Science.gov

Sample records for converter station design

  1. Weather satellite picture receiving stations, APT digital scan converter

    NASA Technical Reports Server (NTRS)

    Vermillion, C. H.; Kamowski, J. C.

    1975-01-01

    The automatic picture transmission digital scan converter is used at ground stations to convert signals received from scanning radiometers to data compatible with ground equipment designed to receive signals from vidicons aboard operational meteorological satellites. Information necessary to understand the circuit theory, functional operation, general construction and calibration of the converter is provided. Brief and detailed descriptions of each of the individual circuits are included, accompanied by a schematic diagram contained at the end of each circuit description. Listings of integral parts and testing equipment required as well as an overall wiring diagram are included. This unit will enable the user to readily accept and process weather photographs from the operational meteorological satellites.

  2. Space Station design integration

    NASA Technical Reports Server (NTRS)

    Carlisle, Richard F.

    1988-01-01

    This paper discusses the top Program level design integration process which involves the integration of a US Space Station manned base that consists of both US and international Elements. It explains the form and function of the Program Requirements Review (PRR), which certifies that the program is ready for preliminary design, the Program Design Review (PDR), which certifies the program is ready to start the detail design, and the Critical Design Review (CDR), which certifies that the program is completing a design that meets the Program objectives. The paper also discusses experience, status to date, and plans for continued system integration through manufacturing, testing and final verification of the Space Station system performance.

  3. Space Station galley design

    NASA Technical Reports Server (NTRS)

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.

    1986-01-01

    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  4. Power Station Design

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Kuljian Corporation provides design engineering and construction management services for power generating plants in more than 20 countries. They used WASP (Calculating Water and Steam Properties), a COSMIC program to optimize power station design. This enabled the company to substantially reduce lead time and software cost in a recent design project.

  5. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  6. New cat converter design for compressors cuts service time

    SciTech Connect

    Not Available

    1993-04-19

    GPM Gas Corp., Houston, has begun replacing its catalytic converters on compressor engines with a converter that saves time and effort in inspection and maintenance, especially for converters that are elevated and difficult to access. The replacement is the Hatchbak converter designed and patented by Johnson Matthey Environmental Products Group, Wayne, PA. Its removable hatch, secured by only eight bolts, eliminates the need to remove the entire converter from the exhaust piping and thereby significantly cuts down time. Of approximately 285 engines at 75 booster stations and 4 gas processing sites, more than 40 are equipped with catalytic converters, many elevated as much as 20 ft. GPM has replaced more than half its previous catalytic converters atop the engines with the new design. The paper briefly describes the maintenance headaches and the new design.

  7. Space Station Engineering Design Issues

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

    1989-01-01

    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

  8. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  9. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  10. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    SciTech Connect

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Murray, Christopher

    2004-02-04

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than solar cells. Spectral control, including selective emitters, TPV module, and filters, are key to high-efficiency operation. This paper outlines the mechanical, thermal, and optical designs for the converter, including the heat source, the selective emitter, filters, photovoltaic (PV) cells, and optical cavity components. Focus is on the emitter type and the band-gap of InGaAs PV cells in developing the design. Any component and converter data available at the time of publication will also be presented.

  11. Stability of large DC power systems using switching converters, with application to the International Space Station

    SciTech Connect

    Gholdston, E.W.; Karimi, K.; Lee, F.C.; Rajagopalan, J.; Panov, Y.; Manners, B.

    1996-12-31

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters are playing an ever larger role in power conditioning and control.When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense and Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a clear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing.

  12. Stability of large DC power systems using switching converters, with application to the international space station

    NASA Technical Reports Server (NTRS)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin

  13. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  14. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  15. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution DC test bed

    NASA Astrophysics Data System (ADS)

    Lebron, Ramon C.

    1992-08-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  16. Space Station Freedom Solar Array design development

    SciTech Connect

    Winslow, C. )

    1993-01-01

    The design of Space Station Freedom's Solar Array (SSFSA) is reviewed highlighting the key design performance goals, challenges, design description, and development testing objectives, results and plans. Study results are discussed which illustrate many of the more important design decision.

  17. Design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.; Wechsler, D. B.

    1987-01-01

    The benefits of design knowledge availability are identifiable and pervasive. The implementation of design knowledge capture and storage using current technology increases the probability for success, while providing for a degree of access compatibility with future applications. The space station design definition should be expanded to include design knowledge. Design knowledge should be captured. A critical timing relationship exists between the space station development program, and the implementation of this project.

  18. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  19. Spallation neutron source target station design, development, and commissioning

    NASA Astrophysics Data System (ADS)

    Haines, J. R.; McManamy, T. J.; Gabriel, T. A.; Battle, R. E.; Chipley, K. K.; Crabtree, J. A.; Jacobs, L. L.; Lousteau, D. C.; Rennich, M. J.; Riemer, B. W.

    2014-11-01

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  20. Space Station Freedom natural environment design models

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.

    1993-01-01

    The Space Station Freedom program has established a series of natural environment models and databases for utilization in design and operations planning activities. The suite of models and databases that have either been selected from among internationally recognized standards or developed specifically for spacecraft design applications are presented. The models have been integrated with an orbit propagator and employed to compute environmental conditions for planned operations altitudes of Space Station Freedom.

  1. Design of a photovoltaic central power station

    SciTech Connect

    Not Available

    1984-02-01

    Photovoltaic central power station designs have been developed for both high-efficiency flat-panel arrays and two-axis tracking concentrator arrays. Both designs are based on a site adjacent to the Saguaro Power Station of Arizona Public Service. The plants are 100 MW each, made of 5 MW subfields. The site specific designs allow detailed cost estimate for site preparation, installation, and engineering. These designs are summarized and cost estimates analyzed. Provided also are recommendations for future work to reduce system cost for each plant design.

  2. Space station prototype Sabatier reactor design verification testing

    NASA Technical Reports Server (NTRS)

    Cusick, R. J.

    1974-01-01

    A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.

  3. German Point Of Load Converter Initiative To Design A Pol Converter Demonstrator For Space Application

    NASA Astrophysics Data System (ADS)

    Heyer, Heinz-Volker; Scheytt, Christoph; Scholz, Stefan; Teply, Florian; Sorge, Roland; Hasan, Arif; Ma, Yan; Grau, Gunter

    2011-10-01

    In satellites supporting broadcast and remote sensing the number of digital users with new CMOS technologies and decreased supply voltages is growing. The low voltages in digital devices (FPGAs, processors etc.) lead to high currents in the supply lines with the drawback of high voltage dropouts in the supply lines and bad dynamic behavior. The solution is the use of so-called Point-of-Load converters (POL) directly at the digital load with radiation hardness characteristics. The mixed signal ASIC technology of IHP (SGB25V) with LDMOS option will be used for designing the new POL converter that provided acceptable results from radiation tests at ATLAS [1, 2]. Some key components needed for radiation hardness of this technology are designed by advICo and thus both design teams will work together under research contract of an efficient buck or step down converter for POL applications from German Space Agency (DLR).

  4. Space station preliminary design report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.

  5. Space station design - Innovation and compromise

    NASA Technical Reports Server (NTRS)

    Powell, L. E.; Cohen, A.; Craig, M.

    1984-01-01

    The NASA manned space station will consist of three main elements: habitable modules, solar collectors, and their interconnecting hardware. The most arduous of the requirements to be met by this configuration is the simultaneous integration of terrestrial, solar, and celestial viewing instruments, since omnidirectional simultaneous viewing is made difficult by the station's large solar energy collection devices. The space station also imposes unique design conditions on individual subsystems, such as the power distribution and energy storage hardware. In particular, the thermal control subsystem must be designed to meet a variety of mission, payload, and housekeeping tasks that demand a large heat rejection capacity. Novel environmental control and life support subsystem technology will be indispensable.

  6. Orbital Maneuvering Vehicle space station communications design

    NASA Technical Reports Server (NTRS)

    Arndt, D.; Novosad, S. W.; Tu, K.; Loh, Y. C.; Kuo, Y. S.

    1988-01-01

    The authors present an Orbital Maneuvering Vehicle space station communications systems design approach which is intended to satisfy the stringent link requirements. The operational scenario, system configuration, signal design, antenna system management, and link performance analysis are discussed in detail. It is shown that the return link can transmit up to 21.6 Mb/s and maintain at least a 3-dB link margin through proper power and antenna management control at a maximum distance of 37 km. It is suggested that the proposed system, which is compatible with the space station multiple-access system, can be a model for other space station interoperating elements or users to save the development cost and reduce the technical and schedule risks.

  7. Technical Design Report, Second Target Station

    SciTech Connect

    Galambos, John D.; Anderson, David E.; Bechtol, D.; Bethea, Katie L.; Brown, N.; Carden, W. F.; Chae, Steven M.; Clark, A.; Counce, Deborah M.; Craft, K.; Crofford, Mark T.; Collins, Richard M.; Cousineau, Sarah M.; Curry, Douglas E.; Cutler, Roy I.; Dayton, Michael J.; Dean, Robert A.; Deibele, Craig E.; Doleans, Marc; Dye, T.; Eason, Bob H.; Eckroth, James A.; Fincrock, C.; Fritts, S.; Gallmeier, Franz X.; Gawne, Ken R.; Hartman, Steven M.; Herwig, Kenneth W.; Hess, S.; Holmes, Jeffrey A.; Horak, Charlie M.; Howell, Matthew P.; Iverson, Erik B.; Jacobs, Lorelei L.; Jones, Larry C.; Johnson, B.; Johnson, S.; Kasemir, Kay; Kim, Sang-Ho; Laughon, Gregory J.; Lu, W.; Mahoney, Kelly L.; Mammosser, John; McManamy, T.; Michilini, M.; Middendorf, Mark E.; O'Neal, Ed; Nemec, B.; Peters, Roy Cecil; Plum, Michael A.; Reagan, G.; Remec, Igor; Rennich, Mark J.; Riemer, Bernie; Saethre, Robert B.; Schubert, James Phillip; Shishlo, Andrei P.; Smith, C. Craig; Strong, William Herb; Tallant, Kathie M.; Tennant, David Alan; Thibadeau, Barbara M.; Trumble, S.; Trotter, Steven M.; Wang, Z.; Webb, Steven B.; Williams, Derrick C.; White, Karen S.; Zhao, Jinkui

    2015-01-01

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  8. Space Station battery system design and development

    NASA Technical Reports Server (NTRS)

    Haas, R. J.; Chawathe, A. K.; Van Ommering, G.

    1988-01-01

    The Space Station Electric Power System will rely on nickel-hydrogen batteries in its photovoltaic power subsystem for energy storage to support eclipse and contingency operations. These 81-Ah batteries will be designed for a 5-year life capability and are configured as orbital replaceable units (ORUs), permitting replacement of worn-out batteries over the anticipated 30-year Station life. This paper describes the baseline design and the development plans for the battery assemblies, the battery ORUs and the battery system. Key elements reviewed are the cells, mechanical and thermal design of the assembly, the ORU approach and interfaces, and the electrical design of the battery system. The anticipated operational approach is discussed, covering expected performance as well as the processor-controlled charge management and discharge load allocation techniques. Development plans cover verification of materials, cells, assemblies and ORUs, as well as system-level test and analyses.

  9. Design and operation of a thermionic converter in air

    SciTech Connect

    Horner, M.H.; Begg, L.L.; Smith, J.N. Jr.; Geller, C.B.; Kallnowski, J.E.

    1995-01-01

    An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance.

  10. Designing A Mode Converter For Use With A Gyrotron

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.

    1995-01-01

    Report describes process of designing corrugated, circular-cross-section length of waveguide converting input electromagnetic radiation at frequency of 34.5 GHz in TM(11) mode to output radiation in HE(11) mode. TM(11)-mode input radiation supplied by gyrotron generating continuous-wave power of 200 kW at 34.5 GHz in TE(01) mode followed by TE(01)-to-TM(11) mode converter. Together, gyrotron and mode converters constitute prototype high-power transmitter for long-distance free-space communication.

  11. Space station proximity operations and window design

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1988-01-01

    On-orbit proximity operations (PROX-OPS) consist of all extravehicular activity (EVA) within 1 km of the space station. Because of the potentially large variety of PROX-OPS, very careful planning for space station windows is called for and must consider a great many human factors. The following topics are discussed: (1) basic window design philosophy and assumptions; (2) the concept of the local horizontal - local vertical on-orbit; (3) window linear dimensions; (4) selected anthropomorphic considerations; (5) displays and controls relative to windows; and (6) full window assembly replacement.

  12. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Murray, Christopher S.; Crowley, Christopher J.; Murray, Susan; Elkouh, Nabil A.; Hill, Roger W.; Chubb, Donald E.

    2004-11-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in the possibility of combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths. Spectral control, including the combination of emitter, TPV module, and filter, is key to high-efficiency operation. This paper summarizes the performance characteristics of monolithic integrated module (MIM) PV cells and arrays, tandem filters, and tungsten emitters fabricated for the present studies. The current, voltage, quantum efficiency, and diode efficiency of multi-junction 0.60 eV bandgap devices are presented for individual PV cells and strings of several cells. This paper discusses the design considerations for mechanical layout of PV cell arrays and integration with filters. The vacuum facility to be used to test these PV cell arrays is also described.

  13. Operator Station Design System - A computer aided design approach to work station layout

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.

  14. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  15. Habitability design elements for a space station

    NASA Technical Reports Server (NTRS)

    Dalton, M. C.

    1983-01-01

    Habitability in space refers to the components, characteristics, conditions, and design parameters that go beyond but include the basic life sustaining requirements. Elements of habitability covered include internal environment, architecture, mobility and restraint, food, clothing, personal hygiene, housekeeping, communications, and crew activities. All elements are interrelated and need to be treated as an overall discipline. Designing for a space station is similar to designing on earth but with 'space rules' instead of ground rules. It is concluded that some habitability problems require behavioral science solutions.

  16. Space station orbit design using dynamic programming

    NASA Astrophysics Data System (ADS)

    Lin, Kun-Peng; Luo, Ya-Zhong; Tang, Guo-Jin

    2013-08-01

    A space station orbit design mission is characterized by a long-duration and multi-step decision process. First, the long-duration design process is divided into multiple planning periods, each of which consists of five basic flight segments. Second, each planning period is modeled as a multi-step decision process, and the orbital altitude strategies of different flight segments have interaction effects on each other. Third, a dynamic programming method is used to optimize the total propellant consumption of a planning period while considering interaction effects. The step cost of each decision segment is the propellant for orbital-decay maintenance or lifting altitude, and is calculated by approximate analytical equations and combining a shooting iteration method. The proposed approach is demonstrated for a typical orbit design problem of a space station. The results show that the proposed approach can effectively optimize the design of altitude strategies, and can save considerable propellant consumption for the space station than previous public studies.

  17. Combustor design tool for a gas fired thermophotovoltaic energy converter

    SciTech Connect

    Lindler, K.W.; Harper, M.J.

    1995-07-01

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The US Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1,756 K (2,700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

  18. Combustor design tool for a gas fired thermophotovoltaic energy converter

    SciTech Connect

    Lindler, K.W.; Harper, M.J.

    1995-12-31

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The U. S. Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1756 K (2700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

  19. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  20. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  1. Space Station body mounted radiator design

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.; Duschatko, R. J.

    1987-01-01

    Consideration has been given to utilizing the external area of the Space Station common modules or resource nodes to provide heat rejection. A program was undertaken to define the best body mounted radiator design, to define and build a full size test article and to conduct testing to verify performance. Trade studies were conducted and a preferred design selected. The selected design employed high performance grooved heat pipes of an off-the-shelf design. Twenty panels, each about 1.2 m wide by 5.6 m long are installed on each module rejecting a total of about 12 kW. The radiators are interfaced with the module thermal control loop by use of a refrigerant 21 loop with an on-orbit operable disconnect at each panel. A one-panel test article has been designed and is currently being fabricated. Testing is scheduled to be conducted in June of 1987.

  2. Design of Compact Multi-Megawatt Mode Converter

    SciTech Connect

    Dolgashev, V.A.; Tantawi, S.G.; Nantista, C.D.; /SLAC

    2006-03-21

    Experience gained during recent operation of high power 11.424 GHz rf sources for accelerators led to new, more strict requirements on system components. One of the basic components of such a system is a mode converter that transforms the rectangular waveguide mode into the TE{sub 01} mode in circular waveguide. With such a converter, it is possible to minimize the use of WR90 rectangular waveguide which was shown to be a weak part of the previous system at power levels higher than 100 MW and pulse lengths on the order of a microsecond. We used several methods to design a mode converter with extremely low parasitic mode conversion and compact size. These methods employ HFSS[4] and include multi-parameter searches, concurrent optimization with a mode-matching code Cascade[2], cascading of resulting S-matrices, and tolerance analysis using perturbation techniques. This report describes the design methods and presents results.

  3. Processing and circuit design enhance a data converter's radiation tolerance

    SciTech Connect

    Heuner, R.; Zazzu, V.; Pennisi, L.

    1988-12-01

    Rad-hard CMOS/SOS processing has been applied to a novel comparator-inverter circuit design to develop 6 and 8-bit parallel (flash) ADC (analog-to-digital converter) circuits featuring high-speed operation, low power consumption, and total-dose radiation tolerances up to 1 Mrad(Si).

  4. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  5. Space station interior design: Results of the NASA/AIA space station interior national design competition

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1975-01-01

    The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

  6. Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  7. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  8. Design and evaluation of cellular power converter architectures

    NASA Astrophysics Data System (ADS)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  9. Practical design considerations for photovoltaic power station

    NASA Astrophysics Data System (ADS)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  10. Conceptual design of a submerged power station

    SciTech Connect

    Herring, J.S.

    1992-08-01

    Providing safe and sustainable energy to the world`s increasing population will be one of the major challenges of the 21st century. At the INEL we are developing the concept of a passively safe submerged power station (SPS), shown. The reactor is located in the forward part of the vessel, while the turbine and generator are mounted in the middle section and the control and crew quarters are located at the opposite end of the vessel. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 600 MWe. Power would be transmitted to shore by AC cables, similar to submarine cables in use today. The SPS would be manufactured in a central shipyard and towed or transported to its operational location. The reactor is designed to operate on a five-year cycle with a capacity factor of 70 percent, after which the station would be returned to a central facility for refueling and maintenance. Thus the SPS has the advantages of centralized fabrication and maintenance.

  11. Conceptual design of a submerged power station

    SciTech Connect

    Herring, J.S.

    1992-01-01

    Providing safe and sustainable energy to the world's increasing population will be one of the major challenges of the 21st century. At the INEL we are developing the concept of a passively safe submerged power station (SPS), shown. The reactor is located in the forward part of the vessel, while the turbine and generator are mounted in the middle section and the control and crew quarters are located at the opposite end of the vessel. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 600 MWe. Power would be transmitted to shore by AC cables, similar to submarine cables in use today. The SPS would be manufactured in a central shipyard and towed or transported to its operational location. The reactor is designed to operate on a five-year cycle with a capacity factor of 70 percent, after which the station would be returned to a central facility for refueling and maintenance. Thus the SPS has the advantages of centralized fabrication and maintenance.

  12. Development, Evaluation, and Design Applications of an AMTEC Converter Model

    NASA Astrophysics Data System (ADS)

    Spence, Cliff A.; Schuller, Michael; Lalk, Tom R.

    2003-01-01

    Issues associated with the development of an alkali metal thermal-to-electric conversion (AMTEC) converter model that serves as an effective design tool were investigated. The requirements and performance prediction equations for the model were evaluated, and a modeling methodology was established. It was determined by defining the requirements and equations for the model and establishing a methodology that Thermal Desktop, a recently improved finite-difference software package, could be used to develop a model that serves as an effective design tool. Implementing the methodology within Thermal Desktop provides stability, high resolution, modular construction, easy-to-use interfaces, and modeling flexibility.

  13. Severe Accident Test Station Design Document

    SciTech Connect

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  14. International Space Station Crew Restraint Design

    NASA Technical Reports Server (NTRS)

    Whitmore, M.; Norris, L.; Holden, K.

    2005-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. In 2004, The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center completed development/evaluation of several design concepts for crew restraints to meet the various needs outlined above. Restraints were designed for general purpose use, for teleoperation (Robonaut) and for use with the Life Sciences Glovebox. All design efforts followed a human factors engineering design lifecycle, beginning with identification of requirements followed by an iterative prototype/test cycle. Anthropometric

  15. A three-phase series-parallel resonant converter -- analysis, design, simulation and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, L.

    1995-12-31

    A three-phase dc-to-dc series-parallel resonant converter is proposed and its operating modes for 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using constant current model and Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of 1 kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500 W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging PF mode for the entire load range and requires a narrow variation in switching frequency.

  16. An approach to design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Wechsler, D. B.; Crouse, K. R.

    1986-01-01

    The design of NASA's space station has begun. During the design cycle, and after activation of the space station, the reoccurring need will exist to access not only designs, but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

  17. Transportation node space station conceptual design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A number of recent studies have addressed the problem of a transportation node space station. How things would change or what addition facilities would be needed to support a major lunar or Mars initiative is a much often asked question. The support of a lunar base, requiring stacks on the order of 200 metric tons each to land 25 m tons on the lunar surface with reusable vehicles is addressed. The problem of maintaining and reusing large single stage Orbit Transfer Vehicles (OTVs) and single stage lander/launchers in space are examined. The required people and equipment needed, to maintain these vehicles are only vaguely known at present. The people and equipment needed depend on how well the OTV and lander/launcher can be designed for easy reuse. Since the OTV and lander/launcher are only conceptually defined at present, the real maintenance and refurbishment requirements are unobtainable. An estimate of what is needed, based on previous studies and obvious requirements was therefore made. An attempt was made to err on the conservative side.

  18. Zinc Oxide Surge Arresters and HVDC 125kV-upgrade 500kV Converter Stations

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shingo; Kobayashi, Takayuki; Matsushita, Yoshinao; Sakai, Takehisa; Suzuki, Hironori; Ozaki, Yuzo

    Gapless Metal (Zinc) Oxide Surge Arresters for a.c. systems contribute to the insulation co-ordination based on the suppression of lightning surges and switching surges. These gapless metal oxide surge arresters using ZnO elements are effective to HVDC systems. This paper describes basic characteristics of ZnO (zinc oxide) elements for d.c. systems and applications of gapless surge arresters to HVDC 125kV frequency converters, HVDC 250kV, upgrade HVDC 500kV converter stations, and HVDC 500kV cables of Japan through the experience of developments and applications of gapless metal oxide surge arresters.

  19. A design optimization process for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Fox, George; Duquette, William H.

    1990-01-01

    The Space Station Freedom Program is used to develop and implement a process for design optimization. Because the relative worth of arbitrary design concepts cannot be assessed directly, comparisons must be based on designs that provide the same performance from the point of view of station users; such designs can be compared in terms of life cycle cost. Since the technology required to produce a space station is widely dispersed, a decentralized optimization process is essential. A formulation of the optimization process is provided and the mathematical models designed to facilitate its implementation are described.

  20. Design and Analysis of the Main AC/DC Converter System for ITER

    NASA Astrophysics Data System (ADS)

    Sheng, Zhicai; Xu, Liuwei; Fu, Peng

    2012-04-01

    A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.

  1. Apollo experience report: Crew station integration. Volume 1: Crew station design and development

    NASA Technical Reports Server (NTRS)

    Allen, L. D.; Nussman, D. A.

    1976-01-01

    An overview of the evolution of the design and development of the Apollo command module and lunar module crew stations is given, with emphasis placed on the period from 1964 to 1969. The organizational planning, engineering techniques, and documentation involved are described, and a detailed chronology of the meetings, reviews, and exercises is presented. Crew station anomalies for the Apollo 7 to 11 missions are discussed, and recommendations for the solution of recurring problems of crew station acoustics, instrument glass failure, and caution and warning system performance are presented. Photographs of the various crew station configurations are also provided.

  2. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  3. Telescope Array Radar (TARA) Remote Station Design and Development

    NASA Astrophysics Data System (ADS)

    Kunwar, Samridha

    2014-03-01

    The TARA project is a novel attempt utilizing a bi - static radar configuration in conjunction with a set of conventional cosmic ray detectors in the low - noise environment in Millard County, Utah, to detect Ultra - High Energy Cosmic Ray induced Extensive Air Showers. We present the design and development of the remote radar receiver system using a technique where the Doppler-shifted reflected signal off of the ionization trail from the cosmic ray is de - chirped. The approach is based on an analog frequency mixing technique whereby the input signal is mixed with a delayed copy of itself i.e s (t) ⊗ s (t - τ) , resulting in a beat frequency, f, which is proportional to the delay time multiplied by the cosmic ray-induced RF chirp rate. With appropriate filtering, the problem of chirp detection is ultimately reduced to that of detecting the down - converted monotone. In contrast to conventional signal processing via digital matched filtering, this is a mostly analog data acquisition system and has lower power consumption at a cost which is also comparatively inexpensive. The remote station is also subject to less radio interference, and adds stereoscopic measurement capabilities which allows unique determination of cosmic ray geometry and core location.

  4. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    SciTech Connect

    Reass, W. A.; Apgar, S. E.; Baca, D. M.; Doss, James D.; Gonzales, J.; Gribble, R. F.; Hardek, T. W.; Lynch, M. T.; Rees, D. E.; Tallerico, P. J.; Trujillo, P. B.; Anderson, D. E.; Heidenreich, D. A.; Hicks, J. D.; Leontiev, V. N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  5. Designing a Reference Station for the Information Age.

    ERIC Educational Resources Information Center

    Becket, Margaret; Smith, Henry Bradford

    1986-01-01

    Relates experiences of University of Rochester's main library during complete renovation of the central reference department including the addition of a full-service reference station. Topics covered include planning the reference station, solutions to seven design requirements, increase in staffing and reference questions after one year, and…

  6. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    EPA Science Inventory

    This report addresses the potential for using "Limbo Lands" as sites for renewable energy generating stations. Limbo Lands are considered as underused, formerly contaminated sites, and include former Superfund sites, landfills, brownfields, abandoned mine lands, former industrial...

  7. DESIGN NOTE: A compact catalytic converter for the production of para-hydrogen

    NASA Astrophysics Data System (ADS)

    Juarez, A. M.; Cubric, D.; King, G. C.

    2002-05-01

    The design and operation of a compact converter to produce a constant flow of para-hydrogen from normal hydrogen is described. The converter features a paramagnetic compound (nickel sulfate) that catalyses the conversion of ortho- to para-hydrogen at temperatures of 14-21 K. The converter has been tested by measuring rotationally resolved photoelectron spectra in the para-hydrogen produced. The percentage of the para-hydrogen species in the converted gas was determined to be >97%.

  8. Design of a DC Busbar for the ITER PF Converter

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Song, Zhiquan; Xu, Liuwei; Zhang, Ming; Li, Jinchao; Jiang, Li; Fu, Peng; Wang, Min; Dong, Lin

    2014-04-01

    The DC busbar is an important component for the ITER PF converter module to connect the converter and the reactor. This paper analyzes different cross-sections and different thermodynamic properties under natural-cooling and water-cooling conditions, and simulation is carried out by the software of the finite element method (FEM). The result of the analysis shows that the water-cooling method is the better choice for the DC busbar.

  9. Design and analysis of VCSEL based twodimension wavelength converter.

    PubMed

    Liu, H; Shum, P; Kao, M

    2003-07-14

    A novel two-dimensional vertical cavity surface emission laser (VCSEL) based wavelength converter is proposed. We developed a twodimensional transmission line laser model (TLLM) to analyze the proposed wavelength converter. This model takes into account Bragg reflectors by using the modified connecting matrix. Therefore, accurate and efficient modeling of the VCSEL structure is achieved. Extinction ratio of the output signal is investigated by considering input signal power, wavelength, facet reflectivity and cavity diameter. PMID:19466044

  10. Design of the space station Freedom power system

    SciTech Connect

    Thomas, R.L. . Lewis Research Center); Hallinan, G.J. . Rocketdyne Div.)

    1990-01-01

    The design of space station freedom's electric power system is reviewed highlighting the key design goals of performance, low cost, reliability and safety. Trade study results are discussed which illustrate the competing factors responsible for many of the more important design decisions.

  11. A three-phase series-parallel resonant converter -- analysis, design, simulation, and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, R.L.

    1996-07-01

    A three-phase dc-to-dc series-parallel resonant converter is proposed /and its operating modes for a 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using a constant current model and the Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of a 1-kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500-W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging power factor (PF) mode for the entire load range and requires a narrow variation in switching frequency, to adequately regulate the output power.

  12. Genesis Halo Orbit Station Keeping Design

    NASA Technical Reports Server (NTRS)

    Lo, M.; Williams, K.; Wilson, R.; Howell, K.; Barden, B.

    2000-01-01

    As the fifth mission of NASA's Directory Program, Genesis is designed to collect solar wind samples for approximately two years in a halo orbit near the Sun-Earth L(sub 1) Lagrange point for return to the Earth.

  13. Hybrid Rocket Experiment Station for Capstone Design

    NASA Technical Reports Server (NTRS)

    Conley, Edgar; Hull, Bethanne J.

    2012-01-01

    Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.

  14. Design of photovoltaic central power station concentrator array

    SciTech Connect

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  15. Design of deployable-truss masts for Space Station

    NASA Technical Reports Server (NTRS)

    Bowden, Mary; Benton, Max

    1993-01-01

    This paper presents an overview of three deployable-truss designs that were considered for use on Space Station Freedom to deploy the solar array wings. The first design chosen early in the program was a nut-deployed coilable longeron mast which has the advantage of being lightweight and reliable, with considerable flight history. Subsequently, because of the restructure of Space Station, a second design was chosen: a lanyard-deployed FASTMast (Folding Articulated Square Truss Mast), which has improved strength and redundancy characteristics for a given stowed volume. After further definition of the load requirements during deployment, however, it became necessary to modify the deployment system, resulting in the third mast design for space station solar arrays: a nut-deployed FASTMast, which was ultimately selected to provide increased stiffness and strength during deployment. This paper presents a brief review of these mast designs and their associated deployment systems, emphasizing the trade-offs involved in selecting between them. In addition, some innovative features of the FASTMast design as it stands currently for Space Station are described, and a brief review of the test program that is underway to qualify this design for flight is included.

  16. Space station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  17. Optimum Design of CMOS DC-DC Converter for Mobile Applications

    NASA Astrophysics Data System (ADS)

    Katayama, Yasushi; Edo, Masaharu; Denta, Toshio; Kawashima, Tetsuya; Ninomiya, Tamotsu

    In recent years, low output power CMOS DC-DC converters which integrate power stage MOSFETs and a PWM controller using CMOS process have been used in many mobile applications. In this paper, we propose the calculation method of CMOS DC-DC converter efficiency and report optimum design of CMOS DC-DC converter based on this method. By this method, converter efficiencies are directly calculated from converter specifications, dimensions of power stage MOSFET and device parameters. Therefore, this method can be used for optimization of CMOS DC-DC converter design, such as dimensions of power stage MOSFET and switching frequency. The efficiency calculated by the proposed method agrees well with the experimental results.

  18. Integrated Station Executive requirements and systems design approach

    NASA Technical Reports Server (NTRS)

    Berger, Eugene L.; Morris, C. Doug

    1992-01-01

    The Avionics Office of the Space Station Projects Office at Johnson Space Center (JSC) is working to define and integrate end-to-end requirements for the Space Station Freedom Program (SSFP) space-ground operations. As part of these efforts, the project office has had the MITRE Corporation perform assessments and analyses in areas where they had particular concern. These areas include the changing concepts for test methodologies, the operation and performance of the communication protocols, end-to-end network management, and the Master Objects Data Base (MODB). Since the recent restructure of the space station design, a new software application, the Integrated Station Executive (ISE), has been established. This application is to act as an executive agent along with the crew and ground controllers, while replacing (or absorbing) many of the system management functions that required a home when distributed element management was eliminated. This document summarizes the current state of the ISE requirements and assesses the characteristics of the current design. MITRE's goals in this assessment and analysis is twofold: first, identify any internal inconsistencies in either the requirements or in the current design; and second, to examine the applicability of the Open System Interconnection (OSI) management standards. Inasmuch as the ISE has been defined as the executive or operations manager application within the integrated avionics of the space station, special attention is given to adapting OSI management for the specification of the ISE functions.

  19. Space Station Freedom pressurized element interior design process

    NASA Technical Reports Server (NTRS)

    Hopson, George D.; Aaron, John; Grant, Richard L.

