Convex Optimization Convex Optimization
Masci, Frank
Convex Optimization #12;#12;Convex Optimization Stephen Boyd Department of Electrical Engineering Cataloguing-in-Publication data Boyd, Stephen P. Convex Optimization / Stephen Boyd & Lieven Vandenberghe p. cm. Includes bibliographical references and index. ISBN 0 521 83378 7 1. Mathematical optimization. 2
Phase retrieval using iterative Fourier transform and convex optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Fen; Cheng, Hong; Zhang, Quanbing; Wei, Sui
2015-05-01
Phase is an inherent characteristic of any wave field. Statistics show that greater than 25% of the information is encoded in the amplitude term and 75% of the information is in the phase term. The technique of phase retrieval means acquire phase by computation using magnitude measurements and provides data information for holography display, 3D field reconstruction, X-ray crystallography, diffraction imaging, astronomical imaging and many other applications. Mathematically, solving phase retrieval problem is an inverse problem taking the physical and computation constraints. Some recent algorithms use the principle of compressive sensing, such as PhaseLift, PhaseCut and compressive phase retrieval etc. they formulate phase retrieval problems as one of finding the rank-one solution to a system of linear matrix equations and make the overall algorithm a convex program over n × n matrices. However, by "lifting" a vector problem to a matrix one, these methods lead to a much higher computational cost as a result. Furthermore, they only use intensity measurements but few physical constraints. In the paper, a new algorithm is proposed that combines above convex optimization methods with a well known iterative Fourier transform algorithm (IFTA). The IFTA iterates between the object domain and spectral domain to reinforce the physical information and reaches convergence quickly which has been proved in many applications such as compute-generated-hologram (CGH). Herein the output phase of the IFTA is treated as the initial guess of convex optimization methods, and then the reconstructed phase is numerically computed by using modified TFOCS. Simulation results show that the combined algorithm increases the likelihood of successful recovery as well as improves the precision of solution.
Adapted Convex Optimization Algorithm for Wavelet-Based Dynamic PET Reconstruction
Paris-Sud XI, Université de
1 Adapted Convex Optimization Algorithm for Wavelet-Based Dynamic PET Reconstruction Nelly Abstract--This work deals with Dynamic Positron Emission Tomography (PET) data reconstruction, considering. The effectiveness of this approach is shown with simulated dynamic PET data. Comparative results are also provided
FAST CONVEX OPTIMIZATION ALGORITHMS FOR EXACT RECOVERY OF A CORRUPTED LOW-RANK MATRIX
Liberzon, Daniel
FAST CONVEX OPTIMIZATION ALGORITHMS FOR EXACT RECOVERY OF A CORRUPTED LOW-RANK MATRIX ZHOUCHEN LIN for solving the problem of recovering a low-rank matrix with a fraction of its entries arbitrarily corrupted the data are corrupted by small Gaussian noise, it breaks down under large corruption, even
Solving Convex MINLP Optimization Problems Using a Sequential Cutting Plane Algorithm
Claus Still; Tapio Westerlund
2006-01-01
In this article we look at a new algorithm for solving convex mixed integer nonlinear programming problems. The algorithm\\u000a uses an integrated approach, where a branch and bound strategy is mixed with solving nonlinear programming problems at each\\u000a node of the tree. The nonlinear programming problems, at each node, are not solved to optimality, rather one iteration step\\u000a is taken
NSDL National Science Digital Library
Tim Lambert
An applet that demonstrates some algorithms for computing the convex hull of points in three dimensions. See the points from different viewpoints; see how the Incremental algorithm constructs the hull, face by face; while it's playing, look at it from different directions; see how the gift-wrapping or divide-and-conquer algorithms construct the hull; look at animations of Delaunay triangulation algorithms.
Hybrid Random/Deterministic Parallel Algorithms for Convex and Nonconvex Big Data Optimization
NASA Astrophysics Data System (ADS)
Daneshmand, Amir; Facchinei, Francisco; Kungurtsev, Vyacheslav; Scutari, Gesualdo
2015-08-01
We propose a decomposition framework for the parallel optimization of the sum of a differentiable {(possibly nonconvex)} function and a nonsmooth (possibly nonseparable), convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. The main contribution of this work is a novel \\emph{parallel, hybrid random/deterministic} decomposition scheme wherein, at each iteration, a subset of (block) variables is updated at the same time by minimizing local convex approximations of the original nonconvex function. To tackle with huge-scale problems, the (block) variables to be updated are chosen according to a \\emph{mixed random and deterministic} procedure, which captures the advantages of both pure deterministic and random update-based schemes. Almost sure convergence of the proposed scheme is established. Numerical results show that on huge-scale problems the proposed hybrid random/deterministic algorithm outperforms both random and deterministic schemes.
Implementation of a Point Algorithm for Real-Time Convex Optimization
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Motaghedi, Shui; Carson, John
2007-01-01
The primal-dual interior-point algorithm implemented in G-OPT is a relatively new and efficient way of solving convex optimization problems. Given a prescribed level of accuracy, the convergence to the optimal solution is guaranteed in a predetermined, finite number of iterations. G-OPT Version 1.0 is a flight software implementation written in C. Onboard application of the software enables autonomous, real-time guidance and control that explicitly incorporates mission constraints such as control authority (e.g. maximum thrust limits), hazard avoidance, and fuel limitations. This software can be used in planetary landing missions (Mars pinpoint landing and lunar landing), as well as in proximity operations around small celestial bodies (moons, asteroids, and comets). It also can be used in any spacecraft mission for thrust allocation in six-degrees-of-freedom control.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380
A Convex Guidance Algorithm for Formation Reconfiguration
NASA Technical Reports Server (NTRS)
Acikmese, A. Behcet; Schar, Daniel P.; Murray, Emmanuell A.; Hadaeghs, Fred Y.
2006-01-01
In this paper, a reconfiguration guidance algorithm for formation flying spacecraft is presented. The formation reconfiguration guidance problem is first formulated as a continuous-time minimum-fuel or minimum-energy optimal control problem with collision avoidance and control constraints. The optimal control problem is then discretized to obtain a finite dimensional parameter optimization problem. In this formulation, the collision avoidance constraints are imposed via separating planes between each pair of spacecraft. A heuristic is introduced to choose these separating planes that leads to the convexification of the collision avoidance constraints. Additionally, convex constraints are imposed to guarantee that no collisions occur between discrete time samples. The resulting finite dimensional optimization problem is a second order cone program, for which standard algorithms can compute the global optimum with deterministic convergence and a prescribed level of accuracy. Consequently, the formation reconfiguration algorithm can be implemented onboard a spacecraft for real-time operations.
Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian
Instituto de Sistemas e Robotica
Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms with Directed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x = x with a novel distributed, decentralized algorithm. We refer to this algorithm as ALG (augmented Lagrangian
Convex optimization methods for model reduction
Sou, Kin Cheong, 1979-
2008-01-01
Model reduction and convex optimization are prevalent in science and engineering applications. In this thesis, convex optimization solution techniques to three different model reduction problems are studied.Parameterized ...
Spacecraft Swarm Guidance Using a Sequence of Decentralized Convex Optimizations
Chung, Soon-Jo
Spacecraft Swarm Guidance Using a Sequence of Decentralized Convex Optimizations Daniel Morgan Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA This paper presents partially decentralized path planning algorithms for swarms of spacecraft composed of hundreds to thousands
Kernel regression for travel time estimation via convex optimization
Kernel regression for travel time estimation via convex optimization Sébastien Blandin , Laurent El Ghaoui and Alexandre Bayen Abstract--We develop an algorithm aimed at estimating travel time on segments of a road network using a convex optimiza- tion framework. Sampled travel time from probe vehicles
Subset of routes for OD pair k O2 nk = Rk Number of routes for OD pair k fk Rnk Flow (vehicle count) measured for OD pair k xk [0, 1]nk xk r is the portion of flow fk directed to route r Rk Ak R|L|×nk Corresponding block of nk columns of A 6/30 #12;INTRODUCTION PROBLEM FORMULATION METHODOLOGY DUALITY Algorithms
An Overview Of Software For Convex Optimization
Borchers, Brian
An Overview Of Software For Convex Optimization Brian Borchers Department of Mathematics New Mexico in this hierarchy up to the level of SDP. · Many other convex optimization problems can be formulated as structured Tech Socorro, NM 87801 borchers@nmt.edu #12;In fact, the great watershed in optimization isn't between
Reachable Grasps on a Polygon: The Convex Rope Algorithm
Amaral, Luis A.N.
Reachable Grasps on a Polygon: The Convex Rope Algorithm M. A. Ycshkin and A. C. Sanderson CMU. Introduction 3. The RopeConstruction 4. Convex Hull Algorithm 5. CCW Convex Rope Algorithm 6. Descriptionof CCW Convex Rope Algorithm 7. Conclusion 8. Acknowledgements 1 4 6 9 10 12 15 15 #12;#12;ii List of Figures
An interior-point Lagrangian decomposition method for separable convex optimization
An interior-point Lagrangian decomposition method for separable convex optimization I. Necoara1 it possible to efficiently use the Newton method for tracing the central path. We show that the new algorithm convex problems. Keywords. Separable convex optimization, self-concordant function, interior
NATCOR Convex Optimization Linear Programming 1
Hall, Julian
. Hall NATCOR Convex Optimization: Linear Programming 1 2 / 1 Overview What is LP? General LP problemsNATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University a result which Is nice in itself Leads into "Structure and matrix sparsity": Wednesday 13:3015:30 J. A. J
1 Convex Optimization with Sparsity-Inducing Norms
Bach, Francis
estimation as convex optimization problems has two main benefits: First, it leads to efficient estimation algorithms--and this chapter focuses primarily on these. Second, it allows a fruitful theoretical analysis. This chapter is organized as follows: in Section 1.1.1, we present the optimization problems related to sparse
RESEARCH PAPER Convex topology optimization for hyperelastic trusses based
Paulino, Glaucio H.
RESEARCH PAPER Convex topology optimization for hyperelastic trusses based on the ground nonlinear behavior. More specifically, we concentrate on hyperelastic models, such as the ones by Hencky design problem. Keywords Ground structure . Topology optimization . Hyperelasticity . Convex optimization
Robust boosting via convex optimization
NASA Astrophysics Data System (ADS)
Rätsch, Gunnar
2001-12-01
In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems? Boosting methods are originally designed for classification problems. To extend the boosting idea to regression problems, we use the previous convergence results and relations to semi-infinite programming to design boosting-like algorithms for regression problems. We show that these leveraging algorithms have desirable theoretical and practical properties. o Can boosting techniques be useful in practice? The presented theoretical results are guided by simulation results either to illustrate properties of the proposed algorithms or to show that they work well in practice. We report on successful applications in a non-intrusive power monitoring system, chaotic time series analysis and a drug discovery process. --- Anmerkung: Der Autor ist Träger des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2001/2002. In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugehörigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. Die Arbeit behandelt folgende Sachverhalte: o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Abschätzung der Vorhersagequalität auf ungesehenen Mustern. Kürzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalität der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschl
Stochastic Convex Optimization with Multiple Objectives
Jin, Rong
Stochastic Convex Optimization with Multiple Objectives Mehrdad Mahdavi Michigan State University and stochasticity in the first-order information. We cast the stochastic multi- ple objective optimization problem first approximates the stochastic objectives by sampling and then solves a constrained stochastic
Solving convex problems involving powers using conic optimization
Glineur, FranÃ§ois
Solving convex problems involving powers using conic optimization and a new self-concordant barrier CFG 07 Heidelberg University CFG 07 Solving convex problems involving powers using conic optimization remarks Future plans CFG 07 Solving convex problems involving powers using conic optimization 2 #12
Convex Optimization of Graph Laplacian Eigenvalues
unfolding Â· conclusions #12;(Weighted) graph Laplacian Â· graph G = (V, E) with n = |V | nodes, m = |E| edges = 1 edge l enters node i -1 edge l leaves node i 0 otherwise Â· (weighted) Laplacian: L = A diagConvex Optimization of Graph Laplacian Eigenvalues Stephen Boyd Stanford University (Joint work
Convex Optimization of Graph Laplacian Eigenvalues
Convex Optimization of Graph Laplacian Eigenvalues Stephen Boyd Abstract. We consider the problem of choosing the edge weights of an undirected graph so as to maximize or minimize some function of the eigenvalues of the associated Laplacian matrix, subject to some constraints on the weights
Glineur, FranÃ§ois
constraints: Structured convex optimization (convexity by design) Reward for a convex formulation Â·Full Screen Â·Close Â·Quit Overview of the thesis Interior-point methods Linear optimization survey Self Back Â·Full Screen Â·Close Â·Quit Overview of this talk Interior-point methods Linear optimization survey
Online Convex Optimization with Ramp Constraints Masoud Badiei, Na Li, Adam Wierman
Wierman, Adam
Online Convex Optimization with Ramp Constraints Masoud Badiei, Na Li, Adam Wierman Harvard@caltech.edu Abstract--We study a novel variation of online convex opti- mization where the algorithm is subject to ramp between consecutive actions, i.e., is subject to ramp constraints. In particular, we consider a setting
Glineur, FranÃ§ois
work with specific classes of convex constraints: Structured convex optimization (convexity by design Optimization Â·First Â·Prev Â·Next Â·Last Â·Go Back Â·Full Screen Â·Close Â·Quit Overview of the thesis Interior in Convex Optimization Â·First Â·Prev Â·Next Â·Last Â·Go Back Â·Full Screen Â·Close Â·Quit Overview of this talk
MODERN CONVEX OPTIMIZATION Arkadi Nemirovski
Moreno Maza, Marc
. Well, the same is with the wheel. In 50 plus years since its birth, Mathematical Programming can be outlined as follows: Realizing what are the generic optimization programs one can solve well optimization programs we can solve well": #12;3 (!) As far as numerical processing of programs (P) is concerned
Bach, Francis
of homogenous subsets of data. Algorithms such as k-means, Gaussian mixture models, hierarchical clustering experimentally gives state-of- the-art results similar to spectral clustering for non-convex clusters, and has from instabilities, either because they are cast as non- convex optimization problems, or because
Efficient convex-elastic net algorithm to solve the Euclidean traveling salesman problem.
Al-Mulhem, M; Al-Maghrabi, T
1998-01-01
This paper describes a hybrid algorithm that combines an adaptive-type neural network algorithm and a nondeterministic iterative algorithm to solve the Euclidean traveling salesman problem (E-TSP). It begins with a brief introduction to the TSP and the E-TSP. Then, it presents the proposed algorithm with its two major components: the convex-elastic net (CEN) algorithm and the nondeterministic iterative improvement (NII) algorithm. These two algorithms are combined into the efficient convex-elastic net (ECEN) algorithm. The CEN algorithm integrates the convex-hull property and elastic net algorithm to generate an initial tour for the E-TSP. The NII algorithm uses two rearrangement operators to improve the initial tour given by the CEN algorithm. The paper presents simulation results for two instances of E-TSP: randomly generated tours and tours for well-known problems in the literature. Experimental results are given to show that the proposed algorithm ran find the nearly optimal solution for the E-TSP that outperform many similar algorithms reported in the literature. The paper concludes with the advantages of the new algorithm and possible extensions. PMID:18255981
On Projection Algorithms for Solving Convex Feasibility Problems
Heinz H. Bauschke; Jonathan M. Borwein
1996-01-01
Due to their extraordinary utility and broad applicability in many areasof classical mathematics and modern physical sciences (most notably,computerized tomography), algorithms for solving convex feasibilityproblems continue to receive great attention. To unify, generalize, andreview some of these algorithms, a very broad and flexible frameworkis investigated . Several crucial new concepts which allow a systematicdiscussion of questions on behaviour in general
Mapping the Energy Landscape of Non-Convex Optimization Problems
Zhu, Song Chun
Mapping the Energy Landscape of Non-Convex Optimization Problems Maira Pavlovskaia1 , Kewei Tu2@shanghaitech.edu.cn Abstract. An energy landscape map (ELM) characterizes and visualizes an energy function with a tree the barrier between adjacent energy basins. We demonstrate the utility of ELMs in analyzing non-convex energy
Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity
NASA Astrophysics Data System (ADS)
Bilen, Cagdas; Puy, Gilles; Gribonval, Remi; Daudet, Laurent
2014-09-01
We investigate a compressive sensing framework in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on multiple unknown (but sparse) signals and formulate the joint recovery of the gains and the sparse signals as a convex optimization problem. We divide this problem in 3 subproblems with different conditions on the gains, specifially (i) gains with different amplitude and the same phase, (ii) gains with the same amplitude and different phase and (iii) gains with different amplitude and phase. In order to solve the first case, we propose an extension to the basis pursuit optimization which can estimate the unknown gains along with the unknown sparse signals. For the second case, we formulate a quadratic approach that eliminates the unknown phase shifts and retrieves the unknown sparse signals. An alternative form of this approach is also formulated to reduce complexity and memory requirements and provide scalability with respect to the number of input signals. Finally for the third case, we propose a formulation that combines the earlier two approaches to solve the problem. The performance of the proposed algorithms is investigated extensively through numerical simulations, which demonstrates that simultaneous signal recovery and calibration is possible with convex methods when sufficiently many (unknown, but sparse) calibrating signals are provided.
Motion Planning with Sequential Convex Optimization and Convex Collision Checking
Patil, Sachin
3D-printed implants for intracavitary brachytherapy. Details, videos, and source code is freely trajectories, and (f) optimized layout for bounded curvature channels within 3D-printed vaginal implants and the environments that they operate in has spurred the need for high-dimensional motion planning. Consider
A capacity scaling algorithm for convex cost submodular flows
Iwata, Satoru
1996-12-31
This paper presents a scaling scheme for submodular functions. A small but strictly submodular function is added before scaling so that the resulting functions should be submodular. This scaling scheme leads to a weakly polynomial algorithm to solve minimum cost integral submodular flow problems with separable convex cost functions, provided that an oracle for exchange capacities are available.
Convex Onion Peeling Genetic Algorithm: An Efficient Solution to Map Labeling of Point-Feature
Bae, Wan
Convex Onion Peeling Genetic Algorithm: An Efficient Solution to Map Labeling of Point-Feature Wan-feature and develop a new genetic algorithm to solve this problem. We adopt a data struc- ture called convex onion peeling and utilize it in our pro- posed Convex Onion Peeling Genetic Algorithm (COPGA) to efficiently
Interior point decoding for linear vector channels based on convex optimization
Tadashi Wadayama
2010-01-01
In the present paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, which is referred to hereinafter as interior point decoding, is designed for linear vector channels. The linear vector channels include several practically important channels, such as inter-symbol interference channels and partial response (PR) channels. It is shown that
FIR Filter Design via Spectral Factorization and Convex Optimization 1 FIR Filter Design via UCSB 10 24 97 FIR Filter Design via Spectral Factorization and Convex Optimization 2 Outline Convex Spectral factorization methods Discretization #12;FIR Filter Design via Spectral Factorization and Convex
Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron
2008-01-01
In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.
Convex optimization under inequality constraints in rank-deficient systems
NASA Astrophysics Data System (ADS)
Roese-Koerner, Lutz; Schuh, Wolf-Dieter
2014-05-01
Many geodetic applications require the minimization of a convex objective function subject to some linear equality and/or inequality constraints. If a system is singular (e.g., a geodetic network without a defined datum) this results in a manifold of solutions. Most state-of-the-art algorithms for inequality constrained optimization (e.g., the Active-Set-Method or primal-dual Interior-Point-Methods) are either not able to deal with a rank-deficient objective function or yield only one of an infinite number of particular solutions. In this contribution, we develop a framework for the rigorous computation of a general solution of a rank-deficient problem with inequality constraints. We aim for the computation of a unique particular solution which fulfills predefined optimality criteria as well as for an adequate representation of the homogeneous solution including the constraints. Our theoretical findings are applied in a case study to determine optimal repetition numbers for a geodetic network to demonstrate the potential of the proposed framework.
Convex Optimization in Julia Madeleine Udell
. The Julia language [6] is a high-level, high-performance dynamic programming language for technical Languages Keywords Convex programming, automatic verification, symbolic com- putation, multiple dispatch 1 package to write extremely performant code using a high level of abstrac- tion. Indeed, the abstraction
Reachable grasps on a polygon: the convex rope algorithm M. A. Peshkin and A. C. Sanderson
Amaral, Luis A.N.
Reachable grasps on a polygon: the convex rope algorithm M. A. Peshkin and A. C. Sanderson IEEE: the convex rope algorithm (pdf file) M. A. Peshkin and A. C. Sanderson IEEE Transactions on Robotics of a polygon, and which generates a new geometric construction we call the convex ropes of each visible vertex
Research Study on Convex Optimization of Power Distribution Networks
Lavaei, Javad
and power production range of a generator and so on. We would first use a two-bus system as an exampleResearch Study on Convex Optimization of Power Distribution Networks Ying Teng, UNI: yt2351 I communication and control technology impels the transformation of power distribution system in both its
MODERN CONVEX OPTIMIZATION Aharon Ben-Tal
Nemirovski, Arkadi
optimization programs one can solve well ("efficiently solv- able" programs) and when such a possibility is, not well posed!) "what are generic optimization programs we can solve well": #12;3 (!) As far as numerical.isye.gatech.edu/faculty-staff/profile.php?entry=an63 Fall Semester 2013 #12;2 Preface Mathematical Programming deals with optimization programs
Algorithms for bilevel optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.
Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging
Girard, Julien N; Starck, Jean Luc; Corbel, Stéphane; Woiselle, Arnaud; Tasse, Cyril; McKean, John P; Bobin, Jérôme
2015-01-01
Compressed sensing theory is slowly making its way to solve more and more astronomical inverse problems. We address here the application of sparse representations, convex optimization and proximal theory to radio interferometric imaging. First, we expose the theory behind interferometric imaging, sparse representations and convex optimization, and second, we illustrate their application with numerical tests with SASIR, an implementation of the FISTA, a Forward-Backward splitting algorithm hosted in a LOFAR imager. Various tests have been conducted in Garsden et al., 2015. The main results are: i) an improved angular resolution (super resolution of a factor ~2) with point sources as compared to CLEAN on the same data, ii) correct photometry measurements on a field of point sources at high dynamic range and iii) the imaging of extended sources with improved fidelity. SASIR provides better reconstructions (five time less residuals) of the extended emissions as compared to CLEAN. With the advent of large radiotel...
Studies integrating geometry, probability, and optimization under convexity
Nogueira, Alexandre Belloni
2006-01-01
Convexity has played a major role in a variety of fields over the past decades. Nevertheless, the convexity assumption continues to reveal new theoretical paradigms and applications. This dissertation explores convexity ...
Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging
NASA Astrophysics Data System (ADS)
Girard, J. N.; Garsden, H.; Starck, J. L.; Corbel, S.; Woiselle, A.; Tasse, C.; McKean, J. P.; Bobin, J.
2015-08-01
Compressed sensing theory is slowly making its way to solve more and more astronomical inverse problems. We address here the application of sparse representations, convex optimization and proximal theory to radio interferometric imaging. First, we expose the theory behind interferometric imaging, sparse representations and convex optimization, and second, we illustrate their application with numerical tests with SASIR, an implementation of the FISTA, a Forward-Backward splitting algorithm hosted in a LOFAR imager. Various tests have been conducted in Garsden et al., 2015. The main results are: i) an improved angular resolution (super resolution of a factor ? 2) with point sources as compared to CLEAN on the same data, ii) correct photometry measurements on a field of point sources at high dynamic range and iii) the imaging of extended sources with improved fidelity. SASIR provides better reconstructions (five time less residuals) of the extended emission as compared to CLEAN. With the advent of large radiotelescopes, there is scope for improving classical imaging methods with convex optimization methods combined with sparse representations.
Convex dynamics: unavoidable difficulties in bounding some greedy algorithms.
Nowicki, Tomasz; Tresser, Charles
2004-03-01
A greedy algorithm for scheduling and digital printing with inputs in a convex polytope, and vertices of this polytope as successive outputs, has recently been proven to be bounded for any convex polytope in any dimension. This boundedness property follows readily from the existence of some invariant region for a dynamical system equivalent to the algorithm, which is what one proves. While the proof, and some constructions of invariant regions that can be made to depend on a single parameter, are reasonably simple for convex polygons in the plane, the proof of boundedness gets quite complicated in dimension three and above. We show here that such complexity is somehow justified by proving that the most natural generalization of the construction that works for polygons does not work in any dimension above two, even if we allow for as many parameters as there are faces. We first prove that some polytopes in dimension greater than two admit no invariant region to which they are combinatorially equivalent. We then modify these examples to get polytopes such that no invariant region can be obtained by pushing out the borders of the half spaces that intersect to form the polytope. We also show that another mechanism prevents some simplices (the simplest polytopes in any dimension) from admitting invariant regions to which they would be similar. By contrast in dimension two, one can always get an invariant region by pushing these borders far enough in some correlated way; for instance, pushing all borders by the same distance builds an invariant region for any polygon if the push is at a distance big enough for that polygon. To motivate the examples that we provide, we discuss briefly the bifurcations of polyhedra associated with pushing half spaces in parallel to themselves. In dimension three, the elementary codimension one bifurcation resembles the unfolding of the elementary degenerate singularity for codimension one foliations on surfaces. As the subject of this paper is new for the communities most interested in Chaos, we take some care in describing various links of our problem to classical issues (in particular linked to Diophantine approximation) as well as to various technological or commercial issues, exemplified, respectively, by digital printing and a problem in scheduling. PMID:15003045
Schittkowski, Klaus
to be efficient tools in the context of mechanical structural optimization, see for instance the comparative studySequential Convex Programming Methods for Solving Large Topology Optimization Problems-scale structural optimization prob- lems by sequential convex programming (SCP). A predictor-corrector interior
Analysis of the Criteria of Activation-Based Inverse Electrocardiography using Convex Optimization
Erem, Burak; van Dam, Peter M.; Brooks, Dana H.
2012-01-01
In inverse electrocardiography (ECG), the problem of finding activation times on the heart noninvasively from body surface potentials is typically formulated as a nonlinear least squares optimization problem. Current solutions rely on iterative algorithms which are sensitive to the presence of local minima. As a result, improved initialization approaches for this problem have been of considerable interest. However, in experiments conducted on a subject with Wolff-Parkinson-White syndrome, we have observed that there may be a mismatch between favorable solutions of the optimization problem and solutions with the desired physiological characteristics. In this work, we use a method based on a convex optimization framework to explore the solution space and analyze whether the optimization criteria target their intended objective. PMID:22255195
Analysis of the criteria of activation-based inverse electrocardiography using convex optimization.
