Science.gov

Sample records for convex optimization problem

  1. A two-layer recurrent neural network for nonsmooth convex optimization problems.

    PubMed

    Qin, Sitian; Xue, Xiaoping

    2015-06-01

    In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems. PMID:25051563

  2. The Optimal Solution of a Non-Convex State-Dependent LQR Problem and Its Applications

    PubMed Central

    Xu, Xudan; Zhu, J. Jim; Zhang, Ping

    2014-01-01

    This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR) problem, in which the control penalty weighting matrix in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE) simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting . It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting , in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions. PMID:24747417

  3. What is optimized in convex relaxations for multilabel problems: connecting discrete and continuously inspired MAP inference.

    PubMed

    Zach, Christopher; Häne, Christian; Pollefeys, Marc

    2014-01-01

    In this work, we present a unified view on Markov random fields (MRFs) and recently proposed continuous tight convex relaxations for multilabel assignment in the image plane. These relaxations are far less biased toward the grid geometry than Markov random fields on grids. It turns out that the continuous methods are nonlinear extensions of the well-established local polytope MRF relaxation. In view of this result, a better understanding of these tight convex relaxations in the discrete setting is obtained. Further, a wider range of optimization methods is now applicable to find a minimizer of the tight formulation. We propose two methods to improve the efficiency of minimization. One uses a weaker, but more efficient continuously inspired approach as initialization and gradually refines the energy where it is necessary. The other one reformulates the dual energy enabling smooth approximations to be used for efficient optimization. We demonstrate the utility of our proposed minimization schemes in numerical experiments. Finally, we generalize the underlying energy formulation from isotropic metric smoothness costs to arbitrary nonmetric and orientation dependent smoothness terms. PMID:24231873

  4. Computable optimal value bounds for generalized convex programs

    NASA Technical Reports Server (NTRS)

    Fiacco, Anthony V.; Kyparisis, Jerzy

    1987-01-01

    It has been shown by Fiacco that convexity or concavity of the optimal value of a parametric nonlinear programming problem can readily be exploited to calculate global parametric upper and lower bounds on the optimal value function. The approach is attractive because it involves manipulation of information normally required to characterize solution optimality. A procedure is briefly described for calculating and improving the bounds as well as its extensions to generalized convex and concave functions. Several areas of applications are also indicated.

  5. What Is Optimized in Convex Relaxations for Multi-Label Problems: Connecting Discrete and Continuously-Inspired MAP Inference.

    PubMed

    Zach, Christopher; Hane, Christian; Pollefeys, Marc

    2013-06-01

    In this work we present a unified view on Markov random fields and recently proposed continuous tight convex relaxations for multi-label assignment in the image plane. These relaxations are far less biased towards the grid geometry than Markov random fields (MRFs) on grids. It turns out that the continuous methods are non-linear extensions of the well-established local polytope MRF relaxation. In view of this result a better understanding of these tight convex relaxations in the discrete setting is obtained. Further, a wider range of optimization methods is now applicable to find a minimizer of the tight formulation. We propose two methods to improve the efficiency of minimization. One uses a weaker, but more efficient continuously inspired approach as initialization and gradually refines the energy where it is necessary. The other one reformulates the dual energy enabling smooth approximations to be used for efficient optimization. We demonstrate the utility of our proposed minimization schemes in numerical experiments. Finally, we generalize the underlying energy formulation from isotropic metric smoothness costs to arbitrary non-metric and orientation dependent smoothness terms. PMID:23751286

  6. Robust boosting via convex optimization

    NASA Astrophysics Data System (ADS)

    Rätsch, Gunnar

    2001-12-01

    In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems? Boosting methods are originally designed for classification problems. To extend the boosting idea to regression problems, we use the previous convergence results and relations to semi-infinite programming to design boosting-like algorithms for regression problems. We show that these leveraging algorithms have desirable theoretical and practical properties. o Can boosting techniques be useful in practice? The presented theoretical results are guided by simulation results either to illustrate properties of the proposed algorithms or to show that they work well in practice. We report on successful applications in a non-intrusive power monitoring system, chaotic time series analysis and a drug discovery process. --- Anmerkung: Der Autor ist Träger des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2001/2002. In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugehörigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. Die Arbeit behandelt folgende Sachverhalte: o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Abschätzung der Vorhersagequalität auf ungesehenen Mustern. Kürzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalität der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt. o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung? Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu lösen, deren Lösung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien für eine große Familie von Boosting-ähnlichen Algorithmen zu geben. o Kann man Boosting robust gegenüber Meßfehlern und Ausreissern in den Daten machen? Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivität gegenüber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting übertragen. Das führt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen. o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern? Boosting-Methoden wurden ursprünglich für Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-ähnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben. o Ist Boosting praktisch anwendbar? Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tatsächlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-Überwachungssystem und bei der Entwicklung neuer Medikamente illustriert.

  7. A convex optimization approach for depth estimation under illumination variation.

    PubMed

    Miled, Wided; Pesquet, Jean-Christophe; Parent, Michel

    2009-04-01

    Illumination changes cause serious problems in many computer vision applications. We present a new method for addressing robust depth estimation from a stereo pair under varying illumination conditions. First, a spatially varying multiplicative model is developed to account for brightness changes induced between left and right views. The depth estimation problem, based on this model, is then formulated as a constrained optimization problem in which an appropriate convex objective function is minimized under various convex constraints modelling prior knowledge and observed information. The resulting multiconstrained optimization problem is finally solved via a parallel block iterative algorithm which offers great flexibility in the incorporation of several constraints. Experimental results on both synthetic and real stereo pairs demonstrate the good performance of our method to efficiently recover depth and illumination variation fields, simultaneously. PMID:19278920

  8. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.

  9. Regularity and Singularities of Optimal Convex Shapes in the Plane

    NASA Astrophysics Data System (ADS)

    Lamboley, Jimmy; Novruzi, Arian; Pierre, Michel

    2012-07-01

    We focus here on the analysis of the regularity or singularity of solutions Ω 0 to shape optimization problems among convex planar sets, namely: J(Ω0)=min {J(Ω), Ω quad convex,Ω \\in {S}_ad}, where {{S}_ad} is a set of 2-dimensional admissible shapes and {J:{S}_ad→{R}} is a shape functional. Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order optimality conditions, including the infinite dimensional Lagrange multiplier due to the convexity constraint. We prove two types of results: i) under a suitable convexity property of the functional J, we prove that Ω 0 is a W 2, p -set, {p\\in[1, ∞]}. This result applies, for instance, with p = ∞ when the shape functional can be written as J( Ω) = R( Ω) + P( Ω), where R( Ω) = F(| Ω|, E f ( Ω), λ1( Ω)) involves the area | Ω|, the Dirichlet energy E f ( Ω) or the first eigenvalue of the Laplace-Dirichlet operator λ1( Ω), and P( Ω) is the perimeter of Ω;

  10. Lagrange duality theory for convex control problems

    NASA Technical Reports Server (NTRS)

    Hager, W. W.; Mitter, S. K.

    1976-01-01

    The Lagrange dual to a control problem is studied. The principal result based on the Hahn-Banach theorem proves that the dual problem has an optimal solution if there exists an interior point for the constraint set. A complementary slackness condition holds, if the primal problem has an optimal solution. A necessary and sufficient condition for the optimality of solutions to the primal and the dual problem is also presented.

  11. Optimal transportation in for a distance cost with a convex constraint

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Jiang, Feida; Yang, Xiao-Ping

    2015-06-01

    We prove existence of an optimal transportation map for the Monge-Kantorovich's problem associated with a cost function c( x, y) with a convex constraint in . The cost function coincides with the Euclidean distance | x - y| if the displacement y - x belongs to a given closed convex set C with at most countable flat parts and it is infinite otherwise.

  12. Phase retrieval using iterative Fourier transform and convex optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Fen; Cheng, Hong; Zhang, Quanbing; Wei, Sui

    2015-05-01

    Phase is an inherent characteristic of any wave field. Statistics show that greater than 25% of the information is encoded in the amplitude term and 75% of the information is in the phase term. The technique of phase retrieval means acquire phase by computation using magnitude measurements and provides data information for holography display, 3D field reconstruction, X-ray crystallography, diffraction imaging, astronomical imaging and many other applications. Mathematically, solving phase retrieval problem is an inverse problem taking the physical and computation constraints. Some recent algorithms use the principle of compressive sensing, such as PhaseLift, PhaseCut and compressive phase retrieval etc. they formulate phase retrieval problems as one of finding the rank-one solution to a system of linear matrix equations and make the overall algorithm a convex program over n n matrices. However, by "lifting" a vector problem to a matrix one, these methods lead to a much higher computational cost as a result. Furthermore, they only use intensity measurements but few physical constraints. In the paper, a new algorithm is proposed that combines above convex optimization methods with a well known iterative Fourier transform algorithm (IFTA). The IFTA iterates between the object domain and spectral domain to reinforce the physical information and reaches convergence quickly which has been proved in many applications such as compute-generated-hologram (CGH). Herein the output phase of the IFTA is treated as the initial guess of convex optimization methods, and then the reconstructed phase is numerically computed by using modified TFOCS. Simulation results show that the combined algorithm increases the likelihood of successful recovery as well as improves the precision of solution.

  13. From a Nonlinear, Nonconvex Variational Problem to a Linear, Convex Formulation

    SciTech Connect

    Egozcue, J. Meziat, R. Pedregal, P.

    2002-12-19

    We propose a general approach to deal with nonlinear, nonconvex variational problems based on a reformulation of the problem resulting in an optimization problem with linear cost functional and convex constraints. As a first step we explicitly explore these ideas to some one-dimensional variational problems and obtain specific conclusions of an analytical and numerical nature.

  14. On the Fermat-Lagrange principle for mixed smooth convex extremal problems

    SciTech Connect

    Brinkhuis, Ya

    2001-06-30

    A simple geometric condition that can be attached to an extremal problem of a fairly general form included in a family of problems is indicated. This is used to demonstrate that the task of formulating a uniform condition for smooth convex problems can be satisfactorily accomplished. On the other hand, the necessity of this new condition of optimality is proved under certain technical assumptions.

  15. Convex relaxations for certain inverse problems on graphs

    NASA Astrophysics Data System (ADS)

    Bandeira, Afonso S.

    Many maximum likelihood estimation problems are known to be intractable in the worst case. A common approach is to consider convex relaxations of the maximum likelihood estimator (MLE), and relaxations based on semidefinite programming (SDP) are among the most popular. This thesis focuses on a certain class of graph-based inverse problems, referred to as synchronization-type problems. These are problems where the goal is to estimate a set of parameters from pairwise information between them. In this thesis, we investigate the performance of the SDP based approach for a range of problems of this type. While for many such problems, such as multi-reference alignment in signal processing, a precise explanation of their effectiveness remains a fascinating open problem, we rigorously establish a couple of remarkable phenomena. For example, in some instances (such as community detection under the stochastic block model) the solution to the SDP matches the ground truth parameters (i.e. achieves exact recovery) for information theoretically optimal regimes. This is established by developing non-asymptotic bounds for the spectral norm of random matrices with independent entries. On other instances (such as angular synchronization), the MLE itself tends to not coincide with the ground truth (although maintaining favorable statistical properties). Remarkably, these relaxations are often still tight (meaning that the solution of the SDP matches the MLE). For angular synchronization we establish this behavior by analyzing the solutions of certain randomized Grothendieck problems.

  16. Optimization-based mesh correction with volume and convexity constraints

    NASA Astrophysics Data System (ADS)

    D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; Bochev, Pavel; Shashkov, Mikhail

    2016-05-01

    We consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimization problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.

  17. Systematization of problems on ball estimates of a convex compactum

    NASA Astrophysics Data System (ADS)

    Dudov, S. I.

    2015-09-01

    We consider a class of finite-dimensional problems on the estimation of a convex compactum by a ball of an arbitrary norm in the form of extremal problems whose goal function is expressed via the function of the distance to the farthest point of the compactum and the function of the distance to the nearest point of the compactum or its complement. Special attention is devoted to the problem of estimating (approximating) a convex compactum by a ball of fixed radius in the Hausdorff metric. It is proved that this problem plays the role of the canonical problem: solutions of any problem in the class under consideration can be expressed via solutions of this problem for certain values of the radius. Based on studying and using the properties of solutions of this canonical problem, we obtain ranges of values of the radius in which the canonical problem expresses solutions of the problems on inscribed and circumscribed balls, the problem of uniform estimate by a ball in the Hausdorff metric, the problem of asphericity of a convex body, the problems of spherical shells of the least thickness and of the least volume for the boundary of a convex body. This makes it possible to arrange the problems in increasing order of the corresponding values of the radius. Bibliography: 34 titles.

  18. Optimization-based mesh correction with volume and convexity constraints

    DOE PAGESBeta

    D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; Bochev, Pavel; Shashkov, Mikhail

    2016-02-24

    Here, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. Also, this volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimization problemmore » in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less

  19. Polynomial methods for separable convex optimization in unimodular spaces

    SciTech Connect

    McCormick, S.T.; Karzanov, A.

    1994-12-31

    We consider the problem of minimizing a separable convex objective function over the linear space given by system Mx = 0 with a totally unimodular matrix M. In particular, this generalizes the usual minimum linear cost circulation and co-circulation problems in a network, and the problem of determining the Euclidean distance to certain polyhedra (e.g. the perfect bipartite matching polytope and the feasible flows polyhedron). We first show that the idea of minimum mean cycle canceling originally worked out for linear cost circulations by Goldberg and Tarjan and extended to some other problems can be generalized to give a combinatorial method with geometric convergence for our problem. We also generalize the computationally more efficient Cancel and Tighten method. We then consider specialized objective functions, such as piecewise linear, pure and piecewise quadratic, and piecewise mixed linear and quadratic, and show how both methods can be implemented to find exact solutions in polynomial time (strongly polynomial in the piecewise linear case). These implementations are then further specialized for finding circulations and co-circulations in a network. Our methods also extend to finding optimal integer solutions, to linear spaces of larger fractionality, and to the case when the objective functions are given by approximate oracles.

  20. Convex optimization under inequality constraints in rank-deficient systems

    NASA Astrophysics Data System (ADS)

    Roese-Koerner, Lutz; Schuh, Wolf-Dieter

    2014-05-01

    Many geodetic applications require the minimization of a convex objective function subject to some linear equality and/or inequality constraints. If a system is singular (e.g., a geodetic network without a defined datum) this results in a manifold of solutions. Most state-of-the-art algorithms for inequality constrained optimization (e.g., the Active-Set-Method or primal-dual Interior-Point-Methods) are either not able to deal with a rank-deficient objective function or yield only one of an infinite number of particular solutions. In this contribution, we develop a framework for the rigorous computation of a general solution of a rank-deficient problem with inequality constraints. We aim for the computation of a unique particular solution which fulfills predefined optimality criteria as well as for an adequate representation of the homogeneous solution including the constraints. Our theoretical findings are applied in a case study to determine optimal repetition numbers for a geodetic network to demonstrate the potential of the proposed framework.