    1990-01-01

    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  20. Integrated Station Executive requirements and systems design approach

    NASA Astrophysics Data System (ADS)

    Berger, Eugene L.; Morris, C. Doug

    1992-11-01

    The Avionics Office of the Space Station Projects Office at Johnson Space Center (JSC) is working to define and integrate end-to-end requirements for the Space Station Freedom Program (SSFP) space-ground operations. As part of these efforts, the project office has had the MITRE Corporation perform assessments and analyses in areas where they had particular concern. These areas include the changing concepts for test methodologies, the operation and performance of the communication protocols, end-to-end network management, and the Master Objects Data Base (MODB). Since the recent restructure of the space station design, a new software application, the Integrated Station Executive (ISE), has been established. This application is to act as an executive agent along with the crew and ground controllers, while replacing (or absorbing) many of the system management functions that required a home when distributed element management was eliminated. This document summarizes the current state of the ISE requirements and assesses the characteristics of the current design. MITRE's goals in this assessment and analysis is twofold: first, identify any internal inconsistencies in either the requirements or in the current design; and second, to examine the applicability of the Open System Interconnection (OSI) management standards. Inasmuch as the ISE has been defined as the executive or operations manager application within the integrated avionics of the space station, special attention is given to adapting OSI management for the specification of the ISE functions.

  1. Space station proximity operations windows: Human factors design guidelines

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1987-01-01

    Proximity operations refers to all activities outside the Space Station which take place within a 1-km radius. Since there will be a large number of different operations involving manned and unmanned vehicles, single- and multiperson crews, automated and manually controlled flight, a wide variety of cargo, and construction/repair activities, accurate and continuous human monitoring of these operations from a specially designed control station on Space Station will be required. Total situational awareness will be required. This paper presents numerous human factors design guidelines and related background information for control windows which will support proximity operations. Separate sections deal with natural and artificial illumination geometry; all basic rendezvous vector approaches; window field-of-view requirements; window size; shape and placement criteria; window optical characteristics as they relate to human perception; maintenance and protection issues; and a comprehensive review of windows installed on U.S. and U.S.S.R. manned vehicles.

  2. Design of a base station for MEMS CCR localization in an optical sensor network.

    PubMed

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  3. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    PubMed Central

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  4. Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)

    NASA Astrophysics Data System (ADS)

    Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli

    2016-07-01

    The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.

  5. Space Station external thermal control system design and operational overview

    NASA Technical Reports Server (NTRS)

    Raetz, John; Dominick, Jeff

    1992-01-01

    The driving design requirements and resulting design characteristics for a two-phase ammonia system of the Space Shuttle are reviewed with particular attention given to operational and station assembly issues related to system activation and steady-state operation. Design is described at an overall system level and an orbit replaceable unit level. It is concluded that a system flow network must be designed and ammonia pressures must be controlled to acquire waste heat efficiently from all contributing heat sources at a controlled temperature.

  6. Preliminary design of the Space Station internal thermal control system

    NASA Technical Reports Server (NTRS)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  7. QMI: Rising to the Space Station Design Challenge

    NASA Astrophysics Data System (ADS)

    Carswell, W. E.; Farmer, J.; Coppens, C.; Breeding, S.; Rose, F.

    2002-01-01

    The Quench Module Insert (QMI) materials processing furnace is being designed to operate for 8000 hours over four years on the International Space Station as part of the first Materials Science Research Rack of the Materials Science Research Facility. The Bridgman-type furnace is being built for the directional solidification processing of metals and alloys in the microgravity environment of space. Most notably it will be used for processing aluminum and related alloys. Designing for the space station environment presents intriguing design challenges in the form of a ten-year life requirement coupled with both limited opportunities for maintenance and resource constraints in the form of limited power and space. The long life requirement has driven the design of several features in the furnace, including the design of the heater core, the selection and placement of the thermocouples, overall performance monitoring, and the design of the chill block. The power and space limitations have been addressed through a compact furnace design using efficient vacuum insulation. Details on these design features, as well as development test performance results to date, are presented.

  8. QMI: Rising to the Space Station Design Challenge

    NASA Technical Reports Server (NTRS)

    Carswell, W. E.; Farmer, J.; Coppens, C.; Breeding, S.; Rose, F.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Quench Module Insert (QMI) materials processing furnace is being designed to operate for 8000 hours over four years on the International Space Station (ISS) as part of the first Materials Science Research Rack (MSRR-1) of the Materials Science Research Facility (MSRF). The Bridgman-type furnace is being built for the directional solidification processing of metals and alloys in the microgravity environment of space. Most notably it will be used for processing aluminum and related alloys. Designing for the space station environment presents intriguing design challenges in the form of a ten-year life requirement coupled with both limited opportunities for maintenance and resource constraints in the form of limited power and space. The long life requirement has driven the design of several features in the furnace, including the design of the heater core, the selection and placement of the thermocouples, overall performance monitoring, and the design of the chill block. The power and space limitations have been addressed through a compact furnace design using efficient vacuum insulation. Details on these design features, as well as development test performance results to date, are presented.

  9. Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter

    NASA Technical Reports Server (NTRS)

    Schock, A.; Raab, B.

    1971-01-01

    The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.

  10. Space Station Freedom ECLSS design configuration - A post restructure update

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen S.; Dalee, Robert C.

    1991-01-01

    The Space Station Freedom Program (SSFP) has undergone major design changes within the last year due to reduced budget appropriations imposed by Congress. This paper outlines the impacts of the design changes on the Environmental Control and Life Support System (ECLSS), with emphasis on the system aspects of the ECLSS. Brief descriptions of design impacts to all six ECLSS subsystems are provided in addition to interactions with other distributed systems such as Data Management, Electrical Power, and Man Systems. The assembly sequence for SSF is addressed with emphasis on key flights with respect to the ECLSS.

  11. Design of a resistojet for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Garza, Jose; Reisman, Jill; Tapia, Jose; Wright, Anthony

    1993-05-01

    In the mid 1990's, NASA will begin assembly of Space Station Freedom, a permanent outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must be developed to resist the effects of atmospheric drag. One system being considered by NASA is called a resistojet, and it uses highly pressurized waste gases heated by electrical resistance to provide thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases used by the station and its inhabitants. This report focuses on resolving the issues of system performance, flow and heater control, and materials selection and designing test procedures to resolve, by experimentation, any remaining issues. The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with gases flowing internally through the tube with additional components such as regulators, transducers, and thermocouples. For system performance, the major parameters were calculated from the desired thrust range, the pressure within the resistojet and the cold flow mode of operation; waste gases were analyzed at 100 percent capacity and between 58.95 kPa and 552 kPa. The design team found that any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the design of the ventilation function. The design team proceeded with a simplified model to determine the nozzle throat diameter and chamber diameter.

  12. Design of a resistojet for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Garza, Jose; Reisman, Jill; Tapia, Jose; Wright, Anthony

    1993-01-01

    In the mid 1990's, NASA will begin assembly of Space Station Freedom, a permanent outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must be developed to resist the effects of atmospheric drag. One system being considered by NASA is called a resistojet, and it uses highly pressurized waste gases heated by electrical resistance to provide thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases used by the station and its inhabitants. This report focuses on resolving the issues of system performance, flow and heater control, and materials selection and designing test procedures to resolve, by experimentation, any remaining issues. The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with gases flowing internally through the tube with additional components such as regulators, transducers, and thermocouples. For system performance, the major parameters were calculated from the desired thrust range, the pressure within the resistojet and the cold flow mode of operation; waste gases were analyzed at 100 percent capacity and between 58.95 kPa and 552 kPa. The design team found that any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the design of the ventilation function. The design team proceeded with a simplified model to determine the nozzle throat diameter and chamber diameter.

  13. Space Station Freedom external fluid utilities system design and integration

    NASA Astrophysics Data System (ADS)

    Reinhard, Dawn M.

    1993-02-01

    This paper presents the current Space Station Freedom External Fluid System Design, which is an integrated design of numerous criteria, such as safety, reliability, availability, manufacturability, commonality and compatibility with Extravehicular Activity (EVA). McDonnell Douglas engineers are working to meet a Critical Design Review (CDR) in 1993 and to begin production of fluid system hardware for first launch in 1996, with successive launches continuing through the decade. The fluid system design hardware, such as the 316L Stainless Steel tubing, Inconel, flexible metal hoses, tee fittings, clamping systems and quick disconnect couplings will be presented, with special emphasis on how they were selected in the early phases of the design process. Fabrication and assembly of the Space Station Freedom fluid utility system, using the Numerically Controlled (NC) tube bender and Orbital Welder will be discussed. The Extravehicular Activity (EVA) on-orbit assembly and maintenance techniques of this system will also be briefly explained. Recommendations which have contributed to the success of this design effort include: Consistent communications between groups. a centralized computer-aided drafting/Computer-aided manufacturing (CAD/CAM) system with Electronic Development Fixture (EDF) capability, and technical review boards to control and minimize changes to the design baseline.

  14. Space crew productivity: A driving factor in space station design

    NASA Technical Reports Server (NTRS)

    Wolbers, H. L.

    1985-01-01

    The criteria of performance, cost, and mission success probability (program confidence) are the principal factors that program or project managers and system engineers use in selecting the optimum design approach for meeting mission objectives. A frame of reference is discussed in which the interrelationships of these pertinent parameters can be made visible, and from which rational or informed decisions can be derived regarding the potential impact of adjustments in crew productivity on total Space Station System effectiveness.

  15. Preliminary space station solar array structural design study

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1984-01-01

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  16. Assessment of Space Station design and operation through bioastronautics

    NASA Technical Reports Server (NTRS)

    Klein, K. E.; Wegmann, H. M.; Bluth, B. J.

    1986-01-01

    The main elements which affect human well-being and productivity during a mission on the Space Station are reviewed. These include: the physical environment, the nature of operations the crew is required to perform, man's physiological response to microgravity, and the psychological and social conditions. The individual components of each of these elements are presented, and special design and support needs are identified. Particular attention is given to noise pollution, ionizing radiation, and behavioral factors.

  17. Design and analysis of a chip-scale photonic analog-to-digital converter

    NASA Astrophysics Data System (ADS)

    Sharkawy, Ahmed; Chen, Caihua; Miao, BingLin; Shi, Shouyuan; Prather, Dennis

    2009-05-01

    In this paper, we present novel designs for all optical analog-to-digital converters simulated and realized in photonic crystal platforms. The designs presented were implemented on both photonic bandgap based structures as well as self collimation based structures. Numerical simulation results as well as fabrication results are also included. Characterization results validate the designs presented for a functional all optical two bit analog to digital converters in photonic crystals. The design presented can be further scaled to higher resolution conversion as well as to no optical frequencies if necessary.

  18. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    SciTech Connect

    McManamy, T.; Booth, R.; Cleaves, J.; Gabriel, T.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improved as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.

  19. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  20. Space Station Freedom - Approaching the critical design phase

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  1. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  2. Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1975-01-01

    Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.

  3. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    NASA Technical Reports Server (NTRS)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  4. A pointing system design concept for Space Station attached payloads

    NASA Technical Reports Server (NTRS)

    Wong, Edward; Rathbun, Dave; Smith, Kenneth

    1989-01-01

    A study has been conducted to recommend a pointing system design and architecture that can accommodate the articulated pointing requirements levied on the Space Station Freedom Attached Payload Pointing System. A conceptual design of a control system is developed using classical rate and position control techniques. A high fidelity simulation testbed has been developed as the principal tool for the pointing performance evaluation. Techniques of model reduction are applied to reduce the model order to a manageable size for incorporation into the testbed. The disturbance rich space station environment has been modeled, and nonlinearities such as bearing friction, motor and sensor noise are also considered. Simulations were performed with representatie payloads at nominal pointing orientations. The results show that the tight instrument pointing requirements and the severe Space Station disturbance environment render a marginal performance for a conventional (direct drive and hardmount) gimbal pointing system, particularly for lightweight payloads. A gimbal system that incorporates a passive base isolator and reactionless actuation appears to provide a significant imporvement in pointing performance over the conventional pointing systems.

  5. A tactical, permanent telemetered volcano monitoring station design

    NASA Astrophysics Data System (ADS)

    Lockhart, A. B.; LaFevers, M.; Couchman, M. R.

    2012-12-01

    The USGS-USAID Volcano Disaster Assistance Program (VDAP) designs, constructs and installs telemetered volcano-monitoring stations for use in developing countries, at a wide range of latitudes and elevations, weather and environmental conditions. The stations typically house seismometers, GPS and webcams, singly or in combination. They are frequently installed quickly during a volcanic crisis, but are expected to function over the long term as permanent stations. The primary design goal is for a simple, highly portable station that can be installed in less than a day, but not require maintenance until the natural end of battery life, usually 2-5 years. The station consists of a pair of aluminum boxes (43x46x71cm, approx.) placed on the ground facing each other, 2-3m apart, forming the lower part of a metal framework made of 2" pipe to mount solar panels and antennae. Vertical sections of 2" pipe, 3-4m long, are clamped to each end of both the boxes, the lower ends buried into cement-filled holes. This makes 4 masts on a rectangular footprint of 1m X 3-4m. Two horizontal crosspieces of 2" pipe 3-4m long are clamped across the masts. Solar panels are laid across the crosspieces, mounted with 2" angle aluminum extending from the high crosspiece to the low one. Relative height of the crosspieces controls the angle of the solar panels. The crosspieces can be lengthened to increase mounting space for additional solar panels. Inside the aluminum boxes, the radios and electronics are housed in plastic boxes. All external cables are protected by flexible aluminum conduit. Important elements of the design include: -Redundant dual solar power supplies of expandable capacity for loads from 1W to 10W or more. -Robust lightning protection afforded by grounded metal footlockers and framework, and a built-in common grounding point. -Strongly resistant to ice loads. -Waterproof, insect-proof plastic boxes for radios and electronics. -Aluminum boxes are easily fabricated, fit within

  6. Design and realization of an automatic weather station at island

    NASA Astrophysics Data System (ADS)

    Chen, Yong-hua; Li, Si-ren

    2011-10-01

    In this paper, the design and development of an automatic weather station monitoring is described. The proposed system consists of a set of sensors for measuring meteorological parameters (temperature, wind speed & direction, rain fall, visibility, etc.). To increase the reliability of the system, wind speed & direction are measured redundantly with duplicate sensors. The sensor signals are collected by the data logger CR1000 at several analog and digital inputs. The CR1000 and the sensors form a completely autonomous system which works with the other systems installed in the container. Communication with the master PC is accomplished over the method of Code Division Multiple Access (CDMA) with the Compact Caimore6550P CDMA DTU. The data are finally stored in tables on the CPU as well as on the CF-Card. The weather station was built as an efficient autonomous system which operates with the other systems to provide the required data for a fully automatic measurement system.

  7. Using computer graphics to design Space Station Freedom viewing

    NASA Technical Reports Server (NTRS)

    Goldsberry, B. S.; Lippert, B. O.; Mckee, S. D.; Lewis, J. L., Jr.; Mount, F. E.

    1989-01-01

    An important aspect of planning for Space Station Freedom at the United States National Aeronautics and Space Administration (NASA) is the placement of the viewing windows and cameras for optimum crewmember use. Researchers and analysts are evaluating the placement options using a three-dimensional graphics program called PLAID. This program, developed at the NASA Johnson Space Center (JSC), is being used to determine the extent to which the viewing requirements for assembly and operations are being met. A variety of window placement options in specific modules are assessed for accessibility. In addition, window and camera placements are analyzed to insure that viewing areas are not obstructed by the truss assemblies, externally-mounted payloads, or any other station element. Other factors being examined include anthropometric design considerations, workstation interfaces, structural issues, and mechanical elements.

  8. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    SciTech Connect

    LaFleur, Angela Christine; Muna, Alice Baca; Groth, Katrina M.

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  9. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.; Green, C. E.

    1985-01-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  10. A New Design of Seismic Stations Deployed in South Tyrol

    NASA Astrophysics Data System (ADS)

    Melichar, P.; Horn, N.

    2007-05-01

    When designing the seismic network in South Tyrol, the seismic service of Austria and the Civil defense in South Tyrol combined more that 10 years experience in running seismic networks and private communication systems. In recent years the high data return rate of > 99% and network uptime of > 99.% is achieved by the combination of high quality station design and equipment, and the use of the Antelope data acquisition and processing software which comes with suite of network monitoring & alerting tools including Nagios, etc. The new Data Center is located in city of Bolzano and is connected to the other Data Centers in Austria, Switzerland, and Italy for data back up purposes. Each Data Center uses also redundant communication system if the primary system fails. When designing the South Tyrol network, new improvements were made in seismometer installations, grounding, lighting protection and data communications in order to improve quality of data recorded as well as network up-time, and data return. The new 12 stations are equipped with 6 Channels Q330+PB14f connected to STS2 + EpiSensor sensor. One of the key achievements was made in the grounding concept for the whole seismic station - and aluminum boxes were introduced which delivered Faraday cage isolation. Lightning protection devices are used for the equipment inside the aluminum housing where seismometer and data logger are housed. For the seismometer cables a special shielding was introduced. The broadband seismometer and strong-motion sensor are placed on a thick glass plate and therefore isolated from the ground. The precise seismometer orientation was done by a special groove on the glass plate and in case of a strong earthquake; the seismometer is tide up to the base plate. Temperature stability was achieved by styrofoam sheets inside the seismometer aluminum protection box.

  11. Design and experiment of a cross-shaped mode converter for high-power microwave applications

    SciTech Connect

    Peng, Shengren Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei

    2013-12-15

    A compact mode converter, which is capable of converting a TM{sub 01} mode into a circularly polarized TE{sub 11} mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  12. Design feasibility study of a Space Station Freedom truss

    NASA Astrophysics Data System (ADS)

    Armand, Sasan C.; Dohogne, Caroline A.

    1992-04-01

    Here, the focus is on the design and configuration feasibility of the short spacer for the Space Station Program in its launch configuration. The product of this study is being used by Rockwell International (Rocketdyne Division) as they continue their design concept of the current short spacer configuration. It is anticipated that the launch loads will dominate the on-orbit loads and dictate the design configuration of the short spacer. At the present time, the on-orbit loads have not been generated. The structural analysis discussed herein is based on the transient events derived from the Space Transportation System (STS) Interface Control Document (ICD). The transient loading events consist of liftoff loads, landing loads, and emergency landing loads. The quasi-static loading events have been neglected, since the magnitude of the acceleration factors are lower than the transient acceleration factors. The normal mode analyses presented herein are based on the most feasible configurations with acceptable stress ranges.

  13. Target Station Design for the Mu2e Experiment

    SciTech Connect

    Pronskikh, Vitaly; Ambrosio, Giorgio; Campbell, Michael; Coleman, Richard; Ginther, George; Kashikhin, Vadim; Krempetz, Kurt; Lamm, Michael; Lee, Ang; Leveling, Anthony; Mokhov, Nikolai; Nagaslaev, Vladimir; Stefanik, Andrew; Striganov, Sergei; Werkema, Steven; Bartoszek, Larry; Densham, Chris; Loveridge, Peter; Lynch, Kevin; Popp, James

    2014-07-01

    The Mu2e experiment at Fermilab is devoted to search for the conversion of a negative muon into an electron in the field of a nucleus without emission of neutrinos. One of the main parts of the Mu2e experimental setup is its Target Station in which negative pions are generated in interactions of the 8-GeV primary proton beam with a tungsten target. A large-aperture 5-T superconducting production solenoid (PS) enhances pion collection, and an S-shaped transport solenoid (TS) delivers muons and pions to the Mu2e detector. The heat and radiation shield (HRS) protects the PS and the first TS coils. A beam dump absorbs the spent beam. In order for the PS superconducting magnet to operate reliably the sophisticated HRS was designed and optimized for performance and cost. The beam dump was designed to absorb the spent beam and maintaining its temperature and air activation in the hall at the allowable level. Comprehensive MARS15 simulations have been carried out to optimize all the parts while maximizing muon yield. Results of simulations of critical radiation quantities and their implications on the overall Target Station design and integration will be reported.

  14. Spacecraft Station-Keeping Trajectory and Mission Design Tools

    NASA Technical Reports Server (NTRS)

    Chung, Min-Kun J.

    2009-01-01

    Two tools were developed for designing station-keeping trajectories and estimating delta-v requirements for designing missions to a small body such as a comet or asteroid. This innovation uses NPOPT, a non-sparse, general-purpose sequential quadratic programming (SQP) optimizer and the Two-Level Differential Corrector (T-LDC) in LTool (Libration point mission design Tool) to design three kinds of station-keeping scripts: vertical hovering, horizontal hovering, and orbiting. The T-LDC is used to differentially correct several trajectory legs that join hovering points. In a vertical hovering, the maximum and minimum range points must be connected smoothly while maintaining the spacecrafts range from a small body, all within the law of gravity and the solar radiation pressure. The same is true for a horizontal hover. A PatchPoint is an LTool class that denotes a space-time event with some extra information for differential correction, including a set of constraints to be satisfied by T-LDC. Given a set of PatchPoints, each with its own constraint, the T-LDC differentially corrects the entire trajectory by connecting each trajectory leg joined by PatchPoints while satisfying all specified constraints at the same time. Vertical and horizontal hover both are needed to minimize delta-v spent for station keeping. A Python I/F to NPOPT has been written to be used from an LTool script. In vertical hovering, the spacecraft stays along the line joining the Sun and a small body. An instantaneous delta-v toward the anti- Sun direction is applied at the closest approach to the small body for station keeping. For example, the spacecraft hovers between the minimum range (2 km) point and the maximum range (2.5 km) point from the asteroid 1989ML. Horizontal hovering buys more time for a spacecraft to recover if, for any reason, a planned thrust fails, by returning almost to the initial position after some time later via a near elliptical orbit around the small body. The mapping or

  15. A new approach to the minimum weight/loss design of switching power converters

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Rahman, S.; Wu, C. J.; Kolacki, J.

    1981-01-01

    A new technique using the mathematical nonlinear programming ALAG is proposed to facilitate design optimizations of switching power converters. This computer-aided approach provides a minimum weight (or loss) design down to the details of component level and concurrently satisfies all related power-circuit performance requirements. It also provides such design insights as tradeoffs between power loss and system weight as the switching frequency is increased.

  16. Conceptual Design of the Space Station Fluids Module

    NASA Technical Reports Server (NTRS)

    Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  17. Conceptual design of the Space Station combustion module

    NASA Technical Reports Server (NTRS)

    Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  18. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    SciTech Connect

    Schock, A.; Noravian, H.; Or, C.

    1997-12-31

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that the generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded system

  19. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    SciTech Connect

    Pratt, Joseph; Terlip, Danny; Ainscough, Chris; Kurtz, Jennifer; Elgowainy, Amgad

    2015-04-20

    This report presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and matches those to cost-effective station concepts. Finally, the report contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layout studies that incorporate the setbacks required by NFPA 2, the National Fire Protection Association Hydrogen Technologies Code. This work identified those setbacks as a significant factor affecting the ability to site a hydrogen station, particularly liquid stations at existing gasoline stations. For all station types, utilization has a large influence on the financial viability of the station.

  20. A 10kW series resonant converter design, transistor characterization, and base-drive optimization

    NASA Technical Reports Server (NTRS)

    Robson, R.; Hancock, D.

    1981-01-01

    Transistors are characterized for use as switches in resonant circuit applications. A base drive circuit to provide the optimal base drive to these transistors under resonant circuit conditions is developed and then used in the design, fabrication and testing of a breadboard, spaceborne type 10 kW series resonant converter.

  1. Instructional Design Considerations in Converting Non-CBT Materials into CBT Courses.

    ERIC Educational Resources Information Center

    Ng, Raymond

    Instructional designers who are asked to convert existing training materials into computer-based training (CBT) must take special precautions to avoid making the product into a sophisticated page turner. Although conversion may save considerable time on subject research and analysis, courses to be delivered through microcomputers may require…

  2. Space station integrated wall design and penetration damage control

    NASA Technical Reports Server (NTRS)

    Coronado, A. R.; Gibbins, M. N.; Wright, M. A.; Stern, P. H.

    1987-01-01

    The analysis code BUMPER executes a numerical solution to the problem of calculating the probability of no penetration (PNP) of a spacecraft subject to man-made orbital debris or meteoroid impact. The codes were developed on a DEC VAX 11/780 computer that uses the Virtual Memory System (VMS) operating system, which is written in FORTRAN 77 with no VAX extensions. To help illustrate the steps involved, a single sample analysis is performed. The example used is the space station reference configuration. The finite element model (FEM) of this configuration is relatively complex but demonstrates many BUMPER features. The computer tools and guidelines are described for constructing a FEM for the space station under consideration. The methods used to analyze the sensitivity of PNP to variations in design, are described. Ways are suggested for developing contour plots of the sensitivity study data. Additional BUMPER analysis examples are provided, including FEMs, command inputs, and data outputs. The mathematical theory used as the basis for the code is described, and illustrates the data flow within the analysis.

  3. Space Station Human Factors: Designing a Human-Robot Interface

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  4. Improved design of a polarization converter based on semiconductor optical waveguide bends.

    PubMed

    Obayya, S S; Rahman, B M; Grattan, K T; El-Mikati, H A

    2001-10-20

    By using an efficient vector finite-element-based beam-propagation method, we present an improved design of a polarization converter. This design relies on the use of a single-section deeply etched bent semiconductor waveguide with slanted sidewalls. By careful adjustment of the bend radius, the waveguide width, and the sidewall angle we obtained a nearly 100% polarization conversion ratio with no appreciable radiation loss and a bending angle of less than 180 degrees . PMID:18364819

  5. System design and development of a low data rate voice (1200 bps) rate converter

    NASA Astrophysics Data System (ADS)

    Hauser, J. P.

    1992-09-01

    This report presents both a high level and a detailed design for a low data rate voice Rate Converter (RC). On the transmit side, converter reduces 2400 bps voice generated by an Advanced Narrowband Digital Voice Terminal (ANDVT) to a 1200 bps bit stream. On the receive Bide it converts the 1200 bps bit stream back to a 2400 bps stream in ANDVT format. Rate reduction is accomplished with little degradation to the inherent voice quality of the ANDVT. This primary focus is upon the real-time software design which is implemented using VxWorks, a real-time, multi-tasking operating system and development environment. The high level design defines four tasks, each having its own execution thread and its own pipe to facilitate inter-task communication. The Supervisor Task performs initialization and managers input of commands and data to the RC. The Compressor Task reduces a 2400 bps bit stream to 1200 bps while the Decompressor Task converts from 1200 bps back to 2400 bps. The Output Task manages the output of data from the RC. Latter sections of this report describe the software in detail.

  6. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  7. Conceptual design for the space station Freedom modular combustion facility

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.

  8. Modeling and controller design of a wind energy conversion system including a matrix converter

    NASA Astrophysics Data System (ADS)

    Barakati, S. Masoud

    and combined to enable steady-state and transient simulations of the overall system. In addition, the constraint constant V/f strategy is included in the final dynamic model. The model is intended to be useful for controller design purposes. The dynamic behavior of the model is investigated by simulating the response of the overall model to step changes in selected input variables. Moreover, a linearized model of the system is developed at a typical operating point, and stability, controllability, and observability of the system are investigated. Two control design methods are adopted for the design of the closed-loop controller: a state-feedback controller and an output feedback controller. The state-feedback controller is designed based on the Linear Quadratic method. An observer block is used to estimate the states in the state-feedback controller. Two other controllers based on transfer-function techniques and output feedback are developed for the wind turbine system. Finally, a maximum power point tracking method, referred to as mechanical speed-sensorless power signal feedback, is developed for the wind turbine system under study to control the matrix converter control variables in order to capture the maximum wind energy without measuring the wind velocity or the turbine shaft speed.

  9. Design and real time implementation of single phase boost power factor correction converter.

    PubMed

    Bouafassa, Amar; Rahmani, Lazhar; Mekhilef, Saad

    2015-03-01

    This paper presents a real time implementation of the single-phase power factor correction (PFC) AC-DC boost converter. A combination of higher order sliding mode controller based on super twisting algorithm and predictive control techniques are implemented to improve the performance of the boost converter. Due to the chattering effects, the higher order sliding mode control (HOSMC) is designed. Also, the predictive technique is modified taking into account the large computational delays. The robustness of the controller is verified conducting simulation in MATLAB, the results show good performances in both steady and transient states. An experiment is conducted through a test bench based on dSPACE 1104. The experimental results proved that the proposed controller enhanced the performance of the converter under different parameters variations. PMID:25457043

  10. Design and optimization of GaAs photovoltaic converter for laser power beaming

    NASA Astrophysics Data System (ADS)

    Shan, Tiqiang; Qi, Xinglin

    2015-07-01

    GaAs photovoltaic (PV) converters are useful for the conversion of monochromatic light into electrical power in numerous military and industrial applications. The work of this paper is to design a monochromatic GaAs PV converter for coupling to laser beams in the wavelength of 790-840 nm and optimize its structure, layer thicknesses, doping levels of the emitter and base, and antireflection coating. Modeling calculations of the GaAs PV converter optimization are carried out using PC-1D. From the highest efficiency point of view, the best wavelength is 840 nm at which the optimized structure gives an efficiency of 61.8% theoretically. Experiment results under 808 nm laser power beaming show that high optical-to-electrical conversion efficiency of 53.23% at 5 W/cm2 is achieved using the optimized GaAs PV laser converter. Finally, accurate extraction of the key parameters, viz. the ideality factor, reverse saturation current, series resistance and shunt resistance is introduced. Variations of these parameters with illumination intensity are also investigated analytically based on the one diode model, which are necessary for the design of a high performance PV generation system.

  11. Design of an MSAT-X mobile transceiver and related base and gateway stations

    NASA Technical Reports Server (NTRS)

    Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit

    1987-01-01

    This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.

  12. Flywheel Energy Storage System Designed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Delventhal, Rex A.

    2002-01-01

    Following successful operation of a developmental flywheel energy storage system in fiscal year 2000, researchers at the NASA Glenn Research Center began developing a flight design of a flywheel system for the International Space Station (ISS). In such an application, a two-flywheel system can replace one of the nickel-hydrogen battery strings in the ISS power system. The development unit, sized at approximately one-eighth the size needed for ISS was run at 60,000 rpm. The design point for the flight unit is a larger composite flywheel, approximately 17 in. long and 13 in. in diameter, running at 53,000 rpm when fully charged. A single flywheel system stores 2.8 kW-hr of useable energy, enough to light a 100-W light bulb for over 24 hr. When housed in an ISS orbital replacement unit, the flywheel would provide energy storage with approximately 3 times the service life of the nickel-hydrogen battery currently in use.

  13. Structural design feasibility study of Space Station long spacer truss

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Funk, Gregory P.; Dohogne, Caroline A.

    1994-01-01

    The structural design and configuration feasibility of the long spacer truss assembly that will be used as part of the Space Station Freedom is the focus of this study. The structural analysis discussed herein is derived from the transient loading events presented in the Space Transportation System Interface Control Document (STS ICD). The transient loading events are liftoff, landing, and emergency landing loads. Quasi-static loading events were neglected in this study since the magnitude of the quasi-static acceleration factors is lower than that of the transient acceleration factors. Structural analysis of the proposed configuration of the long spacer truss with four longerons indicated that negative safety margins are possible. As a result, configuration changes were proposed. The primary configuration change suggested was to increase the number of truss longerons to six. The six-longeron truss appears to be a more promising structure than the four-longeron truss because it offers a positive margin of safety and more volume in its second bay (BAY2). This additional volume can be used for resupply of some of the orbital replacement units (such as a battery box). Note that the design effort on the long spacer truss has not fully begun and that calculations and reports of the negative safety margins are, to date, based on concept only.

  14. Design and performance of the ESA Optical Ground Station

    NASA Astrophysics Data System (ADS)

    Reyes Garcia-Talavera, Marcos; Rodriguez, Jose A.; Viera, Teodora; Moreno-Arce, Heidi; Rasilla, Jose L.; Gago, Fernando; Rodriguez, Luis F.; Gomez, Panchita; Ballesteros Ramirez, Ezequiel

    2002-04-01

    The European Space Agency (ESA) has undertaken the development of Optical Data Relay payloads, aimed at establishing free space optical communication links between satellites. The first of such systems put into orbit is the SILEX project, in which an experimental link between a GEO satellite (ARTEMIS) and a LEO satellite (SPOT IV) will be used to relay earth observation data. In order to perform In Orbit Testing (IOT) of these and future optical communications systems, ESA and the Instituto de Astrofisica de Canarias (IAC) reached an agreement for the building of the Optical Ground Station (OGS) in the IAC Teide Observatory, which consists basically of a 1-meter telescope and the suitable instrumentation for establishing and testing bi-directional optical links with satellites. The presence of the atmosphere in the data path posses particular problems, with an impact on the instrumentation design. The transmission, reception and measurement functions, along with the overall control of the instruments, are performed at OGS by the Focal Plane Control Electronics (FPCE). The design and performance of this instrumentation is presented, emphasizing the Pointing, Acquisition and Tracking, the Tuneable Laser and the Master Control.

