP-LT metamorphic rocks involving slab rupture, detachment and tearing. Recent geophysical models based on seismic data, tomography and potential fields draw an arcuate mantle slab restricted below the Betic-Rif orogen, dipping towards the E below the Gibraltar Strait and turning to the SE and S beneath the Betics. In addition, the crust beneath the northern Moroccan margin shows a smooth thinning toward the Alboran basin whereas the southern Iberian margin presents a much sharper thinning. These findings put severe limitations to some of the proposed models and open room for new kinematic proposals. One of the most recent models is based on the following considerations: i) the reconstruction starts in Late Cretaceous times at the onset of northern Africa convergence, ii) displacements and initial configuration are based on plate reconstructions of the Atlantic-Ligurian-Tethys region, and iii) the model assumes that subduction polarity changes laterally from NW-dipping in the Algerian segment to SE-dipping in the Betic-Rif segment. Apart from its simplicity, this model requires a moderate NW to W drifting of the HP-LT metamorphic complexes formed by limited subduction and exhumation, fulfills the imaged crustal and mantle asymmetries, and is compatible with the main geological structures in the region. Cartoon showing the evolution of the Betic-Alboran-Rif system at 9 Ma.

  14. The final year of GPS Installations in the Alaska Region of the Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Coyle, B.; Pauk, B.; Enders, M.; Bierma, R.; Gasparich, S.; Marzulla, A.; Feaux, K.

    2008-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the National Science Foundation funded Earthscope Project. The final PBO GPS network will comprise 1100 continuously operating GPS stations installed throughout the Western US and Alaska. The Alaska region is an important area of study because of the major crustal deformation and high volcanic activity associated with the subduction of the Pacific Plate beneath the North American Plate. The PBO network will provide data to help better understand these earth processes. In the fifth and final year of the PBO installation phase, we built 31 GPS Stations and installed 8 tilt meters in Alaska. These installs completed the PBO network in Alaska which comprises 135 GPS stations and 12 tilt meters. We also completed maintenance visits to GPS stations installed during earlier years of the five year project. In the 2008 field season we faced some of our most difficult logistical challenges with installations in remote areas, islands and volcanoes. Highlights include boat-based helicopter supported installs in the Shumagin Islands on Chernabura, Nagai and Popof; and 13 GPS stations and 8 tiltmeters installed on Unimak Island to monitor Westdahl and Shishaldin volcanoes. The Unimak installations were completed in a four week period and were carried out in cooperation with scientists from the Alaska Volcano Observatory. We also installed the remaining stations monitoring the Denali fault and integrated the Denali earthquake response stations built by University of Alaska Fairbanks into the PBO network. Now that the installations are completed, the PBO network will be operated and maintained by UNAVCO engineers for the next 10 years. Data from all of the PBO stations are available from the UNAVCO archive.

  15. Tsunami effects at Korean Nuclear Power Plant Sites by Plate Boundary Earthquakes

    NASA Astrophysics Data System (ADS)

    Jin, Sobeom; Hyun, Seung Gyu; Bae, Jae Seok; Kim, Gun Hyeong; Yoon, Sung Bum

    2015-04-01

    Great earthquakes have occurred at the Nankai Trough due to the subduction of the Philippine Sea plate beneath Honshu, Japan. The 1707 Hoei tsunami associated with the Mw 8.7 earthquake, in particular, was the largest event generated in this area. The Nankai Trough is one of the most earthquake-prone area near Japan. And the tsunami affected to Korea according to a Korean historic literature. In this study, new hypothetical plate boundary earthquakes (Mw 9.6) ruptured simultaneously from the Nankai Trough to the Ryukyu Trench (NTRT) are proposed and applied to evaluate the tsunami effects at the Nuclear Power Plant Sites in Korea. In order to make reasonable tsunami sources the asperity model is adapted. The numerical model using the modified leap-frog finite difference scheme is employed to simulate the propagation of tsunami generated at NTRT. This numerical model considering the dispersion effect and inundation of tsunami is then employed to estimate the maximum tsunami heights. Predicted results will be used to make the measures against unexpected tsunami attacks.

  16. High-Reynolds-number flat-plate turbulent boundary layer measurements

    NASA Astrophysics Data System (ADS)

    Winkel, Eric S.; Cutbirth, James M.; Perlin, Marc; Ceccio, Steven L.; Dowling, David R.

    2006-11-01

    A set of experiments was conducted in the U.S. Navy's Large Cavitation Channel (LCC) into the characteristics of a liquid turbulent boundary layer at nearly zero-pressure-gradient. The hydraulically smooth, k^+ < 0.2, flat-plate test model measured 12.9 m in length and 3.05 m in span and was approximately centered in the LCC test section. Data was gathered at flow speeds up to 20 m/s to achieve downstream-distance-based Reynolds numbers up to 220 million. Static pressure, skin-friction, and laser-Doppler velocimetry (LDV) measurements are presented. Static pressure measurements along the plate surface show a mild favorable pressure gradient, less than 2.5% flow acceleration over the model. Skin-friction was measured at six stream-wise positions with 15-cm-diameter, flush-mounted drag-balances. Flow profiles of the mean and second-order turbulence statistics of stream-wise and wall-normal velocity components were measured using two-component LDV. When normalized with the measured skin-friction, mean velocity profiles agree with the accepted law-of-the-wall constants and the total near-wall shear stress approaches unity.

  17. Mechanisms of Strain Localization: Implications for Lithospheric Strength and the Structure of Plate-Boundary Shear Zones

    NASA Astrophysics Data System (ADS)

    Platt, J. P.

    2014-12-01

    Deformation mechanism switches caused by grain-size reduction are a likely principal cause of strain localization, assisted by development of crystallographic preferred orientation, interconnected weak-phase layering, phase changes, and on longer time-scales, shear heating. Grain-size reduction results in a marked increase in the rate of grain-size sensitive creep mechanisms, which include grain-boundary diffusion creep, pressure solution, diffusion- or dislocation-accommodated grain-boundary sliding, and dislocation creep in which grain-boundary migration is the main recovery mechanism (DRX creep). In polyphase systems, grain-boundary sliding plus grain-boundary diffusion may allow the development of a well-mixed fine-grained aggregate, in which the grain size is controlled by the phase showing the greatest degree of grain-size reduction by dynamic recrystallization. The resulting fine-grained mixture resists grain growth, and may be up to three orders of magnitude weaker than the undeformed rock. Microstructural weakening requires a minimum level of stress to produce the required deformation. This buffers the stress, even when there is a velocity boundary condition to the system, along a plate boundary, for example. Shear zones therefore evolve at constant stress, and the cumulative width w of a plate boundary shear zone is a function of the strength of the undeformed rock, the imposed velocity difference, and the rheology of the shear zone material. This allows a first order prediction of w as a function of depth in the lithosphere.

  18. Summary of the stratigraphy and structural elements related to plate convergence of the Quetta-Muslim Bagh-Sibi region, Balochistan, west-central Pakistan

    USGS Publications Warehouse

    Maldonado, Florian; Mengal, Jan M.; Khan, Shahid H.; Warwick, Peter D.

    2011-01-01

    The four major faults that bound the structural terrane are the Frontal (F), Ghazaband-Zhob (GZ), Gwal-Bagh (GB), and Chaman (C) faults. Four major periods of deformation are recognized: (1) emplacement of ophiolitic rocks onto the continental margin of the India plate; (2) convergence of the India-Eurasia plates; (3) deposition of Tertiary-Quaternary molasse units followed by major folding and thrusting, and formation of strike-slip faults; and (4) deposition of Pleistocene molasse units with subsequent folding, thrusting, and strike-slip motion that continues to the present.

  19. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region

    Microsoft Academic Search

    Federica Marone; Mark van der Meijde; Suzan van der Lee; Domenico Giardini

    2003-01-01

    A new map for the Moho discontinuity (EAM02) in the Eurasia-Africa plate boundary region is presented. Reliable results have also been obtained for the southern and eastern Mediterranean Basin, the northern African coasts and the eastern Atlantic Ocean, regions only occasionally considered in studies on the Mediterranean region. The Moho topography model is derived from two independent sets of constraints.

  20. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region

    Microsoft Academic Search

    Federica Marone; Mark van der Meijde; Suzan van der Lee; Domenico Giardini

    2003-01-01

    SUMMARY A new map for the Moho discontinuity (EAM02) in the Eurasia-Africa plate boundary region is presented. Reliable results have also been obtained for the southern and eastern Mediterranean Basin, the northern African coasts and the eastern Atlantic Ocean, regions only occasionally considered in studies on the Mediterranean region. The Moho topography model is derived from two independent sets of

  1. Localized versus distributed shear in transform plate boundary zones: The case of the Dead Sea Transform in the Jericho Valley

    Microsoft Academic Search

    G. Shamir; Y. Eyal; I. Bruner

    2005-01-01

    Continental transform plate boundaries are typically either localized along a single, usually segmented, major fault or distributed over a broad deformation zone. In the latter, shear is partitioned between major strike slip faults and intervening, often rotating, fault systems. Analog and numerical simulations suggest that such internal fault systems evolve and may be localized or delocalized depending on strain and

  2. The Krafla Magmatic and Tectonic Episode of 1974-1989 at the Divergent Plate Boundary in North Iceland

    Microsoft Academic Search

    P. Einarsson; B. Brandsdottir

    2006-01-01

    The Krafla rifting episode was a sequence of magmatic and tectonic events along the plate boundary in N- Iceland, beginning in 1974 with increased seismicity within the Krafla caldera and lasting until 1989 when inflation of the caldera stopped. The activity was confined to the Krafla volcanic system and adjacent transform zone. The volcanic system consists of a central volcano

  3. Unsteady laminar boundary-layer calculations on oscillating configurations including backflow. Part 1: Flat plate, oscillating in its own plane

    NASA Technical Reports Server (NTRS)

    Geissler, W.

    1983-01-01

    A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.

  4. On convergence of the immersed boundary method for elliptic interface problems

    E-print Network

    IB method has O(h1/2 ) order of convergence in the L2 norm for a 1D model. In [19, 20], the authors designed some level set methods based on discrete delta functions. With suitable quadrature formulas

  5. The Quest for the Africa-Eurasia plate boundary West of the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Zitellini, N.

    2009-04-01

    A new swath bathymetry compilation of the Gulf of Cadiz Area and SW Iberia is presented. The new map is the result of a collaborative research performed after year 2000 by teams from 7 European countries and 14 research institutions. This new dataset allow for the first time to present and to discuss the missing link in the plate boundary between Eurasia and Africa in the Central Atlantic. A set of almost linear and sub parallel dextral strike-slip faults, the SWIM Faults (SWIM is the acronym of the ESF EuroMargins project "Earthquake and Tsunami hazards of active faults at the South West Iberian Margin: deep structure, high-resolution imaging and paleoseismic signature") was mapped using a the new swath bathymetry compilation available in the area. The SWIM Faults form a narrow band of deformation over a length of 600 km coincident with a small circle centred on the pole of rotation of Africa with respect to Eurasia, This narrow band of deformation connects the Gloria Fault to the Rif-Tell Fault Zone, two segments of the plate boundary between Africa and Eurasia. In addition, the SWIM faults cuts across the Gulf of Cadiz, in the Atlantic Ocean, where the 1755 Great Lisbon earthquake, M~8.5-8.7, and tsunami were generated, providing a new insights on its source location. SWIM Team: E. Gràcia (2), L. Matias (3), P. Terrinha (4), M.A. Abreu (5), G. DeAlteriis(6), J.P. Henriet (7), J.J. Dañobeitia (2), D.G. Masson (8), T. Mulder (9), R. Ramella (10), L. Somoza (11) and S. Diez (2) (2) Unitat de Tecnologia Marina (CSIC), Centre Mediterrani d'Investigacions Marines i Ambientals, Barcelona, Spain (3) Centro Geofísica da Universidade de Lisboa (CGUL, IDL), Lisboa, Portugal (4) National Institute for Engineering, Technology and Innovation (INETI, LATTEX), Departamento de Geologia Marinha, Amadora, Portugal (5) Estrutura de Missão para a Extensão da Plataforma Continental, Lisboa, Portugal (6) Geomare Sud IAMC, CNR, Napoli, Italy (7) Renard Centre of Marine Geology, Dpt. Geology and Soil Science, Gent University, Gent, Belgium (8) National Oceanography Centre, European Way, Southampton, United Kingdom (9) Département de Géologie et Océanographie, Talence Cedex, France (10) Department for the Development of Marine Technology and Research, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Sgonico, Italy (11) Geología Marina, Instituto Geológico y Minero de España, Madrid, Spain

  6. The Plate Boundary Observatory Borehole Network: Geologic Resources from Drilling and Logging

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Van Boskirk, E.; Mencin, D.; Gottlieb, M. H.; Pyatt, C.; Hodgkinson, K. M.; Fox, O.; Gallaher, W. W.; Borsa, A. A.

    2011-12-01

    The Plate Boundary Observatory Strainmeter Borehole Network has a total of 79 operational boreholes, with depths drilled from 420 to 800 feet. All drill cuttings, core samples and logs are stored and catalogued. The cuttings for each successful borehole were recently photo documented and will be placed on the UNAVCO website to be readily available to the public, as well as to request samples. The drill cuttings were collected in 10 foot intervals, and in Yellowstone they were collected in five foot intervals. The extent of the borehole network includes sites near the San Jacinto fault, San Andreas Fault, throughout the Cascadia region, Mt St Helens and Yellowstone. These locations provide a wide array of tectonic and volcanic environments. In the case of Yellowstone, the park has not been drilled in for four decades. Due to the circulation of hot fluids, holes are at a shallower depth ( > 420 feet). These cuttings provide a resource of understanding the history and dynamics of fluid interaction in Yellowstone. Along the San Jacinto fault and San Andreas fault, these cuttings can help to build better models of the fault dynamics through evaluating the stratigraphy, fractures, rock strength, structural geology and fluid interaction near and along the fault zones. The stranmeter sites in the Pacific NW were chosen for the subduction zone, and are therefore not near a major plate boundary. They could instead be used to understand local regional fault dynamics, stratigraphy, structural geology and volcanic history of the NW. Presented will be examples of interest from each region, from cuttings, core, logs, to correlated network observations. For example, a site on the San Jacinto fault, near Anza has recorded creep events. This site is the closest to the fault and during drilling fault gouge was observed. While in Parkfield, cuttings and core reveal different fault blocks for sites that are 1000 feet apart in distance. As UNAVCO cannot provide any analysis on these samples, the documentation and variability of these resources will be presented. The availability of these resources and an interest of understanding the hydrology and structural geology could provide new incite for understanding strike slip faulting as well as additional resources for understanding volcanic history.

  7. NanTroSEIZE: Sampling and Monitoring Plate Boundary Fault Processes of the Nankai Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Kinoshita, M.; Iodp Expedition 314/315/316/319/322 Scientists

    2010-12-01

    The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a a long-term effort to image, sample, and instrument the up-dip portion of a subduction megathrust in a location where great earthquakes repeatedly occur. It comprises a series of geophysical surveys, including 3D seismic reflection, a transect of drilled boreholes, and a long-term borehole observatory component. The objective is to elucidate the strain accumulation and release in the region transitional between the presumed aseismic accretionary wedge and the locked portion of the megathrust. The main operational goal of the science plan is to sample and instrument key faults in several locations spanning the transition from those dominated by frictionally stable, aseismic or quasi-seismic processes, vs. those hypothesized to be frictionally locked (seismogenic) faults of the megathrust system, testing hypotheses for the spatial and temporal patterns of fault locking. From 2007 through the end of 2010, the NanTroSEIZE science team has achieved many of its primary goals during 6 expeditions with D/V Chikyu. Completed drill sites to date comprise penetrations ranging from 200 m to more than 1600 m below the sea floor, including IODP’s first riser-drilled borehole. We have sampled and made in situ measurements on the faults and wall rocks of both the frontal thrust and out-of-sequence splay faults in the accretionary system, the sedimentary section of the subducting plate, and the thick forearc basin sedimentary record and underlying older subduction complex in the hanging wall of the main plate interface. Major results so far include: (a) evidence for strongly localized, likely co-seismic fault slip to within a few hundred meters of the sea floor at the trench and in an out-of-sequence splay fault, (b) the distribution of present-day and paleo-stress orientations across the transect showing evidence for tectonic control coupled with time-varying stress magnitudes, (c) an absence of evidence for focused fluid channeling along the principal shallow fault systems, and (d) the event-punctuated nature of the tectonic history of the subduction system governed by subducted topography. Extensive downhole measurements and a 2-ship VSP experiment have further documented stress, pressure, rock strength, and elastic properties. The first long-term monitoring instruments are now in place in a sealed borehole, recording pore pressure and temperature. Expedition 326 in 2010 completed the first 800 meters of casing for the main riser hole targeted at drilling to ~ 7000 m below the sea bed across the faults of the main plate boundary, then placing long-term monitoring instruments into both deep and shallow sealed borehole observatories.

  8. The August and October, 2008 earthquake swarms on the Explorer/Pacific plate boundary

    NASA Astrophysics Data System (ADS)

    Czoski, P. A.; Trehu, A. M.; Williams, M. C.; Dziak, R. P.; Embley, R. W.

    2011-12-01

    In August and October of 2008, earthquake swarms occurred on the Explorer/Pacific plate boundary. The August swarm lasted for approximately 4 days. Seventy-five earthquakes were reported by the Canadian National Seismograph Nework (CNSN), with the largest having a magnitude of 5.9. The U.S. Navy's Sound Surveillance System (SOSUS) hydrophones reported 148 earthquakes. Over 250 earthquakes were recorded on the Central Oregon Locked Zone Array (COLZA), a temporary array of 15 ocean bottom seismometers (OBS) and hydrophones. The October swarm lasted about 2 days with only one reported CNSN magnitude 4.4 earthquake. This event was also observed with the COLZA network. SOSUS reported 119 earthquakes over the course of two days. In this poster, we use the COLZA T-phase data to better understand the tectonic significance of these swarms. T-phases are generated by earthquakes and converted to acoustic energy at the seafloor. We used the ANSS magnitudes to calibrate an empirical magnitude scale for maximum amplitudes handpicked from the COLZA T-phase observations. This enabled us to lower the magnitude threshold to 2.8. A b-value of 0.78 was obtained for the August swarm suggesting that it may be a tectonic event rather then a magmatic one. Focal mechanisms reported by the Harvard CMT catalog for 3 of the largest events also support strike-slip motion. The reported SOSUS hypocenter locations indicate a linear NE/SW trend west of and parallel to the Explorer Ridge while the ANSS locations are very scattered but suggest a northwest/southeast trend in line with but east of the Dellwood-Revere transform fault. To obtain better-constrained locations, we plan to relocate the events and COLZA T-phase data using cross-correlation techniques developed to locate seismic tremor. We expect the COLZA data will allow us to determine whether activity was primarily focused along the Explorer Ridge axis, along the Dellwood-Revere transform, or within the plate. This investigation could provide us with new insight into the evolution and possible fragmentation of the Explorer Plate.

  9. Differential quadrature for buckling analysis of laminated plates

    Microsoft Academic Search

    Xinwei Wang

    1995-01-01

    Two new sets of grid points are proposed for applying differential quadrature (DQ) to the analysis of structural problems. The accuracy and convergence of differential quadrature for buckling analysis of laminated plates are discussed in this paper. A variety of buckling problems, including composite laminated plates with various boundary constrains under uniaxial, biaxial, and combined uniaxial and shear loadings, are

  10. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The nature and dynamics of time-dependent deformation along major seismic zones including the influence of irregularities in fault geometry on the earthquake cycle, and the processes contributing to the state of stress and rates of strain in plate interior regions were studied. The principle findings of the research are discussed.

  11. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions

    Microsoft Academic Search

    Alex Copley; Jean-Philippe Avouac; Jean-Yves Royer

    2010-01-01

    The plate motion of India changed dramatically between 50 and 35 Ma, with the rate of convergence between India and Asia dropping from ˜15 to ˜4 cm\\/yr. This change is coincident with the onset of the India-Asia collision, and with a rearrangement of plate boundaries in the Indian Ocean. On the basis of a simple model for the forces exerted

  12. Cretaceous to Paleogene speed-up and slow-down of India-Asia relative plate convergence: the roles of mantle plumes and continental collision

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, D. J.; Steinberger, B. M.; Doubrovine, P. V.; Gassmöller, R.

    2010-12-01

    Most authors prefer an age of collision around 50 Ma between the Tethyan Himalayas -northernmost continental remnants of the Indian plate - and Asia. A popular argument to support this age is a dramatic slow-down of the India-Asia convergence rate from ~18 to ~5 cm/yr between 50 and 35 Ma, interpreted to result from subduction of continental lithosphere at the collision zone. However, an equally dramatic increase of the India-Asia convergence rate occurred between 65 and 50 Ma, from ~8 to 18 cm/yr. The causes of this increase are not well understood, but may reflect the dynamic influence of sublithospheric mantle flow on the India motion. Arrival of hot mantle plumes (e.g. the Deccan plume at ~65 Ma) may both increase the potential gravitational energy of a plate and impose lateral mantle flow accelerating the plate, especially when it contains a thick continental lithospheric root. If the processes responsible for the acceleration ceases to exist, this may generate a slow-down even without a collision. Here we provide estimates of the India-Asia convergence using the India-Eurasia plate circuit. The analysis of reconstruction errors shows that the speed-up and slow-down are robust, with minor variations in peak convergence velocities depending on the choice of North America-Eurasia rotations. We use two numerical codes to assess the kinematic effects of the arrival of a mantle plume at 65 Ma below India on the convergence rates. The numerical models suggest that the arrival of the plume may indeed lead to a 3-4 cm/yr increase in the convergence rate followed by a gradual slow-down with decreasing plume activity, if no changes in the lithosphere-asthenosphere coupling are assumed. However, the plume arrival is likely to weaken the asthenosphere-lithosphere coupling, leading to a more effective slab-pull effect, which may potentially generate larger a driving force, comparable with the observed 65-50 Ma acceleration. In contrast, the sudden slow-down starting at 50 Ma can not be attributed to a decrease in plume forcing, and is best explained by an increase of resisting forces generated by the arrival of continental lithosphere in the subduction zone.

  13. Effect of unsteady wake passing frequency on boundary layer transition on the concave surface of a curved plate

    E-print Network

    Read, Robert Kevin

    1997-01-01

    -electric motor; 5-convex wall; 7-hot-wire probe; 8-plexiglass wall; 9-curved plate; 10-vernier; 11-vernier . 10 Figure 4. Overall layout of the test facility: 1-Fan; 2-Motor; 3-Transition duct; 4-Straight pipe; 5-Diffuser; 6-Settling Chamber; 7-Nozzle... dependent boundary layer simulation and measurement. . 70m 1. 90 Figure 3. Test Section: 1-traversing system; 2-nozzle; 3-wake generator; 4-electric motor; 5-convex wall; 7-hot-wire probe; 8-plexiglass wall; 9-curved plate; 10-vernier, 1 l-vernier...

  14. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The focus of the research was in two broad areas during the most recent 6 month period: the nature and dynamics of time-dependent deformation along major seismic zones, including the influence of irregularities in fault geometry on the earthquake cycles, and the processes contributing to the state of stress and rates of strain in plate interior regions. The principal findings of the research to date are described.

  15. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, ?, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  16. Plate Tectonics: Plate Interactions

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2006-11-01

    This Science Object is the fourth of five Science Objects in the Plate Tectonic SciPack. It identifies the events that may occur and landscapes that form as a result of different plate interactions. The areas along plate margins are active. Plates pushing against one another can cause earthquakes, volcanoes, mountain formation, and very deep ocean trenches. Plates pulling apart from one another can cause smaller earthquakes, magma rising to the surface, volcanoes, and oceanic valleys and mountains from sea-floor spreading. Plates sliding past one another can cause earthquakes and rock deformation. Learning Outcomes:? Explain why volcanoes and earthquakes occur along plate boundaries. ? Explain how new sea floor is created and destroyed.? Describe features that may be seen on the surface as a result of plate interactions.

  17. Convergence proof of the velocity field for a stokes flow immersed boundary method

    Microsoft Academic Search

    Yoichiro Mori

    2008-01-01

    The immersed boundary (IB) method is a computational framework for prob- lems involving the interaction of a fluid and immersed elastic structures. It is characterized by the use of a uniform Cartesian mesh for the fluid, a Lagrangian curvilinear mesh on the elastic material, and discrete delta functions for com- munication between the two grids. We consider a simple IB

  18. Geometric changes of plate boundaries along part of the northern Dead Sea transform: Geochronologic and paleomagnetic evidence

    Microsoft Academic Search

    Ariel Heimann; Hagai Ron

    1993-01-01

    The Korazim block, an elevated pressure-ridge, along with the faults bounding the Sea of Galilee and Hula-apart basins are internal structures of the Dead Sea Transform plate boundary. K-Ar dates and paleomagnetic data from basalt flows and sedimentary strata are utilized to determine the stratigraphy and the deformation of the region. The integration of the two methods, together with structural

  19. Geometric changes of plate boundaries along part of the northern Dead Sea Transform: Geochronologic and paleomagnetic evidence

    Microsoft Academic Search

    Ariel Heimann; Hagai Ron

    1993-01-01

    The Korazim block, an elevated pressure-ridge, along with the faults bounding the Sea of Galilee and Hula pull-apart basins are internal structures of the Dead Sea Transform plate boundary. K-Ar dates and paleomagnetic data from basalt flows and sedimentary strata are utilized to determine the stratigraphy and the deformation of the region. The integration of the two methods, together with

  20. Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound

    Microsoft Academic Search

    Yanbao Ma; Xiaolin Zhong

    2003-01-01

    In this paper, we continue to study the mechanisms of the receptivity of the supersonic boundary layer to free-stream disturbances by using both direct numerical simulation and linear stability theory. Specifically, the receptivity of a Mach 4.5 flow over a flat plate to free-stream fast acoustic waves is studied. The receptivity to free-stream slow acoustic waves, entropy waves and vorticity

  1. Cascadia slow slip events and earthquake initiation theories: Hazards research with Plate Boundary Observatory geodetic data (Invited)

    NASA Astrophysics Data System (ADS)

    Roeloffs, E. A.; Beeler, N. M.

    2013-12-01

    The relationship of transient slow slip events (SSEs) to great earthquakes is a global focus of intense and critical hazards research. Plate Boundary Observatory (PBO) GPS and borehole strainmeter (BSM) networks in the Cascadia forearc provide detailed data that can be compared with simulations predicting how SSEs might evolve as a great earthquake approaches. Cascadia SSEs represent aseismic slip of a few cm in the direction of plate convergence over a period of days or weeks, in a depth range down-dip from the locked zone expected to generate the next great Cascadia subduction earthquake. During an SSE, shear stress borne in the SSE depth range is transferred up-dip at an above-background loading rate. If shear stress on the locked zone is continually accumulating, the daily probability of reaching a threshold failure stress is elevated during an SSE . Alternatively, if dynamic instability is due to rate-weakening fault strength, then SSEs still promote earthquake initiation, but that initiation may be delayed until after the SSE ends, and short-duration SSEs may have negligible effect. In some numerical simulations, great earthquakes could nucleate in the SSE depth range, where effective pressure is assumed to be low. Certain models predict that successive SSEs will slip to increasingly shallower depths, eventually encountering higher effective stress where shear heating can destabilize slip and lead to dynamic rupture. PBO GPS stations have recorded surface deformation from SSEs since inception in 2003; borehole strainmeters (BSMs) have recorded SSE strain signals since 2007. GPS and seismic tremor data show that SSEs reoccur all along the Cascadia subduction zone. An SSE is in progress somewhere in Cascadia much of the time, so the short-term probability increase warranted by a typical SSE is presumably low. We could, however, detect differences among successive SSEs and use criteria informed by the models described above to judge whether a distinctive SSE might represent a higher short-term earthquake probability increase. In all conceptual models, an SSE with more net slip and/or extending further up-dip is more likely to lead to dynamic rupture. There are also models in which faster propagation speed would promote instability by increasing the potential for shear heating. In northernmost Cascadia, BSMs near the coast, up-dip of SSEs, record transient SSE strains at high signal-to-noise ratio. Successive SSEs have differed somewhat in length and propagation speed, but not greatly in up-dip extent or net slip. BSMs up-dip of northern Oregon SSEs have recorded two large SSEs (in 2011 and 2013) having similar strain time series, as well as tremor patterns. In these regions, BSM data could allow an SSE of greater net slip, shallower up-dip extent, or unusual propagation pattern to be identified. Resolution is poorer in reaches of the forearc with BSMs only down-dip of the SSEs. Up-dip BSMs would also be best-positioned to record strain from aseismic slip approaching the locked zone. Some models predict systematic evolution of SSE behavior as a great earthquake approaches, such as decreasing intervals between SSEs, increasing rupture length and slip speed, and slip at successively shallower depths. The northern Cascadia SSEs observed with BSMs since 2007 have not exhibited these patterns, but PBO geodetic instrumentation provides an opportunity to observe them should they develop.