  1. COMMIT: Convex optimization modeling for microstructure informed tractography.

    PubMed

    Daducci, Alessandro; Dal Palù, Alessandro; Lemkaddem, Alia; Thiran, Jean-Philippe

    2015-01-01

    Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain. PMID:25167548

  2. A partially inexact bundle method for convex semi-infinite minmax problems

    NASA Astrophysics Data System (ADS)

    Fuduli, Antonio; Gaudioso, Manlio; Giallombardo, Giovanni; Miglionico, Giovanna

    2015-04-01

    We present a bundle method for solving convex semi-infinite minmax problems which allows inexact solution of the inner maximization. The method is of the partially inexact oracle type, and it is aimed at reducing the occurrence of null steps and at improving bundle handling with respect to existing methods. Termination of the algorithm is proved at a point satisfying an approximate optimality criterion, and the results of some numerical experiments are also reported.

  3. Multiband RF pulses with improved performance via convex optimization.

    PubMed

    Shang, Hong; Larson, Peder E Z; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W; Ohliger, Michael A; Pauly, John M; Lustig, Michael; Vigneron, Daniel B

    2016-01-01

    Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) (13)C MRI, a dualband saturation RF pulse for (1)H MR spectroscopy, and a pre-saturation pulse for HP (13)C study were developed and tested. PMID:26754063

  4. Multiband RF pulses with improved performance via convex optimization

    NASA Astrophysics Data System (ADS)

    Shang, Hong; Larson, Peder E. Z.; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W.; Ohliger, Michael A.; Pauly, John M.; Lustig, Michael; Vigneron, Daniel B.

    2016-01-01

    Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.

  5. Hybrid Random/Deterministic Parallel Algorithms for Convex and Nonconvex Big Data Optimization

    NASA Astrophysics Data System (ADS)

    Daneshmand, Amir; Facchinei, Francisco; Kungurtsev, Vyacheslav; Scutari, Gesualdo

    2015-08-01

    We propose a decomposition framework for the parallel optimization of the sum of a differentiable {(possibly nonconvex)} function and a nonsmooth (possibly nonseparable), convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. The main contribution of this work is a novel \\emph{parallel, hybrid random/deterministic} decomposition scheme wherein, at each iteration, a subset of (block) variables is updated at the same time by minimizing local convex approximations of the original nonconvex function. To tackle with huge-scale problems, the (block) variables to be updated are chosen according to a \\emph{mixed random and deterministic} procedure, which captures the advantages of both pure deterministic and random update-based schemes. Almost sure convergence of the proposed scheme is established. Numerical results show that on huge-scale problems the proposed hybrid random/deterministic algorithm outperforms both random and deterministic schemes.

  6. Convexity of Ruin Probability and Optimal Dividend Strategies for a General Lévy Process

    PubMed Central

    Yin, Chuancun; Yuen, Kam Chuen; Shen, Ying

    2015-01-01

    We consider the optimal dividends problem for a company whose cash reserves follow a general Lévy process with certain positive jumps and arbitrary negative jumps. The objective is to find a policy which maximizes the expected discounted dividends until the time of ruin. Under appropriate conditions, we use some recent results in the theory of potential analysis of subordinators to obtain the convexity properties of probability of ruin. We present conditions under which the optimal dividend strategy, among all admissible ones, takes the form of a barrier strategy. PMID:26351655

  7. A Localization Method for Multistatic SAR Based on Convex Optimization

    PubMed Central

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function’s maximum is on the circumference of the ellipse which is the iso-range for its model function’s T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031

  8. A Localization Method for Multistatic SAR Based on Convex Optimization.

    PubMed

    Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031

  9. From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés

    2013-01-01

    Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380

  10. Convex-Optimization-Based Compartmental Pharmacokinetic Analysis for Prostate Tumor Characterization Using DCE-MRI.

    PubMed

    Ambikapathi, ArulMurugan; Chan, Tsung-Han; Lin, Chia-Hsiang; Yang, Fei-Shih; Chi, Chong-Yung; Wang, Yue

    2016-04-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a powerful imaging modality to study the pharmacokinetics in a suspected cancer/tumor tissue. The pharmacokinetic (PK) analysis of prostate cancer includes the estimation of time activity curves (TACs), and thereby, the corresponding kinetic parameters (KPs), and plays a pivotal role in diagnosis and prognosis of prostate cancer. In this paper, we endeavor to develop a blind source separation algorithm, namely convex-optimization-based KPs estimation (COKE) algorithm for PK analysis based on compartmental modeling of DCE-MRI data, for effective prostate tumor detection and its quantification. The COKE algorithm first identifies the best three representative pixels in the DCE-MRI data, corresponding to the plasma, fast-flow, and slow-flow TACs, respectively. The estimation accuracy of the flux rate constants (FRCs) of the fast-flow and slow-flow TACs directly affects the estimation accuracy of the KPs that provide the cancer and normal tissue distribution maps in the prostate region. The COKE algorithm wisely exploits the matrix structure (Toeplitz, lower triangular, and exponential decay) of the original nonconvex FRCs estimation problem, and reformulates it into two convex optimization problems that can reliably estimate the FRCs. After estimation of the FRCs, the KPs can be effectively estimated by solving a pixel-wise constrained curve-fitting (convex) problem. Simulation results demonstrate the efficacy of the proposed COKE algorithm. The COKE algorithm is also evaluated with DCE-MRI data of four different patients with prostate cancer and the obtained results are consistent with clinical observations. PMID:26292336

  11. Implementation of a Point Algorithm for Real-Time Convex Optimization

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Motaghedi, Shui; Carson, John

    2007-01-01

    The primal-dual interior-point algorithm implemented in G-OPT is a relatively new and efficient way of solving convex optimization problems. Given a prescribed level of accuracy, the convergence to the optimal solution is guaranteed in a predetermined, finite number of iterations. G-OPT Version 1.0 is a flight software implementation written in C. Onboard application of the software enables autonomous, real-time guidance and control that explicitly incorporates mission constraints such as control authority (e.g. maximum thrust limits), hazard avoidance, and fuel limitations. This software can be used in planetary landing missions (Mars pinpoint landing and lunar landing), as well as in proximity operations around small celestial bodies (moons, asteroids, and comets). It also can be used in any spacecraft mission for thrust allocation in six-degrees-of-freedom control.

  12. Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    SciTech Connect

    Gan, LW; Li, N; Topcu, U; Low, SH

    2015-01-01

    The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

  13. Higher order sensitivity of solutions to convex programming problems without strict complementarity

    NASA Technical Reports Server (NTRS)

    Malanowski, Kazimierz

    1988-01-01

    Consideration is given to a family of convex programming problems which depend on a vector parameter. It is shown that the solutions of the problems and the associated Lagrange multipliers are arbitrarily many times directionally differentiable functions of the parameter, provided that the data of the problems are sufficiently regular. The characterizations of the respective derivatives are given.

  14. Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach

    PubMed Central

    Poker, Gilad; Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2014-01-01

    Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation–elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics. PMID:25232050

  15. Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach.

    PubMed

    Poker, Gilad; Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2014-11-01

    Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation-elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics. PMID:25232050

  16. The role of convexity for solving some shortest path problems in plane without triangulation

    NASA Astrophysics Data System (ADS)

    An, Phan Thanh; Hai, Nguyen Ngoc; Hoai, Tran Van

    2013-09-01

    Solving shortest path problems inside simple polygons is a very classical problem in motion planning. To date, it has usually relied on triangulation of the polygons. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S. B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that convexity contributes to the design of efficient algorithms for solving some versions of shortest path problems (namely, computing the convex hull of a finite set of points and convex rope on rays in 2D, computing approximate shortest path between two points inside a simple polygon) without triangulation on the entire polygons. New algorithms are implemented in C and numerical examples are presented.

  17. On The Behavior of Subgradient Projections Methods for Convex Feasibility Problems in Euclidean Spaces

    PubMed Central

    Butnariu, Dan; Censor, Yair; Gurfil, Pini; Hadar, Ethan

    2010-01-01

    We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm’s behavior in the inconsistent case. We present numerical results of computational experiments that illustrate the computational advantage of the new method. PMID:20182556

  18. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    SciTech Connect

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang; Chen, Ken Chung; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Liu, Nancy X.; Xia, James J.; Department of Surgery , Weill Medical College, Cornell University, New York, New York 10065; Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 ; Shen, Dinggang

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients.

  19. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    PubMed Central

    Wang, Li; Chen, Ken Chung; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Liu, Nancy X.; Xia, James J.; Shen, Dinggang

    2014-01-01

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into a maximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients. PMID:24694160

  20. SLOPE—ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION

    PubMed Central

    Bogdan, Małgorzata; van den Berg, Ewout; Sabatti, Chiara; Su, Weijie; Candès, Emmanuel J.

    2015-01-01

    We introduce a new estimator for the vector of coefficients β in the linear model y = Xβ + z, where X has dimensions n × p with p possibly larger than n. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to minb∈ℝp12‖y−Xb‖ℓ22+λ1|b|(1)+λ2|b|(2)+⋯+λp|b|(p),where λ1 ≥ λ2 ≥ … ≥ λp ≥ 0 and |b|(1)≥|b|(2)≥⋯≥|b|(p) are the decreasing absolute values of the entries of b. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ1 procedures such as the Lasso. Here, the regularizer is a sorted ℓ1 norm, which penalizes the regression coefficients according to their rank: the higher the rank—that is, stronger the signal—the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289–300] procedure (BH) which compares more significant p-values with more stringent thresholds. One notable choice of the sequence {λi} is given by the BH critical values λBH(i)=z(1−i⋅q/2p), where q ∈ (0, 1) and z(α) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λBH provably controls FDR at level q. Moreover, it also appears to have appreciable inferential properties under more general designs X while having substantial power, as demonstrated in a series of experiments running on both simulated and real data. PMID:26709357

  1. The optimal path-matching problem

    SciTech Connect

    Cunningham, W.H.; Geelen, J.F.

    1996-12-31

    We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we present results implying the polynomial-time solvability of the two problems. We also use our results to give the first strongly polynomial separation algorithm for the convex hull of matchable sets of a graph, and the first polynomial-time algorithm to compute the rank of a certain matrix of indeterminates. Our algorithmic results are based on polyhedral characterizations, and on the equivalence of separation and optimization.

  2. Compensation of modal dispersion in multimode fiber systems using adaptive optics via convex optimization

    NASA Astrophysics Data System (ADS)

    Panicker, Rahul Alex

    Multimode fibers (MMF) are widely deployed in local-, campus-, and storage-area-networks. Achievable data rates and transmission distances are, however, limited by the phenomenon of modal dispersion. We propose a system to compensate for modal dispersion using adaptive optics. This leads to a 10- to 100-fold improvement in performance over current standards. We propose a provably optimal technique for minimizing inter-symbol interference (ISI) in MMF systems using adaptive optics via convex optimization. We use a spatial light modulator (SLM) to shape the spatial profile of light launched into an MMF. We derive an expression for the system impulse response in terms of the SLM reflectance and the field patterns of the MMF principal modes. Finding optimal SLM settings to minimize ISI, subject to physical constraints, is posed as an optimization problem. We observe that our problem can be cast as a second-order cone program, which is a convex optimization problem. Its global solution can, therefore, be found with minimal computational complexity. Simulations show that this technique opens up an eye pattern originally closed due to ISI. We then propose fast, low-complexity adaptive algorithms for optimizing the SLM settings. We show that some of these converge to the global optimum in the absence of noise. We also propose modified versions of these algorithms to improve resilience to noise and speed of convergence. Next, we experimentally compare the proposed adaptive algorithms in 50-mum graded-index (GRIN) MMFs using a liquid-crystal SLM. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations. We evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate over up to 9 wavelength-division-multiplexed (WDM) 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion over up to 2.2 km, even in the presence of mid-span connector offsets up to 4 mum (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions. Finally, we demonstrate 10 x 10 Gb/s dense WDM transmission over 2.2 km of 50-mum GRIN MMF. We combine transmitter-based adaptive optics and receiver-based single-mode filtering, and control the launched field pattern for ten 10-Gb/s non-return-to-zero channels, wavelength-division multiplexed on a 200-GHz grid in the C band. We achieve error-free transmission through 2.2 km of 50-mum GRIN MMF for launch offsets up to 10 mum and for worst-case launched polarization. We employ a ten-channel transceiver based on parallel integration of electronics and photonics.

  3. Convex array vector velocity imaging using transverse oscillation and its optimization.

    PubMed

    Jensen, Jørgen Arendt; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann

    2015-12-01

    A method for obtaining vector flow images using the transverse oscillation (TO) approach on a convex array is presented. The paper presents optimization schemes for TO fields and evaluates their performance using simulations and measurements with an experimental scanner. A 3-MHz 192-element convex array probe (pitch 0.33 mm) is used in both simulations and measurements. A parabolic velocity profile is simulated at a beam-to-flow angle of 90°. The optimization routine changes the lateral oscillation period λ࠭ as a function of depth to yield the best possible estimates based on the energy ratio between positive and negative spatial frequencies in the ultrasound field. The energy ratio is reduced from -17.1 dB to -22.1 dB. Parabolic profiles are estimated on simulated data using 16 emissions. The optimization gives a reduction in standard deviation from 8.81% to 7.4% for 16 emissions, with a reduction in lateral velocity bias from -15.93% to 0.78% at 90° (transverse flow) at a depth of 40 mm. Measurements have been performed using the experimental ultrasound scanner and a convex array transducer. A bias of -0.93% was obtained at 87° for a parabolic velocity profile along with a standard deviation of 6.37%. The livers of two healthy volunteers were scanned using the experimental setup. The in vivo images demonstrate that the method yields realistic estimates with a consistent angle and mean velocity across three heart cycles. PMID:26670846

  4. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    Mission proposals that land on asteroids are becoming popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site. The problem under investigation is how to design a fuel-optimal powered descent trajectory that can be quickly computed on-board the spacecraft, without interaction from ground control. An optimal trajectory designed immediately prior to the descent burn has many advantages. These advantages include the ability to use the actual vehicle starting state as the initial condition in the trajectory design and the ease of updating the landing target site if the original landing site is no longer viable. For long trajectories, the trajectory can be updated periodically by a redesign of the optimal trajectory based on current vehicle conditions to improve the guidance performance. One of the key drivers for being completely autonomous is the infrequent and delayed communication between ground control and the vehicle. Challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies and low thrust vehicles.