  15. Structural design feasibility study of Space Station long spacer truss

    NASA Astrophysics Data System (ADS)

    Armand, Sasan C.; Funk, Gregory P.; Dohogne, Caroline A.

    1994-02-01

    The structural design and configuration feasibility of the long spacer truss assembly that will be used as part of the Space Station Freedom is the focus of this study. The structural analysis discussed herein is derived from the transient loading events presented in the Space Transportation System Interface Control Document (STS ICD). The transient loading events are liftoff, landing, and emergency landing loads. Quasi-static loading events were neglected in this study since the magnitude of the quasi-static acceleration factors is lower than that of the transient acceleration factors. Structural analysis of the proposed configuration of the long spacer truss with four longerons indicated that negative safety margins are possible. As a result, configuration changes were proposed. The primary configuration change suggested was to increase the number of truss longerons to six. The six-longeron truss appears to be a more promising structure than the four-longeron truss because it offers a positive margin of safety and more volume in its second bay (BAY2). This additional volume can be used for resupply of some of the orbital replacement units (such as a battery box). Note that the design effort on the long spacer truss has not fully begun and that calculations and reports of the negative safety margins are, to date, based on concept only.

  16. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  17. Ergonomic implementation and work station design for quilt manufacturing unit

    PubMed Central

    Vinay, Deepa; Kwatra, Seema; Sharma, Suneeta; Kaur, Nirmal

    2012-01-01

    improve the work posture of the worker. The average working heart rate values were found to reduced by performing the activity using improved technology followed by energy expenditure (6.99 kj/min), total cardiac cost of work (1037.95 beats), physiological cost of work (103.79 beats) and rate of perceived rate of exertion to the score of 2.6 Results of postural analysis that is change in motion at cervical region reveal that range of motion in case of extension was found beyond the normal range in existing setup where as it reduced to normal range in improved work station. Conclusion: The finding of the study concludes that to ensure safety and to reduce occupational health hazards while performing the activity, an ergonomically designed work station by introduction of improved technology option will be a right choice which also enhances the productivity. PMID:23580839

  18. Engineering design criteria for an image intensifier/image converter camera

    NASA Technical Reports Server (NTRS)

    Sharpsteen, J. T.; Lund, D. L.; Stoap, L. J.; Solheim, C. D.

    1976-01-01

    The design, display, and evaluation of an image intensifier/image converter camera which can be utilized in various requirements of spaceshuttle experiments are described. An image intensifier tube was utilized in combination with two brassboards as power supply and used for evaluation of night photography in the field. Pictures were obtained showing field details which would have been undistinguishable to the naked eye or to an ordinary camera.

  19. 49 CFR 192.163 - Compressor stations: Design and construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., each main compressor building of a compressor station must be located on property under the control of... property. There must be enough open space around the main compressor building to allow the free movement of fire-fighting equipment. (b) Building construction. Each building on a compressor station site must...

  20. 49 CFR 192.163 - Compressor stations: Design and construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., each main compressor building of a compressor station must be located on property under the control of... property. There must be enough open space around the main compressor building to allow the free movement of fire-fighting equipment. (b) Building construction. Each building on a compressor station site must...

  1. 49 CFR 192.163 - Compressor stations: Design and construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., each main compressor building of a compressor station must be located on property under the control of... property. There must be enough open space around the main compressor building to allow the free movement of fire-fighting equipment. (b) Building construction. Each building on a compressor station site must...

  2. 49 CFR 192.163 - Compressor stations: Design and construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., each main compressor building of a compressor station must be located on property under the control of... property. There must be enough open space around the main compressor building to allow the free movement of fire-fighting equipment. (b) Building construction. Each building on a compressor station site must...

  3. Space Station Cathode Design, Performance, and Operating Specifications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James

    1998-01-01

    A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.

  4. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  5. Design and Operation of Infrasound Stations for Hazardous Weather Detection

    NASA Astrophysics Data System (ADS)

    Pepyne, D.

    2012-04-01

    Each year tornadoes cause property damage and death, some of which could be avoided with increased warning lead time. The year 2011 was particularly severe, with more than 1600 tornadoes causing in excess of 500 deaths in the U.S. It is known that tornadoes and their precursors generate infrasound in the 0.5Hz to 10Hz frequency band, with precursors occurring some 30-60 minutes prior to tornado touch down, which is some 15-45 minutes earlier than the average tornado warning lead time in the U.S. Given the potential of infrasound to improve tornado early warning and emergency response, the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA), in conjunction with its research on small, boundary-layer observing X-band weather radars, has begun a research project whose goal is to combine the passive detection of tornado infrasound with active tracking of the parent storms that carry the tornadoes with its weather radars. In the spring of 2011 CASA conducted an infrasound field-test in Oklahoma, in the heart of the so-called "tornado-alley" where statistically the majority of springtime tornadoes in the U.S. occur. This being CASA's first infrasound experiment, the goal of the field-test was to gain an understanding of the issues involved in the design and operation of infrasound stations for severe weather monitoring and early warning. In this application, it is not so much the ability of infrasound to travel long distances that is of importance, but rather the fact that there can be precursor signals that unlike radar do not require line-of-sight to detect. In fact, for early warning, detection distance would generally need to be less than 100 km, since a propagation delay of much more than 5 minutes would be too late. Challenges encountered included persistent infrasound "clutter" from a nearby large windfarm, accurate bearing detection over a wide bandwidth with a fixed four sensor aperture, and the need to operate in the the high winds that surround

  6. Development of a fuzzy logic controller for dc/dc converters: Design, computer simulation, and experimental evaluation

    SciTech Connect

    So, W.C.; Tse, C.K.; Lee, Y.S.

    1996-01-01

    The design of a fuzzy logic controller for dc/dc converters is described in this paper. A brief review of fuzzy logic and its application to control is first given. Then, the derivation of a fuzzy control algorithm for regulating dc/dc converters is described in detail. The proposed fuzzy control is evaluated by computer simulations as well as experimental measurements of the closed-loop performance of simple dc/dc converters in respect of load regulation and line regulation.

  7. Analysis and Design of Crew Sleep Station for ISS

    NASA Technical Reports Server (NTRS)

    Keener, John F.; Paul, Thomas; Eckhardt, Bradley; Smith, Fredrick

    2002-01-01

    This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity within the TeSS remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary. Computational Fluid Dynamics (CFD) methods were used to evaluate the flow field inside the TeSS, from which local gradients for temperature, velocity, and species concentration such as CO (sub 2) could be determined. A model of the TeSS, containing a human, as well as equipment such as a laptop computer, was developed in FLUENT, a finite-volume code. Other factors, such as detailed analysis of the heat transfer through the structure, radiation, and air circulation from the TeSS to the US Laboratory Aisle, where the TeSS is housed, were considered in the model. A complementary model was developed in G189A, a code which has been used by NASA/JSC for environmental control systems analyses since the Apollo program. Boundary conditions were exchanged between the FLUENT and G189A TeSS models. G189A provides human respiration rates to the FLUENT model, while the FLUENT model provides local convective heat transfer coefficients to G189A model. An additional benefit from using an approach with both a systems simulation and CFD model, is the capability to verify the results of each model by comparison to the results of the other model. The G189A and

  8. Design of a high efficiency 30 kW boost composite converter

    SciTech Connect

    Kim, Hyeokjin; Chen, Hua; Maksimovic, Dragan; Erickson, Robert W.

    2015-09-20

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module and system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.

  9. 49 CFR 192.163 - Compressor stations: Design and construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... property. There must be enough open space around the main compressor building to allow the free movement of... wall must be mounted to swing outward. (d) Fenced areas. Each fence around a compressor station...

  10. Using computer graphics to design Space Station Freedom viewing

    NASA Technical Reports Server (NTRS)

    Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.

    1993-01-01

    Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.

  11. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-07-09

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables.

  12. The hydraulic design of pump turbine for Xianyou pumped storage power station

    NASA Astrophysics Data System (ADS)

    Zheng, J. S.; Liu, W. C.; Fu, Z. Y.; Shi, Q. H.

    2012-11-01

    This paper presents the hydraulic design of pump turbines for Xianyou pumped storage power station. The method of improving the hydraulic performance of pump turbine with CFD analysis is given. The results of model test indicate that the final hydraulic design of pump turbine for Xianyou pumped storage power station is of high efficiencies, good

  13. Crew Restraint Design for the International Space Station

    NASA Technical Reports Server (NTRS)

    Norris, Lena; Holden, Kritina; Whitmore, Mihriban

    2006-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. Another ISS task that requires special consideration with respect to restraints is robotic teleoperation. The Robot Systems Technology Branch at the NASA Johnson Space Center is developing a humanoid robot astronaut, or Robonaut. It is being designed to perform extravehicular activities (EVAs) in the hazardous environment of space. An astronaut located inside the ISS will remotely operate Robonaut through a telepresence control system. Essentially, the robot mimics every move the operator makes. This requires the

  14. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    NASA Astrophysics Data System (ADS)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  15. Target station design for a 1 MW pulsed spallation neutron source

    SciTech Connect

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-12-31

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described.

  16. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications. PMID:26278347

  17. Incorporation of privacy elements in space station design

    NASA Technical Reports Server (NTRS)

    Harrison, Albert A.; Caldwell, Barrett; Struthers, Nancy J.

    1988-01-01

    Privacy exists to the extent that individuals can control the degree of social contact that they have with one another. The opportunity to withdraw from other people serves a number of important psychological and social functions, and is in the interests of safety, high performance, and high quality of human life. Privacy requirements for Space Station crew members are reviewed, and architectual and other guidelines for helping astronauts achieve desired levels of privacy are suggested. In turn, four dimensions of privacy are discussed: the separation of activities by areas within the Space Station, controlling the extent to which astronauts have visual contact with one another, controlling the extent to which astronauts have auditory contact with one another, and odor control. Each section presents a statement of the problem, a review of general solutions, and specific recommendations. The report is concluded with a brief consideration of how selection, training, and other procedures can also help Space Station occupants achieve satisfactory levels of seclusion.

  18. Artificial gravity studies and design considerations for Space Station centrifuges

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Brown, A. H.; Fuller, C. A.; Oyama, J.

    1984-01-01

    The requirements to and capabilities of a Space Station biological facility centrifuge are discussed on the basis of an assessment of the objectives and subjects of future microgravity biological experiments. It is argued that the facility should be capable of both acute and extended chronic exposure of test subjects and biological materials to altered-g loading. In addition, the experimental approaches and equipment for microgravity studies on a Space Station are outlined. Finally, the engineering requirements of such a centrifuge are examined, with consideration of radial gravity gradients, size, and physical access to animals.

  19. Electrical power system design for the US space station

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.; Bernatowicz, Daniel T.

    1986-01-01

    The multipurpose, manned, permanent space station will be our next step toward utilization of space. A multikilowatt electrical power system will be critical to its success. The power systems for the space station manned core and platforms that have been selected in definition studies are described. The system selected for the platforms uses silicon arrays and Ni-H2 batteries. The power system for the manned core is a hybrid employing arrays and batteries identical to those on the platform along with solar dynamic modules using either Brayton or organic Rankine engines. The power system requirements, candidate technologies, and configurations that were considered, and the basis for selection, are discussed.

  20. International interface design for Space Station Freedom - Challenges and solutions

    NASA Technical Reports Server (NTRS)

    Mayo, Richard E.; Bolton, Gordon R.; Laurini, Daniele

    1988-01-01

    The definition of interfaces for the International Space Station is discussed, with a focus on negotiations between NASA and ESA. The program organization and division of responsibilities for the Space Station are outlined; the basic features of physical and functional interfaces are described; and particular attention is given to the interface management and documentation procedures, architectural control elements, interface implementation and verification, and examples of Columbus interface solutions (including mechanical, ECLSS, thermal-control, electrical, data-management, standardized user, and software interfaces). Diagrams, drawings, graphs, and tables listing interface types are provided.

  1. Design and development of electric vehicle charging station equipped with RFID

    NASA Astrophysics Data System (ADS)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  2. The Space Station program definition and preliminary systems design - Recent developments

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1985-01-01

    It is pointed out that space stations represent a major vehicle for accomplishing many things mankind envisions for space activities. Thus, space stations have become necessary stepping-off points for deep-space expeditions, and it is expected that they will lead eventually to the permanent occupancy of another planet. The present paper provides a report regarding planning activities in the U.S. and in other countries which have made significant progress in making a permanent Space Station a reality. The Space Station will consist of a manned base and associated platforms, as well as collateral support equipment. The purpose of the program definition and preliminary design activities (Phase B) is to arrive at the baseline configuration before initiating actual hardware development. Details of the program plan are discussed along with user considerations in design, the commercialization of space, design issues, operations, and Space Station evolution.

  3. The design and development of a mobile transporter system for the Space Station Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas W.

    1987-01-01

    The analyses, selection process, and conceptual design of potential candidate Mobile Transporter (MT) systems to move the Space Station Remote Manipulator System (SSRMS) about the exposed faces of the Space Station truss structure are described. The actual requirements for a manipulator system on the space station are discussed, including potential tasks to be performed. The SSRMS operating environment and control methods are analyzed with potential design solutions highlighted. Three general categories of transporter systems are identified and analyzed. Several design solution have emerged that will satisfy these requirements. Their relative merits are discussed, and unique variations in each system are rated for functionality.

  4. Early engineering designs of space stations in the United States: A memoir

    NASA Astrophysics Data System (ADS)

    Kramer, Saunders B.

    1993-05-01

    Inspired by the Soviet Union's orbiting of Sputnik 1, in April 1958 the author began to study the possibilities of manned flight into space by the end of the coming decade. Efforts were pointed towards the design of several manned space stations to be placed in low Earth orbit. This paper describes concepts that evolved from an initial space station design prepared in 1958 to more mature approaches appearing in 1960 and in 1962. Variation in design concepts, efforts to resolve problems affecting on-board crews, and the need to assemble stations from many separate modules are among the subjects considered.

  5. User's manual: Computer-aided design programs for inductor-energy-storage dc-to-dc electronic power converters

    NASA Technical Reports Server (NTRS)

    Huffman, S.

    1977-01-01

    Detailed instructions on the use of two computer-aided-design programs for designing the energy storage inductor for single winding and two winding dc to dc converters are provided. Step by step procedures are given to illustrate the formatting of user input data. The procedures are illustrated by eight sample design problems which include the user input and the computer program output.

  6. Designing acoustic-electric strain-gauge converters for sensitive diaphragm elements

    NASA Astrophysics Data System (ADS)

    Chernyak, M. G.; Kovalenko, T. V.

    Analytic expressions and nomograms are obtained to estimate the sensitivity of differential acoustic-electric measuring pressure converter with an error no more than 5% and to choose such an arrangement of strain-gauge converters on its sensitive diaphragm element that would ensure an additive temperature error of the measuring pressure converter less than 10-4 K-1

  7. Obese humans as economically designed feed converters: symmorphosis and low oxidative capacity skeletal muscle.

    PubMed

    Hudson, Nicholas J; Lehnert, Sigrid A; Harper, Gregory S

    2008-01-01

    Human obesity is considered a consequence of a thrifty or economic metabolism. In this hypothesis, we apply an established economic design theory, called symmorphosis, to help explain the known association between obesity and low oxidative capacity skeletal muscle. Symmorphosis reflects an engineering principle, and predicts that physiological systems are most economically designed when unnecessary spare capacity is eliminated. This is because the structural/functional adaptations accounting for spare capacity themselves bear energetic costs of construction, maintenance and load. As oxidation of feed energy occurs in mitochondria, and because skeletal muscle accounts for 30% of resting metabolism, we focus on skeletal muscle mitochondria. In the same way that the most economically designed elevator is supported by a cable that is strong enough, but not too strong, symmorphosis predicts that the most economically designed feed converters should have enough, but not too much mitochondrial oxidative (fuel burning) capacity. While ATP demand is clearly more efficiently met by oxidative (38 molecules of ATP) rather than glycolytic (2 molecules of ATP) metabolism, symmorphosis predicts that having excess oxidative capacity actually reduces feed efficiency. This inefficiency is manifest by having to maintain, ultimately using feed energy, the expensive inner mitochondrial proton gradient in the superfluous mitochondria. On this basis, we predict that established molecular controllers of mitochondrial biogenesis and oxidative capacity such as eNOS, SIN3 co-repressor, TFAM and PPARgamma may yield useful DNA markers and therapeutic targets for issues relating to frugal energetics, namely predisposition to obesity and starvation resilience. PMID:17664046

  8. Design of piezoelectric transformer for DC/DC converter with stochastic optimization method

    NASA Astrophysics Data System (ADS)

    Vasic, Dejan; Vido, Lionel

    2016-04-01

    Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.

  9. Designing a new post-hole seismological station on Antarctica inlandsis (Concordia station)

    NASA Astrophysics Data System (ADS)

    Bès de Berc, M.; Maggi, A.; Leveque, J. J.; Thore, J. Y.

    2015-12-01

    Concordia (75°S 123°E) is a scientific base operated by French and Italian polar institutes IPEV (Institut Paul-Emile Victor) and PNRA (Programma Nazionale di Ricerche in Antartide, and is located on the inlandsis of the East Antarctica plateau. It hosts a seismological station CCD which has provided observatory quality data since the year 2000, has been integrated into the Geoscope network since 2008 and whose data are now available in real-time from IRIS. The current seismic vault is located 800m from Concordia base, as far away as is deemed logistically possible by IPEV, at a depth of 12m. The vault is thermally very stable, but given the close distance to the base, suffers from increased diurnal noise (up to 40 dB) at frequencies above 1Hz, especially in the summer season. Anthropic noise is trapped in the firn (snow) layer, which forms an 100-110m thick waveguide, and is picked up very easily in the seismic vault. The vault is made from steel containers buried vertically in the snow. The hydrostatic pressure of the snow is deforming them: we see container cracking events on the seismograms, and also visual evidence of container deformation inside the vault. In the near future, this deformation will create a security problem.We have decided to progressively abandon our current vault, and construct a new post-hole seismological installation nearby. We plan to drill to 130m depth, which would place us below the firn layer waveguide and also below the ice pinch-out depth. To be able to run the station for several years and change or service the instrumentation if required, we need to keep the hole open, to avoid any hydrostatic movement, and to maintain good coupling between the sensor and the surrounding hard ice. To achieve these goals, we shall install a casing in the fin layer and then drill a few meters more without casing in hard ice. After installing the instrument, we shall then fill the whole hole with a drilling fluid whose density is similar to that

  10. The Long Wavelength Array -- LWA Prototype Station Design

    NASA Astrophysics Data System (ADS)

    Gausiran, T. L., II; Kerkhoff, A.; York, J.; Slack, C.

    2005-12-01

    This paper describes the current vision of the Long Wavelength Demonstrator Array (LWDA) as well as some thoughts on the LWA as of September 2004. This concept is certain to evolve as we work towards the actual construction of the LWDA and the LWA. As envisioned, the LWA will provide unprecedented sensitivity and angular resolution in low frequency bands to radio astronomers allowing observations that were previously unavailable. We will investigate the LWDA by starting at the station level and working down to the component level of detail. This treatment should provide persons new to the LWA the ``big picture'' first and then move towards the details.

  11. Design and characterization of silicon-on-insulator passive polarization converter with finite-element analysis

    NASA Astrophysics Data System (ADS)

    Deng, Henghua

    In this dissertation; the silicon-on-insulator (SOI) technology is introduced to the design and fabrication of passive polarization rotators (PR). Efficient and accurate full-vectorial finite-element eigenmode solvers as well as propagation schemes for characterizing novel SOI PRs are developed because commercial software packages based on finite-difference techniques are inefficient in dealing with arbitrary waveguide geometries. A novel configuration with asymmetric external waveguiding layers is proposed, which is advantageous for fabrication procedure, manufacturing tolerance, single-mode region, and conversion efficiency. By etching along the crystallographic plane, the angled-facet can be perfectly fabricated. Completely removing external waveguiding layer beside the sloped sidewall not only simplifies production procedures but also enhances fabrication tolerances. To accurately and efficiently characterize asymmetric slanted-angle SOI polarization converters, adaptive mesh generation procedures are incorporated into our finite-clement method (FEM) analysis. In addition, anisotropic perfectly-matched-layer (PML) boundary condition (BC) is employed in the beam propagation method (BPM) in order to effectively suppress reflections from the edges of the computation window. For the BPM algorithm, the power conservation is strictly monitored, the non-unitarity is thoroughly analyzed, and the inherent numerical dissipation is reduced by adopting the quasi-Crank-Nicholson scheme and adaptive complex reference index. Advantages of SOI polarization rotators over III-V counterparts are studied through comprehensive research on power exchange, single-mode condition, fabrication tolerance, wavelength stability, bending characteristics, loss and coupling properties. The performance of SOI PRs is stable for wavelengths in the ITU-T C-band and L-band, making such devices quite suitable for DWDM applications. Due to the flexible cross-section of SOI polarization converters

  12. Considerations in the design of life sciences research facilities for the Space Station

    NASA Technical Reports Server (NTRS)

    Heinrich, M.; Rudiger, C. E.

    1985-01-01

    The facilities required for life science research on a permanent Space Station are examined. Specifications important to the designing of facilities and planning of activities on the Space Shuttle are: (1) the species to be tested, (2) the number and procedure for testing, (3) the number of specimens at each sampling time, (4) the analyses required, (5) the methods of preserving samples, instruments, and supplies, and (6) the amount of crew time required. Experiments which are relevant to understanding the effects of microgravity on living systems are to be performed on the Space Station. The design and instruments of a Space Station laboratory and specimen centrifuge are described.

  13. Status of the Space Station environmental control and life support system design concept

    NASA Technical Reports Server (NTRS)

    Ray, C. D.; Humphries, W. R.

    1986-01-01

    The current status of the Space Station (SS) environmental control and life support system (ECLSS) design is outlined. The concept has been defined at the subsystem level. Data supporting these definitions are provided which identify general configuratioons for all modules. Requirements, guidelines and assumptions used in generating these configurations are detailed. The basic 2 US module 'core' Space Station is addressed along with system synergism issues and early man-tended and future growth considerations. Along with these basic studies, also addressed here are options related to variation in the 'core' module makeup and more austere Station concepts such as commonality, automation and design to cost.

  14. Space Station Freedom power supply commonality via modular design

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Das, R.

    1990-01-01

    At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.

  15. Design of A 5-Bit Fully Parallel Analog to Digital Converter Using Common Gate Differrential Mos Pair-Based Comparator

    NASA Astrophysics Data System (ADS)

    Aytar, Oktay

    2015-09-01

    This paper presents a novel comparator structure based on the common gate differential MOS pair. The proposed comparator has been applied to fully parallel analog to digital converter (A/D converter). Furthermore, this article presents 5 bit fully parallel A/D Converter design using the cadence IC5141 design platform and NCSU(North Carolina State University) design kit with 0.18 μm CMOS technology library. The proposed fully parallel A/D converter consist of resistor array block, comparator block, 1-n decoder block and programmable logic array. The 1-n decoder block includes latch block and thermometer code circuit that is implemented using transmission gate based multiplexer circuit. Thus, sampling frequency and analog bandwidth are increased. The INL and DNL of the proposed fully parallel A/D converter are (0/ + 0.63) LSB and (-0.26/ + 0.31) LSB at a sampling frequency of 5 GS/s with an input signal of 50 MHz, respectively. The proposed fully parallel A/D Converter consumes 340 mW from 1.8 V supply.

  16. Manipulator arm design for the Extravehicular Teleoperator Assist Robot (ETAR): Applications on the space station

    NASA Technical Reports Server (NTRS)

    Clarke, Margaret M.; Divona, Charles J.; Thompson, William M.

    1987-01-01

    The preliminary conceptual design of a new teleoperator robot manipulator system for space station maintenance missions has been completed. The system consists of a unique pair of arms that is part of a master-slave, force-reflecting servomanipulator. This design allows greater dexterity and greater volume coverage than that available in current designs and concepts. The teleoperator manipulator is specifically designed for space applications and is a valuable extension of the current state-of-the-art earthbound manipulators marketed today. The manipulator and its potential application on the space station are described.

  17. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    NASA Astrophysics Data System (ADS)

    Jeong, Seongkyun; Lee, Jae-Eun; Park, Hanearl; Lee, Sanguk; Kim, Jaehoon

    2008-06-01

    GNSS (Global Navigation Satellite System) Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute) is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language) method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  18. SDTM - SYSTEM DESIGN TRADEOFF MODEL FOR SPACE STATION FREEDOM RELEASE 1.1

    NASA Technical Reports Server (NTRS)

    Chamberlin, R. G.

    1994-01-01

    Although extensive knowledge of space station design exists, the information is widely dispersed. The Space Station Freedom Program (SSFP) needs policies and procedures that ensure the use of consistent design objectives throughout its organizational hierarchy. The System Design Tradeoff Model (SDTM) produces information that can be used for this purpose. SDTM is a mathematical model of a set of possible designs for Space Station Freedom. Using the SDTM program, one can find the particular design which provides specified amounts of resources to Freedom's users at the lowest total (or life cycle) cost. One can also compare alternative design concepts by changing the set of possible designs, while holding the specified user services constant, and then comparing costs. Finally, both costs and user services can be varied simultaneously when comparing different designs. SDTM selects its solution from a set of feasible designs. Feasibility constraints include safety considerations, minimum levels of resources required for station users, budget allocation requirements, time limitations, and Congressional mandates. The total, or life cycle, cost includes all of the U.S. costs of the station: design and development, purchase of hardware and software, assembly, and operations throughout its lifetime. The SDTM development team has identified, for a variety of possible space station designs, the subsystems that produce the resources to be modeled. The team has also developed formulas for the cross consumption of resources by other resources, as functions of the amounts of resources produced. SDTM can find the values of station resources, so that subsystem designers can choose new design concepts that further reduce the station's life cycle cost. The fundamental input to SDTM is a set of formulas that describe the subsystems which make up a reference design. Most of the formulas identify how the resources required by each subsystem depend upon the size of the subsystem. Some of

  19. The Electromagnetic Compatibility (EMC) Design Challenge for Scientific Spacecraft Powered by a Stirling Power Converter

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    2001-01-01

    A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.

  20. Report on the findings of the Japanese Investigative Team on US Space Station Design (Keidanren)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objectives, itinerary and results of the Japanese Investigative Team on U.S. Space Station Design (Keidanren), consisting of members of the Space Development Promotion Council and representatives of Japanese industries involved in Japan's space station development effort are presented. This team visited NASA facilities in February, 1985. The objectives of the study team are to gather information on preliminary design efforts toward space station planning in Japan and the promotion of Japanese space related industries, as well as the evaluation of the present status of space environment exploitation in the U.S. This report is intended to be a basic reference for government agencies and industry in addressing the course of action to be taken in the future development of Japan's space station participation.

  1. Life support and internal thermal control system design for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  2. 9 CFR 72.16 - Designated dipping stations to be approved by the Administrator, APHIS on recommendations of...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CATTLE § 72.16 Designated dipping stations to be approved by the Administrator, APHIS on recommendations... points at which cattle of the quarantined area of the State in which said station is located may...

  3. 9 CFR 72.16 - Designated dipping stations to be approved by the Administrator, APHIS on recommendations of...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CATTLE § 72.16 Designated dipping stations to be approved by the Administrator, APHIS on recommendations... points at which cattle of the quarantined area of the State in which said station is located may...

  4. 9 CFR 72.16 - Designated dipping stations to be approved by the Administrator, APHIS on recommendations of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CATTLE § 72.16 Designated dipping stations to be approved by the Administrator, APHIS on recommendations... points at which cattle of the quarantined area of the State in which said station is located may...

  5. 9 CFR 72.16 - Designated dipping stations to be approved by the Administrator, APHIS on recommendations of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CATTLE § 72.16 Designated dipping stations to be approved by the Administrator, APHIS on recommendations... points at which cattle of the quarantined area of the State in which said station is located may...

  6. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  7. Crew factors in the design of the Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.

    1987-01-01

    The designing of Space Shuttle modules and equipment in order to provide a stimulating and efficient work atmosphere and a pleasant living environment is examined. The habitation module for the eight crew members is divided into four areas: ceiling, floor, port, and starboard. The module is to consist of crew quarters, a wardroom, a galley, a personal hygiene facility, a health maintenance facility, and stowage areas. There is a correlation between the function of the module and its location; for example the galley will be near the wardroom and the personal hygiene facility near the crew quarters. The designs of the equipment for crew accommodation and of the equipment to be maintained and repaired by the crew will be standarized. The design and functions of the crew and equipment restraints, crew mobility aids, racks to contain equipment, and functional units are described.

  8. Design of a photovoltaic central power station: flat-plate array

    SciTech Connect

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  9. International Space Station EXPRESS Pallet. Ground Demonstration Baseline Design Review

    NASA Technical Reports Server (NTRS)

    Schaffer, James R.

    1995-01-01

    This publication is comprised of the viewgraphs from the presentations of the EXPRESS Pallet Baseline Design Review meeting held July 20, 1995. Individual presentations addressed general requirements and objectives; mechanical, electrical, and data systems; software; operations and KSC (Kennedy Space Center) integration; payload candidates; thermal considerations; ground vs. flight demo; and recommended actions.

  10. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-07-01

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  11. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2004-01-01

    During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  12. Design and experiment study of compact circular-rectangular waveguide mode converter

    NASA Astrophysics Data System (ADS)

    Zhao, Xuhao; Yuan, Chengwei; Zhang, Qiang; Zhao, Lishan

    2016-07-01

    A compact mode converter that transforms TM01 circular waveguide mode to TE10 rectangular waveguide mode is investigated. It consists of a circular waveguide with a short circuit terminal and a rectangular waveguide which is perpendicular to the circular waveguide. Simulation results show that conversion efficiency of the mode converter is about 99.8% at central frequency of 1.75 GHz, and the total return loss is approximately -30 dB. The experimental results are well consistent with the computer simulation, which demonstrates the feasibility and high power handling capacity of the mode converter.

  13. From the nurses' station to the health team hub: how can design promote interprofessional collaboration?

    PubMed

    Gum, Lyn Frances; Prideaux, David; Sweet, Linda; Greenhill, Jennene

    2012-01-01

    Interprofessional practice implies that health professionals are able to contribute patient care in a collaborative environment. In this paper, it is argued that in a hospital the nurses' station is a form of symbolic power. The term could be reframed as a "health team hub," which fosters a place for communication and interprofessional working. Studies have found that design of the Nurses' Station can impact on the walking distance of hospital staff, privacy for patients and staff, jeopardize patient confidentiality and access to resources. However, no studies have explored the implications of nurses' station design on interprofessional practice. A multi-site collective case study of three rural hospitals in South Australia explored the collaborative working culture of each hospital. Of the cultural concepts being studied, the physical design of nurses' stations and the general physical environment were found to have a major influence on an effective collaborative practice. Communication barriers were related to poor design, lack of space, frequent interruptions and a lack of privacy; the name "nurses' station" denotes the space as the primary domain of nurses rather than a workspace for the healthcare team. Immersive work spaces could encourage all members of the healthcare team to communicate more readily with one another to promote interprofessional collaboration. PMID:22233364

  14. Design and Performance of the Acts Gigabit Satellite Network High Data-Rate Ground Station

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Kearney, Brian

    1995-01-01

    The ACTS High Data-Rate Ground stations were built to support the ACTS Gigabit Satellite Network (GSN). The ACTS GSN was designed to provide fiber-compatible SONET service to remote nodes and networks through a wideband satellite system. The ACTS satellite is unique in its extremely wide bandwidth, and electronically controlled spot beam antennas. This paper discusses the requirements, design and performance of the RF section of the ACTS High Data-Rate Ground Stations and constituent hardware. The ACTS transponder systems incorporate highly nonlinear hard limiting. This introduced a major complexity in to the design and subsequent modification of the ground stations. A discussion of the peculiarities of the A CTS spacecraft transponder system and their impact is included.

  15. Design and operation of a Loran-C time reference station

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1974-01-01

    Some of the practical questions that arise when one decides to use Loran-C in a time reference system are explored. An extensive effort is made to provide basic, practical information on establishing and operating a reference station. Four areas were covered: (1) the design, configuration and operational concepts which should be considered prior to establishing and operating a reference station using Loran-C, (2) the options and tradeoffs available regarding capabilities, cost, size, versatility, ease of operation, etc., that are available to the designer, (3) what measurements are made, how they are made and what they mean, and (4) the experience the U.S. Naval Observatory Time Service Division has had in the design and operation of such stations.