Erem, Burak; van Dam, Peter M; Brooks, Dana H
2011-01-01
In inverse electrocardiography (ECG), the problem of finding activation times on the heart noninvasively from body surface potentials is typically formulated as a nonlinear least squares optimization problem. Current solutions rely on iterative algorithms which are sensitive to the presence of local minima. As a result, improved initialization approaches for this problem have been of considerable interest. However, in experiments conducted on a subject with Wolff-Parkinson-White syndrome, we have observed that there may be a mismatch between favorable solutions of the optimization problem and solutions with the desired physiological characteristics. In this work, we use a method based on a convex optimization framework to explore the solution space and analyze whether the optimization criteria target their intended objective. PMID:22255195
CONTROL OF A CLIMBING ROBOT USING REAL-TIME CONVEX OPTIMIZATION
is closed around desired robot chassis position to generate cartesian feedback forces. A convex optimizationCONTROL OF A CLIMBING ROBOT USING REAL-TIME CONVEX OPTIMIZATION Teresa G. Miller Timothy W. Bretl Abstract: This paper presents a controller for a free-climbing robot. Given a pre-planned path, a loop
ALGORITHMS AND SOFTWARE FOR CONVEX MIXED INTEGER NONLINEAR PROGRAMS
PIERRE BONAMI; MUSTAFA KILINC; JEFF LINDEROTH
This paper provides a survey of recent progress and software for solving mixed integer nonlinear programs (MINLP) wherein the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in very years. By exploiting analogies to the case of well-known techniques for solving mixed
Algorithms in Discrete Convex Analysis Kazuo Murota 3
clear in the eighties through the works of A. Frank, S. Fujishige, and L. Lov'asz. In particular, Lov] discrete separation Fujishige [11] Fenchel duality Lov'asz [22] Lov'asz extension 1990 Dress--Wenzel [3, 4 intersect. M/LÂconvexity Lov'asz extension of that function is convex. Relevant results in matroid theory
Improving beampatterns of two-dimensional random arrays using convex optimization
Gerstoft, Peter
Improving beampatterns of two-dimensional random arrays using convex optimization Peter Gerstofta the locations are non-optimal from a beamforming perspective. The loca- tion of each senor is accurately known
An outer approximation based branch and cut algorithm for convex 0-1 MINLP problems
Berc Rustem; Ioannis Akrotirianakis; Istvan Maros
2001-01-01
A branch and cut algorithm is developed for solving convex 0-1 Mixed Integer Nonlinear Programming (MINLP) problems. The algorithm integrates Branch and Bound, Outer Approximation and Gomory Cutting Planes. Only the initial Mixed Integer Linear Programming (MILP) master problem is considered. At integer solutions Nonlinear Programming (NLP) problems are solved, using a primal-dual interior point algorithm. The objective and constraints
Glineur, François
Fran¸cois Glineur, Advances in Structured Convex Optimization - 1 - ·First ·Prev ·Next ·Last ·Full Screen ·Quit Recent Advances in Structured Convex Optimization Fran¸cois Glineur Charg´e de Recherches F, Advances in Structured Convex Optimization - 2 - ·First ·Prev ·Next ·Last ·Full Screen ·Quit Motivation
Distributed Algorithms for Optimal Power Flow Problem
Lam, Albert Y S; Tse, David
2011-01-01
Optimal power flow (OPF) is an important problem for power generation and it is in general non-convex. With the employment of renewable energy, it will be desirable if OPF can be solved very efficiently so its solution can be used in real time. With some special network structure, e.g. trees, the problem has been shown to have a zero duality gap and the convex dual problem yields the optimal solution. In this paper, we propose a primal and a dual algorithm to coordinate the smaller subproblems decomposed from the convexified OPF. We can arrange the subproblems to be solved sequentially and cumulatively in a central node or solved in parallel in distributed nodes. We test the algorithms on IEEE radial distribution test feeders, some random tree-structured networks, and the IEEE transmission system benchmarks. Simulation results show that the computation time can be improved dramatically with our algorithms over the centralized approach of solving the problem without decomposition, especially in tree-structured...
Lavaei, Javad
1 Convex Relaxation for Optimal Power Flow Problem: Mesh Networks Ramtin Madani, Somayeh Sojoudi for electrical power networks. This problem, named optimal power flow (OPF), is nonconvex due The optimal power flow (OPF) problem is concerned with finding an optimal operating point of a power system
Lavaei, Javad
1 Convex Relaxation for Optimal Power Flow Problem: Mesh Networks Ramtin Madani, Somayeh Sojoudi and Javad Lavaei Abstract--This paper is concerned with the optimal power flow (OPF) problem. We have. INTRODUCTION The optimal power flow (OPF) problem aims to find an optimal operating point of a power system
Lavaei, Javad
Convex Relaxation for Optimal Power Flow Problem: Mesh Networks Ramtin Madani, Somayeh Sojoudi for electrical power networks. This problem, named optimal power flow (OPF), is nonconvex due The optimal power flow (OPF) problem is concerned with finding an optimal operating point of a power system
Nakano, Koji
An O((log log n) 2 ) Time Convex Hull Algorithm on Reconfigurable Meshes \\Lambda Tatsuya Hayashi y optimal algoÂ rithm running in O((log log n) 2 ) time on a reconfigurable mesh of size p n \\Theta p n on a reconfigurable mesh of size p n log log n \\Theta p n log log n . Clearly, the latter algorithm is work
Deterministic algorithms for 2-d convex programming and 3-d online linear programming
Chan, T.M.
1997-06-01
We present a deterministic algorithm for solving two-dimensional convex programs with a linear objective function. The algorithm requires O(k log k) primitive operations for k constraints; if a feasible point is given, the bound reduces to O(k log k/ log log k). As a consequence, we can decide whether k convex n-gons in the plane have a common intersection in O(k log n min (log k, log log n)) worst-case time. Furthermore, we can solve the three-dimensional online linear programming problem in o(log{sup 3} n) worst-case time per operation.
On the Design of Optimal Structured and Sparse Feedback Gains via Sequential Convex Programming
Jovanovic, Mihailo
On the Design of Optimal Structured and Sparse Feedback Gains via Sequential Convex Programming attention has been paid to the problem of optimal structured control in [16][18], where the H2-norm Makan Fardad and Mihailo R. Jovanovi´c Abstract-- We consider the problem of finding optimal feed- back
Global optimization algorithm for heat exchanger networks
Quesada, I.; Grossmann, I.E. (Carnegie Mellon Univ., Pittsburgh, PA (United States))
1993-03-01
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem is used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.
August 2000 (Convex Optimization ) JP Goux The mega title ...
Implicitly defined barrier functions: elementary properties and applications ... James V. Burke , Adrian S. Lewis , Michael L. Overton ... John E Mitchell , Srinivasan Ramaswamy ... Convex- and Monotone- Transformable Mathematical Programming Problems and a Proximal-Like Point ... Alexandre Belloni , Robert M. Freund
UNCORRECTEDPROOF Algorithms for Optimizing Rheology
Yang, Youqing "Richard"
UNCORRECTEDPROOF Algorithms for Optimizing Rheology and Loading Forces in Finite Element Models forces (loading) and lithospheric properties (rheology and structure). Unlike engineering problems to seek optimal loading conditions and rheological parameters in models of lithospheric deformation
Lavaei, Javad
Low-Rank Solution of Convex Relaxation for Optimal Power Flow Problem Somayeh Sojoudi, Ramtin with solving the nonconvex problem of optimal power flow (OPF) via a convex relaxation based on semidefinite problems solved from every few minutes to every several months. State estimation, optimal power flow (OPF
Yu, Wei
problem is cast into a convex form, the structure of the optimal solution, which often reveals design of this tutorial provides an overview of these developments and describes the basic optimization concepts, models to Convex Optimization for Communications and Signal Processing Zhi-Quan Luo, Senior Member, IEEE, and Wei
Distributed NonAutonomous Power Control through Distributed Convex Optimization
Sundhar Srinivasan Ram; Venugopal V. Veeravalli; Angelia Nedic
2009-01-01
We consider the uplink power control problem where mobile users in different cells are communicating with their base stations. We formulate the power control problem as the minimization of a sum of convex functions. Each component function depends on the channel coefficients from all the mob ile users to a specific base station and is assumed to be known only
Trees with Convex Faces and Optimal Angles David Eppstein
Eppstein, David
= consecutive subsequence of trees descending from children of some node forming the pattern: path Â (0 or more(#descendants of top vertex) #12;Convex trees Carlson & Eppstein, GD 2006 Edge Lengths chosen so vertices lie trees? Force all slopes to lie in a 180-degree arc Same methods should extend straightforwardly Other
libCreme: An optimization library for evaluating convex-roof entanglement measures
NASA Astrophysics Data System (ADS)
Röthlisberger, Beat; Lehmann, Jörg; Loss, Daniel
2012-01-01
We present the software library libCreme which we have previously used to successfully calculate convex-roof entanglement measures of mixed quantum states appearing in realistic physical systems. Evaluating the amount of entanglement in such states is in general a non-trivial task requiring to solve a highly non-linear complex optimization problem. The algorithms provided here are able to achieve to do this for a large and important class of entanglement measures. The library is mostly written in the MATLAB programming language, but is fully compatible to the free and open-source OCTAVE platform. Some inefficient subroutines are written in C/C++ for better performance. This manuscript discusses the most important theoretical concepts and workings of the algorithms, focusing on the actual implementation and usage within the library. Detailed examples in the end should make it easy for the user to apply libCreme to specific problems. Program summaryProgram title:libCreme Catalogue identifier: AEKD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 4323 No. of bytes in distributed program, including test data, etc.: 70 542 Distribution format: tar.gz Programming language: Matlab/Octave and C/C++ Computer: All systems running Matlab or Octave Operating system: All systems running Matlab or Octave Classification: 4.9, 4.15 Nature of problem: Evaluate convex-roof entanglement measures. This involves solving a non-linear (unitary) optimization problem. Solution method: Two algorithms are provided: A conjugate-gradient method using a differential-geometric approach and a quasi-Newton method together with a mapping to Euclidean space. Running time: Typically seconds to minutes for a density matrix of a few low-dimensional systems and a decent implementation of the pure-state entanglement measure.
Convex Optimization of Coincidence Time Resolution for a High-Resolution PET System
Reynolds, Paul D.; Olcott, Peter D.; Pratx, Guillem; Lau, Frances W. Y.
2013-01-01
We are developing a dual panel breast-dedicated positron emission tomography (PET) system using LSO scintillators coupled to position sensitive avalanche photodiodes (PSAPD). The charge output is amplified and read using NOVA RENA-3 ASICs. This paper shows that the coincidence timing resolution of the RENA-3 ASIC can be improved using certain list-mode calibrations. We treat the calibration problem as a convex optimization problem and use the RENA-3’s analog-based timing system to correct the measured data for time dispersion effects from correlated noise, PSAPD signal delays and varying signal amplitudes. The direct solution to the optimization problem involves a matrix inversion that grows order (n3) with the number of parameters. An iterative method using single-coordinate descent to approximate the inversion grows order (n). The inversion does not need to run to convergence, since any gains at high iteration number will be low compared to noise amplification. The system calibration method is demonstrated with measured pulser data as well as with two LSO-PSAPD detectors in electronic coincidence. After applying the algorithm, the 511 keV photopeak paired coincidence time resolution from the LSO-PSAPD detectors under study improved by 57%, from the raw value of 16.3 ± 0.07 ns full-width at half-maximum (FWHM) to 6.92 ± 0.02 ns FWHM (11.52 ± 0.05 ns to 4.89 ± 0.02 ns for unpaired photons). PMID:20876008
Vincenzo Lippiello; Bruno Siciliano; Luigi Villani
2011-01-01
The problem of grasping force optimization (GFO) for a multi-fingered robotic hand is considered in this paper. The GFO problem is cast in a convex optimization problem, considering also joint torque constraints. A new algorithmic solution is proposed here, which is suitable to be implemented online. The proposed formulation allows a substantial reduction of the computational load of the problem
An algorithmic framework for convex mixed integer nonlinear programs
Grossmann, Ignacio E.
of open-source software for problems in operations research. In particular, COIN-OR contains reusable forces to study algorithms for MINLPs and develop associated open-source software, leveraging components the first step in an ongoing and ambitious project within an open-source environment. COIN-OR is our chosen
Poker, Gilad; Zarai, Yoram; Margaliot, Michael; Tuller, Tamir
2014-11-01
Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation-elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics. PMID:25232050
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
Convergent LMI relaxations for non-convex optimization over polynomials in control
Henrion, Didier
with parametric uncertainty, simultaneous stabilization of linear systems, pole assignment by static outputConvergent LMI relaxations for non-convex optimization over polynomials in control Didier Henrion and constraints [1]. Typical examples include robust stability analysis for char- acteristic polynomials
Regularization Constants in LS-SVMs: a Fast Estimate via Convex Optimization
Regularization Constants in LS-SVMs: a Fast Estimate via Convex Optimization Kristiaan Pelckmans Support Vector Machines (LS-SVMs) for regression and classification is considered. The formulation of the LS-SVM training and regularization constant tuning problem (w.r.t. the validation performance
Temperature Control of High-Performance Multi-core Platforms Using Convex Optimization
De Micheli, Giovanni
Temperature Control of High-Performance Multi-core Platforms Using Convex Optimization Srinivasan.demicheli}@epfl.ch, {almirm, boyd}@stanford.edu, Â§ rgupta@ucsd.edu, Â¶ lbenini@deis.unibo.it ABSTRACT With technology advances to a significant increase in chip temperature. Temperature gradi- ents and hot-spots not only affect
10-725: Convex Optimization Fall 2013 Lecture 9: Newton Method
Tibshirani, Ryan
10-725: Convex Optimization Fall 2013 Lecture 9: Newton Method Lecturer: Barnabas Poczos.1 Motivation Newton method is originally developed for finding a root of a function. It is also known as Newton such that f(x ) = 0. Figure 9.1 illustrates another motivation of Newton method. Given a function f, we want
Improving complexity of structured convex optimization problems using self-concordant barriers
Glineur, François
results for several classes of structured convex optimization problems using to the theory of self of introducing two parameters in the definition of self-concordancy and which one is the best to fix. A lemma.Glineur@fpms.ac.be. The author is supported by a grant from the F.N.R.S. (Belgian National Fund for Scientific Research). 1 #12
Optimal Mechanisms for Combinatorial Auctions and Combinatorial Public Projects via Convex Rounding
Pratt, Vaughan
vi(Si). The second problem is welfare maximization in combinatorial public projects (CPPs). HereOptimal Mechanisms for Combinatorial Auctions and Combinatorial Public Projects via Convex Rounding-in-expectation, constant-factor approximation mechanisms for NP-hard cases of the welfare maximization problem
ON THE RELATION BETWEEN OPTION AND STOCK PRICES: A CONVEX OPTIMIZATION APPROACH
Bertsimas, Dimitris
ON THE RELATION BETWEEN OPTION AND STOCK PRICES: A CONVEX OPTIMIZATION APPROACH DIMITRIS BERTSIMAS of option and stock prices based just on the no-arbitrage assumption, but without assuming any model that are affected by multiple stocks either directly (the payoff of the option depends on multiple stocks
Temperature-Aware Processor Frequency Assignment for MPSoCs Using Convex Optimization
Gupta, Rajesh
are met. We perform experiments on several realistic SoC benchmarks using a cycle-accurate FPGA Business analysts forecast a 200 billion dollar market for media- rich, mobile System-on-Chip (SoCTemperature-Aware Processor Frequency Assignment for MPSoCs Using Convex Optimization Srinivasan
An Exact Solution to the Transistor Sizing Problem for CMOS Circuits Using Convex Optimization
Sapatnekar, Sachin
An Exact Solution to the Transistor Sizing Problem for CMOS Circuits Using Convex Optimization topology, the delay can be controlled by varying the sizes of transistors in the circuit. Here, the size of a transistor is measured in terms of its channel width, since the channel lengths in a digital circuit
Convex Optimization: Fall 2013 Machine Learning 10-725/Statistics 36-725
Tibshirani, Ryan
Convex Optimization: Fall 2013 Machine Learning 10-725/Statistics 36-725 Instructors: Barnabas Poczos, Dept. of Machine Learning, bapoczos@cs.cmu.edu Ryan Tibshirani, Dept. of Statistics, ryantibs and objectives Nearly every problem in machine learning and statistics can be formulated in terms
5. Greedy and other efficient optimization algorithms
Keil, David M.
5. Greedy and other efficient optimization algorithms David Keil Analysis of Algorithms 7/14 1David. Greedy algorithms 8/14 #12;5. Greedy and other efficient optimization algorithms David Keil Analysis outcomes David Keil Analysis of Algorithms 5. Greedy algorithms 8/14 #12;5. Greedy and other efficient
M. J. Cánovas; A. Hantoute; M. A. López; J. Parra
2008-01-01
This paper deals with a parametric family of convex semi-infinite optimization problems for which linear perturbations of\\u000a the objective function and continuous perturbations of the right-hand side of the constraint system are allowed. In this context,\\u000a Cánovas et al. (SIAM J. Optim. 18:717–732, [2007]) introduced a sufficient condition (called ENC in the present paper) for the strong Lipschitz stability of
Roland T. Chin
1994-01-01
A morphological operation using a large structuring element can be decomposed equivalently into a sequence of recursive operations, each using a smaller structuring element. However, an optimal decomposition of arbitrarily shaped structuring elements is yet to be found. In this paper, we have derived an optimal decomposition of a specific class of structuring elements\\/spl mdash\\/convex sets\\/spl mdash\\/for a specific type
Multilevel algorithms for nonlinear optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.
NON-CONVEX SPARSE OPTIMIZATION THROUGH DETERMINISTIC ANNEALING AND APPLICATIONS
Granada, Universidad de
provides locally optimal solutions. In addition, to avoid non-favorable minima we use an annealing authors funded by grant TEC2006/13845/TCM from the Ministerio de Ciencia y TecnologÂ´ia, Spain. technique
Chintala, Rohit
2012-10-19
Numerical methods of designing control systems are currently an active area of research. Convex optimization with linear matrix inequalities (LMIs) is one such method. Control objectives like minimizing the H_2, H_infinity norms, limiting...
Firefly Algorithm, Lévy Flights and Global Optimization
NASA Astrophysics Data System (ADS)
Yang, Xin-She
Nature-inspired algorithms such as Particle Swarm Optimization and Firefly Algorithm are among the most powerful algorithms for optimization. In this paper, we intend to formulate a new metaheuristic algorithm by combining Lévy flights with the search strategy via the Firefly Algorithm. Numerical studies and results suggest that the proposed Lévy-flight firefly algorithm is superior to existing metaheuristic algorithms. Finally implications for further research and wider applications will be discussed.
A Weiszfeld-like algorithm for a Weber location problem constrained to a closed and convex set
Torres, Germán A
2012-01-01
The Weber problem consists of finding a point in $\\mathbbm{R}^n$ that minimizes the weighted sum of distances from $m$ points in $\\mathbbm{R}^n$ that are not collinear. An application that motivated this problem is the optimal location of facilities in the 2-dimensional case. A classical method to solve the Weber problem, proposed by Weiszfeld in 1937, is based on a fixed point iteration. In this work a Weber problem constrained to a closed and convex set is considered. A Weiszfeld-like algorithm, well defined even when an iterate is a vertex, is presented. The iteration function $Q$ that defines the proposed algorithm, is based mainly on an orthogonal projection over the feasible set, combined with the iteration function of the modified Weiszfeld algorithm presented by Vardi and Zhang in 2001. It can be proved that $x^*$ is a fixed point of the iteration function $Q$ if and only if $x^*$ is the solution of the constrained Weber problem. Besides that, under certain hypotheses, $x^*$ satisfies the KKT optimali...
Active Learning as Non-Convex Optimization Andrew Guillory
Noble, William Stafford
without noting this connec- tion. We also point out a connection between the standard min-margin offline- tain active learning algorithms achieve better generalization error than passive learning algo- rithms)] where l is a loss function. In general, the size of F may be uncountable. In stan- dard passive
NASA Technical Reports Server (NTRS)
Oakley, Celia M.; Barratt, Craig H.
1990-01-01
Recent results in linear controller design are used to design an end-point controller for an experimental two-link flexible manipulator. A nominal 14-state linear-quadratic-Gaussian (LQG) controller was augmented with a 528-tap finite-impulse-response (FIR) filter designed using convex optimization techniques. The resulting 278-state controller produced improved end-point trajectory tracking and disturbance rejection in simulation and experimentally in real time.
Dynamic Planar Convex Hull with Optimal Query Time and O(log n log log n) Update Time
Riko Jacob
Dynamic Planar Convex Hull with Optimal Query Time and O(log n #1; log log n) Update Time Gerth St supporting point inser- tions in amortized O(log n #1; log log log n) time, point deletions in amor- tized O(log n #1; log log n) time, and various queries about the convex hull in optimal O(log n) worst-case time
Craft, David
2009-01-01
A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. PMID:20022275
Parallel Selective Algorithms for Nonconvex Big Data Optimization
NASA Astrophysics Data System (ADS)
Facchinei, Francisco; Scutari, Gesualdo; Sagratella, Simone
2015-04-01
We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss- Seidel (i.e., sequential) ones, as well as virtually all possibilities "in between" with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.
On the optimality of the neighbor-joining algorithm
Eickmeyer, Kord; Huggins, Peter; Pachter, Lior; Yoshida, Ruriko
2008-01-01
The popular neighbor-joining (NJ) algorithm used in phylogenetics is a greedy algorithm for finding the balanced minimum evolution (BME) tree associated to a dissimilarity map. From this point of view, NJ is "optimal" when the algorithm outputs the tree which minimizes the balanced minimum evolution criterion. We use the fact that the NJ tree topology and the BME tree topology are determined by polyhedral subdivisions of the spaces of dissimilarity maps R+(n2) to study the optimality of the neighbor-joining algorithm. In particular, we investigate and compare the polyhedral subdivisions for n ? 8. This requires the measurement of volumes of spherical polytopes in high dimension, which we obtain using a combination of Monte Carlo methods and polyhedral algorithms. Our results include a demonstration that highly unrelated trees can be co-optimal in BME reconstruction, and that NJ regions are not convex. We obtain the l2 radius for neighbor-joining for n = 5 and we conjecture that the ability of the neighbor-joining algorithm to recover the BME tree depends on the diameter of the BME tree. PMID:18447942
End of semester project Global Optimization algorithms
Dreyfuss, Pierre
End of semester project Global Optimization algorithms Ecole Polytechnique de l'UniversitÃ© de Nice.......................................................................................................................................3 II. Simulated annealing algorithm (SA.........................................................................................................................................7 2.Principle,algorithm and choice of parameters
Convexity of Ruin Probability and Optimal Dividend Strategies for a General Lévy Process
Yin, Chuancun; Yuen, Kam Chuen; Shen, Ying
2015-01-01
We consider the optimal dividends problem for a company whose cash reserves follow a general Lévy process with certain positive jumps and arbitrary negative jumps. The objective is to find a policy which maximizes the expected discounted dividends until the time of ruin. Under appropriate conditions, we use some recent results in the theory of potential analysis of subordinators to obtain the convexity properties of probability of ruin. We present conditions under which the optimal dividend strategy, among all admissible ones, takes the form of a barrier strategy. PMID:26351655
Convexity of Ruin Probability and Optimal Dividend Strategies for a General Lévy Process.
Yin, Chuancun; Yuen, Kam Chuen; Shen, Ying
2015-01-01
We consider the optimal dividends problem for a company whose cash reserves follow a general Lévy process with certain positive jumps and arbitrary negative jumps. The objective is to find a policy which maximizes the expected discounted dividends until the time of ruin. Under appropriate conditions, we use some recent results in the theory of potential analysis of subordinators to obtain the convexity properties of probability of ruin. We present conditions under which the optimal dividend strategy, among all admissible ones, takes the form of a barrier strategy. PMID:26351655
Low, Steven H.
IEEE TRANS. ON AUTOMATIC CONTROL, 2014 (TO APPEAR) 1 Exact Convex Relaxation of Optimal Power Flow in Radial Networks Lingwen Gan, Na Li, Ufuk Topcu, and Steven H. Low Abstract--The optimal power flow (OPF networks and two real-world networks. I. INTRODUCTION The optimal power flow (OPF) problem determines a net
Sapatnekar, Sachin
Convexity-Based Optimization for Power-Delay Tradeoff using Transistor Sizing Mahesh Ketkar. In [3], the power optimization problem is solved by transistor sizing and ordering. Power dissipation of transistor sizing is not considered. Recently an accurate technique for circuit optimization has been
Exact Convex Relaxation of Optimal Power Flow in Radial Networks
Gan, LW; Li, N; Topcu, U; Low, SH
2015-01-01
The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
Nonnegative Mixed-Norm Convex Optimization for Mitotic Cell Detection in Phase Contrast Microscopy
Hao, Tong; Gao, Zan; Su, Yuting; Yang, Zhaoxuan
2013-01-01
This paper proposes a nonnegative mix-norm convex optimization method for mitotic cell detection. First, we apply an imaging model-based microscopy image segmentation method that exploits phase contrast optics to extract mitotic candidates in the input images. Then, a convex objective function regularized by mix-norm with nonnegative constraint is proposed to induce sparsity and consistence for discriminative representation of deformable objects in a sparse representation scheme. At last, a Support Vector Machine classifier is utilized for mitotic cell modeling and detection. This method can overcome the difficulty in feature formulation for deformable objects and is independent of tracking or temporal inference model. The comparison experiments demonstrate that the proposed method can produce competing results with the state-of-the-art methods. PMID:24348733
Nonnegative mixed-norm convex optimization for mitotic cell detection in phase contrast microscopy.
Liu, Anan; Hao, Tong; Gao, Zan; Su, Yuting; Yang, Zhaoxuan
2013-01-01
This paper proposes a nonnegative mix-norm convex optimization method for mitotic cell detection. First, we apply an imaging model-based microscopy image segmentation method that exploits phase contrast optics to extract mitotic candidates in the input images. Then, a convex objective function regularized by mix-norm with nonnegative constraint is proposed to induce sparsity and consistence for discriminative representation of deformable objects in a sparse representation scheme. At last, a Support Vector Machine classifier is utilized for mitotic cell modeling and detection. This method can overcome the difficulty in feature formulation for deformable objects and is independent of tracking or temporal inference model. The comparison experiments demonstrate that the proposed method can produce competing results with the state-of-the-art methods. PMID:24348733
Resistive Network Optimal Power Flow: Uniqueness and Algorithms
Tan, CW; Cai, DWH; Lou, X
2015-01-01
The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.
DERIVATIVE-FREE OPTIMIZATION Algorithms, software and
Grossmann, Ignacio E.
1 DERIVATIVE-FREE OPTIMIZATION Algorithms, software and applications Nick Sahinidis National Energy) With: global optimality, provided search is "dense" #12;12 DERIVATIVE-FREE OPTIMIZATION SOFTWARE LOCAL@cmu.edu Acknowledgments: Luis Miguel Rios NIH and DOE/NETL #12;2 DERIVATIVE-FREE OPTIMIZATION · Optimization of a function
An efficient algorithm for function optimization: modified stem cells algorithm
NASA Astrophysics Data System (ADS)
Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi
2013-03-01
In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).
Nonconvex network optimization: Algorithms and software
Lamar, B.
1994-12-31
Although very efficient solution methods exist for linear and convex network optimization problems, minimum cost network flow problems with concave arc cost functions are challenging because the determination of the optimal solution requires, in the worst case, an evaluation of all the extreme points in the feasible region. Even more challenging, are network flow problems whose arc costs are neither concave nor convex as is the case for problems with price breaks or all-unit discounting. Yet, such situations arise frequently in many real-world problems. In this talk, solution methods for concave cost network flow problems will be reviewed and a computer software package will be presented. In addition, a method for converting networks with arbitrary arc costs into a pure concave cost network will be described.
Convergence properties of minimization for convex constraints
Toint, Philippe
the structured trust region mechanism, we prove global convergence for all algorithms in our class. 1Convergence properties of minimization algorithms for convex constraints using a structured trust.48.4.14) Keywords : Trust region methods, structured problems, largescale optimization, partial sepa rability
Nonlinear and linear entanglement witnesses for bipartite systems via exact convex optimization
M. A. Jafarizadeh; A. Heshmati; K. Aghayara
2009-10-28
Linear and nonlinear entanglement witnesses for a given bipartite quantum systems are constructed. Using single particle feasible region, a way of constructing effective entanglement witnesses for bipartite systems is provided by exact convex optimization. Examples for some well known two qutrit quantum systems show these entanglement witnesses in most cases, provide necessary and sufficient conditions for separability of given bipartite system. Also this method is applied to a class of bipartite qudit quantum systems with details for d=3, 4 and 5. Keywords: non-linear and linear entanglement witnesses PACS number(s): 03.67.Mn, 03.65.Ud
SPAM: Set Preference Algorithm for Multiobjective Optimization
Zitzler, Eckart
SPAM: Set Preference Algorithm for Multiobjective Optimization Eckart Zitzler, Lothar Thiele to arbitrary user preferences-- assuming that the goal is to approximate the Pareto-optimal set. It proposes the Set Preference Algorithm for Multiobjective Optimization (SPAM) the working principle of which
Low, Steven H.
recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural SYSTEMS, JUNE 2014 (WITH PROOFS) 3 I. INTRODUCTION The optimal power flow (OPF) problem is fundamental Power Flow Part II: Exactness Steven H. Low Electrical Engineering, Computing+Mathematical Sciences
Low, Steven H.