  5. Nonsmooth Neural Network for Convex Time-Dependent Constraint Satisfaction Problems.

    PubMed

    Di Marco, Mauro; Forti, Mauro; Nistri, Paolo; Pancioni, Luca

    2016-02-01

    This paper introduces a nonsmooth (NS) neural network that is able to operate in a time-dependent (TD) context and is potentially useful for solving some classes of NS-TD problems. The proposed network is named nonsmooth time-dependent network (NTN) and is an extension to a TD setting of a previous NS neural network for programming problems. Suppose C(t), t ≥ 0, is a nonempty TD convex feasibility set defined by TD inequality constraints. The constraints are in general NS (nondifferentiable) functions of the state variables and time. NTN is described by the subdifferential with respect to the state variables of an NS-TD barrier function and a vector field corresponding to the unconstrained dynamics. This paper shows that for suitable values of the penalty parameter, the NTN dynamics displays two main phases. In the first phase, any solution of NTN not starting in C(0) at t=0 is able to reach the moving set C(·) in finite time th , whereas in the second phase, the solution tracks the moving set, i.e., it stays within C(t) for all subsequent times t ≥ t(h). NTN is thus able to find an exact feasible solution in finite time and also to provide an exact feasible solution for subsequent times. This new and peculiar dynamics displayed by NTN is potentially useful for addressing some significant TD signal processing tasks. As an illustration, this paper discusses a number of examples where NTN is applied to the solution of NS-TD convex feasibility problems. PMID:25769174

  6. Class and Home Problems: Optimization Problems

    ERIC Educational Resources Information Center

    Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard

    2011-01-01

    Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…

  7. Class and Home Problems: Optimization Problems

    ERIC Educational Resources Information Center

    Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard

    2011-01-01

    Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms

  8. A fast nonstationary iterative method with convex penalty for inverse problems in Hilbert spaces

    NASA Astrophysics Data System (ADS)

    Jin, Qinian; Lu, Xiliang

    2014-04-01

    In this paper we consider the computation of approximate solutions for inverse problems in Hilbert spaces. In order to capture the special feature of solutions, non-smooth convex functions are introduced as penalty terms. By exploiting the Hilbert space structure of the underlying problems, we propose a fast iterative regularization method which reduces to the classical nonstationary iterated Tikhonov regularization when the penalty term is chosen to be the square of norm. Each iteration of the method consists of two steps: the first step involves only the operator from the problem while the second step involves only the penalty term. This splitting character has the advantage of making the computation efficient. In case the data is corrupted by noise, a stopping rule is proposed to terminate the method and the corresponding regularization property is established. Finally, we test the performance of the method by reporting various numerical simulations, including the image deblurring, the determination of source term in Poisson equation, and the de-autoconvolution problem.

  9. Strict convexity and C 1, α regularity of potential functions in optimal transportation under condition A3w

    NASA Astrophysics Data System (ADS)

    Chen, Shibing; Wang, Xu-Jia

    2016-01-01

    In this paper we prove the strict c-convexity and the C 1, α regularity for potential functions in optimal transportation under condition (A3w). These results were obtained by Caffarelli [1,3,4] for the cost c (x, y) =| x - y | 2, by Liu [11], Loeper [15], Trudinger and Wang [20] for costs satisfying the condition (A3). For costs satisfying the condition (A3w), the results have also been proved by Figalli, Kim, and McCann [6], assuming that the initial and target domains are uniformly c-convex, see also [21]; and by Guillen and Kitagawa [8], assuming the cost function satisfies A3w in larger domains. In this paper we prove the strict c-convexity and the C 1, α regularity assuming either the support of source density is compactly contained in a larger domain where the cost function satisfies A3w, or the dimension 2 ≤ n ≤ 4.

  10. Efficient TpV minimization for circular, cone-beam computed tomography reconstruction via non-convex optimization.

    PubMed

    Cai, Ailong; Wang, Linyuan; Yan, Bin; Li, Lei; Zhang, Hanming; Hu, Guoen

    2015-10-01

    An efficient iterative algorithm, based on recent work in non-convex optimization and generalized p-shrinkage mappings, is proposed for volume image reconstruction from circular cone-beam scans. Conventional total variation regularization makes use of L1 norm of gradient magnitude images (GMI). However, this paper utilizes a generalized penalty function, induced by p-shrinkage, of GMI which is proven to be a better measurement of its sparsity. The reconstruction model is formed using generalized total p-variation (TpV) minimization, which differs with the state of the art methods, with the constraint that the estimated projection data is within a specified tolerance of the available data and that the values of the volume image are non-negative. Theoretically, the proximal mapping for penalty functions induced by p-shrinkage has an exact and closed-form expression; thus, the constrained optimization can be stably and efficiently solved by the alternating direction minimization (ADM) scheme. Each sub-problem decoupled by variable splitting is minimized by explicit and easy-to-implement formulas developed by ADM. The proposed algorithm is efficiently implemented using a graphics processing unit and is referred to as "TpV-ADM." This method is robust and accurate even for very few view reconstruction datasets. Verifications and comparisons performed using various datasets (including ideal, noisy, and real projections) illustrate that the proposed method is effective and promising. PMID:26233922

  11. A Problem on Optimal Transportation

    ERIC Educational Resources Information Center

    Cechlarova, Katarina

    2005-01-01

    Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…

  12. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.

    PubMed

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-21

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty. PMID:26350025

  13. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    NASA Astrophysics Data System (ADS)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  14. Minimum near-convex shape decomposition.

    PubMed

    Ren, Zhou; Yuan, Junsong; Liu, Wenyu

    2013-10-01

    Shape decomposition is a fundamental problem for part-based shape representation. We propose the minimum near-convex decomposition (MNCD) to decompose arbitrary shapes into minimum number of "near-convex" parts. The near-convex shape decomposition is formulated as a discrete optimization problem by minimizing the number of nonintersecting cuts. Two perception rules are imposed as constraints into our objective function to improve the visual naturalness of the decomposition. With the degree of near-convexity a user-specified parameter, our decomposition is robust to local distortions and shape deformation. The optimization can be efficiently solved via binary integer linear programming. Both theoretical analysis and experiment results show that our approach outperforms the state-of-the-art results without introducing redundant parts and thus leads to robust shape representation. PMID:23969396

  15. Minimum Near-Convex Shape Decomposition.

    PubMed

    Ren, Zhou; Yuan, Junsong; Liu, Wenyu

    2013-03-27

    Shape decomposition is a fundamental problem for part-based shape representation. We propose the Minimum Near-Convex Decomposition (MNCD) to decompose arbitrary shapes into minimum number of "near-convex" parts. The near-convex shape decomposition is formulated as a discrete optimization problem by minimizing the number of non-intersecting cuts. Two perception rules are imposed as constraints into our objective function to improve the visual naturalness of the decomposition. With the degree of near-convexity a user specified parameter, our decomposition is robust to local distortions and shape deformation. The optimization can be efficiently solved via Binary Integer Linear Programming. Both theoretical analysis and experiment results show that our approach outperforms the state-of-the-art results without introducing redundant parts, and thus leads to robust shape representation. PMID:23546996

  16. A methodology to ensure local mass conservation for porous media models under finite element formulations based on convex optimization

    NASA Astrophysics Data System (ADS)

    Chang, J.; Nakshatrala, K.

    2014-12-01

    It is well know that the standard finite element methods, in general, do not satisfy element-wise mass/species balance properties. It is, however, desirable to have element-wide mass balance property in subsurface modeling. Several studies over the years have aimed to overcome this drawback of finite element formulations. Currently, a post-processing optimization-based methodology is commonly employed to recover the local mass balance for porous media models. However, such a post-processing technique does not respect the underlying variational structure that the finite element formulation may enjoy. Motivated by this, a consistent methodology to satisfy element-wise local mass balance for porous media models is constructed using convex optimization techniques. The assembled system of global equations is reconstructed into a quadratic programming problem subjected to bounded equality constraints that ensure conservation at the element level. The proposed methodology can be applied to any computational mesh and to any non-locally conservative nodal-based finite element method. Herein, we integrate our proposed methodology into the framework of the classical mixed Galerkin formulation using Taylor-Hood elements and the least-squares finite element formulation. Our numerical studies will include computational cost, numerical convergence, and comparision with popular methods. In particular, it will be shown that the accuracy of the solutions is comparable with that of several popular locally conservative finite element formulations like the lowest order Raviart-Thomas formulation. We believe the proposed optimization-based approach is a viable approach to preserve local mass balance on general computational grids and is amenable for large-scale parallel implementation.

  17. Automatic Treatment Planning with Convex Imputing

    NASA Astrophysics Data System (ADS)

    Sayre, G. A.; Ruan, D.

    2014-03-01

    Current inverse optimization-based treatment planning for radiotherapy requires a set of complex DVH objectives to be simultaneously minimized. This process, known as multi-objective optimization, is challenging due to non-convexity in individual objectives and insufficient knowledge in the tradeoffs among the objective set. As such, clinical practice involves numerous iterations of human intervention that is costly and often inconsistent. In this work, we propose to address treatment planning with convex imputing, a new-data mining technique that explores the existence of a latent convex objective whose optimizer reflects the DVH and dose-shaping properties of previously optimized cases. Using ten clinical prostate cases as the basis for comparison, we imputed a simple least-squares problem from the optimized solutions of the prostate cases, and show that the imputed plans are more consistent than their clinical counterparts in achieving planning goals.

  18. Optimization and Openmp Parallelization of a Discrete Element Code for Convex Polyhedra on Multi-Core Machines

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Matuttis, Hans-Georg

    2013-02-01

    We report our experiences with the optimization and parallelization of a discrete element code for convex polyhedra on multi-core machines and introduce a novel variant of the sort-and-sweep neighborhood algorithm. While in theory the whole code in itself parallelizes ideally, in practice the results on different architectures with different compilers and performance measurement tools depend very much on the particle number and optimization of the code. After difficulties with the interpretation of the data for speedup and efficiency are overcome, respectable parallelization speedups could be obtained.

  19. About an Optimal Visiting Problem

    SciTech Connect

    Bagagiolo, Fabio Benetton, Michela

    2012-02-15

    In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous 'Traveling Salesman Problem' and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton-Jacobi equation. We introduce some 'external' variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton-Jacobi equation turns out to be discontinuous.

  20. Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III

    2012-01-01

    In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.

  1. A near-optimal heuristic for minimum weight triangulation of convex polygons

    SciTech Connect

    Levcopoulos, C.; Krznaric, D.

    1997-06-01

    A linear-time heuristic for minimum weight triangulation of convex polygons is presented. This heuristic produces a triangulation of length within a factor 1 + {epsilon} from the optimum, where {epsilon} is an arbitrarily small positive constant. This is the first sub-cubic algorithm which guarantees such an approximation factor, and it has interesting applications.

  2. Optimization and geophysical inverse problems

    SciTech Connect

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.

    2000-10-01

    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness or distance from a prior model. Various other constraints may also be imposed upon the process. Inverse problems are not restricted to geophysics, but can be found in a wide variety of disciplines where inferences must be made on the basis of indirect measurements. For instance, most imaging problems, whether in the field of medicine or non-destructive evaluation, require the solution of an inverse problem. In this report, however, the examples used for illustration are taken exclusively from the field of geophysics. The generalization of these examples to other disciplines should be straightforward, as all are based on standard second-order partial differential equations of physics. In fact, sometimes the non-geophysical inverse problems are significantly easier to treat (as in medical imaging) because the limitations on data collection, and in particular on multiple views, are not so severe as they generally are in geophysics. This report begins with an introduction to geophysical inverse problems by briefly describing four canonical problems that are typical of those commonly encountered in geophysics. Next the connection with optimization methods is made by presenting a general formulation of geophysical inverse problems. This leads into the main subject of this report, a discussion of methods for solving such problems with an emphasis upon newer approaches that have not yet become prominent in geophysics. A separate section is devoted to a subject that is not encountered in all optimization problems but is particularly important in geophysics, the need for a careful appraisal of the results in terms of their resolution and uncertainty. The impact on geophysical inverse problems of continuously improving computational resources is then discussed. The main results are then brought together in a final summary and conclusions section.

  3. Models for optimal harvest with convex function of growth rate of a population

    SciTech Connect

    Lyashenko, O.I.

    1995-12-10

    Two models for growth of a population, which are described by a Cauchy problem for an ordinary differential equation with right-hand side depending on the population size and time, are investigated. The first model is time-discrete, i.e., the moments of harvest are fixed and discrete. The second model is time-continuous, i.e., a crop is harvested continuously in time. For autonomous systems, the second model is a particular case of the variational model for optimal control with constraints investigated in. However, the prerequisites and the method of investigation are somewhat different, for they are based on Lemma 1 presented below. In this paper, the existence and uniqueness theorem for the solution of the discrete and continuous problems of optimal harvest is proved, and the corresponding algorithms are presented. The results obtained are illustrated by a model for growth of the light-requiring green alga Chlorella.

  4. Continuous numerical algorithm for a class of combinatorial optimization problems

    SciTech Connect

    Cao, Jia-Ming

    1994-12-31

    It is well known that many optimization problems become very hard because discrete constraints of variables are introduced. For combinatorial optimization problems, almost present algorithms find optimal solution in a discrete set and are usually complicated (the complexity is exponential in time). We consider a class of combinatorial optimization problems including TSP, max-cut problem, k-coloring problem (4-coloring problem), etc.; all these problems are known as NP-complete. At first, a unifying 0-1 quadratic programming model is constructed to formulate above problems. This model`s constraints are very special and separable. For this model we have obtained an equivalence between the discrete model and its relaxed problem in the sense of global or local minimum; this equivalence guarantees that a 0-1 solution will be obtained in a simple constructing process by use of a continuous global or local minimum. Thus, those combinatorial optimization problems can be solved by being converted into a special non-convex quadratic programming. By use of some special properties of this model, a necessary and sufficient condition for local minimum of this model is given. Secondly, the well-known linear programming approximate algorithm is quoted and is verified to converge to one local minimum certainly (this algorithm is well known to converge only on K-T point but not local minimum certainly for the general case). The corresponding linear programming is very easy because the constraints are separable. Finally, several class examining problems are constructed to test the algorithm for all above combinatorial optimization problems, and sufficient computational tests including solving examining problems and comparing with other well-known algorithms are reported. The computational tests show the effectiveness of this algorithm. For example, a k-coloring (k {double_dagger} 4) problem with 1000 nodes can be easily solved on microcomputer (COMPAQ 386/25e) in 15 minutes.

  5. DC Proximal Newton for Nonconvex Optimization Problems.

    PubMed

    Rakotomamonjy, Alain; Flamary, Remi; Gasso, Gilles

    2016-03-01

    We introduce a novel algorithm for solving learning problems where both the loss function and the regularizer are nonconvex but belong to the class of difference of convex (DC) functions. Our contribution is a new general purpose proximal Newton algorithm that is able to deal with such a situation. The algorithm consists in obtaining a descent direction from an approximation of the loss function and then in performing a line search to ensure a sufficient descent. A theoretical analysis is provided showing that the iterates of the proposed algorithm admit as limit points stationary points of the DC objective function. Numerical experiments show that our approach is more efficient than the current state of the art for a problem with a convex loss function and a nonconvex regularizer. We have also illustrated the benefit of our algorithm in high-dimensional transductive learning problem where both the loss function and regularizers are nonconvex. PMID:25910256

  6. Interval-Valued Optimization Problems Involving (α, ρ)-Right Upper-Dini-Derivative Functions

    PubMed Central

    2014-01-01

    We consider an interval-valued multiobjective problem. Some necessary and sufficient optimality conditions for weak efficient solutions are established under new generalized convexities with the tool-right upper-Dini-derivative, which is an extension of directional derivative. Also some duality results are proved for Wolfe and Mond-Weir duals. PMID:24982989

  7. Interval-valued optimization problems involving (α, ρ)-right upper-Dini-derivative functions.

    PubMed

    Preda, Vasile

    2014-01-01

    We consider an interval-valued multiobjective problem. Some necessary and sufficient optimality conditions for weak efficient solutions are established under new generalized convexities with the tool-right upper-Dini-derivative, which is an extension of directional derivative. Also some duality results are proved for Wolfe and Mond-Weir duals. PMID:24982989

  8. Approximating random quantum optimization problems

    NASA Astrophysics Data System (ADS)

    Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.