  16. Design, processing, and testing of lsi arrays for space station

    NASA Technical Reports Server (NTRS)

    Lile, W. R.; Hollingsworth, R. J.

    1972-01-01

    The design of a MOS 256-bit Random Access Memory (RAM) is discussed. Technological achievements comprise computer simulations that accurately predict performance; aluminum-gate COS/MOS devices including a 256-bit RAM with current sensing; and a silicon-gate process that is being used in the construction of a 256-bit RAM with voltage sensing. The Si-gate process increases speed by reducing the overlap capacitance between gate and source-drain, thus reducing the crossover capacitance and allowing shorter interconnections. The design of a Si-gate RAM, which is pin-for-pin compatible with an RCA bulk silicon COS/MOS memory (type TA 5974), is discussed in full. The Integrated Circuit Tester (ICT) is limited to dc evaluation, but the diagnostics and data collecting are under computer control. The Silicon-on-Sapphire Memory Evaluator (SOS-ME, previously called SOS Memory Exerciser) measures power supply drain and performs a minimum number of tests to establish operation of the memory devices. The Macrodata MD-100 is a microprogrammable tester which has capabilities of extensive testing at speeds up to 5 MHz. Beam-lead technology was successfully integrated with SOS technology to make a simple device with beam leads. This device and the scribing are discussed.

  17. Conceptual design and integration of a Space Station resistojet propulsion assembly

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1987-01-01

    The resistojet propulsion module is designed as a simple, long life, low risk system offering operational flexibility to the space station program. It can dispose of a wide variety of typical space station waste fluids by using them as propellants for orbital maintenance. A high temperature mode offers relatively high specific impulse with long life while a low temperature mode can propulsively dispose of mixtures that contain oxygen or hydrocarbons without reducing thruster life or generating particulates in the plume. A low duty cycle and a plume that is confined to a small aft region minimizes the impacts on the users. Simple interfaces with other space station systems facilitate integration. It is concluded that there are no major obstacles and many advantages to developing, installing, and operating a resistojet propulsion module aboard the Initial Operational Capability (IOC) space station.

  18. Conceptual design and integration of a space station resistojet propulsion assembly

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1987-01-01

    The resistojet propulsion module is designed as a simple, long life, low risk system offering operational flexibility to the space station program. It can dispose of a wide variety of typical space station waste fluids by using them as propellants for orbital maintenance. A high temperature mode offers relatively high specific impulse with long life while a low temperature mode can propulsively dispose of mixtures that contain oxygen or hydrocarbons without reducing thruster life or generating particulates in the plume. A low duty cycle and a plume that is confined to a small aft region minimizes the impacts on the users. Simple interfaces with other space station systems facilitate integration. It is concluded that there are no major obstacles and many advantages to developing, installing, and operating a resistojet propulsion module aboard the Initial Operational Capability (IOC) space station.

  19. Analysis, design and implementation of an interleaved three-level PWM DC/DC ZVS converter

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Liu, Chien-Hung

    2016-02-01

    This paper presents a new parallel three-level soft switching pulse-width modulation (PWM) converter. The proposed converter has two circuit cells operated by the interleaved PWM modulation. Thus, the ripple currents at input and output sides are reduced. Each circuit cell has two three-level zero voltage switching circuits sharing the same power switches. Therefore, the current and power rating of the secondary side components are reduced. Current double rectifier topology is selected on the secondary side to decrease output ripple current. The main advantages of the proposed converter are soft switching of power switches, low ripple current on the output side and low-voltage rating of power switches for medium-power applications. Finally, the performance of the proposed converter is verified by experiments with 1 kW prototype circuit.

  20. Space station integrated wall design and penetration damage control

    NASA Technical Reports Server (NTRS)

    Coronado, A. R.; Gibbins, M. N.; Wright, M. A.; Stern, P. H.

    1987-01-01

    A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment.

  1. Advanced ceramic fabric body mounted radiator for Space Station Freedom Phase O design

    SciTech Connect

    Webb, B.J.; Antoniak, Z.I.; Pauley, K.A.

    1990-06-01

    A body mounted radiator concept constructed of advanced ceramic fabric materials for use with the Phase 0 design of Space Station Freedom is described. The radiator is expected to weigh between 1.4 and 3.5 kg/m{sup 2} of single sided radiating surface, use ammonia working fluid, be highly deployable, and exhibit good reliability characteristics. This compares well with the 11.8 kg/m{sup 2} for two sided radiators proposed for the current space station design.

  2. EVA operational guidelines and considerations for use during the Space Station Freedom design review process

    NASA Technical Reports Server (NTRS)

    Trevino, Robert

    1992-01-01

    The EVA hardware interfaces, standards, and considerations are examined, as are guidelines that EVA operations engineer will use when reviewing the design packages from the EVA operational point of view. By utilizing both the EVA and robotics interfaces standards, design requirements, and the EVA operational guidelines and considerations, the Space Station Freedom program design can be more cost effective in the long term and also more compatible and friendly for on-orbit assembly and on-orbit maintenance and repair.

  3. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-04-30

    During the period January 1, 2003--March 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with improvements to both the Willow Island and Albright Generating Station cofiring systems. These improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  4. Design Methodology And Qualification Tests Results For A Highly Integrated And Space Qualified Point Of Load Converter

    NASA Astrophysics Data System (ADS)

    Vassal, Marie-Cecile; Dubus, Patrick; Fiant, Nicolas

    2011-10-01

    3D Plus developed a highly miniaturized and Space qualified Point of Load (POL) Converter to power modern fast digital electronics such as ASICs, FPGAs and Memory devices that require low voltages with a high precision regulation and excellent dynamic performances under large load transients. The POL Converter is hardened by design thanks to specific radiation effects mitigation techniques and space design de-rating rules. It is built with a space qualified 3D System-In-Package (SIP) technology and embeds 113 add-on parts spread over 3 stacked layers. Thanks to the unique 3D Plus technology, the device size is limited to 25 x 26.5 x 10 mm. This paper discuss the converter topology trade-offs and highlight some final design solutions implemented to achieve the best compromise between efficiency, dynamic performance, protection/flexibility and radiation hardening level. The product implementation and its electrical test results are presented. Also, the radiation hardening strategy, the Total Ionizing Dose (TID), Single Event Latch-up (SEL) and Single Event Effect (SEE) test methodology and the results are described. A special focus is done on SEE tests for which the POL Converter was rebuilt with "decap" add-on parts and exposed under the beam for detailed SEE behavior measurements.

  5. Magnetorheological converters

    SciTech Connect

    Zal'tsgendler, E.A.; Kolomentsev, A.V.; Kordonskii, V.I.; Madorskii, L.S.

    1986-04-01

    The authors study the problems of constructing an electrohydraulic converter functioning based on the magnetoheological effect: the magnetorheological throttle (MR throttle). Requirements are listed that must be taken into account in developing the MR throttle. The paper attempts to calculate the flow-rate characteristics of the MR throttle. The rheological equation which describes sufficiently the mechanical properties of the magnetoheological suspensions is presented. The paper examines the calculation of the magnetic inductor for the example of a toroidal core with a gap, which simultaneously functions as the slot throttling channel. The use of the designs described enabled the development of bridge converters, which have a flat amplitude-frequency characteristic in the range 200-250 Hz and which have good energy indicators. Typical experimental logarithmic amplitude-frequency and phase-frequency characteristics of a bridge converter are shown.

  6. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    NASA Technical Reports Server (NTRS)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  7. Preliminary design of a cargo return vehicle for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Vano, Andrew

    1990-09-01

    The design of an unmanned, reusable cargo return vehicle (CRV) incorporated as a class project at the University of Minnesota under NASA auspices is presented. Two configurations are considered, a winged and a biconic with a parafoil advanced recovery system. Three inline liquid rocket boosters would propel the CRV into a low earth orbit with onboard orbital maneuvering system engines used to reach station orbit and dock to the station. The main objective of the courses was to develop the design skills of the students while allowing them to work together in teams with NASA and industry engineers on a specific NASA project. The final conclusion of the study was that the winged CRV was the best vehicle for space station resupply.

  8. Robust H infinity control design for the space station with structured parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Geller, David; Sunkel, John

    1992-01-01

    A robust H-infinity control design methodology and its application to a Space Station attitude and momentum control problem are presented. This new approach incorporates nonlinear multi-parameter variations in the state-space formulation of H-infinity control theory. An application of this robust H-infinity control synthesis technique to the Space Station control problem yields a remarkable result in stability robustness with respect to the moments-of-inertia variation of about 73% in one of the structured uncertainty directions. The performance and stability of this new robust H-infinity controller for the Space Station are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique.

  9. Robust H(infinity) control design for the Space Station with structured parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Geller, David; Sunkel, John

    1990-01-01

    A robust H(infinity) control design methodology and its application to a Space Station attitude and momentum control problem are presented. This new approach incorporates nonlinear multiparameter variations in the state-space formulation of H(infinity) control theory. An application of this robust control synthesis technique tothe Space Station control problem yields a remarkable result in stability robustness with respect to the moments-of-inertia variation of about 73 percent in one of the structured uncertainty directions. The performance and stability of this new robust H(infinity) controller for the Space Station are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique.

  10. Multifunctional gold nanoparticles for targeted imaging of angiotensin converting enzyme design, characterization, and application

    NASA Astrophysics Data System (ADS)

    Ghann, William Emmanuel

    Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the United States with approximately one in every three death being attributed to these diseases. The overarching problem with heart diseases is that once a person has suffered from an attack, there is a high likelihood of a recurrent attack. According to the American Heart Association, approximately 785,000 Americans per year suffer from heart attacks for the first time and about half of the aforementioned experience an ensuing attack. The second attack is often fatal, and therefore relapse prevention is crucial. One of the possible ways of averting the recurrence of such an attack is through the precise monitoring of the preceding biomarkers or risk indicators. This project encompasses the design, synthesis, characterization, and application of nanoparticle-based contrast agents that can potentially be used in the monitoring of the reemergence of a biomarker expressed after a person has suffered myocardial infarction. The overexpression of this biomarker, angiotensin converting enzyme (ACE), is also associated with development of cardiac and pulmonary fibrosis. To this end, highly concentrated gold nanoparticles have been synthesized and conjugated to Lisinopril, an ACE inhibitor, for the molecular imaging of ACE using X-ray CT. Various stabilities studies were conducted to verify the resistance of this gold nanoprobe in biological relevant media. They have also been successfully used in X-ray computed tomography to visualize tissue ACE and thus render them potentially versatile in the monitoring of cardiovascular diseases. An MRI tag was also conjugated to the gold nanoparticle affording the opportunity for bimodal imaging of ACE. This contrast agent could further be used for the quantification using K-edge CT of the relationship between the amount of the said marker and its role in predicting the possibility of a successive heart attack. The prepared nanoparticle-based contrast

  11. Concept design, modeling and station-keeping attitude control of an earth observation platform

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2012-11-01

    The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.

  12. Design considerations for a thermophotovoltaic energy converter using heat pipe radiators

    SciTech Connect

    Ashcroft, J.; DePoy, D.

    1997-06-01

    The purpose of this paper is to discuss concepts for using high temperature heat pipes to transport energy from a heat source to a thermophotovoltaic (TPV) converter. Within the converter, the condenser portion of each heat pipe acts as a photon radiator, providing a radiant flux to adjacent TPV cells, which in turn create electricity. Using heat pipes in this way could help to increase the power output and the power density of TPV systems. TPV systems with radiator temperatures in the range of 1,500 K are expected to produce as much as 3.6 W/cm{sup 3} of heat exchanger volume at an efficiency of 20% or greater. Four different arrangements of heat pipe-TPV energy converters are considered. Performance and sizing calculations for each of the concepts are presented. Finally, concerns with this concept and issues which remain to be considered are discussed.

  13. Design, definition, and manufacture participation for the SAR Electronic Power Converter (EPC) breadboard

    NASA Astrophysics Data System (ADS)

    Klaassens, J. B.; Schwarz, F. C.

    1983-05-01

    A principle of fine regulation applied to the high voltage line supplying a pulsed load (radar tube) is presented. The high voltage power supply system is a combination of a single series resonant converter and a capacitor multiplier in the output stages. The electronic power conversion system uses a Schwarz converter employing a series resonant circuit for the transfer and control of power. An internal frequency of 35 kHz enhances the power density of the converter model. This model provides 16 kV for the helix-cathode circuit of a klystron with an accuracy of 0.5 per mill and 11 kV for the collector-cathode circuit with an accuracy of 5%. Experiments suggest that the improved power supply should alleviate problems associated with high voltage transformers and ensure the high accuracy required for the voltage control for the helix-cathode circuit to avoid distortion in the returning signal of a spaceborne radar system.

  14. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  15. Implications of Privacy Needs and Interpersonal Distancing Mechanisms for Space Station Design

    NASA Technical Reports Server (NTRS)

    Harrison, A. A.; Sommer, R.; Struthers, N.; Hoyt, K.

    1986-01-01

    The literature on privacy needs, personal space, interpersonal distancing, and crowding is reveiwed with special reference to spaceflight and spaceflight analogous conditions. A quantitative model is proposed for understanding privacy, interpersonal distancing, and performance. The implications for space station design is described.

  16. 76 FR 40345 - Information on Surplus Land at a Military Installation Designated for Disposal: Naval Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... (the Act). On May 10, 2006, Navy published a Notice in the Federal Register (71 FR 27237 and 27238... Department of the Navy Information on Surplus Land at a Military Installation Designated for Disposal: Naval Station Pascagoula, Mississippi AGENCY: Department of the Navy, DoD. ACTION: Notice. SUMMARY: This...

  17. An investigation of the needs and the design of an orbiting space station with growth capabilities

    NASA Technical Reports Server (NTRS)

    Dossey, J. R.; Trotti, G.

    1977-01-01

    An architectural approach to the evolutionary growth of an orbiting space station from a small manned satellite to a fully independent, self-sustainable space colony facility is presented. Social and environmental factors, ease of transportation via the space shuttle, and structural design are considered.

  18. Natural environment design criteria for the space station program definition phase

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1984-01-01

    The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.

  19. Mechanical design of a low concentration ratio solar array for a space station application

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  20. The space station: Key to living in space. [design concepts for Manned Orbiting Laboratory and Skylab

    NASA Technical Reports Server (NTRS)

    Lord, D. R.

    1973-01-01

    Design and scientific equipment for the Manned Orbiting Laboratory and Skylab are elaborated. Multideck designs accommodate both zero gravity and artificial gravity conditions as well as a core module potentially useful as a planetary mission module for a 12-man crew. Artificial gravity approaches consider assembly rotation and differential spin rates for the various decks. Counterrotation systems are projected to go from a station to a 50-man space base concept.

  1. Truss Climbing Robot for Space Station: Design, Analysis, and Motion Control

    NASA Astrophysics Data System (ADS)

    Chung, Wing Kwong

    The application of space robots has become more popular in performing tasks such as Intra and Extra Vehicular Activities (EVA) in Low Earth Orbit. For EVA, space robots were always designed as a chain-like manipulator with a joint configuration similar to on the earth robotic arm. Based on their joint configuration, they can be classified into two main categories. The first one is the six degrees of freedom (DOF) robotic arm including Shuttle Remote Manipulator System (SRMS), Engineering Test Satellite No. 7 (ETS-VII), the Main Arm (MA) and the Small Fine Arm (SFA) of Module Remote Manipulator System (JEMRMS). The other group is the seven-DOF space robotic arm which includes European Robotic Arm (ERA) and Space Station Remote Manipulator System (SSRMS), or Canadarm2. They not only perform manipulation tasks, but also be able to navigate on the exterior of the International Space Station (ISS). In a free floating environment, motions of a space robotic arm cause the attitude change of a space station because of their dynamic coupling effect. Hence, the stabilization of the space station attitude is important to maintain the electrical energy generated by the solar panels and the signal strength for communication. Most of research in this area focuses on the motion control of a space manipulator through the study of Generalized Jacobian Matrix. Little research has been conducted specifically on the design of locomotion mechanism of a space manipulator. This dissertation proposes a novel methodology for the locomotion on a space station which aims to lower the disturbance on a space station. Without modifying the joint configuration of conventional space manipulators, the use of a new gripping mechanism is proposed which combines the advantages of active wheels and conventional grippers. To realize the proposed gripping mechanism, this dissertation also presents the design of a novel frame climbing robot (Frambot) which is equipped with the new gripping mechanism

  2. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    NASA Astrophysics Data System (ADS)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  3. Design, construction and utilization of a space station assembled from 5-meter erectable struts

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.

    1986-01-01

    Presented are the primary characteristics of the 5-meter erectable truss designated for the space station. The relatively large 5-meter truss dimension was chosen to provide a deep beam for high bending stiffness yet provide convenient mounting locations for space shuttle cargo bay size payloads which are 14.5 ft. (4.4 m) in diameter. Truss nodes and quick-attachment erectable joints are described which provide for evolutionary three-dimensional growth and for simple maintenance and repair. A mobile remote manipulator system is described which is provided to assist in station construction and maintenance. A discussion is also presented of the construction of the space station and the associated EVA time.

  4. An intelligent control and virtual display system for evolutionary space station workstation design

    NASA Technical Reports Server (NTRS)

    Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.

    1992-01-01

    Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.

  5. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  6. Design and assembly sequence analysis of option 3 for CETF reference space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Andersen, Gregory C.; Hall, John B., Jr.; Allen, Cheryl L.; Scott, A. D., Jr.; So, Kenneth T.

    1987-01-01

    A design and assembly sequence was conducted on one option of the Dual Keel Space Station examined by a NASA Critical Evaluation Task Force to establish viability of several variations of that option. A goal of the study was to produce and analyze technical data to support Task Force decisions to either examine particular Option 3 variations in more depth or eliminate them from further consideration. An analysis of the phasing assembly showed that use of an Expendable Launch Vehicle in conjunction with the Space Transportation System (STS) can accelerate the buildup of the Station and ease the STS launch rate constraints. The study also showed that use of an Orbital Maneuvering Vehicle on the first flight can significantly benefit Station assembly and, by performing Station subsystem functions, can alleviate the need for operational control and reboost systems during the early flights. In addition to launch and assembly sequencing, the study assessed stability and control, and analyzed node-packaging options and the effects of keel removal on the structural dynamics of the Station. Results of these analyses are presented and discussed.

  7. Spaceborne computer executive routine functional design specification. Volume 2: Computer executive design for space station/base

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Fitzpatrick, W. S.

    1971-01-01

    The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.

  8. Impacting Space Station Freedom design with operations and safety requirements - An availability process

    NASA Technical Reports Server (NTRS)

    Garegnani, Jerry J.; Schondorf, Steven Y.

    1990-01-01

    The unusually long mission duration of Space Station Freedom leads to operations costs that have significant impacts on life-cycle cost relative to previous manned space programs. Maintaining an affordable program requires that operations costs be considered throughout the design process. An appropriate means of impacting the design with operations concerns is to specify requirements that ensure operational effectiveness when implemented. The Space Station Freedom Program has developed a process defining such requirements. It focuses on specifying functional profiles and allocating resources such that designers gain a better understanding of the operational envelope in which their systems must perform. This paper examines the details of the process, where it came from, and why it is effective.

  9. Multi-stage design of an optimal momentum management controller for the Space Station

    NASA Technical Reports Server (NTRS)

    Sunkel, J. W.; Shieh, L. S.

    1990-01-01

    This paper presents a multistage design scheme for determining an optimal control-moment-gyro momentum-management and attitude-control system for the Space Station Freedom. The Space Station equations of motion are linearized and block-decomposed into two block-decoupled subsystems using the matrix-sign algorithm. A sequential procedure is utilized for designing a linear-quadratic regulator for each subsystem, which optimally places the eigenvalues of the closed-loop subsystem in the region of an open sector, bounded by lines inclined at + or - pi/2k (for k = 2 or 3) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the s-plane. Simulation results are presented to compare the resultant designs.

  10. Bio-Medical Factors and External Hazards in Space Station Design

    NASA Technical Reports Server (NTRS)

    Olling, E. H.

    1966-01-01

    The design of space-station configurations is influenced by many factors. Probably the most demanding and critical are the biomedical and external hazards requirements imposed to provide the proper environment and supporting facilities for the crew and the adequate protective measures necessary to provide a configuration'in which the crew can live and work efficiently in relative comfort and safety. The major biomedical factors, such as physiology, psychology, nutrition, personal hygiene, waste management, and recreation, all impose their own peculiar requirements. The commonality and integration of these requirements demand the utmost ingenuity and inventiveness be exercised in order to achieve effective configuration compliance. The relationship of biomedical factors for the internal space-station environment will be explored with respect to internal atmospheric constituency, atmospheric pressure levels, oxygen positive pressure, temperature, humidity, CO2 concentration, and atmospheric contamination. The range of these various parameters and the recommended levels for design use will be analyzed. Requirements and criteria for specific problem areas such as zero and artificial gravity and crew private quarters will be reviewed and the impact on the design of representative solutions will be presented. In the areas of external hazards, the impact of factors such as meteoroids, radiation, vacuum, temperature extremes, and cycling on station design will be evaluated. Considerations with respect to operational effectiveness and crew safety will be discussed. The impact of such factors on spacecraft design to achieve acceptable launch and reentry g levels, crew rotation intervals, etc., will be reviewed.

  11. Design of a compact mode and polarization converter in three-dimensional photonic crystals.

    PubMed

    Wang, Jian; Qi, Minghao

    2012-08-27

    A mode and polarization converter is proposed and optimized for 3D photonic integrated circuits based on photonic crystals (PhCs). The device converts the index-guided TE mode of a W1 solid-core (SC) waveguide to the band-gap-guided TM mode of a W1 hollow-core (HC) waveguide in 3D PhCs, and vice versa. The conversion is achieved based on contra-directional mode coupling. For a 25 μm-long device, simulations show that the power conversion efficiency is over 98% across a wavelength range of 16 nm centered at 1550 nm, whereas the reflection remains below -20 dB. The polarization extinction ratio of the conversion is in principle infinitely high because both W1 waveguides operate in the single-mode regimes in this wavelength range. PMID:23037086

  12. Design and implementation of a novel synchronous-rectifier forward converter with improved performance

    NASA Astrophysics Data System (ADS)

    Liu, Tian-Hua; Wang, Kuan-Sheng

    2010-08-01

    This article proposes two new methods for improving the performance of a synchronous-rectifier forward converter. A synchronous-rectifier converter produces a reverse current in the inductor due to the bidirectional characteristic of MOSFETs while the converter is turned off. This reverse current causes voltage spikes which may damage the power devices. This article proposes two methods to reduce the voltage spikes: method 1 and method 2. Method 1 uses the enable signal detection method. An enable signal is generated from the remote control of the system when the main power is turned off. Then, the proposed circuit of method 1 turns off the free-wheeling switch before the reverse current is produced. As a result, the voltage spike can be avoided. Method 2 uses a transformer winding to detect the turn-off time of the input power. Then, the circuit turns off the free-wheeling switch to break the resonant loop and end the reverse current. The cost analysis of method 1 and 2 is included. In addition, several experimental results are provided to validate the correctness and feasibility of the theoretical analysis.

  13. Progress in design of advanced LIDT station in HiLASE project

    NASA Astrophysics Data System (ADS)

    Vanda, Jan

    2015-01-01

    Laser induced damage threshold is a key component characteristic while building high-performance laser system, establishing maximum achievable energy and consequently average power of the laser. Reliable and stable laser sources are desirable both in academic and industrial areas. To assure these quality criteria, involved components have to be tested and proved at certain values. The goal of HiLASE project is to develop and provide such highly progressive laser systems, and consequently advance in related areas, as high-energy laser components. Together with laser system is developed LIDT station to provide necessary background for components reliability and later application potential for final beamlines. Such station, however, has to meet certain criteria as well, to ensure reliability of conducted measurements and credibility of obtained results. ISO 21254 standard series describes methods of damage detection and principles of ensuring reliability of damage threshold measurement. Nevertheless, unique nature of HiLASE lasers allows new approach, which makes design of proper measuring station state-of-the-art challenge. Following paper reports recent progress in design of laser induced damage threshold station developed within HiLASE project.

  14. Converting a C-130 Hercules into a Compound Helicopter: A Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Kottapalli, Anjaney P.; Harris, Franklin D.

    2010-01-01

    This study presents the performance and weight changes for a Compound C-130 as compared to the Baseline C-130H Hercules, using NDARC as the primary analysis tool. First, the C-130H was modeled within NDARC, from which performance at various conditions and a parametric weight statement were generated. Then, the C-130H NDARC file was modified to represent the Compound C-130, which was then put through the same performance analysis as the C-130H. A parametric weight statement was also calculated for the Compound C-130, which allowed for comparison to the C-130H. As part of the modeling of the Compound C-130, a Rotor Design Spreadsheet was created that would allow the direct calculation of the weight of the main rotors being added. Using composite materials led to considerable weight savings for both the rotor system and the hub weights. These weight savings are reflected in the NDARC Technology Factors which were determined to be 0.71 and 0.5 for the rotor blades and the hub/hinge system, respectively. Such Technology Factors suggest that using composites for other components could drastically lighten the Operating Empty Weight of the aircraft. The weight statements show the weights for each of the components on each aircraft. It is quite evident that the Compound C-130 has a higher Operating Empty Weight due to the addition of the two main rotors and a drive system to connect each engine group on the wing tips. Upon further analysis, the main weight driver is the drive system. While the main rotor/hub/hinge weight increase is to be expected, the weight increase due to the transmission drive and gear boxes are cause for concern. Unless a method can be found of reducing the weight of the drive system, the weight penalty makes the Compound a C-130 an inefficient aircraft in terms of payload/fuel capacity. Possible solutions are either off-loading some of the power requirements through the drive system or using composite materials in the construction of the drive system

  15. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  16. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  17. Computer-aided designing of automatic process control systems for thermal power stations

    NASA Astrophysics Data System (ADS)

    Trofimov, A. V.

    2009-10-01

    The structure of modern microprocessor systems for automated control of technological processes at cogeneration stations is considered. Methods for computer-aided designing of the lower (sensors and actuators) and upper (cabinets of computerized automation equipment) levels of an automated process control system are proposed. The composition of project documents, the structures of a project database and database of a computer-aided design system, and the way they interact with one another in the course of developing the project of an automated process control system are described. Elements of the interface between a design engineer and computer program are shown.

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-10-01

    During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  19. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    NASA Astrophysics Data System (ADS)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  20. Issues in the design of an executive controller shell for Space Station automation

    NASA Technical Reports Server (NTRS)

    Erickson, William K.; Cheeseman, Peter C.

    1986-01-01

    A major goal of NASA's Systems Autonomy Demonstration Project is to focus research in artificial intelligence, human factors, and dynamic control systems in support of Space Station automation. Another goal is to demonstrate the use of these technologies in real space systems, for both round-based mission support and on-board operations. The design, construction, and evaluation of an intelligent autonomous system shell is recognized as an important part of the Systems Autonomy research program. His paper describes autonomous systems and executive controllers, outlines how these intelligent systems can be utilized within the Space Station, and discusses a number of key design issues that have been raised during some preliminary work to develop an autonomous executive controller shell at NASA Ames Research Center.

  1. U.S. Space Station Freedom Supplemental Reboost System (SRS) design and operational impacts

    NASA Astrophysics Data System (ADS)

    Winters, Brian A.; Winters, Donna M.

    1992-07-01

    Current designs of the U.S. Space Station Freedom Propulsion System require the capability to perform reboost, attitude control, and other orbit adjustment maneuvers as part of normal operations. In order to reduce the quantity of hydrazine consumed by the Primary Propulsion System, the propulsion system includes the capability to propulsively dispose waste gases that are generated by various station systems and experiments. The impulses generated by the Supplemental Reboost System (SRS) are used to offset orbital decay due to atmospheric drag and reduce propellant requirements. This paper presents the designs of the SRS including schematics of the waste gas collection architecture, various system and component characteristics, and methods of system operation. Estimates of waste gas quantities, propellant savings, and operational altitude impacts are provided.

  2. Proposed CTV design reference missions in support of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Saucillo, Rudy J.; Cirillo, William M.

    1991-01-01

    Use of design reference missions (DRM's) for the cargo transfer vehicle (CTV) in support of Space Station Freedom (SSF) can provide a common baseline for the design and assessment of CTV systems and mission operations. These DRM's may also provide baseline operations scenarios for integrated CTV, Shuttle, and SSF operations. Proposed DRM's for CTV, SSF, and Shuttle operations envisioned during the early post-PMC time frame and continuing through mature, SSF evolutionary operations are described. These proposed DRM's are outlines for detailed mission definition; by treating these DRM's as top-level input for mission design studies, a range of parametric studies for systems/operations may be performed. Shuttle flight design experience, particularly rendezvous flight design, provides an excellent basis for DRM operations studies. To begin analysis of the DRM's, shuttle trajectory design tools were used in single case analysis to define CTV performance requirements. A summary of these results is presented.

  3. Proposed CTV design reference missions in support of Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Saucillo, Rudy J.; Cirillo, William M.

    Use of design reference missions (DRM's) for the cargo transfer vehicle (CTV) in support of Space Station Freedom (SSF) can provide a common baseline for the design and assessment of CTV systems and mission operations. These DRM's may also provide baseline operations scenarios for integrated CTV, Shuttle, and SSF operations. Proposed DRM's for CTV, SSF, and Shuttle operations envisioned during the early post-PMC time frame and continuing through mature, SSF evolutionary operations are described. These proposed DRM's are outlines for detailed mission definition; by treating these DRM's as top-level input for mission design studies, a range of parametric studies for systems/operations may be performed. Shuttle flight design experience, particularly rendezvous flight design, provides an excellent basis for DRM operations studies. To begin analysis of the DRM's, shuttle trajectory design tools were used in single case analysis to define CTV performance requirements. A summary of these results is presented.

  4. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  5. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.

    PubMed

    McCain, H G; Andary, J F; Hewitt, D R; Haley, D C

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper. PMID:11540062

  6. Design and development of a Space Station proximity operations research and development mockup

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1986-01-01

    Proximity operations (Prox-Ops) on-orbit refers to all activities taking place within one km of the Space Station. Designing a Prox-Ops control station calls for a comprehensive systems approach which takes into account structural constraints, orbital dynamics including approach/departure flight paths, myriad human factors and other topics. This paper describes a reconfigurable full-scale mock-up of a Prox-Ops station constructed at Ames incorporating an array of windows (with dynamic star field, target vehicle(s), and head-up symbology), head-down perspective display of manned and unmanned vehicles, voice- actuated 'electronic checklist', computer-generated voice system, expert system (to help diagnose subsystem malfunctions), and other displays and controls. The facility is used for demonstrations of selected Prox-Ops approach scenarios, human factors research (work-load assessment, determining external vision envelope requirements, head-down and head-up symbology design, voice synthesis and recognition research, etc.) and development of engineering design guidelines for future module interiors.

  7. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  8. Design and testing of the Space Station Freedom Propellant Tank Assembly

    NASA Technical Reports Server (NTRS)

    Dudley, D. D.; Thonet, T. A.; Goforth, A. M.

    1992-01-01

    Propellant storage and management functions for the Propulsion Module of the U.S. Space Station Freedom are provided by the Propellant Tank Assembly (PTA). The PTA consists of a surface-tension type propellant acquisition device contained within a welded titanium pressure vessel. The PTA design concept was selected with high reliability and low program risk as primary goals in order to meet stringent NASA structural, expulsion, fracture control and reliability requirements. The PTA design makes use of Shuttle Orbital Maneuvering System and Peacekeeper Propellant Storage Assembly design and analysis techniques. This paper summarizes the PTA design solution and discusses the underlying detailed analyses. In addition, design verification and qualification test activities are discussed.

  9. A novel design project for space solar power station (SSPS-OMEGA)

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Yiqun; Duan, Baoyan; Wang, Dongxu; Li, Xun

    2016-04-01

    The space solar power station (SSPS) capable of providing earth with primary power has been researched for 50 years. The SSPS is a tremendous design involving optics, mechanics, electromagnetism, thermology, control, and other disciplines. This paper presents a novel design project for SSPS named OMEGA. The space segment of the proposed GEO-based SSPS is composed of four main parts, such as spherical solar power collector, hyperboloid photovoltaic (PV) cell array, power management and distribution (PMAD) and microwave transmitting antenna. Principle of optics, structure configuration, wired and wireless power transmissions are presented.