  2. Noise-based surface wave tomography of the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Zigone, D.; Ben-Zion, Y.; Campillo, M.; Roux, P.

    2013-12-01

    We use ambient noise tomography to investigate the crustal structures of the Southern California plate boundary region with a focus on the San Jacinto Fault Zone. A network consisting of 154 broadband and short period sensors is used to estimate the Green's functions of surface waves propagating between station pairs. To obtain better signal to noise ratios in the noise correlation functions, we adopt a procedure using short time windows (4 hr). Energy tests are performed on the data to remove effects of transient sources and instrumental problems. After computing the correlations functions, we perform Optimal Rotation Algorithm (ORA) calculations (Roux, 2009) to better take into account the unfavorable directive ambient seismic noise that is coming mainly from the Pacific in Southern California. This method is used to make travel time measurements on the vertical, radial and transverse components that can be used to evaluate dispersion using frequency-time analysis for periods between 1-20 seconds. After rejecting paths without sufficient signal to noise ratios, we invert the velocity measurements using the Barmin et al (2001) approach on a 1.5 km grid size. The obtained group velocity maps reveal complex structures with clear velocity contrasts across sections of the San Jacinto fault zone, along with low velocity damage zones and basins. We also find a strong group velocity contrast across the southern part of the San Andreas Fault where the Salton trough produces a slower southwest block. The group velocities are inverted to 3D images of shear wave speeds using the linear inversion method of Hermann and Ammon (2002). The results show flower-type damage structures in the top few km of the crust around the SJFZ that are in agreement with, and complement, earthquake tomography studies in the region.

  3. The EarthScope Plate Boundary Observatory Akutan Alaskan Volcano Tiltmeter Installation

    NASA Astrophysics Data System (ADS)

    Pauk, B. A.; Gallaher, W.; Dittmann, T.; Smith, S.

    2007-12-01

    During August of 2007, the Plate Boundary Observatory (PBO) successfully installed four Applied Geomechanics Lily Self Leveling Borehole Tiltmeters on Akutan Volcano, in the central Aleutian islands of Alaska. All four stations were collocated with existing PBO Global Positioning Systems (GPS) stations installed on the volcano in 2005. The tiltmeters will aid researchers in detecting and measuring flank deformation associated with future magmatic intrusions of the volcano. All four of the tiltmeters were installed by PBO field crews with helicopter support provided by JL Aviation and logistical support from the Trident Seafood Corporation, the City of Akutan, and the Akutan Corporation. Lack of roads and drivable trails on the remote volcanic island required that all drilling equipment be transported to each site from the village of Akutan by slinging gear beneath the helicopter and with internal loads. Each tiltmeter hole was drilled to a depth of approximately 30 feet with a portable hydraulic/pneumatic drill rig. The hole was then cased with splined 2.75 inch PVC. The PVC casing was cemented in place with grout and the tiltmeters were installed and packed with fine grain sand to stabilize the tiltmeters inside the casing. The existing PBO NetRS GPS receivers were configured to collect the tiltmeter data through a spare receiver serial port at one sample per minute and 1 hour files. Data from the GPS receivers and tiltmeters is telemetered directly or through a repeater radio to a base station located in the village of Akutan that transmits the data using satellite based communications to connect to the internet and to the UNAVCO Facility data archive where it is made freely available to the public.

  4. Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.; Shumilkin, V. G.; Ustinov, M. V.; Zhigulev, S. V.

    1999-01-01

    Experimental and theoretical studies of low speed leading edge boundary layer receptivity to free-stream vorticity produced by upstream wires normal to the leading edge are discussed. Data include parametric variations in leading edge configuration and details of the incident disturbance field including single and multiple wakes. The induced disturbance amplitude increases with increases in the leading edge diameter and wake interactions. Measurements agree with the theory of M. E. Goldstein.

  5. Limit cycle oscillation of a fluttering plate

    NASA Astrophysics Data System (ADS)

    Ye, Wei-Liang

    1992-09-01

    The limit cycle oscillation for a cantilever plate in a uniform flow stream is investigated. Von Karman's theory for a large deflection plate and quasi-steady aerodynamic theory are assumed. The equations for computing the nonlinear oscillation of a fluttering cantilever plate are derived by means of Rayleigh-Ritz approach. Lagrange's equations and a set of mode function expansions are employed. Time marching simulation is used to determine the limit cycle oscillation and fluttering boundary. The results indicate that the modal expansion is of convergence. The length-to-width ratio of a plate has a great effect on the flutter amplitude of the limit cycle.

  6. Development of an Auto-Convergent Free-Boundary Axisymmetric Equilibrium Solver

    SciTech Connect

    Huang, J.; Menard, J.

    2006-01-01

    The calculation of the magnetic flux given an assumed value for the current profile in axisymmetric toroidal plasmas is essential in studying the effects of various magnetohydrodynamic (MHD) instabilities upon controlled fusion. To this end, an iterative, modular algorithm coupled with a fast, direct elliptic solver for the Grad-Shafranov equation has been used to reconstruct the desired free-boundary equilibrium solution. This free-boundary Grad-Shafranov (FBGS) equilibrium algorithm is modified with the application of the von Hagenow method for determining the flux on the computational boundary, greatly reducing the time cost from O(N3) to O(N2 ln N) machine operations as compared to current Green’s function methods. The inherent variance in implementing the von Hagenow method gives a mean error bound of 0.1 percent with respect to the normal Green’s method. The improvements will allow the grid resolution to be increased efficiently and automatically to reduce the maximum Grad-Shafranov error to values needed for accurate stability calculations on a more effective time scale.

  7. MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect

    PubMed Central

    Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  8. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1991-01-01

    During our participation in the NASA Crustal Dynamics Project under NASA contract NAS-27339 and grant NAG5-814 for the period 1982-1991, we published or submitted for publication 30 research papers and 52 abstracts of presentations at scientific meetings. In addition, five M.I.T. Ph.D. students (Eric Bergman, Steven Bratt, Dan Davis, Jeanne Sauber, Anne Sheehan) were supported wholly or in part by this project during their thesis research. Highlights of our research progress during this period include the following: application of geodetic data to determine rates of strain in the Mojave block and in central California and to clarify the relation of such strain to the San Andreas fault and Pacific-North American plate motions; application of geodetic data to infer post seismic deformation associated with large earthquakes in the Imperial Valley, Hebgen Lake, Argentina, and Chile; determination of the state of stress in oceanic lithosphere from a systematic study of the centroid depths and source mechanisms of oceanic intraplate earthquakes; development of models for the state of stress in young oceanic regions arising from the differential cooling of the lithosphere; determination of the depth extent and rupture characteristics of oceanic transform earthquakes; improved determination of earthquake slip vectors in the Gulf of California, an important data set for the estimation of Pacific-North American plate motions; development of models for the state of stress and mechanics of fold-and-thrust belts and accretionary wedges; development of procedures to invert geoid height, residual bathymetry, and differential body wave travel time residuals for lateral variations in the characteristic temperature and bulk composition of the oceanic upper mantle; and initial GPS measurements of crustal deformation associated with the Imperial-Cerro Prieto fault system in southern California and northern Mexico. Full descriptions of the research conducted on these topics may be found in the Semi-Annual status Reports submitted regularly to NASA over the course of this project and in the publications listed.

  9. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  10. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    PubMed

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782

  11. Unsteady Boundary Layer Flow and Heat Transfer of a Casson Fluid past an Oscillating Vertical Plate with Newtonian Heating

    PubMed Central

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782

  12. Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Kanamori, Hiroo; Stock, Joann; Cormier, Marie-Helene; Legg, Mark

    2014-03-01

    Pacific Ocean crust west of southwest North America was formed by Cenozoic seafloor spreading between the large Pacific Plate and smaller microplates. The eastern limit of this seafloor, the continent-ocean boundary, is the fossil trench along which the microplates subducted and were mostly destroyed in Miocene time. The Pacific-North America Plate boundary motion today is concentrated on continental fault systems well to the east, and this region of oceanic crust is generally thought to be within the rigid Pacific Plate. Yet, the 2012 December 14 Mw 6.3 earthquake that occurred about 275 km west of Ensenada, Baja California, Mexico, is evidence for continued tectonism in this oceanic part of the Pacific Plate. The preferred main shock centroid depth of 20 km was located close to the bottom of the seismogenic thickness of the young oceanic lithosphere. The focal mechanism, derived from both teleseismic P-wave inversion and W-phase analysis of the main shock waveforms, and the 12 aftershocks of M ˜3-4 are consistent with normal faulting on northeast striking nodal planes, which align with surface mapped extensional tectonic trends such as volcanic features in the region. Previous Global Positioning System (GPS) measurements on offshore islands in the California Continental Borderland had detected some distributed Pacific and North America relative plate motion strain that could extend into the epicentral region. The release of this lithospheric strain along existing zones of weakness is a more likely cause of this seismicity than current thermal contraction of the oceanic lithosphere or volcanism. The main shock caused weak to moderate ground shaking in the coastal zones of southern California, USA, and Baja California, Mexico, but the tsunami was negligible.

  13. The 1946 Hispaniola earthquakes and the tectonics of the North America-Caribbean plate boundary zone, northeastern Hispaniola

    NASA Astrophysics Data System (ADS)

    Russo, R. M.; Villasenor, A.

    1995-04-01

    We have determined focal mechanisms for the largest earthquake (M(sub s) = 7.8) recorded instrumentally in the Caribbean Basin, the August 4, 1946, Hispaniola earthquake, and three of its large-magnitude (M(sub s) greater than or equal to 6.1) aftershocks. We also relocated 63 aftershocks and one foreshock of the event series. The aftershock series is elongate, trends WNW, and is centered on the Samana Peninsula of northeast Hispaniola. Shallow aftershocks are in a 75-km-wide linear zone, and intermediate depth (70 to 130 km) aftershocks apparently delineate a moderately south or SSW dipping slab. It is not clear, however, whether these events indicate active subduction of North American Atlantic Ocean lithosphere or are strike-slip events on the interface between subducted but no longer sinking slab and Caribbean mantle. We constrained focal mechanisms of the main shock and three aftershocks by combining observed P and S polarities and amplitude ratios and also by waveform modeling. The two methods yield consistent results. The mechanisms include strike-slip and thrust dispacements on NW striking nodal planes. Fault dip is variable, NE or SW. The NW striking fault planes parallel mapped terrane boundaries and faults in the North America (NA)-Caribbean (Ca) plate boundary zone and are also parallel to the aftershock series trend. We interpret the events to be motions on a WNW trending restraining bend segment of the NA-Ca plate boundary in eastern Hispaniola. We have calculated magnitudes for eight of the earthquakes in the series; for the three events (including the main shock) for which data are available, our magnitudes are systematically less than the previously published magnitude estimates. Given the high magnitude and large aftershock area of the August 4, 1946, event, these earthquakes probably represent the true long-term interplate motions between North America and the terranes in this portion of the plate boundary zone.

  14. Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary.

    PubMed

    Farris, Sarah M

    2008-01-01

    Currently available evidence supports a single origin for the centralized nervous system of bilaterally symmetrical animals. Beneath the staggering diversity of protostome and deuterostome nervous systems lies a fundamental groundplan consisting of a tripartite brain and a nerve cord divided into distinct antero-posterior and medio-lateral zones. As divergent lineages have taken independent paths towards increased encephalization, complex brain centers have arisen that serve multiple levels of sensory processing and advanced behavioral coordination and execution. Many questions arise as one surveys the distribution of these brain centers across the bilaterian phylogenetic trees. What environments did these lineages encounter that promoted the acquisition of energetically expensive brain centers composed of thousands, millions or even trillions of neurons? What novel behavioral capabilities did these brain centers in turn give rise to? Comparative studies within vertebrate clades have revealed instances of parallelism and convergence that have been instructive in associating evolutionary changes in brain structure and function with specific behavioral ecologies. The present account reviews these findings and extends them to invertebrate animals that have independently evolved higher brain centers. By expanding the scope of comparative studies across phyla, it will be possible to uncover structural and functional constraints imposed by deep homology, and to better understand the environmental pressures that have given rise to brain and behavioral complexity. PMID:18836257

  15. Watching the world sweat: Development and utilization of an in-situ conductivity sensor for monitoring chloride dynamics in high temperature hydrothermal fluids at divergent plate boundaries

    Microsoft Academic Search

    Benjamin Isaac Larson

    2008-01-01

    The magmatic upwelling that drives plate tectonic motion at divergent plate boundaries also heats seawater circulating within the Earth's crust. The seawater undergoes physical and chemical changes beneath the surface and the resulting buoyant hydrothermal fluid ascends to the seafloor where it is comes out of structures called hydrothermal vents. One subsurface process of particular interest is phase separation, which

  16. Plate Boundary Observatory Southwest Region Network Operations, Expansion and Communications Hardening

    NASA Astrophysics Data System (ADS)

    Mann, D.; Walls, C. P.; Basset, A.; Turner, R.; Lawrence, S.; Feaux, K.; Mattioli, G. S.

    2014-12-01

    The Southwest Region of the Plate Boundary Observatory manages 480 continuously operating GPS stations located principally along the transform system of the San Andreas fault, Eastern California Shear Zone and the northern Baja peninsula. In the past year, network uptime averaged 98% with greater than 99% data acquisition. In an effort to modernize the network, we have started to replace Trimble NETRS receivers with GNSS capable NETR9 receivers. Currently, we have 431 NetRS receivers deployed in the region, and 48 NetR9 receivers. In addition, 82 stations (17%) stream 1 Hz data over the VRS3Net typically with <0.5 second latency and an average completeness of >92%. Based on their typical data download rates, approximately 252 (53%) of all stations are capable of streaming 1 Hz, but have not yet been added to the real time network because of lack of resources. In the immediate aftermath of the M8.2 Chile earthquake in April 2014, high rate data downloads from the entire SW network had a success rate of 95% and 71% for 1 Hz and 5 Hz data downloads respectively. We have continued to upgrade critical radio networks, including the San Francisco Bay Area, Anza Borrego, and Santa Barbara networks. These efforts are ongoing, but they have already significantly improved data download rates and dependability. We are also converting cell modem to radio communications whenever possible for increased reliability and cost savings. In December 2013 the 13-station Edison network expansion was completed through cost recovery contracts. These stations span coastal southern California in Orange, San Diego and Los Angeles counties including a hybrid site on the Elly oil platform. The primary purpose of the stations is to aid in the seismic source characterization of the San Onofre Nuclear Generating Station and assess the strain field associated with the Oceanside Blind Thrust and Newport Inglewood fault. The new stations fill a gap between SCIGN and PBO. Three sites have WXT520 Vaisala metpacks and twelve stations stream 1Hz data via VRS3Net. UNAVCO and SCRIPPS are working in collaboration to augment a subset of stations with low-cost strong-motion sensors along the San Andreas and San Jacinto faults. To date twelve PBO stations have been upgraded with MEMS accelerometer packages.

  17. Real Time Data From the Plate Boundary Observatory Continuous GPS Network

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Borsa, A.; Feaux, K.; Walls, C.; Mencin, D.

    2009-05-01

    EarthScope's Plate Boundary Observatory (PBO) runs a network of 1,100 continuous GPS stations in North America and has the potential to be a major provider of real-time GPS data for scientific research, hazard monitoring and survey control. PBO is planning to implement real time data flow for its three volcanic subnetworks (at Mt. Saint Helens and Alaksa's Akutan and Unimak Islands) to maximize the return of scientifically important data to detect the onset of eruptive activity. GPS sites with collocated instruments for meteorological measurement are also targeted for both GPS and met data streaming in the near future. On a larger scale, the USGS and a handful of academic institutions are doing research on integrating GPS into earthquake early warning (EEW) networks. The implementation of GPS-based EEW will involve real time streaming from GPS sites on major faults and in areas of high seismic hazard, and PBO is partnering with the USGS to help develop the first implementation of this early warning capability. Finally, planning is underway to develop open statewide real time networks to serve surveying communities and the general public, and PBO is positioned to be a key data provider for these efforts. PBO has been operating a pilot program to provide real-time GPS streams to the public from 75+ stations from the Salton Sea to Alaska. PBO's streaming data is provided exclusively via the NTrip protocol, from servers located at UNAVCO headquarters in Boulder, CO. The formats supported are BINEX and RTCM 2.3 at 1 second sampling, with RTCM 3.0 to be added in the near future. Access to PBO data streams is currently unrestricted and users are free to rebroadcast these streams provided they do not charge for these services. Our experience with this program indicates that we are technically capable of streaming low-latency, real time GPS data from most of our network using existing telemetry, although PBO's IT infrastructure would have to be upgraded to support an expansion of the current system.

  18. Crustal Thickness Variations Along the Southeastern Caribbean Plate Boundary From Teleseismic and Active Source Seismic Data

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Niu, F.; Baldwin, T. K.; Pavlis, G.; Vernon, F.; Rendón, H.; Zelt, C. A.; Schmitz, M.; Levander, A.

    2006-12-01

    Insight into the topography of the Moho discontinuity beneath Venezuela has been progressively gained since the 1990's through seismic refraction studies carried out in the south and east of the country. More recently, both active and passive, land and marine seismic data were acquired by the U.S. BOLIVAR and Venezuelan GEODINOS projects to understand accretion processes and mechanisms for continental growth. The passive component includes an 18-month deployment of 27 PASSCAL broadband seismographs, a 12-month deployment of 15 OBSIP broadband instruments and an ongoing deployment of 8 Rice broadband seismometers. Additionally, data from the 34 BB stations of the national seismic network of Venezuela and the GSN SDV station, give a seismic dataset from 84 stations covering an area of ~750,000 km2. The active component includes 4 onshore-offshore refraction/wide angle reflection profiles as well as the recording of airgun blasts from offshore seismic lines by BB stations in mainland Venezuela and the Leeward Antilles. This abundance of datasets allows us to estimate Moho depths using different methods such as receiver functions, and forward and inverse modeling of wide-angle datasets, but also poses the challenge of reconciling the different values obtained to achieve robust results. Generally the active source and receiver function estimates are close to one another. We present a composite crustal thickness map showing a highly variable crustal thicknesses ranging from 15 km beneath the Caribbean LIP, to ~55 km beneath eastern Venezuela. Crustal thickness is strongly correlated with geologic terranes, but not always as expected. The thickest crust is found to exist in the east of the country, beneath the sedimentary basins north of the Orinoco River where depth to Moho exceeds 50 km. Crustal thickness beneath most of the Precambrian Guayana Shield is fairly constant at ~38 km . In contrast, we observe relatively thin (~25-30 km) crust in the eastern and western coastal mountains, suggesting a significant portion of the high topography of the costal mountain ranges has a dynamic origin. Crustal thickness changes of more than 10km are observed crossing the coast in the plate boundary zone, but are not always directly associated with the surface expression of the strike-slip fault system.

  19. The EarthScope Plate Boundary Observatory Response to the 2006 Augustine Alaskan Volcanic Eruption

    NASA Astrophysics Data System (ADS)

    Pauk, B.; Feaux, K.; Jackson, M.; Friesen, B.; Enders, M.; Baldwin, A.; Fournier, K.; Marzulla, A.

    2006-12-01

    During September of 2006, UNAVCO installed five permanent Plate Boundary Observatory (PBO) GPS stations on Augustine Volcano, in the lower Cook Inlet of Alaska. The installations were done at the request of the PBO Magmatic Systems committee in response to the January 11, 2006 eruption of Augustine Volcano. Prior to the eruption, PBO installed five permanent GPS stations on Augustine in 2004. The five existing stations on the volcano were instrumental in detecting precursory deformation of the volcano's flanks prior to and during the eruption. During the course of the first explosive phase of the eruption, two existing PBO stations, AV03 and AV05 were subsequently destroyed by separate pyroclastic flows. The existing station AV04 was heavily damaged by a separate pyroclastic flow during the continuous phase of the eruption and was repaired during September as well. Existing stations AV01 and AV02 were not affected or damaged by the eruption and remained operating during the entire eruptive phase and subsequent debris flows. All five new stations, and maintenance on the three remaining existing stations, were completed by PBO field crews with helicopter support provided by Maritime Helicopters. Lack of roads and drivable trails on the remote volcanic island required that all equipment be transported to each site from an established base camp by slinging gear beneath the helicopter and internal loads. Each new and existing station installed on the volcano consists of a standard short braced GPS monument, two solar panels mounted to an inclined structure, and a six foot high Plaschem enclosure with two solar panels mounted to one of the inclined sides. Each Plaschem houses 24 12 volt batteries that power a Trimble NetRS GPS receiver and one or two Intuicom radios and are recharged by the solar panels. Data from each GPS receiver is telemetered directly or through a repeater radio to a base station located in the town of Homer that transmits the data over the internet to the UNAVCO data archive at ftp://data-out.unavco.or/pub/PBO_rinex where it is made freely available to the public.

  20. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited)

    NASA Astrophysics Data System (ADS)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.

    2013-12-01

    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper deformation in the maximum depth >10km. Temperature difference between the hanging wall and footwall suggests the displacement along the Nobeoka thrust is >10km, which is almost similar to the mega-splay fault in the Nankai Trough. Geological and physical properties of the Nobeoka thrust suggest an evolving process of the seismogenic mega-splay fault associated with seismogenic up-thrust of the inner wedge of the accretionary prism.

  1. Electromagnetic imaging the of the Pacific-North American plate boundary in central California, USA

    NASA Astrophysics Data System (ADS)

    Wheelock, B. D.; Constable, S.; Key, K. W.

    2010-12-01

    The continental margin of central California lies adjacent to a segment of the San Andreas fault (SAF) that exhibits a transition between locked behavior south of the town of Cholame, and freely slipping (creeping) behavior north of the town of Parkfield. Recent reports of non-volcanic tremor (NVT) near the town of Cholame represent the first observation of NVT in a strike-slip environment. Dense clusters of tremor episodes located at the northern limit of the locked section of the SAF were found to originate within the ductile lower crust at depths between 15 and 30~km, and have been interpreted as evidence of high pore fluid pressure. An excess of fluids in this region is likely given its history of subduction, which transports large quantities of water into the forearc crust and mantle. We present a study that uses deep electromagnetic imaging methods to estimate the abundance and distribution of pore fluids at depths associated with non-volcanic tremor. This study extends a previously collected terrestrial profile of magnetotelluric (MT) data (Becken et al. 2008, Geophysical Journal International) into the offshore environment. We deployed 21 seafloor instruments that collected controlled-source electromagnetic (CSEM) and MT data in a line extending from the coast near Morro Bay, across the continental shelf, and out onto the Pacific plate. The marine MT data results in apparent resistivity and phase estimates at periods between 1~s and 20,000~s, sufficient for probing the upper 100~km of regional conductivity. A significant coast effect, marked by asymptotic behavior in the TE mode of the MT responses, is observed at the deep water sites. This necessitates accurate bathymetry modeling when inverting. The CSEM transmitter was towed by all receivers broadcasting a compact broadband binary waveform with a 0.25~Hz fundamental frequency. The controlled-source signal is observed above the noisefloor at source-receiver offsets up to 6~km, which provides constraints on the conductivity structure of the upper 3~km of the crust. By extending the preceding line of terrestrial MT measurements to the west, we are able to constrain any differences in crust and mantle conductivity associated with the transition across the continental boundary. Furthermore, we address whether the deeply-sourced fluids migrating into the root of the SAF identified in Becken et al. (2008) are related to the fossil subduction zone. Inversion of this combined data set aims to detect the source region of these deep fluids, put constraints on their abundance, and further reveal any pathways by which they may reach the San Andreas fault.

  2. The Plate Boundary Observatory: Current status and plans for the next five years

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Feaux, K.; Meertens, C. M.; Mencin, D.; Miller, M.

    2013-12-01

    UNAVCO currently operates and maintains the NSF-funded Plate Boundary Observatory (PBO), which is the geodetic facility of EarthScope. PBO was designed and built from 2003 to 2008 with $100M investment from the NSF Major Research Equipment and Facilities Construction (MREFC) Program. UNAVCO operated and maintained PBO under a Cooperative Agreement (CA) with NSF from 2008 to 2013 and will continue PBO O&M for the next five years as part of the new Geodesy Advancing Geosciences and EarthScope (GAGE) Facility. PBO is largest continuous GPS and borehole geophysical network in the Americas, with 1100 continuous Global Positioning System (cGPS) sites, including several with multiple monuments, 79 boreholes, with 75 tensor strainmeters, 78 short-period, 3-component seismometers, and pore pressure sensors at 23 sites. PBO also includes 26 tiltmeters deployed at volcanoes in Alaska, Mt St Helens, and Yellowstone caldera and 6 long-baseline laser strainmeters. Surface meteorological sensors are collocated at 154 GPS sites. UNAVCO provides high-rate (1 Hz), low-latency (<1 s) GPS data streams (RT-GPS) from 382 stations in PBO. UNAVCO has delivered over 62 Tb of geodetic data to the EarthScope community since its PBO's inception in 2004. Over the past year, data return for the cGPS component of PBO is 98%, well above the data return metric of 85% set by the NSF, a result of efforts to upgrade power systems and communications infrastructure. In addition, PBO has set the standard for the design, construction, and operation of other multi-hazard networks across the Americas, including COCONet in the Caribbean region and TLALOCNet in Mexico. Funding to support ongoing PBO O&M has declined from FY2012 CA levels under the new GAGE Facility. The implications for data return and data quality metrics as well as replacement of aging PBO GPS instruments with GNSS-compatible systems are as yet unknown. A process to assess the cost of specific PBO components, data rates, enhanced capabilities, and method of delivery (i.e. continuous streams vs. archived files) relative to their scientific value will be proposed. In addition, options to partner with other federal mission-oriented agencies and possible commercial ventures also will be discussed. 1100 station PBO continuous GPS Network.

  3. The Plate Boundary Observatory (PBO) Network in the PNW region of the United States

    NASA Astrophysics Data System (ADS)

    Hafner, K.; Austin, K.; Feaux, K.; Jackson, M.; Fengler, K.; Doelger, S.

    2007-05-01

    The Pacific Northwest Region (PNW) of the United States contains a variety of geologic regions and tectonic problems. These include the Cascadia Subduction Zone, Mt. St. Helens and the transition to the Basin and Range province. Since September of 2003, the Plate Boundary Observatory (PBO), which is part of the larger NSF-funded EarthScope project, has been installing a network of continuously operating GPS, strainmeter and tiltmeter instruments. There are currently 78 GPS, 13 strainmeter/borehole seismometers, and 4 tiltmeters operating in the PNW region. The data from this network has already been used to study Episodic Tremor Events (ETS) during September 2005 and January 2007, and renewed activity on Mt. St. Helens that began on September 23, 2004. The goal is have 134 continuously operating GPS stations by the end of September 2008. The locations of the GPS stations were determined by scientific committees. Whenever possible, multiple instruments are deployed at the same location, and share power and communications resources. Examples of this are GPS antennas mounted on top of strainmeter boreholes in the forearc region of western Washington and tiltmeters collecting data through GPS receivers on Mt. St. Helens. In addition, a number of stations provide real time kinematic data to professional surveyors within the region. During the fall of 2006, a 16 GPS and 4 tiltmeter station network was completed on Mt. St. Helens. Results from analysis of both PBO and USGS GPS stations on the mountain, show a radially inward and downward motion, with the maximum vertical offsets high on the mountain and the maximum horizontal offsets located at distances of 5-10km from the crater. Displacements are small over the 2004-present eruption with a maximum of 3cm of inward movement. GPS stations installed high on the mountain experience severe weather and heavy rime accumulations for approximately 6 months of the year. Ice build-up causes distortion of the GPS antenna phase center, and sun blockages on solar panels at several sites. Due to the large battery storage capacity, there have been very few power failures, however the build up of ice on the GPS antennas causes cm-level pseudo- displacements that mask the ground movements associated with the eruption.