    2013-06-01

    We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.

  9. Polarimetric SAR tomography in the X-band by continuous wave multi-baseline SAR tracks in a convex optimization approach

    NASA Astrophysics Data System (ADS)

    Biondi, Filippo; Sarri, Antonio; Fiori, Luca; Dell'Omodarme, Kevin

    2014-10-01

    SAR Tomography is the extension of the conventional interferometric radar signal processing, extended in the height dimension. In order to improve the vertical resolution with respect to the classical Fourier methods, high resolution approaches, based on the Convex Optimization (CVX), has been implemented. This methods recast in the Compressed Sensing (CS) framework that optimize tomographic smooth profiles via atomic decomposition, in order to obtain sparsity. The optimum solution has been estimated by Interior Point Methods (IPM). The problem for such kind of signal processing is that the tomographic phase information may be suppressed and only the optimized energy information is available. In this paper we propose a method in order to estimate an optimized spectra and phase information projecting each vector components of each tomographic resolution cell spanned in the real and the imaginary component. The tomographic solutions has been performed by processing multi-baseline SAR datasets, in a full polarimetric mode, acquired by a portable small Continuous Wave (CW) radar in the X band.

  10. Automated segmentation of CBCT image using spiral CT atlases and convex optimization.

    PubMed

    Wang, Li; Chen, Ken Chung; Shi, Feng; Liao, Shu; Li, Gang; Gao, Yaozong; Shen, Steve G F; Yan, Jin; Lee, Philip K M; Chow, Ben; Liu, Nancy X; Xia, James J; Shen, Dinggang

    2013-01-01

    Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. CBCT scans have relatively low cost and low radiation dose in comparison to conventional spiral CT scans. However, a major limitation of CBCT scans is the widespread image artifacts such as noise, beam hardening and inhomogeneity, causing great difficulties for accurate segmentation of bony structures from soft tissues, as well as separating mandible from maxilla. In this paper, we presented a novel fully automated method for CBCT image segmentation. In this method, we first estimated a patient-specific atlas using a sparse label fusion strategy from predefined spiral CT atlases. This patient-specific atlas was then integrated into a convex segmentation framework based on maximum a posteriori probability for accurate segmentation. Finally, the performance of our method was validated via comparisons with manual ground-truth segmentations. PMID:24505768

  11. Model results of optimized convex shapes for a solar thermal rocket thruster

    SciTech Connect

    Cartier, S.L.

    1995-11-01

    A computational, 3-D model for evaluating the performance of solar thermal thrusters is under development. The model combines Monte-Carlo and ray-tracing techniques to follow the ray paths of concentrated solar radiation through an axially symmetric heat-exchanger surface for both convex and concave cavity shapes. The enthalpy of a propellant, typically hydrogen gas, increases as it flows over the outer surface of the absorber/exchanger cavity. Surface temperatures are determined by the requirement that the input radiant power to surface elements balance with the reradiated power and heat conducted to the propellant. The model uses tabulated forms of surface emissivity and gas enthalpy. Temperature profiles result by iteratively calculating surface and propellant temperatures until the solutions converge to stable values. The model provides a means to determine the effectiveness of incorporating a secondary concentrator into the heat-exchanger cavity. A secondary concentrator increases the amount of radiant energy entering the cavity. The model will be used to evaluate the data obtained from upcoming experiments. Characteristics of some absorber/exchanger cavity shapes combined with optionally attached conical secondary concentrators for various propellant flow rates are presented. In addition, shapes that recover some of the diffuse radiant energy which would otherwise not enter the secondary concentrator are considered.

  12. Applying optimization software libraries to engineering problems

    NASA Technical Reports Server (NTRS)

    Healy, M. J.

    1984-01-01

    Nonlinear programming, preliminary design problems, performance simulation problems trajectory optimization, flight computer optimization, and linear least squares problems are among the topics covered. The nonlinear programming applications encountered in a large aerospace company are a real challenge to those who provide mathematical software libraries and consultation services. Typical applications include preliminary design studies, data fitting and filtering, jet engine simulations, control system analysis, and trajectory optimization and optimal control. Problem sizes range from single-variable unconstrained minimization to constrained problems with highly nonlinear functions and hundreds of variables. Most of the applications can be posed as nonlinearly constrained minimization problems. Highly complex optimization problems with many variables were formulated in the early days of computing. At the time, many problems had to be reformulated or bypassed entirely, and solution methods often relied on problem-specific strategies. Problems with more than ten variables usually went unsolved.

  13. Optimal control in a macroeconomic problem

    NASA Astrophysics Data System (ADS)

    Bulgakov, V. K.; Shatov, G. L.

    2007-08-01

    The Pontryagin maximum principle is used to develop an original algorithm for finding an optimal control in a macroeconomic problem. Numerical results are presented for the optimal control and optimal trajectory of the development of a regional economic system. For an optimal control satisfying a certain constraint, an invariant of a macroeconomic system is derived.

  14. Optimization Problems for Control of Distributed Resources

    NASA Astrophysics Data System (ADS)

    Konnov, Igor V.; Kashina, Olga A.; Laitinen, Erkki

    2009-08-01

    We consider a two-level optimization problem of resource allocation in communication networks, which is based on profit maximization of the network subject to capacity constraints. The cost function of the upper level problem involves a sum of non-differentiable functions whose values are computed algorithmically. The corresponding solution methods utilize duality theory and decomposition technique for optimization problems.

  15. Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems

    NASA Astrophysics Data System (ADS)

    Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao

    Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.

  16. Pseudospectral method for hydropower optimal control problem

    NASA Astrophysics Data System (ADS)

    Lee, T.

    2013-12-01

    Optimal control is a mathematical optimization problem and optimal control problems seek optimal control design subjective to a system of differential equations. Because of the nonlinearity of problems, it is hard to derive the analytic solutions for optimal control problem. Hence, the research uses an efficient numerical method, pseudospectral method, to solve complex optimal control problem. The design of the algorithm is based on using the pseudo-spectral differentiation matrix to reduce a high-dimensional function to low-dimensional functions, and the low-dimensional functions are more possible to solve difficult optimization problems. The reservoirs generate electricity constantly is built on the basis of steady inflow, but Taiwan's reservoirs unable to provide a stable amount of water. So designing a mathematical model of optimal control is used to deploy water distribution ratio for hydropower of wet and dry seasons. Because of the hydrological and geographical conditions in water resources systems in Taiwan, unstable water flow is hard to provide steady hydropower generation. An optimal control problem of hydropower generation is formulated for water resources system. A case study of Taiwanese water resources system is conducted. This study use monthly rainfall and output hydropower data to analysis the maximum hydropower with steady outflow. The results show the optimal control of water management and hydropower generation.

  17. First and Second Order Necessary Conditions for Stochastic Optimal Control Problems

    SciTech Connect

    Bonnans, J. Frederic; Silva, Francisco J.

    2012-06-15

    In this work we consider a stochastic optimal control problem with either convex control constraints or finitely many equality and inequality constraints over the final state. Using the variational approach, we are able to obtain first and second order expansions for the state and cost function, around a local minimum. This fact allows us to prove general first order necessary condition and, under a geometrical assumption over the constraint set, second order necessary conditions are also established. We end by giving second order optimality conditions for problems with constraints on expectations of the final state.

  18. Constrained Graph Optimization: Interdiction and Preservation Problems

    SciTech Connect

    Schild, Aaron V

    2012-07-30

    The maximum flow, shortest path, and maximum matching problems are a set of basic graph problems that are critical in theoretical computer science and applications. Constrained graph optimization, a variation of these basic graph problems involving modification of the underlying graph, is equally important but sometimes significantly harder. In particular, one can explore these optimization problems with additional cost constraints. In the preservation case, the optimizer has a budget to preserve vertices or edges of a graph, preventing them from being deleted. The optimizer wants to find the best set of preserved edges/vertices in which the cost constraints are satisfied and the basic graph problems are optimized. For example, in shortest path preservation, the optimizer wants to find a set of edges/vertices within which the shortest path between two predetermined points is smallest. In interdiction problems, one deletes vertices or edges from the graph with a particular cost in order to impede the basic graph problems as much as possible (for example, delete edges/vertices to maximize the shortest path between two predetermined vertices). Applications of preservation problems include optimal road maintenance, power grid maintenance, and job scheduling, while interdiction problems are related to drug trafficking prevention, network stability assessment, and counterterrorism. Computational hardness results are presented, along with heuristic methods for approximating solutions to the matching interdiction problem. Also, efficient algorithms are presented for special cases of graphs, including on planar graphs. The graphs in many of the listed applications are planar, so these algorithms have important practical implications.

  19. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    PubMed

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. PMID:24832358

  20. Existence, uniqueness and construction of the solution of the energy transfer problem in a rigid and non-convex blackbody with temperature-dependent thermal conductivity

    NASA Astrophysics Data System (ADS)

    da Gama, Rogério Martins Saldanha

    2015-10-01

    In this paper, we study the steady-state (coupled) conduction-radiation heat transfer phenomenon in a non-convex opaque blackbody with temperature-dependent thermal conductivity. The mathematical description consists of a nonlinear partial differential equation subjected to a nonlinear boundary condition involving an integral operator that is inherently associated with the non-convexity of the body. The unknown is the absolute temperature distribution. The problem is rewritten with the aid of a Kirchhoff transformation, giving rise to linear partial differential equation and a new unknown. An iterative procedure is proposed for constructing the solution of the problem by means of a sequence of problems, each of them with an equivalent minimum principle. Proofs of convergence as well as existence and uniqueness of the solution are presented. An error estimate, for each element of the sequence, is presented too.

  1. A Mathematical Optimization Problem in Bioinformatics

    ERIC Educational Resources Information Center

    Heyer, Laurie J.

    2008-01-01

    This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…

  2. A Mathematical Optimization Problem in Bioinformatics

    ERIC Educational Resources Information Center

    Heyer, Laurie J.

    2008-01-01

    This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted

  3. Problem Solving through an Optimization Problem in Geometry

    ERIC Educational Resources Information Center

    Poon, Kin Keung; Wong, Hang-Chi

    2011-01-01

    This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…

  4. Representations in Problem Solving: A Case Study with Optimization Problems

    ERIC Educational Resources Information Center

    Villegas, Jose L.; Castro, Enrique; Gutierrez, Jose

    2009-01-01

    Introduction: Representations play an essential role in mathematical thinking. They favor the understanding of mathematical concepts and stimulate the development of flexible and versatile thinking in problem solving. Here our focus is on their use in optimization problems, a type of problem considered important in mathematics teaching and

  5. Representations in Problem Solving: A Case Study with Optimization Problems

    ERIC Educational Resources Information Center

    Villegas, Jose L.; Castro, Enrique; Gutierrez, Jose

    2009-01-01

    Introduction: Representations play an essential role in mathematical thinking. They favor the understanding of mathematical concepts and stimulate the development of flexible and versatile thinking in problem solving. Here our focus is on their use in optimization problems, a type of problem considered important in mathematics teaching and…

  6. Some shape optimization problems for eigenvalues

    NASA Astrophysics Data System (ADS)

    Gasimov, Yusif S.

    2008-02-01

    In this work we consider some inverse problems with respect to domain for the Laplace operator. The considered problems are reduced to the variational formulation. The equivalency of these problems is obtained under some conditions. The formula is obtained for the eigenvalue in the optimal domain.

  7. Large Scale Computational Problems in Numerical Optimization

    SciTech Connect

    coleman, thomas f.

    2000-07-01

    Our work under this support broadly falls into five categories: automatic differentiation, sparsity, constraints, parallel computation, and applications. Automatic Differentiation (AD): We developed strong practical methods for computing sparse Jacobian and Hessian matrices which arise frequently in large scale optimization problems [10,35]. In addition, we developed a novel view of "structure" in applied problems along with AD techniques that allowed for the efficient application of sparse AD techniques to dense, but structured, problems. Our AD work included development of freely available MATLAB AD software. Sparsity: We developed new effective and practical techniques for exploiting sparsity when solving a variety of optimization problems. These problems include: bound constrained problems, robust regression problems, the null space problem, and sparse orthogonal factorization. Our sparsity work included development of freely available and published software [38,39]. Constraints: Effectively handling constraints in large scale optimization remains a challenge. We developed a number of new approaches to constrained problems with emphasis on trust region methodologies. Parallel Computation: Our work included the development of specifically parallel techniques for the linear algebra tasks underpinning optimization algorithms. Our work contributed to the nonlinear least-squares problem, nonlinear equations, triangular systems, orthogonalization, and linear programming. Applications: Our optimization work is broadly applicable across numerous application domains. Nevertheless we have specifically worked in several application areas including molecular conformation, molecular energy minimization, computational finance, and bone remodeling.

  8. A non-penalty recurrent neural network for solving a class of constrained optimization problems.

    PubMed

    Hosseini, Alireza

    2016-01-01

    In this paper, we explain a methodology to analyze convergence of some differential inclusion-based neural networks for solving nonsmooth optimization problems. For a general differential inclusion, we show that if its right hand-side set valued map satisfies some conditions, then solution trajectory of the differential inclusion converges to optimal solution set of its corresponding in optimization problem. Based on the obtained methodology, we introduce a new recurrent neural network for solving nonsmooth optimization problems. Objective function does not need to be convex on R(n) nor does the new neural network model require any penalty parameter. We compare our new method with some penalty-based and non-penalty based models. Moreover for differentiable cases, we implement circuit diagram of the new neural network. PMID:26519931

  9. Dynamic optimization problems with bounded terminal conditions

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.

    1987-01-01

    Bounded terminal conditions of nonlinear optimization problems are converted to equality terminal conditions via Valentine's device. In so doing, additional unknown parameters are introduced into the problem. The transformed problems can still be easily solved using the sequential gradient-restoration algorithm (SGRA) via a simple augmentation of the unknown parameter vector pi. Three example problems with bounded terminal conditions are solved to verify this technique.