  10. Design of a delay-locked-loop-based time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Zhaoxin, Ma; Xuefei, Bai; Lu, Huang

    2013-09-01

    A time-to-digital converter (TDC) based on a reset-free and anti-harmonic delay-locked loop (DLL) circuit for wireless positioning systems is discussed and described. The DLL that generates 32-phase clocks and a cycle period detector is employed to avoid “false locking". Driven by multiphase clocks, an encoder detects pulses and outputs the phase of the clock when the pulse arrives. The proposed TDC was implemented in SMIC 0.18 μm CMOS technology, and its core area occupies 0.7 × 0.55 mm2. The reference frequency ranges from 20 to 150 MHz. An LSB resolution of 521 ps can be achieved by using a reference clock of 60 MHz and the DNL is less than ±0.75 LSB. It dissipates 31.5 mW at 1.8 V supply voltage.

  11. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M. C.; Amato, F.; Alastuey, A.; Querol, X.; Gibbons, W.

    2014-08-01

    A high resolution air quality monitoring campaign (PM, CO2 and CO) was conducted on differently designed station platforms in the Barcelona subway system under: (a) normal forced tunnel ventilation, and (b) with daytime tunnel ventilation systems shut down. PM concentrations are highly variable (6-128 μgPM1 m-3, 16-314 μgPM3 m-3, and 33-332 μgPM10 m-3, 15-min averages) depending on ventilation conditions and station design. Narrow platforms served by single-track tunnels are heavily dependent on forced tunnel ventilation and cannot rely on the train piston effect alone to reduce platform PM concentrations. In contrast PM levels in stations with spacious double-track tunnels are not greatly affected when tunnel ventilation is switched off, offering the possibility of significant energy savings without damaging air quality. Sampling at different positions along the platform reveals considerable lateral variation, with the greatest accumulation of particulates occurring at one end of the platform. Passenger accesses can dilute PM concentrations by introducing cleaner outside air, although lateral down-platform accesses are less effective than those positioned at the train entry point. CO concentrations on the platform are very low (≤1 ppm) and probably controlled by ingress of traffic-contaminated street-level air. CO2 averages range from 371 to 569 ppm, changing during the build-up and exchange of passengers with each passing train.

  12. Implications of privacy needs and interpersonal distancing mechanisms for space station design

    NASA Technical Reports Server (NTRS)

    Harrison, Albert A.; Sommer, Robert; Struthers, Nancy; Hoyt, Kathleen

    1988-01-01

    Isolation, confinement, and the characteristics of microgravity will accentuate the need for privacy in the proposed NASA space station, yet limit the mechanism available for achieving it. This study proposes a quantitative model for understanding privacy, interpersonal distancing, and performance, and discusses the practical implications for Space Station design. A review of the relevant literature provided the basis for a database, definitions of physical and psychological distancing, loneliness, and crowding, and a quantitative model of situational privacy. The model defines situational privacy (the match between environment and task), and focuses on interpersonal contact along visual, auditory, olfactory, and tactile dimensions. It involves summing across pairs of crew members, contact dimensions, and time, yet also permits separate analyses of subsets of crew members and contact dimensions. The study concludes that performance will benefit when the type and level of contact afforded by the environment align with that required by the task. The key to achieving this is to design a flexible, definable, and redefinable interior environment that provides occupants with a wide array of options to meet their needs for solitude, limited social interaction, and open group activity. The report presents 49 recommendations in five categories to promote a wide range of privacy options despite the space station's volumetric limitations.

  13. Design and early development of a UAV terminal and a ground station for laser communications

    NASA Astrophysics Data System (ADS)

    Carrasco-Casado, Alberto; Vergaz, Ricardo; Sánchez Pena, José M.

    2011-11-01

    A free-space laser communication system has been designed and partially developed as an alternative to standard RF links from UAV to ground stations. This project belongs to the SINTONIA program (acronym in Spanish for low environmental-impact unmanned systems), led by BR&TE (Boeing Research and Technology Europe) with the purpose of boosting Spanish UAV technology. A MEMS-based modulating retroreflector has been proposed as a communication terminal onboard the UAV, allowing both the laser transmitter and the acquisition, tracking and pointing subsystems to be eliminated. This results in an important reduction of power, size and weight, moving the burden to the ground station. In the ground station, the ATP subsystem is based on a GPS-aided two-axis gimbal for tracking and coarse pointing, and a fast steering mirror for fine pointing. A beacon-based system has been designed, taking advantage of the retroreflector optical principle, in order to determine the position of the UAV in real-time. The system manages the laser power in an optimal way, based on a distance-dependent beam-divergence control and by creating two different optical paths within the same physical path using different states of polarization.

  14. Bio-Medical Factors and External Hazards in Space Station Design

    NASA Technical Reports Server (NTRS)

    Olling, Edward H.

    1966-01-01

    The design of space-station configurations is influenced by many factors, Probably the most demanding and critical are the biomedical and external hazards requirements imposed to provide the proper environment and supporting facilities for the crew and the adequate protective measures necessary to provide a configuration in which the crew can live and work efficiently in relative comfort and safety. The major biomedical factors, such as physiology, psychology, nutrition, personal hygiene, waste management, and recreation, all impose their own peculiar requirements. The commonality and integration of these requirements demand the utmost ingenuity and inventiveness be exercised in order to achieve effective configuration compliance. The relationship of biomedical factors for the internal space-station environment will be explored with respect to internal atmospheric constituency, atmospheric pressure levels, oxygen positive pressure, temperature, humidity, CO2 concentration, and atmospheric contamination. The range of these various parameters and the recommended levels for design use will be analyzed. Requirements and criteria for specific problem areas such as zero and artificial gravity and crew private quarters will be reviewed and the impact on the design of representative solutions will be presented. In the areas of external hazards, the impact of factors such as meteoroids, radiation, vacuum, temperature extremes, and cycling on station design will be evaluated. Considerations with respect to operational effectiveness and crew safety will be discussed. The impact of such factors on spacecraft design to achieve acceptable launch and reentry g levels, crew rotation intervals, etc., will be reviewed. Examples of configurations, subsystems, and internal a arrangement and installations to comply with such biomedical factor requirements will ber presented. The effects of solutions to certain biomedical factors on configuration weight, operational convenience, and

  15. Analysis and design of a 10 to 30 kW grid-connected solar power system for the JPL fire station and first aid station

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1982-01-01

    The design and performance of a modestly sized utility-connected power conditioning system and its supporting photovoltaic collector are described and estimated. Utility preparations and guidelines to conform with the output of a small generating station with that of a large power network are examined.

  16. Design and Operation of a 9-bit Single-flux-quantum Pulse-frequency Modulation Digital-to-analog Converter

    NASA Astrophysics Data System (ADS)

    Mizugaki, Yoshinao; Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki

    We designed and operated a 9-bit single-flux-quantum (SFQ) digital-to-analog converter (DAC). SFQ pulse-frequency modulation (PFM) was employed for generation of variable quantum output voltage, where a 9-bit variable pulse number multiplier and a 100-fold voltage multiplier were the key components. Test chips were fabricated using a Nb Josephson integration technology. Arbitrary voltage waveforms were synthesized with the maximum voltage of 2.54 mV. For ac voltage standard applications, relationships between the DAC resolution and the synthesized waveform frequency are discussed.

  17. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  18. Preliminary analysis and design optimization of the short spacer truss of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Gendy, A. S.; Patnaik, S. N.; Hopkins, D. A.; Berke, L.

    1993-01-01

    The analysis, dynamic simulation, and design optimization of the short spacer truss of the Space Station Freedom are presented in this report. The short spacer truss will be positioned between the integrated equipment assembly (IEA) and another truss, called the long spacer truss, in the Space Station Freedom. During its launch in the Space Shuttle, the truss will be subjected to considerable in-span distributed inertia loads due to shuttle accelerations. The short spacer truss, therefore, has been modeled as a space frame to account for flexural response. Several parameters have been assumed, since the design specifications are in the process of development; hence the results presented should be considered preliminary. However, the automated analysis and design capabilities that have been developed can readily be used to generate an optimum design of the short spacer truss once the actual specifications have been determined. This report includes static and dynamic analyses of the short spacer truss, which have been obtained with the linear elastic code LE-HOST (in these analyses, LE-HOST data files have been automated to facilitate their future use for different design specifications of the short spacer truss); the dynamic animation of the short spacer truss, which has been carried out by using the results of the dynamic analysis and a post-processing feature of the modeling code PATRAN; and the optimum-weight design of the spacer truss, which was obtained under prescribed stress, displacement, and frequency constraints by using the design code COMETBOARDS. Examination of the analysis and design results revealed that the design could be improved if the configuration of the short spacer truss were modified to a certain extent. A modified configuration, which may simplify fabrication, has been suggested. The performance of this configuration has been evaluated and was found to be satisfactory under both static and dynamic conditions.

  19. Two-dimensional phase unwrapping to help characterize an electromagnetic beam for quasi-optical mode converter design.

    PubMed

    Perkins, Michael P; Vernon, Ronald J

    2008-12-10

    An improved two-dimensional phase unwrapping procedure is discussed that uses a weighted least-squares algorithm, a congruence operation, and a filter to unwrap the phase distribution of an electromagnetic beam. These improvements make possible several advances for mirror designs used in gyrotron quasi-optical mode converters. The improved phase unwrapping procedure is demonstrated by applying it to a measured beam and a simulated beam that are used to design mirrors. The unwrapping procedure produces a smooth unwrapped phase that does not change the characteristics of the beam. The smooth unwrapped phase distribution is also used to find an estimate for the wavenumber vector distribution that is needed to design the mirrors. PMID:19079470

  20. Design and development of a microarray processing station (MPS) for automated miniaturized immunoassays.

    PubMed

    Pla-Roca, Mateu; Altay, Gizem; Giralt, Xavier; Casals, Alícia; Samitier, Josep

    2016-08-01

    Here we describe the design and evaluation of a fluidic device for the automatic processing of microarrays, called microarray processing station or MPS. The microarray processing station once installed on a commercial microarrayer allows automating the washing, and drying steps, which are often performed manually. The substrate where the assay occurs remains on place during the microarray printing, incubation and processing steps, therefore the addressing of nL volumes of the distinct immunoassay reagents such as capture and detection antibodies and samples can be performed on the same coordinate of the substrate with a perfect alignment without requiring any additional mechanical or optical re-alignment methods. This allows the performance of independent immunoassays in a single microarray spot. PMID:27405464

  1. System requirements and design features of Space Station Remote Manipulator System mechanisms

    NASA Technical Reports Server (NTRS)

    Kumar, Rajnish; Hayes, Robert

    1991-01-01

    The Space Station Remote Manipulator System (SSRMS) is a long robotic arm for handling large objects/payloads on the International Space Station Freedom. The mechanical components of the SSRMS include seven joints, two latching end effectors (LEEs), and two boom assemblies. The joints and LEEs are complex aerospace mechanisms. The system requirements and design features of these mechanisms are presented. All seven joints of the SSRMS have identical functional performance. The two LEES are identical. This feature allows either end of the SSRMS to be used as tip or base. As compared to the end effector of the Shuttle Remote Manipulator System, the LEE has a latch and umbilical mechanism in addition to the snare and rigidize mechanisms. The latches increase the interface preload and allow large payloads (up to 116,000 Kg) to be handled. The umbilical connectors provide power, data, and video signal transfer capability to/from the SSRMS.

  2. Design of Radio Frequency Link in Automatic Test System for Multimode Mobile Communication Base Station

    NASA Astrophysics Data System (ADS)

    Zhang, Weipeng

    2015-12-01

    A modularized design for the radio frequency (RF) link in automatic test system of multimode mobile communication base station is presented, considering also the characteristics of wireless communication indices and composition of signals of base stations. The test link is divided into general module, time division duplex (TDD) module, module of spurious noise filter, module of downlink intermodulation, module of uplink intermodulation and uplink block module. The composition of modules and link functions are defined, and the interfaces of the general module and the module of spurious noise filter are described. Finally, the estimated gain budget of the test link is presented. It is verified by experiments that the system is reliable and the test efficiency is improved.

  3. Preliminary Design of a Galactic Cosmic Ray Shielding Materials Testbed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.

    2012-01-01

    The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.

  4. AI applications for the Space Station program - technology, design and integration challenges

    SciTech Connect

    Cook, T.M.

    1986-01-01

    Initial and growth configurations of the Space Station strongly suggest that advanced command, control and information management techniques and technologies will be required for both ground and on-board functions. Such advanced technologies are expected to significantly increase crew productivity, reduce long-term support and maintenance costs, and facilitate the transfer of such technologies to the general economy. The area of artificial intelligence offers considerable promise for achieving many of these important national and international goals. This paper addresses some of the most important issues associated with incorporating artificial intelligence into the design of the Space Station, and the integration of such technologies with more traditional automation approaches. Specificially, the following challenges are discussed: (1) technology readiness, (2) function allocation/implementation criteria, (3) knowledge transfer from man to machine (knowledge engineering), and (4) test, verification and validation methods. 6 references.

  5. Preliminary design of a satellite observation system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cabe, Greg (Editor); Gallagher, Chris; Wilson, Brian; Rehfeld, James; Maurer, Alexa; Stern, Dan; Nualart, Jaime; Le, Xuan-Trang

    1992-01-01

    Degobah Satellite Systems (DSS), in cooperation with the University Space Research Association (USRA), NASA - Johnson Space Center (JSC), and the University of Texas, has completed the preliminary design of a satellite system to provide inexpensive on-demand video images of all or any portion of Space Station Freedom (SSF). DSS has narrowed the scope of the project to complement the work done by Mr. Dennis Wells at Johnson Space Center. This three month project has resulted in completion of the preliminary design of AERCAM, the Autonomous Extravehicular Robotic Camera, detailed in this design report. This report begins by providing information on the project background, describing the mission objectives, constraints, and assumptions. Preliminary designs for the primary concept and satellite subsystems are then discussed in detail. Included in the technical portion of the report are detailed descriptions of an advanced imaging system and docking and safing systems that ensure compatibility with the SSF. The report concludes by describing management procedures and project costs.

  6. User's design handbook for a Standardized Control Module (SCM) for DC to DC Converters, volume 2

    NASA Technical Reports Server (NTRS)

    Lee, F. C.

    1980-01-01

    A unified design procedure is presented for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt. All key results and performance indices, for buck, boost, and buck/boost switching regulators which are relevant to SCM design considerations are included to facilitate frequent references.

  7. Considerations for a design and operations knowledge support system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.; Crouse, Kenneth H.; Wechsler, Donald B.; Flaherty, Douglas R.

    1989-01-01

    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF.

  8. Detailed conceptual designs and economic analyses of a reference Photovoltaic Central Power Station

    NASA Astrophysics Data System (ADS)

    Hughes, D. J.; Heller, B. W.; Stephenson, J. E.

    Detailed conceptual designs and economic analyses of a reference 100MWe Photovoltaic Central Power Station (PV CPS) have been completed. Both flat plate dendritic WEB and point focus fresnel concentrator (100X concentration) arrays were used to develop two individual central station reference designs. Design requirements, detailed drawings and system, subsystem and component specifications form the basis for a plant construction cost estimate. The flat plate array PV CPS costs range from $179M to $483M (1982 U.S. Dollars) for array costs ranging from $1/Wp to $3.50/Wp and power conditioning unit (PCU) costs from $.05/Wp to $.50/Wp. Similar costs for the concentrator PV CPS range from $201M to $505M, respectively. Using representative utility financial parameters, in-house economic models, and a plant performance estimate, levelized busbar energy costs (BBEC) are derived for both flat plate and concentrator designs. BBEC range from $.15/kWh to $.41/kWh for the flat plate PV CPS from $.15/kWh to $.37/kWh for the concentrator PV CPS.

  9. Innovative frequency measurement technique used in the design of a single channel frequency to digital converter ASIC

    NASA Astrophysics Data System (ADS)

    Ramalingam, Neranjen; Varadan, Vijay K.; Varadan, Vasundara V.

    1996-09-01

    The frequency to digital converter (FDC) is an application specific integrated circuit. The chip has been designed to handle one input channel but can easily be expanded to handle multiple channels of frequencies. The channel is capable of measuring frequencies from 100 Hz to 100 kHz. The power consumption of the chip is very low. The frequency measurement accuracy is better than 0.1 percent. The conversion rate per channel is 100 samples/second which can be carried too. The chip has a built-in test equipment to verify its operation. It is able to generate frequencies like 8 Mhz, 4Mhz, 2Mhz and 1Mhz which can be fed as optional clock frequencies depending on the accuracy desired. The FDC chip can be interfaced to a 16 bit bus. To meet these stringent specifications of the FDC chip an innovative frequency measurement technique has been devised called the hybrid technique of frequency measurement. The technique proves to be very accurate and it is found that by varying the sampling rate the range of input frequencies over which this accuracy can be achieved also changes. The specifications are particularly strict so that it is possible to use the chip for any military application for which a very reliable operation is demanded. The FDC chip is hence ideal for control and guidance purposes. The chip has wide ranging applications. In conjunction with sensors such as accelerometers it can be used to design smart sensors. The chip can play a vital role in engine controllers and in pressure measurements using vibrating type transducers. Sometimes to isolate transducers, the output is converted to frequency and isolation is achieved using opto-isolators; then by measuring the frequency using this chip this can be converted to digital information.

  10. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-10-01

    During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

  11. Converting a C-130 Hercules into a Compound Helicopter: A Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Kottapalli, Anjaney P.; Harris, Franklin D.

    2012-01-01

    Currently, the US Military and NASA are investigating the feasibility of a Vertical/Short Take Off and Landing (VSTOL) aircraft that can provide invaluable aid in the combat theater and significantly improve the civil transportation system. The nominal military mission requirement calls for a 28-ton payload heavy lift capability while the civilian requirements calls for a 90-passenger, 1000-nm range, airliner, as noted in Reference 1. To aid in these aircraft requirements, the present study examined the conversion of a Lockheed Martin C-130 Hercules into a compound aircraft, which would demonstrate the technology required by a much larger version. The present study examined various configurations and rotor blade designs in order to fulfill the nominal mission described previously. It was shown that the initial design of a 180 ft diameter rotor to lift 155,000 lb was not feasible due to material constraints. A revised design, in which the rotor radius was reduced to 55 ft, met the given constraints but required too much power. The decision was made to move to a twin rotor compound to take advantage of the increased disc area and drop the need for anti torque devices. Following this design shift, a new design point was found where all five constraints were met and the power requirements were deemed reasonable. This twin-rotor design was used in NDARC to provide a complete sizing analysis of the chosen design point.

  12. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  13. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    SciTech Connect

    Carter, R.L. Jr.

    1994-11-07

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS).

  14. Feasibility, Design and Construction of a Small Hydroelectric Power Generation Station as a Student Design Project.

    ERIC Educational Resources Information Center

    Peterson, James N.; Hess, Herbert L.

    An undergraduate capstone engineering design project now provides hydroelectric power to a remote wilderness location. Students investigated the feasibility of designing, building, and installing a 4kW hydroelectric system to satisfy the need for electric power to support the research and teaching functions of Taylor Ranch, a university facility…

  15. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  16. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  17. Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry

    NASA Astrophysics Data System (ADS)

    Lawrence, Gregory W.

    1994-03-01

    The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.

  18. Design tradeoffs for a Space Station solar-Brayton power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.; Staiger, P. J.

    1985-01-01

    Mass, area, and station-keeping propellant needs have been estimated for a typical system. And, although important criteria such as cost, Shuttle packaging, and erection/deployment schemes were not considered, the documented trends should aid in many of the design choices to be made. Effects on system characteristics were examined for: three heat storage salts with melting temperatures from 743 to 1121 K; parabolic and Cassegrainian mirrors; module power levels of 20 and 40 kW; and, alternate pumped-loop, tube-and-fin radiator configurations, with and without micrometeoroid armoring.

  19. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  20. Infrared fiber-optic fire sensors - Concepts and designs for Space Station applications

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.; Porter, Alan R.

    1990-01-01

    Various design configurations used for testing IR fiber-optic (IFO) fire-sensor concepts are presented. Responsibility measurements conducted to select the best concept are reviewed. The results indicate that IFO fire-sensor systems based on distributed fiber sensors are feasible for future aerospace applications. For Space Station Freedom, these systems offer alternative fire detectors for monitoring areas within equipment or stage compartments where the ventilation may be inadequate for proper operation of smoke detectors. They also allow a large number of areas to be monitored by a single central detector unit, which reduces the associated cost and weight.

  1. Infrared fiber-optic fire sensors - Concepts and designs for Space Station applications

    NASA Astrophysics Data System (ADS)

    Tapphorn, Ralph M.; Porter, Alan R.

    1990-02-01

    Various design configurations used for testing IR fiber-optic (IFO) fire-sensor concepts are presented. Responsibility measurements conducted to select the best concept are reviewed. The results indicate that IFO fire-sensor systems based on distributed fiber sensors are feasible for future aerospace applications. For Space Station Freedom, these systems offer alternative fire detectors for monitoring areas within equipment or stage compartments where the ventilation may be inadequate for proper operation of smoke detectors. They also allow a large number of areas to be monitored by a single central detector unit, which reduces the associated cost and weight.

  2. Design of a 12 channel fm microwave receiver. [for satellite ground stations

    NASA Technical Reports Server (NTRS)

    Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.

    1974-01-01

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.

  3. Conceptual design of pointing control systems for space station gimballed payloads

    NASA Technical Reports Server (NTRS)

    Hughes, Robert O.

    1986-01-01

    A conceptual design of the control system for Payload Pointing Systems (PPS) is developed using classic Proportional-Integral-Derivatives (PID) techniques. The major source of system pointing error is due to the disturbance-rich environment of the space station in the form of gimbal baseplate motions. These baseplate vibrations are characterized using Fast Fourier Transform (FFT) techniques. Both time domain and frequency domain dynamic models are developed to assess control system performance. Three basic methods exist for the improvement of PPS pointing performance: increase control system bandwidth, add Image Motion Compensation, and/or reduce (or change) the baseplate disturbance environment.

  4. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1987-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  5. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  6. Design optimization, manufacture and response measurements for fast-neutron radiography converters made of scintillator and wavelength-shifting fibers

    NASA Astrophysics Data System (ADS)

    Li, Hang; Wu, Yang; Cao, Chao; Huo, Heyong; Tang, Bin

    2014-10-01

    In order to improve the image quality of fast neutron radiography, a converter made of scintillator and wavelength-shifting fibers has been developed. The appropriate parameters of the converter such as fibers arrangement, distance between fibers are optimized theoretically, and manufacture of the converter are also optimized. Fast neutron radiography experiments by 14 MeV neutrons are used to test this converter and kinds of traditional converters. The experiments' results matched the calculations. The novel converter's resolution is better than 1 mm and the light output is high.

  7. Conceptual design and analysis of a dynamic scale model of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.

    1994-01-01

    This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.

  8. Design, verification and testing of the International Space Station photovoltaic radiator

    SciTech Connect

    Fleming, M.; Flores, R.; Stoyack, J.

    1997-12-31

    The Photovoltaic Radiator (PVR) is designed to reject the waste heat of the PV power generation and storage system. The requirement has been added to provide heat rejection for the Early External Active Thermal Control System to support the Assured Early Research phase of the International Space Station (ISS) Mission. The new requirement has resulted in the reanalysis and some redesign of the hardware. In addition, the new use of the PVR hardware has resulted in a significantly earlier launch date. This paper describes the PVR design with emphasis on the design changes made to incorporate the new mission requirements. The verification methods are discussed and the results of analysis and testing accomplished to date are summarized. Single panel thermal and modal tests have been conducted. Ambient deployment testing and thermal vacuum deployment/thermal performance tests have also been successfully conducted. Additional testing planned include a repeat of the single panel thermal vacuum test for the silver Teflon coating, a stowed acoustic test, a qualification test of the heater system and an acoustic and modal test of three of the units installed on the Flight 4A launch package. All of this testing must be completed by the end of 1997. Structural and thermal analyses have been conducted for the new design requirements and have resulted in several design changes to the structure and thermal design. Thermal analysis is continuing to determine the final thermal design.

  9. An optical system design that converts a Gaussian to a flattop annular beam

    NASA Astrophysics Data System (ADS)

    Li, Chaochen; Wu, Tengfei; Wang, Yu

    2015-10-01

    Flattop annular beam has been predicted with good character over an increasing application, but the generating of flattop annular beam is rarely mentioned by academic article. In our paper, an optical refractive system, which is designed to achieve flattop annular beam, are proposed. The cone prism is commonly used to get an annular beam, however, the beam intensity distribution is non-uniform. In our design, an additional aspheric lens is placed in front of the cone prism along the optical axis. The lens parameters are theoretically analyzed and well optimized to homogenize the optical field. Furthermore, to lower the requirement of machining accuracy, a pair of aspheric lenses is also designed, which can be used independently to generate flattop annular beam. It combines the function of cone prism and aspheric lens, so as to replace them both. The performance of the implementations has been demonstrated in detail. Simulation result shows that the proposed design is effective and feasible. It is hope that our work would be helpful in related fields. Flattop annular beam, Aspheric lens, Cone prism

  10. Design of a compact high-power neutron source—The EURISOL converter target

    NASA Astrophysics Data System (ADS)

    Samec, K.; Milenković, R. Ž.; Dementjevs, S.; Ashrafi-Nik, M.; Kalt, A.

    2009-07-01

    The EURISOL project, a multi-lateral initiative supported by the EU, aims to develop a facility to achieve high yields of isotopes in radioactive beams and extend the variety of these isotopes towards more exotic types. The neutron source at the heart of the projected facility is designed to generate isotopes by fissioning uranium carbide (UC) targets arranged around a 4 MW neutron source. For reasons of efficiency, it is essential that the neutron source be as compact as possible, to avoid losing neutrons by absorption whilst maximising the escaping neutron flux, thus increasing the number of fissions in the UC targets. The resulting configuration presents a challenge in terms of absorbing heat deposition rates of up to 8 kW/cm3 in the neutron source; it has led to the selection of liquid metal for the target material. The current paper presents the design of a compact high-power liquid-metal neutron source comprising a specially optimised beam window concept. The design is based on two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) numerical simulations for thermal hydraulics and hydraulic aspects, as well as finite-element method (FEM) for assessing thermo-mechanical stability. The resulting optimised design was validated by a dedicated hydraulic test under realistic flow conditions. A full-scale mock-up was built at the Paul Scherrer Institute (PSI) and was tested at the Institute of Physics of the University of Latvia (IPUL).

  11. International Space Station Evolution Data Book. Volume 1; Baseline Design; Revised

    NASA Technical Reports Server (NTRS)

    Jorgensen, Catherine A. (Editor); Antol, Jeffrey (Technical Monitor)

    2000-01-01

    The International Space Station (ISS) will provide an Earth-orbiting facility that will accommodate engineering experiments as well as research in a microgravity environment for life and natural sciences. The ISS will distribute resource utilities and support permanent human habitation for conducting this research and experimentation in a safe and habitable environment. The objectives of the ISS program are to develop a world-class, international orbiting laboratory for conducting high-value scientific research for the benefit of humans on Earth; to provide access to the microgravity environment; to develop the ability to live and work in space for extended periods; and to provide a research test bed for developing advanced technology for human and robotic exploration of space. The current design and development of the ISS has been achieved through the outstanding efforts of many talented engineers, designers, technicians, and support personnel who have dedicated their time and hard work to producing a state-of-the-art Space Station. Despite these efforts, the current design of the ISS has limitations that have resulted from cost and technology issues. Regardless, the ISS must evolve during its operational lifetime to respond to changing user needs and long-term national and international goals. As technologies develop and user needs change, the ISS will be modified to meet these demands. The design and development of these modifications should begin now to prevent a significant lapse in time between the baseline design and the realization of future opportunities. For this effort to begin, an understanding of the baseline systems and current available opportunities for utilization needs to be achieved. Volume I of this document provides the consolidated overview of the ISS baseline systems. It also provides information on the current facilities available for pressurized and unpressurized payloads. Information on current plans for crew availability and utilization

  12. Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope

    SciTech Connect

    Atwood, W.B.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De Angelis, A.; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giannitrapani, R.; Giglietto, N.; /UC, Santa Cruz /INFN, Pisa /Pisa U. /INFN, Trieste /INFN, Rome /Rome U.,Tor Vergata /SLAC /INFN, Bari /Bari U. /INFN, Perugia /Perugia U. /Udine U. /Hiroshima U. /NASA, Goddard /Maryland U. /Tokyo Inst. Tech. /INFN, Padua /Padua U. /Pisa, Scuola Normale Superiore

    2007-04-16

    The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.

  13. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  14. Impact Of Intelligent Systems On Space Station Man-Machine Interface (MMI) Design

    NASA Astrophysics Data System (ADS)

    Jamar, Pamela G.; Schur, Anne

    1987-02-01

    Space-based crews are expected to interact with highly automated and possibly intelligent systems and to perform these interactions with often little or no prior training, or on an infrequent or sporadic basis. These activities will characterize a new role for space-based crews, that of supervisory control. Supervisory control tasks in turn define a new set of requirements for Space Station man-machine interface (MMI) design: (1) multi-function display and control hardware, (2) displays that enhance the crew person's "mental model" of invisible processes, (3) highly supportive man-machine dialogue, including special features to support dialogue with expert systems, (4) incorporation of machine intelligence into the MMI itself to provide a seemingly uniform interface to numerous processes, data bases, and expert systems, and (5) electronic documentation. A discussion of these concepts is illustrated by examples from recent MMI designs, including a multi-function display and control system developed for the Space Shuttle, an MMI system developed for NASA JSC for the Space Station environmental control and life support system, ATOZ--an intelligent interface system, and VIMAD--an electronic documentation system for maintenance procedures.

  15. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study. Appendix 3: Environment analysis

    NASA Astrophysics Data System (ADS)

    1992-05-01

    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns.

  16. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study. Appendix 3: Environment analysis

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns.

  17. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  18. Design and testing of the U.S. Space Station Freedom primary propulsion system

    NASA Astrophysics Data System (ADS)

    Morano, Joseph S.; Delventhal, Rex A.; Chilcot, Kimberly J.

    1992-07-01

    The primary propulsion system (PPS) for the Space Station Freedom is discussed in terms of salient design characteristics and key testing procedures. The rocket engine modules contain reboost and attitude control thrusters, and their designs are illustrated showing the mounting structures, thruster solenoid valves, and thrust chambers. The propellant tank assembly for storing gaseous N pressurant and hydrazine propellant is described as are the system avionics, thruster solenoid valves, and latching isolation valves. PPS testing conducted on the development systems includes the use of a propulsion-module development unit, a development test article, and system qualification testing. Specific test articles include functional heaters, mass/thermal simulated components, flight-quality structures, and software control operations.

  19. Innovative wet FGD design features at Kentucky Utilities` Ghent Generating Station, Unit 1

    SciTech Connect

    Ruppert, M.A.; Mitchell, D.

    1995-06-01

    To meet Phase I requirements of the 1990 Federal Clean Air Act Amendments, Kentucky Utilities (KU) elected to retrofit a wet limestone, forced oxidized flue gas desulfurization (FGD) system on their Ghent Generating Station, Unit 1 (500 MW). This FGD system has been designed with several innovative features to enhance SO{sub 2} removal and reduce overall project cost. Organic acids have been incorporated to increase SO{sub 2} removal from 90% to 95%. Also, this Phase I project is designed to accommodate a second FGD to be built at the same site. This will allow both units to share common spare equipment, including a common spare absorber. A wet gypsum stack-out pond is being used in lieu of dewatering equipment. This paper discusses these innovative features from both a performance and an economic standpoint.

  20. A computer modeling methodology and tool for assessing design concepts for the Space Station Data Management System

    NASA Technical Reports Server (NTRS)

    Jones, W. R.

    1986-01-01

    A computer modeling tool is being developed to assess candidate designs for the Space Station Data Management System (DMS). The DMS is to be a complex distributed computer system including the processor, storage devices, local area networks, and software that will support all processing functions onboard the Space Station. The modeling tool will allow a candidate design for the DMS, or for other subsystems that use the DMS, to be evaluated in terms of parameters. The tool and its associated modeling methodology are intended for use by DMS and subsystem designers to perform tradeoff analyses between design concepts using varied architectures and technologies.

  1. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  2. Design of a 2.5 Gbps Optical Transmitter for the International Space Station

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Jeganathan, Muthu; Sandusky, John V.; Hemmati, Hamid

    1999-01-01

    A high data rate laser transmitter assembly (LTA) has been designed as the source for an optical free-space communication link between the International Space Station and the 1-meter Optical Communication Telescope Laboratory (OCTL) to be built at the Table Mountain Facility (IMF, Wrightwood, CA). The transmitter design concept uses a fiber-based master oscillator power amplifier (MOPA) configuration with an average output power of 200 made at a 1550 nm transmit wavelength. This transmitter source is also designed to provide a signal at 980 nm to the Silicon-based focal plane array for the point-ahead beam control function. This novel integration of a 980 nm boresight signal allows the use of Silicon based imagers for the acquisition/tracking and point-ahead functions, yet permits the transmit signal to be at any wavelength outside the Silicon sensitivity. The LTA, a sub-system of the Flight Terminal, has been designed to have a selectable data rate from 155 - 2500 Mbps in discrete steps. It also incorporates a 2.5 Gbps pseudo-random bit sequence (PRBS) generator for complete link testing and diagnostics. The design emphasizes using commercial off the shelf components (COTS).