  4. The Plate Boundary Observatory Borehole Strainmeter Program: Overview of Data Analysis and Products

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K.; Anderson, G.; Hasting, M.; Hoyt, B.; Jackson, M.; Lee, E.; Matykiewicz, J.; Mencin, D.; Persson, E.; Smith, S.; Torrez, D.; Wright, J.

    2006-12-01

    The PBO borehole strainmeter network is now the largest in the US with 19 strainmeters installed along the Western US Plate Boundary: 14 in the Pacific North West and 5 in Anza, Southern California. With five drilling crews operating though October 2006 the network should grow to 28 strainmeters by December 2006. The areas include Parkfield and Mt St. Helens, PBO's first strainmeter installation in a volcanic region. PBO strainmeter sites are multi-instrumented. Seismic, pore pressure, atmospheric pressure, rainfall and temperature data are measured at almost all sites. Tiltmeters will also be installed at some sites. The strainmeters record at 20-sps, 1-sps and 10-minute interval and are downloaded hourly. The 1-sps data are sent to the NCEDC and IRIS DMC within a few minutes of being retrieved from the strainmeter. The data are archived in SEED format and can be viewed and analyzed with any SEED handling software. PBO's Borehole Strainmeter Analysis Center (BSMAC) in Socorro, NM, produces processed strain data every 10 to 14 days. The data are stored in XML format giving the user the option to use PBO edits or to work with unedited data. The XML file contains time series corrections for the atmospheric pressure, the Earth tides and borehole effects. Every 3 months the data are reviewed and the borehole trends and tidal signal are re- estimated to form the best possible processed data set. PBO reviewed the quality of the data collected by the first 8 strainmeters in a workshop in January 2006. The group discussed coring, examined the borehole trends, tidal signal, and a PSD analysis of data from each strainmeter. A second workshop, focusing on data analysis and in-situ calibration, will take place in October 2006. The UNAVCO strainmeter web page (http://pboweb.unavco.org) provides links to the raw and processed data and is a source for information on data formats, links to software and instrument documentation. An XML log file for each strainmeter provides a history of firmware upgrades and details anything that might affect data quality. A homepage has been developed for each strainmeter where plots of strain and state-of-health data can be viewed. UNAVCO has provided training in processing strainmeter data both at the BSMAC and through short courses. In June 2006 UNAVCO hosted the joint GPS and Strainmeter Short course where the topics of data analysis, calibration, hydrological signals and noise models where taught using PBO data. The next UNAVCO strainmeter course is planned for summer 2007.

  5. 2011 Operations and Maintenance Activities in the East Region of UNAVCO's Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Dittmann, T.; Feaux, K.; Kasmer, D.; Jenkins, F.; Mencin, D.

    2011-12-01

    2011 marked Year 3 of Operations and Maintenance of the Plate Boundary Observatory (PBO). In the East Region of PBO, it was a year characterized by several major projects as well as scheduled ongoing maintenance activities. The most significant major project was a USGS/ARRA funded communications upgrade in Yellowstone National Park. This upgrade consisted of bringing 8 existing PBO stations within the Yellowstone volcanic region to near real-time communications. This work will be completed on time and in collaboration with the National Park Service. The upgrade promises to provide much faster latency for invaluable data being recorded for one of the most geodetically critical regions of the current PBO network. Another significant ongoing project in the East Region has been supporting the community that continues to use PBO data. In particular, support of Kristine Larson (Univ of CO) both in installing webcams at PBO sites for monitoring snow depth as well as supporting vegetative surveys at current PBO sites. Similarly, the East Region responded promptly to the community with requests for data quality issues that are station hardware related, including replacing GPS antennae and receivers. With regards to ongoing operations and maintenance projects, reasons for site visits in 2011 were dominated by two significant situations: battery replacement and CDMA modem swaps. 83 site visits were required as part of the Operations and Maintenance strategic battery plan of 5 year battery replacements. This proved to be a considerable challenge due to the scale and geography of the scheduled replacements- the sites were spread throughout the entire network, east to west and north to south. 20 station visits were required due to a Verizon upgrade of the older Alltel network purchased by Verizon. These stations are predominantly in the Rocky Mountain region, but often times had limited access to due weather. Overall, despite record snowfalls throughout the west, state of health in the East Region was consistently over 95% operational; a testament to past network-hardening and current vigilance and hard work. The east region looks forward to a successful 2012 campaign.

  6. North America-Pacific plate boundary, an elastic-plastic megashear - Evidence from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1988-01-01

    Data obtained by Mark III VLBI measurements of radio signals from permanent and mobile VLBI sites for 5.5 years of observations, starting in October 1982, were used to derive a picture of the earth crust deformation near the North America-Pacific plate boundary. The data, which included the vector positions of the VLBI sites and their rate of change, were used for comparison with a number of lithospheric deformation models based upon the concept that the motions of points near the North America-Pacific plate boundary are a linear combination of North America and Pacific velocities. The best of these models were found to fit 95 percent of the variance in 139 VLBI length and transverse velocity observations. Instantaneous shear deformation associated with plate tectonics is apparently developing in a zone 450 km wide paralleling the San Andreas Fault; some of this deformation will be recovered through elastic rebound, while the rest will be permanently set through plastic processes. Because the VLBI data have not been collected for a significant fraction of the earthquake cycle, they cannot discriminate between elastic and plastic behaviors.

  7. Seismic Anisotropy, Deformation, Stress and Faulting in the crust and mantle at the New Zealand Plate Boundary (Invited)

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Karalliyadda, S.; Zietlow, D. W.; Holt, R. A.; Sheehan, A. F.; Townend, J.; Stern, T. A.

    2013-12-01

    We summarize measurements of seismic anisotropy and its relation to fault zone structure in the crust and mantle of New Zealand, which sits on the NE/SW striking transpressional boundary region between the Pacific and Australian plates. In the North Island, the Pacific Plate subducts obliquely under the Australian Plate while in the South Island, the Australian plate subducts obliquely under the Pacific Plate. These two subduction zones are joined by the transpressional Alpine Fault. Seismic anisotropy measured with shear wave splitting of SKS and deep teleseismic S arrivals of on-shore stations yield mostly plate-boundary-parallel fast directions (phi) and delay times (dt) ranging on the order of 1.5 to 2.5 seconds, suggesting broad scale shear deformation in the crust, lithosphere and asthenosphere. Asthenospheric shear may be considered as trench-parallel flow below the North Island. Delay times are even higher (up to 4.5 s) in the back-arc Central Volcanic Region (CVR), an area of active extension, and decrease sharply to zero at its western boundary. These values have been interpreted as caused by melt bands in the CVR giving way to a region that has been stripped of lithosphere. South of the CVR the back-arc is in compression and splitting is nearly constant at 1.6 s, except for higher delay times up to 3 s in the southeastern North Island. Abrupt lateral changes in delay time in the North Island have been attributed to strong, shallow anisotropy in the crust and mantle wedge, but some contamination from isotropic velocity changes may also affect the delay times. An ocean bottom seismometer (OBS) deployment off the South Island shows that plate-boundary parallel anisotropy, interpreted as the limit of shear deformation, reaches to 100 km on either side of the Alpine Fault, changing to nearly E-W at the eastern-most land stations and at most of the offshore east coast stations. Southern OBS and land stations yield more northerly fast directions, suggesting rotation of anisotropic axes and either alignment with asthenospheric flow parallel to the absolute plate motion, or small strain at an angle of about 45 degrees to the shear plane. Frequency-dependence of delay times is apparent for teleseismic S, ScS and local S phases, with smaller periods yielding smaller delay times. The higher frequency waves also yield more scatter in delay times as well as fast directions. However, spatial averaging and delay time tomography of local S phases yield consistent results, with regions of high anisotropy near known fault zones and fault-zone parallel anisotropy in many areas, suggesting fault zone mineralization or shearing near the fault zone controls some anisotropy. In many other areas, shear wave splitting of local earthquakes is parallel to the maximum horizontal stress direction (SHmax) as measured by focal mechanism inversions, suggesting that aligned, fluid-filled cracks control anisotropy in the shallow crust away from faults. For aftershocks of the E-W striking 2010 M=7.1 Darfield earthquake in the Canterbury Plains in the east-central South Island, a spatial rotation of both fast directions and SHmax occurs. Far from the fault plane, SHmax and phi are at 116+-18 degrees, but earthquakes increasingly near to the fault trace yield increasingly E-W SHmax. This suggests the fault is either weak, or the stress rotated after the earthquake.

  8. A Truly Boundary-Only Meshfree Method Applied to Kirchhoff Plate Bending Problems

    Microsoft Academic Search

    Zhuojia Fu; Wen Chen

    2009-01-01

    The boundary particle method (BPM) is a truly boundary-only colloca- tion scheme, whose basis function is the high-order nonsingular general solution or singular fundamental solution, based on the recursive composite multiple reci- procity method (RC-MRM). The RC-MRM employs the high-order composite dif- ferential operator to solve a much wider variety of inhomogeneous problems with boundary-only collocation nodes while significantly reducing

  9. Plate motion

    SciTech Connect

    Gordon, R.G. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  10. Consolidation patterns during initiation and evolution of a plate-boundary decollement zone: northern Barbados accretionary prism

    USGS Publications Warehouse

    Moore, J.C.; Klaus, A.; Bangs, N.L.; Bekins, B.; Bucker, C.J.; Bruckmann, W.; Erickson, S.N.; Hansen, O.; Horton, T.; Ireland, P.; Major, C.O.; Moore, G.F.; Peacock, S.; Saito, S.; Screaton, E.J.; Shimeld, J.W.; Stauffer, P.H.; Taymaz, T.; Teas, P.A.; Tokunaga, T.

    1998-01-01

    Borehole logs from the northern Barbados accretionary prism show that the plate-boundary decollement initiates in a low-density radiolarian claystone. With continued thrusting, the decollement zone consolidates, but in a patchy manner. The logs calibrate a three-dimensional seismic reflection image of the decollement zone and indicate which portions are of low density and enriched in fluid, and which portions have consolidated. The seismic image demonstrates that an underconsolidated patch of the decollement zone connects to a fluid-rich conduit extending down the decollement surface. Fluid migration up this conduit probably supports the open pore structure in the underconsolidated patch.

  11. Consolidation patterns during initiation and evolution of a plate-boundary decollement zone: Northern Barbados accretionary prism

    NASA Astrophysics Data System (ADS)

    Moore, J. Casey; Klaus, Adam; Bangs, Nathan L.; Bekins, Barbara; Bücker, Christian J.; Brückmann, Warner; Erickson, Stephanie N.; Hansen, Olav; Horton, Thomas; Ireland, Peter; Olson Major, Candace; Moore, Gregory F.; Peacock, Sheila; Saito, Saneatsu; Screaton, Elizabeth J.; Shimeld, John W.; Stauffer, Philip Henry; Taymaz, Tuncay; Teas, Philip A.; Tokunaga, Tomochika

    1998-09-01

    Borehole logs from the northern Barbados accretionary prism show that the plate-boundary decollement initiates in a low-density radiolarian claystone. With continued thrusting, the decollement zone consolidates, but in a patchy manner. The logs calibrate a three-dimensional seismic reflection image of the decollement zone and indicate which portions are of low density and enriched in fluid, and which portions have consolidated. The seismic image demonstrates that an underconsolidated patch of the decollement zone connects to a fluid-rich conduit extending down the decollement surface. Fluid migration up this conduit probably supports the open pore structure in the underconsolidated patch.

  12. Neotectonic map of Syria and some aspects of Late Cenozoic evolution of the northwestern boundary zone of the Arabian plate

    NASA Astrophysics Data System (ADS)

    Rukieh, M.; Trifonov, V. G.; Dodonov, A. E.; Minini, H.; Ammar, O.; Ivanova, T. P.; Zaza, T.; Yusef, A.; Al-Shara, M.; Jobaili, Y.

    2005-09-01

    The neotectonic map of Syria, 1:500,000, was compiled by the authors in 2003-2004. The map shows tectonic features formed or continued to develop during the Neogene and Quaternary in Syria and adjacent territories, including the Mediterranean realm. The neotectonic structure of the region was formed as a result of three phases of deformation. During the Early Miocene first phase, the Arabian plate moved along the Dead Sea-Jordan segments of the Levant (Dead Sea) transform fault zone, Roum fault and its continuation in the continental slope of the Mediterranean. The chain of the coastal anticlines in the "Arabian" side of the transform zone and the Lattaqie oblique (sinistral-thrust) boundary fault zone in the north were formed under the NNW-trending compression. The Lattaqie zone continued by the Cyprus arc in the west and by the Taurus (Bitlis) thrust in the east and further by the Main Thrust of the Zagros. After "quiet" (for Syria) epoch of the Middle Miocene when the Arabian plate moved to the NE, during the Late Miocene second phase of deformation, the Arabian plate moved again to the NNW along the same transform boundary. But a part of the Late Miocene plate motion (up to 20 km) resulted by shortening in the Anti-Leban-Palmyride fold-thrust belt that separated the Aleppo block from the main part of the Arabian plate. During the Pliocene-Quaternary third phase of deformation, the recent structural pattern of the Levant zone was formed in Lebanon and the northwestern Syria. At the same time, the Serghaya and smaller sinistral faults branched out the Levant zone and the system of the W-E-trending convex to the south dextral faults ruptured the Palmyrides and the stable part of the Arabian plate. The total Pliocene-Quaternary sinistral offset on the young Levant zone segments and the associated faults has reached 35-40 km, like on the Dead Sea-Jordan segments of the Levant fault zone. The faults, demonstrating the Pliocene-Quaternary activity are still active now and represent the main seismic zones in Syria. Offsets on them are mostly a cumulative effect of strong earthquakes.

  13. Stability of GNSS Monumentation: Analysis of Co-Located Monuments in the Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.; Feaux, K.; Dittmann, S. T.; Walls, C. P.; Austin, K. E.; Mattioli, G. S.

    2013-12-01

    Geodetic-quality permanent GNSS stations have used a number of different monumentation styles for the purpose of ensuring that the motions of the GNSS antenna reflect those of the Earth's crust while minimizing non-tectonic motions near the surface. Monuments range from simple masts drilled into building roofs or bedrock that cost a few hundred dollars to machine-drilled-braced monuments in soil that cost tens of thousands. Monument stability can depend on their design, the construction techniques used to install them, and the local surface geology where they are installed. Previous studies have separately investigated pairs of identical monuments at a single site, monument type variations using global statistical analysis, and multiple monument styles at a single site. Despite these efforts, the stability of different styles of monumentation in similarly varying geologic conditions has not been adequately determined. Errors in GPS measurements can be dominated by error sources unrelated to the movement of the monument with respect to the Earth's crust, thus making it difficult to isolate monument instability. Contributions from GPS measurement error unrelated to monument stability include, but are not limited to: satellite orbits, satellite clocks, tropospheric delay, and ionospheric delay, antenna phase center variations, near-field multipath, far-field multipath. Installing multiple monuments with small antenna separations at a given test location can help to reduce GPS measurement errors. To increase the understanding of monument stability of various monument styles in diverse geologic conditions UNAVCO has constructed two additional monuments at five existing Plate Boundary Observatory stations during the past year. Deep drilled-braced, short drilled-braced, and single mast type monuments were installed at sites with bedrock at the surface; deep drilled-braced, short driven-braced and pillar type monuments were installed at sites with alluvium or soil at the surface. Sites were selected that comprised a variety of geographic, hydrologic, and geologic conditions. The resulting set of 10-meter spaced monument triangles will yield valuable information regarding the stability of their types in different settings. Data collected from PBO Multi-Monument Experiment are being analyzed using a variety of methods. Each site is characterized using quality-control parameters such as multipath, signal-to-noise and previously determined seasonal variations. High-precision processing by the PBO Analysis Centers with GAMIT and GIPSY software packages using regional and global schemes yield time-series with millimeter-level that determine noise content, overall site stability relative to other PBO sites and differential motions between the individual monuments. Sub-millimeter results from UNAVCO's short-baseline processing efforts will be presented showing further details of monument performance site characterization including the effects of varying elevation cutoff angle and modeling of monument-dependent noise.

  14. EarthScope's Plate Boundary Observatory as the Mother of Invention (Invited)

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Kreemer, C.

    2013-12-01

    The Plate Boundary Observatory (PBO) component of EarthScope includes a network of over 1,100 permanent, continuously operating GPS stations. After 5 years of site selection, permitting, and construction, the network was completed in 2008. Having such an unprecedented number of high quality stations in western North America has enabled us to image geology in action, as it happens, such as contemporary uplift of the Sierra Nevada, and block rotation in the Walker Lane. Yet, when PBO was in its planning stages, questions were raised as to whether GPS analysis could keep up with the flood of data, while producing results with the highest achievable accuracy. The general consensus was that the challenge would be met by a combination of innovative data processing methods together with the inevitable progress in computer speed and capacity. Various innovations made by the geodetic community over the last decade have enabled massive operational processing of GPS data with high accuracy. For example, now in 2013, the Nevada Geodetic Laboratory operationally produces position time series and quality assurance data from all ~7,000 GPS geodetic stations in the world that make data publicly available. Of these stations, 4,000 have daily time series updated the next day, and 2,000 have 5-minute time series updated within 1-2 hours of real time. The RMS precision of daily positions for well-sited stations are at the level of 1-2 mm horizontal, and 3-6 mm vertical in the International Terrestrial Reference Frame (ITRF). For 5-minute positions, the precision is at the level of 6-12 mm horizontal, and 15-30 mm vertical. Here we review some of the innovations that have made all of this possible, which were in part driven by challenges presented by EarthScope. First of all, at the data processing level, much creative effort went into making computer processing time scale linearly with the number of GPS stations. The Precise Point Positioning (PPP) technique invented in 1997 has been significantly enhanced recently by techniques to resolve integer-cycle ambiguities in the GPS carrier phase data for single stations. PPP with ambiguity resolution now delivers positioning as precise as full-network processing using differenced data, but with processing time that scales linearly with the number of stations. PPP depends critically on accurate GPS orbit and clock modeling and estimation, which in turn depends on the International GNSS Service (IGS) and its ~500-station global network. IGS products have continued to improve over the last decade as a result of innovation in observable modeling, such as the introduction of antenna calibrations, and new satellite force models. At the foundation of this interconnected geodetic system is the ITRF, which depends critically on the synergy of various space-based geodetic techniques, and the IERS Conventions, which ensure accurate models and overall consistency between analysis centers. This 'global geodetic observing system' is monumental in scale, and involves the hard operational work, research and development of the global geodetic community. Indeed, it is the improvements of this system by the innovations of the geodetic community that has enabled EarthScope to meet its scientific requirements.

  15. The Dauki Thrust Fault and the Shillong Anticline: An incipient plate boundary in NE India?

    NASA Astrophysics Data System (ADS)

    Ferguson, E. K.; Seeber, L.; Steckler, M. S.; Akhter, S. H.; Mondal, D.; Lenhart, A.

    2012-12-01

    The Shillong Massif is a regional contractional structure developing across the Assam sliver of the Indian plate near the Eastern Syntaxis between the Himalaya and Burma arcs. Faulting associated with the Shillong Massif is a major source of earthquake hazard. The massif is a composite basement-cored asymmetric anticline and is 100km wide, >350km long and 1.8km high. The high relief southern limb preserves a Cretaceous-Paleocene passive margin sequence despite extreme rainfall while the gentler northern limb is devoid of sedimentary cover. This asymmetry suggests southward growth of the structure. The Dauki fault along the south limb builds this relief. From the south-verging structure, we infer a regional deeply-rooted north-dipping blind thrust fault. It strikes E-W and obliquely intersects the NE-SW margin of India, thus displaying three segments: Western, within continental India; Central, along the former passive margin; and Eastern, overridden by the west-verging Burma accretion system. We present findings from recent geologic fieldwork on the western and central segments. The broadly warped erosional surface of the massif defines a single anticline in the central segment, east of the intersection with the hinge zone of the continental margin buried by the Ganges-Brahmaputra Delta. The south limb of the anticline forms a steep topographic front, but is even steeper structurally as defined by the Cretaceous-Eocene cover. Below it, Sylhet Trap Basalts intrude and cover Precambrian basement. Dikes, presumably parallel to the rifted margin, are also parallel to the front, suggesting thrust reactivation of rift-related faults. Less competent Neogene clastics are preserved only near the base of the mountain front. Drag folds in these rocks suggest north-vergence and a roof thrust above a blind thrust wedge floored by the Dauki thrust fault. West of the hinge zone, the contractional structure penetrates the Indian continent and bifurcates. After branching into the Dapsi Fault, the Dauki Fault continues westward as the erosion-deposition boundary combined with a belt of N-S shortening. The Dapsi thrust fault strikes WNW across the Shillong massif and dips NNE. It is mostly blind below a topographically expressed fold involving basement and passive-margin cover. Recent fieldwork has shown that the fault is better exposed in the west, where eventually Archean basement juxtaposes folded and steeply dipping fluvial sediment. Both Dauki and Dapsi faults probably continue beyond the Brahmaputra River, where extreme fluvial processes mask them. The area between the two faults is a gentle southward monocline with little or no shortening. Thus uplift of this area stems from slip on the Dauki thrust fault, not from pervasive shortening. The Burma foldbelt overrides the Shillong Plateau and is warped but continuous across the eastern segment of the Dauki fault. The Haflong-Naga thrust front north of the Dauki merges with the fold-thrust belt in the Sylhet basin to the south, despite >150km of differential advance due to much greater advance of the accretionary prism in the basin. Where the Dauki and Haflong-Naga thrusts cross, the thrust fronts are nearly parallel and opposite vergence. We trace a Dauki-related topographic front eastward across the Burma Range. This and other evidence suggest that the Dauki Fault continues below the foldbelt.

  16. Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin

    USGS Publications Warehouse

    Holbrook, W.S.; Brocher, T.M.; ten Brink, U.S.; Hole, J.A.

    1996-01-01

    Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.

  17. Secular and annual hydrologic effects from the Plate Boundary Observatory GPS network

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Wahr, J. M.; Borsa, A. A.; Jackson, M. E.; Herring, T.

    2009-12-01

    The Plate Boundary Observatory (PBO) GPS network is providing accurate and spatially coherent vertical signals that can be interpreted in terms of hydrological loading and poroelastic effects from both natural and anthropogenic changes in water storage. Data used for this analysis are the precise coordinate time series produced on a daily basis by PBO Analysis Centers at New Mexico Institute of Mining and Technology and at Central Washington University and combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology. These products, as well as derived velocity solutions, are made freely available from the UNAVCO Data Center in Boulder. Analysis of secular trends and annual variations in the time series was made using the analysis software of Langbein, 2008. Spatial variations in the amplitude and phase of the annual vertical component of motion allow for identification of anthropogenic effects due to water pumping, irrigation, and reservoir lake variations, and of outliers due to instrumental or other local site effects. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and the Pacific Northwest. The peak annual uplift is in October and is correlated to hydrological loading effects. Mountainous areas appear to be responding elastically to the load of the water contained in surface soil, fractures, and snow. Vertical signals are highest when the water load is at a minimum. The vertical elastic hydrologic loading signal was modeled using the 0.25 degree community NOAH land-surface model (LSM) and generally fits the observed GPS signal. Addition comparisons will be made using the Mosaic LSM and the NOAA “Leaky Bucket” hydrologic model. In contrast to mountain stations that are installed principally in bedrock, stations in the valleys of California are installed in sediments. Observations from these stations show greater spatial variability ranging from almost no detectable annual signal to very large, 20-30 mm, vertical amplitudes that reach a maximum in March. Vertical signals in the valleys are the result of poroelastic effects induced by groundwater variations caused by pumping for irrigation or other purposes and are highest when groundwater is at maximum recharge level. Secular trends in the vertical time series show 1-3 mm/yr of subsidence across the western U.S. In areas of groundwater pumping the rates are up to several cm/yr showing subsidence as pumping exceeds annual recharge over a multi-year time period. In the mountainous areas where hydrologic loading is evident in the annual signals, secular trends show uplift of 1-3 mm/yr possibly due to regional drought and decreased overall water volumes that result in less load and vertical uplift. Overall, these results illustrate the potential of using GPS data to constrain hydrological models. In return, accurate hydrologic loading models will be needed to better measure and detect vertical tectonic motions at the mm-level.

  18. Receptivity of a supersonic boundary layer over a flat plate. Part 3. Effects of different types of free-stream disturbances

    Microsoft Academic Search

    Yanbao Ma; Xiaolin Zhong

    2005-01-01

    Supersonic boundary-layer receptivity to different types of free-stream disturbance is studied for a Mach 4.5 boundary-layer flow over a flat plate by using the approaches of both direct numerical simulation and linear stability theory. This paper is Part 3 of a three-part study of the receptivity of supersonic boundary layers to free-stream disturbances. The present paper investigates receptivity to four

  19. Late Neogene geohistory analysis of the Humboldt basin and its relationship to convergence of the Juan de Fuca plate

    USGS Publications Warehouse

    McCrory, P.A.

    1989-01-01

    Geohistory analysis of Neogene Humboldt basin strata provides important constraints for hypotheses of the tectonic evolution of the southern Cascadia subduction margin, leading up to the arrival of the Mendocino triple junction. This analysis suggests that the tectonic evolution of the Humboldt basin area was dominated by coupling between the downgoing Juan de Fuca plate and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin uplift and subsidence which occur during periods of tectonic plate adjustment. -from Author

  20. On mixed finite element methods in plate bending analysis

    NASA Astrophysics Data System (ADS)

    Blum, H.; Rannacher, R.

    1990-05-01

    Most of the existing convergence theory of mixed finite element methods for solving the plate bending problem converns the model case of a purely clamped or simply supported plate with sufficiently regular boundary. The extension of this analysis to more complicated situations encounters two major difficulties: first, the problem of verifying the stability of the schemes in the case of a partially free boundary and, second, the reduction of the solution's regularity in the presence of reentrant corners or changes in the type of the boundary conditions. In this paper these questions are studied for the approximation of the Kirchhoff plate model by one of the mixed finite element schemes due to L. R. Herrmann, the so-called “ first Herrmann scheme”. It is shown that this method converges on any polygonal domain and for all usual boundary conditions. The proof is based on the fact that this particular mixed scheme is algebraically equivalent to a nonconforming displacement method.

  1. Late Mesozoic- Cenozoic plate boundaries in the North Atlantic – Arctic: Quantitative reconstructions using Hellinger criterion in GPlates

    NASA Astrophysics Data System (ADS)

    Gaina, Carmen; Watson, Robin; Cirbus, Juraj

    2015-04-01

    Cretaceous extension that resulted in the formation of several sedimentary basins along the North American and western and southwestern Greenland margin was followed by seafloor spreading in the Labrador Sea and Baffin Bay. Controversy regarding the timing of the oldest oceanic crust in these basins spanned more than 25 years and it is still not resolved due to the complexity of the margins and non-uniqueness of potential field data interpretation. Here we revisit the geophysical data (in particular the magnetic and gravity data) available for the Labrador Sea and Baffin Bay in order to identify the age of oceanic crust and infer new parameters that can be used for quantitative kinematic reconstructions. We identify chrons 20 to 29 for the central part of the basin. For the crust formed near the extinct spreading ridge we have modelled chrons 19 to 15 assuming an ultraslow spreading rate. Oceanic crust older than chron 29 is uncertain and may be part of a transitional crust that possibly contains other type of crust or exhumed mantle. The new magnetic anomaly identifications were inverted using the Hellinger (1981) criterion of fit. In this method the magnetic data are regarded as points on two conjugate isochrons consisting of great circle segments. This method has been extensively used for kinematic reconstructions since Royer and Chang (1991) first implemented it for quantitative plate tectonics, and is now available as a new interactive tool in the open-source software GPlates (www.gplates.org). The GPlates Hellinger tool lets the user interactively generate a best-fit rotation pole to a series of segmented magnetic picks. The fitting and determination of uncertainties are based on the FORTRAN program hellinger1 (Chang, 1988; Hellinger, 1981; Hanna and Chang, 1990); Royer and Chang, 1991). Input data can be viewed and adjusted both tabularly and graphically, and the best fit can be viewed and tested on the GPlates globe. The new set of rotations and their uncertainties are combined with a regional model and used to infer the plate boundaries during the formation of Labrador Sea and Baffin Bay. Challenges for establishing the continuation of these plate boundaries the Arctic domain are also discussed. References Chang, T. (1988), Estimating the relative rotation of two tectonic plates from boundary crossings, J. Am. Stat. Assoc., 83, 1178-1183. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, J Geophys Res, 86, 9312-9318. Hanna, M.S and T. Chang (1990), On graphically representing the confidence region for an unknown rotation in three dimensions. Computers & Geosciences 16 (2), 163-194. Royer, J. Y., and T. Chang (1991), Evidence for Relative Motions between the Indian and Australian Plates during the Last 20 My from Plate Tectonic Reconstructions - Implications for the Deformation of the Indo-Australian Plate, J Geophys Res, 96(B7), 11779-11802.