  10. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  11. Dynamic programming in applied optimization problems

    NASA Astrophysics Data System (ADS)

    Zavalishchin, Dmitry

    2015-11-01

    Features of the use dynamic programming in applied problems are investigated. In practice such problems as finding the critical paths in network planning and control, finding the optimal supply plan in transportation problem, objects territorial distribution are traditionally solved by special methods of operations research. It should be noted that the dynamic programming is not provided computational advantages, but facilitates changes and modifications of tasks. This follows from the Bellman's optimality principle. The features of the multistage decision processes construction in applied problems are provided.

  12. Heuristic Kalman algorithm for solving optimization problems.

    PubMed

    Toscano, Rosario; Lyonnet, Patrick

    2009-10-01

    The main objective of this paper is to present a new optimization approach, which we call heuristic Kalman algorithm (HKA). We propose it as a viable approach for solving continuous nonconvex optimization problems. The principle of the proposed approach is to consider explicitly the optimization problem as a measurement process designed to produce an estimate of the optimum. A specific procedure, based on the Kalman method, was developed to improve the quality of the estimate obtained through the measurement process. The efficiency of HKA is evaluated in detail through several nonconvex test problems, both in the unconstrained and constrained cases. The results are then compared to those obtained via other metaheuristics. These various numerical experiments show that the HKA has very interesting potentialities for solving nonconvex optimization problems, notably concerning the computation time and the success ratio. PMID:19336312

  13. Solving ptychography with a convex relaxation

    PubMed Central

    Chen, Richard Y; Ou, Xiaoze; Ames, Brendan; Tropp, Joel A; Yang, Changhuei

    2015-01-01

    Ptychography is a powerful computational imaging technique that transforms a collection of low-resolution images into a high-resolution sample reconstruction. Unfortunately, algorithms that currently solve this reconstruction problem lack stability, robustness, and theoretical guarantees. Recently, convex optimization algorithms have improved the accuracy and reliability of several related reconstruction efforts. This paper proposes a convex formulation of the ptychography problem. This formulation has no local minima, it can be solved using a wide range of algorithms, it can incorporate appropriate noise models, and it can include multiple a priori constraints. The paper considers a specific algorithm, based on low-rank factorization, whose runtime and memory usage are near-linear in the size of the output image. Experiments demonstrate that this approach offers a 25% lower background variance on average than alternating projections, the ptychographic reconstruction algorithm that is currently in widespread use. PMID:26146480

  14. Solving ptychography with a convex relaxation

    NASA Astrophysics Data System (ADS)

    Horstmeyer, Roarke; Chen, Richard Y.; Ou, Xiaoze; Ames, Brendan; Tropp, Joel A.; Yang, Changhuei

    2015-05-01

    Ptychography is a powerful computational imaging technique that transforms a collection of low-resolution images into a high-resolution sample reconstruction. Unfortunately, algorithms that currently solve this reconstruction problem lack stability, robustness, and theoretical guarantees. Recently, convex optimization algorithms have improved the accuracy and reliability of several related reconstruction efforts. This paper proposes a convex formulation of the ptychography problem. This formulation has no local minima, it can be solved using a wide range of algorithms, it can incorporate appropriate noise models, and it can include multiple a priori constraints. The paper considers a specific algorithm, based on low-rank factorization, whose runtime and memory usage are near-linear in the size of the output image. Experiments demonstrate that this approach offers a 25% lower background variance on average than alternating projections, the ptychographic reconstruction algorithm that is currently in widespread use.

  15. Belief Propagation Algorithm for Portfolio Optimization Problems.

    PubMed

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462

  16. Belief Propagation Algorithm for Portfolio Optimization Problems

    PubMed Central

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462

  17. Quantum optimization and maximum clique problems

    NASA Astrophysics Data System (ADS)

    Yatsenko, Vitaliy A.; Pardalos, Panos M.; Chiarini, Bruno H.

    2004-08-01

    This paper describes a new approach to global optimization and control uses geometric methods and modern quantum mathematics. Polynomial extremal problems (PEP) are considered. PEP constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. A general approach to optimization based on quantum holonomic computing algorithms and instanton mechanism. An optimization method based on geometric Lie - algebraic structures on Grassmann manifolds and related with Lax type flows is proposed. Making use of the differential geometric techniques it is shown that associated holonomy groups properly realizing quantum computation can be effectively found concerning polynomial problems. Two examples demonstrating calculation aspects of holonomic quantum computer and maximum clique problems in very large graphs, are considered in detail.

  18. Graph optimization problems on a Bethe lattice

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mário J.

    1989-01-01

    The p-partitioning and p-coloring problems on a Bethe lattice of coordination number z are analyzed. It is shown that these two NP-complete optimization problems turn out to be equivalent to finding the ground-state energy of p-state Potts models with frustration. Numerical calculation of the cost function of both problems are carried out for several values of z and p. In the case of p=2 the results are identical to those obtained by Mézard and Parisi for the case of the bipartitioning problem. A numerical upper bound to the chromatic number is found for several values of z.

  19. Approximate solutions to NP-optimization problems

    SciTech Connect

    Karp, R.

    1994-12-31

    Most combinatorial optimization problems are NP-hard, and thus unlikely to be solvable to optimality in polynomial time. This tutorial is concerned with polynomial-time algorithms for the approximate solution of such problems. Such an algorithm is said to solve a problem within F(n) if, for every problem instance, it determines the optimal value within a multiplicative error of at most F(n). It has long been known that the knapsack and bin packing problems can be approximated within 1 + a for any positive a. We discuss recent advances in the construction of approximation algorithms for graph partitioning, multicommodity flow and Steiner tree problems. We also discuss negative results, showing that, unless P = NP, it is impossible to approximate the clique number or the chromatic number of a graph within the ratio n{sup b}, where b is a certain small positive number. These negative results stem from an unexpected connection between approximation algorithms and the theory of probabilistically checkable proofs, a branch of theoretical computer science related to cryptography. We also discuss problems such as vertex cover and maximum 2-sat that can be solved within a constant ratio, but not within an arbitrarily small constant ratio (unless P = NP).

  20. Quadratic optimization in ill-posed problems

    NASA Astrophysics Data System (ADS)

    Ben Belgacem, F.; Kaber, S.-M.

    2008-10-01

    Ill-posed quadratic optimization frequently occurs in control and inverse problems and is not covered by the Lax-Milgram-Riesz theory. Typically, small changes in the input data can produce very large oscillations on the output. We investigate the conditions under which the minimum value of the cost function is finite and we explore the 'hidden connection' between the optimization problem and the least-squares method. Eventually, we address some examples coming from optimal control and data completion, showing how relevant our contribution is in the knowledge of what happens for various ill-posed problems. The results we state bring a substantial improvement to the analysis of the regularization methods applied to the ill-posed quadratic optimization problems. Indeed, for the cost quadratic functions bounded from below the Lavrentiev method is just the Tikhonov regularization for the 'hidden least-squares' problem. As a straightforward result, Lavrentiev's regularization exhibits better regularization and convergence results than expected at first glance.

  1. Problem size, parallel architecture and optimal speedup

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Willard, Frank H.

    1987-01-01

    The communication and synchronization overhead inherent in parallel processing can lead to situations where adding processors to the solution method actually increases execution time. Problem type, problem size, and architecture type all affect the optimal number of processors to employ. The numerical solution of an elliptic partial differential equation is examined in order to study the relationship between problem size and architecture. The equation's domain is discretized into n sup 2 grid points which are divided into partitions and mapped onto the individual processor memories. The relationships between grid size, stencil type, partitioning strategy, processor execution time, and communication network type are analytically quantified. In so doing, the optimal number of processors was determined to assign to the solution, and identified (1) the smallest grid size which fully benefits from using all available processors, (2) the leverage on performance given by increasing processor speed or communication network speed, and (3) the suitability of various architectures for large numerical problems.

  2. Problem size, parallel architecture, and optimal speedup

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Willard, Frank H.

    1988-01-01

    The communication and synchronization overhead inherent in parallel processing can lead to situations where adding processors to the solution method actually increases execution time. Problem type, problem size, and architecture type all affect the optimal number of processors to employ. The numerical solution of an elliptic partial differential equation is examined in order to study the relationship between problem size and architecture. The equation's domain is discretized into n sup 2 grid points which are divided into partitions and mapped onto the individual processor memories. The relationships between grid size, stencil type, partitioning strategy, processor execution time, and communication network type are analytically quantified. In so doing, the optimal number of processors was determined to assign to the solution, and identified (1) the smallest grid size which fully benefits from using all available processors, (2) the leverage on performance given by increasing processor speed or communication network speed, and (3) the suitability of various architectures for large numerical problems.

  3. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2012-10-01

    In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. PMID:22795525

  4. Linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, F. K. B.

    1980-01-01

    Problem involves design of controls for linear time-invariant system disturbed by white noise. Solution is Kalman filter coupled through set of optimal regulator gains to produce desired control signal. Key to solution is solving matrix Riccati differential equation. LSOCE effectively solves problem for wide range of practical applications. Program is written in FORTRAN IV for batch execution and has been implemented on IBM 360.

  5. Entanglement Quantification Made Easy: Polynomial Measures Invariant under Convex Decomposition

    NASA Astrophysics Data System (ADS)

    Regula, Bartosz; Adesso, Gerardo

    2016-02-01

    Quantifying entanglement in composite systems is a fundamental challenge, yet exact results are available in only a few special cases. This is because hard optimization problems are routinely involved, such as finding the convex decomposition of a mixed state with the minimal average pure-state entanglement, the so-called convex roof. We show that under certain conditions such a problem becomes trivial. Precisely, we prove by a geometric argument that polynomial entanglement measures of degree 2 are independent of the choice of pure-state decomposition of a mixed state, when the latter has only one pure unentangled state in its range. This allows for the analytical evaluation of convex roof extended entanglement measures in classes of rank-2 states obeying such a condition. We give explicit examples for the square root of the three-tangle in three-qubit states, and we show that several representative classes of four-qubit pure states have marginals that enjoy this property.

  6. Mathematical Optimization for Engineering Design Problems

    NASA Astrophysics Data System (ADS)

    Dandurand, Brian C.

    Applications in engineering design and the material sciences motivate the development of optimization theory in a manner that additionally draws from other branches of mathematics including the functional, complex, and numerical analyses. The first contribution, motivated by an automotive design application, extends multiobjective optimization theory under the assumption that the problem information is not available in its entirety to a single decision maker as traditionally assumed in the multiobjective optimization literature. Rather, the problem information and the design control are distributed among different decision makers. This requirement appears in the design of an automotive system whose subsystem components themselves correspond to highly involved design subproblems each of whose performance is measured by multiple criteria. This leads to a system/subsystem interaction requiring a coordination whose algorithmic foundation is developed and rigorously examined mathematically. The second contribution develops and analyzes a parameter estimation approach motivated from a time domain modeling problem in the material sciences. In addition to drawing from the theory of least-squares optimization and numerical analysis, the development of a mathematical foundation for comparing a baseline parameter estimation approach with an alternative parameter estimation approach relies on theory from both the functional and complex analyses. The application of the developed theory and algorithms associated with both contributions is also discussed.

  7. Statistical Physics of Hard Optimization Problems

    NASA Astrophysics Data System (ADS)

    Zdeborová, Lenka

    2008-06-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.

  8. "Neural" computation of decisions in optimization problems.

    PubMed

    Hopfield, J J; Tank, D W

    1985-01-01

    Highly-interconnected networks of nonlinear analog neurons are shown to be extremely effective in computing. The networks can rapidly provide a collectively-computed solution (a digital output) to a problem on the basis of analog input information. The problems to be solved must be formulated in terms of desired optima, often subject to constraints. The general principles involved in constructing networks to solve specific problems are discussed. Results of computer simulations of a network designed to solve a difficult but well-defined optimization problem--the Traveling-Salesman Problem--are presented and used to illustrate the computational power of the networks. Good solutions to this problem are collectively computed within an elapsed time of only a few neural time constants. The effectiveness of the computation involves both the nonlinear analog response of the neurons and the large connectivity among them. Dedicated networks of biological or microelectronic neurons could provide the computational capabilities described for a wide class of problems having combinatorial complexity. The power and speed naturally displayed by such collective networks may contribute to the effectiveness of biological information processing. PMID:4027280

  9. Multi-class DTI Segmentation: A Convex Approach

    PubMed Central

    Xie, Yuchen; Chen, Ting; Ho, Jeffrey; Vemuri, Baba C.

    2013-01-01

    In this paper, we propose a novel variational framework for multi-class DTI segmentation based on global convex optimization. The existing variational approaches to the DTI segmentation problem have mainly used gradient-descent type optimization techniques which are slow in convergence and sensitive to the initialization. This paper on the other hand provides a new perspective on the often difficult optimization problem in DTI segmentation by providing a reasonably tight convex approximation (relaxation) of the original problem, and the relaxed convex problem can then be efficiently solved using various methods such as primal-dual type algorithms. To the best of our knowledge, such a DTI segmentation technique has never been reported in literature. We also show that a variety of tensor metrics (similarity measures) can be easily incorporated in the proposed framework. Experimental results on both synthetic and real diffusion tensor images clearly demonstrate the advantages of our method in terms of segmentation accuracy and robustness. In particular, when compared with existing state-of-the-art methods, our results demonstrate convincingly the importance as well as the benefit of using more refined and elaborated optimization method in diffusion tensor MR image segmentation. PMID:25177735

  10. Optimal pre-scheduling of problem remappings

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1987-01-01

    A large class of scientific computational problems can be characterized as a sequence of steps where a significant amount of computation occurs each step, but the work performed at each step is not necessarily identical. Two good examples of this type of computation are: (1) regridding methods which change the problem discretization during the course of the computation, and (2) methods for solving sparse triangular systems of linear equations. Recent work has investigated a means of mapping such computations onto parallel processors; the method defines a family of static mappings with differing degrees of importance placed on the conflicting goals of good load balance and low communication/synchronization overhead. The performance tradeoffs are controllable by adjusting the parameters of the mapping method. To achieve good performance it may be necessary to dynamically change these parameters at run-time, but such changes can impose additional costs. If the computation's behavior can be determined prior to its execution, it can be possible to construct an optimal parameter schedule using a low-order-polynomial-time dynamic programming algorithm. Since the latter can be expensive, the performance is studied of the effect of a linear-time scheduling heuristic on one of the model problems, and it is shown to be effective and nearly optimal.

  11. The Replica Method in Optimization Problems.

    NASA Astrophysics Data System (ADS)

    Liao, Wuwell W.

    In this thesis I discuss the application of the replica method in combinatorial optimization problems. In particular, I study certain graph-partitioning problems. One problem that I consider is the following. We are given a set of vertices V = (V_1,V_2,ldots V_{N}), with N even, and a set of edges E = {(V_{i},V _{j})i not= j}. Let each edge be connected with probability P. The bipartitioning problem is to divide V into two parts of equal size, in such a way as to minimize the number of edges N _{c} connecting these two parts. We are interested in the behavior of N_{c }/N, averaged over all possible configurations of edges in the limit N --> infty , as a function of the connectivity alpha = NP. When alpha is finite, the problem is shown to be similar, but not identical, to the mean field theory of a spin glass with finite connectivity. The replica-symmetric solution is derived. It is shown to be consistent with exact results for the infinite cluster obtained by P. Erdos.