--This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem an optimal power flow (OPF) problem is a mathematical program that seeks to minimize a certain function Power Flow Part I: Formulations and Equivalence Steven H. Low EAS, Caltech slow@caltech.edu Abstract
Semard, Gaëlle; Peulon-Agasse, Valerie; Bruchet, Auguste; Bouillon, Jean-Philippe; Cardinaël, Pascal
2010-08-13
It is important to develop methods of optimizing the selection of column sets and operating conditions for comprehensive two-dimensional gas chromatography. A new method for the calculation of the percentage of separation space used was developed using Delaunay's triangulation algorithms (convex hull). This approach was compared with an existing method and showed better precision and accuracy. It was successfully applied to the selection of the most convenient column set and the geometrical parameters of second column for the analysis of 49 target compounds in wastewater. PMID:20633886
NASA Technical Reports Server (NTRS)
Olariu, S.; Schwing, J.; Zhang, J.
1991-01-01
A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.
Gravdahl, Jan Tommy
-Time Algorithm for Determining the Optimal Paint Gun Orientation in Spray Paint Applications Pål Johan From of finding the optimal orientation at every time step into a convex optimization problem that can be solved in the end-effector orientation improves per- formance, such as welding and high-pressure water steaming
Optimization of Fiber Bragg Gratings Using a Hybrid Optimization Algorithm
NASA Astrophysics Data System (ADS)
Ngo, Nam Quoc; Zheng, Rui Tao; Ng, J. H.; Tjin, S. C.; Binh, L. N.
2007-03-01
A new hybrid optimization algorithm is proposed for the design of a fiber Bragg grating (FBG) with complex characteristics. The hybrid algorithm is a two-tier search that employs a global optimization algorithm (i.e., the Staged Continuous Tabu Search (SCTS) algorithm) and a local optimization method (i.e., the Quasi-Newton method). First, the SCTS global optimization algorithm is used to find a “promising” FBG structure that has a spectral response as close as possible to the targeted spectral response. Then, a local optimization method, namely, the Quasi-Newton method, is applied to further optimize the promising FBG structure obtained from the SCTS algorithm to arrive at a targeted spectral response. To demonstrate the effectiveness of the method, the design and fabrication of an optical bandpass filter are presented.
Simulated annealing algorithm for optimal capital growth
NASA Astrophysics Data System (ADS)
Luo, Yong; Zhu, Bo; Tang, Yong
2014-08-01
We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.
A Convex Framework for Optimal Investment on Disease Awareness in Social Networks
Preciado, Victor M; Scoglio, Caterina
2013-01-01
We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary network of contacts by investing on disease awareness throughout the network. We model the effect of agent awareness on the dynamics of an epidemic using the SAIS epidemic model, an extension of the SIS epidemic model that includes a state of "awareness". This model allows to derive a condition to control the spread of an epidemic outbreak in terms of the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the cost-optimal investment on disease awareness throughout the network when the cost function presents some realistic properties. We propose a convex framework to find cost-optimal allocation of resources. We validate our results with numerical simulations in a real online social network.
Optimal Newton-type algorithms for nonconvex smooth optimization
Sidorov, Nikita
Optimal Newton-type algorithms for nonconvex smooth optimization Coralia Cartis Mathematical-HPC Workshop on New Directions in Nonlinear Optimization University of Manchester, School of Mathematics, March 19, 2014 New Directions in Nonlinear Optimization: Manchester, 2014 Â p. 1/33 #12;Unconstrained
Intelligent perturbation algorithms for space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1991-01-01
Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check.
Communication-Efficient Algorithms for Statistical Optimization
McAuliffe, Jon
Communication-Efficient Algorithms for Statistical Optimization Yuchen Zhang1 John C. Duchi1 Martin We study two communication-efficient algorithms for distributed statistical op- timization on large and amount of data, a central challenge in machine learning is to design efficient algorithms for solving
An approximation algorithm for cutting out convex polygons Adrian Dumitrescu y
Dumitrescu, Adrian
convex, one has to cut along all intervals where the cutting line intersects the paper. The pieces of paper . A cutting sequence is a finite sequence of cuts such that, after the last one, the piece of paper on a convex piece of paper, cut P out of the piece of paper in the cheapest possible way. No polynomial
Evaluating the Performance of Map Optimization Algorithms
Kaess, Michael
Evaluating the Performance of Map Optimization Algorithms Edwin Olson, University of Michigan Michael Kaess, MIT Abstract-- Localization and mapping are essential capabilities of virtually all mobile-problem of robot mapping, map optimization. We explore aspects underlying the evaluation of map optimization
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
A comprehensive review of swarm optimization algorithms.
Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui
2014-09-01
Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. PMID:24832358
Stochastic optimization algorithms for barrier dividend strategies
NASA Astrophysics Data System (ADS)
Yin, G.; Song, Q. S.; Yang, H.
2009-01-01
This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.
The Optimal Solution of a Non-Convex State-Dependent LQR Problem and Its Applications
Xu, Xudan; Zhu, J. Jim; Zhang, Ping
2014-01-01
This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR) problem, in which the control penalty weighting matrix in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE) simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting . It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting , in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions. PMID:24747417
A data locality optimizing algorithm
Monica S. Lam; Michael E. Wolf
2004-01-01
This paper proposes an algorithm that improves the locality of a loop nest by transforming the code via interchange, reversal, skewing and tiling. The loop transformation algorithm is based on two concepts: a mathematical formulation of reuse and locality, and a loop transformation theory that unifies the various transforms as unimodular matrix transformations.The algorithm has been implemented in the SUIF
Henrion, Didier
A review of the book "Functional analysis and applied optimization in Banach spaces - Applications to non-convex variational problems" by Fabio Botelho, Springer, Cham, Switzerland, 2014. The book extensively in the landmark book [I. Ekeland, R. Temam. Convex analysis and variational problems. Elsevier
Joint Algorithm-Architecture Optimization of CABAC
Sze, Vivienne
This paper uses joint algorithm and architecture design to enable high coding efficiency in conjunction with high processing speed and low area cost. Specifically, it presents several optimizations that can be performed ...
Aerodynamic Shape Optimization using an Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2003-01-01
A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.
Aerodynamic Shape Optimization using an Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Hoist, Terry L.; Pulliam, Thomas H.
2003-01-01
A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.
Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States)] [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chen, Ken Chung [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China)] [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China); Shen, Steve G. F.; Yan, Jin [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China)] [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Lee, Philip K. M.; Chow, Ben [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China)] [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China); Liu, Nancy X. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China)] [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China); Xia, James J. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States) [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)] [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)
2014-04-15
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients.
Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Belief Propagation Algorithm for Portfolio Optimization Problems
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462
Finding Tradeoffs by Using Multiobjective Optimization Algorithms
Shigeru Obayashi; Daisuke Sasaki; Akira Oyama
2005-01-01
The objective of the present study is to demonstrate performances of Evolutionary Algorithms (EAs) and conventional gradient-based methods for finding Pareto fronts. The multiobjective optimization algorithms are applied to analytical test problems as well as to the real-world problems of a compressor design. The comparison results clearly indicate the superiority of EAs in finding tradeoffs.
A Computational Intelligence Optimization Algorithm Based
Ziegler, Günter M.
of spiders which interact to each other based on the biological laws of the cooperative colony. The algorithm intelligence have been successfully developed in areas such as neural networks, fuzzy systems and evolutionaryA Computational Intelligence Optimization Algorithm Based on the Behavior of the Social-Spider Erik
Evolutionary Algorithm for Optimal Vaccination Scheme
NASA Astrophysics Data System (ADS)
Parousis-Orthodoxou, K. J.; Vlachos, D. S.
2014-03-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
A data locality optimizing algorithm
Michael E. Wolf; Monica S. Lam
1991-01-01
This paper proposes an algorithm that improves the locality of a loop nest by transforming the code via interchange, reversal, skewing and tiling. The loop transformation rrlgorithm is based on two concepts: a mathematical formulation of reuse and locality, and a loop transformation theory that unifies the various transforms as unimodular matrix tmnsfonnations. The algorithm haa been implemented in the
A data locality optimizing algorithm
Monica S. Lam
1991-01-01
This paper proposes an algorithm that improves the locality of a loop nest by transforming the code via interchange,reversal, skewing and tiling. The loop transformation rrlgorithm is based on two concepts: a mathematical formulation of reuse and locality, and a loop transformation theory that unifies the various transforms as unimodular matrix tmnsfonnations.The algorithm haa been implemented in the SUIF (Stanford
Algorithms for optimal dyadic decision trees
Hush, Don; Porter, Reid
2009-01-01
A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.
Two stochastic optimization algorithms applied to nuclear reactor core design
Wagner F. Sacco; Cassiano R. E. de oliveira; Cláudio M. N. A. Pereira
2006-01-01
Two stochastic optimization algorithms conceptually similar to Simulated Annealing are presented and applied to a core design optimization problem previously solved with Genetic Algorithms. The two algorithms are the novel Particle Collision Algorithm (PCA), which is introduced in detail, and Dueck's Great Deluge Algorithm (GDA). The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and
Optimal Microdata File Merging: A New Model & Network Optimization Algorithm
Barr, Richard
Betty L. Hickman, U Nebraska Omaha J. Scott Turner, Oklahoma State ©2000 Richard Barr, Betty Hickman, J1 Optimal Microdata File Merging: A New Model & Network Optimization Algorithm Richard S. Barr, SMU. Scott Turner #12;2 Microdata Files · Stratified samples of large populations · Multi
An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.
Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed
2015-10-01
Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137
BMI optimization by using parallel UNDX real-coded genetic algorithm with Beowulf cluster
NASA Astrophysics Data System (ADS)
Handa, Masaya; Kawanishi, Michihiro; Kanki, Hiroshi
2007-12-01
This paper deals with the global optimization algorithm of the Bilinear Matrix Inequalities (BMIs) based on the Unimodal Normal Distribution Crossover (UNDX) GA. First, analyzing the structure of the BMIs, the existence of the typical difficult structures is confirmed. Then, in order to improve the performance of algorithm, based on results of the problem structures analysis and consideration of BMIs characteristic properties, we proposed the algorithm using primary search direction with relaxed Linear Matrix Inequality (LMI) convex estimation. Moreover, in these algorithms, we propose two types of evaluation methods for GA individuals based on LMI calculation considering BMI characteristic properties more. In addition, in order to reduce computational time, we proposed parallelization of RCGA algorithm, Master-Worker paradigm with cluster computing technique.
A novel bee swarm optimization algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush
2010-10-01
The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.
Algorithm selection in structural optimization
Clune, Rory P. (Rory Patrick)
2013-01-01
Structural optimization is largely unused as a practical design tool, despite an extensive academic literature which demonstrates its potential to dramatically improve design processes and outcomes. Many factors inhibit ...
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-01
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.
Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2015-09-21
Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the [Formula: see text] field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty. PMID:26350025
A Cuckoo Search Algorithm for Multimodal Optimization
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850
A cuckoo search algorithm for multimodal optimization.
Cuevas, Erik; Reyna-Orta, Adolfo
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850
Optimization with Fuzzy Data via Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Kosi?ski, Witold
2010-09-01
Order fuzzy numbers (OFN) that make possible to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers, have been recently defined by the author and his 2 coworkers. The set of OFN forms a normed space and is a partially ordered ring. The case when the numbers are presented in the form of step functions, with finite resolution, simplifies all operations and the representation of defuzzification functionals. A general optimization problem with fuzzy data is formulated. Its fitness function attains fuzzy values. Since the adjoint space to the space of OFN is finite dimensional, a convex combination of all linear defuzzification functionals may be used to introduce a total order and a real-valued fitness function. Genetic operations on individuals representing fuzzy data are defined.
New algorithms for binary wavefront optimization
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Kner, Peter
2015-03-01
Binary amplitude modulation promises to allow rapid focusing through strongly scattering media with a large number of segments due to the faster update rates of digital micromirror devices (DMDs) compared to spatial light modulators (SLMs). While binary amplitude modulation has a lower theoretical enhancement than phase modulation, the faster update rate should more than compensate for the difference - a factor of ?2 /2. Here we present two new algorithms, a genetic algorithm and a transmission matrix algorithm, for optimizing the focus with binary amplitude modulation that achieve enhancements close to the theoretical maximum. Genetic algorithms have been shown to work well in noisy environments and we show that the genetic algorithm performs better than a stepwise algorithm. Transmission matrix algorithms allow complete characterization and control of the medium but require phase control either at the input or output. Here we introduce a transmission matrix algorithm that works with only binary amplitude control and intensity measurements. We apply these algorithms to binary amplitude modulation using a Texas Instruments Digital Micromirror Device. Here we report an enhancement of 152 with 1536 segments (9.90%×N) using a genetic algorithm with binary amplitude modulation and an enhancement of 136 with 1536 segments (8.9%×N) using an intensity-only transmission matrix algorithm.
Abbeel, Pieter
, bevel-tip medical needles, planning curvature-constrained channels in 3D printed implants for targeted in 3D environments. We report two main contributions in this work: (i) curvature-constrained trajectory for perturbations. Our ap- proach can also be used for designing optimized channel layouts within 3D printed
Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Scharf, Daniel P.
2011-01-01
An enhanced algorithm is developed that builds on a previous innovation of fuel-optimal powered-descent guidance (PDG) for planetary pinpoint landing. The PDG problem is to compute constrained, fuel-optimal trajectories to land a craft at a prescribed target on a planetary surface, starting from a parachute cut-off point and using a throttleable descent engine. The previous innovation showed the minimal-fuel PDG problem can be posed as a convex optimization problem, in particular, as a Second-Order Cone Program, which can be solved to global optimality with deterministic convergence properties, and hence is a candidate for onboard implementation. To increase the speed and robustness of this convex PDG algorithm for possible onboard implementation, the following enhancements are incorporated: 1) Fast detection of infeasibility (i.e., control authority is not sufficient for soft-landing) for subsequent fault response. 2) The use of a piecewise-linear control parameterization, providing smooth solution trajectories and increasing computational efficiency. 3) An enhanced line-search algorithm for optimal time-of-flight, providing quicker convergence and bounding the number of path-planning iterations needed. 4) An additional constraint that analytically guarantees inter-sample satisfaction of glide-slope and non-sub-surface flight constraints, allowing larger discretizations and, hence, faster optimization. 5) Explicit incorporation of Mars rotation rate into the trajectory computation for improved targeting accuracy. These enhancements allow faster convergence to the fuel-optimal solution and, more importantly, remove the need for a "human-in-the-loop," as constraints will be satisfied over the entire path-planning interval independent of step-size (as opposed to just at the discrete time points) and infeasible initial conditions are immediately detected. Finally, while the PDG stage is typically only a few minutes, ignoring the rotation rate of Mars can introduce 10s of meters of error. By incorporating it, the enhanced PDG algorithm becomes capable of pinpoint targeting.
Structural Optimization Using Harmony Search Algorithm
D. Srikanth; S. Barai
\\u000a The paper presents the Structural optimization based on the New Harmony Search (HS) meta-heuristic algorithm. HS was conceptualized\\u000a using the musical process of searching for a perfect state of harmony. The HS algorithm does not require initial values and\\u000a uses a random search instead of a gradient search. 3D truss structure examples with fixed geometries are presented to demonstrate\\u000a the
Ant Algorithms for Discrete Optimization
Libre de Bruxelles, UniversitÃ©
optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces and interesting behavior of ant colonies is their foraging behavior, and, in particular, how ants can find behavior can give rise, once employed by a colony of ants, to the emergence of shortest paths. That is
Ant Algorithms for Discrete Optimization
Conati, Cristina
optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces to the relative simplicity of the colony's individuals. An important and interesting behavior of ant colonies is their foraging behavior, and, in particular, how ants can nd the shortest paths between food sources
Ant Algorithms for Discrete Optimization
Gambardella, Luca Maria
for discrete optimization which took inspiration from the observation of ant colonies foraging behavior to the relative sim- plicity of the colony's individuals. An important and interesting behavior of ant colonies is their foraging behavior, and, in particular, how ants can find shortest paths between food sources and their nest
Low, Steven H.
of Optimal Power Flow Part I: Formulations and Equivalence Steven H. Low Electrical Engineering, Computing summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing III Optimal power flow 8 III-A Bus injection model
Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
Agarwal, Alekh
We analyze a class of estimators based on convex relaxation for solving high-dimensional matrix decomposition problems. The observations are noisy realizations of a linear transformation [bar through "X" symbol] of the sum ...
Randomized Algorithm for UAVs Group Flight Optimization
Granichin, Oleg
Randomized Algorithm for UAVs Group Flight Optimization Konstantin Amelin Natalia Amelina , Oleg of Mechanical Engineering of RAS, Russia Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia, e-mail: boris.andrievsky@gmail.com Abstract
Optimization of a chemical identification algorithm
NASA Astrophysics Data System (ADS)
Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren
2010-04-01
A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.
GENERALIZED OPTIMIZATION ALGORITHM FOR SPEECH RECOGNITION TRANSDUCERS
Mohri, Mehryar
GENERALIZED OPTIMIZATION ALGORITHM FOR SPEECH RECOGNITION TRANSDUCERS Cyril Allauzen and Mehryar provide a common representation for the components of a speech recognition system. In previous work, we, determinization. However, not all weighted automata and transducers used in large vocabulary speech recognition
GENERALIZED OPTIMIZATION ALGORITHM FOR SPEECH RECOGNITION TRANSDUCERS
Allauzen, Cyril
GENERALIZED OPTIMIZATION ALGORITHM FOR SPEECH RECOGNITION TRANSDUCERS Cyril Allauzen and Mehryar provide a common representation for the components of a speech recognition system. In previous work, we, determinization. However, not all weighted automata and transducers used in large- vocabulary speech recognition
Generalized Weiszfeld Algorithms for Lq Optimization
Trumpf, Jochen
1 Generalized Weiszfeld Algorithms for Lq Optimization Khurrum Aftab, Richard Hartley, Jochen advantages. Given a set of points {y1, y2, . . . , yk} in some metric space Â· K. Aftab and R. Hartley-mail: Khurrum.Aftab@anu.edu.au, Richard.Hartley@anu.edu.au Â· J. Trumpf is with the Research School
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
Optimized TRIAD Algorithm for Attitude Determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
TRIAD is a well known simple algorithm that generates the attitude matrix between two coordinate systems when the components of two abstract vectors are given in the two systems. TRIAD however, is sensitive to the order in which the algorithm handles the vectors, such that the resulting attitude matrix is influenced more by the vector processed first. In this work we present a new algorithm, which we call Optimized TRIAD, that blends in a specified manner the two matrices generated by TRIAD when processing one vector first, and then when processing the other vector first. On the average, Optimized TRIAD yields a matrix which is better than either one of the two matrices in that is ti the closest to the correct matrix. This result is demonstrated through simulation.
Algorithm for fixed-range optimal trajectories
NASA Technical Reports Server (NTRS)
Lee, H. Q.; Erzberger, H.
1980-01-01
An algorithm for synthesizing optimal aircraft trajectories for specified range was developed and implemented in a computer program written in FORTRAN IV. The algorithm, its computer implementation, and a set of example optimum trajectories for the Boeing 727-100 aircraft are described. The algorithm optimizes trajectories with respect to a cost function that is the weighted sum of fuel cost and time cost. The optimum trajectory consists at most of a three segments: climb, cruise, and descent. The climb and descent profiles are generated by integrating a simplified set of kinematic and dynamic equations wherein the total energy of the aircraft is the independent or time like variable. At each energy level the optimum airspeeds and thrust settings are obtained as the values that minimize the variational Hamiltonian. Although the emphasis is on an off-line, open-loop computation, eventually the most important application will be in an on-board flight management system.
An optimal algorithm for counting network motifs
NASA Astrophysics Data System (ADS)
Itzhack, Royi; Mogilevski, Yelena; Louzoun, Yoram
2007-07-01
Network motifs are small connected sub-graphs occurring at significantly higher frequencies in a given graph compared with random graphs of similar degree distribution. Recently, network motifs have attracted attention as a tool to study networks microscopic details. The commonly used algorithm for counting small-scale motifs is the one developed by Milo et al. This algorithm is extremely costly in CPU time and actually cannot work on large networks, consisting of more than 100,000 edges on current CPUs. We here present a new optimal algorithm, based on network decomposition for counting K-size network motifs with constant memory costs and a CPU cost linear with the number of counted motifs. Our algorithm performs better than previous full enumeration algorithms in terms of running time. Moreover, it uses a constant amount of memory. It also outperforms sampling algorithms. Our algorithm permits the counting of three and four motif for large networks that consists of more than 500,000 nodes and 5,000,000 links. For large networks, it performs more than a thousand times faster than current algorithms.
Models for optimal harvest with convex function of growth rate of a population
Lyashenko, O.I.
1995-12-10
Two models for growth of a population, which are described by a Cauchy problem for an ordinary differential equation with right-hand side depending on the population size and time, are investigated. The first model is time-discrete, i.e., the moments of harvest are fixed and discrete. The second model is time-continuous, i.e., a crop is harvested continuously in time. For autonomous systems, the second model is a particular case of the variational model for optimal control with constraints investigated in. However, the prerequisites and the method of investigation are somewhat different, for they are based on Lemma 1 presented below. In this paper, the existence and uniqueness theorem for the solution of the discrete and continuous problems of optimal harvest is proved, and the corresponding algorithms are presented. The results obtained are illustrated by a model for growth of the light-requiring green alga Chlorella.
Lisbon, University of
Shape and Topology Optimization for Periodic Problems Part II: Optimization algorithm and numerical which alternates shape and topology optimization (the theoretical background about shape and topological Regeneration Â· Shape Optimization Â· Topology Optimization Â· Auxetic Materials 1 Introduction The main
Reactive power optimization by genetic algorithm
Iba, Kenji )
1994-05-01
This paper presents a new approach to optimal reactive power planning based on a genetic algorithm. Many outstanding methods to this problem have been proposed in the past. However, most of these approaches have the common defect of being caught to a local minimum solution. The integer problem which yields integer value solutions for discrete controllers/banks still remains as a difficult one. The genetic algorithm is a kind of search algorithm based on the mechanics of natural selection and genetics. This algorithm can search for a global solution using multiple paths and treat integer problems naturally. The proposed method was applied to practical 51-bus and 224-bus systems to show its feasibility and capabilities. Although this method is not as fast as sophisticated traditional methods, the concept is quite promising and useful.
The FEM approach to the 2D Poisson equation in 'meshes' optimized with the Metropolis algorithm
Kosinska, Ilona Dominika; Engineering, Institute of Biomedical; Instrumentation,; 27, Wybrzeze Wyspianskiego; Wroclaw, 50-370; Poland,
2010-01-01
The presented article contains a 2D mesh generation routine optimized with the Metropolis algorithm. The procedure enables to produce meshes with a prescribed size h of elements. These finite element meshes can serve as standard discrete patterns for the Finite Element Method (FEM). Appropriate meshes together with the FEM approach constitute an effective tool to deal with differential problems. Thus, having them both one can solve the 2D Poisson problem. It can be done for different domains being either of a regular (circle, square) or of a non--regular type. The proposed routine is even capable to deal with non--convex shapes.
Optimization of advanced telecommunication algorithms from power and performance perspective
Khan, Zahid
2011-11-22
This thesis investigates optimization of advanced telecommunication algorithms from power and performance perspectives. The algorithms chosen are MIMO and LDPC. MIMO is implemented in custom ASIC for power optimization ...
Generalized Weiszfeld Algorithms for Lq Optimization.
Aftab, Khurrum; Hartley, Richard; Trumpf, Jochen
2015-04-01
In many computer vision applications, a desired model of some type is computed by minimizing a cost function based on several measurements. Typically, one may compute the model that minimizes the L2 cost, that is the sum of squares of measurement errors with respect to the model. However, the Lq solution which minimizes the sum of the qth power of errors usually gives more robust results in the presence of outliers for some values of q, for example, q = 1. The Weiszfeld algorithm is a classic algorithm for finding the geometric L1 mean of a set of points in Euclidean space. It is provably optimal and requires neither differentiation, nor line search. The Weiszfeld algorithm has also been generalized to find the L1 mean of a set of points on a Riemannian manifold of non-negative curvature. This paper shows that the Weiszfeld approach may be extended to a wide variety of problems to find an Lq mean for 1 ? q <; 2, while maintaining simplicity and provable convergence. We apply this problem to both single-rotation averaging (under which the algorithm provably finds the global Lq optimum) and multiple rotation averaging (for which no such proof exists). Experimental results of Lq optimization for rotations show the improved reliability and robustness compared to L2 optimization. PMID:26353290
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
Yoon, Byung-Jun
Adaptive Reference Update (ARU) Algorithm: A Stochastic Search Algorithm for Efficient Optimization, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm
Global Optimization of Chemical Processes using Stochastic Algorithms
Neumaier, Arnold
Global Optimization of Chemical Processes using Stochastic Algorithms JULIO R. BANGA 1 and WARREN D engineering are difficult to optimize using gradientÂbased algorithms. These include process models with multimodalobjective functions and discontinuities. Herein, a stochastic algorithm is applied for the optimal design
Algorithm For Optimal Control Of Large Structures
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Garba, John A..; Utku, Senol
1989-01-01
Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.
Intelligent perturbation algorithms for space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1990-01-01
The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.
Microscale truss optimization using genetic algorithm
María Belén Prendes-Gero; Jean-Marc Drouet
2011-01-01
This paper describes the development of a genetic algorithm that is capable of optimizing the mass of micro-scale trusses.\\u000a Belonging to the group of periodic cellular materials, micro-scale trusses are characterized by the creation of a base cell\\u000a with a pattern that is repeated in space until a global structure is obtained. Investigation in this field has generally been\\u000a focused
Multidisciplinary design optimization using genetic algorithms
NASA Technical Reports Server (NTRS)
Unal, Resit
1994-01-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.
Algorithms for Marketing-Mix Optimization
Gudmundsson, Joachim; Smid, Michiel
2009-01-01
Algorithms for determining quality/cost/price tradeoffs in saturated markets are considered. A product is modeled by $d$ real-valued qualities whose sum determines the unit cost of producing the product. This leads to the following optimization problem: given a set of $n$ customers, each of whom has certain minimum quality requirements and a maximum price they are willing to pay, design a new product and select a price for that product in order to maximize the resulting profit. An $O(n\\log n)$ time algorithm is given for the case, $d=1$, of linear products, and $O(n(\\log n)^{d+1})$ time approximation algorithms are given for products with any constant number, $d$, of qualities. To achieve the latter result, an $O(nk^{d-1})$ bound on the complexity of an arrangement of homothetic simplices in $\\R^d$ is given, where $k$ is the maximum number of simplices that all contain a single points.
Optical flow optimization using parallel genetic algorithm
NASA Astrophysics Data System (ADS)
Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe
2011-06-01
A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.