  2. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    NASA Astrophysics Data System (ADS)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at Diglipur (depth: 21 km) and the August 10, 2009, Mw 7.5 normal faulting earthquake near Coco Island (depth: 22 km), within the northern terminus of the 2004 rupture are cited as examples of the alternating pre and post earthquake stress conditions. The major pre and post 2004 clusters were associated with the Andaman Spreading Ridge (ASR). In the Nicobar segment, the most recent earthquake on June 12, 2010, Mw 7.5 (focal depth: 35 km) occurred very close to the plate boundary, through left lateral strike-slip faulting. A segment that does not feature any active volcanoes unlike its northern and southern counterparts, this part of the plate boundary has generated several right lateral strike-slip earthquakes, mostly on the Sumatra Fault System. The left-lateral strike-slip faulting associated with the June 12 event on a nearly N-S oriented fault plane consistent with the trend of the Ninety East ridge and the occasional left-lateral earthquakes prior to the 2004 mega-thrust event suggest the involvement of the Ninety East ridge in the subduction process.

  3. Plate Tectonics

    NSDL National Science Digital Library

    Smoothstone

    This interactive Flash explores plate tectonics and provides an interactive map where users can identify plate boundaries with name and velocities as well as locations of earthquakes, volcanoes, and hotspots. The site also provides animations and supplementary information about plate movement and subduction. This resource is a helpful overview or review for introductory level high school or undergraduate physical geology or Earth science students.

  4. STRUCTURAL MODEL OF THE PANAMA - NORTH ANDES PLATE BOUNDARY ZONE FROM REMOTE SENSING, GEOLOGIC MAPPING AND SEISMIC TOMOGRAPHY

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; Vargas, G.; Montes, L. A.; Molano, J. C.; Kammer, A.; Briceño, L. A.; Vargas-Jimenez, C. A.

    2009-12-01

    To advance in the understanding of the tectonic setting of the Panama - North Andres plate boundary zone, an integrated research project is being carried out, including remote sensing, field geology, gravity and magnetic surveys and passive seismic tomography. This program includes the geologic interpretation of C band -RADARSAT, X-band TERRASAR and L-band ALOS PALSAR images with fieldwork verification. The Panama microplate is characterized by intrusive and extrusive igneous rocks or cretaceous and tertiary ages, respectively, while the North Andes is formed by a thick sedimentary sequence of tertiary age. Thick quaternary deposits of the Atrato river and the Gulf of Uraba are covering the plate boundary zone. A seismological network with 25 triaxial broadband stations has been implemented to monitor the seismic activity since January 2009 to present. The registered seismic events have been processed including the determination of first arrival of P and S waves and their wave attenuation, Regional stress and strain estimates and seismic anisotropy are being calculated. Three structural trends are identified: a) NE structures associated with main regional faults b) EW and NE structures associated with secondary regional faults and c) local structures and lineaments associated with major fractures. Mud volcanoes were detected in the northeastern part of the basin. Some of them aligned with NW and EW structures.

  5. Learning Assessment #1 - Plate Tectonics

    NSDL National Science Digital Library

    Michelle Speta

    In Part 1 of this activity, students are provided with a blank topographic profile and an associated tectonic plate boundary map. Students are asked to draw a schematic cross-section on the profile down to the asthenosphere including tectonic plates (with relative thicknesses of crust etc. appropriately illustrated), arrows indicating directions of plate movement, tectonic features (mid-ocean ridges, trenches and volcanic arcs) and symbols indicating where melting is occurring at depth. In Part 2, students are asked to provide geological and geophysical lines of evidence to support their placement of convergent and divergent boundaries, respectively. A bonus question asks students to predict what would happen if spreading along the Atlantic mid-ocean ridge were to stop. Students are referred to appropriate sections of the textbook to guide them in completing all the parts of this activity. Students are also provided with a checklist of required elements for both parts of the assignment.

  6. Systematic receiver function analysis of the Moho geometry in the southern California plate-boundary region

    E-print Network

    Ben-Zion, Yehuda

    1 Systematic receiver function analysis of the Moho geometry in the southern California plate, Moho geometry, Southern California region, 3D velocity model, Continental-oceanic crusts, Lithosperic deformation #12;2 ABSTRACT We investigate the geometry of the Moho interface in the southern California region

  7. INTRODUCTION The northern Australia plate boundary (Figure 1) is a com-

    E-print Network

    Royal Holloway, University of London

    region which includes some of the fastest relative plate motions on Earth (Bevis et al. 1995; Tregoning, Faculty of Earth Sciences, Universiteit Utrecht, Budapestlaan 4, 3584CD Utrecht, Netherlands. Tomographic the New Britain and Halmahera Arcs. There are several generally flat-lying deeper anomalies which

  8. Receptivity of a hypersonic boundary layer over a flat plate with a porous coating

    Microsoft Academic Search

    I. V. Egorov; A. V. Fedorov; V. G. Soudakov

    2008-01-01

    Two-dimensional direct numerical simulation (DNS) of receptivity to acoustic disturbances radiating onto a flat plate with a sharp leading edge in the Mach 6 free stream is carried out. Numerical data obtained for fast and slow acoustic waves of zero angle of incidence are consistent with the asymptotic theory. Numerical experiments with acoustic waves of non-zero angles of incidence reveal

  9. The boundary layers of an unsteady separated stagnation-point flow of a viscous incompressible fluid over a moving plate

    NASA Astrophysics Data System (ADS)

    Dholey, S.

    2015-06-01

    In this paper we have investigated the boundary layer analysis of an unsteady separated stagnation-point (USSP) flow of an incompressible viscous fluid over a flat plate, moving in its own plane with a given speed {{u}0}(t). The effects of the accelerating parameter a and unsteadiness parameter ? on the flow characteristics are explored numerically. Our analysis, based on the similarity solution of the boundary layer equations, indicates that the governing ordinary differential equation, which is non-linear in nature, has either a unique solution, dual solutions or multiple solutions under a negative unsteadiness parameter ? with a given value of a. Whatever the number of solutions may be, these solutions are of two types: one is the attached flow solution (AFS) and the other is the reverse flow solution (RFS). A novel result which emerges from our analysis is the relationship between a and ?. This relationship essentially gives us the conditions needed for the solutions that exhibit flow separation (where (a+? )\\lt 0) and those conditions that exhibit only flow reattachment (where (a+? )\\gt 0). Another noteworthy result which arises from the present analysis is the existing number of non-zero stagnation-points inside the flow for the given values of a and ?. It is found that this number is exactly two when the velocity gradient at the wall is positive; otherwise this number will only be one. For a stationary plate ({{u}0}(t)=0), this USSP flow is found to be separated for all values of a and ? in both cases of AFS and RFS. Finally, we have also established that in the case of AFS flow over a stationary plate, no stagnation-point exists inside the flow, even though the flow becomes separated for all values of a and ?.

  10. Along-strike Variations of Subduction Parameters at the Chilean Plate Boundary

    Microsoft Academic Search

    A. Hoffmann-Rothe; N. Kukowski; O. Oncken

    2004-01-01

    Newly compiled data of the geometric, kinematic and mechanic properties and their variations along-strike the oblique Chilean subduction margin between 20° S and 46° S are used to weigh their competing influence on forearc deformation. Special emphasis lies on the formation of margin-parallel strike-slip systems. Among the parameters considered are the convergence rate and obliquity, the ocean floor age, the

  11. Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough Neumann-Laplace problem

    E-print Network

    Bonnetier, Eric; Milisic, Vuk

    2008-01-01

    Stents are medical devices designed to modify blood flow in aneurysm sacs, in order to prevent their rupture. They can be considered as a locally periodic rough boundary. In order to approximate blood flow in arteries and vessels of the cardio-vascular system containing stents, we use multi-scale techniques to construct boundary layers and wall laws. Simplifying the flow we turn to consider a 2-dimensional Poisson problem that conserves essential features related to the rough boundary. Then, we investigate convergence of boundary layer approxi- mations and the corresponding wall laws in the case of Neumann type boundary conditions at the inlet and outlet parts of the domain. The difficulty comes from the fact that correctors, for the boundary layers near the rough surface, may introduce error terms on the other por- tions of the boundary. In order to correct these spurious oscillations, we introduce a vertical boundary layer. Trough a careful study of its behavior, we prove rigorously decay estimates. We then...

  12. "Discovering Plate Boundaries in Data-Rich Environments": Supporting Pre-service Teachers involvement in Unique Practices of Geosciences

    NASA Astrophysics Data System (ADS)

    Barrie, A. S.; Moore, J.

    2012-12-01

    Plate tectonics is one of the core scientific concepts in both the NRC K-12 standards documents (#ESS2.B) and College Board Standards for Science (#ES.1.3). These documents also mention the scientific practices expected to improve as students are learning plate tectonics: interpreting data based on their observations of maps and argumentation around the evidence based on data. Research on students' understanding of maps emphasizes the difficulty of reading maps in science classrooms.We are conducting an ethnographic case study of the process of learning and teaching by novice teachers in the middle school science major at a mid-Atlantic University. The participants of the study are third-year majors (in the middle school science program and middle students at a suburban middle school. The study uses the data from four different fields (geography, geochronology, volcanology and seismology) to help involve preservice teachers in the practices of geosciences.The data for the study includes video and audio records of novice teachers' learning and teaching processes as well as teachers' reflections about their learning and on teaching Plate Tectonics by using real data. The video and audio data will be compiled and synthesized into event maps and transcripts, which are necessary for sociolinguistic analysis. Event maps provide an overall view of the events and are used to map the learning and teaching events into timely sequences and phases based on the subtopics and types of educational activities. Transcripts cover in detail the discussion and activity observed at each phase of the learning and teaching events. After compilation, event maps and transcripts will be analyzed by using Discourse analysis with an ethnographic perspective in order to identify novice teachers' challenges and the improvement they want to make on their teaching and assessment artifacts. The preliminary findings of the project identified challenges faced by novice teachers learning and teaching plate tectonics using key scientific practices. As a result of the educational activities developed in this project, we will try help teachers to overcome their challenges and develop the pedagogical skills that novice teachers need to use to teach plate tectonics by focusing on key scientific practices with the help of previously-developed educational resources. Learning about the processes that occur at plate boundaries will help future teachers (and their students) understand natural disasters such as earthquakes and volcanoes. Furthermore, the study will have a significant, and broader, impact by 'teaching the teachers' and empowering novice teachers to overcome the challenges of reading maps and using argumentation in science classrooms.

  13. Models of the Evolution of Finite Strain at Strike-Slip Plate Boundaries and Potential Implications for Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kurz, I.; Roy, M.

    2014-12-01

    While we are aware of the extent and distribution of strain at the surface near the Pacific-North America plate boundary at the San Andreas Fault (SAF) system in California, at depth, our understanding is poor. Recent seismic observations suggest a narrow shear zone throughout the lithosphere corresponding to the narrow plate boundary at the surface. Surrounding the SAF in California, measurements of seismic anisotropy demonstrate orientations which vary depending on the location relative to the fault. Specifically, in northern California, the orientations align along the fault in its proximity, and in the east-west direction elsewhere. We investigate how the finite-strain ellipsoid (FSE) evolves for tracers in a 3D model of the lithosphere and asthenosphere beneath the SAF. The top surface of the mesh has a right-lateral strike-slip velocity boundary condition, and the bottom, a uniform asthenospheric flow velocity condition perpendicular to the strike-slip fault. We calculate the orientations of the FSE for various ratios of strike-slip to asthenospheric velocity and viscosity stratification. The two classes of models which we investigate simulate an asthenospheric channel beneath a uniform-thickness lithosphere and a variable-depth lithosphere-asthenosphere boundary (LAB). In an isoviscous fluid beneath a uniform-thickness lithosphere, strain rates, and thus FSE orientations, are constant throughout the channel, dependent on the ratio of the velocities but not the viscosity. For a two-layered asthenospheric channel of a higher-viscosity layer overlying a lower-viscosity layer, FSE orientations align with the strike-slip boundary in the upper layer and the drag in the lower layer. When we emulate a lithosphere of variable thickness across the fault by increasing the viscosity of the upper layer, we observe asymmetric FSE orientations across the step in the LAB. The direction of lithospheric thickening across the strike-slip fault govern these orientations. Following these investigations, we interpret the direction of maximum strain of the FSE as the preferred direction of a-type anisotropy in the region of the SAF system and analogous strike-slip fault systems.

  14. Resistance of plate motion due to continental deformation (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, M. K.

    2013-12-01

    Convergent plate margins that produce high mountains often induce deformation that extends for hundreds to thousands kilometers inboard of the plate boundary. Buoyancy forces that are derived from this thickened, elevated continental crust are commonly thought to resist further convergence and contribute to changes in plate rates as the balance of forces on a plate boundary evolves. For orogens that develop broad plateau-style topography, the strength of the deforming continent and the distance over which it deforms may also contribute to plate forces, although this forcing has rarely been considered. For example, the post-collisional slowing of India with respect to Eurasia challenges the role of topography as the cause of decreasing convergence rates and instead favors the role of deforming a confined mantle lithosphere as the cause of slowing. Here, geologic evidence suggests that compressional deformation began at the distal extent of the orogen when continental collision initiated and that the majority of deformation since has remained localized along what can be considered to be a stationary boundary. As post-collisional convergence continued, convergence rates have declined exponentially as did the distance across the intervening region of deformation. The decline in rate and distance occurred in tandem such that the bulk average strain rate across the orogen remained constant and is equal to the modern strain rate determined by GPS. For both linear and non-linear constitutive relationships, a constant average strain rate implies constant average stress (or constant forcing). A constant force per unit length of the plate boundary might be explained by the viscous resistance of the deforming continental mantle lithosphere, as opposed to a change in forces that would be expected from the buoyancy of the evolving high topography. A viscous resistance of the continental lithosphere has not previously been considered as a type of plate forcing, and the Indo-Asia orogen may offer one extreme example of such. Other examples include the ongoing Arabian-Eurasia continental collision and the ocean-continent subduction beneath South America, where exponentially decreasing convergence rates and mountain building are also observed. Long-lived, far-field deformation in the Arabian example may provide analogous to the Tibet case where decreasing convergence rates follow a decrease over which that convergence is absorbed by continental deformation. Unlike Tibet and Arabia, the outward expansion of deformation away from the plate boundary in the Andean orogen suggests that bulk strain rates must have decreased through time. Possibly, such differences may be related to time-dependent rheologic changes associated with subduction-related magmatism, changes in the frictional resistance along the plate contact, or the diminished role of viscous resistance in subduction settings compared to their continental collision counterpart.

  15. Eclogites and related metamorphism in the North America-Caribbean plate boundary: An example from the Motagua fault zone, Guatemala (Invited)

    Microsoft Academic Search

    T. Tsujimori; G. A. Hernandez Pineda

    2009-01-01

    Active volcanic arcs and strike-slip fault systems characterize the present-day Caribbean Plate margins. The northern boundary of the Caribbean plate in Guatemala is the Motagua fault zone (MFZ). Along the MFZ in central and eastern Guatemala, eclogite- and jadeitite-bearing serpentinite-matrix mélange are exposed stretching ˜200 km on either side of the Motagua-Polochic fault system. The MFZ eclogites and related high-pressure

  16. Lithospheric Evolution of the Pacific-North American Plate Boundary Considered in Three Dimensions

    Microsoft Academic Search

    G. P. Biasi

    2006-01-01

    Tomographic imaging indicates that the heterogeneity observed in the crust of westernmost North America is underlain by mantle structures of a similar scale and heterogeneity. When likely scaling relationships are used to interpret mantle velocity images, it becomes clear that much of the boundary is explained by mantle lithospheric processes and the crustal evolution is just the surficial expression of

  17. Continental Subduction and Subduction Initiation Leading to Extensional Exhumation of Ultra-High Pressure Rocks During Ongoing Plate Convergence in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Buck, W. R.; Petersen, K. D.

    2014-12-01

    Subduction of continental rocks is necessary to produce ultra-high pressure (UHP) rocks but the mechanism bringing them to the surface is disputed. A major question is whether this involves fairly small diapirs of crust that move up through the mantle or it involves an entire subducted plate that undergoes coherent 'reverse subduction' (sometimes called 'eduction'). Both mechanisms have been invoked to explain the only known region of on-going exhumation of UHP rocks, on the D'Entrecasteaux Islands of Papua New Guinea. Ductile flow fabrics in the island rocks have been used to argue for a diapiric model while constraints on the plate kinematics of the region require relatively large (>100 km) amounts of recent (>6 Myr) extension, supporting eduction as a primary mechanism. A self-consistent thermo-mechanical model of continental subduction shows that eduction can be accompanied by some ductile flow within the crust. Also we show, that subduction and stacking of continental crust can cause a subduction zone to lock up and lead to subduction initiation elsewhere. When this happens the region of earlier continental subduction can reverse direction causing exhumation of rocks from depth of ~100 km followed by localized extension and plate spreading. This can occur even if a region is in overall convergence. Applied to New Guinea our results are consistent with earlier suggestions that extension of the Woodlark Basin was caused by the initiation of the New Britain Trench, as indicated on the attached figure. We suggest that this subduction initiation event triggered eduction that led to exposure of the D'Entrcasteaux Islands and exhumation of the UHP rocks there. Our numerical results are broadly consistent with the recently refined seismic structure of the region around the islands. The model implies that the present-day basement of the ~70 km wide Goodenough Bay, south of the islands, was subducted then exhumed. This can be tested by drilling.

  18. Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration

    USGS Publications Warehouse

    Hole, J.A.; Beaudoin, B.C.; Henstock, T.J.

    1998-01-01

    Recent wide-angle seismic observations that constrain the existence and structure of a mafic layer in the lower crust place strong constraints on the evolution of the San Andreas plate boundary system in northern and central California. Northward migration of the Mendocino Triple Junction and the subducted Juan de Fuca lithospheric slab creates a gap under the continent in the new strike-slip system. This gap must be filled by either asthenospheric upwelling or a northward migrating slab attached to the Pacific plate. Both processes emplace a mafic layer, either magmatic underplating or oceanic crust, beneath the California Coast Ranges. A slab of oceanic lithosphere attached to the Pacific plate is inconsistent with the seismic observation that the strike-slip faults cut through the mafic layer to the mantle, detaching the layer from the Pacific plate. The layer could only be attached to the Pacific plate if large vertical offsets and other complex structures observed beneath several strike-slip faults are original oceanic structures that are not caused by the faults. Otherwise, if oceanic slabs exist beneath California, they do not migrate north to fill the growing slab gap. The extreme heat pulse created by asthenospheric upwelling is inconsistent with several constraints from the seismic data, including a shallower depth to the slab gap than is predicted by heat flow models, seismic velocity and structure that are inconsistent with melting or metamorphism of the overlying silicic crust, and a high seismic velocity in the upper mantle. Yet either the Pacific slab model or the asthenospheric upwelling model must be correct. While the mafic material in the lower crust could have been emplaced prior to triple junction migration, the deeper slab gap must still be filled. A preexisting mafic layer does not reduce the inconsistencies of the Pacific slab model. Such material could, however, compensate for the decrease in mafic magma that would be produced if asthenospheric upwelling occurred at a lower temperature. These low temperatures, however, may be inconsistent with asthenospheric rheology.

  19. Plate Tectonics

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2007-03-21

    The Plate Tectonics SciPack explores the various materials that make up Earth and the processes they undergo to provide a framework for understanding how continents are created and change over time. The focus is on Standards and Benchmarks related to Earth's layers, oceanic and continental plates and the interactions between plates.In addition to comprehensive inquiry-based learning materials tied to Science Education Standards and Benchmarks, the SciPack includes the following additional components:? Pedagogical Implications section addressing common misconceptions, teaching resources and strand maps linking grade band appropriate content to standards. ? Access to one-on-one support via e-mail to content "Wizards".? Final Assessment which can be used to certify mastery of the concepts.Learning Outcomes:Plate Tectonics: Layered Earth? Identify that Earth has layers (not necessarily name them), and that the interior is hotter and more dense than the crust.? Identify the crust as mechanically strong, and the underlying mantle as deformable and convecting.Plate Tectonics: Plates? Identify that the outermost layer of Earth is made up of separate plates.? Choose the correct speed of the motion of plates.? Identify the ocean floor as plate, in addition to the continents (to combat the common idea that only continents are plates, floating around on the oceans).? Recognize that oceans and continents can coexist on the same plate.Plate Tectonics: Plate Interactions? Identify the different interactions between plates.? Discuss what happens as a result of those interactions.Plate Tectonics: Consequences of Plate Interactions? Explain why volcanoes and earthquakes occur along plate boundaries. ? Explain how new sea floor is created and destroyed.? Describe features that may be seen on the surface as a result of plate interactions.Plate Tectonics: Lines of Evidence? Use plate tectonics to explain changes in continents and their positions over geologic time.? Provide evidence for the idea of plates, including the location of earthquakes and volcanoes, continental drift, magnetic orientation of rocks in the ocean floor, etc.

  20. Fluctuating pressures measured beneath a high-temperature, turbulent boundary layer on a flat plate at Mach number of 5

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.

    1989-01-01

    Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.

  1. Mixed Convection Boundary Layer Flow over a Moving Vertical Flat Plate in an External Fluid Flow with Viscous Dissipation Effect

    PubMed Central

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface. PMID:23577156

  2. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface. PMID:23577156

  3. Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition.

    PubMed

    Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables. PMID:25343360

  4. Caribbean plate tectonics

    NSDL National Science Digital Library

    Sting

    This illustration available at Wikimedia Commons shows the plate tectonic setting in the Caribbean. Plate boundaries are color-coded by margin type and plate motions are noted with direction and magnitude in mm/yr.

  5. Computational Study of a Plate Mounted Finite Cylinder: Aspect Ratio and Boundary Layer Thickness Effects

    NASA Astrophysics Data System (ADS)

    Hummer, Christopher J.

    The integration of protrusions on aircraft, whether they are antennas or sensor turrets, can impact both aircraft safety and performance. The protrusions vary in size and shape and where they are placed on the aircraft can greatly affect the flow around the structure. This work utilizes the power and adaptability of modern computational methods to analyze finite cylinders of various aspect ratios subjected to incoming flow of varying boundary layer thickness. The geometry and flow conditions for the analysis match a wind tunnel test completed by the University of Cincinnati in 2005. This flow is challenging to model computationally because the flow is largely separated and influenced by both ends of the cylinder. The four cylinders analyzed, labeled by their diameter and height in inches, are D2H5, D4H2, D4H5, and D4H10. These four cylinders were subjected to cross-flows with two different boundary layer thicknesses for a total of eight cases. The boundary layer thicknesses were 1.5" and 6.0". This work compared the computational results with both the wind tunnel results and with available literature. The results compared favorably with both and captured all primary flow features for this class of flows. Furthermore, the impacts of cylinder aspect ratio and boundary layer thickness were evident in the results. The lower the aspect ratio of the cylinder, the more the flow from the free-end dominates the wake. Higher aspect ratio cylinders can be divided into regions with juncture flow near the wall, Karman style shedding near the middle and free-end effects near the tip. This work also identifies a transitional cylinder aspect ratio where the flow transitions from segregated regions to being dominated by the free-end downwash. This work shows that modern computational methods are capable of modelling the complex flow about a finite cylinder and can provide valuable insight to aid in protrusion design and integration.

  6. From Subduction to a Compressional transform system: Diffuse Deformation Processes at the Southeastern Boundary of the Caribbean Plate

    NASA Astrophysics Data System (ADS)

    Deville, E.; Padron, C.; Huyghe, P.; Callec, Y.; Lallemant, S.; Lebrun, J.; Mascle, A.; Mascle, G.; Noble, M.

    2006-12-01

    Geophysical data acquired in the southeastern Caribbean marine area (CARAMBA survey of the French O/V Atalante) provide new information about the deformation processes occurring in this subduction-to-strike-slip transitions zone. The 65 000 km2 of multibeam data and 5600 km of seismic reflection and 3.5 kHz profiles which have been collected evidence that the connection between the Barbados accretionary prism and the south Caribbean transform system is partitioned between a wide variety of recently active tectonic superficial features (complex folding, diffuse faulting, and mud volcanism), which accommodate the relative displacement between the Caribbean and the South America plates. The active deformation within the sedimentary pile is mostly aseismic (creeping) and this deformation is relatively diffuse over a large diffuse plate boundary. There is no direct fault connection between the front of the Barbados prism and the strike-slip system of northern Venezuela. The toe thrust system at the southern edge of the Barbados prism, exhibits clear en-echelon geometry. The geometry of the syntectonic deposits evidence the diachronism of the deformation processes. Notably, it is well evidenced that early folds have been sealed by the recent turbidite deposits, whereas, some of the fold and thrust structures were active recently. Within this active compressional region, extension growth faults develop on the platform and on the slope of the Orinoco delta along a WNW-ESE trending en-echelon fault system that we called the Orinoco Delta Fault Zone (ODFZ). This fault system is clearly oblique with respect to the present-day Orinoco delta slope. These faults are not simply related to a passive gravitary collapse of the sediments accumulated on the Orinoco platform. Though there a decoupling between the shallow deformation processes in the sediments and the deep deformation characterized by earthquake activity, the ODFZ is inferred to be partly controlled by deep structures associated the shearing of the lithosphere at depth (probably at the Continent-Ocean Boundary).

  7. What on Earth is Plate Tectonics?

    NSDL National Science Digital Library

    This abbreviated explanation of the subject of plate tectonics is divided into several parts. The first section, entitled Into the Earth, describes the crust, mantle and core of the Earth, while the next section shows a world map with the plates delineated. The section called Action at the Edges uses text and diagrams to explain what is occurring at the plate boundaries. Links lead to a detailed discussion of converging boundaries including ocean-ocean, ocean-continental, and continental-continental. A wide range illustration shows both surface and cross-section views of plate interaction and a link leads to a similar diagram with labels. In the Moving through Time section, a series of color-coded maps is shown, illustrating the relative position of the continents over the past 650 million years. The last section shows a paleogeographic reconstruction of the Earth and explains how paleomagnetism, magnetic anomalies, paleobiogeography, paleoclimatology, and geologic history are used to create it.

  8. Multiple major faults at the Japan Trench: Chemostratigraphy of the plate boundary at IODP Exp. 343: JFAST

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Hannah S.; Savage, Heather M.; Plank, Terry; Polissar, Pratigya J.; Kirkpatrick, James D.; Rowe, Christie D.

    2015-08-01

    We determine the trace element stratigraphy of Site C0019, drilled during the Japan Fast Trench Drilling Project (JFAST) International Ocean Discovery Program (IODP) Expedition 343, to illuminate the structure of the plate boundary following the Tohoku-Oki earthquake of 2011. The stratigraphic units at the JFAST site are compared to undeformed Western Pacific sediments from two reference sites (Ocean Drilling Program (ODP) Site 1149 and Deep Sea Drilling Project (DSDP) Site 436). The trace element fingerprints in these reference sedimentary units can be correlated to individual JFAST samples. At the JFAST site, we find that the accretionary wedge and downgoing plate sediments in the core are composed primarily of Holocene to Eocene sediments. There are several age reversals and gaps within the sequence, consistent with multiple faults in the bottom 15 m of the JFAST core. Our results point to several candidate faults that could have slipped during the 2011 Tohoku-Oki earthquake, in addition to the pelagic clay layer that has been proposed as the main décollement fault.

  9. Zero shear viscosity limit and boundary layer for the Navier–Stokes equations of compressible fluids between two horizontal parallel plates

    NASA Astrophysics Data System (ADS)

    Zhou, Wenshu; Qin, Xulong; Qu, Chengyuan

    2015-06-01

    We consider an initial-boundary problem for the three-dimensional Navier–Stokes equations of compressible fluids between two horizontal parallel plates, where heat conductivity ? may depend on both density ? and temperature ? such that ?(?, ?) ? ?1 ? constant > 0, ??, ? > 0. We prove the global existence of strong solutions for large data and justify the zero shear viscosity limit as the shear viscosity ? goes to zero. Moreover, we establish the value ?? with any ? ? (0, 1/2) for the boundary layer thickness.