  12. Optimal Planning and Problem-Solving

    NASA Technical Reports Server (NTRS)

    Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

    2008-01-01

    CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

  13. Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Yang, Yu; Zheng, Jinde; Cheng, Junsheng

    2016-01-01

    A maximum margin classification based on flexible convex hulls (MMC-FCH) is proposed and applied to fault diagnosis of roller bearings. In this method, the class region of each sample set is approximated by a flexible convex hull of its training samples, and then an optimal separating hyper-plane that maximizes the geometric margin between flexible convex hulls is constructed by solving a closest pair of points problem. By using the kernel trick, MMC-FCH can be extended to nonlinear cases. In addition, multi-class classification problems can be processed by constructing binary pairwise classifiers as in support vector machine (SVM). Actually, the classical SVM also can be regarded as a maximum margin classification based on convex hulls (MMC-CH), which approximates each class region with a convex hull. The convex hull is a special case of the flexible convex hull. To train a MMC-FCH classifier, time-domain and frequency-domain statistical parameters are extracted not only from raw vibration signals but also from the resulting intrinsic mode functions (IMFs) by performing empirical mode decomposition (EMD) on the raw signals, and then the distance evaluation technique (DET) is used to select salient features from the whole statistical features. The experiments on bearing datasets show that the proposed method can reliably recognize different bearing faults.

  14. Hybrid intelligent optimization methods for engineering problems

    NASA Astrophysics Data System (ADS)

    Pehlivanoglu, Yasin Volkan

    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.

  15. First-order convex feasibility algorithms for x-ray CT

    SciTech Connect

    Sidky, Emil Y.; Pan Xiaochuan; Jorgensen, Jakob S.

    2013-03-15

    Purpose: Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which complicates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems. In this paper, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for rapidly convergent algorithms for their solution-thereby facilitating the IIR algorithm design process. Methods: An accelerated version of the Chambolle-Pock (CP) algorithm is adapted to various convex feasibility problems of potential interest to IIR in CT. One of the proposed problems is seen to be equivalent to least-squares minimization, and two other problems provide alternatives to penalized, least-squares minimization. Results: The accelerated CP algorithms are demonstrated on a simulation of circular fan-beam CT with a limited scanning arc of 144 Degree-Sign . The CP algorithms are seen in the empirical results to converge to the solution of their respective convex feasibility problems. Conclusions: Formulation of convex feasibility problems can provide a useful alternative to unconstrained optimization when designing IIR algorithms for CT. The approach is amenable to recent methods for accelerating first-order algorithms which may be particularly useful for CT with limited angular-range scanning. The present paper demonstrates the methodology, and future work will illustrate its utility in actual CT application.

  16. Uniformly convex and strictly convex Orlicz spaces

    NASA Astrophysics Data System (ADS)

    Masta, Al Azhary

    2016-02-01

    In this paper we define the new norm of Orlicz spaces on ℝn through a multiplication operator on an old Orlicz spaces. We obtain some necessary and sufficient conditions that the new norm to be a uniformly convex and strictly convex spaces.

  17. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization.

    PubMed

    Ning, Bende; Qu, Xiaobo; Guo, Di; Hu, Changwei; Chen, Zhong

    2013-11-01

    Reducing scanning time is significantly important for MRI. Compressed sensing has shown promising results by undersampling the k-space data to speed up imaging. Sparsity of an image plays an important role in compressed sensing MRI to reduce the image artifacts. Recently, the method of patch-based directional wavelets (PBDW) which trains geometric directions from undersampled data has been proposed. It has better performance in preserving image edges than conventional sparsifying transforms. However, obvious artifacts are presented in the smooth region when the data are highly undersampled. In addition, the original PBDW-based method does not hold obvious improvement for radial and fully 2D random sampling patterns. In this paper, the PBDW-based MRI reconstruction is improved from two aspects: 1) An efficient non-convex minimization algorithm is modified to enhance image quality; 2) PBDW are extended into shift-invariant discrete wavelet domain to enhance the ability of transform on sparsifying piecewise smooth image features. Numerical simulation results on vivo magnetic resonance images demonstrate that the proposed method outperforms the original PBDW in terms of removing artifacts and preserving edges. PMID:23992629

  18. Asymptotic solution of the optimal control problem for standard systems with delay

    SciTech Connect

    Zheltikov, V.P.; Efendiev, V.V.

    1995-05-01

    The authors consider the construction of an asymptotic solution of the terminal optimal control problem using the averaging method. The optimal process is described by the equation z = eZ (t, z, z(t-l, e, u), u), z/t=[-1,0] = {var_phi}(t), where the delay is constant and of unit magnitude, z {element_of} G is an n-dimensional vector, G {contained_in} R{sup n}, e > 0 is a small parameter, t {element_of} T {triple_bond} [0, e{sup -1}], Z {var_phi} are n-dimensional vector functions, Z is strictly convex in u for any (t, z) {element_of} T X G, u {element_of} U is the r-dimensional control vector, U is a compact set.

  19. LDRD Final Report: Global Optimization for Engineering Science Problems

    SciTech Connect

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  20. Ideal polytopes and face structures of some combinatorial optimization problems

    SciTech Connect

    Ikebe, Y.; Tamura, A.

    1994-12-31

    Given a finite set X and a family of {open_quote}feasible{close_quote} subsets F of X, the 0-1 polytope P(F) is defined as the convex hull of all the characteristic vectors of members of F. We show that under a certain assumption, a special type of face of P(F) is equivalent to the ideal polytope of some pseudo-ordered set. Examples of families satisfying the assumption are those related to the maximum stable set problem, set packing and set partitioning problems, and vertex coloring problem. Using this fact, we propose a new approximation scheme for such problems and give results of our preliminary computational experiments for the maximum stable set problem.

  1. Mesh refinement strategy for optimal control problems

    NASA Astrophysics Data System (ADS)

    Paiva, L. T.; Fontes, F. A. C. C.

    2013-10-01

    Direct methods are becoming the most used technique to solve nonlinear optimal control problems. Regular time meshes having equidistant spacing are frequently used. However, in some cases these meshes cannot cope accurately with nonlinear behavior. One way to improve the solution is to select a new mesh with a greater number of nodes. Another way, involves adaptive mesh refinement. In this case, the mesh nodes have non equidistant spacing which allow a non uniform nodes collocation. In the method presented in this paper, a time mesh refinement strategy based on the local error is developed. After computing a solution in a coarse mesh, the local error is evaluated, which gives information about the subintervals of time domain where refinement is needed. This procedure is repeated until the local error reaches a user-specified threshold. The technique is applied to solve the car-like vehicle problem aiming minimum consumption. The approach developed in this paper leads to results with greater accuracy and yet with lower overall computational time as compared to using a time meshes having equidistant spacing.

  2. Parallel-vector computation for structural analysis and nonlinear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.

    1990-01-01

    Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.

  3. Group Search Optimizer for the Mobile Location Management Problem

    PubMed Central

    Wang, Dan; Xiong, Congcong; Huang, Wei

    2014-01-01

    We propose a diversity-guided group search optimizer-based approach for solving the location management problem in mobile computing. The location management problem, which is to find the optimal network configurations of management under the mobile computing environment, is considered here as an optimization problem. The proposed diversity-guided group search optimizer algorithm is realized with the aid of diversity operator, which helps alleviate the premature convergence problem of group search optimizer algorithm, a successful optimization algorithm inspired by the animal behavior. To address the location management problem, diversity-guided group search optimizer algorithm is exploited to optimize network configurations of management by minimizing the sum of location update cost and location paging cost. Experimental results illustrate the effectiveness of the proposed approach. PMID:25180199

  4. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    SciTech Connect

    Di Donato, Daniela; Mugnai, Dimitri

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  5. A global optimization method for nonlinear bilevel programming problems.

    PubMed

    Amouzegar, M A

    1999-01-01

    Nonlinear two-level programming deals with optimization problems in which the constraint region is implicitly determined by another optimization problem. Mathematical programs of this type arise in connection with policy problems to which the Stackelberg leader-follower game is applicable. In this paper, the nonlinear bilevel programming problem is restated as a global optimization problem and a new solution method based on this approach is developed. The most important feature of this new method is that it attempts to take full advantage of the structure in the constraints using some recent global optimization techniques. PMID:18252356

  6. Enhanced ant colony optimization for multiscale problems

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Fish, Jacob

    2016-01-01

    The present manuscript addresses the issue of computational complexity of optimizing nonlinear composite materials and structures at multiple scales. Several solutions are detailed to meet the enormous computational challenge of optimizing nonlinear structures at multiple scales including: (i) enhanced sampling procedure that provides superior performance of the well-known ant colony optimization algorithm, (ii) a mapping-based meshing of a representative volume element that unlike unstructured meshing permits sensitivity analysis on coarse meshes, and (iii) a multilevel optimization procedure that takes advantage of possible weak coupling of certain scales. We demonstrate the proposed optimization procedure on elastic and inelastic laminated plates involving three scales.

  7. Enhanced ant colony optimization for multiscale problems

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Fish, Jacob

    2016-03-01

    The present manuscript addresses the issue of computational complexity of optimizing nonlinear composite materials and structures at multiple scales. Several solutions are detailed to meet the enormous computational challenge of optimizing nonlinear structures at multiple scales including: (i) enhanced sampling procedure that provides superior performance of the well-known ant colony optimization algorithm, (ii) a mapping-based meshing of a representative volume element that unlike unstructured meshing permits sensitivity analysis on coarse meshes, and (iii) a multilevel optimization procedure that takes advantage of possible weak coupling of certain scales. We demonstrate the proposed optimization procedure on elastic and inelastic laminated plates involving three scales.

  8. CONVEX mini manual

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    The use of the CONVEX computers that are an integral part of the Supercomputing Network Subsystems (SNS) of the Central Scientific Computing Complex of LaRC is briefly described. Features of the CONVEX computers that are significantly different than the CRAY supercomputers are covered, including: FORTRAN, C, architecture of the CONVEX computers, the CONVEX environment, batch job submittal, debugging, performance analysis, utilities unique to CONVEX, and documentation. This revision reflects the addition of the Applications Compiler and X-based debugger, CXdb. The document id intended for all CONVEX users as a ready reference to frequently asked questions and to more detailed information contained with the vendor manuals. It is appropriate for both the novice and the experienced user.

  9. Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation

    NASA Astrophysics Data System (ADS)

    Benamou, Jean-David; Froese, Brittany D.; Oberman, Adam M.

    2014-03-01

    A numerical method for the solution of the elliptic Monge-Ampère Partial Differential Equation, with boundary conditions corresponding to the Optimal Transportation (OT) problem, is presented. A local representation of the OT boundary conditions is combined with a finite difference scheme for the Monge-Ampère equation. Newton's method is implemented, leading to a fast solver, comparable to solving the Laplace equation on the same grid several times. Theoretical justification for the method is given by a convergence proof in the companion paper [4]. Solutions are computed with densities supported on non-convex and disconnected domains. Computational examples demonstrate robust performance on singular solutions and fast computational times.

  10. Progress in design optimization using evolutionary algorithms for aerodynamic problems

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng; Oyama, Akira; Liou, Meng-Sing

    2010-07-01

    Evolutionary algorithms (EAs) are useful tools in design optimization. Due to their simplicity, ease of use, and suitability for multi-objective design optimization problems, EAs have been applied to design optimization problems from various areas. In this paper we review the recent progress in design optimization using evolutionary algorithms to solve real-world aerodynamic problems. Examples are given in the design of turbo pump, compressor, and micro-air vehicles. The paper covers the following topics that are deemed important to solve a large optimization problem from a practical viewpoint: (1) hybridized approaches to speed up the convergence rate of EAs; (2) the use of surrogate model to reduce the computational cost stemmed from EAs; (3) reliability based design optimization using EAs; and (4) data mining of Pareto-optimal solutions.

  11. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  12. Weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  13. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1989-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  14. Gerrymandering and Convexity

    ERIC Educational Resources Information Center

    Hodge, Jonathan K.; Marshall, Emily; Patterson, Geoff

    2010-01-01

    Convexity-based measures of shape compactness provide an effective way to identify irregularities in congressional district boundaries. A low convexity coefficient may suggest that a district has been gerrymandered, or it may simply reflect irregularities in the corresponding state boundary. Furthermore, the distribution of population within a

  15. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  16. Convex accelerated maximum entropy reconstruction.

    PubMed

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  17. Convex accelerated maximum entropy reconstruction

    NASA Astrophysics Data System (ADS)

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.

  18. Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Wilkinson, C. A.

    1997-01-01

    A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems.

  19. Approximating convex Pareto surfaces in multiobjective radiotherapy planning

    SciTech Connect

    Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.

    2006-09-15

    Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing.

  20. Multiple local minima in radiotherapy optimization problems with dose-volume constraints.

    PubMed

    Deasy, J O

    1997-07-01

    The cause of multiple local minima in beam weight optimization problems subject to dose-volume constraints is analyzed. Three objective functions were considered: (a) maximization of tumor control probability (TCP), (b) maximization of the minimum target dose, and (c) minimization of the mean-squared-deviation of the target dose from the prescription dose. It is shown that: (a) TCP models generally result in strongly quasiconvex objective functions; (b) maximization of the minimum target dose results in a strongly quasiconvex objective function; and (c) minimizing the root-mean-square dose deviation results in a convex objective function. Dose-volume constraints are considered such that, for each region at risk (RAR), the volume of tissue whose dose exceeds a certain tolerance dose (DTol) is kept equal to or below a given fractional level (VTol). If all RARs lack a "volume effect" (i.e., VTol = 0 for all RARs) then there is a single local minimum. But if volume effects are present, then the feasible space is possibly nonconvex and therefore possibly leads to multiple local minima. These conclusions hold for all three objective functions. Hence, possible local minima come not from the nonlinear nature of the objective functions considered, but from the "either this volume or that volume but not both" nature of the volume effect. These observations imply that optimization algorithms for dose-volume constraint types of problems should have effective strategies for dealing with multiple local minima. PMID:9243478

  1. Portfolio optimization and the random magnet problem

    NASA Astrophysics Data System (ADS)

    Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.

    2002-08-01

    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.

  2. Optimization neural network for solving flow problems.

    PubMed

    Perfetti, R

    1995-01-01

    This paper describes a neural network for solving flow problems, which are of interest in many areas of application as in fuel, hydro, and electric power scheduling. The neural network consist of two layers: a hidden layer and an output layer. The hidden units correspond to the nodes of the flow graph. The output units represent the branch variables. The network has a linear order of complexity, it is easily programmable, and it is suited for analog very large scale integration (VLSI) realization. The functionality of the proposed network is illustrated by a simulation example concerning the maximal flow problem. PMID:18263420

  3. Singular perturbation analysis of AOTV-related trajectory optimization problems

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Bae, Gyoung H.

    1990-01-01

    The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model.