Genetic algorithm optimization for aerospace electromagnetic design and analysis
J. Michael Johnson; Yahya Rahmat-Samii
1996-01-01
This paper provides a tutorial overview of a new approach to optimization for aerospace electromagnetics known as the Genetic Algorithm. Genetic Algorithm (GA) optimizers are robust, stochastic search methods modeled on the concepts of natural selection and evolution. The relationship between traditional optimization techniques and GA is discussed and the details of GA optimization implementation are explored. The tutorial overview
Global Tree Optimization: A Nongreedy Decision Tree Algorithm
Mitchell, John E.
Global Tree Optimization: A Nongreedy Decision Tree Algorithm Kristin P. Bennett Email bennekgreedy approach for constructing globally optimal multivariate decision trees with fixed structure is pro posed. Previous greedy tree construction algorithms are locally optimal in that they optimize some splitting crite
Algorithms for optimizing CT fluence control
NASA Astrophysics Data System (ADS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-03-01
The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).
A new algorithm for general multiobjective optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Dovi, Augustine R.; Wrenn, Gregory A.
1988-01-01
Described is a new technique for converting a constrained optimization problem to an unconstrained one, and a new method for multiobjective optimization based on that technique. The technique transforms the objective functions into goal constraints. The goal constraints are appended to the set of behavior constraints and the envelope of all functions in the set is searched for an unconstrained minimum. The technique may be categorized as a SUMT algorithm. In multiobjective applications, the approach has the advantage of locating a compromise minimum without the need to optimize for each individual objective function separately. The constrained to unconstrained conversion is described, followed by a description of the multiobjective problem. Two example problems are presented to demonstrate the robustness of the method.
Bell-Curve Based Evolutionary Optimization Algorithm
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
An Improved PSO Algorithm to Optimize BP Neural Network
Qing Chen; Wei Guo; Cuihong Li
2009-01-01
This paper presents a new BP neural network algorithm which is based on an improved particle swarm optimization (PSO) algorithm. The improved PSO (which is called IPSO) algorithm adopts adaptive inertia weight and acceleration coefficients to significantly improve the performance of the original PSO algorithm in global search and fine-tuning of the solutions. This study uses the IPSO algorithm to
Intervals in evolutionary algorithms for global optimization
Patil, R.B.
1995-05-01
Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.
Unification of algorithms for minimum mode optimization.
Zeng, Yi; Xiao, Penghao; Henkelman, Graeme
2014-01-28
Minimum mode following algorithms are widely used for saddle point searching in chemical and material systems. Common to these algorithms is a component to find the minimum curvature mode of the second derivative, or Hessian matrix. Several methods, including Lanczos, dimer, Rayleigh-Ritz minimization, shifted power iteration, and locally optimal block preconditioned conjugate gradient, have been proposed for this purpose. Each of these methods finds the lowest curvature mode iteratively without calculating the Hessian matrix, since the full matrix calculation is prohibitively expensive in the high dimensional spaces of interest. Here we unify these iterative methods in the same theoretical framework using the concept of the Krylov subspace. The Lanczos method finds the lowest eigenvalue in a Krylov subspace of increasing size, while the other methods search in a smaller subspace spanned by the set of previous search directions. We show that these smaller subspaces are contained within the Krylov space for which the Lanczos method explicitly finds the lowest curvature mode, and hence the theoretical efficiency of the minimum mode finding methods are bounded by the Lanczos method. Numerical tests demonstrate that the dimer method combined with second-order optimizers approaches but does not exceed the efficiency of the Lanczos method for minimum mode optimization. PMID:25669513
Regression model based on convex combinations best correlated with response
NASA Astrophysics Data System (ADS)
Dokukin, A. A.; Senko, O. V.
2015-03-01
A new regression method based on constructing optimal convex combinations of simple linear regressions of the least squares method (LSM regressions) built from original regressors is presented. It is shown that, in fact, this regression method is equivalent to a modification of the LSM including the additional requirement of the coincidence of the sign of the regression parameter with that of the correlation coefficient between the corresponding regressor and the response. A method for constructing optimal convex combinations based on the concept of nonexpandable irreducible ensembles is described. Results of experiments comparing the developed method with the known glmnet algorithm are presented, which confirm the efficiency of the former.
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
An integrated evolutionary algorithm for expensive global optimization
Changtong Luo; Chun Wang; Zonglin Jiang; Shao-Liang Zhang
2010-01-01
We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates
A metamodel-assisted evolutionary algorithm for expensive optimization
Changtong Luo; Shao-Liang Zhang; Chun Wang; Zonglin Jiang
2011-01-01
Expensive optimization aims to find the global minimum of a given function within a very limited number of function evaluations. It has drawn much attention in recent years. The present expensive optimization algorithms focus their attention on metamodeling techniques, and call existing global optimization algorithms as subroutines. So it is difficult for them to keep a good balance between model
Local optimality of dictionary learning algorithms Boris Mailh
Plumbley, Mark
Local optimality of dictionary learning algorithms Boris Mailhé Centre for Digital Music School dictionary learning algorithms. We focus on three algorithms: the Olshausen and Field algorithm (Ols-DLA) [1 matrix of training data. We consider the following dictionary learning problem min ,X S - X 2 2 (1
Expedite Particle Swarm Optimization Algorithm (EPSO) for Optimization of MSA
NASA Astrophysics Data System (ADS)
Rathi, Amit; Vijay, Ritu
This paper presents a new designing method of Rectangular patch Microstrip Antenna using an Artificial searches Algorithm with some constraints. It requires two stages for designing. In first stage, bandwidth of MSA is modeled using bench Mark function. In second stage, output of first stage give to modified Artificial search Algorithm which is Particle Swarm Algorithm (PSO) as input and get output in the form of five parameter- dimensions width, frequency range, dielectric loss tangent, length over a ground plane with a substrate thickness and electrical thickness. In PSO Cognition, factor and Social learning Factor give very important effect on balancing the local search and global search in PSO. Basing the modification of cognition factor and social learning factor, this paper presents the strategy that at the starting process cognition-learning factor has more effect then social learning factor. Gradually social learning factor has more impact after learning cognition factor for find out global best. The aim is to find out under above circumstances these modifications in PSO can give better result for optimization of microstrip Antenna (MSA).
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
Chen, Wei
structural properties, e.g., the Latin hypercube designs (LHD) (McKay, et al., 1979) with good one the threshold accepting (TA) algorithm (essentially a variant of SA) in constructing optimal LHD. The optimal
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins. PMID:25069136
Optimization of Reactive Power based on Newton-Raphson algorithm
Lavaei, Javad
distribution and flow. Reactive power optimization focuses on mathematical models and optimization algorithms the reactive power optimization procedures. Introduction In modern power system transmission technology, reactive power optimization is so important that it has direct influence on the high quality and stable
Honey Bees Inspired Optimization Method: The Bees Algorithm
Yuce, Baris; Packianather, Michael S.; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo
2013-01-01
Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.
An Estimation of Distribution Particle Swarm Optimization Algorithm
Kent, University of
evaluations. 1 Introduction The first Particle Swarm Optimization (PSO) algorithm was introduced by Kennedy other population-based optimization algorithms, PSO is initialized with a population of complete multiplication operator. Clerc and Kennedy [2] introduced the concept of constriction in PSO. Since it is based
Disassembly sequence planning based on ant colony optimization algorithm
Xue Jun Fang; Qian Shao Hua; Zhang Yu Feng
2010-01-01
Disassembly precedence restriction matrix (DPRM) is constructed to describe the Disassembly precedence relation between components of mechanical products. Based on this disassembly matrix, feasible and reasonable transition range which satisfied precedence restriction relation can be derived correctly and completely. Then ant colony optimization (ACO) algorithm is applied to generate geometric feasible and optimal disassembly sequences. In this paper, ACO algorithm
Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions
Mehlhorn, Kurt
Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions T. Hagerup arithmetic and the floor function, 3. generating a uniformly distributed real number between 0 and 1 K. Mehlhorn I. Munro Abstract We give optimal algorithms for generating discrete random variables
Optimal Hypercube Algorithms for Labeled Images (Preliminary version)
Stout, Quentin F.
Optimal Hypercube Algorithms for Labeled Images (Preliminary version) Russ Miller Department. and Computer Science University of Michigan Ann Arbor, MI 48109-2122 USA Abstract--Optimal hypercube algorithms per processor on a fine-grained hypercube. A figure (i.e., connected component) is a maximally
NASA Astrophysics Data System (ADS)
La Foy, Roderick; Vlachos, Pavlos
2011-11-01
An optimally designed MLOS tomographic reconstruction algorithm for use in 3D PIV and PTV applications is analyzed. Using a set of optimized reconstruction parameters, the reconstructions produced by the MLOS algorithm are shown to be comparable to reconstructions produced by the MART algorithm for a range of camera geometries, camera numbers, and particle seeding densities. The resultant velocity field error calculated using PIV and PTV algorithms is further minimized by applying both pre and post processing to the reconstructed data sets.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
NASA Astrophysics Data System (ADS)
Hoffmann, Aswin L.; den Hertog, Dick; Siem, Alex Y. D.; Kaanders, Johannes H. A. M.; Huizenga, Henk
2008-11-01
Finding fluence maps for intensity-modulated radiation therapy (IMRT) can be formulated as a multi-criteria optimization problem for which Pareto optimal treatment plans exist. To account for the dose-per-fraction effect of fractionated IMRT, it is desirable to exploit radiobiological treatment plan evaluation criteria based on the linear-quadratic (LQ) cell survival model as a means to balance the radiation benefits and risks in terms of biologic response. Unfortunately, the LQ-model-based radiobiological criteria are nonconvex functions, which make the optimization problem hard to solve. We apply the framework proposed by Romeijn et al (2004 Phys. Med. Biol. 49 1991-2013) to find transformations of LQ-model-based radiobiological functions and establish conditions under which transformed functions result in equivalent convex criteria that do not change the set of Pareto optimal treatment plans. The functions analysed are: the LQ-Poisson-based model for tumour control probability (TCP) with and without inter-patient heterogeneity in radiation sensitivity, the LQ-Poisson-based relative seriality s-model for normal tissue complication probability (NTCP), the equivalent uniform dose (EUD) under the LQ-Poisson model and the fractionation-corrected Probit-based model for NTCP according to Lyman, Kutcher and Burman. These functions differ from those analysed before in that they cannot be decomposed into elementary EUD or generalized-EUD functions. In addition, we show that applying increasing and concave transformations to the convexified functions is beneficial for the piecewise approximation of the Pareto efficient frontier.
On Optimal Scheduling Algorithms for Time-Shared Systems
Leonard Kleinrock; Arne A. Nilsson
1981-01-01
The problem of fmdlng those optimum scheduling algorithms for time-shared systems that mlmmize a cost function that depends on waiting time and required service time IS considered An optimality condmon which sometimes leads to infeasible algorithms is established The procedure is unproved upon by use of a mathematical programming technique but still does not always generate feasible algorithms. These results
An optimal online algorithm for metrical task systems
Allan Borodin; Nathan Linial; Michael E. Saks
1987-01-01
In practice, almost all dynamic systems require decisions to be made online, without full knowledge of their future impact on the system. We introduce a general model for the processing of sequences of tasks and develop a general online decision algorithm. We show that, for an important class of special cases, this algorithm is optimal among all online algorithms.Specifically, a
Using genetic algorithms to optimize controller parameters for HVAC systems
W. Huang; H. N. Lam
1997-01-01
This paper presents an adaptive learning algorithm based on genetic algorithms (GA) for automatic tuning of proportional, integral and derivative (PID) controllers in Heating Ventilating and Air Conditioning (HVAC) systems to achieve optimal performance. Genetic algorithms, which are search procedures based on the mechanics of Darwin's natural selection, are employed since they have been proved to be robust and efficient
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
Optimizing qubit Hamiltonian parameter estimation algorithms using PSO
Alexandr Sergeevich; Stephen D. Bartlett
2012-06-18
We develop qubit Hamiltonian single parameter estimation techniques using a Bayesian approach. The algorithms considered are restricted to projective measurements in a fixed basis, and are derived under the assumption that the qubit measurement is much slower than the characteristic qubit evolution. We optimize a non-adaptive algorithm using particle swarm optimization (PSO) and compare with a previously-developed locally-optimal scheme.
A New Optimized GA-RBF Neural Network Algorithm
Zhao, Dean; Su, Chunyang; Hu, Chanli; Zhao, Yuyan
2014-01-01
When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid. PMID:25371666
An Island Based Hybrid Evolutionary Algorithm for Optimization
Yang, Shengxiang
evolutionary algorithm (IHEA) for op- timization, which is based on Particle swarm optimization (PSO), Fast for a simulation optimization problem. A hybrid evolutionary Particle Swarm Op- timization (PSO) method of being selected. A hybrid technique that com- bines GA and PSO, called genetic swarm optimization (GSO
Resistive Network Optimal Power Flow: Uniqueness and Algorithms
Tan, Chee Wei
Resistive Network Optimal Power Flow: Uniqueness and Algorithms Chee Wei Tan, Senior Member, IEEE, Desmond W. H. Cai, Student Member, IEEE and Xin Lou Abstract--The optimal power flow (OPF) problem and asynchronous settings in practical power grids. I. INTRODUCTION The Optimal Power Flow (OPF) problem
A PARALLEL ALGORITHM FOR TOPOLOGY OPTIMIZATION Roy Johanson*
Papalambros, Panos
applied thermo-mechanical loads. In shape optimization, the optimum shape of a structure is sought by structural engineers. If topological changes are not allowed, size and shape optimization procedures canA PARALLEL ALGORITHM FOR TOPOLOGY OPTIMIZATION Roy Johanson* PanosPapalambros Newton Mack Noboru
AN SLP ALGORITHM AND ITS APPLICATION TO TOPOLOGY OPTIMIZATION
Gomes, Francisco A. M.
of topology optimization is the design of compliant mechanisms. A compliant mechanism is a structureAN SLP ALGORITHM AND ITS APPLICATION TO TOPOLOGY OPTIMIZATION FRANCISCO A. M. GOMES AND THADEU A-859, Campinas, SP, Brazil. E-mails: chico@ime.unicamp.br / tsenne@ime.unicamp.br Abstract. Topology optimization
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Decoherence in optimized quantum random-walk search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Yu-Chao; Bao, Wan-Su; Wang, Xiang; Fu, Xiang-Qun
2015-08-01
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002).
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Convex Nondifferentiable Optimization: a Survey Focussed on the Analytic Center Cutting Plane Method
J.-L. Goffin; JEAN-PHILIPPE VIAL
1999-01-01
We present a survey of nondifferentiable optimization problems and methods with special focus on the analytic center cutting plane method. We propose a self-contained convergence analysis, that uses the formalism of the theory of self-concordant fucntions, but for the main results, we give direct proofs based on the properties of the logarithmic function. We also provide an in depth analysis
Improved PSO algorithms for electromagnetic optimization
L. Matekovits; M. Mussetta; P. Pirinoli; S. Selleri; R. E. Zich
2005-01-01
Some variations over the basic particle swarm algorithm are here proposed, aimed at a more efficient search over the solution space and exhibiting a negligible overhead in complexity and speed. The proposed algorithms are then applied to the test case of a microwave filter to show their superior capabilities with respect to the conventional algorithm.
Optimal design of passive linear suspension using genetic algorithm
R Alkhatib; G Nakhaie Jazar; M. F Golnaraghi
2004-01-01
In this paper the genetic algorithm (GA) method is applied to the optimization problem of a linear one-degree-of-freedom (1-DOF) vibration isolator mount and the method is extended to the optimization of a linear quarter car suspension model. A novel criterion for selecting optimal suspension parameters is presented. An optimal relationship between the root mean square (RMS) of the absolute acceleration
Optimal combination of nested clusters by a greedy approximation algorithm.
Dang, Edward K F; Luk, Robert W P; Lee, D L; Ho, K S; Chan, Stephen C F
2009-11-01
Given a set of clusters, we consider an optimization problem which seeks a subset of clusters that maximizes the microaverage F-measure. This optimal value can be used as an evaluation measure of the goodness of clustering. For arbitrarily overlapping clusters, finding the optimal value is NP-hard. We claim that a greedy approximation algorithm yields the global optimal solution for clusters that overlap only by nesting. We present a mathematical proof of this claim by induction. For a family of n clusters containing a total of N objects, this algorithm has an {\\rm O}(n;{2}) time complexity and O(N) space complexity. PMID:19762933
Zabih, Ramin
phase filtering and convex projections in both k-space and image space. Without input of detailed motion-ray angiography. Patient motion can cause spurious changes in contrast-induced dynamic signal, contaminating images was reported using subspace analysis (6,7) and navigator-based correction (8,9,10). Motion in MRA
Convex-relaxed kernel mapping for image segmentation.
Ben Salah, Mohamed; Ben Ayed, Ismail; Jing Yuan; Hong Zhang
2014-03-01
This paper investigates a convex-relaxed kernel mapping formulation of image segmentation. We optimize, under some partition constraints, a functional containing two characteristic terms: 1) a data term, which maps the observation space to a higher (possibly infinite) dimensional feature space via a kernel function, thereby evaluating nonlinear distances between the observations and segments parameters and 2) a total-variation term, which favors smooth segment surfaces (or boundaries). The algorithm iterates two steps: 1) a convex-relaxation optimization with respect to the segments by solving an equivalent constrained problem via the augmented Lagrange multiplier method and 2) a convergent fixed-point optimization with respect to the segments parameters. The proposed algorithm can bear with a variety of image types without the need for complex and application-specific statistical modeling, while having the computational benefits of convex relaxation. Our solution is amenable to parallelized implementations on graphics processing units (GPUs) and extends easily to high dimensions. We evaluated the proposed algorithm with several sets of comprehensive experiments and comparisons, including: 1) computational evaluations over 3D medical-imaging examples and high-resolution large-size color photographs, which demonstrate that a parallelized implementation of the proposed method run on a GPU can bring a significant speed-up and 2) accuracy evaluations against five state-of-the-art methods over the Berkeley color-image database and a multimodel synthetic data set, which demonstrates competitive performances of the algorithm. PMID:24723519
PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm
Lim, Wei Chen Esmonde; Kanagaraj, G.; Ponnambalam, S. G.
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
PCB drill path optimization by combinatorial cuckoo search algorithm.
Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
Progress in design optimization using evolutionary algorithms for aerodynamic problems
NASA Astrophysics Data System (ADS)
Lian, Yongsheng; Oyama, Akira; Liou, Meng-Sing
2010-07-01
Evolutionary algorithms (EAs) are useful tools in design optimization. Due to their simplicity, ease of use, and suitability for multi-objective design optimization problems, EAs have been applied to design optimization problems from various areas. In this paper we review the recent progress in design optimization using evolutionary algorithms to solve real-world aerodynamic problems. Examples are given in the design of turbo pump, compressor, and micro-air vehicles. The paper covers the following topics that are deemed important to solve a large optimization problem from a practical viewpoint: (1) hybridized approaches to speed up the convergence rate of EAs; (2) the use of surrogate model to reduce the computational cost stemmed from EAs; (3) reliability based design optimization using EAs; and (4) data mining of Pareto-optimal solutions.
A Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
The LFOPC leap-frog algorithm for constrained optimization
J. A. Snyman
2000-01-01
This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current
A computer algorithm to optimize the scheduling of strategic sealift
Lambert, Garrett Randall
1995-01-01
A COMPUTER ALGORITHM TO OPTIMIZE THE SCHEDULING OF STRATEGIC SEALIFT A Thesis by GARRETT RANDALL LAMBERT Submitted to the OI5ce of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1995 Major Subject: Industrial Engineering A COMPUTER ALGORITHM TO OPTIMIZE THE SCHEDULING OF STRATEGIC SEALIFT A Thesis by GARRETT RANDALL LAMBERT Submitted to Texas A&M University in partial fulfillment of the requirements...
Genetic algorithms - What fitness scaling is optimal?
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Quintana, Chris; Fuentes, Olac
1993-01-01
A problem of choosing the best scaling function as a mathematical optimization problem is formulated and solved under different optimality criteria. A list of functions which are optimal under different criteria is presented which includes both the best functions empirically proved and new functions that may be worth trying.
Wave Algorithms: Optimal Database Search and Catalysis
Apoorva D. Patel
2006-12-20
Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any physical system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.
Iterative phase retrieval algorithms. I: optimization.
Guo, Changliang; Liu, Shi; Sheridan, John T
2015-05-20
Two modified Gerchberg-Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input-output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems. PMID:26192504
The optimization design of truss based on Ant Colony optimal Algorithm
Xiaojia Chen; Shuguang Liu; Shaohong He
2010-01-01
An optimization method for a truss structure design using the Ant Colony Algorithm is presented in this paper. With the constraints of the truss stiffness, strength, allowing displacement and other design conditions, the Ant Colony Algorithm is implanted to the optimizing process of the truss structure using the program languages of MATLAB. Two typical trusses are used as examples to
Convex Optimization for the Design of Learning K. Pelckmans, J.A.K. Suykens, B. De Moor
which can be written as min x f0(x) s.t. fk(x) = 0 k = 1, . . . , nK fl(x) 0 l = nK + 1, . . . , nK + n for all k = 1, . . . , nK are linear in terms of x, and the inequality constraints fl : Rv R for all l = nK + 1, . . . , nK + nL are convex ([11], Sect 4.2). Among the principal advantages of such convex
Dominance Learning in Diploid Genetic Algorithms for Dynamic Optimization Problems
Yang, Shengxiang
Dominance Learning in Diploid Genetic Algorithms for Dynamic Optimization Problems Shengxiang Yang.yang@mcs.le.ac.uk ABSTRACT This paper proposes an adaptive dominance mechanism for diploidy genetic algorithms in dynamic environments. In this scheme, the genotype to phenotype mapping in each gene locus is controlled by a dominance
An algebraic grid optimization algorithm using condition numbers
Costanza Conti; Rossana Morandi; Rosa Maria Spitaleri
2006-01-01
In this paper we present an algorithm able to provide geometrically optimal algebraic grids by using condition numbers as quality measures. In fact, the solution of partial differential equations (PDEs) to model complex problems needs an efficient algorithm to generate a good quality grid since better geometrical grid quality is gained, faster accuracy of the numerical solution can be kept.
Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm
Marco Antonio Montes de Oca; Thomas Stützle; Mauro Birattari; Marco Dorigo
2009-01-01
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed. In many cases, the difference between two variants can be seen as an algorithmic component being present in one variant but not in the other. In the first part of the paper, we present the results and insights obtained from a detailed empirical
Genetic Algorithms in Optimization: Better than Random Search? \\Lambda
Amaral, José Nelson
Genetic Algorithms in Optimization: Better than Random Search? \\Lambda Jos'e Nelson Amaral, Ph'osGradua¸c~ao em Engenharia El'etrica Pontif'icia Universidade Cat'olica do Rio Grande do Sul 90619900 Porto of choice for individu als in Genetic Algorithms and that genetic op erators must be tailored to each
Hardware oriented optimization of Smith-Waterman algorithm
A. Milik; A. Pulka
2010-01-01
The work presented within the paper concerns very important problem of searching for string alignments. The problem originates from modern computation biology. Hardware based implementations have been driving out software solutions in the field recently. The complex programmable devices have become very commonly applied. The paper introduces a new, optimized approach based on Smith-Waterman dynamic programming algorithm. The original algorithm
Parallel optimization algorithms and their implementation in VLSI design
NASA Technical Reports Server (NTRS)
Lee, G.; Feeley, J. J.
1991-01-01
Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.
Designing Stochastic Optimization Algorithms for Real-world Applications
NASA Astrophysics Data System (ADS)
Someya, Hiroshi; Handa, Hisashi; Koakutsu, Seiichi
This article presents a review of recent advances in stochastic optimization algorithms. Novel algorithms achieving highly adaptive and efficient searches, theoretical analyses to deepen our understanding of search behavior, successful implementation on parallel computers, attempts to build benchmark suites for industrial use, and techniques applied to real-world problems are included. A list of resources is provided.
Motivation Defect correction The algorithm Summary Defect correction in optimization
Hemker, P.W.
Motivation Defect correction The algorithm Summary Defect correction in optimization "Manifold Mapping" P.W. Hemker IPIR/CWI/UvA June 11, 2010 Manifold Mapping P.W. Hemker #12;Motivation Defect correction The algorithm Summary Motivation Motivation determine x1, x2, x1, x3, x4, x5, x6, x7 Manifold
An Optimized Multiple Hypothesis RAIM Algorithm forVertical Guidance
Stanford University
An Optimized Multiple Hypothesis RAIM Algorithm forVertical Guidance Juan Blanch, Alex Ene, Todd or Cat. I, for example), and perhaps ultimately replacing integrity providers such as SBAS and GBAS Multiple Hypothesis Solution Separation algorithm for RAIM. There are several advantages in the Multiple
Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms
Gibbs, Trevor Howard
2011-08-08
since they modify several solutions simultaneously. All of these properties make genetic algorithms the logical choice to be the basis in answering the well location determination problem in a gas reservoir. LITERATURE SURVEY ?Genetic algorithms... PLACEMENT OPTIMIZATION IN GAS RESERVOIRS USING GENETIC ALGORITHMS A Thesis by TREVOR HOWARD GIBBS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...
Communication-Optimal Eigenvalue/SVD Algorithms
California at Berkeley, University of
Algorithm Goal of divide and conquer step is to divide the spectrum along a curve in the com- plex plane blocks as subproblems Algorithm 1: Splitting the spectrum of a matrix A along unit circle 1: Implicit¨obius transformations · In order to split the spectrum along any line or circle, we can use transformations of the form
A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain
P. Robertson; E. Villebrun; P. Hoeher
1995-01-01
For estimating the states or outputs of a Markov process, the symbol-by-symbol MAP algorithm is optimal. However, this algorithm, even in its recursive form, poses technical difficulties because of numerical representation problems, the necessity of nonlinear functions and a high number of additions and multiplications. MAP like algorithms operating in the logarithmic domain presented in the past solve the numerical
GLOBAL OPTIMIZATION AND APPROXIMATION ALGORITHMS IN COMPUTER VISION
Lunds Universitet
Vision Abstract Computer Vision is today a wide research area including topics like robot vision, image relaxations, computer vision, binary quadratic optimization. Classification system and/or index terms (if anyGLOBAL OPTIMIZATION AND APPROXIMATION ALGORITHMS IN COMPUTER VISION CARL OLSSON Faculty
A parallel Particle swarm optimization algorithm for option pricing
Hari Prasain; Girish Kumar Jha; Parimala Thulasiraman; Ruppa K. Thulasiram
2010-01-01
Option pricing is one of the challenging problems of computational finance. Nature-inspired algorithms have gained prominence in real world optimization problems such as in mobile ad hoc networks. The option pricing problem fits very well into this category of problems due to the ad hoc nature of the market. Particle swarm optimization (PSO) is one of the novel global search
Using modifications to Grover's Search algorithm for quantum global optimization
Yipeng Liu; Gary J. Koehler
2010-01-01
We study the problem of finding a global optimal solution to discrete optimization problems using a heuristic based on quantum computing methods. (Knowledge of quantum computing ideas is not necessary to read this paper.) We focus on a successful quantum computing method introduced by Baritompa, Bulger, and Wood, that we refer to as the BBW algorithm, and develop two modifications.
Monotonic convergence of a general algorithm for computing optimal designs
Yu, Yaming
2010-01-01
Monotonic convergence is established for a general class of multiplicative algorithms introduced by Silvey, Titterington and Torsney [Comm. Statist. Theory Methods 14 (1978) 1379--1389] for computing optimal designs. A conjecture of Titterington [Appl. Stat. 27 (1978) 227--234] is confirmed as a consequence. Optimal designs for logistic regression are used as an illustration.