  10. 0.1 1 10 100 Subduction at convergent plate boundaries provides a mechanism for recycling fluid-

    E-print Network

    from fluid infiltration of faults in the bending slab [3]. Others originate from hydration of forearc. · >120°C SiO2 tube temp. outside furnace (heating tape) · 30 min collection time · Fritted glass tip · F-enrichment of abyssal peridotites occurs during serpentinization at outer rise of bending slab

  11. Plate Boundary Observatory Strainmeter Recordings of The M6.0 August 24, 2014 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen; Mencin, David; Phillips, David; Mattioli, Glen; Meertens, Charles

    2015-04-01

    The 2014 Mw6.0 South Napa earthquake nucleated at 11 km depth near the West Napa fault, one of a complex system of sub-parallel major right lateral faults north of San Francisco that together accommodate much of the relative motion between the Pacific and North American tectonic plates. The South Napa event was the largest to have shaken the San Francisco Bay Area (SFBA) in almost 25 years. A major goal of the NSF-funded EarthScope Plate Boundary Observatory (PBO), installed and maintained by UNAVCO, was to enable researchers to study the interaction between the faults that form a plate boundary zone, and in particular, to investigate the role that aseismic transients contribute to strain accumulation and release. To realize this goal, PBO includes borehole tensor strainmeters (BSMs) installed in several targeted regions, including on to the north and east of San Francisco. Two PBO BSMs have been operating in the SFBA since 2008: B057, north of San Francisco and 30 km from the epicenter, and B054, 3 km from the Hayward Fault and 40 km from the epicenter. We find the coseismic strains recorded by B057 are close to those predicted using elastic half-space dislocation theory and the seismically determined focal mechanism, while a more complicated variable slip model may be required for observations from B054. Months after the event, B057 continued to record a significant postseismic signal. In this presentation we document the coseismic signals recorded by the PBO BSMs and characterize the temporal behavior of the postseismic signal at B057. The PBO network includes over 1100 GPS, 75 BSMs, 79 seismometers and arrays of tiltmeters, pore pressure sensors and meteorological instrumentation. UNAVCO generates an Earthscope Level 2 processed strain time-series combined into areal and shear strains for the PBO BSM network; the raw data are available from the IRIS DMC in mSEED format. For events of interest, such as the South Napa earthquake, UNAVCO generates a 1-sps processed strain time series that also includes tilt data, pore pressure and high-rate meteorological measurements if available. Site information, data quality measurements, current strain plots and strain time-series for all PBO strain instruments can be obtained from the UNAVCO PBO web page (http://www.unavco.org/data/strain-seismic/strain-seismic.html).

  12. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Zhu, Yiding; Chen, Xi; Lee, Cunbiao

    2015-06-01

    Particle image velocimetry, PCB pressure sensors, and planar Rayleigh scattering are combined to study the development of second-mode instability in a Mach 6 flow over a flat plate with two-dimensional roughness. To the best of the authors' knowledge, this is the first time that the instantaneous velocity fields and flow structures of the second-mode instability waves passing through the roughness are shown experimentally. A two-dimensional transverse wall blowing is used to generate second-mode instability in the boundary layer and seeding tracer particles. The two-dimensional roughness is located upstream of the synchronization point between mode S and mode F. The experimental results showed that the amplitude of the second-mode instability will be greatly increased upstream of the roughness. Then it damps and recovers quickly in the vicinity downstream of the roughness. Further downstream, it acts as no-roughness case, which confirms Fong's numerical results [K. D. Fong, X. W. Wang, and X. L. Zhong, "Numerical simulation of roughness effect on the stability of a hypersonic boundary layer," Comput. Fluids 96, 350 (2014)]. It also has been observed that the strength of the amplification and damping effect depends on the height of the roughness.

  13. Tectonic Emplacement of the Ophiolitic Mélange in the West Junggar, NW China: Comment on the Plate Boundary Significance of Ophiolitic Mélange Belt

    NASA Astrophysics Data System (ADS)

    Wang, G.; Xu, Y.; Xiao, L.; Chen, C.

    2014-12-01

    Many ophiolitic mélanges distribute in the West Junggar, NW China. They are fault-contacted with Carboniferous turbidites with mostly NE trend and some NS trend with ages mostly Ordovician-Silurian and some Late Devonian. The boundary faults and the foliation inside the mélanges are of high-angle or nearly vertical. The NE trend ophiolitic mélange belts were structurally emplaced into the Carboniferous strata mainly by dextral transpressive deformation, but the NS trend ophiolitic mélange belts mainly by lateral extrusion deformation or pure shearing, suggesting a uniform stress field of nearly EW compression controlled the emplacements. The tectonic relationship between the ophiolitic mélanges and the Carboniferous turbidites imply that the ophiolitic mélanges are the main components of the basement of the Carboniferous strata. The geophysical data also reveal that high gravity, high magnetic and medium resistivity exist under the Carboniferous strata, matching well to the distribution of the ophiolitic mélanges on the surface. The neodymium model ages (TDM) of widely distributed Late Carboniferous-Permian granites are mostly between 0.352-0.923Ga and concentrate in 0.45-0.6Ga with positive eNd(t) mostly between 5~10, suggesting the Early Paleozoic rocks as the main magma source, consistent with the age of the ophiolitic mélanges, also coinciding with the conclusion of the ophiolitic mélanges as the basement of the Carboniferous strata. The Carboniferous turbidites primarily formed in residual basin. Early Permian terrestrial coarse molasses deposits unconformitily cover on the Carboniferous turbidites, suggesting the residual basin closed in Late Carboniferous. The accretionary complex or residual oceanic crust emplaced into the overlying Carboniferous turbidites through the dextral transpression or lateral extrusion due to EW convergent when the residual basin closed. The tectonic juxtaposition relationship between the ophiolitic mélanges and the younger lateral strata with same stratigraphic system suggests that the ophiolitic mélange belts do not separate different tectonic palaeogeographic or stratigraphic divisions. The traditional understanding of the ophiolitic mélange belt as plate or terrane boundary should be carefully to apply to the West Jungar.

  14. Characterization of the Absolute Crystal Polarity across Twin Boundaries in Gallium Phosphide Using Convergent-Beam Electron Diffraction

    Microsoft Academic Search

    Dov Cohen; Stuart McKernan; C. Barry Carter

    1999-01-01

    The measurement of absolute crystal polarity is crucial to understanding the structural properties of many planar defects in compound semiconductors. Grain boundaries, including twin boundaries, in the sphalerite lattice are uniquely characterized by the crystallographic misorientation of individual grains and the direction of the crystal polarity in domains adjoining the grain boundary. To evaluate crystal polarity in gallium phosphide (GaP),

  15. Deformation across the Pacific-North America plate boundary near San Francisco, California

    USGS Publications Warehouse

    Prescott, W.H.; Savage, J.C.; Svarc, J.L.; Manaker, D.

    2001-01-01

    We have detected a narrow zone of compression between the Coast Ranges and the Great Valley, and we have estimated slip rates for the San Andreas, Rodgers Creek, and Green Valley faults just north of San Francisco. These results are based on an analysis of campaign and continuous Global Positioning System (GPS) data collected between 1992 and 2000 in central California. The zone of compression between the Coast Ranges and the Great Valley is 25 km wide. The observations clearly show 3.8??1.5 mm yr-1 of shortening over this narrow zone. The strike slip components are best fit by a model with 20.8??1.9 mm yr-1 slip on the San Andreas fault, 10.3??2.6 mm yr-1 on the Rodgers Creek fault, and 8.1??2.1 mm yr-1 on the Green Valley fault. The Pacific-Sierra Nevada-Great Valley motion totals 39.2??3.8 mm yr-1 across a zone that is 120 km wide (at the latitude of San Francisco). Standard deviations are one ??. The geodetic results suggest a higher than geologic rate for the Green Valley fault. The geodetic results also suggest an inconsistency between geologic estimates of the San Andreas rate and seismologic estimates of the depth of locking on the San Andreas fault. The only convergence observed is in the narrow zone along the border between the Great Valley and the Coast Ranges.

  16. A new gravity map of the southern half of the Dead Sea transform offers the first regional view of the anatomy of this plate boundary. In-

    E-print Network

    ten Brink, Uri S.

    ABSTRACT A new gravity map of the southern half of the Dead Sea transform offers the first regional The Dead Sea transform plate boundary offers a unique opportunity to study crustal and upper mantle, straddles the southern half of the transform and is the focus of our study. Although many studies utilizing

  17. Structural Evolution of the India-Arabia Plate Boundary from Miocene to Present-Day (NW Indian Ocean) and Comparison with the Dead Sea Fault (Eastern Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Huchon, P.; Chamot Rooke, N.; Fournier, M.; Delescluse, M.; Ben Avraham, Z.; Ten Brink, U. S.

    2014-12-01

    Arabia is bounded by the Dead Sea Transform (DST) to the west and by the Owen Fracture Zone (OFZ) to the east. These present-day major strike-slip fault systems activated during the Plio-Pleistocene, which contrasts with the age of inception of strike-slip motion, assumed to begin around 13-18 Ma for the DST and around 20 Ma at the edge of the Owen-Murray Ridge (OMR) for the India-Arabia plate boundary. This discrepancy between the age of the active strike-slip systems and the age of inception of strike-slip motion raises the question of the kinematic driver for the transition between successive generations of strike-slip faults. Using a recent mutibeam and seismic dataset crossing the OFZ and the OMR, we provide a new geodynamic framework for the Miocene to present-day structural evolution of the India-Arabia plate boundary, and highlight some similarities with the structural evolution of the DST. We first document a Late Miocene episode of uplift of the OMR uplift along the Miocene India-Arabia plate boundary. The onset of this uplift is coeval with a plate reorganization event marked by the onset of intra-plate deformation in the Central Indian Ocean. The OFZ emplaced around 3 Ma, with major pull-apart basins opening (20°N Basin, Dalrymple Trough) dated at 2.4 Ma by far-field correlation with ODP Sites. The opening of pull-apart basins is coeval with the last structural reorganization of the Makran accretionnary wedge, marked by the regional M-unconformity, and with a major intensification of the Indian monsoon. A Late Miocene episode of folding is also recognized at the Lebanon ranges prior to the onset of the present-day DST, which occurred in the Late Pliocene-Early Pleistocene. The similarities between the geological history of the India-Arabia plate boundary and the DST in the Late Miocene and the Late Pliocene-Early Pleistocene suggest that both plate boundaries recorded the same kinematic changes. Late Miocene (i.e. Tortonian) deformation is widely recognized around the Mediterranean Sea. However, the origin of the Late Pliocene-Early Pleistocene kinematic change recorded by both plate boundaries remains enigmatic. This kinematic change may be related to geological events at the Zagros mountain belt, subduction of seafloor asperities, or to major climate changes occurring at the beginning of the Pleistocene.

  18. The Biggest Plates on Earth: Plate Tectonics

    NSDL National Science Digital Library

    In this lesson, students investigate the movement of Earth's tectonic plates, the results of these movements, and how magnetic anomalies present at spreading centers document the motion of the crust. As a result of this activity, students will be able to describe the motion of tectonic plates, differentiate between three types of plate boundaries, infer what type of boundary exists between two tectonic plates, and understand how magnetic anomalies provide a record of geologic history and crustal motion around spreading centers. As an example, they will also describe plate boundaries and tectonic activity in the vicinity of the Juan de Fuca plate adjacent to the Pacific Northwest coast of North America.

  19. From Protodecollement to Incipient Plate Boundary - Physical Property Characteristics of Nankai and Barbados Decollement Zones Compared

    NASA Astrophysics Data System (ADS)

    Brueckmann, W.; Hayward, N.; Hunze, S.; Tobin, H.; Scientific Party Leg 196,

    2001-12-01

    The Nankai Trough and Barbados Ridge accretionary prisms represent the two different end member situations of sediment accretion. The Nankai Trough is an example for convergent margins characterized by a high input of terrigeneous clastic sediment, while the Barbados accretionary complex is dominated by hemipelagic sediments. Both settings have been successfully drilled and cored by the Ocean Drilling Program (ODP). Core derived physical property data from Barbados (Legs 110, 156) and Nankai (Legs 131, 190) were supplemented by high resolution Logging-While-Drilling (LWD) data in Leg 171 and more recently Leg 196. In both areas the position of major thrust and decollement zones could be identified through core-based structural and geochemical evidence. LWD measurements however provided density and resistivity data of much higher resolution reflecting the in-situ stress and fluid regime from incipient to well developed decollement at the toe of both prisms. Combining core and LWD data the changes in physical properties during transition from proto- to well developed decollement during approach and frontal thrusting can be documented in detail. At Nankai LWD data showed little evidence for a propagating protodecollement in the reference site 1173, but rapid loading of the section combined with limited dewatering causes the development of a strong density inversion across the decollement below the frontal thrust at site 808. In contrast the Barbados transect shows a gradual transition from a primary density anomaly across the protodecollement at site 1044 to a broad low porosity decollement zone at site 948 several km behind the frontal thrust. Here the base of the decollement is marked by an offset to higher densities, whereas in Nankai the top of the underthrust sediments shows an offset to lower densities. Based on this comparison the influence of sediment properties and loading history for the localization and evolution of both types of decollements are discussed.

  20. Deformation record of 4-d accommodation of strain in the transition from transform to oblique convergent plate margin, southern Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.

    2013-12-01

    Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to convergence, has been accommodated along the Denali Fault since E. Miocene. Southeast of the bend there is little evidence of convergence across the fault and Quaternary slip is ~12-13.5 mm/year. The eastern restraining bend of the Denali fault is much broader than the syntaxis and dextral slip continues at rates of ~10 mm/year, but the rock response to increasing obliquity is similar. Low and moderate-T cooling histories determined from a wide range of isotopic systems on minerals from bedrock show exhumation strongly localized on the north side of the high-angle Denali fault, south of the Hines Creek fault, since ~25 Ma. The structural record in ductilely deformed rocks from the most highly exhumed regions shows transpressive deformation over a few km wide region, but above the brittle-ductile transition strain becomes highly partitioned and is accommodated by thrust and normal faults on the north side of the bend. A connector fault between the Fairweather and Totschunda-Denali fault systems has been speculated on but it is not clear whether a single through-going fault is expressed at the surface. Any connector is likely a relatively young structure compared to the Fairweather and Denali systems' histories of long-lived oblique convergence. Overall, in both regions high-angle faults appear to be critical for controlling the location of major deep-seated and/or long-lived exhumation, and deformation at these geometrical complexities is dominated by transpression.

  1. Jet-boundary and Plan-form Corrections for Partial-Span Models with Reflection-Plane, End-Plate, or No End-Plate in a Closed Circular Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Deters, Owen J

    1946-01-01

    A method is presented for determining the jet-boundary and plan-form corrections necessary for application to test data for a partial-span model with a reflection plane, an end plate, or no end plate in a closed circular wind tunnel. Examples are worked out for a partial-span model with each of the three end conditions in the Langley 19-foot pressure tunnel and the corrections are applied to measured values of lift, drag, pitching-moment, rolling-moment, and yawing-moment coefficients.

  2. Effects of Mach Number, Leading-Edge Bluntness, and Sweep on Boundary-Layer Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Jillie, Don W.; Hopkins, Edward J.

    1961-01-01

    The effects of leading-edge bluntness and sweep on boundary-layer transition on flat plate models were investigated at Mach numbers of 2.00, 2.50, 3.00, and 4.00. The effect of sweep on transition was also determined on a flat plate model equipped with an elliptical nose at a Mach number of 0.27. Models used for the supersonic investigation had leading-edge radii varying from 0.0005 to 0.040 inch. The free-stream unit Reynolds number was held constant at 15 million per foot for the supersonic tests and the angle of attack was 0 deg. Surface flow conditions were determined by visual observation and recorded photographically. The sublimation technique was used to indicate transition, and the fluorescent-oil technique was used to indicate flow separation. Measured Mach number and sweep effects on transition are compared with those predicted from shock-loss considerations as described in NACA Rep. 1312. For the models with the blunter leading edges, the transition Reynolds number (based on free-stream flow conditions) was approximately doubled by an increase in Mach number from 2.50 to 4.00; and nearly the same result was predicted from shock-loss considerations. At all super- sonic Mach numbers, increases in sweep reduced the transition Reynolds number and the amount of reduction increased with increases in bluntness. The shock-loss method considerably underestimated- the sweep effects, possibly because of the existence of crossflow instability associated with swept wings. At a Mach number of 0.27, no reduction in the transition Reynolds number with sweep was measured (as would be expected with no shock loss) until the sweep angle was attained where crossflow instability appeared.

  3. Regional provenance study of Eocene clastic sedimentary rocks within the South America-Caribbean plate boundary zone using detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Xie, Xiangyang; Mann, Paul; Escalona, Alejandro

    2010-03-01

    Previous on- and offshore studies have postulated that the Caribbean plate has translated hundreds of kilometers eastward during the Cenozoic along strike-slip and oblique thrust faults bounding the northern margin of the continental South America plate. Two previously proposed tectonic-sedimentary models to explain the complex linkages between plate motions and sedimentation within the broad plate boundary zone include: 1) eastward bulldozing by the Caribbean plate of a single, large point source, thick Eocene proto-Maracaibo deltaic system of northwestern South America, over 1000 km to the east and incorporation of these continentally derived sediments into the ˜ 12-km-thick Barbados accretionary prism along the leading edge of the Caribbean plate; and 2) eastward bulldozing by less than 300 km of smaller point and line sources of Eocene and younger clastic sediments derived from erosion of the Guyana shield located in north-central and northeastern South America. We test both models by sampling eight Eocene localities that span a 1200-km-length of the plate boundary zone from the proto-Maracaibo delta in western Venezuela to Barbados Island in the subaerial part of the large accretionary prism bounding the eastern margin of the Caribbean plate. Ages of 972 single grains from samples at these eight localities support the multiple-source model, in which the Barbados prism was partly constructed from the bulldozing and incorporation of smaller point and line sources derived from older-than 1500 Ma crustal provinces of the Precambrian Guyana shield in central and northeastern South America. Eocene clastic sediments of the proto-Maracaibo delta derived from Paleozoic and Precambrian crustal provinces in northwestern South America are distinct in their ranges of detrital zircon ages from the ranges of the Guyana shield sources to the east.

  4. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground-based instruments are supplemented by remote sensing data sets. UNAVCO supports the acquisition of InSAR and LiDAR imaging data, with archiving and distribution of these data provided by UNAVCO and partner institutions. We provide descriptions and access information for geodetic data from the PBO volcano subnetworks and their applications to monitoring for scientific and public safety objectives. We also present notable examples of activity recorded by these instruments, including the 2004-2010 accelerated uplift episode at the Yellowstone caldera and the 2006 Augustine eruption.

  5. CONVERGENCE RESULTS OF THE FICTITIOUS DOMAIN METHOD FOR A MIXED FORMULATION OF THE WAVE EQUATION WITH A NEUMANN BOUNDARY CONDITION

    Microsoft Academic Search

    E. Becache; J. Rodr ´ õguez; C. Tsogka

    2007-01-01

    The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping.

  6. The Plate Boundary Observatory Permanent Global Positioning System Network on Augustine Volcano Before and After the 2006 Eruption

    USGS Publications Warehouse

    Pauk, Benjamin A.; Jackson, Michael; Feaux, Karl; Mencin, David; Bohnenstiehl, Kyle

    2010-01-01

    In September of 2004, UNAVCO and the National Science Foundation (NSF) funded EarthScope Plate Boundary Observatory (PBO) installed five permanent Continuous Global Positioning System (CGPS) stations on Augustine Volcano, supplementing one existing CGPS station operated by the Alaska Volcano Observatory. All six CGPS stations proved crucial to scientists for detecting and monitoring the precursory deformation of the volcano beginning in early May 2005, as well as for monitoring the many subsequent small inflationary and deflationary episodes that characterized the 2006 eruption. Following the eruption, in September of 2006, PBO added six additional permanent CGPS stations. The 2006 eruption and its precursors were the first significant activity of the volcano in 20 years and the PBO CGPS network provided an unprecedented opportunity to monitor and detect volcanic ground deformation on an erupting Alaskan stratovolcano. Data from the new CGPS stations coupled with the existing seismic stations provided scientists with the first real opportunity to use geodetic data and real time seismic data to assess the volcanic hazards before, during, and after an Alaskan eruption.

  7. The effect of elastic boundary conditions on the dynamic response of rectangular plates. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brewer, Terry K.

    1988-01-01

    Natural frequencies and forced steady-state harmonic response for the vibration of uniform rectangular plates with edges elastically restrained against rotation and transverse translation are addressed. A single mode Rayleigh-Ritz solution is derived using functions that describe the normal modes of vibration of a beam whose ends are elastically restrained. The finite element solution is obtained for comparison. MACSYMA symbolic manipulation system is implemented as an aid to the mathematical rigor of the Ritz approach, and NASTRAN finite element code is used to model the mechanical system. Comparisons are made to published results and the solutions of this study are found to give lower frequencies for some values of boundary restraint. Steady-state harmonic amplitudes of displacement and acceleration are found to agree favorably for the two solutions. Low predictions of steady-state strain from NASTRAN result in some cases when compared to the Ritz values. Finally, a subjective assessment is made about the merit of using MACSYMA and NASTRAN.

  8. Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase

    E-print Network

    van der Lee, Suzan

    the African plate borders the Arabian plate at the Dead Sea transform fault. [5] The break up of Pangea are relatively strong beneath the Mid- Atlantic Ridge, Turkey, and the Dead Sea region. The region's current

  9. New insights into North America-Pacific plate boundary deformation from Lake Tahoe, Salton Sea and Southern Baja California

    E-print Network

    Brothers, Daniel Stephen

    2009-01-01

    to the Pacifi c Plate: Tectonics, v. 8, p. 99-115. Stock,c North America plate tectonics of the Neogene southwesternplate motion partitioning and the transition to seafl oor spreading in the Gulf of California: Tectonics,

  10. Breaking into the Plate: Seismic and Hydroacoustic Analysis of a 7.6 Mw Oceanic Fracture Zone Earthquake Adjacent to the Central Indian Ridge Plate Boundary

    Microsoft Academic Search

    D. R. Bohnenstiehl; M. Tolstoy; E. Chapp

    2003-01-01

    Where oceanic spreading segments are offset laterally from one another, the differential motion of the plates is accommodated by strike-slip motion along ridge-perpendicular transform faults. Off-axis from the ridge-transform intersection, no differential motion is require, and the fracture zone trace is thought to be inactive except where reactivated by intra-plate stresses. On 15 July 2003, an earthquake with a magnitude

  11. Configuration of geological domains and geodynamic evolution of the Africa-Eurasia plate boundary off SW Iberia revisited based on seismic velocity and density models

    NASA Astrophysics Data System (ADS)

    Martínez-Loriente, Sara; Sallarès, Valentí; Gràcia, Eulàlia; Bartolome, Rafael; Ranero, César

    2015-04-01

    We present a new classification of geological (basement) domains at the Africa-Eurasia plate boundary offshore SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along two regional wide-angle seismic transects, one running NW-SE from the Tagus to the Seine abyssal plains, and the other running N-S from S Portugal to the Seine Abyssal Plain, combined with previously available information. The seismic velocity and density structure at the Seine Abyssal Plain and the internal Gulf of Cadiz indicates the presence of a highly heterogeneous oceanic crust, similar to that described in ultra-slow spreading centers, whereas in the Horseshoe and Tagus abyssal plains, the basement structure resembles that of exhumed mantle sections identified in the Northern Atlantic margin. The integration of all this new information allows defining the presence of three oceanic domains off SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE segment of the Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental break-up (Late Jurassic); and (3) the Gorringe Bank domain, mainly made of rocks exhumed from the mantle with little synchronous magmatism, which formed during the first stages of North Atlantic opening (Early Cretaceous). Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain, which coincides with the seismicity cluster nucleated in the middle of the plain that shows moment tensor solutions of reverse faulting at depths of 40-60 km. The formation and evolution of these three domains during the Mesozoic is key to understand the sequence of events that occurred during the first stages of opening of the Northern Atlantic and its connection and interplay with the Western Mediterranean basin.

  12. Detecting Moho Boundary under Taiwan with Wide-angle Data by Ray-tracing Method - The TAIGER Project

    Microsoft Academic Search

    Y. N. Kuo; C. Wang; D. A. Okaya

    2009-01-01

    Taiwan is located at the converging boundary of the Eurasian plate and the Philippine Sea plate, and is one of the most rapidly uplifting orogeny in the world. The geological structure is relatively complicated. There exist several models of tectonic collisions from the thin-skinned thrust, the lithospheric collision, to uplifting by buoyancy. The shape of Moho should be a key

  13. Global uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: higher-order elements

    Microsoft Academic Search

    Jichun Li; I. M. Navon

    1999-01-01

    In this paper, we develop a general higher-order finite element method for solving singularly perturbed elliptic linear and quasilinear problems in two space dimensions. We prove that a quasioptimal global uniform convergence rate of 0(Nx?(m+1) Inm+1Nx + Nv?(m+1) Inm+1Nv) in L2 norm is obtained for a reaction-diffusion model by using the mth order (m ? 2) tensor-product element, thus answering

  14. boundaries

    Microsoft Academic Search

    Paolo Moretti; Lasse Laurson; Mikko J. Alava

    The dynamics of dislocation assemblies in deforming crystals indicate the emergence of collective phenomena, intermittent fluctuations and strain avalanches. In polycrystalline materials, the understanding of plastic deformation mechanisms depends on grasping the role of grain boundaries on dislocation motion. Here the interaction of dislocations and elastic, low angle grain boundaries is studied in the framework of a discrete dislocation representation.

  15. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion

    NASA Astrophysics Data System (ADS)

    Cloos, Mark; Shreve, Ronald L.

    1988-09-01

    The subduction-channel model predicts five geologically and geophysically distinctive types of convergent plate margin. They differ primarily in the proportions of incoming sediment and upflowing melange offscraped and underplated near the toe of the overriding block. The model predicts complex patterns of uplift or subsidence of the forearc region due to differential underplating or subduction erosion and to initiation or cessation of melange upflow. It shows how subduction speed, sediment input, and pressure gradient along the channel govern the general distribution and magnitude of subduction-zone earthquakes. It can predict the upward trajectories of exotic blueschist or serpentinized peridotite blocks that become entrained in the upwelling melange; and it suggests mechanisms by which much larger tracts of coherent blueschist can be raised to shallower levels. It predicts characteristic structural and metamorphic histories for geologic units accreted during steady-state subduction, showing for example, that offscraped materials undergo subhorizontally-directed compression during final dewatering and accretion, whereas underplated ones undergo large simple shear. It gives the maximum depths reached by upwelled melange, which bear significantly on the metamorphic changes observed in them. It predicts large-scale melange diapirism in certain rare cases, in which the normally adverse pressure gradient is reversed in a short reach of the channel, as at Barbados Island. Finally, it explains why pelagic sediments are seldom found in accretionary complexes and gives insight into the factors controlling what portion of the incoming sediment, and the10Be and other tracers it carries, will reach the region of volcanic-arc magmagenesis.

  16. Continental arc magmatism in a Mesoproterozoic convergent margin: Petrological and geochemical constraints from the magmatic suite of Kondapalle along the eastern margin of the Indian plate

    NASA Astrophysics Data System (ADS)

    Rao, C. V. Dharma; Santosh, M.

    2011-09-01

    The magmatic suite at Kondapalle represents a Mesoproterozoic (~ ca. 1634 Ma) magmatic arc emplaced in the southern sector of the Eastern Ghats Belt (EGB). Here we present new geological, mineralogical and geochemical data on the various lithological units in this complex including anorthosites, gabbronorites and pyroxenites. The major mineral constituents in these rocks are plagioclase (An 98-57), amphibole (X Mg 0.93-0.52), orthopyroxene (X Mg 0.94-0.51), clinopyroxene (X Mg 0.93-0.63) and chromite (X Mg 0.20-50). The near-absence of plagioclase in the orthopyroxenites, early and abundant crystallization of orthopyroxene, and formation of gabbronorites rather than gabbro or olivine gabbro in the Kondapalle suite are correlated with the features of arc cumulates. The chemistry of chromian spinel and clinopyroxene also displays the trend for arc cumulates. The variations in the anorthite content of plagioclase vs. the Mg# of olivine attest to an arc-related magma source. The rocks display low abundance of incompatible trace elements (Ba, Rb, K and Zr) comparable to the values typically observed in subduction-related magmatic arcs. In trace element N-MORB normalized diagrams, all the rock units show Nb-Ta-Ti-Zr troughs reflecting the features characteristic of arc magmas. We interpret the Kondapalle rocks to represent the root zone of a deeply eroded magmatic arc built during the Mesoproterozoic associated with the subduction of an oceanic lithosphere in a long-lived convergent margin. We identify that the Mesoproterozoic subduction along the eastern margin of the Indian plate generated a wide arc-accretionary complex with an extruded high P-T metamorphic orogen during the final stage of collision. The subduction-accretion process is also supported by recent findings of Mesoproterozoic ophiolite mélanges from this zone, marking the history from the break-up of the Paleoproterozoic Columbia supercontinent to the assembly of the Neoproterozoic Rodinia supercontinent.