  4. Optimality conditions for the numerical solution of optimization problems with PDE constraints :

    SciTech Connect

    Aguilo Valentin, Miguel Alejandro; Ridzal, Denis

    2014-03-01

    A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.

  5. A Planning Problem Combining Calculus of Variations and Optimal Transport

    SciTech Connect

    Carlier, G. Lachapelle, A.

    2011-02-15

    We consider some variants of the classical optimal transport where not only one optimizes over couplings between some variables x and y but also over some control variables governing the evolutions of these variables with time. Such a situation is motivated by an assignment problem of tasks with workers whose characteristics can evolve with time (and be controlled). We distinguish between the coupled and decoupled case. The coupled case is a standard optimal transport with the value of some optimal control problem as cost. The decoupled case is more involved since it is nonlinear in the transport plan.

  6. Entanglement Quantification Made Easy: Polynomial Measures Invariant under Convex Decomposition.

    PubMed

    Regula, Bartosz; Adesso, Gerardo

    2016-02-19

    Quantifying entanglement in composite systems is a fundamental challenge, yet exact results are available in only a few special cases. This is because hard optimization problems are routinely involved, such as finding the convex decomposition of a mixed state with the minimal average pure-state entanglement, the so-called convex roof. We show that under certain conditions such a problem becomes trivial. Precisely, we prove by a geometric argument that polynomial entanglement measures of degree 2 are independent of the choice of pure-state decomposition of a mixed state, when the latter has only one pure unentangled state in its range. This allows for the analytical evaluation of convex roof extended entanglement measures in classes of rank-2 states obeying such a condition. We give explicit examples for the square root of the three-tangle in three-qubit states, and we show that several representative classes of four-qubit pure states have marginals that enjoy this property. PMID:26943522

  7. Generalized convexity and inequalities

    NASA Astrophysics Data System (ADS)

    Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M.

    2007-11-01

    Let and let be the family of all mean values of two numbers in (some examples are the arithmetic, geometric, and harmonic means). Given , we say that a function is (m1,m2)-convex if f(m1(x,y))[less-than-or-equals, slant]m2(f(x),f(y)) for all . The usual convexity is the special case when both mean values are arithmetic means. We study the dependence of (m1,m2)-convexity on m1 and m2 and give sufficient conditions for (m1,m2)-convexity of functions defined by Maclaurin series. The criteria involve the Maclaurin coefficients. Our results yield a class of new inequalities for several special functions such as the Gaussian hypergeometric function and a generalized Bessel function.

  8. Stereotype locally convex spaces

    NASA Astrophysics Data System (ADS)

    Akbarov, S. S.

    2000-08-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  9. Spectral finite-element methods for parametric constrained optimization problems.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2009-01-01

    We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.

  10. Problems in optimal failure detection and search in radioelectronic equipment

    NASA Astrophysics Data System (ADS)

    Pashkovskii, G. S.

    The book discusses optimal methods for the detection of and search for failures in radioelectronic equipment considered as a system of functionally related elements. Following a review of mathematical models of the problem and methods for the optimization of detection and search procedures, attention is given to optimal methods for the monitoring and diagnostics of systems of high reliability, the monitoring of systems of arbitrary reliability, and the monitoring of systems in the absence of information on system reliability. Methods for the synthesis of optimal automatic monitoring systems are presented, and the choice of solutions under conditions of indeterminancy is examined together with the optimal planning of inspections.

  11. Comparison of optimal design methods in inverse problems

    NASA Astrophysics Data System (ADS)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  12. Direct Multiple Shooting Optimization with Variable Problem Parameters

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.; Ocampo, Cesar A.

    2009-01-01

    Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.

  13. Parallel evolutionary algorithms for optimization problems in aerospace engineering

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Periaux, J.; Sefrioui, M.

    2002-12-01

    This paper presents the recent developments in hierarchical genetic algorithms (HGAs) to speed up the optimization of aerodynamic shapes. It first introduces HGAs, a particular instance of parallel GAs based on the notion of interconnected sub-populations evolving independently. Previous studies have shown the advantages of introducing a multi-layered hierarchical topology in parallel GAs. Such a topology allows the use of multiple models for optimization problems, and shows that it is possible to mix fast low-fidelity models for exploration and expensive high-fidelity models for exploitation. Finally, a new class of multi-objective optimizers mixing HGAs and Nash Game Theory is defined. These methods are tested for solving design optimization problems in aerodynamics. A parallel version of this approach running a cluster of PCs demonstrate the convergence speed up on an inverse nozzle problem and a high-lift problem for a multiple element airfoil.

  14. Numerical solution of optimal control problems for complex power systems

    NASA Astrophysics Data System (ADS)

    Kalimoldayev, Maksat N.; Jenaliyev, Muvasharkhan T.; Abdildayeva, Asel A.; Elezhanova, Shynar K.

    2015-09-01

    The questions about the decision of optimal control problems for nonlinear system of ordinary differential equations have been considered in this work. In particular, the model considered in this paper describes the controlled processes in electric power systems. Proposed solution methods follow up the principle of expansion of extreme problems based on V.F. Krotov's sufficient conditions of optimality. Numerical experiments shows sufficient efficiency of the used algorithm.

  15. A Convex Geometry-Based Blind Source Separation Method for Separating Nonnegative Sources.

    PubMed

    Yang, Zuyuan; Xiang, Yong; Rong, Yue; Xie, Kan

    2015-08-01

    This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hull spanned by the mapped observations. Considering these zero-samples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method. PMID:25203999

  16. A Decision Support System for Solving Multiple Criteria Optimization Problems

    ERIC Educational Resources Information Center

    Filatovas, Ernestas; Kurasova, Olga

    2011-01-01

    In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

  17. Finding Optimal Gains In Linear-Quadratic Control Problems

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Scheid, Robert E., Jr.

    1990-01-01

    Analytical method based on Volterra factorization leads to new approximations for optimal control gains in finite-time linear-quadratic control problem of system having infinite number of dimensions. Circumvents need to analyze and solve Riccati equations and provides more transparent connection between dynamics of system and optimal gain.

  18. Vision-based stereo ranging as an optimal control problem

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Sridhar, B.; Chatterji, G. B.

    1992-01-01

    The recent interest in the use of machine vision for flight vehicle guidance is motivated by the need to automate the nap-of-the-earth flight regime of helicopters. Vision-based stereo ranging problem is cast as an optimal control problem in this paper. A quadratic performance index consisting of the integral of the error between observed image irradiances and those predicted by a Pade approximation of the correspondence hypothesis is then used to define an optimization problem. The necessary conditions for optimality yield a set of linear two-point boundary-value problems. These two-point boundary-value problems are solved in feedback form using a version of the backward sweep method. Application of the ranging algorithm is illustrated using a laboratory image pair.

  19. Formulation of the multimission aircraft design optimization problem

    NASA Astrophysics Data System (ADS)

    Straussfogel, Dennis M.

    1998-12-01

    The conventional single-mission aircraft design optimization problem is reformulated to allow design and optimization for multiple missions. Defining the aircraft mission as a set of continuous scalar variables leads to the concepts of mission vector and mission space. The multimission aircraft design optimization problem becomes one of optimizing a design for several different points in the mission space, simultaneously. In the limit, a design can be optimized simultaneously for all points in the mission space. Mapping various points from the optimization design space into the mission space generates actual and theoretical optimum performance surfaces. The multimission optimum configuration is defined as the single configuration that minimizes the difference between the actual performance and the theoretical optimum performance. The multimission aircraft design optimization method can be applied over several distinct mission by summing the differences between actual and theoretical optimum performance, or over all possible missions by integrating the difference between the actual and theoretical optimum performance surfaces. The concepts associated with the mission vector, mission space, and multimission optimum configuration are presented in mathematical form. The objective function for the multimission optimization problem is expressed both as a summation over discrete mission points and as an integral over the entire mission space. Mathematical expressions for objective functions based on both single and multiple objectives are developed and presented. A weighting function, emphasizing certain parts of the mission space over others, is also discussed. The multimission aircraft design optimization method is applied to an elementary wing-design optimization problem for an executive jet. The optimization problem is solved numerically for single and multiple objectives, with and without a functional constraint. The effect of the different objective functions and the confounding effect of the mission-dependent functional constraint are discussed. The results obtained from the solution of the unconstrained wing-design optimization problem validates the multimission design optimization method in that the overall performance of the multimission optimum configurations is shown to exceed that of the configurations optimized for single missions. An aircraft performance model and numerical optimization code, which were developed for the present work, are also presented.

  20. Climate Intervention as an Optimization Problem

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Ban-Weiss, George A.

    2010-05-01

    Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and predictions from individual models do not provide a sound basis for action; nevertheless, our model results indicate that the general approach outlined here can lead to patterns of radiative forcing that make the zonal annual mean climate of a high CO2 world markedly more similar to that of a low CO2 world simultaneously for both temperature and hydrological indices, where degree of similarity is measured using our explicit cost functions. We restricted ourselves to zonally uniform aerosol concentrations distributions that can be defined in terms of a positive-definite quadratic equation on the sine of latitude. Under this constraint, applying an aerosol distribution in a 2xCO2 climate that minimized a combination of rms difference in zonal and annual mean land temperature and runoff relative to the 1xCO2 climate, the rms difference in zonal and annual mean temperatures was reduced by ~90% and the rms difference in zonal and annual mean runoff was reduced by ~80%. This indicates that there may be potential for stratospheric aerosols to diminish simultaneously both temperature and hydrological cycle changes caused by excess CO2 in the atmosphere. Clearly, our model does not include many factors (eg, socio-political consequences, chemical consequences, ocean circulation changes, aerosol transport and microphysics) so we do not argue strongly for our specific climate model results, however, we do argue strongly in favor of our methodological approach. The proposed approach is general, in the sense that cost functions can be developed that represent different valuations. While the choice of appropriate cost functions is inherently a value judgment, evaluating those functions for a specific climate simulation is a quantitative exercise. Thus, the use of explicit cost functions in evaluating model results for climate intervention scenarios is a clear way of separating value judgments from purely scientific and technical issues.

  1. The synthesis of optimal controls for linear, time-optimal problems with retarded controls.

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Jacobs, M. Q.; Latina, M. R.

    1971-01-01

    Optimization problems involving linear systems with retardations in the controls are studied in a systematic way. Some physical motivation for the problems is discussed. The topics covered are: controllability, existence and uniqueness of the optimal control, sufficient conditions, techniques of synthesis, and dynamic programming. A number of solved examples are presented.

  2. An object-oriented toolbox for studying optimization problems

    NASA Astrophysics Data System (ADS)

    Deng, H. Lydia; Gouveia, Wences; Scales, John

    The CWP Object-Oriented Optimization Library (COOOL) is a collection of C++ classes for studying and solving optimization problems. It was developed using the freely available GNU compiler gcc. The library contains the basic building blocks for the efficient design of numerical linear algebra and optimization software; it also comes with a variety of unconstrained optimization algorithms and test objective functions drawn from our own research. The only requirement for using one of the optimization methods is that a simple model of communication be followed. This allows us to use exactly the same code to optimize functions tailored for a variety of hardware, no matter what programming language is used. Further, since we have provided class libraries containing building blocks for general purpose optimization and numerical linear algebra software, the development of new algorithms should be greatly aided. COOOL is now freely available via anonymous ftp at

  3. Forecasting Electricity Prices in an Optimization Hydrothermal Problem

    NASA Astrophysics Data System (ADS)

    Matías, J. M.; Bayón, L.; Suárez, P.; Argüelles, A.; Taboada, J.

    2007-12-01

    This paper presents an economic dispatch algorithm in a hydrothermal system within the framework of a competitive and deregulated electricity market. The optimization problem of one firm is described, whose objective function can be defined as its profit maximization. Since next-day price forecasting is an aspect crucial, this paper proposes an efficient yet highly accurate next-day price new forecasting method using a functional time series approach trying to exploit the daily seasonal structure of the series of prices. For the optimization problem, an optimal control technique is applied and Pontryagin's theorem is employed.

  4. SMMH--A Parallel Heuristic for Combinatorial Optimization Problems

    SciTech Connect

    Domingues, Guilherme; Morie, Yoshiyuki; Gu, Feng Long; Nanri, Takeshi; Murakami, Kazuaki

    2007-12-26

    The process of finding one or more optimal solutions for answering combinatorial optimization problems bases itself on the use of algorithms instances. Those instances usually have to explore a very large search spaces. Heuristics search focusing on the use of High-Order Hopfield neural networks is a largely deployed technique for very large search space. It can be established a very powerful analogy towards the dynamics evolution of a physics spin-glass system while minimizing its own energy and the energy function of the network. This paper presents a new approach for solving combinatorial optimization problems through parallel simulations, based on a High-Order Hopfield neural network using MPI specification.

  5. SMMH - A Parallel Heuristic for Combinatorial Optimization Problems

    SciTech Connect

    Domingues, Guilherme; Morie, Yoshiyuki; Gu, Feng Long; Nanri, Takeshi; Murakami, Kazuaki

    2007-12-26

    The process of finding one or more optimal solutions for answering combinatorial optimization problems bases itself on the use of algorithms instances. Those instances usually have to explore a very large search spaces. Heuristics search focusing on the use of High-Order Hopfield neural networks is a largely deployed technique for very large search space. It can be established a very powerful analogy towards the dynamics evolution of a physics spin-glass system while minimizing its own energy and the energy function of the network. This paper presents a new approach for solving combinatorial optimization problems through parallel simulations, based on a High-Order Hopfield neural network using MPI specification.

  6. The Expanded Invasive Weed Optimization Metaheuristic for Solving Continuous and Discrete Optimization Problems

    PubMed Central

    Josiński, Henryk; Michalczuk, Agnieszka; Świtoński, Adam

    2014-01-01

    This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO) distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature. PMID:24955420

  7. Existence, stability and optimality for optimal control problems governed by maximal monotone operators

    NASA Astrophysics Data System (ADS)

    Briceño-Arias, Luis M.; Hoang, Nguyen Dinh; Peypouquet, Juan

    2016-01-01

    We study optimal control problems governed by maximal monotone differential inclusions with mixed control-state constraints in infinite dimensional spaces. We obtain some existence results for this kind of dynamics and construct the discrete approximations that allows us to strongly approximate optimal solutions of the continuous-type optimal control problems by their discrete counterparts. Our approach allows us to apply our results for a wide class of mappings that are applicable in mechanics and material sciences.

  8. Nonlinear singularly perturbed optimal control problems with singular arcs

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1977-01-01

    A third order, nonlinear, singularly perturbed optimal control problem is considered under assumptions which assure that the full problem is singular and the reduced problem is nonsingular. The separation between the singular arc of the full problem and the optimal control law of the reduced one, both of which are hypersurfaces in state space, is of the same order as the small parameter of the problem. Boundary layer solutions are constructed which are stable and reach the outer solution in a finite time. A uniformly valid composite solution is then formed from the reduced and boundary layer solutions. The value of the approximate solution is that it is relatively easy to obtain and does not involve singular arcs. To illustrate the utility of the results, the technique is used to obtain an approximate solution of a simplified version of the aircraft minimum time-to-climb problem. A numerical example is included.