An Ant Colony Optimization Competition Routing Algorithm for WSN
Zhicheng Zhong; Zhizhong Tian; Li Zhe; Peihua Xu
2008-01-01
This paper develops Ant Colony optimization (ACO) algorithm and applies it to energy control and congestion control on wireless sensor network route. The pheromone and the energy of the node are combined to affect the pheromone consent ration in optimization path, which can avoid network congestion and fast consume of energy of individual node. Then it can prolong the lifecycle
Seminar on Algorithms and Models for Railway Optimization
Brandes, Ulrik
Seminar on Algorithms and Models for Railway Optimization Crew scheduling Jasper MÂ¨oller mailto part of the railway optimization process. Unfortunately it is also a difficult one to solve, due railroad companies, it has become increasingly important to reduce the overall cost of operation. Personnel
Design optimization of electrical machines using genetic algorithms
G. F. Uler; O. A. Mohammed; Chang-Seop Koh
1995-01-01
The application of genetic algorithms (GAs) to the design optimization of electromagnetic devices is presented in detail. The method is demonstrated on a magnetizer by optimizing its pole face to obtain the desired magnetic flux density distribution. The shape of the pole face is constructed from the control points by means of uniform nonrational b-splines
Imperialist competitive algorithm combined with chaos for global optimization
NASA Astrophysics Data System (ADS)
Talatahari, S.; Farahmand Azar, B.; Sheikholeslami, R.; Gandomi, A. H.
2012-03-01
A novel chaotic improved imperialist competitive algorithm (CICA) is presented for global optimization. The ICA is a new meta-heuristic optimization developed based on a socio-politically motivated strategy and contains two main steps: the movement of the colonies and the imperialistic competition. Here different chaotic maps are utilized to improve the movement step of the algorithm. Seven different chaotic maps are investigated and the Logistic and Sinusoidal maps are found as the best choices. Comparing the new algorithm with the other ICA-based methods demonstrates the superiority of the CICA for the benchmark functions.
An evolutionary game based particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Liu, Wei-Bing; Wang, Xian-Jia
2008-04-01
Particle swarm optimization (PSO) is an evolutionary algorithm used extensively. This paper presented a new particle swarm optimizer based on evolutionary game (EGPSO). We map particles' finding optimal solution in PSO algorithm to players' pursuing maximum utility by choosing strategies in evolutionary games, using replicator dynamics to model the behavior of particlesE And in order to overcome premature convergence a multi-start technique was introduced. Experimental results show that EGPSO can overcome premature convergence and has great performance of convergence property over traditional PSO.
Wenbo Zhang; Xiaoguang Zhang; Qingyue Di; Lixia Xi
2010-01-01
In this paper, we presented a new hybrid particle swarm optimization algorithm which is used to design the control unit of an adaptive polarization mode dispersion compensation. Comparing with the conventional particle swarm optimization algorithm, the new algorithm converges to the global optima much faster than the conventional particle swarm optimization algorithm. Experiments show that the new algorithm is easy
A Hybrid Ant Colony Algorithm for Loading Pattern Optimization
NASA Astrophysics Data System (ADS)
Hoareau, F.
2014-06-01
Electricité de France (EDF) operates 58 nuclear power plant (NPP), of the Pressurized Water Reactor (PWR) type. The loading pattern (LP) optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R&D has developed automatic optimization tools that assist the experts. The latter can resort, for instance, to a loading pattern optimization software based on ant colony algorithm. This paper presents an analysis of the search space of a few realistic loading pattern optimization problems. This analysis leads us to introduce a hybrid algorithm based on ant colony and a local search method. We then show that this new algorithm is able to generate loading patterns of good quality.
A parallel variable metric optimization algorithm
NASA Technical Reports Server (NTRS)
Straeter, T. A.
1973-01-01
An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.
Optimization of the Solovay-Kitaev algorithm
NASA Astrophysics Data System (ADS)
Pham, Tien Trung; Van Meter, Rodney; Horsman, Clare
2013-05-01
The Solovay-Kitaev algorithm is the standard method used for approximating arbitrary single-qubit gates for fault-tolerant quantum computation. In this paper we introduce a technique called search space expansion, which modifies the initial stage of the Solovay-Kitaev algorithm, increasing the length of the possible approximating sequences but without requiring an exhaustive search over all possible sequences. This technique is combined with an efficient space search method called geometric nearest-neighbor access trees, modified for the unitary matrix lookup problem, in order to reduce significantly the algorithm run time. We show that, with low time cost, our techniques output gate sequences that are almost an order of magnitude smaller for the same level of accuracy. This therefore reduces the error correction requirements for quantum algorithms on encoded fault-tolerant hardware.
Artificial bee colony algorithm for solving optimal power flow problem.
Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian
2013-01-01
This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790
Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem
Le Dinh, Luong; Vo Ngoc, Dieu
2013-01-01
This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790
Fast Approximate Convex Decomposition
Ghosh, Mukulika
2012-10-19
Approximate convex decomposition (ACD) is a technique that partitions an input object into "approximately convex" components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can...
Efficient integer optimization algorithms for optimal coordination of capacitors and regulators
Baldick, R.; Wu, F.F. (Univ. of California, Berkeley, CA (US))
1990-08-01
The optimal coordination of switched capacitors and tap-changing transformers in a radial distribution system is considered. The formulation incorporates voltage constraints. The coordination problem is approximated by a constrained discrete quadratic optimization using the results from the corresponding unconstrained continuous problem. The discrepancy between the actual and approximating problem is discussed. Two algorithms are proposed to seek solutions to the approximating optimization problem. The first is a randomized algorithm that runs fast but for which there is no guarantee of optimality. The second is a deterministic algorithm, the run time of which is polynomially bounded in the problem size. For large systems the run times of these algorithms may be significantly less than the run times of explicit search or branch and bound algorithms.
Zeng, Chen
Reference Energy Extremal Optimization: A Stochastic Search Algorithm Applied to Computational optimization (EO), for the search problem in computational protein design. This algorithm takes advantage and present an improved method, which we call reference energy extremal optimization (REEO). REEO uses
Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
Performance Trend of Different Algorithms for Structural Design Optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
A training algorithm for optimal margin classifiers
Bernhard E. Boser; Isabelle M. Guyon; Vladimir N. Vapnik
1992-01-01
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of
Communication-Optimal Eigenvalue/SVD Algorithms
California at Berkeley, University of
the spectrum along a curve in the com- plex plane and orthogonally transform the matrix to block triangular the spectrum of a matrix A along unit circle 1: Implicit Repeated Squaring of A-1 2: Compute invariant subspace algorithm works for generalized eigenproblem M¨obius transformations · In order to split the spectrum along
Jackson, Daniel
2009-07-03
This paper presents a new general-purpose algorithm for exact solving of combinatorial many-objective optimization problems. We call this new algorithm the guided improvement algorithm. The algorithm is implemented on top ...
A local stability supported parallel distributed constraint optimization algorithm.
Peibo, Duan; Changsheng, Zhang; Bin, Zhang
2014-01-01
This paper presents a new distributed constraint optimization algorithm called LSPA, which can be used to solve large scale distributed constraint optimization problem (DCOP). Different from the access of local information in the existing algorithms, a new criterion called local stability is defined and used to evaluate which is the next agent whose value needs to be changed. The propose of local stability opens a new research direction of refining initial solution by finding key agents which can seriously effect global solution once they modify assignments. In addition, the construction of initial solution could be received more quickly without repeated assignment and conflict. In order to execute parallel search, LSPA finds final solution by constantly computing local stability of compatible agents. Experimental evaluation shows that LSPA outperforms some of the state-of-the-art incomplete distributed constraint optimization algorithms, guaranteeing better solutions received within ideal time. PMID:25105166
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Optimization of computer-generated binary holograms using genetic algorithms
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Alexandrescu, Adrian
1999-11-01
The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.
MOGA algorithm for multi-objective optimization of aircraft detection
NASA Astrophysics Data System (ADS)
Sun, Hongguang; Pan, Yuxue; Zhang, Jingbo
2006-01-01
This paper presents effective multi-objective genetic algorithms (MOGA) method, whose character lies in that evolutionary population is preference ranked based on concordance model, which was applied to a multi-objective optimization of aircraft, measure of fitness degree was discussed as an emphasis. The solutions were analyzed and compares with original BP neural networks algorithm, which is better than the network trained only on alternating momentum, which can performed well neural networks and have shown the superiority to the network structure. Based the pareto optimal approaches are equipped with a fast identifying ability in capturing the learned objects, and in the meantime it can adapt the new objects. The experiments with variety of image show that the method proposed is efficient and useful, the result demonstrates that convergence speed is faster than traditional algorithm; target was recognized by this algorithm and can increase recognition precision.
Efficient Optimally Lazy Algorithms for Minimal-Interval Semantics
Vigna, Sebastiano
2007-01-01
Minimal-interval semantics associates with each query over a document a set of intervals, called witnesses, that are incomparable with respect to inclusion (i.e., they form an antichain): witnesses define the minimal regions of the document satisfying the query. Minimal-interval semantics makes it easy to define and compute several sophisticated proximity operators, provides snippets for user presentation, and can be used to rank documents. In this paper we provide algorithms for computing conjunction and disjunction that are linear in the number of intervals and logarithmic in the number of operands; for additional operators, such as ordered conjunction and Brouwerian difference, we provide linear algorithms. In all cases, space is linear in the number of operands. More importantly, we define a formal notion of optimal laziness, and either prove it, or prove its impossibility, for each algorithm. Optimal laziness implies that the algorithms do not assume random access to the input intervals, and read as litt...
Improved Clonal Selection Algorithm Combined with Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Gao, Shangce; Wang, Wei; Dai, Hongwei; Li, Fangjia; Tang, Zheng
Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques.
EFFICIENT OPTIMIZATION ALGORITHMS FOR LEARNING Ruslan Salakhutdinov
Roweis, Sam
& To my dear sister Olya and brother-in-law Steve for their invaluable advice and support & To my adoring Whye Teh. Their discussions and presentations during weekly group meet- ings have been one of my best optimization, that possess superior convergence over standard existing methods. ii #12;Dedication To my loving
A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm
NASA Astrophysics Data System (ADS)
Mohanty, Prases K.; Parhi, Dayal R.
2014-12-01
Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.
Environmental Optimization: Applications of Genetic Algorithms
Sue Ellen Haupt
The genetic algorithm (GA) has found wide acceptance in many fields, ranging from economics through engineering. In the environmental\\u000a sciences, some disciplines are using GAs regularly as a tool to solve typical problems; while in other areas, they have hardly\\u000a been assessed for use in research projects. The key to using GAs in environmental sciences is to pose the problem
New near-optimal feedback guidance algorithms for space missions
NASA Astrophysics Data System (ADS)
Hawkins, Matthew Jay
This dissertation describes several different spacecraft guidance algorithms, with applications including asteroid intercept and rendezvous, planetary landing, and orbital transfer. A comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous. Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) guidance is introduced and applied to asteroid intercept and rendezvous, and to a wealth of different example problems, including missile intercept, planetary landing, and orbital transfer. It is seen that the ZEM/ZEV guidance law can be used in many different scenarios, and that it provides near-optimal performance where an analytical optimal guidance law does not exist, such as in a non-linear gravity field.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
NASA Technical Reports Server (NTRS)
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
Chaos time series prediction based on membrane optimization algorithms.
Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng; Peng, Hong
2015-01-01
This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (?, m) and least squares support vector machine (LS-SVM) (?, ?) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249
Optimization Algorithm for the Generation of ONCV Pseudopotentials
Schlipf, Martin
2015-01-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z=83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials provide a good agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff of approximately 60 Ry.
Optimization Algorithm for the Generation of ONCV Pseudopotentials
NASA Astrophysics Data System (ADS)
Schlipf, Martin; Gygi, Francois
2015-03-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z=83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials provide a good agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff of approximately 60 Ry. Supported by DOE/BES Grant DE-SC0008938.
Flow Control Optimization Using Neural Networks and Genetic Algorithms
Raymond P. LeBeau; Narendra K. Beliganur; Thomas Hauser
Evolutionary algorithms have now been used as tool to optimize complex design spaces in aerospace applications, notably in\\u000a the areas of Multidisciplinary Design Optimization (MDO) [4, 2] and flow control [9]. However, in the latter area a limiting\\u000a factor has been the cost of evaluating the performance of each tested flow control configuration. This process is conventionally\\u000a accomplished through computational
An efficient cuckoo search algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
NASA Astrophysics Data System (ADS)
Hassan, Md. Rakib; Islam, Md. Monirul; Murase, Kazuyuki
Ant Colony Optimization (ACO) algorithms are a new branch of swarm intelligence. They have been applied to solve different combinatorial optimization problems successfully. Their performance is very promising when they solve small problem instances. However, the algorithms' time complexity increase and solution quality decrease for large problem instances. So, it is crucial to reduce the time requirement and at the same time to increase the solution quality for solving large combinatorial optimization problems by the ACO algorithms. This paper introduces a Local Search based ACO algorithm (LSACO), a new algorithm to solve large combinatorial optimization problems. The basis of LSACO is to apply an adaptive local search method to improve the solution quality. This local search automatically determines the number of edges to exchange during the execution of the algorithm. LSACO also applies pheromone updating rule and constructs solutions in a new way so as to decrease the convergence time. The performance of LSACO has been evaluated on a number of benchmark combinatorial optimization problems and results are compared with several existing ACO algorithms. Experimental results show that LSACO is able to produce good quality solutions with a higher rate of convergence for most of the problems.
Optimal Placement Algorithms for Virtual Machines
Bellur, Umesh; SD, Madhu Kumar
2010-01-01
Cloud computing provides a computing platform for the users to meet their demands in an efficient, cost-effective way. Virtualization technologies are used in the clouds to aid the efficient usage of hardware. Virtual machines (VMs) are utilized to satisfy the user needs and are placed on physical machines (PMs) of the cloud for effective usage of hardware resources and electricity in the cloud. Optimizing the number of PMs used helps in cutting down the power consumption by a substantial amount. In this paper, we present an optimal technique to map virtual machines to physical machines (nodes) such that the number of required nodes is minimized. We provide two approaches based on linear programming and quadratic programming techniques that significantly improve over the existing theoretical bounds and efficiently solve the problem of virtual machine (VM) placement in data centers.
A social learning particle swarm optimization algorithm for scalable optimization
Jin, Yaochu
into particle swarm optimization (PSO) to develop a social learning PSO (SL-PSO). Unlike classical PSO variants in the proposed SL-PSO learns from any better particles (termed demonstrators) in the current swarm. In addition, to ease the burden of parameter settings, the proposed SL-PSO adopts a dimension-dependent parameter
Algorithms for Leader Selection in Large Dynamical Networks: Noise-Free Leaders
Jovanovic, Mihailo
applications, including opinion dynamics in social networks and multi-agent formation control [1]. The leader of electrical networks and Kron reduction theory. Index Terms-- Consensus, convex optimization, convex reAlgorithms for Leader Selection in Large Dynamical Networks: Noise-Free Leaders Makan Fardad, Fu
Stefan Wagner; Gabriel Kronberger
2012-01-01
This tutorial demonstrates how to apply and analyze metaheuristic optimization algorithms using the HeuristicLab open source optimization environment. It is shown how to parameterize and execute evolutionary algorithms to solve combinatorial optimization problems (traveling salesman, vehicle routing) as well as data analysis problems (regression, classification). The attendees learn how to assemble different algorithms and parameter settings to large scale optimization
Optimal Design of Geodetic Network Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Bagheri, Hosein
2010-05-01
A geodetic network is a network which is measured exactly by techniques of terrestrial surveying based on measurement of angles and distances and can control stability of dams, towers and their around lands and can monitor deformation of surfaces. The main goals of an optimal geodetic network design process include finding proper location of control station (First order Design) as well as proper weight of observations (second order observation) in a way that satisfy all the criteria considered for quality of the network with itself is evaluated by the network's accuracy, reliability (internal and external), sensitivity and cost. The first-order design problem, can be dealt with as a numeric optimization problem. In this designing finding unknown coordinates of network stations is an important issue. For finding these unknown values, network geodetic observations that are angle and distance measurements must be entered in an adjustment method. In this regard, using inverse problem algorithms is needed. Inverse problem algorithms are methods to find optimal solutions for given problems and include classical and evolutionary computations. The classical approaches are analytical methods and are useful in finding the optimum solution of a continuous and differentiable function. Least squares (LS) method is one of the classical techniques that derive estimates for stochastic variables and their distribution parameters from observed samples. The evolutionary algorithms are adaptive procedures of optimization and search that find solutions to problems inspired by the mechanisms of natural evolution. These methods generate new points in the search space by applying operators to current points and statistically moving toward more optimal places in the search space. Genetic algorithm (GA) is an evolutionary algorithm considered in this paper. This algorithm starts with definition of initial population, and then the operators of selection, replication and variation are applied to obtain the solution of problem. In this research, the first step is to design a geodetic network and do the observations of the distances and angles between network's stations. The second step is to use the optimization algorithms to estimate unknown values of stations' coordinates, with regards to calculation equations of length and angle. The result indicates that The Genetic algorithms have been successfully employed for solving inverse problems in engineering disciplines. And it seems that many complex problems can be better solved using genetic algorithms than those of using conventional methods.
RQSG-I: An optimized real time scheduling algorithm for tasks allocation in grid environments
Vahe Aghazarian; Arash Ghorbannia Delavar; Nima Ghazanfari Motlagh; Mohsen Khajeh Naeini
2011-01-01
In this paper we introduce an optimized real time scheduling algorithm for tasks allocation in grid environment. The modified RQSG algorithm is an optimized algorithm that is being improved using processing node and processing power parameters. The proposed algorithm allocates group jobs with prioritization rather than RQSG algorithm and also has dependent nodes in which the tasks are being done
Synchronization-Aware and Algorithm-Efficient Chance Constrained Optimal Power Flow
Bent, Russell; Chertkov, Michael
2013-01-01
One of the most common control decisions faced by power system operators is the question of how to dispatch generation to meet demand for power. This is a complex optimization problem that includes many nonlinear, non convex constraints as well as inherent uncertainties about future demand for power and available generation. In this paper we develop convex formulations to appropriately model crucial classes of nonlinearities and stochastic effects. We focus on solving a nonlinear optimal power flow (OPF) problem that includes loss of synchrony constraints and models wind-farm caused fluctuations. In particular, we develop (a) a convex formulation of the deterministic phase-difference nonlinear Optimum Power Flow (OPF) problem; and (b) a probabilistic chance constrained OPF for angular stability, thermal overloads and generation limits that is computationally tractable.
Optimization of reinforced soil embankments by genetic algorithm
NASA Astrophysics Data System (ADS)
Ponterosso, P.; Fox, D. St. J.
2000-04-01
A Genetic Algorithm (GA) is described, which produces solutions to the cost optimization problem of reinforcement layout for reinforced soil slopes. These solutions incorporate different types of reinforcement within a single slope. The GA described is implemented with the aim of optimizing the cost of materials for the preliminary layout of reinforced soil embankments. The slope design method chosen is the U.K. Department of Transport HA 68/94 Design Methods for the Reinforcement of Highway Slopes by Reinforced Soil and Soil Nailing Techniques. The results confirm that there is a role for the GA in optimization of reinforced soil design.
Optimal brushless DC motor design using genetic algorithms
NASA Astrophysics Data System (ADS)
Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.
2010-11-01
This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.
A Global Optimization Algorithm Based on Plant Growth Theory: Plant Growth Optimization
Wei Cai; Weiwei Yang; Xiaoqian Chen
2008-01-01
A novel optimization algorithm, plant growth optimization (PGO), is proposed in this paper. According to the plant growth characteristics, an artificial plant growth model is built including leaf growth, branching, phototropism and spatial occupancy. Afterward, two mechanisms are introduced and the basic process of PGO is presented in details. Three classical test problems are adopted to test the performance of
Optimal Step Nonrigid ICP Algorithms for Surface Registration Brian Amberg
Vetter, Thomas
Optimal Step Nonrigid ICP Algorithms for Surface Registration Brian Amberg University of Basel University of Basel thomas.vetter@uni-basel.ch Abstract We show how to extend the ICP framework to nonrigid nonrigid ICP framework allows the use of different regularisations, as long as they have an adjustable
BP neural network optimization based on an improved genetic algorithm
Bo Yang; Xiao-Hong Su; Ya-Dong Wang
2002-01-01
An improved genetic algorithm based on evolutionarily stable strategy is proposed to optimize the initial weights of backpropagation (BP) network in this paper. The improvement of GA lies in the introducing of a new mutation operator under control of a stable factor, which is found to be a very simple and effective searching operator. The experimental results in BP neural
DE\\/EDA: A new evolutionary algorithm for global optimization
Jianyong Sun; Qingfu Zhang; Edward P. K. Tsang
2005-01-01
Differential evolution (DE) was very successful in solving the global continuous optimization problem. It mainly uses the distance and direction information from the current population to guide its further search. Estimation of distribution algorithm (EDA) samples new solutions from a probability model which characterizes the distribution of promising solutions. This paper proposes a combination of DE and EDA (DE\\/EDA) for
Algorithmic Strategies for Optimizing the Parallel Reduction Primitive in CUDA
Moreno Maza, Marc
of well-known data- parallel primitives. Those primitives are usually invoked from the host many times, so primitive. Nevertheless, this should be done many times (one for each segment), and some of the segments mayAlgorithmic Strategies for Optimizing the Parallel Reduction Primitive in CUDA Pedro J. MartÃn
Truss topology optimization by a modified genetic algorithm
H. Kawamura; H. Ohmori; N. Kito
2002-01-01
This paper describes the use of a stochastic search procedure based on genetic algorithms for developing near-optimal topologies of load-bearing truss structures. Most existing cases these publications express the truss topology as a combination of members. These methods, however, have the disadvantage that the resulting topology may include needless members or those which overlap other members. In addition to these
The Cache Performance and Optimizations of Blocked Algorithms
Monica S. Lam; Edward E. Rothberg; Michael E. Wolf
1991-01-01
Blocking is a well-known optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused. This paper presents cache performance data for blocked programs and evaluates several op- timizations to
GENETIC ALGORITHMS AND OPTIMIZING CHEMICAL OXYGEN-IODINE LASERS
David L. Carroll
1996-01-01
This paper presents results from the first known application of the genetic algorithm (GA) technique for optimizing the performance of a laser system (chemical, solid-state, or gaseous). The effects of elitism, single point and uniform crossover, creep mutation, different random number seeds, population size, niching and the number of children per pair of parents on the performance of the GA
Optimal Sampling Algorithms for Frequency Estimation in Distributed Data
Yi, Ke "Kevin"
Optimal Sampling Algorithms for Frequency Estimation in Distributed Data Zengfeng Huang Ke Yi to estimate the global frequency of any item with a standard deviation of N, where N denotes the total. In this paper, we study the problem of estimating the global frequencies of the items where an item's global
Environmental Optimization Using the WAste Reduction Algorithm (WAR)
Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...
Optimization flow control—I: basic algorithm and convergence
Steven H. Low; David E. Lapsley
1999-01-01
We propose an optimization approach to o w control where the objective is to maximize the aggregate source utility over their transmission rates. We view net- work links and sources as processors of a distributed com- putation system to solve the dual problem using gradient projection algorithm. In this system sources select trans- mission rates that maximize their own benets,
Optimization Algorithms for Site-directed Protein Recombination Experiment Planning
of Graduate Studies Dartmouth Computer Science Technical Report TR2010-672 #12;Copyright by Wei Zheng 2010 #12Optimization Algorithms for Site-directed Protein Recombination Experiment Planning A Thesis characteristics. In order to increase the "hit rate" of good variants, this thesis develops experiment planning
Optimal Sleep-Wakeup Algorithms for Barriers of Wireless Sensors
Kumar, Santosh
Optimal Sleep-Wakeup Algorithms for Barriers of Wireless Sensors Santosh Kumar Ten H. Lai Marc E,posner.1,sinha.43}@osu.edu Abstract-- The problem of sleep wakeup has been extensively studied the sleep- wakeup problem is NP-Hard for this model, several heuristics ex- ist. For the model of barrier
Numerical Optimization Algorithms and Software for Systems Biology
Saunders, Michael
2013-02-02
The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.
Parallel evolutionary algorithms for optimization problems in aerospace engineering
J. F. Wang; J. Periaux; M. Sefrioui
2002-01-01
This paper presents the recent developments in hierarchical genetic algorithms (HGAs) to speed up the optimization of aerodynamic shapes. It first introduces HGAs, a particular instance of parallel GAs based on the notion of interconnected sub-populations evolving independently. Previous studies have shown the advantages of introducing a multi-layered hierarchical topology in parallel GAs. Such a topology allows the use of
Asymptotically Optimal Algorithms For Weather Applications of Smart Dust
Kreinovich, Vladik
Asymptotically Optimal Algorithms For Weather Applications of Smart Dust Edward Vidal Luc Longpr 79968, USA Hong Kong vladik@cs.utep.edu yyam@mae.cunh.edu.hk Abstract Smart Dust is a collection What Is ``Smart Dust'' Smart Dust is a project developed by the UniverÂ sity of California at Berkeley
Deque-Free Work-Optimal Parallel STL Algorithms
Daouda Traoré; Jean-louis Roch; Nicolas Maillard; Thierry Gautier; Julien Bernard
2008-01-01
This paper presents provable work-optimal parallelizations of STL (Standard Template Library) algorithms based on the work- stealing technique. Unlike previous approaches where a deque for each processor is typically used to locally store ready tasks and where a proces- sor that runs out of work steals a ready task from the deque of a randomly selected processor, the current paper
Extended Semantics and Optimization Algorithms for CP-Networks
Dimopoulos, Yannis
Extended Semantics and Optimization Algorithms for CP-Networks Ronen I. Brafman Dept. of Computer;cation tasks. CP-nets were designed to make the process of preference elicitation simpler and more intuitive for lay users by graphically structuring a set of Ceteris Paribus (CP) preference statements
A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization
Neculai Andrei
2007-01-01
This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Powell restart criterion holds. The parameter scaling
Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization
Neculai Andrei
2007-01-01
A scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems is presented. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Beale–Powell restart criterion holds. The parameter scaling the
RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.
The optimization algorithm based knot and control point automatic adjustment
NASA Astrophysics Data System (ADS)
Jia, Xingyue; Zhao, Xiuyang
2015-03-01
Aiming at the issue of point cloud or mesh model, which can be approximated using cubic B-spline surfaces, an algorithm of optimizing the knot vector based on Gaussian Mixture Model(GMM) is proposed in this paper. In addition, the control points of sub-corner points are searched by the Particle Swarm Optimization (PSO) in the process of stitching two B-spline surfaces with different knot vectors. Compared with conventional B-spline surface skinning, the proposed algorithms have two advantages. First, the global optimum is easy to be found by statistically learning and sampling in accordance with the probability distribution of the best individuals. Second, the stitching surface obtained is much smoother and the precise of approximate surface is also higher. The effectiveness of the proposed algorithm have been demonstrated according to experimental examples.
A genetic algorithm approach in interface and surface structure optimization
Zhang, Jian
2010-05-16
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.