  17. Using high-resolution aeromagnetic survey to map tectonic elements of plate boundaries: An example from the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, A. S.; ten Brink, U. S.; Rybakov, M.; Rotstein, Y.

    2004-12-01

    The Dead Sea Fault (DSF) is a transform plate boundary between the African and the Arabian plates. The 200-km-long DSF segment between the Gulf of Aqaba/Elat and the Dead Sea, which has the morphology of a rift valley, shows little seismic activity, and its surface trace is only intermittently visible. High-resolution magnetic data were collected in October 2003 aboard a Jordanian military helicopter flying at an altitude of 100 m over the southern 120-km-long section of this fault segment. The survey was part of a US-AID Middle Eastern Regional Cooperation project between Jordanian, Israeli, Palestinian, and American scientists. Data were collected along rift-perpendicular lines spaced 300 m apart, requiring frequent crossings between Israeli and Jordanian air spaces. The data were gridded at 75 m interval following resolution tests, reduced to pole, and incorporated into a GIS together with elevation, geology, and gravity maps to facilitate interpretation. The main findings of the magnetic survey are the absence of magnetic anomalies crossing the rift valley, and the presence of a rift-parallel regional lineament corresponding to the active trace of the DSF. The lineament extends NNE as an almost continuous trace from Elat, Israel, to the eastern side of the valley 5 km north of Rahmeh. Jordan. Another fault trace located 2-3 km to the west may overlap and continue NNE through Gebel A-Risha, and into the central Arava/Araba valley, where it is visible on the surface. Alternatively, the two traces may be connected. If an offset between the two traces exists, it may be small enough to allow an earthquake rupture to propagate across the offset, and generate an earthquake with a moment magnitude of up to 7.5. Traces of buried faults in the central Arava/Araba valley that were previously active in the DSF system, are visible as abrupt terminations of an area of short wavelength magnetic anomalies. These anomalies probably represent shallow subsurface magmatic intrusions. The closest exposed intrusion is dated at 20.7 Ma, shortly before the development of the DSF. Other anomalies can be traced at the edges of our survey area and are likely related to Precambrian outcrops along the rift shoulders. Comparison of the magnetic and the sparser land-gravity data shows the same general azimuth of the magnetic lineament and of the segmented fault system as derived from the gravity and a surprisingly good coincidence between local gravity and magnetic anomalies over the Timna pull-apart basin, owing perhaps to the sensitivity of the high-resolution magnetic data to the thickness of the sedimentary cover.

  18. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    PubMed

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  19. Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study

    PubMed Central

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  20. Geologic observations of the northern boundary of the Caribbean plate across central America as seen by Seasat and SIR-A

    NASA Technical Reports Server (NTRS)

    Rebillard, P.; Dixon, T.; Farr, T.

    1982-01-01

    The radar data analyzed here extend from the Amatique Bay (Golfo de Honduras) in the northeast to the Pacific Ocean (Puenta Remedios) in the southwest. Space Shuttle Imaging Radar (SIR-A) data-take 18 overlaps the principal part of the Seasat mosaic. SIR-A data make possible more observations over the Central American Cordillera, where strong layover limited the amount of information obtained by Seasat. The radar coverage delineates the principal strike-slip faults of the region (Cuilco-Chixoy-Polochic, Motagua and Jocotan), which have acted as the Caribbean-Americas plate boundary. It also demarcates volcanic terranes related to subduction of the Cocos Plate under the Caribbean Plate. Within pumice fields of the Tertiary volcanic belt, the use of two Seasat look directions (rev 759 and rev 1211), in conjunction with SIR-A data, makes possible some rock discrimination.

  1. Effect of double stratification on mixed convection boundary layer flow of a nanofluid past a vertical plate in a porous medium

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, D.; Surender, Ontela

    2015-01-01

    The effect of thermal and mass stratification on mixed convection boundary layer flow over a vertical flat plate embedded in a porous medium saturated by a nanofluid has been investigated. The vertical plate is maintained at uniform and constant heat, mass and nanoparticle fluxes, and the behavior of the porous medium is described by the Darcy model. The model considered for nanofluids incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. A suitable coordinate transformation is introduced, and the obtained system of non-similar, coupled and non-linear partial differential equations is solved numerically. The influence of pertinent parameters on the non-dimensional velocity, temperature, concentration and nanoparticle volume fraction are discussed. In addition, the variation of heat, mass and nanoparticle transfer rates at the plate are exhibited graphically for different values of physical parameters.

  2. Frictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Sawai, Michiyo; Hirose, Takehiro; Kameda, Jun

    2014-12-01

    The 2011 Tohoku earthquake (Mw 9.0) produced a very large slip on the shallow part of a megathrust fault that resulted in destructive tsunamis. Although multiple causes of such large slip at shallow depths are to be expected, the frictional property of sediments around the fault, particularly at coseismic slip velocities, may significantly contribute to large slip along such faults. We have thus investigated the frictional properties of incoming pelagic sediments that will subduct along the plate boundary fault at the Tohoku subduction zone, in order to understand the rupture processes that can cause large slip in the shallow parts of subduction zones. Our experimental results on clayey sediment at the base of the sedimentary section on the Pacific Plate yield a low friction coefficient of <0.2 over a wide range of slip velocities (0.25 mm/s to 1.3 m/s), and extremely low fracture energy during slip weakening, as compared with previous experiments of disaggregated sediments under coseismic slip conditions. Integrated Ocean Drilling Program (IODP) Expedition 343 confirmed that the clay-rich sediment investigated here is identical to those in the plate boundary fault zone, which ruptured and generated the Tohoku earthquake. The present results suggest that smectite-rich pelagic sediment not only accommodates cumulative plate motion over interseismic periods but also energetically facilitates the propagation of earthquake rupture towards the shallow part of the Tohoku subduction zone.

  3. Jurassic Oceanic Remnants In The Siuna Area (NE-Nicaragua) - Tracing The Chortis- Caribbean Paleo-plate Boundary

    NASA Astrophysics Data System (ADS)

    Flores, K.; Baumgartner, P. O.; Skora, S.; Baumgartner, L.; Baumgartner-Mora, C.; Rodriguez, D.

    2006-12-01

    The southern limit of the Chortis Block has been commonly placed along a line between the Santa Elena Peninsula (Costa Rica) and the Hess Escarpment (Eastern Caribbean). However, we have mapped extensive occurrences of ultramafic and mafic rocks, associated with Jurassic radiolarites in the Siuna area. These are in conflict with the current plate tectonic schemes. In the area S and NE of Siuna, we observe three tectono-stratigraphic units: 1. A pre-Cretaceous, subduction-related melange outcropping in a 30 x 5 km sized erosional window. Serpentinite is a (tectonic) matrix for a variety of mappable blocks grouped into the following categories: Gabbros and peridotites preserving original cumulate textures, greenstones, epidote-bearing greenschists, barroisite-bearing metamafics that partially contain garnet+clinopyroxene inclusions, phengite-schists, blue- green amphibole-rich metacherts, detrital quartzites, radiolarian cherts, black shales and Mn-radiolarites- bearing Middle and Late Jurassic Radiolaria. Blocks with greenschists and higher pressure metamorphic facies appear to be concentrated in the central part of the window. In some blocks, greenstones (mainly altered metabasalts) are associated with ribbon-bedded radiolarites and siliceous shales suggesting an original sedimentary contact of sediments on the oceanic crust. This melange resembles (though more polymict) the subduction melanges of the Franciscan and indicates that the Siuna area exposes part of a major suture zone between the Chortis Block and the Caribbean Large Igneous Province (CLIP). 2. Thin-bedded calcareous hemipelagites yielding Aptian/Albian planktonic Foraminifera rest unconformably on the oceanic melange. Distal volcaniclastic turbitites are interbedded. The sequence contains shallow upsections into thick bedded limestones, in which andesitic flows may be intercalated. Well rounded/sorted and imbricated volcanic pebble conglomerates sometimes intervene between the andesites and fossiliferous, massive shallow water limestones (Atima Formation known in the Chortis stratigraphy). Apparently, andesitic flows became eroded in a high energy/beach environment that gave way to a shallow carbonate bank. We interpret this succession as a passage from a distal forearc basin into an island arc situation with local emergence of basaltic to andesitic volcanoes. 3. An andesitic to dacitic volcanic cover is represented by pyroclastic flows and tuffs intruded by small sub- volcanic, hornblende-rich andesite bodies. All previously described units are affected by large intrusive bodies of diorites and granodiorites of Late Cretaceous-Paleocene ages. The presence of oceanic remnants in NE Nicaragua may radically change the current concepts of plate boundaries in the area. The boundary between the Palaeozoic-Mesozoic continental Chortis Block and the CLIP is commonly placed as far south as the Costa Rica/Nicaragua border. A suture zone was interpreted to be aligned with the EW-trending Santa Elena Fault and the Hess Escarpment, based on outcrops of serpentinites that are found along the San Juan River (Costa Rica/Nicaragua border). However, newly discovered outcrops of serpentinites and oceanic sediments far north of the San Juan River may connect to the Siuna area suggesting that Tertiary and Quaternary volcanics of Nicraragua may hide extensive oceanic terranes.

  4. Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: an inference from topographic variation

    NASA Astrophysics Data System (ADS)

    Koge, Hiroaki; Fujiwara, Toshiya; Kodaira, Shuichi; Sasaki, Tomoyuki; Kameda, Jun; Kitamura, Yujin; Hamahashi, Mari; Fukuchi, Rina; Yamaguchi, Asuka; Hamada, Yohei; Ashi, Juichiro; Kimura, Gaku

    2014-12-01

    The 2011 Tohoku-Oki earthquake (Mw 9.0) produced a fault rupture that extended to the toe of the Japan Trench. The deformation and frictional properties beneath the forearc are keys that can help to elucidate this unusual event. In the present study, to investigate the frictional properties of the shallow part of the plate boundary, we applied the critically tapered Coulomb wedge theory to the Japan Trench and obtained the effective coefficient of basal friction and Hubbert-Rubey pore fluid pressure ratio (?) of the wedge beneath the lower slope. We extracted the surface slope angle and décollement dip angle (which are the necessary topographic parameters for applying the critical taper theory) from seismic reflection and refraction survey data at 12 sites in the frontal wedges of the Japan Trench. We found that the angle between the décollement and back-stop interface generally decreases toward the north. The measured taper angle and inferred effective friction coefficient were remarkably high at three locations. The southernmost area, which had the highest coefficient of basal friction, coincides with the area where the seamount is colliding offshore of Fukushima. The second area with a high effective coefficient of basal friction coincides with the maximum slip location during the 2011 Tohoku-Oki earthquake. The area of the 2011 earthquake rupture was topographically unique from other forearc regions in the Japan Trench. The strain energy accumulation near the trench axis may have proceeded because of the relatively high friction, and later this caused a large slip and collapse of the wedge. The location off Sanriku, where there are neither seamount collisions nor rupture propagation, also has a high coefficient of basal friction. The characteristics of the taper angle, effective coefficient of basal friction, and pore fluid pressure ratio along the Japan Trench presented herein may contribute to the understanding of the relationship between the geometry of the prism and the potential for generating seismo-tsunamigenic slips.

  5. Slip rate and earthquake recurrence along the central Septentrional fault, North American-Caribbean plate boundary, Dominican Republic

    USGS Publications Warehouse

    Prentice, C.S.; Mann, P.; Pena, L.R.; Burr, G.

    2003-01-01

    The Septentrional fault zone (SFZ) is the major North American-Caribbean, strike-slip, plate boundary fault at the longitude of eastern Hispaniola. The SFZ traverses the densely populated Cibao Valley of the Dominican Republic, forming a prominent scarp in alluvium. Our studies at four sites along the central SFZ are aimed at quantifying the late Quaternary behavior of this structure to better understand the seismic hazard it represents for the northeastern Caribbean. Our investigations of excavations at sites near Rio Cenovi show that the most recent ground-rupturing earthquake along this fault in the north central Dominican Republic occurred between A.D. 1040 and A.D. 1230, and involved a minimum of ???4 m of left-lateral slip and 2.3 m of normal dip slip at that site. Our studies of offset stream terraces at two locations, Rio Juan Lopez and Rio Licey, provide late Holocene slip rate estimates of 6-9 mm/yr and a maximum of 11-12 mm/yr, respectively, across the Septentrional fault. Combining these results gives a best estimate of 6-12 mm/yr for the slip rate across the SFZ. Three excavations, two near Tenares and one at the Rio Licey site, yielded evidence for the occurrence of earlier prehistoric earthquakes. Dates of strata associated with the penultimate event suggest that it occurred post-A.D. 30, giving a recurrence interval of 800-1200 years. These studies indicate that the SFZ has likely accumulated elastic strain sufficient to generate a major earthquake during the more than 800 years since it last slipped and should be considered likely to produce a destructive future earthquake.

  6. An application of Global Positioning System data from the Plate Boundary Observatory for deformation monitoring purposes (Invited)

    NASA Astrophysics Data System (ADS)

    Murray-Moraleda, J. R.; Liu, Z.; Segall, P.

    2009-12-01

    The Plate Boundary Observatory (PBO) represents a major step forward in Global Positioning System (GPS) coverage for the western United States by increasing the spatial density of stations, generating daily position estimates, and providing the infrastructure for high-rate and real-time positioning. In addition to producing vital input for a wide range of crustal deformation studies, PBO significantly expands opportunities for monitoring and event response. This presentation will focus on one such effort. Data from large continuous GPS networks like PBO should be monitored for temporal changes, be they tectonic, volcanic, hydrologic, anthropogenic, or instrumental in origin. Since it is not feasible to review time series by eye on a daily basis, automated approaches are required. Here we apply a Kalman filtering based method, termed the Network Inversion Filter (Segall and Matthews, 1997; McGuire and Segall, 2003), to monitor daily GPS data for deformation-related transient signals. This approach relies on the spatial coherence of signals due to transient sources such as fault slip in order to separate them from spatially-localized time-dependent noise. The dense GPS coverage provided by PBO has augmented pre-existing continuous GPS networks making it now feasible to test this method in California. Results from synthetic tests using the >400 station southern California continuous GPS network configuration demonstrate this approach can extract fault slip signals from data contaminated by plausible noise processes. We will present results using real data from the San Francisco Bay Area and discuss the role and limitations of this methodology in hazard monitoring.

  7. Fault Population Analyses in the Eastern California Shear Zone: Insights into the Development of Young, Actively Evolving Plate Boundary Structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Dawers, N. H.; Amer, R. M.

    2014-12-01

    Relationships between cumulative fault displacement, slip rate and length, along with fault population statistics are analyzed for faults located within the Eastern California Shear Zone (ECSZ), focusing on areas north of the Garlock fault. Here many faults are geologically young and in an early stage of evolution, while many older and larger faults are also still active. We analyze scaling relationships for both strike-slip and normal faults in order to determine whether the two fault populations share the same properties or not. Cumulative displacement, slip rate and length data are collected from published maps and literature sources. The dataset spans fault lengths from tens of meters to hundreds of kilometers. Results of fault scaling analyses indicate that displacement has a linear relationship with fault length for normal faults in this area over the entire length span, whereas strike-slip faults do not have a clear displacement-length scaling relation. For a given length, the subset of strike-slip faults typically exhibits a much larger displacement than that for the normal faults. The slip rate versus length trends are similar but are considerably more scattered. In addition, we define a subpopulation of normal faults that are kinematically related to the right-lateral strike-slip faults; these have a maximum length set by the spacing between the right-lateral faults. Fault size-frequency distributions also indicate differences between the normal and strike-slip fault populations. Overall, the normal faults have higher ratios of cumulative number to fault length than the strike-slip population does, which we relate to different patterns of localization of faulting. We interpret these trends as reflecting different tectonic histories, with the majority of normal faults being intraplate faults associated with Basin and Range extension and the strike-slip faults being kinematically connected with plate boundary.

  8. Slip rate and earthquake recurrence along the central Septentrional fault, North American-Caribbean plate boundary, Dominican Republic

    NASA Astrophysics Data System (ADS)

    Prentice, Carol S.; Mann, Paul; PeñA, Luis R.; Burr, G.

    2003-03-01

    The Septentrional fault zone (SFZ) is the major North American-Caribbean, strike-slip, plate boundary fault at the longitude of eastern Hispaniola. The SFZ traverses the densely populated Cibao Valley of the Dominican Republic, forming a prominent scarp in alluvium. Our studies at four sites along the central SFZ are aimed at quantifying the late Quaternary behavior of this structure to better understand the seismic hazard it represents for the northeastern Caribbean. Our investigations of excavations at sites near Rio Cenovi show that the most recent ground-rupturing earthquake along this fault in the north central Dominican Republic occurred between A.D. 1040 and A.D. 1230, and involved a minimum of ˜4 m of left-lateral slip and 2.3 m of normal dip slip at that site. Our studies of offset stream terraces at two locations, Rio Juan Lopez and Rio Licey, provide late Holocene slip rate estimates of 6-9 mm/yr and a maximum of 11-12 mm/yr, respectively, across the Septentrional fault. Combining these results gives a best estimate of 6-12 mm/yr for the slip rate across the SFZ. Three excavations, two near Tenares and one at the Rio Licey site, yielded evidence for the occurrence of earlier prehistoric earthquakes. Dates of strata associated with the penultimate event suggest that it occurred post-A.D. 30, giving a recurrence interval of 800-1200 years. These studies indicate that the SFZ has likely accumulated elastic strain sufficient to generate a major earthquake during the more than 800 years since it last slipped and should be considered likely to produce a destructive future earthquake.

  9. Chapter 18 Structural and sedimentary development of a neogene transpressional plate boundary between the caribbean and South America plates in Trinidad and the Gulf of paria

    Microsoft Academic Search

    Stephen Babb; Paul Mann

    1999-01-01

    Trinidad, the Gulf of Paria, and Eastern Venezuela lie in a diffuse and complex zone of Cenozoic tectonic interaction between the Caribbean and South America plates. Numerous models have being proposed to explain the complex tectono-stratigraphie evolution of the area. In this paper, we interpret an integrated data base consisting of well logs and seismic reflection profiles to document five

  10. CONVECTIVE INSTABILITY OF A THICKENED BOUNDARY LAYER AND ITS RELEVANCE FOR THE THERMAL EVOLUTION OF CONTINENTAL CONVERGENT BELTS

    Microsoft Academic Search

    G. A. Houseman; D. P. McKenzie; Peter Molnar

    1981-01-01

    When crust thickens during crustal shortening, the underlying mantle lithosphere must shorten and thicken also, causing the sub- mersion of cold, dense material into the sur- rounding asthenosphere. For a range of physical parameters the thickened boundary layer that forms the transition from the strong lithosphere to the convecting asthenosphere may become un- stable, detach, and sink into the asthenosphere,

  11. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  12. Hydrodynamic and thermal slip effect on double-diffusive free convective boundary layer flow of a nanofluid past a flat vertical plate in the moving free stream.

    PubMed

    Khan, Waqar A; Uddin, Md Jashim; Ismail, A I Md

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  13. Hydrodynamic and Thermal Slip Effect on Double-Diffusive Free Convective Boundary Layer Flow of a Nanofluid Past a Flat Vertical Plate in the Moving Free Stream

    PubMed Central

    Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  14. Tectonic Plates, Earthquakes, and Volcanoes

    NSDL National Science Digital Library

    The representation shows earthquake and volcanic activity corresponds to plate boundaries. This interactive topographical map with the ocean water removed shows the boundaries of major plates and the locations of major volcanic eruptions and earthquakes worldwide.

  15. Plate Tectonics

    NSDL National Science Digital Library

    This data tip from Bridge, the Ocean Sciences Education Teacher Resource Center archive, includes a variety of educational sites to visit on plate tectonic theory. Learners can use underwater earthquake data to identify plate boundaries with links to the National Oceanic and Atmospheric Administration's Acoustic Monitoring Program Ocean Seismicity data. Data from the Northeast Pacific, eastern Equatorial Pacific, and North Atlantic are examined in more detail.

  16. Role of the plate margin curvature in the plateau buildup: Consequences for the central Andes

    NASA Astrophysics Data System (ADS)

    Boutelier, D. A.; Oncken, O.

    2010-04-01

    The influence of convergent plate boundary curvature on the stress distribution in an overriding plate is explored using analytical and numerical modeling techniques. Trench-parallel compression can be produced near the symmetry axis of a seaward-concave plate boundary if the interplate friction is high and/or if the subducting lithosphere has a low flexural rigidity, which produces little nonhydrostatic normal stress on the plate boundary. This situation favors the formation of trench-parallel thrusts with minor trench-parallel component of slip. Trench-parallel compression is reduced along the most oblique parts of the plate boundary, which favors the formation of strike slip faults with major trench-parallel slip. Both the stress conditions on the interplate zone and the 3-D geometry of this zone control whether the trench-parallel stress in the center of a seaward-concave curvature is a tension or compression. Low dip angle and high convergence obliquity angle favor trench-parallel compression. In the central Andes, N-S minor shortening in the center of the Arica bend and strike slip systems north and south of the symmetry axis suggest that the effect of shear traction dominated during Cenozoic time when the curvature of the plate boundary was forming. This result suggests that the processes responsible for the formation of the plate boundary curvature were assisted by enhanced interplate friction and/or reduced compressive nonhydrostatic normal stress. For a geometry resembling the present-day South American plate margin, estimations of normal and shear stresses on the plate boundary suggest that the trench-parallel stress in the center of the curvature is compressive.

  17. Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions

    USGS Publications Warehouse

    Becker, T.W.; Hardebeck, J.L.; Anderson, G.

    2005-01-01

    We use Global Positioning System (GPS) velocities and stress orientations inferred from seismicity to invert for the distribution of slip on faults in the southern California plate-boundary region. Of particular interest is how long-term slip rates are partitioned between the Indio segment of the San Andreas fault (SAF), the San Jacinto fault (SJF) and the San Bernardino segment of the SAE We use two new sets of constraints to address this problem. The first is geodetic velocities from the Southern California Earthquake Center's (SCEC) Crustal Motion Map (version 3 by Shen et al.), which includes significantly more data than previous models. The second is a regional model of stress-field orientations at seismogenic depths, as determined from earthquake focal mechanisms. While GPS data have been used in similar studies before, this is the first application of stress-field observations to this problem. We construct a simplified model of the southern California fault system, and estimate the interseismic surface velocities using a backslip approach with purely elastic strain accumulation, following Meade et al. In addition, we model the stress orientations at seismogenic depths, assuming that crustal stress results from the loading of active faults. The geodetically derived stressing rates are found to be aligned with the stress orientations from seismicity. We therefore proceed to invert simultaneously GPS and stress observations for slip rates of the faults in our network. We find that the regional patterns of crustal deformation as imaged by both data sets can be explained by our model, and that joint inversions lead to better constrained slip rates. In our preferred model, the SJF accommodates ???15 mm yr-1 and the Indio segment of the SAF ???23 mm yr-1 of right-lateral motion, accompanied by a low slip rate on the San Bernardino segment of the SAF 'Anomalous' fault segments such as around the 1992 Mw = 7.3 Landers surface rupture can be detected. There, observed stresses deviate strongly from the long-term loading as predicted by our simple model. Evaluation of model misfits together with information from palaeoseismology may provide further insights into the time dependence of strain accumulation along the San Andreas system. ?? 2004 RAS.

  18. Constraints on current crustal deformation of the Taiwan plate boundary from CGPS strain rate field and focal mechanism stress inversions

    NASA Astrophysics Data System (ADS)

    Chen, K.; Wu, Y.; Hsu, Y.; Chan, Y.

    2013-12-01

    There are many studies using the continuous GPS (CGPS) observations and forward modeling to represent the current crustal deformation around the global plate boundaries. However, the relation between surface geodetic data and crustal deformation is still a major debate since there are only few available data at depth for constraints. In this study, 3D spatial variations of interseismic surface strain rate and crustal stress state in Taiwan are evaluated by using both CGPS data and earthquake focal mechanisms from 1994 to 2010 and 1991 to 2010, respectively. We estimated strain rate with a simple approach that solves for surface velocity on a 0.1 x 0.1° grid while weighting the distance between observations and each grid node. The surface velocities used in this study are after the process of removing the coseismic and postseismic effects caused by local main shocks. We applied the genetic algorithm in a nonlinear global search for the focal mechanism solution determination with magnitude ranging from ML 1.6 to 7.3 by first motion polarities of P waves. Earthquakes were excluded the redundant aftershock sequences which perturbed the estimation of interseismic stress state. There are 7083 events determined around Taiwan for performing a stress tensor inversion. In the comparison of orientations between strain rate and stress axes, we found the regional variation of stress orientations from surface to the base of crust is significant and not homogenous in Taiwan. In general, the orientations of strain rate and stress axes are consistent from surface to 20 km depth in most of Taiwan regimes. We suggest that the common decoupling phenomenon between both axes starts from 20 km implying a rheological change. The consistency of orientations from strain rate and stress field extends from surface down to more than 30 km in Central Taiwan and southern Coastal Range (COR) could be associated with stress accumulation in the crust for the 1999 Mw 7.6 Chi-Chi and 2003 Mw 6.8 Chengkung earthquakes. Some of regions without consistency of strain rate and stress axes, it may cause by the worse data constraint or the complex of regional structures.

  19. Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Ben-Zion, Yehuda; Campillo, Michel; Roux, Philippe

    2015-05-01

    We use cross-correlations of ambient seismic noise between pairs of 158 broadband and short-period sensors to investigate velocity structure over the top 5-10 km of the crust in the Southern California plate boundary region around the San Jacinto Fault Zone (SJFZ). From the 9-component correlation tensors associated with all station pairs we derive dispersion curves of Rayleigh and Love wave group velocities. The dispersion results are inverted first for Rayleigh and Love waves group velocity maps on a 1.5 × 1.5 km2 grid that includes portions of the SJFZ, the San Andreas Fault (SAF), and the Elsinore fault. We then invert these maps to 3D shear wave velocities in the top ~7 km of the crust. The distributions of the Rayleigh and Love group velocities exhibit 2? azimuthal anisotropy with fast directions parallel to the main faults and rotations in complex areas. The reconstructed 3D shear velocity model reveals complex shallow structures correlated with the main geological units, and strong velocity contrasts across various fault sections along with low-velocity damage zones and basins. The SJFZ is marked by a clear velocity contrast with higher V s values on the NE block for the section SE of the San Jacinto basin and a reversed contrast across the section between the San Jacinto basin and the SAF. Velocity contrasts are also observed along the southern parts on the SAF and the Elsinore fault, with a faster southwest block in both cases. The region around the Salton Trough is associated with a significant low-velocity zone. Strong velocity reductions following flower-shape with depth are observed extensively around both the SJFZ and the SAF, and are especially prominent in areas of geometrical complexity. In particular, the area between the SJFZ and the SAF is associated with an extensive low-velocity zone correlated with diffuse seismicity at depth, and a similar pattern including correlation with deep diffuse seismicity is observed on a smaller scale in the trifurcation area of the SJFZ. These results augment local earthquake tomography images that have low resolution in the top few km of the crust, and provide important constraints for studies concerned with behavior of earthquake ruptures, generation of rock damage, and seismic shaking hazard in the region.