  3. Preliminary design of an osmotic-type salinity-gradient energy converter: Phase 2

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The preliminary design is presented of a 50 kW/sub e/ closed cycle osmotic pressure power system using a saturated solar pond as the unmixer for the mixed brine with 7.7% potassium alum solution on one side and 52% potassium alum solution on the other side of the semipermeable membrane. Included are: system description with flow diagram, general arrangement, general pipe routing between equipment drawings and component performance specifications; siting restrictions; environmental considerations; pretreatment; membrane characteristics; preliminary system capital, operating and maintenance costs; and recommendations. It was found that the area requirement for a saturated solar pond is less than one tenth of that required for a solar evaporation pond. The pretreatment cost was found to be much less in this case because the system is closed. Finally, the use of a saturated solar pond greatly increases the potential number of sites available for a practical osmotic pressure power system.

  4. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and

  5. Inductor and TSV Design of 20-V Boost Converter for Low Power 3D Solid State Drive with NAND Flash Memories

    NASA Astrophysics Data System (ADS)

    Yasufuku, Tadashi; Ishida, Koichi; Miyamoto, Shinji; Nakai, Hiroto; Takamiya, Makoto; Sakurai, Takayasu; Takeuchi, Ken

    Two essential technologies for a 3D Solid State Drive (3D-SSD) with a boost converter are presented in this paper. The first topic is the spiral inductor design which determines the performance of the boost converter, and the second is the effect of TSV's on the boost converter. These techniques are very important in achieving a 3D-SSD with a boost converter. In the design of the inductor, the on-board inductor from 250nH to 320nH is the best design feature that meets all requirements, including high output voltage above 20V, fast rise time, low energy consumption, and area smaller than 25mm2. The use of a boost converter with the proposed inductor leads to a reduction of the energy consumption during the write operation of the proposed 1.8-V 3D-SSD by 68% compared with the conventional 3.3-V 3D-SSD with the charge pump. The feasibility of 3D-SSD's with Through Silicon Vias (TSV's) connections is also discussed. In order to maintain the advantages of the boost converter over the charge pump, the reduction of the parasitic resistance of TSV's is very important.

  6. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. PMID:24578147

  7. Potential impact of new power system technology on the design of a manned space station

    SciTech Connect

    Fordyce, J.S.; Schwartz, H.J.

    1984-01-01

    Large, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed that they could be available for flight use in the early to mid 1990's.

  8. The potential impact of new power system technology on the design of a manned Space Station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  9. The potential impact of new power system technology on the design of a manned space station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  10. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  11. Methodology of design and analysis of external walls of space station for hypervelocity impacts by meteoroids and space debris

    NASA Technical Reports Server (NTRS)

    Batla, F. A.

    1986-01-01

    The development of criteria and methodology for the design and analysis of Space Station wall elements for collisions with meteoroids and space debris at hypervelocities is discussed. These collisions will occur at velocities of 10 km/s or more and can be damaging to the external wall elements of the Space Station. The wall elements need to be designed to protect the pressurized modules of the Space Station from functional or structural failure due to these collisions at hypervelocities for a given environment and population of meteoroids and space debris. The design and analysis approach and the associated computer program presented is to achieve this objective, including the optimization of the design for a required overall probability of no penetration. The approach is based on the presently available experimental and actual data on meteoroids and space debris flux and damage assessments and the empirical relationships resulting from the hypervelocity impact studies in laboratories.

  12. Tracy Power Station -- Unit No. 4, Pinon Pine Power Project Public Design Report

    SciTech Connect

    1994-12-01

    This Public Design Report describes the Pinon Pine Project which will be located at the Sierra Pacific Power Company`s (SPPCO) Tracy Station near Reno, Nevada. The integrated gasification combined-cycle (IGCC) plant is designed to process 880 tones per day (TPD) of bituminous coal producing approximately 107 gross megawatts of electric power (MWe). This project is receiving cost-sharing from the US Department of Energy (DOE) in accordance with DOE Cooperative Agreement DE-FC2192MC29309. The plant incorporates the Kellogg-Rust-Westinghouse (KRW) fluidized bed gasification technology which produces a low-Btu gas which is used as fuel in a combined cycle power plant which has been modified to accommodate the fuel gas produced by an air-blown gasifier. The gasification system also includes hot gas removal of particulates and sulfur compounds from the fuel gas resulting in a plant with exceptionally low atmospheric emissions. Desulfurization is accomplished by a combination of limestone injection into the KRW fluidized bed gasifier and by a transport reactor system. Particulate removal is accomplished by high efficiency cyclones and a barrier filter. The Pinon Pine Project Schedule is divided into three phases. Phase I includes permitting and preliminary design. Phase II, which overlaps Phase I, covers detailed design, procurement, and construction. Phase III will cover the initial operation and demonstration portion of the project.

  13. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    SciTech Connect

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester`s OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 {micro}m wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas.

  14. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed

  15. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    NASA Astrophysics Data System (ADS)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  16. 49 CFR 37.49 - Designation of responsible person(s) for intercity and commuter rail stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Designation of responsible person(s) for intercity... Designation of responsible person(s) for intercity and commuter rail stations. (a) The responsible person(s... more than fifty percent of which is owned by a public entity, the public entity is the...

  17. 49 CFR 37.49 - Designation of responsible person(s) for intercity and commuter rail stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Designation of responsible person(s) for intercity... Designation of responsible person(s) for intercity and commuter rail stations. (a) The responsible person(s... more than fifty percent of which is owned by a public entity, the public entity is the...

  18. 49 CFR 37.49 - Designation of responsible person(s) for intercity and commuter rail stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Designation of responsible person(s) for intercity... Designation of responsible person(s) for intercity and commuter rail stations. (a) The responsible person(s... more than fifty percent of which is owned by a public entity, the public entity is the...

  19. 49 CFR 37.49 - Designation of responsible person(s) for intercity and commuter rail stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Designation of responsible person(s) for intercity... Designation of responsible person(s) for intercity and commuter rail stations. (a) The responsible person(s... more than fifty percent of which is owned by a public entity, the public entity is the...

  20. 49 CFR 37.49 - Designation of responsible person(s) for intercity and commuter rail stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Designation of responsible person(s) for intercity and commuter rail stations. 37.49 Section 37.49 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.49 Designation of responsible person(s)...

  1. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-01-01

    During the period October 1, 2002--December 31, 2002, Allegheny Energy Supply Co., LLC (Allegheny) completed the first year of testing at the Willow Island cofiring project. This included data acquisition and analysis associated with certain operating parameters and environmental results. Over 2000 hours of cofiring operation were logged at Willow Island, and about 4,000 tons of sawdust were burned along with slightly more tire-derived fuel (TDF). The results were generally favorable. During this period, also, a new grinder was ordered for the Albright Generating Station to handle oversized material rejected by the disc screen. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the test results at Willow Island and summarizes the grinder program at Albright.

  2. Validation of a station-prototype designed to integrate temporally soil N2O fluxes: IPNOA Station prototype.

    NASA Astrophysics Data System (ADS)

    Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico

    2016-04-01

    Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014

  3. Implications of privacy needs and interpersonal distancing mechanisms for space station design

    NASA Technical Reports Server (NTRS)

    Harrison, A. A.; Sommer, R.; Struthers, N.; Hoyt, K.

    1985-01-01

    Privacy needs, or the need of people to regulate their degree of contact with one another, and interpersonal distancing mechanisms, which serve to satisfy these needs, are common in all cultures. Isolation, confinement, and other conditions accociated with space flight may at once accentuate privacy needs and limit the availability of certain common interpersonal contact. Loneliness occurs when people have less contact with one another than they desire. Crowding occurs when people have more contact with one another than they desire. Crowding, which is considered the greater threat to members of isolated and confined groups, can contribute to stress, a low quality of life, and poor performance. Drawing on the general literature on privacy, personal space, and interpersonal distancing, and on specialized literature on life aboard spacecraft and in spacecraft-analogous environments, a quantitative model for understanding privacy, interpersonal distancing, loneliness, and crowding was developed and the practical implications of this model for space station design were traced.

  4. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  5. Evaluation of Pactruss design characteristics critical to space station primary structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.

    1987-01-01

    Several aspects of the possible application of the Pactruss concept to the primary truss structure of the space station are investigated. Estimates are made of the loads and hinge moments in deploying diagonal members as full deployment is approached. Included are the effects of beam columning and compliance of the surrounding structure. Requirements for joint design are suggested and a two-stage mid-diagonal latching hinge concept is described or analyzed. The problems with providing the experimental and theoretical tools needed for assuring reliable synchronous deployment are discussed and a first attempt at high-fidelity analytical simulation with NASTRAN is described. An alternative construction scenario in which the entire dual-keel truss structure is deployed as a single Shuttle payload is suggested.

  6. Payload specialist station study. Volume 2, part 1: Preliminary design document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The details of six tasks of the payload Specialist Station study are discussed: (1) derive payload control and display requirements; (2) perform functional analyses; (3) perform system synthesis; (4) perform trade studies; (5) perform preliminary design; and (6) provide data format. Functional analysis diagrams were developed for the study payloads. These diagrams presented the payload's functional activities flow based on the six mission phases established. These phases are: (1) launch, ascent, orbit insertion; (2) on-orbit checkout and activation; (3) on-orbit operation; (4) deployment/retrieval; (5) on-orbit deactivation; and (6) descent, landing, post-landing. To perform system synthesis the widest variety of available hardware and software, as individual pieces of equipment and as systems, was investigated. The intent was to synthesize a complete AFD system or systems which could accommodate the range of requirements identified for the study missions.

  7. Conceptual design and programmatics studies of space station accommodations for Life Sciences Research Facilities (LSRF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.

  8. Design and evaluation of FDDI fiber optics networkfor Ethernets, VAX's and Ingraph work stations

    NASA Technical Reports Server (NTRS)

    Wernicki, M. Chris

    1992-01-01

    The purpose of this project is to design and evaluate the FDDI Fiber Optics Network for Ethernets, VAX's, and Ingraph work stations. From the KSC Headquarters communication requirement, it would be necessary to develop the FDDI network based on IEEE Standards outlined in the ANSI X3T9.5, Standard 802.3 and 802.5 topology - direct link via intermediate concentrator and bridge/router access. This analysis should examine the major factors that influence the operating conditions of the Headquarters Fiber plant. These factors would include, but are not limited to the interconnecting devices such as repeaters, bridges, routers and many other relevant or significant FDDI characteristics. This analysis is needed to gain a better understanding of overall FDDI performance.

  9. International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.

  10. Workshop on Instructional Features and Instructor/Operator Station Design for Training Systems.

    ERIC Educational Resources Information Center

    Ricard, G. L., Ed.; And Others

    These 19 papers review current research and development work related to the operation of the instructor's station of training systems, with emphasis on developing functional station specifications applicable to a variety of simulation-based training situations. Topics include (1) instructional features; (2) instructor/operator station research and…

  11. Optimal design and operation of booster chlorination stations layout in water distribution systems.

    PubMed

    Ohar, Ziv; Ostfeld, Avi

    2014-07-01

    This study describes a new methodology for the disinfection booster design, placement, and operation problem in water distribution systems. Disinfectant residuals, which are in most cases chlorine residuals, are assumed to be sufficient to prevent growth of pathogenic bacteria, yet low enough to avoid taste and odor problems. Commonly, large quantities of disinfectants are released at the sources outlets for preserving minimum residual disinfectant concentrations throughout the network. Such an approach can cause taste and odor problems near the disinfectant injection locations, but more important hazardous excessive disinfectant by-product formations (DBPs) at the far network ends, of which some may be carcinogenic. To cope with these deficiencies booster chlorination stations were suggested to be placed at the distribution system itself and not just at the sources, motivating considerable research in recent years on placement, design, and operation of booster chlorination stations in water distribution systems. The model formulated and solved herein is aimed at setting the required chlorination dose of the boosters for delivering water at acceptable residual chlorine and TTHM concentrations for minimizing the overall cost of booster placement, construction, and operation under extended period hydraulic simulation conditions through utilizing a multi-species approach. The developed methodology links a genetic algorithm with EPANET-MSX, and is demonstrated through base runs and sensitivity analyses on a network example application. Two approaches are suggested for dealing with water quality initial conditions and species periodicity: (1) repetitive cyclical simulation (RCS), and (2) cyclical constrained species (CCS). RCS was found to be more robust but with longer computational time. PMID:24762553

  12. Design of a 40/50 GHz satellite ground station for fade mitigation experiments

    NASA Astrophysics Data System (ADS)

    Koudelka, O.; Schmidt, M.; Ebert, J.

    2013-05-01

    Due to the increasing demand in satellite capacity, driven by applications such as high-definition television (HDTV), 3D-TV and interactive broadband services, higher frequency bands will have to be exploited. The capacity on Ku-band is already becoming scarce and Ka-band systems are more commonly used. It can be expected that 40 and 50 GHz (Q and V band) will have to be used in the future. At these frequencies the wave propagation effects have a significant impact on the performance. The traditional approach of implementing large fade margins in the system design is not suitable as it leads to expensive ground terminals. Fade mitigation by adaptive coding and modulation (ACM) is a cost-efficient method. To investigate the Q/V-band for future commercial exploitation, ESA's ALPHASAT satellite will provide experimental payloads for communications and wave propagation experiments. In Graz a Q/V-band ground station is currently under development. It will be equipped with a 3 m tracking antenna, a 50 W Klystron amplifier and a 290 K LNA. Fade mitigation experiments will be conducted, initially using DVB-S2 modems which allow to vary the modulation scheme, the Forward Error Correction code and the symbol rate under control of the ACM computer. In addition, uplink power control can be combined with the ACM methods. A specially developed signal analyser provides precise measurement of the signal/noise ratio. In addition, propagation data will be available from a beacon receiver, also developed by Joanneum Research. Important goals of the experiment are to investigate the reliability of links under realistic operating conditions using ACM and to develop efficient ACM and signal/noise ratio measurement algorithms which can be later implemented in optimised modems for Q/V-band. The paper describes the ground station design and addresses the planned fade mitigation experiments.

  13. Japan's participation in space station design: Feasibility study of GaAs solar cells for space station applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The report gives the results of feasibility studies and a cost analysis done on GaAs solar battery cells for space stations. The studies and their results are as follows: (1) Cell size - The 2 x 4 cm cell size was found superior to the 4 x 4 cm cell; (2) Manufacturing technology - Overall, LPE crystal growth was found more suitable than MO-CVD. Current technology for post-growth processes and applying large-area cover glass can be used with few or no modifications; (3) Cell assemblies - Tests for mechanical and thermal stresses encountered from assembly through operation are recommended; (4) Procuring materials - Steps should be taken to avoid sharp price increases due to a speculative gallium market. There are no problems with arsenic materials; (5) Production facilities - The capital investment needed remains to be determined, but a working area of 4000 m2 will be required; (6) Cell costs to be determined; (7) Cell development-supply plan - Two-year lead time will be needed to develop the necessary technology and prepare for production.

  14. Design of the dual-buoy wave energy converter based on actual wave data of East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeongrok; Kweon, Hyuck-Min; Jeong, Weon-Mu; Cho, Il-Hyoung; Cho, Hong-Yeon

    2015-07-01

    A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: 36.404 N° and 129.274 E°) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

  15. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  16. The Gas-Grain Simulation Facility (GGSF) for Space Station Freedom - Design concept

    NASA Technical Reports Server (NTRS)

    Gat, N.; Kropp, J. L.; Huntington, J. L.; Fonda, M. L.

    1992-01-01

    The GGSF is specifically designed to accommodate micro-g experiments that investigate long-term effects and interactions between submicron to centimeter size particles. The paper introduces the science disciplines and the type of experiments that are currently envisioned for the GGSF. The broad range of science and technology requirements are discussed, and the Space Station Freedom (SSF) accommodations, and available utilities are reviewed. Based on the requirements and the available accommodations, a facility conceptual design is outlined. The required subsystems are listed, and the rationale and considerations that lead to the selected approach, delineated. The present GGSF concept is that of a modular facility system comprising a flight rack and an array of fully compatible and interchangeable subsystems that are designed to meet a diverse set of science requirements. The modularity allows for future upgrade of various subsystems as technology evolves and for introduction of new modules to accommodate new or different experiments. These features are essential for a facility that is expected to be in service on board the SSF for 10 years or more.

  17. Design for an integrated discipline operations control center for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1993-01-01

    This paper presents selected features of a human factors oriented plan for a Space Station Freedom (SSF) ground Discipline Operations Center (DOC) that is integrated with other work areas used by multidisciplinary life scientists. This combined facility is referred to as an integrated DOC or IDOC. This plan is based upon the assumption that there will be a constantly changing array of specialized equipment and procedures used by life sciences principal investigators (PI) on the ground which must be linked to SSF through various DOC systems. Other sites will also be able to communicate with SSF (Anon., 1992). It is also assumed that cost reduction will be a major design consideration and that one integrated structure will be less expensive to build and operate than two separate ones. Since both the DOC personnel and PIs will need to communicate with the flight crew aboard SSF, the general interconnect architecture of the PIs' communication linkage is considered here. Key human factor design elements of this plan include: a candidate facility layout which accommodates three (3), multipurpose, rapidly reconfigurable work areas (suites) and consequent user traffic flow considerations, a multimedia telecommunications support capability, functional (human) traffic flow, optimized internal illumination and acoustics requirements, selected volumetric and safety requirements, and other architectural design parameters.

  18. A systems approach for designing a radio station layout for the U.S. National Airspace

    NASA Astrophysics Data System (ADS)

    Boci, Erton S.

    Today's National Airspace System (NAS) is managed using an aging surveillance radar system. Current radar technology is not adequate to sustain the rapid growth of the commercial, civil, and federal aviation sectors and cannot be adapted to use emerging 21st century airspace surveillance technologies. With 87,000 flights to manage per day, America's ground based radar system has hit a growth ceiling. Consequently, the FAA has embarked on a broad-reaching effort called the Next Generation Air Transportation System (NextGen) that seeks to transform today's aviation airspace management and ensure increased safety and capacity in our NAS. This dissertation presents a systems approach to Service Volume (SV) engineering, a relatively new field of engineering that has emerged in support of the FAA's Automatic Dependent Surveillance -- Broadcast (ADS-B) Air Traffic Modernization Program. SV Engineering is responsible for radio station layout design that would provide the required radio frequency (RF) coverage over a set of Service Volumes, each which represents a section of controlled airspace that is served by a particular air control facility or service. The radio station layout must be optimized to meet system performance, safety, and interference requirements while minimizing the number of radio station sites required to provide RF coverage of the entire airspace of the Unites States. The interference level requirements at the victim (of interference) receivers are the most important and stringent requirements imposed on the ADS-B radio station layout and configuration. In this dissertation, we show a novel and practical way to achieve this optimality by developing and employing several key techniques such as such as reverse radio line-of-site (RLOS) and complex entity-relationship modeling, to address the greater challenges of engineering this complex system. Given that numerous NAS radar facilities are clustered together in relative close proximity to each other, we

  19. Design of an Integrated Thermoelectric Generator Power Converter for Ultra-Low Power and Low Voltage Body Energy Harvesters aimed at EEG/ECG Active Electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2014-11-01

    This paper describes a design procedure for an efficient body thermal energy harvesting integrated power converter. This procedure is based on loss examination for a selfpowered medical device. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. It is found that it is possible to optimize converter's working frequency with proper design of its pulse generator circuit. At selected frequency, it has been demonstrated that wide area voltage doubler can be eliminated at the expense of wider switches. With this method, more than 60% efficiency is achieved in simulation for just 20mV transducer output voltage and 30% of entire chip area is saved.

  20. Design and construction of a compact end-station at NSRRC for circular-dichroism spectra in the vacuum-ultraviolet region.

    PubMed

    Liu, Szu Heng; Lin, Yi Hung; Huang, Liang Jen; Luo, Shiang Wen; Tsai, Wan Lin; Chiang, Su Yu; Fung, Hok Sum

    2010-11-01

    A synchrotron-radiation-based circular-dichroism end-station has been implemented at beamline BL04B at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan for biological research. The design and performance of this compact end-station for measuring circular-dichroism spectra in the vacuum-ultraviolet region are described. The linearly polarized light from the beamline is converted to modulated circularly polarized light with a LiF photoelastic modulator to provide a usable wavelength region of 130-330 nm. The light spot at the sample position is 5 mm × 5 mm at a slit width of 300 µm and provides a flux greater than 1 × 10(11) photons s(-1) (0.1% bandwidth)(-1). A vacuum-compatible cell made of two CaF(2) windows has a variable path length from 1.3 µm to 1 mm and a temperature range of 253-363 K. Measured CD spectra of (1S)-(+)-10-camphorsulfonic acid and proteins demonstrated the ability of this system to extend the wavelength down to 172 nm in aqueous solution and 153 nm in hexafluoro-2-propanol. PMID:20975221

  1. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2002-01-01

    During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. During this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.

  2. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  3. A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design

    NASA Technical Reports Server (NTRS)

    Britcliffe, M.; Hoppe, D.; Roberts, W.; Page, N.

    2001-01-01

    This article describes a telescope design for a 10-m optical ground station for deep-space communications. The design for a direct-detection optical communications telescope differs dramatically from a telescope for imaging applications. In general, the requirements for optical manufacturing and tracking performance are much less stringent for direct detection of optical signals. The technical challenge is providing a design that will operate in the daytime/nighttime conditions required for a Deep Space Network tracking application. The design presented addresses these requirements. The design will provide higher performance at lower cost than existing designs.

  4. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  5. International Space Station USOS Potable Water Dispenser On-Orbit Functionality Versus Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2010-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmember food and drinking packages. There is one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. Shuttle mission STS-126 delivered the USOS Potable Water Dispenser (PWD) to ISS on ULF2; subsequent activation occurred on November 2008. The PWD is capable of supporting an ISS crew of six, but nominally supplies only half this crew size. The PWD design provides incremental quantities of hot and ambient temperature potable water to US food and beverage packages. PWD receives iodinated water from the US Water Recovery System (WRS) Fuel Cell Water Bus, which feeds from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 L of hot water (65 to 93 ?C) every 30 min. During a single meal, this quantity of water supports three to four crewmembers? food rehydration and beverages. The unit design has a functional life expectancy of 10 years, with replacement of limited life items, such as filters. To date, the PWD on-orbit performance is acceptable. Since activation of the PWD, there were several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is discussed for the following key areas: 1) microbial contamination, 2) no-dispense and water leakage scenarios, and 3) under-dispense scenarios.

  6. International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2009-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.

  7. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  8. Design analysis and containment canister life prediction for a Brayton engine solar receiver for Space Station

    SciTech Connect

    Strumpf, H.J.; Avanessian, V.; Ghafourian, R. )

    1994-08-01

    A study has been conducted on the design and development of a solar receiver to be used for electrical power production for Space Station. The receiver incorporates integral thermal storage, using a eutectic mixture of LiF and CaF[sub 2] as a solid-to-liquid phase-change material (PCM). The design comprises a cylindrical receiver cavity. The walls of the cavity are lined with a series of working fluid tubes running the length of the cavity. The PCM is enclosed in individual, sealed metallic containment canisters which are stacked and brazed to the tubes. The compartmentalization of the PCM localizes void formation upon freezing. An additional attribute of compartmentalization is that a containment canister failure affects only that canister; the receiver continues to operate with only a minute loss of capacity. Nevertheless, a considerable effort has been expended to ensure that the containment canisters will survive a 30-year life. A detailed analytical procedure was developed to evaluate the canister creep strain accumulated in 30 years. This accumulated creep strain, which is in the range of 0.03 to 0.79 percent, compares favorably with the preliminary value of four percent for the canister material allowable 30-year creep rupture ductility.

  9. A Human Centred Interior Design of a Habitat Module for the International Space Station

    NASA Astrophysics Data System (ADS)

    Burattini, C.

    Since the very beginning of Space exploration, the interiors of a space habitat had to meet technological and functional requirements. Space habitats have now to meet completely different requirements related to comfort or at least to liveable environments. In order to reduce psychological drawbacks afflicting the crew during long periods of isolation in an extreme environment, one of the most important criteria is to assure high habitability levels. As a result of the Transhab project cancellation, the International Space Station (ISS) is actually made up of several research laboratories, but it has only one module for housing. This is suitable for short-term missions; middle ­ long stays require new solutions in terms of public and private spaces, as well as personal compartments. A design concept of a module appositely fit for living during middle-long stays aims to provide ISS with a place capable to satisfy habitability requirements. This paper reviews existing Space habitats and crew needs in a confined and extreme environment. The paper then describes the design of a new and human centred approach to habitation module typologies.

  10. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  11. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme

    PubMed Central

    Chen, Po-Ting; Chen, Chao-Long; Lin, Lilian Tsai-Wei; Lo, Chun-Hsien; Hu, Chaur-Jong; Chen, Rita P.-Y.; Wang, Steven S.-S.

    2016-01-01

    Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer’s disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12–16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12–16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12–16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1–7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1–7)C and qf-Aβ(12–16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells. PMID:27096746

  12. Convertible Stadium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Air flotation technology used in NASA's Apollo program has found an interesting application in Hawaii's Aloha Stadium near Honolulu. The stadium's configuration can be changed, by moving entire 7,000-seat sections on a cushion of air, for best accommodation of spectators and participants at different types of events. In most stadiums, only a few hundred seats can be moved, by rolling sections on wheels or rails. At Aloha Stadium, 28,000 of the 50,000 seats can be repositioned for better spectator viewing and, additionally, for improved playing conditions. For example, a stadium designed primarily for football may compromise the baseball diamond by providing only a shallow outfield. Aloha's convertibility allows a full-size baseball field as well as optimum configurations for many other types of sports and special events. The photos show examples. The stadium owes its versatility to air flotation technology developed by General Motors. Its first large-scale application was movement of huge segments of the mammoth Saturn V moonbooster during assembly operations at Marshall Space Flight Center.

  13. Fragment-based design for the development of N-domain-selective angiotensin-1-converting enzyme inhibitors.

    PubMed

    Douglas, Ross G; Sharma, Rajni K; Masuyer, Geoffrey; Lubbe, Lizelle; Zamora, Ismael; Acharya, K Ravi; Chibale, Kelly; Sturrock, Edward D

    2014-02-01

    ACE (angiotensin-1-converting enzyme) is a zinc metallopeptidase that plays a prominent role in blood pressure regulation and electrolyte homeostasis. ACE consists of two homologous domains that despite similarities of sequence and topology display differences in substrate processing and inhibitor binding. The design of inhibitors that selectively inhibit the N-domain (N-selective) could be useful in treating conditions of tissue injury and fibrosis due to build-up of N-domain-specific substrate Ac-SDKP (N-acetyl-Ser-Asp-Lys-Pro). Using a receptor-based SHOP (scaffold hopping) approach with N-selective inhibitor RXP407, a shortlist of scaffolds that consisted of modified RXP407 backbones with novel chemotypes was generated. These scaffolds were selected on the basis of enhanced predicted interaction energies with N-domain residues that differed from their C-domain counterparts. One scaffold was synthesized and inhibitory binding tested using a fluorogenic ACE assay. A molecule incorporating a tetrazole moiety in the P2 position (compound 33RE) displayed potent inhibition (K(i)=11.21±0.74 nM) and was 927-fold more selective for the N-domain than the C-domain. A crystal structure of compound 33RE in complex with the N-domain revealed its mode of binding through aromatic stacking with His388 and a direct hydrogen bond with the hydroxy group of the N-domain specific Tyr369. This work further elucidates the molecular basis for N-domain-selective inhibition and assists in the design of novel N-selective ACE inhibitors that could be employed in treatment of fibrosis disorders. PMID:24015848

  14. Field estimates of gravity terrain corrections and Y2K-compatible method to convert from gravity readings with multiple base stations to tide- and long-term drift-corrected observations

    USGS Publications Warehouse

    Plouff, Donald

    2000-01-01

    Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first

  15. A Camera and Multi-Sensor Automated Station Design for Polar Physical and Biological Systems Monitoring: AMIGOS

    NASA Astrophysics Data System (ADS)

    Bohlander, J. A.; Ross, R.; Scambos, T.; Haran, T. M.; Bauer, R. J.

    2012-12-01

    The Automated Meteorology - Ice/Indigenous species - Geophysics Observation System (AMIGOS) consists of a set of measurement instruments and camera(s) controlled by a single-board computer with a simplified Linux operating system and an Iridium satellite modem supporting two-way communication. Primary features of the system relevant to polar operations are low power requirements, daily data uploading, reprogramming, tolerance for low temperatures, and various approaches for automatic resets and recovery from low power or cold shut-down. Instruments include a compact weather station, C/A or dual-frequency GPS, solar flux and reflectivity sensors, sonic snow gages, simplified radio-echo-sounder, and resistance thermometer string in the firn column. In the current state of development, there are two basic designs. One is intended for in situ observations of glacier conditions. The other design supports a high-resolution camera for monitoring biological or geophysical systems from short distances (100 m to 20 km). The stations have been successfully used in several locations for operational support, monitoring rapid ice changes in response to climate change or iceberg drift, and monitoring penguin colony activity. As of June, 2012, there are 9 AMIGOS systems installed, all on the Antarctic continent. The stations are a working prototype for a planned series of upgraded stations, currently termed 'Sentinels'. These stations would carry further instrumentation, communications, and processing capability to investigate ice - ocean interaction from ice tongue, ice shelf, or fjord coastline areas.

  16. Instructor/Operator Station Design Handbook for Aircrew Training Devices. Final Technical Report for Period March 1982-December 1986.

    ERIC Educational Resources Information Center

    Warner, H. D.

    Human engineering guidelines for the design of instructor/operator stations (IOSs) for aircrew training devices are provided in this handbook. These guidelines specify the preferred configuration of IOS equipment across the range of the anticipated user sizes and performance capabilities. The guidelines are consolidated from various human…

  17. Tracking and data relay satellite system configuration and tradeoff study. Volume 5: User impact and ground station design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The configuration of the user transponder on the Tracking and Data Relay satellite is described. The subjects discussed are: (1) transponder concepts and trades, (2) ground station design, (3) antenna configurations for ground equipment, (4) telemetry facilities, (5) signal categories, and (6) satellite tracking.

  18. Laser Station Design for the Global Light System for the Planned JEM-EUSO Extreme Universe Observatory

    NASA Astrophysics Data System (ADS)

    Geier, Christine; Burg, Martin; Bigler, Colton; Wiencke, Lawrence

    2014-03-01

    The JEM-EUSO Global Light System (GLS) will provide ground-based calibration and monitoring for the JEM-EUSO detector planned for the International Space Station (ISS). JEM-EUSO will use the atmosphere as a giant calorimeter to measure Ultra High Energy Cosmic Rays (UHECRs). The GLS will include twelve ground stations. All twelve will have calibration xenon flash bulbs and six will have steered lasers. The GLS laser stations will generate optical signatures by creating light tracks across the JEM-EUSO field of view. The lasers and xenon flashers will be used to benchmark the JEM-EUSO instrument during its mission since energy, duration and orientation of those sources can be controlled. In this presentation, we will describe a project to design and build a working prototype of a GLS laser station. In order to meet the specifications set forth in the design requirements, our design incorporates remote operation capability, solar power, and a controlled internal climate. These components are in addition to the laser and calibration system and steering mechanism. All components will be combined in a robust, durable design that can be deployed and operated in remote locations across the globe.

  19. Conceptual design and evaluation of selected Space Station concepts, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space Station configuration concepts are defined to meet the NASA Headquarters Concept Development Group (CDG) requirements. Engineering and programmatic data are produced on these concepts suitable for NASA and industry dissemination. A data base is developed for input to the CDG's evaluation of generic Space Station configurations and for use in the critique of the CDG's generic configuration evaluation process.

  20. Use of Human Computer Models to Influence the Design of International Space Station Propulsion Module

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Hall, Meridith L.