Evolutionary algorithms for multiobjective and multimodal optimization of diagnostic schemes.
de Toro, Francisco; Ros, Eduardo; Mota, Sonia; Ortega, Julio
2006-02-01
This paper addresses the optimization of noninvasive diagnostic schemes using evolutionary algorithms in medical applications based on the interpretation of biosignals. A general diagnostic methodology using a set of definable characteristics extracted from the biosignal source followed by the specific diagnostic scheme is presented. In this framework, multiobjective evolutionary algorithms are used to meet not only classification accuracy but also other objectives of medical interest, which can be conflicting. Furthermore, the use of both multimodal and multiobjective evolutionary optimization algorithms provides the medical specialist with different alternatives for configuring the diagnostic scheme. Some application examples of this methodology are described in the diagnosis of a specific cardiac disorder-paroxysmal atrial fibrillation. PMID:16485746
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
Optimal reservoir operation policies using novel nested algorithms
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri
2015-04-01
Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested optimization algorithm into the state transition that lowers the starting problem dimension and alleviates the curse of dimensionality. The algorithms can solve multi-objective optimization problems, without significantly increasing the complexity and the computational expenses. The algorithms can handle dense and irregular variable discretization, and are coded in Java as prototype applications. The three algorithms were tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system located in the Republic of Macedonia, with eight objectives, including urban water supply, agriculture, ensuring ecological flow, and generation of hydropower. Because the Zletovica hydro-system is relatively complex, the novel algorithms were pushed to their limits, demonstrating their capabilities and limitations. The nSDP and nRL derived/learned the optimal reservoir policy using 45 (1951-1995) years historical data. The nSDP and nRL optimal reservoir policy was tested on 10 (1995-2005) years historical data, and compared with nDP optimal reservoir operation in the same period. The nested algorithms and optimal reservoir operation results are analysed and explained.
ANOVA decomposition of convex piecewise linear functions
Römisch, Werner
ANOVA decomposition of convex piecewise linear functions W. R¨omisch Abstract Piecewise linear methods we show that all terms of their ANOVA decomposition, except the one of highest order, are smooth-Monte Carlo algorithms via the Koksma- Hlawka theorem [17, Theorem 2.11]. #12;ANOVA decomposition of convex
Fast Optimal Load Balancing Algorithms for 1D Partitioning
Pinar, Ali; Aykanat, Cevdet
2002-12-09
One-dimensional decomposition of nonuniform workload arrays for optimal load balancing is investigated. The problem has been studied in the literature as ''chains-on-chains partitioning'' problem. Despite extensive research efforts, heuristics are still used in parallel computing community with the ''hope'' of good decompositions and the ''myth'' of exact algorithms being hard to implement and not runtime efficient. The main objective of this paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem. We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel algorithms, which are asymptotically and runtime efficient. We experimented with data sets from two different applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on average. Experiments also verify that load balance can be significantly improved by using exact algorithms instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed in this paper can effectively replace heuristics.
Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm
NASA Astrophysics Data System (ADS)
Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng
2009-10-01
The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.
Genetic algorithms for the construction of D-optimal designs
Heredia-Langner, Alejandro; Carlyle, W M.; Montgomery, D C.; Borror, Connie M.; Runger, George C.
2003-01-01
Computer-generated designs are useful for situations where standard factorial, fractional factorial or response surface designs cannot be easily employed. Alphabetically-optimal designs are the most widely used type of computer-generated designs, and of these, the D-optimal (or D-efficient) class of designs are extremely popular. D-optimal designs are usually constructed by algorithms that sequentially add and delete points from a potential design based using a candidate set of points spaced over the region of interest. We present a technique to generate D-efficient designs using genetic algorithms (GA). This approach eliminates the need to explicitly consider a candidate set of experimental points and it can handle highly constrained regions while maintaining a level of performance comparable to more traditional design construction techniques.
Research on Optimization of Encoding Algorithm of PDF417 Barcodes
NASA Astrophysics Data System (ADS)
Sun, Ming; Fu, Longsheng; Han, Shuqing
The purpose of this research is to develop software to optimize the data compression of a PDF417 barcode using VC++6.0. According to the different compression mode and the particularities of Chinese, the relevant approaches which optimize the encoding algorithm of data compression such as spillage and the Chinese characters encoding are proposed, a simple approach to compute complex polynomial is introduced. After the whole data compression is finished, the number of the codeword is reduced and then the encoding algorithm is optimized. The developed encoding system of PDF 417 barcodes will be applied in the logistics management of fruits, therefore also will promote the fast development of the two-dimensional bar codes.
Dervis Karaboga; Bahriye Basturk
2007-01-01
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize.\\u000a An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive\\u000a is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based
Optimal design of passive linear suspension using genetic algorithm
NASA Astrophysics Data System (ADS)
Alkhatib, R.; Nakhaie Jazar, G.; Golnaraghi, M. F.
2004-08-01
In this paper the genetic algorithm (GA) method is applied to the optimization problem of a linear one-degree-of-freedom (1-DOF) vibration isolator mount and the method is extended to the optimization of a linear quarter car suspension model. A novel criterion for selecting optimal suspension parameters is presented. An optimal relationship between the root mean square (RMS) of the absolute acceleration and the RMS of the relative displacement is found. Although the systems are linear, it is difficult to find such optimal relation analytically. The optimum solution is obtained numerically by utilizing GA and employing a cost function that seeks minimizing absolute acceleration RMS sensitivity to changes in relative displacement RMS. The combination of RMS and absolute acceleration sensitivity minimization produces optimal suspension that is robust to broadband frequency excitation. The GA method increases the probability of finding the global optimum solution and avoids convergence to a local minimum which is a drawback of gradient-based methods. Given allowable mount relative displacement (working space), designers can use the results to specify the optimal mount and suspension. The cost function employed can be extended to optimize multi-DOF (MDOF) and non-linear vibrating mechanical systems in frequency domain. Applying the method to a linear quarter car model illustrates the applicability of the method to MDOF systems. An example is given to demonstrate the optimality of the solution obtained by the GA technique.
Algorithmic Aspects of Optimal Channel Coding
Siddharth Barman; Omar Fawzi
2015-08-17
A central question in information theory is to determine the maximum success probability that can be achieved in sending a fixed number of messages over a noisy channel. This was first studied in the pioneering work of Shannon who established a simple expression characterizing this quantity in the limit of multiple independent uses of the channel. Here we consider the general setting with only one use of the channel. We observe that the maximum success probability can be expressed as the maximum value of a submodular function. Using this connection, we establish the following results: 1. There is a simple greedy polynomial-time algorithm that computes a code achieving a (1-1/e)-approximation of the maximum success probability. Moreover, for this problem it is NP-hard to obtain an approximation ratio strictly better than (1-1/e). 2. Shared quantum entanglement between the sender and the receiver can increase the success probability by a factor of at most 1/(1-1/e). In addition, this factor is tight if one allows an arbitrary non-signaling box between the sender and the receiver. 3. We give tight bounds on the one-shot performance of the meta-converse of Polyanskiy-Poor-Verdu.
Tolbert, Leon M.
-bridge converters in series as shown in Fig. 1 for a 7-level inverter. Each converter generates a square wave; therefore they have reduced harmonics compared to a square wave inverter. To reduce the harmonics furtherHarmonic Optimization of Multilevel Converters Using Genetic Algorithms Abstract-- In this paper
Using genetic algorithms to search for an optimal investment strategy
NASA Astrophysics Data System (ADS)
Mandere, Edward; Xi, Haowen
2007-10-01
In this experiment we used genetic algorithms to search for an investment strategy by dividing capital among different stocks with varying returns. The algorithm involves having a ``manager'' who divides his capital among various ``experts'' each of whom has a simple investment strategy. The expert strategies act like genes, experiencing mutation and crossover, in a selection process using previous returns as the fitness function. When algorithm was run with test data where the optimal strategy favored non-uniform investment in one stock it consistently beat a simple buy hold. However when the algorithm was run on actual stock data the system overwhelmingly stabilized at a population that closely resembled a simple buy hold portfolio, that is, evenly distribute the capital among all stocks.
Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.
Optimal on-line algorithms to minimize makespan on two machines with resource augmentation
Epstein, Leah
where the on-line algorithm has resources different from those of the off-line algorithm. We consider. This is allowed to both the on-line algorithm and the off-line algorithm. The measure. A schedule is measured() are the makespans of the schedules created by the on-line algorithm and an optimal off-line algorithm for that list
Computational experiments for local search algorithms for binary and mixed integer optimization
Zhou, Jingting, S.M. Massachusetts Institute of Technology
2010-01-01
In this thesis, we implement and test two algorithms for binary optimization and mixed integer optimization, respectively. We fine tune the parameters of these two algorithms and achieve satisfactory performance. We also ...
OPTIMIZATION OF TURBOMACHINERY AIRFOILS WITH A GENETIC/SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
Dennis, Brian
OPTIMIZATION OF TURBOMACHINERY AIRFOILS WITH A GENETIC/SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM words: shape optimization, aerodynamic design, turbomachinery, aerodynamics, genetic algorithms-magneto- gasdynamic effects. In the case of a turbomachinery aerodynamics, sources of entropy production other than
A Multi-Objective Ant Colony Optimization Algorithm for Infrastructure Routing
McDonald, Walter
2012-07-16
An algorithm is presented that is capable of producing Pareto-optimal solutions for multi-objective infrastructure routing problems: the Multi-Objective Ant Colony Optimization (MOACO). This algorithm offers a constructive search technique...
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132
Optimization of Multiple Vehicle Routing Problems using Approximation Algorithms
Nallusamy, R; Dhanalaksmi, R; Parthiban, P
2010-01-01
This paper deals with generating of an optimized route for multiple Vehicle routing Problems (mVRP). We used a methodology of clustering the given cities depending upon the number of vehicles and each cluster is allotted to a vehicle. k- Means clustering algorithm has been used for easy clustering of the cities. In this way the mVRP has been converted into VRP which is simple in computation compared to mVRP. After clustering, an optimized route is generated for each vehicle in its allotted cluster. Once the clustering had been done and after the cities were allocated to the various vehicles, each cluster/tour was taken as an individual Vehicle Routing problem and the steps of Genetic Algorithm were applied to the cluster and iterated to obtain the most optimal value of the distance after convergence takes place. After the application of the various heuristic techniques, it was found that the Genetic algorithm gave a better result and a more optimal tour for mVRPs in short computational time than other Algorit...
Using Heuristic Algorithms to Optimize Observing Target Sequences
NASA Astrophysics Data System (ADS)
Sosnowska, D.; Ouadahi, A.; Buchschacher, N.; Weber, L.; Pepe, F.
2014-05-01
The preparation of observations is normally carried out at the telescope by the visiting observer. In order to help the observer, we propose several algorithms to automatically optimize the sequence of targets. The optimization consists of assuring that all the chosen targets are observable within the given time interval, and to find their best execution order in terms of the observation quality and the shortest telescope displacement time. Since an exhaustive search is too expensive in time, we researched heuristic algorithms, specifically: Min-Conflict, Non-Sorting Genetic Algorithms and Simulated Annealing. Multiple metaheuristics are used in parallel to swiftly give an approximation of the best solution, with all the constraints satisfied and the total execution time minimized. The optimization process has a duration on the order of tens of seconds, allowing for quick re-adaptation in case of changing atmospheric conditions. The graphical user interface allows the user to control the parameters of the optimization process. Therefore, the search can be adjusted in real time. The module was coded in a way to allow easily the addition of new constraints, and thus ensure its compatibility with different instruments. For now, the application runs as a plug-in to the observation preparation tool called New Short Term Scheduler, which is used on three spectrographs dedicated to the exoplanets search: HARPS at the La Silla observatory, HARPS North at the La Palma observatory and SOPHIE at the Observatoire de Haute-Provence.
Graph Implementations for Nonsmooth Convex Programs
programming, conic optimization, nondifferentiable functions. 1 Introduction It is well known that convex, as well as for certain standard forms such as semidefinite programs (SDPs), that are efficient in bothGraph Implementations for Nonsmooth Convex Programs Michael C. Grant I and Stephen P. Boyd 2 1
Preliminary flight evaluation of an engine performance optimization algorithm
NASA Technical Reports Server (NTRS)
Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.
1991-01-01
A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.
A filter-based evolutionary algorithm for constrained optimization.
Clevenger, Lauren M.; Hart, William Eugene; Ferguson, Lauren Ann
2004-02-01
We introduce a filter-based evolutionary algorithm (FEA) for constrained optimization. The filter used by an FEA explicitly imposes the concept of dominance on a partially ordered solution set. We show that the algorithm is provably robust for both linear and nonlinear problems and constraints. FEAs use a finite pattern of mutation offsets, and our analysis is closely related to recent convergence results for pattern search methods. We discuss how properties of this pattern impact the ability of an FEA to converge to a constrained local optimum.
Fast source optimization by clustering algorithm based on lithography properties
NASA Astrophysics Data System (ADS)
Tawada, Masashi; Hashimoto, Takaki; Sakanushi, Keishi; Nojima, Shigeki; Kotani, Toshiya; Yanagisawa, Masao; Togawa, Nozomu
2015-03-01
Lithography is a technology to make circuit patterns on a wafer. UV light diffracted by a photomask forms optical images on a photoresist. Then, a photoresist is melt by an amount of exposed UV light exceeding the threshold. The UV light diffracted by a photomask through lens exposes the photoresist on the wafer. Its lightness and darkness generate patterns on the photoresist. As the technology node advances, the feature sizes on photoresist becomes much smaller. Diffracted UV light is dispersed on the wafer, and then exposing photoresists has become more difficult. Exposure source optimization, SO in short, techniques for optimizing illumination shape have been studied. Although exposure source has hundreds of grid-points, all of previous works deal with them one by one. Then they consume too much running time and that increases design time extremely. How to reduce the parameters to be optimized in SO is the key to decrease source optimization time. In this paper, we propose a variation-resilient and high-speed cluster-based exposure source optimization algorithm. We focus on image log slope (ILS) and use it for generating clusters. When an optical image formed by a source shape has a small ILS value at an EPE (Edge placement error) evaluation point, dose/focus variation much affects the EPE values. When an optical image formed by a source shape has a large ILS value at an evaluation point, dose/focus variation less affects the EPE value. In our algorithm, we cluster several grid-points with similar ILS values and reduce the number of parameters to be simultaneously optimized in SO. Our clustering algorithm is composed of two STEPs: In STEP 1, we cluster grid-points into four groups based on ILS values of grid-points at each evaluation point. In STEP 2, we generate super clusters from the clusters generated in STEP 1. We consider a set of grid-points in each cluster to be a single light source element. As a result, we can optimize the SO problem very fast. Experimental results demonstrate that our algorithm runs speed-up compared to a conventional algorithm with keeping the EPE values.
Support vector machine firefly algorithm based optimization of lens system.
Shamshirband, Shahaboddin; Petkovi?, Dalibor; Pavlovi?, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah
2015-01-01
Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs. PMID:25967004
Modeling IrisCode and its variants as convex polyhedral cones and its security implications.
Kong, Adams Wai-Kin
2013-03-01
IrisCode, developed by Daugman, in 1993, is the most influential iris recognition algorithm. A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled by this algorithm and many biometric personal identification and template protection methods have been developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original biometric signal, can be computed by a simple algorithm, which can often be implemented in one Matlab command line. The central ray is an expected ray and also an optimal ray of an objective function on a group of distributions. This algorithm is derived from geometric properties of a convex polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results show that biometric templates, including iris and palmprint templates, produced by different recognition methods can be matched through the central rays in their convex polyhedral cones and that templates protected by a method extended from IrisCode can be broken into. These experimental results indicate that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of advanced image processing and biometric databases can still break into protected templates and reveal relationships among templates produced by different recognition methods. PMID:23193454
An adaptive penalty method for DIRECT algorithm in engineering optimization
NASA Astrophysics Data System (ADS)
Vilaça, Rita; Rocha, Ana Maria A. C.
2012-09-01
The most common approach for solving constrained optimization problems is based on penalty functions, where the constrained problem is transformed into a sequence of unconstrained problem by penalizing the objective function when constraints are violated. In this paper, we analyze the implementation of an adaptive penalty method, within the DIRECT algorithm, in which the constraints that are more difficult to be satisfied will have relatively higher penalty values. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Arash Ghorbannia Delavar; M. Rahmany; M. Nejadkheirallah; Kobra Darvish
2010-01-01
In this paper we proposed GQSD algorithm that has created new technical method to decrease the maximum number of repetitions at generations also we will optimize the processing sources schedule at offered algorithm rather than previous optimization algorithms. GQSD is a novel algorithm that by defining new parameters and metrics, has decreased the delay and also response time of job.
Improvements to a Newton-Krylov Adjoint Algorithm for Aerodynamic Optimization
Zingg, David W.
Improvements to a Newton-Krylov Adjoint Algorithm for Aerodynamic Optimization David W. Zingg-based algorithm for aerodynamic optimization. A Newton-Krylov algorithm is used to solve the compressible Navier of the improvements on the performance of the algorithm is presented. I. Introduction Numerical aerodynamic shape
Size optimization of space trusses using Big Bang–Big Crunch algorithm
A. Kaveh; S. Talatahari
2009-01-01
A Hybrid Big Bang–Big Crunch (HBB–BC) optimization algorithm is employed for optimal design of truss structures. HBB–BC is compared to Big Bang–Big Crunch (BB–BC) method and other optimization methods including Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization and Harmony Search. Numerical results demonstrate the efficiency and robustness of the HBB–BC method compared to other heuristic algorithms.
GMG - A guaranteed global optimization algorithm: Application to remote sensing
D'Helon, Cassius; Protopopescu, Vladimir A; Wells, Jack C; Barhen, Jacob
2007-01-01
We investigate the role of additional information in reducing the computational complexity of the global optimization problem (GOP). Following this approach, we develop GMG -- an algorithm to find the Global Minimum with a Guarantee. The new algorithm breaks up an originally continuous GOP into a discrete (grid) search problem followed by a descent problem. The discrete search identifies the basin of attraction of the global minimum after which the actual location of the minimizer is found upon applying a descent algorithm. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions. We then illustrate the performance of the the validated algorithm on a simple realization of the monocular passive ranging (MPR) problem in remote sensing, which consists of identifying the range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem is set as a GOP whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. We solve the GOP using GMG and report on the performance of the algorithm.
A sensing duration optimization algorithm in cognitive radio
NASA Astrophysics Data System (ADS)
Liu, Yuexuan; Liang, Shujian; Zhang, Xiao
2013-03-01
In a periodic spectrum sensing framework where each frame consists of a sensing duration and a data transmitting duration, the sensing duration to use is a trade-off between sensing performance and system efficiencies. The relationships between sensing duration and state transition probability are analyzed firstly, when the licensed channel stays in the idle and busy states respectively. Then a state transition probability based sensing duration optimization algorithm is proposed, which can dynamically optimize the sensing duration of each frame. Analysis and simulation results reveal that the proposed algorithm can use as little sensing duration in each frame as possible to satisfy the sensing performance constraints so as to maximize the energy and transmitting efficiencies of the cognitive networks.
Multilayer Traffic Network Optimized by Multiobjective Genetic Clustering Algorithm
NASA Astrophysics Data System (ADS)
Wen, Feng; Gen, Mitsuo; Yu, Xinjie
This paper introduces a multilayer traffic network model and traffic network clustering method for solving the route selection problem (RSP) in car navigation system (CNS). The purpose of the proposed method is to reduce the computation time of route selection substantially with acceptable loss of accuracy by preprocessing the large size traffic network into new network form. The proposed approach further preprocesses the traffic network than the traditional hierarchical network method by clustering method. The traffic network clustering considers two criteria. We specify a genetic clustering algorithm for traffic network clustering and use NSGA-II for calculating the multiple objective Pareto optimal set. The proposed method can overcome the size limitations when solving route selection in CNS. Solutions provided by the proposed algorithm are compared with the optimal solutions to analyze and quantify the loss of accuracy.
Parallel Algorithms for Graph Optimization using Tree Decompositions
Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL; Groer, Christopher S [ORNL
2012-06-01
Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.
VARIABLE ROBUSTNESS PRINCIPLES and ALGORITHMS
Campi, Marco
algorithmic tools #12;a look at optimization in the space #12;performance cloud #12;worst-case #12;average #12;#12;#12;#12;#12;#12;Comments generalization need for structure Good news: the structure we need is only convexity #12;... more comments N often tractable by standard solvers N easy to compute N independent of Pr permits to address
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
An edge detection technique using genetic algorithm-based optimization
Suchendra M. Bhandarkar; Yiqing Zhang; Walter D. Potter
1994-01-01
In this paper we present a genetic algorithm-based optimization technique for edge detection. The problem of edge detection is formulated as one of choosing a minimum cost edge configuration. The edge configurations are viewed as two-dimensional chromosomes with fitness values inversely proportional to their costs. The design of the crossover and the mutation operators in the context of the two-dimensional
RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms
Alexander Hogenboom; Viorel Milea; Flavius Frasincar; Uzay Kaymak
2009-01-01
The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools.\\u000a Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on\\u000a optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm\\u000a called RCQ-GA
Optimization of a statistical algorithm for objective comparison of toolmarks.
Spotts, Ryan; Chumbley, L Scott; Ekstrand, Laura; Zhang, Song; Kreiser, James
2015-03-01
Due to historical legal challenges, there is a driving force for the development of objective methods of forensic toolmark identification. This study utilizes an algorithm to separate matching and nonmatching shear cut toolmarks created using fifty sequentially manufactured pliers. Unlike previously analyzed striated screwdriver marks, shear cut marks contain discontinuous groups of striations, posing a more difficult test of algorithm applicability. The algorithm compares correlation between optical 3D toolmark topography data, producing a Wilcoxon rank sum test statistic. Relative magnitude of this metric separates the matching and nonmatching toolmarks. Results show a high degree of statistical separation between matching and nonmatching distributions. Further separation is achieved with optimized input parameters and implementation of a "leash" preventing a previous source of outliers--however complete statistical separation was not achieved. This paper represents further development of objective methods of toolmark identification and further validation of the assumption that toolmarks are identifiably unique. PMID:25425426
Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.
Dash, Tirtharaj; Sahu, Prabhat K
2015-05-30
The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. PMID:25779670
An Accelerated Particle Swarm Optimization Algorithm on Parametric Optimization of WEDM of Die-Steel
NASA Astrophysics Data System (ADS)
Muthukumar, V.; Suresh Babu, A.; Venkatasamy, R.; Senthil Kumar, N.
2015-01-01
This study employed Accelerated Particle Swarm Optimization (APSO) algorithm to optimize the machining parameters that lead to a maximum Material Removal Rate (MRR), minimum surface roughness and minimum kerf width values for Wire Electrical Discharge Machining (WEDM) of AISI D3 die-steel. Four machining parameters that are optimized using APSO algorithm include Pulse on-time, Pulse off-time, Gap voltage, Wire feed. The machining parameters are evaluated by Taguchi's L9 Orthogonal Array (OA). Experiments are conducted on a CNC WEDM and output responses such as material removal rate, surface roughness and kerf width are determined. The empirical relationship between control factors and output responses are established by using linear regression models using Minitab software. Finally, APSO algorithm, a nature inspired metaheuristic technique, is used to optimize the WEDM machining parameters for higher material removal rate and lower kerf width with surface roughness as constraint. The confirmation experiments carried out with the optimum conditions show that the proposed algorithm was found to be potential in finding numerous optimal input machining parameters which can fulfill wide requirements of a process engineer working in WEDM industry.
Threshold matrix for digital halftoning by genetic algorithm optimization
NASA Astrophysics Data System (ADS)
Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero
1998-10-01
Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.
Algorithm Optimally Orders Forward-Chaining Inference Rules
NASA Technical Reports Server (NTRS)
James, Mark
2008-01-01
People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies
NASA Astrophysics Data System (ADS)
Tomizawa, Hiromitsu
2011-10-01
Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.
Algorithms for bispectra: forecasting, optimal analysis, and simulation
Kendrick M. Smith; Matias Zaldarriaga
2011-11-08
We propose a factorizability ansatz for angular bispectra which permits fast algorithms for forecasting, analysis, and simulation, yet is general enough to encompass many interesting CMB bispectra. We describe a suite of general algorithms which apply to any bispectrum which can be represented in factorizable form. First, we present algorithms for Fisher matrix forecasts and the related problem of optimizing the factorizable representation, giving a Fisher forecast for Planck as an example. We show that the CMB can give independent constraints on the amplitude of primordial bispectra of both local and equilateral shape as well as those created by secondary anisotropies. We also show that the ISW-lensing bispectrum should be detected by Planck and could bias estimates of the local type of non-Gaussianity if not properly accounted for. Second, we implement a bispectrum estimator which is fully optimal in the presence of sky cuts and inhomogeneous noise, extends the generality of fast estimators which have been limited to a few specific forms of the bispectrum, and improves the running time of existing implementations by several orders of magnitude. Third, we give an algorithm for simulating random, weakly non-Gaussian maps with prescribed power spectrum and factorizable bispectrum.
Parallel Glowworm Swarm Optimization Clustering Algorithm based on MapReduce
Ludwig, Simone
Parallel Glowworm Swarm Optimization Clustering Algorithm based on MapReduce Nailah Al data sizes. In this paper, a scalable design and implementation of glowworm swarm optimization swarm optimization to formulate the clustering algorithm. Glowworm swarm optimization is used to take
Automatic algorithms for completeness-optimization of Gaussian basis sets.
Lehtola, Susi
2015-02-15
We present the generic, object-oriented C++ implementation of the completeness-optimization approach (Manninen and Vaara, J. Comput. Chem. 2006, 27, 434) in the freely available ERKALE program, and recommend the addition of basis set stability scans to the completeness-optimization procedure. The design of the algorithms is independent of the studied property, the used level of theory, as well as of the role of the optimized basis set: the procedure can be used to form auxiliary basis sets in a similar fashion. This implementation can easily be interfaced with various computer programs for the actual calculation of molecular properties for the optimization, and the calculations can be trivially parallelized. Routines for general and segmented contraction of the generated basis sets are also included. The algorithms are demonstrated for two properties of the argon atom--the total energy and the nuclear magnetic shielding constant--and they will be used in upcoming work for generation of cost-efficient basis sets for various properties. PMID:25487276
Optimal robust motion controller design using multiobjective genetic algorithm.
Sarjaš, Andrej; Sve?ko, Rajko; Chowdhury, Amor
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution. PMID:24987749
Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
Sve?ko, Rajko
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749
NASA Astrophysics Data System (ADS)
Izui, K.; Nishiwaki, S.; Yoshimura, M.
2007-12-01
Swarm algorithms such as particle swarm optimization (PSO) are non-gradient probabilistic optimization algorithms that have been successfully applied for global searches in complex problems such as multi-peak problems. However, application of these algorithms to structural and mechanical optimization problems still remains a complex matter since local optimization capability is still inferior to general numerical optimization methods. This article discusses new swarm metaphors that incorporate design sensitivities concerning objective and constraint functions and are applicable to structural and mechanical design optimization problems. Single- and multi-objective optimization techniques using swarm algorithms are combined with a gradient-based method. In the proposed techniques, swarm optimization algorithms and a sequential linear programming (SLP) method are conducted simultaneously. Finally, truss structure design optimization problems are solved by the proposed hybrid method to verify the optimization efficiency.
Shape optimization of noise barriers using genetic algorithms
NASA Astrophysics Data System (ADS)
Duhamel, D.
2006-10-01
This article presents a method to find optimal shapes for noise barriers by coupling a boundary element solution of the sound pressure around the barrier and an optimization process by genetic algorithms to minimize the sound pressure level in a domain behind the barrier. The objective is not to provide geometries with immediate practical applications but to estimate the improvement that could be obtained if noise barriers with improved shapes were used instead of the traditional barriers built today. The method supposes given source and receiver positions and the calculation provides an optimal shape for the barrier to reduce the sound pressure at receiver points over a specified frequency band. Different examples are presented to estimate the influence of the source and receiver positions, of the frequencies and the influence of the size of the barrier. The main conclusion is an estimate of the potential improvement of noise barriers efficiency by using better geometries.
Optimized third-order force-gradient symplectic algorithms
NASA Astrophysics Data System (ADS)
Li, Rong; Wu, Xin
2010-09-01
With the natural splitting of a Hamiltonian system into kinetic energy and potential energy, we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized. They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving, but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrödinger equations. In particular, they are much better than the optimal third-order non-gradient symplectic method. They also have an advantage over the fourth-order non-gradient symplectic integrator.