  20. In-Situ Observations of Earthquake-Driven Fluid Pulses within the Japan Trench Plate Boundary Fault Zone

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2014-12-01

    Fault valving and transient fluid flow has long been suspected to be an important process in the earthquake cycle, but has not previously been captured by direct measurements during an episode. In particular, earthquakes are thought to drive fluids in fault zones, but again, evidence has been limited to the geologic record. Here we report on the signature of fluid pumping events inside the Tohoku Fault associated with individual earthquakes. As part of the Japan Trench Fast Drilling Project (JFAST), a sub-seafloor temperature observatory was installed across the plate boundary fault zone that ruptured during the 2011 Mw 9.0 Tohoku-oki earthquake. The observatory consisted of 55 autonomous temperature sensing dataloggers extending up to 820 m below sea floor at a water depth of ~7 km. The temporary deployment recorded data from July 2012 through April 2013. In addition to measuring the frictional heat signal from the megathrust earthquake, the high-resolution temperature time series data reveal spatially coherent temperature transients following regional earthquakes. Temperature increases vertically upwards from a fracture zone and decreases downwards, which is consistent with the expected signature of a pulse entering the annulus from the fracture zone. The anomalies are a few hundredths of degree Celsius and occur repeatedly at depths that are independently interpreted to have higher fracture permeability. High-pass filtered data are spatially correlated in areas disturbed by transient fluid advection. Fluid pulses occur in response to over a dozen local earthquakes, including a Mw 5.4 on 14 October 2012, a Mw 5.5 on 11 November 2012, and a doublet of two very local Mw 7.2 intraplate earthquakes on 7 December 2012, along with its associated aftershocks. There does not appear to be a response to large far-field earthquakes such as the 28 October 2012 Mw 7.8 Haida Gwaii or 6 February 2013 Mw 8.0 Santa Cruz Islands earthquakes. These measurements provide the first in situ documentation of seismic pumping at fractured regions of the fault damage zone. Near fault measurements such as these may provide insight into drivers of earthquake occurrence. The redistribution of fluid pressures within fault zones, such as observed here in response to earthquakes, is a potential mechanism that may be involved in earthquake triggering.

  1. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  2. Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations

    Microsoft Academic Search

    Timothy H. Dixon; Frederic Farina; Charles DeMets; Pamela Jansma; Paul Mann; Eric Calais

    1998-01-01

    Global Positioning System (GPS) measurements in 1986, 1994, and 1995 at sites in Dominican Republic, Puerto Rico, Cuba, and Grand Turk define the velocity of the Caribbean plate relative to North America. The data show eastward motion of the Caribbean plate at a rate of 21+\\/-1mm\\/yr (1 standard error) in the vicinity of southern Dominican Republic, a factor of 2

  3. Kinematic modeling of fault slip rates using new geodetic velocities from a transect across the Pacific-North America plate boundary through the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    McGill, Sally F.; Spinler, Joshua C.; McGill, John D.; Bennett, Richard A.; Floyd, Michael A.; Fryxell, Joan E.; Funning, Gareth J.

    2015-04-01

    Campaign GPS data collected from 2002 to 2014 result in 41 new site velocities from the San Bernardino Mountains and vicinity. We combined these velocities with 93 continuous GPS velocities and 216 published velocities to obtain a velocity profile across the Pacific-North America plate boundary through the San Bernardino Mountains. We modeled the plate boundary-parallel, horizontal deformation with 5-14 parallel and one obliquely oriented screw dislocations within an elastic half-space. Our rate for the San Bernardino strand of the San Andreas Fault (6.5 ± 3.6 mm/yr) is consistent with recently published latest Quaternary rates at the 95% confidence level and is slower than our rate for the San Jacinto Fault (14.1 ± 2.9 mm/yr). Our modeled rate for all faults of the Eastern California Shear Zone (ECSZ) combined (15.7 ± 2.9 mm/yr) is faster than the summed latest Quaternary rates for these faults, even when an estimate of permanent, off-fault deformation is included. The rate discrepancy is concentrated on faults near the 1992 Landers and 1999 Hector Mine earthquakes; the geodetic and geologic rates agree within uncertainties for other faults within the ECSZ. Coupled with the observation that postearthquake deformation is faster than the pre-1992 deformation, this suggests that the ECSZ geodetic-geologic rate discrepancy is directly related to the timing and location of these earthquakes and is likely the result of viscoelastic deformation in the mantle that varies over the timescale of an earthquake cycle, rather than a redistribution of plate boundary slip at a timescale of multiple earthquake cycles or longer.

  4. Large-scale right-slip displacement on the East San Francisco Bay Region fault system, California: Implications for location of late Miocene to Pliocene Pacific plate boundary

    USGS Publications Warehouse

    McLaughlin, R.J.; Sliter, W.V.; Sorg, D.H.; Russell, P.C.; Sarna-Wojcicki, A. M.

    1996-01-01

    A belt of northwardly younging Neogene and Quaternary volcanic rocks and hydrothermal vein systems, together with a distinctive Cretaceous terrane of the Franciscan Complex (the Permanente terrane), exhibits about 160 to 170 km of cumulative dextral offset across faults of the East San Francisco Bay Region (ESFBR) fault system. The offset hydrothermal veins and volcanic rocks range in age from .01 Ma at the northwest end to about 17.6 Ma at the southeast end. In the fault block between the San Andreas and ESFBR fault systems, where volcanic rocks are scarce, hydrothermal vein system ages clearly indicate that the northward younging thermal overprint affected these rocks beginning about 18 Ma. The age progression of these volcanic rocks and hydrothermal vein systems is consistent with previously proposed models that relate northward propagation of the San Andreas transform to the opening of an asthenospheric window beneath the North American plate margin in the wake of subducting lithosphere. The similarity in the amount of offset of the Permanente terrane across the ESFBR fault system to that derived by restoring continuity in the northward younging age progression of volcanic rocks and hydrothermal veins suggests a model in which 80-110 km of offset are taken up 8 to 6 Ma on a fault aligned with the Bloomfield-Tolay-Franklin-Concord-Sunol-Calaveras faults. An additional 50-70 km of cumulative slip are taken up ??? 6 Ma by the Rogers Creek-Hayward and Concord-Franklin-Sunol-Calaveras faults. An alternative model in which the Permanente terrane is offset about 80 km by pre-Miocene faults does not adequately restore the distribution of 8-12 Ma volcanic rocks and hydrothermal veins to a single northwardly younging age trend. If 80-110 km of slip was taken up by the ESFBR fault system between 8 and 6 Ma, dextral slip rates were 40-55 mm/yr. Such high rates might occur if the ESFBR fault system rather than the San Andreas fault acted as the transform margin at this time. Major transpression across the boundary between the Pacific and North American plates at about 3 to 5 Ma would have resulted in the transfer of significant slip back to the San Francisco Peninsula segment of the San Andreas fault. Since that time, the ESFBR fault system has continued to slip at rates of 11-14 mm/yr. If this interpretation is valid, the ESFBR fault system was the Pacific-North American plate boundary between 8 and 6 Ma, and this boundary has migrated both eastward and westward with time, in response to changing plate margin geometry and plate motions.

  5. Boundary-Layer Receptivity to Freestream Disturbances for A Mach 4.5 Flow over A Flat Plate

    Microsoft Academic Search

    Yanbao Ma; Xiaolin Zhong

    2001-01-01

    In most flight conditions of hypersonic vehicles, the transition from laminar to turbulent flow is a result of nonlinear response of the laminar boundary layers to environmental disturbances. The process of how environment disturbances enter boundary layer and trigger instability waves is termed the receptivity phenomenon. In this paper, the receptivities to three different types of freestream disturbances for a

  6. Distributed Active Folding across the Northern Caribbean Plate Boundary Derived from the Combined Analysis of Srtm Topography and Seismic Profiling

    NASA Astrophysics Data System (ADS)

    Cormier, M.; Seeber, L.; Sorlien, C. C.; Steckler, M. S.; Gulick, S. P.; McHugh, C. M.; Hornbach, M.

    2011-12-01

    Sinistral transpression across the northern Caribbean plate boundary is partitioned across Hispaniola between two subparallel transforms that accommodate strike-slip motion, and a wide swath of intervening NW-trending folds. These folds correspond to mountain chains continuous with offshore anticlinal ridges. The mapping of onshore flights of marine terraces exposed across these folds, combined with the dating of fossil corals, have constrained uplift rates for their emerged portions [Mann et al., 1995]. Slope maps produced from recently released SRTM (Shuttle Radar Topography Mission) data with a resolution of ~30 m highlight the full 3D geometry of the deformed marine terraces across these folds. Offshore multichannel seismic reflection (MCS) profiles collected in 1982 by GSI / Western Geophysical constrain the broader geometry of the submerged anticline limbs. This combined dataset is used to investigate the deformation history of four folds whose emerged limbs are only moderately disrupted by mass wasting. One of the exposed structures (St Marc peninsula) displays both fold limbs, with the highest uplift predictably centered on the axial trace of the fold. Two others display terraces that remain planar and are progressively tilted away from the presumed anticline crests, indicating in each case that only one of the fold limbs is exposed above sea level and that it is subsiding relative to the crest. Lastly, the west end of Gonave Island, the WNW-trending island located between the north and south peninsulas of Haiti, displays nearly horizontal terraces. While prior investigation of the lowest ~125 ka terrace indicates that it has not uplifted since it was formed [Mann et al., 1995], nearshore MCS data reveal a ~350 m-deep horizontal erosional surface that truncates folded reflectors. This suggests that the submerged portion of the Gonave anticline crest is subsiding. Furthermore, progressive tilting of the seismic reflectors on the fold limbs requires that these limbs are subsiding relative to the crest. Major extension, inferred to be Eocene, is seismically imaged north of Gonave Island, with the post-extension angular unconformity now lying at up to several km depth. The extended, thinned crust is expected to have subsided, a process augmented by post-extension sedimentation. Therefore, a lack of subsidence for the ~125 ka terrace on Gonave Island likely requires some growth of structural relief. We propose that such structural growth is driven by slip on an imaged blind NNE-dipping thrust fault beneath Gonave Island. These results will be used to evaluate whether significant amount of contraction has been recently accommodated across the thrust folds, and what process may be causing subsidence despite folding and, presumable, crustal thickening. The distribution and partitioning of strain on and near western Hispaniola are critical information for evaluating the seismic hazards facing Haiti.

  7. The effect of small streamwise velocity distortion on the boundary layer flow over a thin flat plate with application to boundary layer stability theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Leib, S. J.; Cowley, S. J.

    1990-01-01

    Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.

  8. Kinematic framework of the Cocos-Pacific Plate Boundary from 13°N to the Orozco TRANSFORM FAULT: RESULTS FROM AN EXTENSIVE MAGNETIC AND SEAMARC II SURVEY

    NASA Astrophysics Data System (ADS)

    Madsen, John A.; Fornari, Daniel J.; Edwards, Margo H.; Gallo, David G.; Perfit, Michael R.

    1992-05-01

    During the summer of 1987, magnetic anomaly data were collected by surface ship as part of an extensive SeaMARC II investigation of the East Pacific Rise (EPR) from 13°N to the Orozco transform. The survey extended to either side of the rise axis onto seafloor at least 1.8 million years (m.y.) in age, enabling the recent evolution of the structural and kinematic framework of the plate boundary to be studied in detail. North of 13°50'N there has been a major perturbation in the evolution of the plate boundary. Swaths of lineaments that trend oblique to EPR-parallel topography form a north pointing, V-shaped discordant zone on the Pacific and Cocos plates that is broadly symmetric about the EPR axis. On the Pacific plate a zone of discordant morphology 130 km long and between 6 and 14 km wide with a structural grain that is highly oblique to the present-day spreading direction is observed on seafloor 0.9-1.8 m.y. in age. A similar but more subtle feature of the same age is also present on the Cocos plate. These zones of discordant lineaments can be correlated with changes in the magnetic lineation pattern. On the Pacific plate the disturbed zone lies between anomalies J and 2, creating greater than normal distance between the anomalies. On the Cocos plate the disturbed zone is characterized by a distinct, high-amplitude, northwestward trending magnetic anomaly. The observed structural grain and the changes in the magnetic anomaly patterns associated with the disturbed zones are very similar to those observed at propagating ridges. Based on the magnetic anomalies, a propagation rate of 10.8 cm/yr in a N10°W direction is estimated for the past 1.8 m.y. A detailed examination of the structures developed within the disturbed zone on the Pacifc plate indicates that the rift propagation in this area can best be explained by the model of Wilson (1990) which involves cyclic rift failure with inward curvature of both rift tips. Plate adjustment to the propagation event is ongoing. There is a pronounced change in the morphology of the rise axis with distance from the propagation event. Close to and for ˜100 km behind the propagator tip, the EPR crest is not well developed and is characterized by a series of low (relief of 100-200 m) ridges and troughs with a poorly defined neovolcanic zone. Further away (>100 km) from the propagator tip the rise crest is a single, linear, horst-shaped ridge with a well-developed narrow axial graben at the axis of the ridge. Regional morphologic and magnetic data suggest that this cycle of rift propagation may have begun approximately 2.5 million years before present (m.y.B.P.) near the eastern ridge-transform intersection of the paleo-O'Gorman transform and is continuing today at the Orozco transform.

  9. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an asymmetric anticline. Thus, analogue modeling has validated observation in seismic data and onshore geology whereby Mount Lebanon and adjacent folds exhibit similar compartmentalization and geometric dissimilarities along the Levant Fracture System. We suggest that the presence of inherited structures will affect to a certain extent the geometry of restraining bends and control the evolution of large strike-slip faults passing through.

  10. A study by numerical methods of stability theory for a flat plate boundary layer of growing thickness 

    E-print Network

    Barry, Michael David John

    1970-01-01

    The research, which is described in the following chapters is designed to continue the studies made by Jordinson into the behaviour of small disturbances of constant frequency in the Blasius boundary layer over a flat ...

  11. Kinematics of an Active Plate Boundary: Insights on the Philippine Mobile Belt through Analysis of GPS Observations and Satellite Imagery

    Microsoft Academic Search

    G. A. Galgana; M. W. Hamburger; Q. Chen; E. Corpuz

    2004-01-01

    The Philippine Mobile Belt is a rapidly deforming region, sandwiched between two opposing subduction zones (the East Luzon Trough and the Manila Trench), characterized by extensive strike-slip faulting (Philippine Fault) and multiple volcanic arcs. We use campaign-mode GPS observations from 1996 through 2002 to examine plate motions, microplate movements, and internal deformation within the island of Luzon. The orientation, extent,

  12. Heat transfer enhancement by delta-wing vortex generators on a flat plate: Vortex interactions with the boundary layer

    Microsoft Academic Search

    M. C. Gentry; A. M. Jacobi

    1997-01-01

    New data are presented that demonstrate a 50% to 60% enhancement of average heat and mass transfer for flow over a flat plate at low Reynolds numbers, using delta-wing vortex generators. The mechanisms responsible for the enhancement are determined, and a single parameter for estimating their effect is established. Using a straightforward method for evaluating this parameter from flow visualization

  13. Film Condensation with and Without Body Force in Boundary-Layer Flow of Vapor Over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.

    1961-01-01

    Laminar film condensation under the simultaneous influence of gas-liquid interface shear and body force (g force) is analyzed over a flat plate. Important parameters governing condensation and heat transfer of pure vapor are determined. Mixtures of condensable vapor and noncondensable gas are also analyzed. The conditions under which the body force has a significant influence on condensation are determined.

  14. Plate Tectonic Primer

    NSDL National Science Digital Library

    Lynn Fichter

    This site gives an in-depth look at the theory of plate tectonics and how it works. The structure of the Earth is discussed, with brief rock type descriptions. The structure of the lithosphere, plate boundaries, interplate relationships, and types of plates are all covered in detail.

  15. Along-strike variations in seismic structure of the locked-sliding transition on the plate boundary beneath the southern part of Kii Peninsula, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Iwasaki, T.; Saiga, A.; Umeyama, E.; Tsumura, N.; Sakai, S.; Hirata, N.

    2013-12-01

    The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. A narrow zone of nonvolcanic tremor has been found in the SW Japan fore-arc, along strike of the arc (Obara, 2002). The epicentral distribution of tremor corresponds to the locked-sliding transition estimated from thermal and deformation models (Hyndman et al., 1995). The spatial distribution of the tremor is not homogeneous in a narrow belt but is spatially clustered. Obara [2002] suggested fluids as a source for tremor because of the long duration and the mobility of the tremor activity. The behavior of fluids at the plate interface is a key factor in understanding fault slip processes. Seismic reflection characteristics and seismic velocity variations can provide important information on the fluid-related heterogeneity of structure around plate interface. However, little is known about the deeper part of the plate boundary, especially the transition zone on the subducting plate. To reveal the seismic structure of the transition zone, we conducted passive and active seismic experiments in the southern part of Kii Peninsula, SW Japan. Sixty 3-component portable seismographs were installed on a 60-km-long line (SM-line) nearly perpendicular to the direction of the subduction of the PHS with approximately 1 km spacing. To improve accuracy of hypocenter locations, we additionally deployed six 3-component seismic stations around the survey line. Waveforms were continuously recorded during a five-month period from December, 2009. In October of 2010, a deep seismic profiling was also conducted. 290 seismometers were deployed on the SM-line with about 200 m spacing, on which five explosives shots were fired as controlled seismic sources. Arrival times of local earthquakes and explosive shots were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). To obtain the detailed structure image of the transition zone on the subducting plate, the explosive shot data recorded on the SM-line were processed using the seismic reflection technique. Seismic reflection image shows the lateral variation of the reflectivity along the top of the PHS. A clear reflection band is present where the clustered tremors occurred. The depth section of Vp/Vs structure shows the lateral variation of the Vp/Vs values along the top of the PHS. Clustered tremors are located in and around the high Vp/Vs zone. These results suggest the occurrence of the tremors may be associated with fluids dehydrated from the subducted oceanic lithosphere.

  16. Tsujal Marine Survey: Crustal Characterization of the Rivera Plate-Jalisco Block Boundary and its Implications for Seismic and Tsunami Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Danobeitia, J.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Cameselle, A. L.; Estrada, F.; Prada, M.; Bandy, W. L.

    2014-12-01

    During the spring of 2014, a team of Spanish and Mexican scientists explored the western margin of Mexico in the frame of the TSUJAL project. The two main objectives were to characterize the nature and structure of the lithosphere and to identify potential sources triggering earthquakes and tsunamis at the contact between Rivera plate-Jalisco block with the North American Plate. With these purposes a set of marine geophysical data were acquired aboard the RRS James Cook. This work is focus in the southern part of the TSUJAL survey, where we obtain seismic images from the oceanic domain up to the continental shelf. Thus, more than 800 km of MCS data, divided in 7 profiles, have been acquired with a 6km long streamer and using an air-gun sources ranging from 5800 c.i. to 3540 c.i. Furthermore, a wide-angle seismic profile of 190 km length was recorded in 16 OBS deployed perpendicular to the coast of Manzanillo. Gravity and magnetic, multibeam bathymetry and sub-bottom profiler data were recorded simultaneously with seismic data in the offshore area. Preliminary stacked MCS seismic sections reveal the crustal structure in the different domains of the Mexican margin. The contact between the Rivera and NA Plates is observed as a strong reflection at 6 s two way travel time (TWTT), in a parallel offshore profile (TS01), south of Manzanillo. This contact is also identified in a perpendicular profile, TS02, along a section of more than 100 km in length crossing the Rivera transform zone, and the plate boundary between Cocos and Rivera Plates. Northwards, offshore Pto. Vallarta, the MCS data reveals high amplitude reflections at around 7-8.5 s TWTT, roughly 2.5-3.5 s TWTT below the seafloor, that conspicuously define the subduction plane (TS06b). These strong reflections which we interpret as the Moho discontinuity define the starting bending of subduction of Rivera Plate. Another clear pattern observed within the first second of the MCS data shows evidences of a bottom simulating reflector (BSR) along the continental margin, particularly strong offshore Pto. Vallarta. The integration of all these acquired geophysical information will allow obtaining a comprehensive image of the lithosphere that will be valuable for the seismic and tsunamigenic hazard assessment.

  17. INVITED PAPER: Direct total skin-friction measurement of a flat plate in zero-pressure-gradient boundary layers

    NASA Astrophysics Data System (ADS)

    Mori, Kiyoto; Imanishi, Hiroki; Tsuji, Yoshiyuki; Hattori, Tomohiro; Matsubara, Masaharu; Mochizuki, Shinsuke; Inada, Masaru; Kasiwagi, Tadashi

    2009-04-01

    The total skin friction on a flat plate is directly measured by using a towing tank up to Reynolds number ReL sime 107 (or R? sime 104). Plates of 3.3 and 4.3 m in length are towed in still water, balancing the vertical weight by small flotation devices, and their drag force is measured by a highly sensitive load cell. We have developed a new technique to correct wave-making resistance, pressure resistance and drag on a turbulence simulator. When the measured total drag is converted into local drag, it is found that the local frictional resistance is about 6% smaller than that given by the Kármán-Schoenherr formula. But it is consistent with the values obtained by the floating element technique, oil film interferometry and asymptotic evaluations.

  18. GPS measurements of crustal deformation within the Pacific-Australia plate boundary zone in Irian Jaya, Indonesia

    Microsoft Academic Search

    S. s. o. Puntodewo; R. Mccaffreyb; E. Calaisc; Y. Bockc; J. Raisa; C. Subaryaa

    1994-01-01

    Abstract Global Positioning System (GPS) measurements made in 1991, 1992 and 1993 provide preliminary estimates of slip distribution between the Australian and Pacific plates in Irian Jaya, Indonesia. We interpret the GPS results with constraints from earthquake mechanisms and slip vectors, recent marine surveys, and geology. Three GPS sites in southeastern,Irian Jaya show,motions,that are within,10 mm\\/yr,of the expected,motion,of Australia. A

  19. A revised estimate of Pacific-North America motion and implications for Western North America plate boundary zone tectonics

    NASA Technical Reports Server (NTRS)

    Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.

    1987-01-01

    Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.

  20. Plate Puzzle Page 1 of 20 Plate Puzzle 1

    E-print Network

    Benitez-Nelson, Claudia

    plotting activities. Good follow-up activities are: plate tectonics flip book, epicenter plotting using tectonics. The map is an attractive display of plate tectonic features such earthquake epicenters boundaries so that one can examine the relationship of the tectonic features to the plate boundaries. The map

  1. Plate Tectonics: Consequences of Plate Interactions

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2006-11-01

    This Science Object is the fourth of five Science Objects in the Plate Tectonic SciPack. It identifies the events that may occur and landscapes that form as a result of different plate interactions. The areas along plate margins are active. Plates pushing against one another can cause earthquakes, volcanoes, mountain formation, and very deep ocean trenches. Plates pulling apart from one another can cause smaller earthquakes, magma rising to the surface, volcanoes, and oceanic valleys and mountains from sea-floor spreading. Plates sliding past one another can cause earthquakes and rock deformation. Learning Outcomes:? Explain why volcanoes and earthquakes occur along plate boundaries. ? Explain how new sea floor is created and destroyed.? Describe features that may be seen on the surface as a result of plate interactions.

  2. Plate boundary behaviour, recent uplift, and seismic hazard along the Central Alpine Fault near the Whataroa River, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    De Pascale, G. P.; Davies, T. R.

    2014-12-01

    Understanding plate boundary behaviour is a major objective in seismotectonics to better understand and mitigate seismic hazards. Field- and light detection and ranging (lidar)-derived topographic mapping, geological characterisation, and optically stimulated luminescence (OSL) dating of on-fault sediments were used to better constrain rangefront deformation of the Southern Alps at the Alpine Fault near the Whataroa River. The Alpine Fault, which forms the plate boundary in the South Island of New Zealand, is thought to rupture in large to great earthquakes (most recently in 1717 AD). Here the fault is dextral-reverse, although primarily strike-slip with clear fault traces cutting across older surfaces of varying elevations and ages. Deformational bulges are observed along these traces that are likely thrust-bounded. A terrace of Whataroa River sediments on the hanging wall of the fault approximately ~ 55-75 m (when considering uncertainties) above the floodplain of the Whataroa. OSL ages for hanging wall sediments of ~ 11 ka in this terrace, ~ 2.8 ka for Whataroa River terrace deposits in a deformational bulge, and ~ 11.1 ka for a rangefront-derived fan and aggradation along the rangefront and Holocene hanging wall uplift rates of ~6.0 + or - 1 mm/yr at the fault. These Whataroa River-sourced terrace deposits suggest that the adjacent bounding faults are steeply-dipping, with no geometries in the shallow subsurface that would tend to cause rotation and tilting. Because GPS-derived "interseismic" vertical uplift rates are < 1 mm/yr here, the majority of rock uplift at the rangefront happens during episodic major Alpine Fault earthquakes. Additionally, our recent data on fault behaviour based on mapping and field measurements indicate that the fault may not exhibit characteristic rupture behaviour. We suggest instead 'bimodal behavior' where the AF exhibits both 'partial' (rupture length <300 km; moment magnitude, Mw, 6.5 to 7.8) and 'full' (rupture length ?300 km; Mw ? 7.9) ruptures. This further questions the validity of the characteristic earthquake model for seismic hazard assessments. Finally, we present a appraisal of the active South Westland Fault Zone, including new outcrop mapping that demonstrates other important sources of seismic hazard exist near this plate boundary.

  3. Near-field measurements and development of a new boundary layer over a flat plate with localized suction

    NASA Astrophysics Data System (ADS)

    Agrawal, Amit; Djenidi, Lyazid; Antonia, R. A.

    2010-05-01

    Suction on a turbulent boundary layer is applied through a narrow strip in order to understand the effects suction can have on the boundary layer development and turbulent structures in the flow. Detailed two-component laser Doppler velocimetry (LDV) and laser-induced fluorescence (LIF) based measurements have been undertaken in regions close to the suction strip and further downstream. The region close to the strip involves a flow reversal accompanied by a change in sign for the Reynolds shear stress and strong gradients in the flow variables. The mean streamwise velocity after suction remains larger than its corresponding no-suction value. Relative to the no-suction case, the velocity fluctuations first decrease with suction followed by a slow recovery which may involve a slight overshoot. LIF visualizations indicate that compared to the no-suction case, the low-speeds streaks stay closer to the wall and exhibit a smaller amount of spanwise and wall-normal oscillations with suction. The visualization results are consistent with two-point velocity correlation measurements. The streamwise and spanwise correlation measurements indicate that the structures are disrupted or removed from the boundary layer due to suction suggesting that the original boundary layer has been strongly influenced by suction. The results are explained by the development of a new inner layer that forms downstream of the suction strip.

  4. Velocity and temperature distribution of air in the boundary layer of a vertical plate for free-convective heat transfer 

    E-print Network

    Jullienne, Jean Maxime Jose

    1962-01-01

    . Ostrach, S. , An Analysis, of Laminar Free-Convection Flow and Heat Trends er about. a. Flat Plate Parallel to the Dire~ct on t ~t t. ~f7 pt * . WA X 8 P t Tlpl (~53 4. Eckert, E. R. G. , and. Soehngen, E. E. , Studies with the Zehnder-Mach... and Beckmann . using the Zender-Mach interferometer. H. Schuh (5), in 1948, , extended E. Pohlhausen's calculations by computing the velocity and . temperature distributions for large Prandtl numbers such as exist in oils. E. M. Sparrow and J. L. Gregg (6...

  5. Physical analysis and second-order modelling of an unsteady turbulent flow - The oscillating boundary layer on a flat plate

    NASA Technical Reports Server (NTRS)

    Ha Minh, H.; Viegas, J. R.; Rubesin, M. W.; Spalart, P.; Vandromme, D. D.

    1989-01-01

    The turbulent boundary layer under a freestream whose velocity varies sinusoidally in time around a zero mean is computed using two second order turbulence closure models. The time or phase dependent behavior of the Reynolds stresses are analyzed and results are compared to those of a previous SPALART-BALDWIN direct simulation. Comparisons show that the second order modeling is quite satisfactory for almost all phase angles, except in the relaminarization period where the computations lead to a relatively high wall shear stress.

  6. Direct numerical simulation from laminar to fully-developed turbulence in spatially evolving pipe flow and flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.; Hickey, Jean-Pierre

    2013-11-01

    Direct numerical simulations of spatially evolving pipe flow and boundary layer have been performed. The pipe is 250R long, the flow Reynolds number is 6000 and 8000, and the calculation used up to 1.7 billion grid points. Pipe inlet disturbance is from a very-thin wire ring placed at different radial locations. It is found that energy norm in the flow downstream of such disturbance can grow exponentially with axial distance. The boundary layer's momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Its mesh has 4 billion grid points. Good quantitative agreement with experimental data is obtained. In both the pipe flow and the boundary layer, under these inlet disturbances, Lambda vortex, hairpin packet, infant turbulent spot, mature turbulent spot, and hairpin forest occur naturally and sequentially. Passive scalar was also introduced in the simulation in a manner analogous to the color band experiment of Osborne Reynolds.