    1999-01-01

    The overall design for the International Space Station (ISS) Propulsion (Prop) Module consists of two bell shapes connected by a long tube having a shirt sleeve environment. The tube is to be used by the flight crew to transfer equipment and supplies from the Shuttle to ISS. Due to a desire to use existing space qualified hardware, the tube internal diameter was initially set at 38 inches, while the human engineering specification, NASA-STD-3000, required 50". Human computer modeling using the MannequinPro application was used to help make the case to enlarge the passageway to meet the specification. 3D CAD models of Prop Module were created with 38 inches, 45 inches and 50 inches passageways and human figures in the neutral body posture as well as a fetal posture were inserted into the model and systematically exercised. Results showed that only the 50 inches tube would accommodate a mid tube turn around by a large crew member, 95th percentile American males, by stature.

  1. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  2. XTL Converter

    SciTech Connect

    Spurgeon, Steven R

    2015-10-07

    "XTL Converter" is a short Python script for electron microscopy simulation. The program takes an input crystal file in the VESTA *.XTL format and converts it to a text format readable by the multislice simulation program ìSTEM. The process of converting a crystal *.XTL file to the format used by the ìSTEM simulation program is quite tedious; it generally requires the user to select dozens or hundreds of atoms, rearranging and reformatting their position. Header information must also be reformatted to a specific style to be read by ìSTEM. "XTL Converter" simplifies this process, saving the user time and allowing for easy batch processing of crystals.

  3. XTL Converter

    Energy Science and Technology Software Center (ESTSC)

    2015-10-07

    "XTL Converter" is a short Python script for electron microscopy simulation. The program takes an input crystal file in the VESTA *.XTL format and converts it to a text format readable by the multislice simulation program ìSTEM. The process of converting a crystal *.XTL file to the format used by the ìSTEM simulation program is quite tedious; it generally requires the user to select dozens or hundreds of atoms, rearranging and reformatting their position. Headermore » information must also be reformatted to a specific style to be read by ìSTEM. "XTL Converter" simplifies this process, saving the user time and allowing for easy batch processing of crystals.« less

  4. A MAGICTRAC (Microwave Antenna for Whispering-Gallery-Mode Conversion using a Twist Reflector Antenna Converter) design for the MTX (Microwave Tokamak Experiment) transport system

    SciTech Connect

    Makowski, M.A. ); Stallard, B.W.; Byers, J.A. )

    1990-09-01

    A design of a MAGICTRAC (Microwave Antenna for Whispering-Gallery-Mode Conversion using a Twist Reflector Antenna Converter) device is presented for use on the MTX (Microwave Tokamak Experiment) transport system. The MAGICTRAC device, consisting of a mode converting waveguide taper and three metal reflectors, transforms the TE{sub 15,2} circular waveguide mode output of a VARIAN Associates 140 GHz gyrotron into a free-space Gaussian-like beam with >95% efficiency. Dimensions of the MAGICTRAC are chosen to produce a beam matched to the MTX quasi-optical transport system.

  5. Research on design feasibility of high-power light-weight dc-to-dc converters for space power application

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1980-01-01

    The development of 5 kW converters with 100 kHz switching frequencies, consisting of two submodules each capable of 2.5 kW of output power, is discussed. Two semiconductor advances allowed increased power levels. Field effect transistors with ratings of 11 A and 400 V were operated in parallel to provide a converter output power of approximately 2000 W. Secondly, bipolar power switching transistor was operated in conjunction with a turn-off snubber circuit to provide converter output power levels approaching 1000 W. The interrelationships between mass, switching frequency, and efficiency were investigated. Converters were constructed for operation at a maximum output power level of 200 W, and a comparison was made for operation under similar input/output conditions for conversion frequencies of 20 kilohertz and 100 kilohertz. The effects of nondissipative turn-off snubber circuitry were also examined. Finally, a computerized instrumentation system allowing the measurement of pertinent converter operating conditions as well as the recording of converter waveforms is described.

  6. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  7. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  8. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  9. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  10. Design, operation, and critical issues of the U.S. Space Station Freedom propulsion system

    NASA Technical Reports Server (NTRS)

    Morano, Joseph S.; Henderson, John B.

    1989-01-01

    The U.S. Space Station Freedom Manned Base (SSFMB) propulsion system is a gaseous hydrogen/oxygen-based system for primary reboost, attitude control, and station contingencies using electrolyzed water as a propellant. A secondary propulsion reboost system employs multipropellant resistojets which utilize the various waste gases generated during normal station operations. The hydrogen/oxygen propulsion system is comprised of several modules which contain thrusters, propellant storage tanks, regulation subsystems, water electrolysis units, electronic controls, and fluid plumbing. The resistojet system is comprised of one module containing the resistojets, regulators, electronic controls, and fluid plumbing. The waste gas propellant storage takes place in the Fluid Management System.

  11. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  12. Source of slow polarized positrons using the brilliant gamma beam at ELI-NP. Converter design and simulations

    NASA Astrophysics Data System (ADS)

    Djourelov, Nikolay; Oprisa, Andreea; Leca, Victor

    2016-01-01

    Simulations of slow positron (es+) source based on interaction of a circularly polarized gamma beam with a W converter were performed. The aim of the study was to propose a converter geometry and to determine the expected slow positron beam intensity and its spot size, and the degree of positron spin polarization, as well. The Monte Carlo simulations by means of GEANT4 were used to estimate the fast positron production and the moderation efficiency of the converter working as a self-moderator, as well. Finite element analysis by means of COMSOL Multiphysics was applied to calculate the fraction of extracted moderated positrons from the converter cells and the quality of the beam formation by focusing. Using the low energy (<3.5 MeV) gamma beam at ELI-NP with intensity of 2.4×1010γ/s the production of a slow positron beam with intensity of 1-2×106 es+/s is predicted. For the optimized converter geometry and in case of 100% circular polarization of the gammas the degree of spin polarization of the slow positron beam is expected to be 33%.

  13. IVA the robot: Design guidelines and lessons learned from the first space station laboratory manipulation system

    NASA Technical Reports Server (NTRS)

    Konkel, Carl R.; Powers, Allen K.; Dewitt, J. Russell

    1991-01-01

    The first interactive Space Station Freedom (SSF) lab robot exhibit was installed at the Space and Rocket Center in Huntsville, AL, and has been running daily since. IntraVehicular Activity (IVA) the robot is mounted in a full scale U.S. Lab (USL) mockup to educate the public on possible automation and robotic applications aboard the SSF. Responding to audio and video instructions at the Command Console, exhibit patrons may prompt IVA to perform a housekeeping task or give a speaking tour of the module. Other exemplary space station tasks are simulated and the public can even challenge IVA to a game of tic tac toe. In anticipation of such a system being built for the Space Station, a discussion is provided of the approach taken, along with suggestions for applicability to the Space Station Environment.

  14. A modular Space Station/Base electrical power system - Requirements and design study.

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  15. Preliminary designs for modular OTEC platform station-keeping subsystems. Final report. MR and S Report No. 6042-6

    SciTech Connect

    1980-02-29

    This volume of the report presents the results of the third through the sixth tasks of the Station Keeping Subsystem (SKSS) design studies for 10/40 MW/sub e/ capacity OTEC Modular Experiment platforms (MEP). Tasks 3 through 6 are: (3) complete preliminary designs for one SKSS for each of the two platforms (SPAR and BARGE); (4) development and testing recommendations for the MEP SKSS; (5) cost-time analysis; and (6) commercial plant recommendations. The overall conclusions and recommendations for the modular, as well as the commercial, OTEC platform station keeping subsystems are delineated. The basic design assumptions made during the process, the technical approach followed, and the results of design iterations, reliability and performance analyses are given. A complete description of the preliminary design SKSS concept is presented. The summary cost estimates for each of the alternative SKSS concepts considered are presented and a time schedule for the recommended concept is provided. The effects of varying some of the important parameters used in SKSS design on the performance and cost of the mooring system are investigated and results presented. The tests required and other developmental recommendations in order to verify and confirm the basic design assumptions are discussed. Finally, the experience gained in the MEP preliminary designs are extended to future commercial OTEC plants' SKSS designs. (WHK)

  16. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  17. Space station WP-04 power system preliminary analysis and design document, volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Rocketdyne plans to generate a system level specification for the Space Station Electric Power System (EPS) in order to facilitate the usage, accountability, and tracking of overall system level requirements. The origins and status of the verification planning effort are traced and an overview of the Space Station program interactions are provided. The work package level interfaces between the EPS and the other Space Station work packages are outlined. A trade study was performed to determine the peaking split between PV and SD, and specifically to compare the inherent total peaking capability with proportionally shared peaking. In order to determine EPS cost drivers for the previous submittal of DRO2, the life cycle cost (LCC) model was run to identify the more significant costs and the factors contributing to them.

  18. Design, construction, and utilization of a space station assembled from 5-meter erectable struts

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Bush, Harold G.

    1987-01-01

    The primary characteristics of the 5-meter erectable truss is presented, which was baselined for the Space Station. The relatively large 5-meter truss dimension was chosen to provide a deep beam for high bending stiffness yet provide convenient mounting locations for space shuttle cargo bay size payloads which are approx. 14.5 ft (4.4 m) in diameter. Truss nodes and quick attachment erectable joints are described which provide for evolutionary three dimensional growth and for simple maintenance and repair. A mobile remote manipulator system is described which is provided to assist in station construction and maintenance. A discussion is also presented of the construction of the Space Station and the associated extravehicular active (EVA) time.

  19. Cardiovascular research in space - Considerations for the design of the human research facility of the United States Space Station

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Bungo, M. W.

    1986-01-01

    The design of the Space Station's Human Research Facility for the collection of information on the long-time physiological adjustments of humans to space is described. The Space Life Sciences-1 mission will carry a rack-mounted echocardiograph for cardiac imaging, a mass spectrometer for cardiac output and respiratory function assessments at rest and during exercise, and a device to stimulate the carotid sinus baroreceptors and measure the resulting changes in heart rate.

  20. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  1. CETF Space Station payload pointing system design and analysis feasibility study. [Critical Evaluation Task Force

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Mcglew, Dave

    1988-01-01

    The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.

  2. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-04-01

    During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailed designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.

  3. Rodent bone densitometer on the International Space Station: Instrument design and performance

    NASA Astrophysics Data System (ADS)

    Vellinger, John C.; Barton, Kenneth; Faget, Paul; Todd, Paul; Boland, Eugene

    2016-07-01

    The study of bone loss dynamics, mechanisms and countermeasures has been a publicly stated purpose of biomedical research aboard the International Space Station. Rodent research has always played a major role in terrestrial laboratories studying bone loss. The "gold standard" for assessing bone loss in human patients has been dual-energy x-ray absorptiometry (DEXA). DEXA is also widely applied to the study of bone loss in laboratory animals, so this technology has been added to the ISS inventory of analytical tools in the form of the ISS Bone Densitometer (BD) designed, constructed, tested and integrated by Techshot, Inc. (Greenville, Indiana, USA). The BD is a re-packaged COTS device known as PIXImus (GE-Lunar, USA), which was installed on ISS in November 2014 after launching on SpaceX-4. To facilitate operations in microgravity and to meet spaceflight facility and safety requirements the commercial x-ray source, control electronics and imaging system were modified and packaged by Techshot into a drawer that fits into a single EXPRESS Locker replacement. A space-rated "Exam Box" is also supplied for containment of the anesthetized subject during transfer into the BD and during exposure. The commercial software package controls four paired-energy exposures, 80 and 35 kV, and applies DEXA algorithms to the fluorescence images and displays bone mineral density (BMD), bone mineral content, lean mass, fat mass, total mass and per cent fat. The BD is therefore also a means for measuring mass and body composition making it a versatile tool for many types of rodent studies on orbit. The BD has been operated multiple times on orbit, and its performance has not differed significantly from its performance on the ground. It has been shown to measure body mass with a precision of +/- 0.1 g and on-orbit accuracy of -0.3 g. It is expected to detect BMD losses of approximately 2%. The image data are stored in a manner that allows post-test data analysis especially including the

  4. Design, development, and fabrication of a electronic analog microminiaturized electronic analog signal to discrete time interval converter

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Schuegraf, K. K.

    1973-01-01

    The microminiaturization of an electronic analog signal to discrete time interval converter is presented. Discrete components and integrated circuits comprising the converter were assembled on a thin-film ceramic substrate containing nichrome resistors with gold interconnections. The finished assembly is enclosed in a flat package measuring 3.30 by 4.57 centimeters. The module can be used whenever conversion of analog to digital signals is required, in particular for the purpose of regulation by means of pulse modulation. In conjunction with a precision voltage reference, the module was applied to control the duty cycle of a switching regulator within a temperature range of -55 C to +125 C, and an input voltage range of 10V to 35V. The output-voltage variation was less than + or - 300 parts per million, i.e., less than + or - 3mV for a 10V output.

  5. Effects of Specifically Designed Literacy Stations on the Reading Fluency of Students

    ERIC Educational Resources Information Center

    English, Christine E.

    2013-01-01

    Reading fluency is critical in all aspects of school curriculum. Struggling readers fall further behind each year due to the increasing demands of the curriculum. To address this problem, the current study implemented literacy stations for struggling readers in a school in rural Washington State. The purpose of this study was to examine (a)…

  6. Design and measurement of a TE13 input converter for high order mode gyrotron travelling wave amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Liu, Guo; Shu, Guoxiang; Yan, Ran; Wang, Li; Agurgo Balfour, E.; Fu, Hao; Luo, Yong; Wang, Shafei

    2016-03-01

    A technique to launch a circular TE13 mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE13 mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE32 and TE71 modes are suppressed to allow the transmission of the dominant TE13 mode. The converter performance for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ˜-1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5-98.7 GHz) and port reflection is less than -15 dB. The conversion efficiency to the TE32 and TE71 modes are, respectively, under -15 dB and -24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.

  7. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  8. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-01-01

    During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker.

  9. Design and operation of the U.S. Space Station Freedom Propulsion System

    NASA Technical Reports Server (NTRS)

    Morano, Joseph S.; Delventhal, Rex A.

    1991-01-01

    The propulsion functions for the U.S. Space Station Freedom (SSF) are accomplished by two separate systems, the Primary Propulsion System and the Supplemental Reboost System (SRS). The Primary Propulsion System includes self-contained hydrazine modules for station reboost, attitude control and contingency maneuvers. These Propulsion Modules contain reboost and attitude control thrusters, propellant storage, thermal conditioning and electronic controls. The modules are serviced on the ground and launched on the Space Shuttle as replacements for the on-orbit modules which have expended their propellant. The expended modules are returned to the ground for reservicing and subsequent reuse. The Supplemental Reboost System includes a Waste Gas Assembly and Resistojet Modules which are used for reboost maneuvers only. The Waste Gas Assembly contains waste gas storage, compressors and dryers and the Resistojet Modules contain multipropellant resistojet thrusters, electronic pressure regulators and power conditioning equipment.

  10. Design and operation of the US Space Station Freedom propulsion system

    NASA Astrophysics Data System (ADS)

    Morano, Joseph S.; Delventhal, Rex A.

    1992-02-01

    The propulsion functions for the U.S. Space Station Freedom (SSF) are accomplished by two separate systems, the Primary Propulsion System and the Supplemental Reboost System (SRS). The Primary Propulsion System includes self-contained hydrazine modules for station reboost, attitude control, and contingency maneuvers. These Propulsion Modules contain reboost and attitude control thrusters, propellant storage, thermal conditioning, and electronic controls. The modules are serviced on the ground and launched on the Space Shuttle as replacements for the on-orbit modules which have expended their propellant. The expended modules are returned to the ground for reservicing and subsequent reuse. The Supplemental Reboost System includes a Waste Gas Assembly and Resistojet Modules which are used for reboost maneuvers only. The Waste Gas Assembly contains waste gas storage, compressors, and dryers, and the Resistojet Modules contain multipropellant resistojet thrusters, electronic pressure regulators and power conditioning equipment.

  11. Design, fabrication and test of a prototype double gimbal control moment gyroscope for the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Blondin, Joseph; Hahn, Eric; Kolvek, John; Cook, Lewis; Golley, Paul

    1989-01-01

    Recognizing the need to develop future technologies in support of the Space Station, NASA's Advanced Development Program (ADP) placed as its goal the design and fabrication of a prototype 4750 Newton-meter-second (3500 ft-lb-sec) Control Moment Gyroscope (CMG). The CMG uses the principle of momentum exchange to impart control torques for counteracting vehicle disturbances. This paper addresses the selection of the double gimbal CMG over the single gimbal and describes the major subassemblies of the prototype design. Particular attention is given to the choice of the materials, fabrication and design details dictated by the man-rated mission requirement. Physical characteristics and the results of functional testing are presented to demonstrate the level of system performance obtained. Comparisons are made of the measured system responses against design goals and predictions generated by computer simulation.

  12. Status of the Space Station water reclamation and management subsystem design concept

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Mortazavi, P. L.

    1987-01-01

    A development status report is presented for the NASA Space Station's water reclamation and management (WRM) system, for which the candidate phase change-employing processing technologies are an air evaporation subsystem, a thermoelectric integrated membrane evaporation subsystem, and the vapor compression distillation subsystem. These WRM candidates employ evaporation to effect water removal from contaminants, but differ in their control of the vapor/liquid interface in zero-gravity and in the recovery of the latent heat of vaporization.

  13. Design and development of a space station hazardous material system for assessing chemical compatibility

    NASA Technical Reports Server (NTRS)

    Congo, Richard T.

    1990-01-01

    As the Space Station nears reality in funding support from Congress, NASA plans to perform over a hundred different missions in the coming decade. Incrementally deployed, the Space Station will evolve into modules linked to an integral structure. Each module will have characteristic functions, such as logistics, habitation, and materials processing. Because the Space Station is to be user friendly for experimenters, NASA is anticipating that a variety of different chemicals will be taken on-board. Accidental release of these potentially toxic chemicals and their chemical compatibility is the focus of this discourse. The Microgravity Manufacturing Processing Facility (MMPF) will contain the various facilities within the U.S. Laboratory (USL). Each facility will have a characteristic purpose, such as alloy solidification or vapor crystal growth. By examining the proposed experiments for each facility, identifying the chemical constituents, their physical state and/or changes, byproducts and effluents, those payloads can be identified which may contain toxic, explosive, or reactive compounds that require processing or containment in mission peculiar waste management systems. Synergistic reactions from mixed effluent streams is of major concern. Each experiment will have it own data file, complete with schematic, chemical listing, physical data, etc. Chemical compatibility information from various databases will provide assistance in the analysis of alternate disposal techniques (pretreatment, separate storage, etc.). Along with data from the Risk Analysis of the Proposed USL Waste Management System, accidental release of potentially toxic and catastrophic chemicals would be eliminated or reduced.

  14. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  15. Radiation effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  16. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  17. Lunar Base Thermoelectric Power Station Study

    SciTech Connect

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard; Brooks, Michael; Heshmatpour, Ben

    2006-01-20

    Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt and Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of

  18. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  19. Design of a monitor and simulation terminal (master) for space station telerobotics and telescience

    NASA Technical Reports Server (NTRS)

    Lopez, L.; Konkel, C.; Harmon, P.; King, S.

    1989-01-01

    Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator.

  20. Space station definitions, design, and development. Task 5: Multiple arm telerobot coordination and control: Manipulator design methodology

    NASA Technical Reports Server (NTRS)

    Stoughton, R. M.

    1990-01-01

    A proposed methodology applicable to the design of manipulator systems is described. The current design process is especially weak in the preliminary design phase, since there is no accepted measure to be used in trading off different options available for the various subsystems. The design process described uses Cartesian End-Effector Impedance as a measure of performance for the system. Having this measure of performance, it is shown how it may be used to determine the trade-offs necessary to the preliminary design phase. The design process involves three main parts: (1) determination of desired system performance in terms of End-Effector Impedance; (2) trade-off design options to achieve this desired performance; and (3) verification of system performance through laboratory testing. The design process is developed using numerous examples and experiments to demonstrate the feasability of this approach to manipulator design.

  1. Robust Constrained Optimization Approach to Control Design for International Space Station Centrifuge Rotor Auto Balancing Control System

    NASA Technical Reports Server (NTRS)

    Postma, Barry Dirk

    2005-01-01

    This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.

  2. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  3. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  4. The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Bruce, Rebekah J.; Ott, C. Mark; Pierson, D. L.

    2006-01-01

    For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.

  5. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Astrophysics Data System (ADS)

    Morris, Robert A.

    1990-12-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  6. Conceptual Design of the Adaptive Optics System for the Laser Communication Relay Demonstration Ground Station at Table Mountain

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C., Jr.; Page, Norman A.; Burruss, Rick S.; Truong, Tuan N.; Dew, Sharon; Troy, Mitchell

    2013-01-01

    The Laser Communication Relay Demonstration will feature a geostationary satellite communicating via optical links to multiple ground stations. The first ground station (GS-1) is the 1m OCTL telescope at Table Mountain in California. The optical link will utilize pulse position modulation (PPM) and differential phase shift keying (DPSK) protocols. The DPSK link necessitates that adaptive optics (AO) be used to relay the incoming beam into the single mode fiber that is the input of the modem. The GS-1 AO system will have two MEMS Deformable mirrors to achieve the needed actuator density and stroke limit. The AO system will sense the aberrations with a Shack-Hartmann wavefront sensor using the light from the communication link's 1.55 microns laser to close the loop. The system will operate day and night. The system's software will be based on heritage software from the Palm 3000 AO system, reducing risk and cost. The AO system is being designed to work at r(sub 0) greater than 3.3 cm (measured at 500 nm and zenith) and at elevations greater than 20deg above the horizon. In our worst case operating conditions we expect to achieve Strehl ratios of over 70% (at 1.55 microns), which should couple 57% of the light into the single mode DPSK fiber. This paper describes the conceptual design of the AO system, predicted performance and discusses some of the trades that were conducted during the design process.

  7. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1990-01-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  8. Using a life-cycle-cost criterion for multi-disciplinary design studies for the Manned Space Station

    NASA Technical Reports Server (NTRS)

    Taylor, L. W.; Dunning, R. S.

    1985-01-01

    A life-cycle-cost measure for the Manned Space Station is suggested which considers the mass, initial cost, aerodynamic drag, electrical power, moment, required ground support, and expected life of subsystems or components. It is proposed that this life-cycle-cost measure be considered as a criterion for design trade-off studies involving controls and structures. Calculating the related sensitivities in the optimization process is discussed and then applied to specific examples. In the first example, the reaction control system is analyzed with regard to the design of its supporting structure and selection of rocket type. Values of support beam length, structural material selection, and rocket propellant selection are determined which minimize life-cycle-cost. In the second example, the alignment of solar arrays are analyzed for efficiency with regard to generating power, their drag, and their aerodynamic moment. Alignment angles are determined which again minimize life cycle cost. It seems clear from these and other examples that the proposed criterion has value for multi-disciplinary design studies for the Manned Space Station.

  9. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    NASA Astrophysics Data System (ADS)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in

  10. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  11. A novel x-ray detector design with higher DQE and reduced aliasing: Theoretical analysis of x-ray reabsoprtion in detector converter material

    NASA Astrophysics Data System (ADS)

    Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.

    2016-03-01

    The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.

  12. WindPACT Turbine Design Scaling Studies: Technical Area 4 -- Balance-of-Station Cost

    SciTech Connect

    Shafer, D. A.; Strawmyer, K. R.; Conley, R. M.; Guidinger J. H.; Wilkie, D. C.; Zellman, T. F.

    2001-07-24

    DOE's Wind Partnerships for Advanced Component Technologies (WindPACT) program explores the most advanced wind-generating technologies for improving reliability and decreasing energy costs. The first step in the WindPact program is a scaling study to bound the optimum sizes for wind turbines, to define size limits for certain technologies, and to scale new technologies. The program is divided into four projects: Composite Blades for 80-120-meter Rotors; Turbine, Rotor, and Blade Logistics; Self-Erecting Tower and Nacelle Feasibility; and Balance-of-Station Cost. This report discusses balance-of-station costs, which includes the electrical power collector system, wind turbine foundations, communications and controls, meteorological equipment, access roadways, crane pads, and the maintenance building. The report is based on a conceptual 50-megawatt (MW) wind farm site near Mission, South Dakota. Cost comparisons are provided for four sizes of wind turbines: 750 kilowatt (kW), 2.5 MW, 5.0 MW, and 10.0 MW.

  13. Comparison of Ambient Noise From Two Station Designs, Evaluating USArray's Transportable and Flexible Arrays in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Pfeifer, M.; Alvarez, M.; Woodward, R.; Yang, Z.

    2009-12-01

    ambient noise level? Both vault systems are designed to minimize noise from either cultural, electronic or environmental sources. In the case for the TA vault, a 2 meter deep hole is dug using heavy excavation equipment with over a square meter of concrete used for a base and Earth coupling. A deeper vault is known to reduce the diurnal temperature fluctuations that are a major source of noise for the broadband sensor. The standard FA vault is typically less than 1 meter deep dug by hand with approximately 1/10 square meter of concrete as a base. The construction materials and the seismic equipment for both these vaults are otherwise equivalent. We propose the following explanation for the difference in noise levels as a function of frequency and sensor component. The deeper TA vault is more stable with respect tilt which reduces the diurnal and seasonal temperature changes resulting in quieter horizontal data. The general location of TA stations near cultural noise sources such as roadways and population centers contribute to the elevated high frequency noise as compared to FA stations that are often located in very remote locations.

  14. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  15. Modular, thermal bus-to-radiator integral heat exchanger design for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Ewert, Michael

    1990-01-01

    The baseline concept is introduced for the 'integral heat exchanger' (IHX) which is the interface of the two-phase thermal bus with the heat-rejecting radiator panels. A direct bus-to-radiator heat-pipe integral connection replaces the present interface hardware to reduce the weight and complexity of the heat-exchange mechanism. The IHX is presented in detail and compared to the baseline system assuming certain values for heat rejection, mass per unit width, condenser capacity, contact conductance, and assembly mass. The spreadsheet comparison can be used to examine a variety of parameters such as radiator length and configuration. The IHX is shown to permit the reduction of panel size and system mass in response to better conductance and packaging efficiency. The IHX is found to be a suitable heat-rejection system for the Space Station Freedom because it uses present technology and eliminates the interface mechanisms.

  16. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  17. Design of a remotely piloted vehicle for a low Reynolds number station keeping mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Six teams of senior level Aerospace Engineering undergraduates were given a request for proposal, asking for a design concept for a remotely piloted vehicle (RPV). This RPV was to be designed to fly at a target Reynolds number of 1 times 10(exp 5). The craft was to maximize loiter time and perform an indoor, closed course flight. As part of the proposal, each team was required to construct a prototype and validate their design with a flight demonstration.

  18. Design, optimization, and deployment of a waterworks pumping station control system.

    PubMed

    Borkowski, Dariusz; Wetula, Andrzej; Bień, Andrzej

    2012-07-01

    This article presents a summary of the development and realization of a custom control and monitoring system for a water supply facility consisting of fixed-capacity intake pumps, a reservoir tank, and variable-speed outtake pumps. Project realization included the design and building of control hardware, as well as the design and deployment of the intake pump switching algorithm. Details of the control system design with an emphasis on the pump switching algorithm are given. The stages of the system development, including process modeling, design goal formulation, optimization of control algorithm using genetic algorithms, simulation, and implementation, are presented. Finally, deployment and real-life results are shown. PMID:22503452

  19. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  20. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; Monroe, Chuck; Pugh, Richard; Wiley, Roger

    2016-01-01

    This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  1. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, Todd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; Monroe, Chuck; Pugh, Richard; Willey, Roger

    2015-01-01

    This paper describes the design of a unique suite of mechanisms which make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses 4 stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  2. Thermionic converter

    DOEpatents

    Rasor, Ned S.; Britt, Edward J.

    1976-01-01

    A gas-filled thermionic converter is provided with a collector and an emitter having a main emitter region and an auxiliary emitter region in electrical contact with the main emitter region. The main emitter region is so positioned with respect to the collector that a main gap is formed therebetween and the auxiliary emitter region is so positioned with respect to the collector that an auxiliary gap is formed therebetween partially separated from the main gap with access allowed between the gaps to allow ionizable gas in each gap to migrate therebetween. With heat applied to the emitter the work function of the auxiliary emitter region is sufficiently greater than the work function of the collector so that an ignited discharge occurs in the auxiliary gap and the work function of the main emitter region is so related to the work function of the collector that an unignited discharge occurs in the main gap sustained by the ions generated in the auxiliary gap. A current flows through a load coupled across the emitter and collector due to the unignited discharge in the main gap.

  3. Turbo-Brayton Power Converter

    NASA Technical Reports Server (NTRS)

    Breedlove, Jeffrey

    2015-01-01

    Future NASA space missions will require advanced thermal-to-electric power converters that are reliable, efficient, and lightweight. Creare, LLC, is developing a turbo-Brayton power converter that offers high efficiency and specific power. The converter employs gas bearings to provide maintenance free, long-life operation. Discrete components can be packaged to fit optimally with other subsystems, and the converter's continuous gas flow can communicate directly with remote heat sources and heat rejection surfaces without the need for ancillary heat-transfer components and intermediate flow loops. Creare has completed detailed analyses, trade studies, fabrication trials, and preliminary designs for the components and converter assembly. The company is fabricating and testing a breadboard converter.

  4. Human-factors engineering-control-room design review: Shoreham Nuclear Power Station. Draft audit report

    SciTech Connect

    Peterson, L.R.; Preston-Smith, J.; Savage, J.W.; Rousseau, W.F.

    1981-04-24

    A human factors engineering preliminary design review of the Shoreham control room was performed at the site on March 30 through April 3, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The presented sections are numbered to conform to the guidelines of the draft version of NUREG-0700. They summarize the teams's observations of the control room design and layout, and of the control room operators' interface with the control room environment.

  5. Design challenges of EO polymer based leaky waveguide deflector for 40 Gs/s all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2016-08-01

    Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.

  6. Living Together in Space: The Design and Operation of the Life Support Systems on the International Space Station. Volume 1

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    1998-01-01

    The International Space Station (ISS) incorporates elements designed and developed by an international consortium led by the United States (U.S.), and by Russia. For this cooperative effort to succeed, it is crucial that the designs and methods of design of the other partners are understood sufficiently to ensure compatibility. Environmental Control and Life Support (ECLS) is one system in which functions are performed independently on the Russian Segment (RS) and on the U.S./international segments. This document describes, in two volumes, the design and operation of the ECLS Systems (ECLSS) on board the ISS. This current volume, Volume 1, is divided into three chapters. Chapter 1 is a general overview of the ISS, describing the configuration, general requirements, and distribution of systems as related to the ECLSS, and includes discussion of the design philosophies of the partners and methods of verification of equipment. Chapter 2 describes the U.S. ECLSS and technologies in greater detail. Chapter 3 describes the ECLSS in the European Attached Pressurized Module (APM), Japanese Experiment Module (JEM), and Italian Mini-Pressurized Logistics Module (MPLM). Volume II describes the Russian ECLSS and technologies in greater detail. These documents present thorough, yet concise, descriptions of the ISS ECLSS.

  7. Design studies and commissioning plans for plasma acceleration research station experimental program

    SciTech Connect

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-15

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  8. Design studies and commissioning plans for plasma acceleration research station experimental program

    NASA Astrophysics Data System (ADS)

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-01

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  9. Space Station Power System

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1984-01-01

    The strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program are outlined. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on draft and mass requirements are described with a summary and status of key power systems technology requirements and issues.

  10. Space Station power system

    SciTech Connect

    Baraona, C.R.

    1984-04-01

    The strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program are outlined. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on draft and mass requirements are described with a summary and status of key power systems technology requirements and issues.

  11. Space station system analysis study. Part 3: Documentation. Volume 2: Technical report. [structural design and construction

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.

  12. An Ecological Approach to the Design of UAV Ground Control Station (GCS) Status Displays

    NASA Technical Reports Server (NTRS)

    Dowell, Susan; Morphew, Ephimia; Shively, Jay

    2003-01-01

    Use of UAVs in military and commercial applications will continue to increase. However, there has been limited research devoted to UAV GCS design. The current study employed an ecological approach to interfac e design. Ecological Interface Design (EID) can be characterized as r epresenting the properties of a system, such that an operator is enco uraged to use skill-based behavior when problem solving. When more ef fortful cognitive processes become necessary due to unfamiliar situations, the application of EID philosophy supports the application of kn owledge-based behavior. With advances toward multiple UAV command and control, operators need GCS interfaces designed to support understan ding of complex systems. We hypothesized that use of EID principles f or the display of UAV status information would result in better opera tor performance and situational awareness, while decreasing workload. Pilots flew a series of missions with three UAV GCS displays of statu s information (Alphanumeric, Ecological, and Hybrid display format). Measures of task performance, Situational Awareness, and workload dem onstrated the benefits of using an ecological approach to designing U AV GCS displays. The application of ecological principles to the design of UAV GCSs is a promising area for improving UAV operations.