Broadband omnidirectional antireflection coatings optimized by genetic algorithm.
Poxson, David J; Schubert, Martin F; Mont, Frank W; Schubert, E F; Kim, Jong Kyu
2009-03-15
An optimized graded-refractive-index (GRIN) antireflection (AR) coating with broadband and omnidirectional characteristics--as desired for solar cell applications--designed by a genetic algorithm is presented. The optimized three-layer GRIN AR coating consists of a dense TiO2 and two nanoporous SiO2 layers fabricated using oblique-angle deposition. The normal incidence reflectance of the three-layer GRIN AR coating averaged between 400 and 700 nm is 3.9%, which is 37% lower than that of a conventional single-layer Si3N4 coating. Furthermore, measured reflection over the 410-740 nm range and wide incident angles 40 degrees -80 degrees is reduced by 73% in comparison with the single-layer Si3N4 coating, clearly showing enhanced omnidirectionality and broadband characteristics of the optimized three-layer GRIN AR coating. PMID:19282913
Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm
NASA Technical Reports Server (NTRS)
Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.
2001-01-01
Multilevel Structural Optimization (MSO) continues to be an area of research interest in engineering optimization. In the present project, the weight optimization of beams and trusses using Displacement based Multilevel Structural Optimization (DMSO), a member of the MSO set of methodologies, is investigated. In the DMSO approach, the optimization task is subdivided into a single system and multiple subsystems level optimizations. The system level optimization minimizes the load unbalance resulting from the use of displacement functions to approximate the structural displacements. The function coefficients are then the design variables. Alternately, the system level optimization can be solved using the displacements themselves as design variables, as was shown in previous research. Both approaches ensure that the calculated loads match the applied loads. In the subsystems level, the weight of the structure is minimized using the element dimensions as design variables. The approach is expected to be very efficient for large structures, since parallel computing can be utilized in the different levels of the problem. In this paper, the method is applied to a one-dimensional beam and a large three-dimensional truss. The beam was tested to study possible simplifications to the system level optimization. In previous research, polynomials were used to approximate the global nodal displacements. The number of coefficients of the polynomials equally matched the number of degrees of freedom of the problem. Here it was desired to see if it is possible to only match a subset of the degrees of freedom in the system level. This would lead to a simplification of the system level, with a resulting increase in overall efficiency. However, the methods tested for this type of system level simplification did not yield positive results. The large truss was utilized to test further improvements in the efficiency of DMSO. In previous work, parallel processing was applied to the subsystems level, where the derivative verification feature of the optimizer NPSOL had been utilized in the optimizations. This resulted in large runtimes. In this paper, the optimizations were repeated without using the derivative verification, and the results are compared to those from the previous work. Also, the optimizations were run on both, a network of SUN workstations using the MPICH implementation of the Message Passing Interface (MPI) and on the faster Beowulf cluster at ICASE, NASA Langley Research Center, using the LAM implementation of UP]. The results on both systems were consistent and showed that it is not necessary to verify the derivatives and that this gives a large increase in efficiency of the DMSO algorithm.
NASA Astrophysics Data System (ADS)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Microwave-based medical diagnosis using particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Modiri, Arezoo
This dissertation proposes and investigates a novel architecture intended for microwave-based medical diagnosis (MBMD). Furthermore, this investigation proposes novel modifications of particle swarm optimization algorithm for achieving enhanced convergence performance. MBMD has been investigated through a variety of innovative techniques in the literature since the 1990's and has shown significant promise in early detection of some specific health threats. In comparison to the X-ray- and gamma-ray-based diagnostic tools, MBMD does not expose patients to ionizing radiation; and due to the maturity of microwave technology, it lends itself to miniaturization of the supporting systems. This modality has been shown to be effective in detecting breast malignancy, and hence, this study focuses on the same modality. A novel radiator device and detection technique is proposed and investigated in this dissertation. As expected, hardware design and implementation are of paramount importance in such a study, and a good deal of research, analysis, and evaluation has been done in this regard which will be reported in ensuing chapters of this dissertation. It is noteworthy that an important element of any detection system is the algorithm used for extracting signatures. Herein, the strong intrinsic potential of the swarm-intelligence-based algorithms in solving complicated electromagnetic problems is brought to bear. This task is accomplished through addressing both mathematical and electromagnetic problems. These problems are called benchmark problems throughout this dissertation, since they have known answers. After evaluating the performance of the algorithm for the chosen benchmark problems, the algorithm is applied to MBMD tumor detection problem. The chosen benchmark problems have already been tackled by solution techniques other than particle swarm optimization (PSO) algorithm, the results of which can be found in the literature. However, due to the relatively high level of complexity and randomness inherent to the selection of electromagnetic benchmark problems, a trend to resort to oversimplification in order to arrive at reasonable solutions has been taken in literature when utilizing analytical techniques. Here, an attempt has been made to avoid oversimplification when using the proposed swarm-based optimization algorithms.
Using Genetic Algorithms to optimize ACS-TSP Marcin L. Pilat and Tony White
White, Tony
-TSP algorithm as a Genetic Algorithm modification to ACS-TSP. The algorithm uses a GA to evolve a populationUsing Genetic Algorithms to optimize ACS-TSP Marcin L. Pilat and Tony White School of Computer,arpwhite}@scs.carleton.ca Abstract. We propose the addition of Genetic Algorithms to Ant Colony System (ACS) applied to improve
A Parallel Genetic Algorithm for the Optimal Design of Multi-body Model Vehicle Suspensions
Jingjun Zhang; Guangyuan Liu; Ruizhen Gao; Kanghua Lou
2006-01-01
Based on an improved genetic algorithm, a parallel genetic algorithm is presented and the running environment is constituted in this paper. The parallel genetic algorithm of multi-body model vehicle suspension optimization is implemented establishing an interface between ADAMS software and the genetic algorithm. The results show that the parallel genetic algorithm developed in this paper is efficient.
Award DE-FG02-04ER52655 Final Technical Report: Interior Point Algorithms for Optimization Problems
O'Leary, Dianne P.; Tits, Andre
2014-04-03
Over the period of this award we developed an algorithmic framework for constraint reduction in linear programming (LP) and convex quadratic programming (QP), proved convergence of our algorithms, and applied them to a variety of applications, including entropy-based moment closure in gas dynamics.
Heermann, Dieter W.
a local cost si(x), while the regularizer J enforces the desired spatial coherency. In terms of Markov the desired optimality, and provides -optimal solutions in O(1/). 1.2. Related Work The continuous two
Bird mating optimizer: An optimization algorithm inspired by bird mating strategies
NASA Astrophysics Data System (ADS)
Askarzadeh, Alireza
2014-04-01
Thanks to their simplicity and flexibility, evolutionary algorithms (EAs) have attracted significant attention to tackle complex optimization problems. The underlying idea behind all EAs is the same and they differ only in technical details. In this paper, we propose a novel version of EAs, bird mating optimizer (BMO), for continuous optimization problems which is inspired by mating strategies of bird species during mating season. BMO imitates the behavior of bird species metaphorically to breed broods with superior genes for designing optimum searching techniques. On a large set of unimodal and multimodal benchmark functions, BMO represents a competitive performance to other EAs.
NASA Astrophysics Data System (ADS)
Singh, R.; Verma, H. K.
2013-12-01
This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.
Algorithms for optimally setting Wisdom Sense threshold parameters
Richards, W.; Helman, P. . Dept. of Computer Science)
1993-01-01
Wisdom Sense is an anomaly detection system developed and implemented at Los Alamos National Laboratory. In this report we present several algorithms for addressing threshold setting problems in W S. We consider three different versions of the problems and propose several solutions for each. Our main result is an O(number of anomalies) algorithm for finding an optimal two-dimensional threshold setting, that is, an optimal pair (T[sub l],T[sub 2]) such that a transaction is flagged if its score vector's maximum component is at least T[sub 1] or if its inner product with a weight vector exceeds T[sub 2]. The present also simpler solutions for both this and one-dimensional versions of the problem, as well as an approximation algorithm that can be used on extremely large problem instances. Future work will present heuristics for a k-dimensional version of the threshold setting problem, a problem which we have demonstrated is NP-hard.
Algorithms for optimally setting Wisdom & Sense threshold parameters
Richards, W.; Helman, P.
1993-03-01
Wisdom & Sense is an anomaly detection system developed and implemented at Los Alamos National Laboratory. In this report we present several algorithms for addressing threshold setting problems in W&S. We consider three different versions of the problems and propose several solutions for each. Our main result is an O(number of anomalies) algorithm for finding an optimal two-dimensional threshold setting, that is, an optimal pair (T{sub l},T{sub 2}) such that a transaction is flagged if its score vector`s maximum component is at least T{sub 1} or if its inner product with a weight vector exceeds T{sub 2}. The present also simpler solutions for both this and one-dimensional versions of the problem, as well as an approximation algorithm that can be used on extremely large problem instances. Future work will present heuristics for a k-dimensional version of the threshold setting problem, a problem which we have demonstrated is NP-hard.
Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Sen, S. K.
2007-01-01
Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
Constrained genetic algorithms for optimizing multi-use reservoir operation
NASA Astrophysics Data System (ADS)
Chang, Li-Chiu; Chang, Fi-John; Wang, Kuo-Wei; Dai, Shin-Yi
2010-08-01
To derive an optimal strategy for reservoir operations to assist the decision-making process, we propose a methodology that incorporates the constrained genetic algorithm (CGA) where the ecological base flow requirements are considered as constraints to water release of reservoir operation when optimizing the 10-day reservoir storage. Furthermore, a number of penalty functions designed for different types of constraints are integrated into reservoir operational objectives to form the fitness function. To validate the applicability of this proposed methodology for reservoir operations, the Shih-Men Reservoir and its downstream water demands are used as a case study. By implementing the proposed CGA in optimizing the operational performance of the Shih-Men Reservoir for the last 20 years, we find this method provides much better performance in terms of a small generalized shortage index (GSI) for human water demands and greater ecological base flows for most of the years than historical operations do. We demonstrate the CGA approach can significantly improve the efficiency and effectiveness of water supply capability to both human and ecological base flow requirements and thus optimize reservoir operations for multiple water users. The CGA can be a powerful tool in searching for the optimal strategy for multi-use reservoir operations in water resources management.
Horizontal axis wind turbine systems: optimization using genetic algorithms
NASA Astrophysics Data System (ADS)
Diveux, T.; Sebastian, P.; Bernard, D.; Puiggali, J. R.; Grandidier, J. Y.
2001-10-01
A method for the optimization of a grid-connected wind turbine system is presented. The behaviour of the system components is coupled in a non-linear way, and optimization must take into account technical and economical aspects of the complete system design. The annual electrical energy cost is estimated using a cost model for the wind turbine rotor, nacelle and tower and an energy output model based on the performance envelopes of the power coefficient of the rotor, CP, on the Weibull parameters k and c and on the power law coefficient of the wind profile. In this study the site is defined with these three parameters and the extreme wind speed Vmax. The model parameters vary within a range of possible values. Other elements of the project (foundation, grid connection, financing cost, etc.) are taken into account through coefficients. The optimal values of the parameters are determined using genetic algorithms, which appear to be efficient for such a problem. These optimal values were found to be very different for a Mediterranean site and a northern European site using our numerical model. Optimal wind turbines at the Mediterranean sites considered in this article have an excellent profitability compared with reference northern European wind turbines. Most of the existing wind turbines appear to be well designed for northern European sites but not for Mediterranean sites.
Machine based optimization using genetic algorithms in a storage ring
NASA Astrophysics Data System (ADS)
Tian, K.; Safranek, J.; Yan, Y.
2014-02-01
The genetic algorithm (GA) has been a popular technique in optimizing the design of particle accelerators. As a population based algorithm, GA requires a large number of evaluations of the objective functions, which can be time consuming. One can benefit from parallel computing with significantly reduced computing time when fulfilling the function evaluation by a numerical machine model in simulation codes. Indeed, this is the most common approach in GA applications. In this paper, instead of applying GA in the conventional numerical calculations as described above, we present a successful experimental demonstration of implementing GA in real machine based optimization. We conduct the minimization of the average vertical beam size of the SPEAR3 storage ring using GA. Beam loss rate is chosen as the sole objective function because it is inversely proportional to the vertical beam size and can be measured instantaneously in SPEAR3. The decision variables are the strengths of SPEAR3 skew quadrupoles, by varying which we can change both the betatron coupling and the vertical dispersion while searching for the minimum beam size. The results in this paper can shed light on new applications of GAs in the particle accelerator community, for example, optimizing the luminosity of a high energy collider or the injection efficiency of a diffraction limited storage ring in real time.
NASA Astrophysics Data System (ADS)
Yecai, Guo; Lingling, Hu
On the basis of the analyzing the futures of particle swarm algorithm, orthogonal wavelet transform constant modulus blind equalization algorithm (WTCMA), and immune clone algorithm, an orthogonal wavelet transform constant modulus blind equalization algorithm based on the immune clone particle swarm optimization is proposed. In this proposed algorithm, the diversity of population in particle swarm algorithm is effectively regulated via the immune clone operation after introducing the immune clone algorithm into particle swarm optimization. Therefore, the local extreme points and the premature convergence caused by the diversity variation of population in the evolution late of the particle swarm algorithm are avoided and the global search capability of particle swarm optimization algorithm is improved. So, the proposed algorithm has fastest convergence rate and smallest mean square error. The performance of the proposed algorithm is proved by computer simulation in underwater acoustic channels.
Wang, Chang; Qi, Fei; Shi, Guangming; Wang, Xiaotian
2013-01-01
Deployment is a critical issue affecting the quality of service of camera networks. The deployment aims at adopting the least number of cameras to cover the whole scene, which may have obstacles to occlude the line of sight, with expected observation quality. This is generally formulated as a non-convex optimization problem, which is hard to solve in polynomial time. In this paper, we propose an efficient convex solution for deployment optimizing the observation quality based on a novel anisotropic sensing model of cameras, which provides a reliable measurement of the observation quality. The deployment is formulated as the selection of a subset of nodes from a redundant initial deployment with numerous cameras, which is an ?0 minimization problem. Then, we relax this non-convex optimization to a convex ?1 minimization employing the sparse representation. Therefore, the high quality deployment is efficiently obtained via convex optimization. Simulation results confirm the effectiveness of the proposed camera deployment algorithms. PMID:23989826
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-01
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. PMID:26327507
Optimized mean shift algorithm for color segmentation in image sequences
NASA Astrophysics Data System (ADS)
Bailer, Werner; Schallauer, Peter; Haraldsson, Harald B.; Rehatschek, Herwig
2005-03-01
The application of the mean shift algorithm to color image segmentation has been proposed in 1997 by Comaniciu and Meer. We apply the mean shift color segmentation to image sequences, as the first step of a moving object segmentation algorithm. Previous work has shown that it is well suited for this task, because it provides better temporal stability of the segmentation result than other approaches. The drawback is higher computational cost. For speed up of processing on image sequences we exploit the fact that subsequent frames are similar and use the cluster centers of previous frames as initial estimates, which also enhances spatial segmentation continuity. In contrast to other implementations we use the originally proposed CIE LUV color space to ensure high quality segmentation results. We show that moderate quantization of the input data before conversion to CIE LUV has little influence on the segmentation quality but results in significant speed up. We also propose changes in the post-processing step to increase the temporal stability of border pixels. We perform objective evaluation of the segmentation results to compare the original algorithm with our modified version. We show that our optimized algorithm reduces processing time and increases the temporal stability of the segmentation.
An inflationary differential evolution algorithm for space trajectory optimization
Massimiliano Vasile; Edmondo Minisci; Marco Locatelli
2011-04-25
In this paper we define a discrete dynamical system that governs the evolution of a population of agents. From the dynamical system, a variant of Differential Evolution is derived. It is then demonstrated that, under some assumptions on the differential mutation strategy and on the local structure of the objective function, the proposed dynamical system has fixed points towards which it converges with probability one for an infinite number of generations. This property is used to derive an algorithm that performs better than standard Differential Evolution on some space trajectory optimization problems. The novel algorithm is then extended with a guided restart procedure that further increases the performance, reducing the probability of stagnation in deceptive local minima.
An exact algorithm for optimal MAE stack filter design.
Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior
2007-02-01
We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly. PMID:17269638
An inflationary differential evolution algorithm for space trajectory optimization
Vasile, Massimiliano; Locatelli, Marco
2011-01-01
In this paper we define a discrete dynamical system that governs the evolution of a population of agents. From the dynamical system, a variant of Differential Evolution is derived. It is then demonstrated that, under some assumptions on the differential mutation strategy and on the local structure of the objective function, the proposed dynamical system has fixed points towards which it converges with probability one for an infinite number of generations. This property is used to derive an algorithm that performs better than standard Differential Evolution on some space trajectory optimization problems. The novel algorithm is then extended with a guided restart procedure that further increases the performance, reducing the probability of stagnation in deceptive local minima.
A Convex Geometry-Based Blind Source Separation Method for Separating Nonnegative Sources.
Yang, Zuyuan; Xiang, Yong; Rong, Yue; Xie, Kan
2015-08-01
This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hull spanned by the mapped observations. Considering these zero-samples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method. PMID:25203999
An Optimal DivideConquer Algorithm for 2D Skyline Queries
Lin, Xuemin
An Optimal DivideConquer Algorithm for 2D Skyline Queries HaiXin Lu, Yi Luo, and Xuemin Lin, luoyi, lxue}@cse.unsw.edu.au http://www.cse.unsw.edu.au Abstract. Skyline query processing an optimal algorithm for computing skyline in the two dimen sional space. The algorithm has the progressive
Algorithm of Marriage in Honey Bees Optimization Based on the Wolf Pack Search
Chenguang Yang; Xuyan Tu; Jie Chen
2007-01-01
Marriage in Honey Bees Optimization (MBO) is swarm-intelligence methods. In this paper, the author proposed a new swarm-intelligence method, named as Wolf Pack Search (WPS), which is abstracted from the behavior feature of the wolf pack. Utilizing the WPS algorithm into the local search process of Marriage in Honey Bees Optimization algorithm, the paper gives a new algorithm, Wolf Pack
Particle swarm optimization algorithm with adaptive velocity and its application to fault diagnosis
Hongxia Pan; Xiuye Wei
2009-01-01
This paper introduces a particle swarm optimization algorithm with adaptive velocity (VPSO), in which a moving maximum limited velocity is set in original particle swarm optimization (PSO) algorithm to improve the performance of the PSO. The test results by neural network show that this algorithm is better than original PSO in convergent speed and accuracy, and its parameters selection is
Yang Lu; Weijian Ren; Deping Gao; Hongli Dong
2010-01-01
The immune evolutionary mechanism of artificial immune system is used into Particle Swarm Optimization(IEPSO). A new training algorithm in wavelet neural networks(WNNs) based on IEPSO is presented, it can avoid early ripe of PSO and traditional BP algorithm. In the course of optimizing the parameters of WNNs, new algorithm use the immune evolutionary principle to improve the process of PSO,
BP neural network optimized with PSO algorithm and its application in forecasting
Wen Guo; Yizheng Qiao; Haiyan Hou
2006-01-01
An approach that neural network optimized with PSO algorithm is proposed in the paper. Unlike conventional training method with gradient descent method only, this paper introduces a hybrid training algorithm by combining the PSO and BP algorithm. The PSO is used to optimize the initial parameters of the BP neural network, including the weights and biases. It can effectively better
A Hybrid Genetic Algorithm for Shape Optimization of the Truss with Discrete Variables
Guo-fu Sun; Shu-cai Li; Chun-mei Zheng; Bo Zhang; Sheng-bo Hou
2009-01-01
A hybrid genetic algorithm is proposed to deal with the shape optimization of the truss based on relative difference quotient method and improved genetic algorithm. The advantages of the genetic algorithm in global optimization and the relative difference quotient method in local searching ability are both included in the HGA method. Numerical example of a 37-bar truss was given to
Searching in an Unknown Environment: An Optimal Randomized Algorithm for the Cow-Path Problem
Tate, Steve
Searching in an Unknown Environment: An Optimal Randomized Algorithm for the Cow-Path Problem Ming in mind, the abstract problem known as the w-lane cow-path problem was designed. There are known optimal deterministic algorithms for the cow-path problem, and we give the first randomized algorithm in this paper. We
Bobrow, James E.
A Fast Sequential Linear Quadratic Algorithm for Solving Unconstrained Nonlinear Optimal Control control problem using sequence of linear quadratic subproblems. Each subproblem is solved efficiently an efficient algorithm for its solution. This algorithm is the well-known Linear Quadratic optimal control
GDBR: An Optimal Relation Generalization Algorithm for Knowledge Discovery from Databases
Regina, University of
Page: 1 GDBR: An Optimal Relation Generalization Algorithm for Knowledge Discovery from Databases, Canada, S4S 0A2 Abstract We present GDBR, Generalize DataBase Relation, an optimal, on-line O(n) algorithm for database relation generalization using concept hierarchies. The algorithm is a variant
A Short Proof of Optimality for the MIN Cache Replacement Algorithm
Van Roy, Ben
A Short Proof of Optimality for the MIN Cache Replacement Algorithm Benjamin Van Roy Stanford to replace when writing a new item to a cache. Its optimality was first established by Mattson, Gecsei, Slutz programming argument. Keywords: analysis of algorithms, on-line algorithms, caching, paging 1 The MIN
Chiang, H.D.; Wang, J.C.; Cockings, O.; Shin, H.D. (Cornell Univ., Ithaca, NY (USA). School of Electrical Engineering)
1990-04-01
A general solution algorithm based on simulated annealing for optimal capacitor placements in distribution systems is proposed and analyzed. The solution algorithm can provide the global optimal solution for the capacitor placement problem. The solution algorithm has been implemented into a software package and tested on a 69-bus system with very promising results.
Control optimization, stabilization and computer algorithms for aircraft applications
NASA Technical Reports Server (NTRS)
Athans, M. (editor); Willsky, A. S. (editor)
1982-01-01
The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.
Population Induced Instabilities in Genetic Algorithms for Constrained Optimization
NASA Astrophysics Data System (ADS)
Vlachos, D. S.; Parousis-Orthodoxou, K. J.
2013-02-01
Evolutionary computation techniques, like genetic algorithms, have received a lot of attention as optimization techniques but, although they exhibit a very promising potential in curing the problem, they have not produced a significant breakthrough in the area of systematic treatment of constraints. There are two mainly ways of handling the constraints: the first is to produce an infeasibility measure and add it to the general cost function (the well known penalty methods) and the other is to modify the mutation and crossover operation in a way that they only produce feasible members. Both methods have their drawbacks and are strongly correlated to the problem that they are applied. In this work, we propose a different treatment of the constraints: we induce instabilities in the evolving population, in a way that infeasible solution cannot survive as they are. Preliminary results are presented in a set of well known from the literature constrained optimization problems.
Generalized Particle Swarm Algorithm for HCR Gearing Geometry Optimization
NASA Astrophysics Data System (ADS)
Kuzmanovi?, Siniša; Vereš, Miroslav; Rackov, Milan
2012-12-01
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2015-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Topology-changing shape optimization with the genetic algorithm
NASA Astrophysics Data System (ADS)
Lamberson, Steven E., Jr.
The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.
Optimization of reconstruction algorithms using Monte Carlo simulation
Hanson, K.M.
1989-01-01
A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by an iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a nonnegativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. 11 refs., 6 figs., 2 tabs.
Nikolaos V. Kantartzis; Dimitrios L. Sounas; Theodoros D. Tsiboukis
2009-01-01
The rigorous analysis of circular patch radiators based on metamaterial substrates is presented in this paper via a stencil-controllable set of time-domain methods. Constructing a family of curvilinear 3-D ensembles, the new framework assigns the appropriate coefficient to each optimal spatial increment and introduces extra nodes in terms of a convex combination process. So, instead of employing the typical derivative
A New Parallel Ant Colony Optimization Algorithm Based on Message Passing Interface
Jie Xiong; Caiyun Liu; Zhong Chen
2008-01-01
As a successful metaheuristic, ant colony optimization (ACO) performs excellently in solving most combinatorial optimization problems. However, the ACO algorithm needs considerable computational time and resources when the complexity of the problem increases. Parallel implementing is a good ideal to speedup it. A new parallel ant colony optimization (PACO) algorithm is presented, which has the characteristics of coarse-granularity interacting multiant
Clustering PPI Data Based on Bacteria Foraging Optimization Algorithm Xiujuan Lei*1
Buffalo, State University of New York
Clustering PPI Data Based on Bacteria Foraging Optimization Algorithm Xiujuan Lei*1 Shuang Wu2@buffalo.edu * Corresponding author Abstract--This paper proposed a novel method using Bacteria Foraging Optimization, but also automatically determined the cluster number. Keywords-bacteria foraging optimization algorithm
A Lifetime Optimal Algorithm for Speculative PRE Jingling Xue and Qiong Cai
Xue, Jingling
A Lifetime Optimal Algorithm for Speculative PRE Jingling Xue and Qiong Cai University of New South Wales A lifetime optimal algorithm, called MC-PRE, is presented for the first time that performs-PRE is also lifetime optimal since the lifetimes of introduced temporaries are also minimized. The key
Left ventricle segmentation in MRI via convex relaxed distribution matching.
Nambakhsh, Cyrus M S; Yuan, Jing; Punithakumar, Kumaradevan; Goela, Aashish; Rajchl, Martin; Peters, Terry M; Ayed, Ismail Ben
2013-12-01
A fundamental step in the diagnosis of cardiovascular diseases, automatic left ventricle (LV) segmentation in cardiac magnetic resonance images (MRIs) is still acknowledged to be a difficult problem. Most of the existing algorithms require either extensive training or intensive user inputs. This study investigates fast detection of the left ventricle (LV) endo- and epicardium surfaces in cardiac MRI via convex relaxation and distribution matching. The algorithm requires a single subject for training and a very simple user input, which amounts to a single point (mouse click) per target region (cavity or myocardium). It seeks cavity and myocardium regions within each 3D phase by optimizing two functionals, each containing two distribution-matching constraints: (1) a distance-based shape prior and (2) an intensity prior. Based on a global measure of similarity between distributions, the shape prior is intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive a fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed algorithm relaxes the need for costly pose estimation (or registration) procedures and large training sets, and can tolerate shape deformations, unlike template (or atlas) based priors. Our formulation leads to a challenging problem, which is not directly amenable to convex-optimization techniques. For each functional, we split the problem into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Unlike related graph-cut approaches, the proposed convex-relaxation solution can be parallelized to reduce substantially the computational time for 3D domains (or higher), extends directly to high dimensions, and does not have the grid-bias problem. Our parallelized implementation on a graphics processing unit (GPU) demonstrates that the proposed algorithm requires about 3.87 s for a typical cardiac MRI volume, a speed-up of about five times compared to a standard implementation. We report a performance evaluation over 400 volumes acquired from 20 subjects, which shows that the obtained 3D surfaces correlate with independent manual delineations. We further demonstrate experimentally that (1) the performance of the algorithm is not significantly affected by the choice of the training subject and (2) the shape description we use does not change significantly from one subject to another. These results support the fact that a single subject is sufficient for training the proposed algorithm. PMID:23851075
A partially inexact bundle method for convex semi-infinite minmax problems
NASA Astrophysics Data System (ADS)
Fuduli, Antonio; Gaudioso, Manlio; Giallombardo, Giovanni; Miglionico, Giovanna
2015-04-01
We present a bundle method for solving convex semi-infinite minmax problems which allows inexact solution of the inner maximization. The method is of the partially inexact oracle type, and it is aimed at reducing the occurrence of null steps and at improving bundle handling with respect to existing methods. Termination of the algorithm is proved at a point satisfying an approximate optimality criterion, and the results of some numerical experiments are also reported.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.