  7. Upper plate contraction north of the migrating Mendocino triple junction, northern California: Implications for partitioning of strain

    NASA Astrophysics Data System (ADS)

    McCrory, Patricia A.

    2000-12-01

    Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ˜10 mm/yr of convergence oriented 020°-045°. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040°-055°) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ˜85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr; directed 023°) is consistent with the compressive stress axis (020°) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.

  8. Upper plate contraction north of the migrating Mendocino triple junction northern California: Implications for partitioning of strain

    USGS Publications Warehouse

    McCrory, P.A.

    2000-01-01

    Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.

  9. Gravity constraints on the structure of the northern margin of Tunisia: implications on the nature of the northern African Plate boundary

    NASA Astrophysics Data System (ADS)

    Jallouli, Chokri; Mickus, Kevin L.; Moncef Turki, Mohamed

    2002-10-01

    Bouguer gravity data were analysed to determine the general crustal and upper-mantle structure in northern Tunisia. Residual gravity anomalies were determined by removing the gravitational effect of crustal thickness variations imaged by regional seismic experiments. Residual gravity anomalies contain short-wavelength anomalies superimposed on a long-wavelength component that decreases in amplitude northward towards the Tunisian coastline. An edge-enhancement analysis (e.g. enhanced analytic signals) of the short-wavelength anomalies suggests a previously unknown east-west-trending gravity anomaly south of 37°N with source depths of between 3 and 7 km. Modelling of residual and Bouguer gravity anomalies indicate that there are two possible solutions for the residual gravity decrease in northern Tunisia: (1) thickening of Cenozoic and Mesozoic sediments north of a strike-slip fault or (2) a crustal and upper-mantle low-density zone interpreted as being crustal material of the remnant subducted African Plate. The latter result is favoured based on seismic tomographic images of the Mediterranean region, which implies that subducting material exists under the African coast, geological interpretations suggesting that the Tell Atlas may be a thrust wedge accreted by underplating of the African continental crust and seismic refraction models, indicating a thinning of sediments in northern Tunisia. The east-west-trending gravity anomalies south of 37°N correspond to an important structural feature that may be related to either a structural boundary (e.g. a transform fault) or subduction beneath the African Plate.

  10. Investigation of the separated region ahead of three-dimensional protuberances on plates and cones in hypersonic flows with laminar boundary layers

    NASA Astrophysics Data System (ADS)

    Kumar, C. S.; Singh, T.; Reddy, K. P. J.

    2014-12-01

    Heat transfer rate and pressure measurements were made upstream of surface protuberances on a flat plate and a sharp cone subjected to hypersonic flow in a conventional shock tunnel. Heat flux was measured using platinum thin-film sensors deposited on macor substrate and the pressure measurements were made using fast acting piezoelectric sensors. A distinctive hot spot with highest heat flux was obtained near the foot of the protuberance due to heavy vortex activity in the recirculating region. Schlieren flow visualization was used to capture the shock structures and the separation distance ahead of the protrusions was quantitatively measured for varying protuberance heights. A computational analysis was conducted on the flat plate model using commercial computational fluid dynamics software and the obtained trends of heat flux and pressure were compared with the experimental observation. Experiments were also conducted by physically disturbing the laminar boundary layer to check its effect on the magnitude of the hot spot heat flux. In addition to air, argon was also used as test gas so that the Reynolds number can be varied.

  11. A Late Jurassic Early Cretaceous convergent margin of Northeastern Asia and sedimentary serpentinite

    Microsoft Academic Search

    S. D. Sokolov; Y. Lagabrielle; A. V. Ganelin; D. Kamenetsky; M. I. Tuchkova

    2003-01-01

    The Upper Jurassic Lower Cretaceous complexes of Uda-Murgal island arc were formed along the convergent boundary between the Northeastern Asia and northwestern Pacific plates. The northern part of the complex exposes volcanic, pyroclastic, and sedimentary deposits from the axial zone of the palaeo-volcanic arc; the central part consists of terrigenous\\/tuffaceous rocks of the ancient forearc; and the southern part expose

  12. Refined Views of Strike-slip Fault Zones, Seismicity, and State of Stress Associated With the Pacific-North America Plate Boundary in Southern California

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Nicholson, C.; Shaw, J. H.; Plesch, A.; Shearer, P. M.; Sandwell, D. T.; Yang, W.

    2013-12-01

    The mostly strike-slip plate boundary in southern California is expressed as a system of late Quaternary faults or principal slip zones (PSZs), with numerous adjacent smaller slip surfaces. It is complex, even after large cumulative displacements, and consists of major fault systems with multi-stranded, non-planar fault geometry, including some in close proximity to each other. There are also secondary cross faults and low-angle detachments that interact with the PSZs accommodating main plate boundary motion. The loading of plate-tectonic strain causes the largest earthquakes along PSZs, moderate-sized events in their immediate vicinity, and small earthquakes across the whole region. We apply relocated earthquake and refined focal mechanism (1981-2013) catalogs, as well as other geophysical datasets to provide refined views of the 3D fault geometry of these active fault systems. To determine properties of individual fault zones, we measure the Euclidian distance from every hypocenter to the nearest PSZ. In addition, we assign crustal geophysical parameters such as heat flow value and shear or dilatation strain rates to each epicenter. We investigate seismogenic thickness and fault zone width as well as earthquake source processes. We find that the seismicity rate is a function of location, with the rate dying off exponentially with distance from the PSZ. About 80% of small earthquakes are located within 5 km of a PSZ. For small earthquakes, stress drops increase in size with distance away from the PSZs. The magnitude distribution near the PSZs suggests that large earthquakes are more common close to PSZs, and they are more likely to occur at greater depth than small earthquakes. In contrast, small quakes can occur at any geographical location. An optimal combination of heat flow and strain rate is required to concentrate the strain along rheologically weak fault zones, which accommodate the crustal deformation processes, causing seismicity. The regional trend of the focal mechanism-derived SHmax is almost bimodal, trending almost north along the San Andreas system, and to the north-northeast on either side. The transition zones from one state of stress to the other is sharp, following a trend from Yucca Valley to Imperial Valley to the east, and the western edge of the Peninsular Ranges to the west. Other local scale heterogeneities in the SHmax trend include NNW trends along the San Andreas fault near Cajon Pass, Tejon Pass, and the Cucapah Range. The regional variations in the SHmax trends are very similar to the pattern of GPS-measured maximum shortening axes of the surface strain rate tensor field, although the GPS strain field tends to be smoother and appears also to reflect some of the deformation in the upper mantle.

  13. Possibility of existence of serpentinized material at the Izu-Bonin subduction plate boundary around 31N using Q structure by FDM-simulation

    NASA Astrophysics Data System (ADS)

    Kamimura, A.; Kasahara, J.

    2003-12-01

    At the Izu-Bonin subduction zone (IBSZ), there is a chain of serpentine seamounts at the forearc slope of trench axis, and few large earthquakes occurred at shallow depth (<100km) in spite of many large ones at greater depth (>400km). To elucidate these characteristics we carried out a seismic refraction-reflection study at the forearc slope of the IBSZ around 31N using 22 OBSs and chemical explosives and airguns as seismic sources in 1998. As the results of forward and travel-time inversion modeling of the study, P-wave velocity structures were obtained along E-W and N-S survey lines which is perpendicular to and parallel to the trench axis, respectively (Kamimura et al., 2002). The result of E-W line (transect a summit of serpentine seamount) suggests presence of a low velocity zone just above the subducting Pacific plate, and this zone connects to the Torishima Serpentine Forearc Seamount. The interpretation of the result was: dehydration of hydrated oceanic crust supplies water to the mantle wedge, and peridotites of the mantle wedge were serpentinized. The serpentinized peridotites have moved between the oceanic slab and the overriding island arc crust and were diapiring into the serpentine seamount. The serpentine on the plate boundary might act as a lubricant and decrease seismic activity along the subduction zone, and this can explain the characteristics of seismicity of IBSZ. In order to evaluate Q structures of the above low velocity zone on the subducting slab, we calculated synthetic waveforms using FDM (Finite Difference Method) with elastodynamic formulation (E3D code, developed by Dr. Shawn Larsen) and the P-wave velocity 2D structure of Kamimura et al. (2002). The E3D uses staggered grid, and 2nd order and 4th order approximation in time and space, respectively. Grid spacing of the calculation is 30 m in x and z, and 1.5 msec in time. Five-Hz and 0-phase Ricker wavelet_@pressure source was used. Several structure models are used for comparison. One model has no low-Q zone, another one has low-Q zone only just below the serpentine seamount. Other models have low-Q zones just below the serpentine seamount and above the subducting slab, horizontal width of the low-Q zone are different one another. Comparing synthetic waveforms and observed data, we can conclude that there must be a low-Q zone just below the serpentine seamount and on the subducting oceanic slab. The low-Q zone on the slab has ca. 80 km wide east to west and connects to the serpentine seamount. It is very important to understand where serpentinites of the seamounts came from to explain the characteristics of seismicity at the IBSZ. In this presentation we are going to explain an interpretation that serpentine moved through the plate boundary and reached just below the serpentine seamount, using an existence of the low-Q zone. Kamimura, A., Kasahara, J., Masanao S., Hino, R., Shiobara, H., Fujie, G., Kanazawa, T., 2002. Crustal structure study at the Izu-Bonin subduction zone around 31° N: implications of serpentinized materials along the subduction plate boundary, Physics of the Earth and Planetary Interiors, 132, 105-129.

  14. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC-NAM) relative plate motion since ~12 Ma (Atwater and Stock, 1998). We propose that the continental component of PAC-NAM shear is accommodated by: (1) 195 ± 15 km on the southern SAF (this study); (2) 12 ± 2 km on the Whittier-Elsinore fault; (3) 75 ± 20 km of cumulative shear across the central Mojave in the eastern California shear zone; (4) 30 ± 4 km of post-13 Ma slip on the Stateline fault; and (5) 47 ± 18 km of NW-directed translation produced by north-south shortening. Together, these components sum to 359 ± 31 km of net dextral displacement on the SAF system (sensu lato) in southern California since ca. 12 Ma, or ~300 km less than what is required by the global plate circuit. This suggests that the continental component of post-12 Ma PAC-NAM transform motion can be no more than ~390 km in the adjacent northern Gulf of California, substantially less than the 450 km of shear proposed in some models. We suggest that the remaining ~270-300 km of NW-directed relative plate motion is accommodated by a small component of late Miocene extension and roughly 225 km of slip on the offshore borderland fault system west of Baja California.

  15. The Convergence Years

    ERIC Educational Resources Information Center

    Kolodzy, Janet; Grant, August E.; DeMars, Tony R.; Wilkinson, Jeffrey S.

    2014-01-01

    The emergence of the Internet, social media, and digital technologies in the twenty-first century accelerated an evolution in journalism and communication that fit under the broad term of convergence. That evolution changed the relationship between news producers and consumers. It broke down the geographical boundaries in defining our communities,…

  16. ConcepTest: Transform Boundary

    NSDL National Science Digital Library

    A and B are located on two plates separated by a transform boundary (see diagram below). What direction is plate B moving if plate A is moving northeast (NE)? a. northeast b. northwest c. southwest d. southeast

  17. Numerical solution of the problems for plates on partial internal supports of complicated configurations

    NASA Astrophysics Data System (ADS)

    Quang A, Dang; Hai, Truong Ha

    2014-03-01

    Very recently in the work "Simple Iterative Method for Solving Problems for Plates with Partial Internal Supports, Journal of Engineering Mathematics, DOI: 10.1007/s10665-013-9652-7 (in press)", we proposed a numerical method for solving some problems of plates on one and two line partial internal supports (LPIS). In the essence they are problems with strongly mixed boundary conditions for biharmonic equation. Using this method we reduced the problems to a sequence of boundary value problems for the Poisson equation with weakly mixed boundary conditions, which are easily solved numerically. The advantages of the method over other ones were shown. In this paper we apply the method to plates on internal supports of more complicated configurations. Namely, we consider the case of three LPIS and the case of the cross support. The convergence of the method is established theoretically and its efficiency is confirmed on numerical experiments.

  18. Diffuse Pacific-North American plate boundary: 1000 km of dextral shear inferred from modeling geodetic data

    USGS Publications Warehouse

    Parsons, T.; Thatcher, W.

    2011-01-01

    Geodetic measurements tell us that the eastern part of the Basin and Range Province expands in an east-west direction relative to stable North America, whereas the western part of the province moves to the northwest. We develop three-dimensional finite element representations of the western United States lithosphere in an effort to understand the global positioning system (GPS) signal. The models are constrained by known bounding-block velocities and topography, and Basin and Range Province deformation is represented by simple plastic (thermal creep) rheology. We show that active Basin and Range spreading by gravity collapse is expected to have a strong southward component that does not match the GPS signal. We can reconcile the gravitational component of displacement with observed velocity vectors if the Pacific plate applies northwest-directed shear stress to the Basin and Range via the Sierra Nevada block. This effect reaches at least 1000 km east of the San Andreas fault in our models. ?? 2011 Geological Society of America.

  19. The PLATES Project

    NSDL National Science Digital Library

    This is the web page for PLATES, a program of research into plate tectonic and geologic reconstructions at the University of Texas at Austin Institute for Geophysics. The page contains links to a brief overview of plate tectonics and plate reconstructions using the PLATES Project's global plate reconstruction model, in addition to movies in the format of powerpoint animations which can be downloaded for later use. Models are shown on the evolution of the earth's oceans and the movement of the earth's tectonic plates from the Late Precambrian through the present day, reconstructing (i.e. "predicting") geological environments through geologic history. Maps of the following can be accessed: late Neo-Proterozoic, Silurian, early Jurassic, early Cretaceous, Cretaceous-Tertiary Boundary, and Oligocene. Movies are available on the following subjects: global plate motion, Jurassic to present day, opening of the Indian Ocean, and tectonic evolution of the Arctic region.

  20. Rapid Plate Motion Variations Through Geological Time: Observations Serving Geodynamic Interpretation

    NASA Astrophysics Data System (ADS)

    Iaffaldano, Giampiero; Bunge, Hans-Peter

    2015-05-01

    Past and current plate motions are increasingly well mapped from high-temporal-resolution paleomagnetic and geodetic studies, revealing rapid variations that occur on short timescales relative to the time it takes for the large-scale structure associated with mantle buoyancy to evolve. The rates of change of plate velocities hold key information on the geodynamic, tectonic, and Earth's surface processes that may have caused them. Rapid plate motion changes thus provide us with a unique opportunity to quantify the forcing associated with these processes. Important mechanisms capable of inducing such rapid changes include evolving plate boundary forces, for example, those associated with slab sinking or orogeny along convergent margins, as well as temporal variations in pressure-driven flow within the asthenosphere that link plate velocity variations explicitly to changes in dynamic topography. Here, we focus on (a) findings from recent kinematic observations and (b) the quantitative framework that allows their geodynamic interpretation.

  1. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath overthrust, dismembered ophiolite derived from adjacent marginal basin crust. ?? 1989.

  2. Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation

    NASA Astrophysics Data System (ADS)

    Yao, Wei-An; Hu, Xiao-Fei; Xiao, Feng

    2011-12-01

    This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation. Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space. The operator matrix of the equation set is proven to be a Hamilton operator matrix. Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition. There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions, with opposite sides simply supported and opposite sides clamped. Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given. Analytical solutions using two examples are presented to show the use of the new methods described in this paper. To verify the accuracy and convergence, a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method, the Levy method and the new method. Results show that the new technique has good accuracy and better convergence speed than other methods, especially in relation to internal forces. A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods, with solutions compared to those produced by the Galerkin method.

  3. Internet Geography: Plate Tectonics

    NSDL National Science Digital Library

    This site is part of GeoNet Internet Geography, a resource for pre-collegiate British geography students and their instructors. This page focuses on the structure of the Earth and the theory of plate tectonics, including continental drift, plate boundaries, the Ring of Fire, and mountains.

  4. Convergence presque sre Convergence en probabilit

    E-print Network

    Lacaux, Céline - Institut de Mathématiques Élie Cartan, Université Henri Poincaré

    Convergence presque sûre Convergence en probabilité Convergence en loi Applications Convergence d'un couple Suites de variables aléatoires Suites de variables aléatoires #12;Convergence presque sûre Convergence en probabilité Convergence en loi Applications Convergence d'un couple Notions du chapitre Dans la

  5. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  6. The Campaign GPS Component of the Plate Boundary Observatory (PBO): New Tools, New Strategies and New Opportunities to Support EarthScope Investigations

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Greenberg, J.; Sklar, J.; Meertens, C. M.; Andreatta, V.; Feaux, K.

    2004-12-01

    The UNAVCO Facility is charged with implementing the campaign GPS component of the Plate Boundary Observatory (PBO) to support EarthScope investigators through a pool of approximately one hundred mobile GPS systems. In contrast to the PBO continuous GPS network, the PBO campaign systems are designed for temporary deployments with periods ranging from several minutes to several months per site. This allows researchers to conduct spatially and temporally focused investigations into a wide range of phenomena, including volcano monitoring, post-seismic deformation monitoring, and ground control for airborne LIDAR surveys. A standard PBO campaign system consists of a Topcon GB-1000 dual-frequency GPS receiver, a Topcon PG-A1 compact GPS antenna, an 18 Ah battery, cabling, a portable and waterproof Pelican case enclosure, and a Tech 2000 GPS antenna mast or tripod and tribrach. Available ancillary equipment includes solar panels, additional batteries, enclosures and mounting hardware. Communications equipment such as radio modems and cellular modems are also available to allow remote data retrieval during longer term deployments. We present an overview of the PBO campaign equipment available to investigators, technical specifications of the system, examples of current and planned EarthScope research projects utilizing the campaign equipment, and a hands-on demonstration of a PBO campaign system.

  7. Comparison of Deep Drill Braced Monument (DDBM) and Borehole Strainmeter (BSM) Wellhead GPS antenna mounts: a Plate Boundary Observatory (PBO) case study from Dinsmore, CA

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Austin, K. E.; Borsa, A. A.; Feaux, K.; Jackson, M. E.; Johnson, W.; Mencin, D.

    2010-12-01

    With the 2009 installation of GPS station P793 in Dinsmore, CA, the Plate Boundary Observatory (PBO) created a unique opportunity to directly compare a traditional deep drill braced GPS monument (DDBM) with a borehole strainmeter (BSM) wellhead GPS monument. PBO installed a GPS antenna to the wellhead of BSM B935 to perform a direct comparison to DDBM P327 in an attempt to determine stability and long-term behavior of both. The two adjacent stations share power and communications and are roughly 20 meters apart. The steel BSM casing is cemented ~520ft in meta-sandstone & shale, while the DDBM is anchored ~30ft deep in alluvial river gravels. Both stations are located inside a rural auto wrecking yard, which has potential sources of fixed noise in the form of multipath reflections off large metal objects. Preliminary analysis indicates consistent measurements in the North-South component, and a ~3.3 mm difference in the East-West component that has been detected between the two stations over a 450-day period (~2.7 mm/yr). The analysis utilizes standard PBO data products and differences time series data from each station in the SNARF 1.0 and IGS 2005 reference frames. We estimate the time dependent seasonal variations observed at each station and compare with available temperature and precipitation data to attempt to identify the cause of differential movement between the monuments.

  8. Plate Tectonics Jigsaw

    NSDL National Science Digital Library

    Anne Egger

    This activity is a slight variation on an original activity, Discovering Plate Boundaries, developed by Dale Sawyer at Rice University. I made different maps, including more detail in all of the datasets, and used a different map projection, but otherwise the general progression of the activity is the same. More information about jigsaw activities in general can be found in the Jigsaws module. The activity occurs in several sections, which can be completed in one or multiple classes. In the first section, students are divided into "specialist" groups, and each group is given a global map with a single dataset: global seismicity, volcanoes, topography, age of the seafloor, and free-air gravity. Each student is also given a map of plate boundaries. Their task in the specialist group is to become familiar with their dataset and develop categories of plate boundaries based only on their dataset. Each group then presents their results to the class. In the second section, students reorganize into groups with 1-2 of each type of specialist per group. Each new group is given a plate, and they combine their different datasets on that one plate and look for patterns. Again, each plate group presents to the class. The common patterns and connections between the different datasets quickly become apparent, and the final section of the activity involves a short lecture from the instructor about types of plate boundaries and why the common features are generated at those plate boundaries. A follow-up section or class involves using a problem-solving approach to explain the areas that don't "fit" into the typical boundary types - intra-plate volcanism, earthquakes in the Eastern California Shear Zone, etc.

  9. Dynamics and stress field of the Eurasian plate

    NASA Astrophysics Data System (ADS)

    Warners-Ruckstuhl, Karin; Govers, Rob; Wortel, Rinus

    2013-04-01

    We address the connection between forces on the Eurasian plate, the plate's motion and the intraplate stress field. Resistive forces along convergent plate boundaries have a major impact on surface deformation, most visibly at collisional plate boundaries. Although quantification of these forces is key to understanding the evolution and present state of mountain belts, they remain highly uncertain due to the complexity of plate boundary structures and rheologies. In this study we analyse the forces along the southern boundary of the Eurasian plate, presently the most prominent suture zone on Earth, resulting from the closure of the Neo-Tethys ocean. We address the dynamics of the Eurasian plate as a whole. This enables us to base our analysis on mechanical equilibrium of a tectonic plate and to evaluate the force distribution along the Tethyan boundary as part of an internally consistent set of forces driving and deforming Eurasia. We evaluate force distributions obeying this mechanical law on the basis of their ability to reproduce observed stress orientations. We incorporate tractions from convective mantle flow modelling in a lithospheric model in which edge and lithospheric body forces are modelled explicitly and compute resulting stresses in a homogeneous elastic thin shell. Our investigation is structured according to two research objectives, pursued in a corresponding step-wise approach: (1) a detailed understanding of the sensitivity of Eurasia's stress field to the distribution of all acting forces; and (2) a quantification of collision-related forces along the southern boundary of Eurasia, including their relation to observed plate boundary structure, in particular plateau height. Intraplate stress observations as compiled in the World Stress Map project are used to constrain the distribution of forces acting on Eurasia. Eurasia's stress field turns out to be sensitive to the distribution of collision forces on the plate's southern margin and, to a lesser extent, to lithospheric density structure and normal pressure from mantle flow. Stress observations require collision forces on the India-Eurasia boundary of 7.2 - 10.5 T N/m and on the Arabia-Eurasia boundary of 1.3 - 2.3 T N/m. Implication of mechanical equilibrium of the plate is that forces on the contacts with the African and Australian plates amount to 1.0 - 2.1 and 0 - 0.8 T N/m, respectively. The inferred collision forces are part of the best-fitting overall set of forces acting on the Eurasian plate, satisfying constraints from basic mechanics, absolute plate motion and stress field. We use our results to assess the validity of the classical view that the mean elevation of an orogenic plateau can be taken as a measure of the magnitude of the compressive (in this case: collision-related) forces involved. We find that for both the Tibetan and the Iranian plateau, two plateaus with significantly different average elevations, the horizontal force derived from the excess gravitational potential energy (collapse force) is in balance with the collision force, thus confirming the hypothesis of balanced topography.

  10. Differential exhumation across the eastern Greater Caucasus from low-temperature thermochronology: Implications for plate boundary reorganization and foreland basin deformation

    NASA Astrophysics Data System (ADS)

    Niemi, N. A.; Avdeev, B.

    2010-12-01

    The Greater Caucasus, stretching from the Black Sea to the Caspian Sea, are the highest mountain range in Europe, and form the northern boundary of the Arabia-Eurasia collision zone. The role that the Greater Caucasus plays, and has played, in accommodating strain within this orogen, however, remains elusive. Estimates of the onset of rapid exhumation and deformation of range span a large fraction of the Cenozoic, from Eocene or Oligocene at the western end of the range in Georgia, to late Miocene or early Pliocene in the central Greater Caucasus of Russia, and Pliocene at the eastern end of the range in Azerbaijan. Such controversies have also served to obscure the role of the Greater Caucasus in responding to a major, and widely recognized, plate boundary reorganization at ~5 Ma, characterized by the genesis of many active faults, increased supply of detritus from the Greater Caucasus to its foreland basins, and the onset of deformation of foreland basin sediments. Here we present low-temperature thermochronology data, including apatite (U-Th)/He and fission-track data, from a north-south transect at ~48°E across the eastern Greater Caucasus in Azerbaijan that demonstrates differential exhumation rates and timing across the range. In the northern portion of the range, which is underlain by sedimentary strata of the Scythian Platform, rounded and substantially abraded detrital apatites were recovered from Cretaceous and Jurassic sandstones. Thermal modeling of these data reveal onset of cooling of the northern Greater Caucasus at ~20 Ma at 2-4oC/My and a significant increase in cooling rate at ~5 Ma to rates >10oC/My. Maximum exhumation of northern Caucasus strata is ~4 km. Strata of the northern Greater Caucasus are separated from those of the southern Greater Caucasus by the Zangi thrust, south of which strata of the Vandam Zone are comprised of early Cretaceous volcaniclastic sediments of andesitic composition. Detrital apatites from these strata are pristine and euhedral, and are derived from clearly proximal sources. Fission-track ages of these grains are indistinguishable from depositional ages, and presumably represent eruption ages of the source volcanic rocks, while (U-Th)/He ages are Pliocene. Thermal modeling of these data require rapid burial of these strata, and a long period of isothermal holding at temperatures of ~90oC, prior to rapid exhumation at 4 Ma. Similarities of volcaniclastic strata of the Vandam zone to those described from scientific boreholes within the Kura basin and exposed in the Lesser Caucasus, suggest that a Pliocene increase in exhumation rate of the Greater Caucasus, and propagation of this deformation southward into the Kura basin, may have resulted from collision of the Lesser Caucasus arc with the Scythian platform, concluding consumption of the intervening Greater Caucasus basin. If so, this event may mark the final removal of oceanic or transitional crust from the Arabia-Eurasia orogen, potentially driving plate boundary reorganization as a result of through going continental-continental collision.

  11. The MagnetoHydrodynamic Boundary Layer in the Two-Dimensional Steady Flow Past a Semi-Infinite Flat Plate. I. Uniform Conditions at Infinity

    Microsoft Academic Search

    T. V. Davies

    1963-01-01

    The problem investigated is the flow of a viscous, electrically conducting liquid past a fixed, semi-infinite, unmagnetized but conducting flat plate. The liquid flow U and also the magnetic field H_0 at a distance from the plate are both assumed to be uniform and parallel to the plate. It is assumed that the Reynolds number R and magnetic Reynolds number

  12. Earthquakes, Volcanoes, and Plate Tectonics

    NSDL National Science Digital Library

    This page consists of two maps of the world, showing how earthquakes define the boundaries of tectonic plates. Volcanoes are also distributed at plate boundaries (the "Ring of Fire" in the Pacific) and at oceanic ridges. It is part of the U.S. Geological Survey's Cascades Volcano Observatory website, which features written material, images, maps, and links to related topics.

  13. Casimir effect for parallel plates in de Sitter spacetime

    SciTech Connect

    Elizalde, E. [Instituto de Ciencias del Espacio (CSIC) and Institut d'Estudis Espacials de Catalunya (IEEC/CSIC) Campus UAB, Facultat de Ciencies, Torre C5-Parell-2a planta, 08193 Bellaterra, Barcelona (Spain); Saharian, A. A.; Vardanyan, T. A. [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia)

    2010-06-15

    The Wightman function and the vacuum expectation values of the field squared and of the energy-momentum tensor are obtained, for a massive scalar field with an arbitrary curvature coupling parameter, in the region between two infinite parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. For the calculation, a mode-summation method is used, supplemented with a variant of the generalized Abel-Plana formula. This allows one to explicitly extract the contributions to the expectation values, which come from each single boundary, and to expand the second-plate-induced part in terms of exponentially convergent integrals. Several limiting cases of interest are then studied. Moreover, the Casimir forces acting on the plates are evaluated, and it is shown that the curvature of the background spacetime decisively influences the behavior of these forces at separations larger than the curvature scale of de Sitter spacetime. In terms of the curvature coupling parameter and the mass of the field, two very different regimes are realized, which exhibit monotonic and oscillatory behavior of the vacuum expectation values, respectively. The decay of the Casimir force at large plate separation is shown to be power law (monotonic or oscillating), with independence of the value of the field mass.

    </