  13. Design and assessment of a 6 ps-resolution time-to-digital converter with 5 MGy gamma-dose tolerance for nuclear instrumentation

    SciTech Connect

    Cao, Y.; Leroux, P.; De Cock, W.; Steyaert, M.

    2011-07-01

    Time-to-Digital Converters (TDCs) are key building blocks in time-based mixed-signal systems, used for the digitization of analog signals in time domain. A short survey on state-of-the-art TDCs is given. In order to realize a TDC with picosecond time resolution as well as multi MGy gamma-dose radiation tolerance, a novel multi-stage noise-shaping (MASH) delta-sigma ({Delta}{Sigma}) TDC structure is proposed. The converter, implemented in 0.13 {mu}m, achieves a time resolution of 5.6 ps and an ENOB of 11 bits, when the over sampling ratio (OSR) is 250. The TDC core consumes only 1.7 mW, and occupies an area of 0.11 mm{sup 2}. Owing to the usage of circuit level radiation hardened-by-design techniques, such as passive RC oscillators and constant-g{sub m} biasing, the TDC exhibits enhanced radiation tolerance. At a low dose rate of 1.2 kGy/h, the frequency of the counting clock in the TDC remains constant up to at least 160 kGy. Even after a total dose of 3.4 MGy at a high dose rate of 30 kGy/h, the TDC still achieves a time resolution of 10.5 ps with an OSR of 250. (authors)

  14. Fractional Watt AMTEC Converter

    NASA Astrophysics Data System (ADS)

    Hunt, T. K.; Rasmussen, J. R.

    2006-01-01

    We report here the long term performance of a small, multi-tube AMTEC converter. This converter was designed to operate and produce approximately 12 watt of electrical output from a small, 4 to 6 watt radioisotope heat source for remote power applications. It was built and put on test in 1999 using electrical heaters as stand-ins for the radioisotope capsule. Since that time it has accumulated more than 5 years of run time at an input heater temperature of 700 °C, with numerous thermal cycles to ambient that were generally related to grid power failures or physical moves of the test apparatus. The power output has remained, with variations due to orientation changes and minor variations due to small temperature changes, essentially constant at 0.40 W to 0.60 W over the test period and operation is ongoing. The converter casing and mechanical structure was fabricated from 316 SS and the electrodes are sputtered titanium nitride films. Separate static tests of a multilayer insulation package suitable for use with the converter showed the capability to reach 700 °C with a thermal input of < 4 watts.

  15. Design and the parametric testing of the space station prototype integrated vapor compression distillation water recovery module

    NASA Technical Reports Server (NTRS)

    Reveley, W. F.; Nuccio, P. P.

    1975-01-01

    Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.

  16. The mechanical design and electrical characteristics of a 32 m satellite ground station antenna with beam waveguide feed system

    NASA Astrophysics Data System (ADS)

    Leupelt, U.; Thiere, H.

    1980-11-01

    A 32 m Cassegrain antenna with a new beam waveguide feed system is discussed, which handles the increased demands on the electrical characteristics of ground station antennas resulting from the introduction of frequency reuse operation in Intelsat satellites. The design of the antenna and feed system is examined along with the problems associated with polarization discrimination. The antenna operates in the frequency range 3.7 to 4.2 GHz (receiver) and 5925 to 6425 GHz (sender) by opposing circular polarization. In addition to optical adjustment of the antenna and feed system, the electrical fine tuning of the parabolic surface mirror and the collecting reflector is investigated. A flow diagram illustrates measurements using a satellite.

  17. Composite rod insulators for ac power lines; Electrical performance of various designs at a coastal testing station

    SciTech Connect

    Houlgate, R.G.; Swift, D.A. )

    1990-10-01

    The electrical performance of thirty-six composite insulators - of four commercial types for each AC system level of 34.5 kV, 230 kV and 500 kV - has been determined at the CEGB insulator testing station, Brighton, England. The weathershed materials were epoxy-resin, ethylene propylene rubber and silicone rubber; half of the 230 kV insulators had no stress rings. Surface leakage current was recorded for surge levels of 25 mA, 150 mA and 500 mA; a special technique was developed to obtain the flashover statistics of the 500 kV insulators, thereby enabling performance of the composite insulator to be quantified relative to that of a string of cap and pin porcelain insulators of anti-fog design, the deterioration of the insulators was observed by making regular visual inspections. The practical consequences of the findings and the causes of the degradation are discussed.

  18. Design of an input filter for power factor correction (PFC) AC to DC converters employing an active ripple cancellation

    SciTech Connect

    Lee, D.Y.; Cho, B.H.

    1996-12-31

    An active input filter for power factor correction (PFC) circuit employing ripple current cancellation is proposed to reduce the filter`s size and cost.Switching ripple current can be filtered by an active circuit from the line current. A single stage passive filter with the active filter compensation circuit, a high filter can be synthesized to meet the electromagnetic interference (EMI) and power factor requirements. Analysis of the active filter and design procedure are detailed. Simulation result is presented to verify the high order filter characteristics of proposed scheme.

  19. Design of an auto change mechanism and intelligent gripper for the space station

    NASA Technical Reports Server (NTRS)

    Dehoff, Paul H.; Naik, Dipak P.

    1989-01-01

    Robot gripping of objects in space is inherently demanding and dangerous and nowhere is this more clearly reflected than in the design of the robot gripper. An object which escapes the gripper in a micro g environment is launched not dropped. To prevent this, the gripper must have sensors and signal processing to determine that the object is properly grasped, e.g., grip points and gripping forces and, if not, to provide information to the robot to enable closed loop corrections to be made. The sensors and sensor strategies employed in the NASA/GSFC Split-Rail Parallel Gripper are described. Objectives and requirements are given followed by the design of the sensor suite, sensor fusion techniques and supporting algorithms.

  20. On the seismic design of piping for fossil fired power stations

    SciTech Connect

    Lazzeri, L.

    1996-12-01

    The seismic design criteria are briefly reviewed: the importance of the yielding phenomena on the seismic response is presented. The decisive importance of ductility is confirmed by the field observations. The ductility causes reduction in the response with flattening of the peaks. Some analyses are performed on several piping systems in static equivalent conditions with ZPA loading. Such analyses assume some ductility in the system. Problems are found only for very flexible systems.

  1. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.

  2. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  3. An evolution of nozzle design: The low NOx burner experience at the Baldwin Power Station

    SciTech Connect

    Forney, D.W.; Murray, D.G.; Beal, P.R.

    1996-01-01

    Illinois Power Company (IPC) installed low NO{sub x} burners on Baldwin Unit 3 in the Spring of 1994. Although the NO{sub x} reduction performance of these burners has been outstanding, IPC suffered catastrophic nozzle failure in the first 8 weeks of operation. The nozzles were then modified and later, replaced. Within 1 week of operation, 2 of the new nozzles also failed. This paper traces the development of the original nozzle, the influences-of other nozzle failures on its design, the determination of the cause of the original and subsequent failures, and the current state of the nozzles.

  4. Hardware design document for the Infrasound Prototype for a CTBT IMS station

    SciTech Connect

    Breding, D.R.; Kromer, R.P.; Whitaker, R.W.; Sandoval, T.

    1997-11-01

    The Hardware Design Document (HDD) describes the various hardware components used in the Comprehensive Test Ban Treaty (CTBT) Infrasound Prototype and their interrelationships. It divides the infrasound prototype into hardware configurations items (HWCIs). The HDD uses techniques such as block diagrams and parts lists to present this information. The level of detail provided in the following sections should be sufficient to allow potential users to procure and install the infrasound system. Infrasonic monitoring is a low cost, robust, and effective technology for detecting atmospheric explosions. Low frequencies from explosion signals propagate to long ranges (few thousand kilometers) where they can be detected with an array of sensors.

  5. Mars Micro-Meteorology Station Electronic Design, Assembly and Test Project

    NASA Technical Reports Server (NTRS)

    Twiggs, Robert J.; Merrihew, Seven; Engberg, Brian; Hicks, Michael; Tillier, Clemens

    1996-01-01

    The Micro-Met mission is a micro-meteorological experiment for Mars designed to take globally distributed pressure measurements for at least one martian year. A series of 16 landers equally spaced over the planet's surface will take pressure and temperature data and relay it to investigators on Earth. Measurements will be logged once every hour and transmitted to an orbiter once every thirty days using Mars Balloon Relay protocol. Micro-Met data will aid tremendously in the development and refinement of a global model of Martian weather.

  6. Boarding and alighting injury experience with different station platform and car entranceway designs on US commuter railroads.

    PubMed

    Morlok, Edward K; Nitzberg, Bradley F; Lai, Lee

    2004-03-01

    Commuter railroad systems in the US employ three combinations of station platforms and car entranceways. These are high-level platforms with remotely controlled doors and level entranceway (HL-RC), low-level platforms (just above the rail) with steps and remotely controlled doors (LL-RC), and a mixture of the two platform types with a correspondingly more complex, partly manual, door and entranceway arrangement (ML-MO). Much controversy exists over which type of platform/entranceway is better. This seemingly small feature significantly impacts many performance characteristics of these systems, including cost, speed, and boarding and alighting accidents. Northeastern systems are generally moving toward the mixed platform design or all high-level platforms, while systems elsewhere are generally selecting the low-level design. Data on actual accident experience for 1995-2000 are analyzed to determine the effect of platform/entranceway type on passenger and employee injuries. Passenger injury rates on systems with the HL-RC design are lowest, with LL-RC systems next, and ML-MO systems having the highest rates. Employee injury rates are the least on LL-RC systems, but higher on ML-MO and HL-RC systems. Systems with a mixture of high and low platforms (ML-MO) experience a higher overall (combined passenger and employee) injury rate than the other two designs. The implications of these results for both the modernization of existing systems and the design of new systems, in the US and abroad, are discussed. PMID:14642881

  7. Significance of analog instrumentation - design philosophy of replacement dump arrest unit at Pickering Station Candu Reactor

    SciTech Connect

    Miller, J.F.; McDowell, R.W.

    1996-12-31

    This paper discusses the differences of opinion concerning power plant instrumentation, including safety systems. One popular view point is that modem instrumentation must be microprocessor-based to be acceptable. An alternative view point is that properly designed analog instrumentation is recommended in some applications and has proven to be viable based upon performance and experience. A practical example is discussed in detail, explaining how a combination of discrete analog circuitry, combined with discrete digital circuitry provides a robust solution to a complex instrumentation replacement problem. In this application, a microprocessor-based instrument was designed as a replacement for an obsolete analog instrument. Due to severe licensing difficulties, the instrument was redesigned as a combination of discrete analog and digital circuitry. In the implementation of this circuitry, all complex testing functions of the improved microprocessor-based instrument were accommodated and system accuracy and performance were not compromised over the micro-processor-based instrument. The instrument has met all requirements for reliability and EMI/RFI susceptibility, as well as isolation of analog outputs and the ability to withstand severe transient noise on inputs and outputs without adversely affecting performance.

  8. Architectural Exploration and Design of Time-Interleaved SAR Arrays for Low-Power and High Speed A/D Converters

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Nuzzo, Pierluigi; Nani, Claudio; van der Plas, Geert; Fanucci, Luca

    Time-interleaved (TI) analog-to-digital converters (ADCs) are frequently advocated as a power-efficient solution to realize the high sampling rates required in single-chip transceivers for the emerging communication schemes: ultra-wideband, fast serial links, cognitive-radio and software-defined radio. However, the combined effects of multiple distortion sources due to channel mismatches (bandwidth, offset, gain and timing) severely affect system performance and power consumption of a TI ADC and need to be accounted for since the earlier design phases. In this paper, system-level design of TI ADCs is addressed through a platform-based methodology, enabling effective investigation of different speed/resolution scenarios as well as the impact of parallelism on accuracy, yield, sampling-rate, area and power consumption. Design space exploration of a TI successive approximation ADC is performed top-down via Monte Carlo simulations, by exploiting behavioral models built bottom-up after characterizing feasible implementations of the main building blocks in a 90-nm 1-V CMOS process. As a result, two implementations of the TI ADC are proposed that are capable to provide an outstanding figure-of-merit below 0.15pJ/conversion-step.

  9. A single aromatic core mutation converts a designed “primitive” protein from halophile to mesophile folding

    PubMed Central

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559

  10. Space station definition and preliminary design, WP-01. Volume 2: Results

    NASA Technical Reports Server (NTRS)

    Lenda, J. A.

    1987-01-01

    The basis for the studies and analyses which led to the results and conclusions documented and summarized, was the Engineering Master Schedule (EMS) generated by NASA and used as the controlling set of milestones and associated activities required to produce in a timely manner those products needed by all program participants in the establishment of an approved program baseline. The EMS consisted of twenty themes grouped into categories covering requirements, configurations, and strategies. A number of studies and analyses that were coordinated with the MSFC program and technical personnel as being needed to provide the requisite back-up material to satify the EMS were identified. These studies and analyses provided the data sufficient to support the conclusions and recommendations given to the MSFC in response to their EMS activity and to support the system level and conceptual design level approaches developed and reflected in the detailed sections of this document.

  11. The results of a limited study of approaches to the design, fabrication, and testing of a dynamic model of the NASA IOC space station. Executive summary

    NASA Technical Reports Server (NTRS)

    Brooks, George W.

    1985-01-01

    The options for the design, construction, and testing of a dynamic model of the space station were evaluated. Since the definition of the space station structure is still evolving, the Initial Operating Capacity (IOC) reference configuration was used as the general guideline. The results of the studies treat: general considerations of the need for and use of a dynamic model; factors which deal with the model design and construction; and a proposed system for supporting the dynamic model in the planned Large Spacecraft Laboratory.

  12. Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams

    SciTech Connect

    Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L.

    2007-07-01

    The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

  13. Overview of Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the late 1980's, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in the design of a closed loop life support system.

  14. Space station common module thermal management: Design and construction of a test bed

    NASA Technical Reports Server (NTRS)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  15. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  16. Design and Manufacturing Considerations for Shockproof and Corrosion-Immune Superelastic Nickel-Titanium Bearings for a Space Station Application

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Wozniak, Walter A.

    2012-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is a promising tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, easily lubricated and is non-magnetic. It also falls within the class of superelastic alloys and can elastically endure large strains (beyond 5 percent) making it highly resistant to excessive and unexpected (shock) loads. Key material properties and characteristics such as elastic modulus, tensile fracture sensitivity and residual stress behavior, however, differ from conventional alloys such as steel and this significantly affects bearing design and manufacturing. In this paper, the preliminary design and manufacture of ball bearings made from 60NiTi are considered for a highly corrosive, lightly loaded, low speed bearing application found inside the International Space Station s water recycling system. The information presented is expected to help guide more widespread commercialization of this new technology into space mechanism and other applications.

  17. 100 gigasamples per second 12 bits optoelectronic analog-to-digital converter design and implementation based on cellular polyphase-sampling architecture

    NASA Astrophysics Data System (ADS)

    Villa-Angulo, Carlos

    The next generation digital information systems such as high performance computers, multigigabit/sec communication networks, distributed sensors, three dimensional digital imaging systems etc, will require analog-to-digital converters (ADCs) with high sampling rates exceeding 10 Gigasamples per second (GSPS) and high bit resolution of at least 10 bits. Such performance criteria are difficult to achieve with silicon electronics technology because the switching speeds peak at about 10-20GHz. Also, timing jitters, amplitude fluctuations, phase noise, thermal noise, and harmonic distortion, all contribute to reductions in ADC bit resolution as sampling rate increases. Photonics ADCs are rapidly emerging as the enabling technologies for high-performance digital signal processing systems. For this technology, high optical pulses repetition rate (in the order of GHz) with low time jitter and pulse width in the femtoseconds regime are the major attractive characteristics of optical sources. In this dissertation work, a novel 102.4 GSPS 12-bit optoelectronic analog-to-digital converter architecture that is based on a Cellular Polyphase-Sampling architecture is introduced. First, a 102.4 GHz all-optical clock was designed and implemented using a femtosecond laser source and passive optical components. Second, a novel optoelectronic architecture for optical sampling and parallel demultiplexing of different phases (polyphase) of an input analog signal is presented. The optoelectronic sampling and demultiplexing architecture is composed by 20 optoelectronic subcircuit referred as "OE-Cell"; these have been designed and implemented using optical passive components and InGaAs PIN photodiodes. A unique feature of this approach is that the optically sampled RF signal always remains in the electrical domain and thus eliminates the need for electrical-to-optical and optical-to-electrical conversions. The electrical-in to electrical-out transfer functions of the sampling and

  18. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  19. Human factors issues and approaches in the spatial layout of a space station control room, including the use of virtual reality as a design analysis tool

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P., II

    1994-01-01

    Human Factors Engineering support was provided for the 30% design review of the late Space Station Freedom Payload Control Area (PCA). The PCA was to be the payload operations control room, analogous to the Spacelab Payload Operations Control Center (POCC). This effort began with a systematic collection and refinement of the relevant requirements driving the spatial layout of the consoles and PCA. This information was used as input for specialized human factors analytical tools and techniques in the design and design analysis activities. Design concepts and configuration options were developed and reviewed using sketches, 2-D Computer-Aided Design (CAD) drawings, and immersive Virtual Reality (VR) mockups.

  20. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  1. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis.

    PubMed

    Wu, Dan; Gu, Qiuhong; Zhao, Ning; Xia, Fei; Li, Zhiwei

    2015-12-01

    The human tumor necrosis factor-α converting enzyme (TACE) has recently been raised as a new and promising therapeutic target of hepatitis and other inflammatory diseases. Here, we reported a successful application of the solved crystal structure of TACE complex with a peptide-like ligand INN for rational design of novel peptide hydroxamic acid inhibitors with high potency and selectivity to target and inhibit TACE. First, the intermolecular interactions between TACE catalytic domain and INN were characterized through an integrated bioinformatics approach, with which the key substructures of INN that dominate ligand binding were identified. Subsequently, the INN molecular structure was simplified to a chemical sketch of peptide hydroxamic acid compound, which can be regarded as a linear tripeptide capped by a N-terminal carboxybenzyl group (chemically protective group) and a C-terminal hydroxamate moiety (coordinated to the Zn(2+) at TACE active site). Based on the sketch, a virtual combinatorial library containing 180 peptide hydroxamic acids was generated, from which seven samples were identified as promising candidates by using a knowledge-based protein-peptide affinity predictor and were then tested in vitro with a standard TACE activity assay protocol. Consequently, three designed peptide hydroxamic acids, i.e. Cbz-Pro-Ile-Gln-hydroxamic acid, Cbz-Leu-Ile-Val-hydroxamic acid and Cbz-Phe-Val-Met-hydroxamic acid, exhibited moderate or high inhibitory activity against TACE, with inhibition constants Ki of 36 ± 5, 510 ± 46 and 320 ± 26 nM, respectively. We also examined the structural basis and non-bonded profile of TACE interaction with a designed peptide hydroxamic acid inhibitor, and found that the inhibitor ligand is tightly buried in the active pocket of TACE, forming a number of hydrogen bonds, hydrophobic forces and van der Waals contacts at the interaction interface, conferring both stability and specificity for TACE-inhibitor complex

  2. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  3. Step-by-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course

    ERIC Educational Resources Information Center

    Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.

    2011-01-01

    In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…

  4. Life-Prediction Parameters of Sapphire Determined for the Design of a Space Station Combustion Facility Window

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2003-01-01

    To characterize the stress corrosion parameters and predict the life of a sapphire window being considered for use in the International Space Station's Fluids and Combustion Facility, researchers at the NASA Glenn Research Center conducted stress corrosion tests, fracture toughness tests, and reliability analyses, as shown in the figures. Standardized test methods, developed and updated by the author under the auspices of American Society for Testing and Materials, were employed. One interesting finding is that sapphire exhibits a susceptibility to stress corrosion in water similar to that of glass. In addition to generating the stress corrosion parameters and fracture toughness data, closed-form expressions for the variances of the crack growth parameters were derived. The expressions allow confidence bands to be easily placed on life predictions of ceramic components. Brittle materials such as sapphire and quartz are required for windows in a variety of applications such as the Fluids and Combustion Facility. To minimize the launch weight of such facilities, researchers must design the windows to be as lightweight as possible. The safe use of lightweight, brittle windows in structural applications is limited by two factors: low fracture toughness and slow crack growth, or stress corrosion. Stress corrosion of these and other optical materials can occur in relatively common environments, such as humid air. Access to the data has been requested by designers for use in the life prediction of a Northrop Grumman F16 instrument window and a Jet Propulsion Laboratory instrument window. One Space Act Agreement has been formed. Future work includes the measurement of the life of subscale windows.

  5. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  6. Design of a hard X-ray beamline and end-station for pump and probe experiments at Pohang Accelerator Laboratory X-ray Free Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Park, Jaeku; Eom, Intae; Kang, Tai-Hee; Rah, Seungyu; Nam, Ki Hyun; Park, Jaehyun; Kim, Sangsoo; Kwon, Soonam; Park, Sang Han; Kim, Kyung Sook; Hyun, Hyojung; Kim, Seung Nam; Lee, Eun Hee; Shin, Hocheol; Kim, Seonghan; Kim, Myong-jin; Shin, Hyun-Joon; Ahn, Docheon; Lim, Jun; Yu, Chung-Jong; Song, Changyong; Kim, Hyunjung; Noh, Do Young; Kang, Heung Sik; Kim, Bongsoo; Kim, Kwang-Woo; Ko, In Soo; Cho, Moo-Hyun; Kim, Sunam

    2016-02-01

    The Pohang Accelerator Laboratory X-ray Free Electron Laser project, a new worldwide-user facility to deliver ultrashort, laser-like x-ray photon pulses, will begin user operation in 2017 after one year of commissioning. Initially, it will provide two beamlines for hard and soft x-rays, respectively, and two experimental end-stations for the hard x-ray beamline will be constructed by the end of 2015. This article introduces one of the two hard x-ray end-stations, which is for hard x-ray pump-probe experiments, and primarily outlines the overall design of this end-station and its critical components. The content of this article will provide useful guidelines for the planning of experiments conducted at the new facility.

  7. Design of a reusable kinetic energy absorber for an astronaut safety tether to be used during extravehicular activities on the Space Station

    NASA Technical Reports Server (NTRS)

    Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.

    1991-01-01

    The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.

  8. Thermoelectric converters for alternating current standards

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Taschuk, D. D.

    2012-06-01

    Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.

  9. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  10. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    SciTech Connect

    Bonne, François; Bonnay, Patrick; Bradu, Benjamin

    2014-01-29

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  11. Design and Testing of a 2-Hour Oxygen Prebreathe Protocol for Space Walks from the International Space Station

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Conkin, J.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Beltran, E.; Fife, C. E.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To develop and test a 2-hour prebreathe protocol for performing extravehicular activities (EVAs) from the International Space Station (ISS). Combinations of adynamia (non-walking), prebreathe exercise, and space suit donning options (10.2 vs. 14.7 psi) were evaluated, against timeline and consumable contraints to develop an operational 2- hour prebreathe protocol. Prospective accept/reject criteria were defined for decompression sickness (DCS) and venous gas emboli (VGE) from analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew-members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept/reject limits were adjusted for greater safety based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center human trial. Protocols were tested with 4 different prebreathe exercises (Phases I-IV), prior to exposure to 4.3 psi for 4 hrs. Subject selection, Doppler monitoring for VGE, test termination criteria, and DCS definitions were standardized. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase II: ergometry plus 24 min of light exercise (simulating space-suit preparations). Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. A prebreathe procedure was accepted if, at 95% confidence, the incidence of DCS was less than 15% (with no Type II DCS), and Grade IV VGE was less than 20%.

  12. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin

    2014-01-01

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  13. Space station executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An executive summary of the modular space station study is presented. The subjects discussed are: (1) design characteristics, (2) experiment program, (3) operations, (4) program description, and (5) research implications. The modular space station is considered a candidate payload for the low cost shuttle transportation system.

  14. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  15. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. PMID:24906895

  16. Space Station fluid resupply

    NASA Technical Reports Server (NTRS)

    Winters, AL

    1990-01-01

    Viewgraphs on space station fluid resupply are presented. Space Station Freedom is resupplied with supercritical O2 and N2 for the ECLSS and USL on a 180 day resupply cycle. Resupply fluids are stored in the subcarriers on station between resupply cycles and transferred to the users as required. ECLSS contingency fluids (O2 and N2) are supplied and stored on station in a gaseous state. Efficiency and flexibility are major design considerations. Subcarrier approach allows multiple manifest combinations. Growth is achieved by adding modular subcarriers.

  17. Advanced modular power supplies for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Detwiler, R. C.

    1990-01-01

    Viewgraphs and discussion on advanced modular power supplies for Space Station Freedom are presented. Topics covered include concept and characteristics; user power supply applications; and bulk converter application.

  18. Stirling converters for space dynamic power concepts with 2 to 130 W{sub e} output

    SciTech Connect

    Ross, B.A.

    1995-12-31

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance.

  19. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  20. Bidirectional buck boost converter

    DOEpatents

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  1. Bidirectional buck boost converter

    DOEpatents

    Esser, A.A.M.

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  2. Multiple Craft Stations.

    ERIC Educational Resources Information Center

    Johns, Mary Sue

    1980-01-01

    Described are three craft stations (claywork, papermaking, and stamp designing) for intermediate grade students, to correlate with their classroom study which focused on Ohio: its history, geography, cities, industries, products and famous natives. (KC)

  3. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  4. Conceptual design for a receiving station for the nondestructive assay of PuO/sub 2/ at the fuels and materials examination facility

    SciTech Connect

    Sampson, T.E.; Speir, L.G.; Ensslin, N.; Hsue, S.T.; Johnson, S.S.; Bourret, S.; Parker, J.L.

    1981-11-01

    We propose a conceptual design for a receiving station for input accountability measurements on PuO/sub 2/ received at the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. Nondestructive assay techniques are proposed, including neutron coincidence counting, calorimetry, and isotopic determination by gamma-ray spectroscopy, in a versatile data acquisition system to perform input accountability measurements with precisions better than 1% at throughputs of up to 2 M.T./yr of PuO/sub 2/.

  5. Modeling of converter transformers using frequency domain terminal impedance measurements

    SciTech Connect

    Liu, Yilu; Sebo, S.A.; Caldecott, R.; Kasten, D.G. ); Wright, S.E. )

    1993-01-01

    HVDC converter stations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. In order to calculate and predict the RF EM noise produced by the valve ignition of a converter station, it is essential to develop accurate models of station equipment over a broad frequency range. Models of all station equipment can be characterized by frequency dependent impedances. The paper describes the frequency dependent node-to-node impedance function (NIF) models of power system equipment based on systematic broad frequency range (50 Hz to 1MHz) external driving point impedance measurements, sponsored by the Electric Power Research Institute (EPRI). The regular structure, high accuracy, and virtually unlimited frequency range are important features of the NIF model. Examples of NIF model application in converter station RF EM noise calculations are presented.

  6. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  7. Design of a 2-Hour Prebreathe Protocol for Space Walks (EVAs) from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Conkin, J.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Fife, C.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; Dervay, J.; Waligora, J. M.; Powell, M. R.; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    The majority of extravehicular activities (EVAs) performed from the shuttle use a 10.2 psi staged decompression. The International Space Station (ISS) will operate at 14.7 psi, requiring crews to "campout" in the airlock at 10.2 psi. The constraints associated with campout (crew isolation, oxygen usage, and waste management), provided the rationale to develop a 2-hour prebreathe protocol from 14.7 psi. Previous studies on the affect of microgravity and exercise during prebreathe suggested the feasibility of this approach. Various combinations of adynamia (nonwalking subjects), prebreathe exercise doses, and space suit donning options (10.2 vs. 14.7 psi) were analyzed against timeline and consumable constraints. Prospective decompression sickness (DCS) and venous gas emboli (VGE) accept/reject criteria were defined from statistical analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept / reject limits were adjusted for greater safety (including Grade IV VGE criteria) based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center laboratory trial, including the capability of rejecting the primary protocol and testing at least one alternate exercise dose, within the 2-hour prebreathe. The 2-hour protocol incorporates 0, breathing for 5 0 min at 14.7 psi, including 10 min dual cycle ergometry at 75%VO(2max). It requires an additional 30 minO2breathing during depress from 14.7 to 10.2 psi, followed by a 30-60 min suit donning break at 10.2 psi/26.5% O2. It concludes with a 40 min in-suit O2 prebreathe. The protocol would be accepted for operations, if the incidence of DCS was less than 15% and Grade IV VGE less than 20%, both at 95

  8. Silicon waveguide based TE mode converter.

    PubMed

    Zhang, Jing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2010-11-22

    A silicon waveguide based TE mode converter was designed for the mode conversion between a horizontal waveguide and vertical waveguide in the two-layer structure waveguide based polarization diversity circuit. The TE mode converter's performance was studied. The polarization mode converter with minimum length of 5 μm was demonstrated to provide the TE mode conversion while maintaining the polarization status. The insertion loss at the transition region was less than 2 dB. PMID:21164874

  9. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  10. A preliminary human factors planning and design outline of parameters related to space station windows and CCTV monitoring

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1985-01-01

    The question of the merits of placing windows on proposed future space stations is addressed. The use of windows for human visual capabilities is compared to using closed circuit television. Placement and field of view, as well as the number of windows is discussed.

  11. Microbiological Tests Performed During the Design of the International Space Station ECLSS: Part 1, Bulk Phase Water and Wastewater

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recover Tests (WRT) from 1990-1998. These tests show that it is possible to recycle water from different sources including urine, and produce water that can exceed the quality of municpally produced tap water.

  12. Manned remote work station development article. Volume 1, book 2, appendix B: Trade and design definition studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    System trades, evaluations, and selection were organized under the appropriate manned remote work station roles and subsystems. Those trades/evaluations that have an impact on simulator fidelity were given emphasis in terms of identifying alternate concepts, making a selection, and defining the system approach. Those trades that do not impact simulator fidelity have the issues delineated and future study requirements identified.

  13. Space Station power system options

    SciTech Connect

    Baraona, C.R.; Forestieri, A.F.

    1984-08-01

    This paper outlines the strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. Conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on drag and mass requirements are described in this paper with a summary and status of key power systems technology requirements and issues.

  14. 47 CFR 25.209 - Earth station antenna performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pattern defined in paragraphs (a)(3) and (4) of this section. (2) 17/24 GHz BSS telemetry earth stations... design of any terrestrial station, any other earth station, or any space station beyond those...

  15. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  16. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 7: Specification for EOS low cost readout station

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Low Cost Readout Station (LCRS) which supports the Earth Observatory Satellite (EOS) data system are described. The basic LCRS consists of all hardware and software needed to acquire and track the EOS-A or EOS-B satellite and receive, record, process, and annotate the instrument data from the satellites. The LCRS also provides appropriate interfaces with the unique local user provided display and extractive processing equipment. The LCRS has the capability of acquiring image data from the EOS-A and the EOS-B satellites over a ground area defines by a 500 kilometer radius from the coordinates of the station. The LCRS is also capable of receiving and processing both, but not simultaneously, full five band Multispectral Scanner (MSS) image data and various modes of the Compacted Thematic (CTM) data.

  17. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  18. Compressor noise control begins with design--Part 2. [Noise pollution control for natural gas pipeline compressor stations

    SciTech Connect

    Frank, L. )

    1993-09-01

    Reduction of noise pollution at gas compressor stations associated with natural gas pipelines and distribution systems, has long been a complex problem. Specified noise levels of individual components tell nothing of the overall system when it is installed and placed in a site-specific setting. Further, testing for compliance performance guarantees is virtually impossible to conduct at a distant location because one cannot distinguish among various contributing noise sources. This paper develops a plan for calculating an estimate of sound generation from a compressor station and the methods for controlling and measuring sounds of individual components. It also classifies the types of noise and gives various methods of dealing with each noise type.

  19. Design Study Conducted of a Stirred and Perfused Specimen Chamber for Culturing Suspended Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Kizito, John P.

    2003-01-01

    A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask.

  20. Targeting space station technologies

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1983-01-01

    NASA's Space Station Technology Steering Committee has undertaken the definition of the level of technology that is desirable for use in the initial design and operation of an evolutionary, long service life space station, as well as the longer term technology required for the improvement of capabilities. The technology should initially become available in 1986, in order to support a space station launch as early as 1990. Toward this end, the committee seeks to assess technology forecasts based on existing research and testing capacity, and then plan and monitor a program which will move current technology to the requisite level of sophistication and reliability. The Space Shuttle is assumed to be the vehicle for space station delivery, assembly, and support on a 90-day initial cycle. Space station tasks will be military, commercial, and scientific, including on-orbit satellite servicing.