Information theoretic methods for image processing algorithm optimization
NASA Astrophysics Data System (ADS)
Prokushkin, Sergey F.; Galil, Erez
2015-01-01
Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).
Yannis Marinakis; Magdalene Marinaki; Nikolaos F. Matsatsinis
2007-01-01
This paper introduces a new hybrid algorithmic nature in- spired approach based on the concepts of the Honey Bees Mating Opti- mization Algorithm (HBMO) and of the Greedy Randomized Adaptive Search Procedure (GRASP), for optimally clustering N objects into K clusters. The proposed algorithm for the Clustering Analysis, the Hybrid HBMO-GRASP, is a two phase algorithm which combines a HBMO
Optimizing Graph Algorithms for Improved Cache Performance*+ Joon-Sang Park
Park, Joon-Sang
and deeper memory hierarchies to hide the cost of cache misses. The performance of these deep memoryOptimizing Graph Algorithms for Improved Cache Performance*+ Joon-Sang Park University: Cache-Friendly Algorithms, Cache-Oblivious Algorithms, Graph Algorithms, Shortest Path, Minimum Spanning
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
NASA Astrophysics Data System (ADS)
Aslantas, Veysel; Ozer, Saban; Ozturk, Serkan
2009-07-01
The performance of a fragile watermarking method based on discrete cosine transform (DCT) has been improved in this paper by using intelligent optimization algorithms (IOA), namely genetic algorithm, differential evolution algorithm, clonal selection algorithm and particle swarm optimization algorithm. In DCT based fragile watermarking techniques, watermark embedding can usually be achieved by modifying the least significant bits of the transformation coefficients. After the embedding process is completed, transforming the modified coefficients from the frequency domain to the spatial domain produces some rounding errors due to the conversion of real numbers to integers. The rounding errors caused by this transformation process were corrected by the use of intelligent optimization algorithms mentioned above. This paper gives experimental results which show the feasibility of using these optimization algorithms for the fragile watermarking and demonstrate the accuracy of these methods. The performance comparison of the algorithms was also realized.
Skull removal in MR images using a modified artificial bee colony optimization algorithm.
Taherdangkoo, Mohammad
2014-01-01
Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications. PMID:25059256
Constant-complexity stochastic simulation algorithm with optimal binning
NASA Astrophysics Data System (ADS)
Sanft, Kevin R.; Othmer, Hans G.
2015-08-01
At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie's Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.
Architecture of a Quantum Multicomputer Optimized for Shor's Factoring Algorithm
Rodney Doyle Van Meter III
2006-07-11
The quantum multicomputer consists of a large number of small nodes and a qubus interconnect for creating entangled state between the nodes. The primary metric chosen is the performance of such a system on Shor's algorithm for factoring large numbers: specifically, the quantum modular exponentiation step that is the computational bottleneck. This dissertation introduces a number of optimizations for the modular exponentiation. My algorithms reduce the latency, or circuit depth, to complete the modular exponentiation of an n-bit number from O(n^3) to O(n log^2 n) or O(n^2 log n), depending on architecture. Calculations show that these algorithms are one million times and thirteen thousand times faster, when factoring a 6,000-bit number, depending on architecture. Extending to the quantum multicomputer, five different qubus interconnect topologies are considered, and two forms of carry-ripple adder are found to be the fastest for a wide range of performance parameters. The links in the quantum multicomputer are serial; parallel links would provide only very modest improvements in system reliability and performance. Two levels of the Steane [[23,1,7
GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.
D'Helon, CD
2004-08-18
The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.
Constant-complexity stochastic simulation algorithm with optimal binning.
Sanft, Kevin R; Othmer, Hans G
2015-08-21
At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie's Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes. PMID:26298116
Murota, Kazuo
systems. · In network flow problems, flow and tension are dual objects. Roughly speak- ing, flow, for example, the differential operator corresponds to L-convexity and the Green function to M and convex functions through a variety of examples of discrete systems and the axiomatic approach presented
An optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs
Jason Cong; Yuzheng Ding
1992-01-01
In this paper we present a polynomial time technology mapping algorithm, called Flow-Map, that optimally solves the LUT-based FPGA technology mapping problem for depth minimization for general Boolean networks. This theoretical breakthrough makes a sharp contrast with the fact that conventional technology mapping problem in library-based designs is NP-hard. A key step in Flow-Map is to compute a minimum height
Parallel global optimization with the particle swarm algorithm.
Schutte, J F; Reinbolt, J A; Fregly, B J; Haftka, R T; George, A D
2004-12-01
Present day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima-large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available. PMID:17891226
Yulong Shi; Sanyou Zeng; Bo Xiao; Yang Yang; Song Gao
This paper proposes an evolutionary algorithm with lower-dimensional-search crossover for constrained engineering optimization\\u000a problems. Crossover operator of the algorithm searches a lower dimensional space determined by the parent points. It is favorable\\u000a to enhance the performance of the algorithm. The algorithm has been used to solve 4 engineering optimization problems with\\u000a constraints. The results show the performance of the proposed
NASA Astrophysics Data System (ADS)
Shao, Gui-Fang; Wang, Ting-Na; Liu, Tun-Dong; Chen, Jun-Ren; Zheng, Ji-Wen; Wen, Yu-Hua
2015-01-01
Pt-Pd alloy nanoparticles, as potential catalyst candidates for new-energy resources such as fuel cells and lithium ion batteries owing to their excellent reactivity and selectivity, have aroused growing attention in the past years. Since structure determines physical and chemical properties of nanoparticles, the development of a reliable method for searching the stable structures of Pt-Pd alloy nanoparticles has become of increasing importance to exploring the origination of their properties. In this article, we have employed the particle swarm optimization algorithm to investigate the stable structures of alloy nanoparticles with fixed shape and atomic proportion. An improved discrete particle swarm optimization algorithm has been proposed and the corresponding scheme has been presented. Subsequently, the swap operator and swap sequence have been applied to reduce the probability of premature convergence to the local optima. Furthermore, the parameters of the exchange probability and the 'particle' size have also been considered in this article. Finally, tetrahexahedral Pt-Pd alloy nanoparticles has been used to test the effectiveness of the proposed method. The calculated results verify that the improved particle swarm optimization algorithm has superior convergence and stability compared with the traditional one.
Algebraic and algorithmic frameworks for optimized quantum measurements
Amine Laghaout; Ulrik L. Andersen
2015-07-08
Von Neumann projections are the main operations by which information can be extracted from the quantum to the classical realm. They are however static processes that do not adapt to the states they measure. Advances in the field of adaptive measurement have shown that this limitation can be overcome by "wrapping" the von Neumann projectors in a higher-dimensional circuit which exploits the interplay between measurement outcomes and measurement settings. Unfortunately, the design of adaptive measurement has often been ad hoc and setup-specific. We shall here develop a unified framework for designing optimized measurements. Our approach is two-fold: The first is algebraic and formulates the problem of measurement as a simple matrix diagonalization problem. The second is algorithmic and models the optimal interaction between measurement outcomes and measurement settings as a cascaded network of conditional probabilities. Finally, we demonstrate that several figures of merit, such as Bell factors, can be improved by optimized measurements. This leads us to the promising observation that measurement detectors which---taken individually---have a low quantum efficiency can be be arranged into circuits where, collectively, the limitations of inefficiency are compensated for.
A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis.
Raja, Chandrasekaran; Gangatharan, Narayanan
2015-08-01
Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness. PMID:26093787
Inner Random Restart Genetic Algorithm for Practical Delivery Schedule Optimization
NASA Astrophysics Data System (ADS)
Sakurai, Yoshitaka; Takada, Kouhei; Onoyama, Takashi; Tsukamoto, Natsuki; Tsuruta, Setsuo
A delivery route optimization that improves the efficiency of real time delivery or a distribution network requires solving several tens to hundreds but less than 2 thousands cities Traveling Salesman Problems (TSP) within interactive response time (less than about 3 second), with expert-level accuracy (less than about 3% of error rate). Further, to make things more difficult, the optimization is subjects to special requirements or preferences of each various delivery sites, persons, or societies. To meet these requirements, an Inner Random Restart Genetic Algorithm (Irr-GA) is proposed and developed. This method combines meta-heuristics such as random restart and GA having different types of simple heuristics. Such simple heuristics are 2-opt and NI (Nearest Insertion) methods, each applied for gene operations. The proposed method is hierarchical structured, integrating meta-heuristics and heuristics both of which are multiple but simple. This method is elaborated so that field experts as well as field engineers can easily understand to make the solution or method easily customized and extended according to customers' needs or taste. Comparison based on the experimental results and consideration proved that the method meets the above requirements more than other methods judging from not only optimality but also simplicity, flexibility, and expandability in order for this method to be practically used.
Integrated network design and scheduling problems : optimization algorithms and applications.
Nurre, Sarah G.; Carlson, Jeffrey J.
2014-01-01
We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.
Convex sets Let , , the through
Ferland, Jacques A.
Convex sets Non convex sets ( ),x y x y Â· Â· Â· Â· x y #12;y ( ){ } ( ) ( ) 1 Let , , the through x y X Convex sets Non convex sets ( ),x y x y Â· Â· Â· Â· #12;y ( ){ } ( ) ( ) 1 Let x y X Convex sets Non convex sets ( ),x y x y Â· Â· Â· Â· #12;Recall: Notation et definitions
NASA Astrophysics Data System (ADS)
Que, Dashun; Li, Gang; Yue, Peng
2007-12-01
An adaptive optimization watermarking algorithm based on Genetic Algorithm (GA) and discrete wavelet transform (DWT) is proposed in this paper. The core of this algorithm is the fitness function optimization model for digital watermarking based on GA. The embedding intensity for digital watermarking can be modified adaptively, and the algorithm can effectively ensure the imperceptibility of watermarking while the robustness is ensured. The optimization model research may provide a new idea for anti-coalition attacks of digital watermarking algorithm. The paper has fulfilled many experiments, including the embedding and extracting experiments of watermarking, the influence experiments by the weighting factor, the experiments of embedding same watermarking to the different cover image, the experiments of embedding different watermarking to the same cover image, the comparative analysis experiments between this optimization algorithm and human visual system (HVS) algorithm and etc. The simulation results and the further analysis show the effectiveness and advantage of the new algorithm, which also has versatility and expandability. And meanwhile it has better ability of anti-coalition attacks. Moreover, the robustness and security of watermarking algorithm are improved by scrambling transformation and chaotic encryption while preprocessing the watermarking.
Optimization algorithms for functional deimmunization of therapeutic proteins
2010-01-01
Background To develop protein therapeutics from exogenous sources, it is necessary to mitigate the risks of eliciting an anti-biotherapeutic immune response. A key aspect of the response is the recognition and surface display by antigen-presenting cells of epitopes, short peptide fragments derived from the foreign protein. Thus, developing minimal-epitope variants represents a powerful approach to deimmunizing protein therapeutics. Critically, mutations selected to reduce immunogenicity must not interfere with the protein's therapeutic activity. Results This paper develops methods to improve the likelihood of simultaneously reducing the anti-biotherapeutic immune response while maintaining therapeutic activity. A dynamic programming approach identifies optimal and near-optimal sets of conservative point mutations to minimize the occurrence of predicted T-cell epitopes in a target protein. In contrast with existing methods, those described here integrate analysis of immunogenicity and stability/activity, are broadly applicable to any protein class, guarantee global optimality, and provide sufficient flexibility for users to limit the total number of mutations and target MHC alleles of interest. The input is simply the primary amino acid sequence of the therapeutic candidate, although crystal structures and protein family sequence alignments may also be input when available. The output is a scored list of sets of point mutations predicted to reduce the protein's immunogenicity while maintaining structure and function. We demonstrate the effectiveness of our approach in a number of case study applications, showing that, in general, our best variants are predicted to be better than those produced by previous deimmunization efforts in terms of either immunogenicity or stability, or both factors. Conclusions By developing global optimization algorithms leveraging well-established immunogenicity and stability prediction techniques, we provide the protein engineer with a mechanism for exploring the favorable sequence space near a targeted protein therapeutic. Our mechanism not only helps identify designs more likely to be effective, but also provides insights into the interrelated implications of design choices. PMID:20380721
Cat Swarm Optimization algorithm for optimal linear phase FIR filter design.
Saha, Suman Kumar; Ghoshal, Sakti Prasad; Kar, Rajib; Mandal, Durbadal
2013-11-01
In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. PMID:23958491
Optimization of HVAC Control System Strategy Using Two-Objective Genetic Algorithm
Nabil Nassif; Stanislaw Kajl; Robert Sabourin
2005-01-01
Intelligent building technology for building operation, called the optimization process, is developed and validated in this paper. The optimization process using a multi-objective genetic algorithm will permit the optimal operation of the building's mechanical systems when installed in parallel with a building's central control system. Using this proposed optimization process, the supervisory control strategy setpoints, such as supply air temperature,
GenMin: An enhanced genetic algorithm for global optimization
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Lagaris, I. E.
2008-06-01
A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the objective function. The test example given takes only a few seconds to run.
Optimal multiple-lag out-of-sequence measurement algorithm based on generalized smoothing framework
NASA Astrophysics Data System (ADS)
Mallick, Mahendra; Zhang, Keshu
2005-09-01
Out-of-sequence measurement (OOSM) filtering algorithms have drawn a great deal of attention during the last few years. A number of multiple-lag OOSM filtering algorithms exists in the research literature. Only one of the OOSM filtering algorithms is optimal and remaining algorithms are suboptimal even for the linear dynamics and linear measurement models with additive Gaussian noises. A general feature of each OOSM filtering algorithm is that the algorithm calculates optimally or sub-optimally, the smoothed or retrodicted state estimate, associated covariance, and cross-covariance between the state and the measurement at the OOSM time. The existing optimal OOSM algorithm calculates these three quantities using a forward recursive algorithm. In this paper, we show that the OOSM filtering problem can be solved optimally using a generalized smoothing or retrodiction framework for the linear dynamics and linear measurement models with additive Gaussian noises. We develop a new optimal smoothing based OOSM filtering algorithm which uses the Rauch-Tung-Streibel (RTS) fixed-interval optimal backward smoother. We present numerical results using simulated data which includes two-dimensional position and velocity measurements and analyze the performance of the algorithm using Monte Carlo simulations.
Maximizing microbial perchlorate degradation using a genetic algorithm: consortia optimization.
Kucharzyk, Katarzyna H; Soule, Terence; Hess, Thomas F
2013-09-01
Microorganisms in consortia perform many tasks more effectively than individual organisms and in addition grow more rapidly and in greater abundance. In this work, experimental datasets were assembled consisting of all possible selected combinations of perchlorate reducing strains of microorganisms and their perchlorate degradation rates were evaluated. A genetic algorithm (GA) methodology was successfully applied to define sets of microbial strains to achieve maximum rates of perchlorate degradation. Over the course of twenty generations of optimization using a GA, we saw a statistically significant 2.06 and 4.08-fold increase in average perchlorate degradation rates by consortia constructed using solely the perchlorate reducing bacteria (PRB) and by consortia consisting of PRB and accompanying organisms that did not degrade perchlorate, respectively. The comparison of kinetic rates constant in two types of microbial consortia additionally showed marked increases. PMID:23229741
Optimization and implementation of piezoelectric radiators using the genetic algorithm.
Bai, Mingsian R; Huang, Chinghong
2003-06-01
Very thin and small (45 mm x 35 mm x 0.35 mm) piezoelectric radiators have been developed in this research. The system is modeled by using the energy method in conjunction with the assumed-modes method. Electrical system, mechanical system, and acoustic loading have all been accounted for during the modeling stage. On the basis of the simulation model, the genetic algorithm (GA) is employed to optimize the overall configurations for a low resonance frequency and a large gain. The resulting designs are then implemented and evaluated experimentally. Performance indices for the experimental evaluation include the frequency response, the directional response, the sensitivity, and the efficiency. It is found in the experimental results that the piezoelectric radiators are able to produce comparable acoustical output with significantly less electrical input than the voice-coil panel speakers. PMID:12822792
Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm
NASA Astrophysics Data System (ADS)
Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer
2015-03-01
Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.
Boyd, A.
1994-12-31
A cutting plane algorithm for solving integer programs represented by a separation oracle is presented, and it is demonstrated that when properly implemented the algorithm is a fully polynomial approximation scheme. Related results are presented, including a fully polynomial approximation variant of Dantzig/Wolfe decomposition, a fully polynomial approximation algorithm for linear optimization on a convex body, and a polynomial time cutting plane algorithm for the cardinality versions of many well-known combinatorial optimization problems.
NASA Astrophysics Data System (ADS)
Dutta, Rajdeep; Ganguli, Ranjan; Mani, V.
2011-10-01
Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.
A homogeneous superconducting magnet design using a hybrid optimization algorithm
NASA Astrophysics Data System (ADS)
Ni, Zhipeng; Wang, Qiuliang; Liu, Feng; Yan, Luguang
2013-12-01
This paper employs a hybrid optimization algorithm with a combination of linear programming (LP) and nonlinear programming (NLP) to design the highly homogeneous superconducting magnets for magnetic resonance imaging (MRI). The whole work is divided into two stages. The first LP stage provides a global optimal current map with several non-zero current clusters, and the mathematical model for the LP was updated by taking into account the maximum axial and radial magnetic field strength limitations. In the second NLP stage, the non-zero current clusters were discretized into practical solenoids. The superconducting conductor consumption was set as the objective function both in the LP and NLP stages to minimize the construction cost. In addition, the peak-peak homogeneity over the volume of imaging (VOI), the scope of 5 Gauss fringe field, and maximum magnetic field strength within superconducting coils were set as constraints. The detailed design process for a dedicated 3.0 T animal MRI scanner was presented. The homogeneous magnet produces a magnetic field quality of 6.0 ppm peak-peak homogeneity over a 16 cm by 18 cm elliptical VOI, and the 5 Gauss fringe field was limited within a 1.5 m by 2.0 m elliptical region.
Hybrid Unicast and Multicast Flow Control: A Linear Optimization Approach
Yousefi'zadeh, Homayoun; Fazel, Fatemeh; Jafarkhani, Hamid
2004-01-01
of “Flow Control Optimization Algorithm” is linear in termscontrol prob- lem is a convex optimization problem de?ned over a set of piecewise linearlinear programming schemes and water-?lling scheme re- spectively, our solutions to centralized and decentralized for- mulations of the ?ow control
Algorithms and functionality of an intensity modulated radiotherapy optimization system.
Wu, Q; Mohan, R
2000-04-01
The main purpose of this paper is to describe formalisms, algorithms, and certain unique features of a system for optimization of intensity modulated radiotherapy (IMRT). The system is coupled to a commercial treatment planning system with an accurate dose calculation engine based on the kernel superposition algorithm. The system was designed for use for research as well as for routine clinical practice. It employs dose- and dose-volume-based objective functions. The system can optimize IMRT plans with multiple target volumes simultaneously. Each target volume may be assigned a different prescription dose with constraints on either underdosing, or overdosing, or both. For organs at risk more than one constraint may be applied. This feature allows simultaneous treatment of primary, regional disease and electively treated nodes. The system allows specification of constraints on logical combinations of anatomic structures, such as a region of overlap between the prostate planning target volume and rectum or the volume of lung excluding the tumor. The optimization may also be performed on plans which, in addition to intensity-modulated beams, include other modalities such as non-IMRT photon and electron beams and brachytherapy sources. The various features of the system are illustrated with one phantom example and two clinical examples: a brain stereotactic radiosurgery case and a nasopharynx case. In the cylindrical phantom example, the use of the system for overlap regions is demonstrated. The brain stereotactic radiosurgery example shows the improvement of IMRT plans over the conventional arcs based plan and the three-dimensional conformal plan with multiple fixed gantry angles and demonstrates the application of our system to cases where small grid sizes are important. The nasopharynx example shows the potential of IMRT to simultaneously treat large and boost fields. It also illustrates the power of IMRT to protect normal anatomic structures for highly complex situations and the efficiency in planning and delivery achievable with IMRT. The overall IMRT planning time is typically less than 2 h on a Sun Ultrasparc workstation, most of which is spent in repeated computation of dose distributions. PMID:10798692
A novel ecological particle swarm optimization algorithm and its population dynamics analysis
Qi Kang; Lei Wang; Qi-di Wu
2008-01-01
This paper presents a novel particle swarm optimization algorithm from the angle of ecological population evolution, called the ecological particle swarm optimization, or EPSO. Initially, ecological population competition model (EPCM) is presented. From the basis of the EPCM, the EPSO algorithm and its general framework are proposed; in which particle swarm system with ecological hierarchy and competition model is defined
Cláudio M. N. A. Pereira; Celso M. F. Lapa
2003-01-01
This work extends the research related to genetic algorithms (GA) in core design optimization problems, which basic investigations were presented in previous work. Here we explore the use of the Island Genetic Algorithm (IGA), a coarse-grained parallel GA model, comparing its performance to that obtained by the application of a traditional non-parallel GA. The optimization problem consists on adjusting several
Sokalski, Krzysztof; ?lusarek, Barbara
2015-01-01
The paper presents a novel algorithm for designing technological parameters by which one optimize power losses and induction in SMC. The advantage of the presented algorithm consists in the bicriteria optimization: minimization of losses and maximization of induction. The crucial role in the presented algotithm plays scaling.
A novel and effective particle swarm optimization like algorithm with extrapolation technique
M. Senthil Arumugam; Machavaram Venkata Chalapathy Rao; Alan W. C. Tan
2009-01-01
A novel competitive approach to particle swarm optimization (PSO) algorithms is proposed in this paper. The proposed method uses extrapolation technique with PSO (ePSO) for solving optimization problems. By considering the basics of the PSO algorithm, the current particle position is updated by extrapolating the global best particle position and the current particle positions in the search space. The position
Venu G. Gudise; Ganesh K. Venayagamoorthy
2003-01-01
Particle swarm optimization (PSO) motivated by the social behavior of organisms, is a step up to existing evolutionary algorithms for optimization of continuous nonlinear functions. Backpropagation (BP) is generally used for neural network training. Choosing a proper algorithm for training a neural network is very important. In this paper, a comparative study is made on the computational requirements of the
Research of PSO-BP Optimal Algorithm in Material Moisture Measurement
Yu Jiang; Xingpeng Liu; Hong Xiao; Wei Teng; Xuewei Bai; Xin Gao
2008-01-01
Based on PSO-BP optimal algorithm an evolutionary neural network model is presented to improve the measurement accuracy with microwave resonant. Firstly, the global search ability and rate-displacement model of the PSO algorithm are used to follow the current instance dynamically and modulate its search strategy. And then BP local searching ability which avoids oscillating near the optimal solution or suboptimal
ON INTERIOR{POINT NEWTON ALGORITHMS FOR DISCRETIZED OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINTS
Vicente, Luís Nunes
ON INTERIOR{POINT NEWTON ALGORITHMS FOR DISCRETIZED OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINTS in detail. We derive an a ne{scaling and two primal{dual interior{point Newton algorithms by applying, in an interior{point way, Newton's method to equivalent forms of the rst{order optimality conditions. Under
A Novel Hybrid Algorithm for the Topology Optimization of Truss Structure
Wang Renhua; Zhao Xianzhong; Xie Buying
2009-01-01
Structural Topology and Shape Annealing (STSA), as a heuristic mathematic algorithm, achieves the real topology optimization of truss structures but little considering the mechanical characters of structure. Fully stressed design (FSD) criteria, as a mechanical method, is good at sizing optimization of the fixed configuration structures. The paper aims to apply the mechanical algorithm to guide the heuristic search process
Bit-Level Transformation and Optimization for Hardware Synthesis of Algorithmic Descriptions
Cong, Jason "Jingsheng"
/C++, the description of bitwise access and computation is not as direct as hardware description languages, and hardwareBit-Level Transformation and Optimization for Hardware Synthesis of Algorithmic Descriptions Jiyu synthesis of algorithmic descriptions may generate sub-optimal implement- tations for bitwise computation
PIPATH: An optimized algorithm for generating a-helical structures from PISEMA data
PIPATH: An optimized algorithm for generating a-helical structures from PISEMA data T. Asbury a , J; revised 25 July 2006 Available online 17 August 2006 Abstract An optimized algorithm for finding structures and assignments of solid-state NMR PISEMA data obtained from a-helical membrane proteins
Stefan Wagner; Gabriel Kronberger
2011-01-01
The tutorial demonstrates how to apply and analyze metaheuristics using HeuristicLab, an open source optimization environment. It will be shown how to parameterize and execute evolutionary algorithms to solve combinatorial optimization problems (traveling salesman, vehicle routing) as well as data analysis problems (regression, classification). The attendees will learn how to assemble different algorithms and parameter settings to a large scale
Lindner, Douglas K.
Design Optimization of Power Electronics Circuits using Genetic Algorithms A Boost PFC Converter with a developed software tool for designing a low-cost boost power factor correction (PFC) front-end converter.15 kW unit are presented. Index Terms -- Design, optimization, genetic algorithm, boost, PFC, EMI. I
Iterative algorithm for determining optimal beam profiles in a three-dimensional space
Levy, Uriel
of the beam spread. In addition, it does not allow arbitrary 3-D beam shaping to be achieved. Other attemptsIterative algorithm for determining optimal beam profiles in a three-dimensional space Uriel Levy algorithm for achieving optimization of beam profiles in a three- dimensional volume is presented
NASA Astrophysics Data System (ADS)
Igeta, Hideki; Hasegawa, Mikio
Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.
Stanford University
Optimization Euclidean Distance Geometry 2 Moo Publishing #12;Meboo Publishing USA PO Box 12 Palo Alto, California 94302 Dattorro, Convex Optimization Euclidean Distance Geometry, second edition, Moo, v2015 but limited to personal use. 2005-2015 Moo Publishing USA #12;for Jennie Columba Antonio & Sze Wan #12;EDM
Optimal Power Flow Based Demand Response Offer Price Optimization
Lavaei, Javad
Optimal Power Flow Based Demand Response Offer Price Optimization Zhen Qiu 1 Introduction significantly decrease the costs. The optimal power flow problem is non-convex in general. We formulate convex
NASA Astrophysics Data System (ADS)
Southall, Hugh L.; O'Donnell, Teresa H.; Derov, John S.
2010-04-01
EGO is an evolutionary, data-adaptive algorithm which can be useful for optimization problems with expensive cost functions. Many antenna design problems qualify since complex computational electromagnetics (CEM) simulations can take significant resources. This makes evolutionary algorithms such as genetic algorithms (GA) or particle swarm optimization (PSO) problematic since iterations of large populations are required. In this paper we discuss multiparameter optimization of a wideband, single-element antenna over a metamaterial ground plane and the interfacing of EGO (optimization) with a full-wave CEM simulation (cost function evaluation).
Analysis and Optimization of Maximum Power Point Tracking Algorithms in the Presence of
Odam, Kofi
maximum power point tracking (MPPT) algorithms for photovoltaic systems. Noise is an essential consideration for optimization of MPPT algorithms. For example, for a perturb and observe algorithm is verified by both simulations and experiments. Index Terms--Noise, MPPT, maximum power point track- ing
Schofield, Jeremy
Efficient algorithms for rigid body integration using optimized splitting methods and exact free with exact free rotational motion for rigid body systems and discuss their relative merits. The algorithms of the motion. It is demon- strated that although the algorithms differ in their stability due to truncation
Caflisch, Amedeo
Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement Philipp.g., the modularity, have been proposed. We present here a multistep extension of the greedy algorithm MSG that allows modu- larity value. With an appropriate choice of the step width, the combined MSG-VM algorithm is able