  9. Solving inverse problems of identification type by optimal control methods

    SciTech Connect

    Lenhart, S.; Protopopescu, V.; Jiongmin Yong

    1997-06-01

    Inverse problems of identification type for nonlinear equations are considered within the framework of optimal control theory. The rigorous solution of any particular problem depends on the functional setting, type of equation, and unknown quantity (or quantities) to be determined. Here the authors present only the general articulations of the formalism. Compared to classical regularization methods (e.g. Tikhonov coupled with optimization schemes), their approach presents several advantages, namely: (i) a systematic procedure to solve inverse problems of identification type; (ii) an explicit expression for the approximations of the solution; and (iii) a convenient numerical solution of these approximations.

  10. Numerical methods for solving terminal optimal control problems

    NASA Astrophysics Data System (ADS)

    Gornov, A. Yu.; Tyatyushkin, A. I.; Finkelstein, E. A.

    2016-02-01

    Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton's method or Bellman's quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.

  11. Sub-problem Optimization With Regression and Neural Network Approximators

    NASA Technical Reports Server (NTRS)

    Guptill, James D.; Hopkins, Dale A.; Patnaik, Surya N.

    2003-01-01

    Design optimization of large systems can be attempted through a sub-problem strategy. In this strategy, the original problem is divided into a number of smaller problems that are clustered together to obtain a sequence of sub-problems. Solution to the large problem is attempted iteratively through repeated solutions to the modest sub-problems. This strategy is applicable to structures and to multidisciplinary systems. For structures, clustering the substructures generates the sequence of sub-problems. For a multidisciplinary system, individual disciplines, accounting for coupling, can be considered as sub-problems. A sub-problem, if required, can be further broken down to accommodate sub-disciplines. The sub-problem strategy is being implemented into the NASA design optimization test bed, referred to as "CometBoards." Neural network and regression approximators are employed for reanalysis and sensitivity analysis calculations at the sub-problem level. The strategy has been implemented in sequential as well as parallel computational environments. This strategy, which attempts to alleviate algorithmic and reanalysis deficiencies, has the potential to become a powerful design tool. However, several issues have to be addressed before its full potential can be harnessed. This paper illustrates the strategy and addresses some issues.

  12. Aristos Optimization Package

    Energy Science and Technology Software Center (ESTSC)

    2007-03-01

    Aristos is a Trilinos package for nonlinear continuous optimization, based on full-space sequential quadratic programming (SQP) methods. Aristos is specifically designed for the solution of large-scale constrained optimization problems in which the linearized constraint equations require iterative (i.e. inexact) linear solver techniques. Aristos' unique feature is an efficient handling of inexactness in linear system solves. Aristos currently supports the solution of equality-constrained convex and nonconvex optimization problems. It has been used successfully in the areamore » of PDE-constrained optimization, for the solution of nonlinear optimal control, optimal design, and inverse problems.« less

  13. Linear PDEs and eigenvalue problems corresponding to ergodic stochastic optimization problems on compact manifolds

    NASA Astrophysics Data System (ADS)

    Bierkens, Joris; Chernyak, Vladimir Y.; Chertkov, Michael; Kappen, Hilbert J.

    2016-01-01

    Long term average or ‘ergodic’ optimal control problems on a compact manifold are considered. The problems exhibit a special structure which is typical of control problems related to large deviations theory: Control is exerted in all directions and the control costs are proportional to the square of the norm of the control field with respect to the metric induced by the noise. The long term stochastic dynamics on the manifold will be completely characterized by the long term density ρ and the long term current density J. As such, control problems may be reformulated as variational problems over ρ and J. The density ρ is paired in the cost functional with a state dependent cost function V, and the current density J is paired with a vector potential or gauge field A. We discuss several optimization problems: the problem in which both ρ and J are varied freely, the problem in which ρ is fixed and the one in which J is fixed. These problems lead to different kinds of operator problems: linear PDEs in the first two cases and a nonlinear PDE in the latter case. These results are obtained through a variational principle using infinite dimensional Lagrange multipliers. In the case where the initial dynamics are reversible the optimally controlled diffusion is also reversible. The particular case of constraining the dynamics to be reversible of the optimally controlled process leads to a linear eigenvalue problem for the square root of the density process.

  14. Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.

  15. Russian Doll Search for solving Constraint Optimization problems

    SciTech Connect

    Verfaillie, G.; Lemaitre, M.

    1996-12-31

    If the Constraint Satisfaction framework has been extended to deal with Constraint Optimization problems, it appears that optimization is far more complex than satisfaction. One of the causes of the inefficiency of complete tree search methods, like Depth First Branch and Bound, lies in the poor quality of the lower bound on the global valuation of a partial assignment, even when using Forward Checking techniques. In this paper, we introduce the Russian Doll Search algorithm which replaces one search by n successive searches on nested subproblems (n being the number of problem variables), records the results of each search and uses them later, when solving larger subproblems, in order to improve the lower bound on the global valuation of any partial assignment. On small random problems and on large real scheduling problems, this algorithm yields surprisingly good results, which greatly improve as the problems get more constrained and the bandwidth of the used variable ordering diminishes.

  16. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  17. Integrated network design and scheduling problems : optimization algorithms and applications.

    SciTech Connect

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  18. Optical metrology for very large convex aspheres

    NASA Astrophysics Data System (ADS)

    Burge, J. H.; Su, P.; Zhao, C.

    2008-07-01

    Telescopes with very large diameter or with wide fields require convex secondary mirrors that may be many meters in diameter. The optical surfaces for these mirrors can be manufactured to the accuracy limited by the surface metrology. We have developed metrology systems that are specifically optimized for measuring very large convex aspheric surfaces. Large aperture vibration insensitive sub-aperture Fizeau interferometer combined with stitching software give high resolution surface measurements. The global shape is corroborated with a coordinate measuring machine based on the swing arm profilometer.

  19. Ant colony optimization for solving university facility layout problem

    NASA Astrophysics Data System (ADS)

    Mohd Jani, Nurul Hafiza; Mohd Radzi, Nor Haizan; Ngadiman, Mohd Salihin

    2013-04-01

    Quadratic Assignment Problems (QAP) is classified as the NP hard problem. It has been used to model a lot of problem in several areas such as operational research, combinatorial data analysis and also parallel and distributed computing, optimization problem such as graph portioning and Travel Salesman Problem (TSP). In the literature, researcher use exact algorithm, heuristics algorithm and metaheuristic approaches to solve QAP problem. QAP is largely applied in facility layout problem (FLP). In this paper we used QAP to model university facility layout problem. There are 8 facilities that need to be assigned to 8 locations. Hence we have modeled a QAP problem with n ≤ 10 and developed an Ant Colony Optimization (ACO) algorithm to solve the university facility layout problem. The objective is to assign n facilities to n locations such that the minimum product of flows and distances is obtained. Flow is the movement from one to another facility, whereas distance is the distance between one locations of a facility to other facilities locations. The objective of the QAP is to obtain minimum total walking (flow) of lecturers from one destination to another (distance).

  20. Application of tabu search to deterministic and stochastic optimization problems

    NASA Astrophysics Data System (ADS)

    Gurtuna, Ozgur

    During the past two decades, advances in computer science and operations research have resulted in many new optimization methods for tackling complex decision-making problems. One such method, tabu search, forms the basis of this thesis. Tabu search is a very versatile optimization heuristic that can be used for solving many different types of optimization problems. Another research area, real options, has also gained considerable momentum during the last two decades. Real options analysis is emerging as a robust and powerful method for tackling decision-making problems under uncertainty. Although the theoretical foundations of real options are well-established and significant progress has been made in the theory side, applications are lagging behind. A strong emphasis on practical applications and a multidisciplinary approach form the basic rationale of this thesis. The fundamental concepts and ideas behind tabu search and real options are investigated in order to provide a concise overview of the theory supporting both of these two fields. This theoretical overview feeds into the design and development of algorithms that are used to solve three different problems. The first problem examined is a deterministic one: finding the optimal servicing tours that minimize energy and/or duration of missions for servicing satellites around Earth's orbit. Due to the nature of the space environment, this problem is modeled as a time-dependent, moving-target optimization problem. Two solution methods are developed: an exhaustive method for smaller problem instances, and a method based on tabu search for larger ones. The second and third problems are related to decision-making under uncertainty. In the second problem, tabu search and real options are investigated together within the context of a stochastic optimization problem: option valuation. By merging tabu search and Monte Carlo simulation, a new method for studying options, Tabu Search Monte Carlo (TSMC) method, is developed. The theoretical underpinnings of the TSMC method and the flow of the algorithm are explained. Its performance is compared to other existing methods for financial option valuation. In the third, and final, problem, TSMC method is used to determine the conditions of feasibility for hybrid electric vehicles and fuel cell vehicles. There are many uncertainties related to the technologies and markets associated with new generation passenger vehicles. These uncertainties are analyzed in order to determine the conditions in which new generation vehicles can compete with established technologies.

  1. Optimal Price Decision Problem for Simultaneous Multi-article Auction and Its Optimal Price Searching Method by Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Masuda, Kazuaki; Aiyoshi, Eitaro

    We propose a method for solving optimal price decision problems for simultaneous multi-article auctions. An auction problem, originally formulated as a combinatorial problem, determines both every seller's whether or not to sell his/her article and every buyer's which article(s) to buy, so that the total utility of buyers and sellers will be maximized. Due to the duality theory, we transform it equivalently into a dual problem in which Lagrange multipliers are interpreted as articles' transaction price. As the dual problem is a continuous optimization problem with respect to the multipliers (i.e., the transaction prices), we propose a numerical method to solve it by applying heuristic global search methods. In this paper, Particle Swarm Optimization (PSO) is used to solve the dual problem, and experimental results are presented to show the validity of the proposed method.

  2. Social interaction as a heuristic for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Fontanari, José F.

    2010-11-01

    We investigate the performance of a variant of Axelrod’s model for dissemination of culture—the Adaptive Culture Heuristic (ACH)—on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents’ strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N1/4 so that the number of agents must increase with the fourth power of the problem size, N∝F4 , to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F6 which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.

  3. Quadratic Optimization in the Problems of Active Control of Sound

    NASA Technical Reports Server (NTRS)

    Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).

  4. Computing convex quadrangulations☆

    PubMed Central

    Schiffer, T.; Aurenhammer, F.; Demuth, M.

    2012-01-01

    We use projected Delaunay tetrahedra and a maximum independent set approach to compute large subsets of convex quadrangulations on a given set of points in the plane. The new method improves over the popular pairing method based on triangulating the point set. PMID:22389540

  5. Fuel-optimal trajectories for aeroassisted coplanar orbital transfer problem

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Hibey, J. L.; Charalambous, C.

    1988-01-01

    The optimal-control problem arising in coplanar orbital transfer using aeroassist technology is addressed. The maneuver involves the transfer from high earth orbit to low earth orbit with minimum fuel consumption. Simulations are carried out to obtain a corridor of entry conditions which are suitable for flying the spacecraft through the atmosphere. A highlight of the present work is the application of an efficient multiple shooting method for handling the difficult nonlinear two-point boundary value problem resulting from the optimization procedure.

  6. State-Constrained Optimal Control Problems of Impulsive Differential Equations

    SciTech Connect

    Forcadel, Nicolas; Rao Zhiping Zidani, Hasnaa

    2013-08-01

    The present paper studies an optimal control problem governed by measure driven differential systems and in presence of state constraints. The first result shows that using the graph completion of the measure, the optimal solutions can be obtained by solving a reparametrized control problem of absolutely continuous trajectories but with time-dependent state-constraints. The second result shows that it is possible to characterize the epigraph of the reparametrized value function by a Hamilton-Jacobi equation without assuming any controllability assumption.

  7. A Discrete Lagrangian Algorithm for Optimal Routing Problems

    SciTech Connect

    Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.

    2008-11-06

    The ideas of discrete Lagrangian methods for conservative systems are exploited for the construction of algorithms applicable in optimal ship routing problems. The algorithm presented here is based on the discretisation of Hamilton's principle of stationary action Lagrangian and specifically on the direct discretization of the Lagrange-Hamilton principle for a conservative system. Since, in contrast to the differential equations, the discrete Euler-Lagrange equations serve as constrains for the optimization of a given cost functional, in the present work we utilize this feature in order to minimize the cost function for optimal ship routing.

  8. Application of clustering global optimization to thin film design problems.

    PubMed

    Lemarchand, Fabien

    2014-03-10

    Refinement techniques usually calculate an optimized local solution, which is strongly dependent on the initial formula used for the thin film design. In the present study, a clustering global optimization method is used which can iteratively change this initial formula, thereby progressing further than in the case of local optimization techniques. A wide panel of local solutions is found using this procedure, resulting in a large range of optical thicknesses. The efficiency of this technique is illustrated by two thin film design problems, in particular an infrared antireflection coating, and a solar-selective absorber coating. PMID:24663856

  9. Optimality problem of network topology in stocks market analysis

    NASA Astrophysics Data System (ADS)

    Djauhari, Maman Abdurachman; Gan, Siew Lee

    2015-02-01

    Since its introduction fifteen years ago, minimal spanning tree has become an indispensible tool in econophysics. It is to filter the important economic information contained in a complex system of financial markets' commodities. Here we show that, in general, that tool is not optimal in terms of topological properties. Consequently, the economic interpretation of the filtered information might be misleading. To overcome that non-optimality problem, a set of criteria and a selection procedure of an optimal minimal spanning tree will be developed. By using New York Stock Exchange data, the advantages of the proposed method will be illustrated in terms of the power-law of degree distribution.

  10. The expanded LaGrangian system for constrained optimization problems

    NASA Technical Reports Server (NTRS)

    Poore, A. B.

    1986-01-01

    Smooth penalty functions can be combined with numerical continuation/bifurcation techniques to produce a class of robust and fast algorithms for constrainted optimization problems. The key to the development of these algorithms is the Expanded Lagrangian System which is derived and analyzed in this work. This parameterized system of nonlinear equations contains the penalty path as a solution, provides a smooth homotopy into the first-order necessary conditions, and yields a global optimization technique. Furthermore, the inevitable ill-conditioning present in a sequential optimization algorithm is removed for three penalty methods: the quadratic penalty function for equality constraints, and the logarithmic barrier function (an interior method) and the quadratic loss function (an interior method) for inequality constraints. Although these techniques apply to optimization in general and to linear and nonlinear programming, calculus of variations, optimal control and parameter identification in particular, the development is primarily within the context of nonlinear programming.

  11. On Optimal AMLI Solvers for Incompressible Navier-Stokes Problems

    NASA Astrophysics Data System (ADS)

    Boyanova, P.; Margenov, S.

    2010-11-01

    We consider the incompressible Navier-Stokes problem and a projection scheme based on Crouzeix-Raviart finite element approximation of the velocities and piece-wise constant approximation of the pressure. These non-conforming finite elements guarantee that the divergence of the velocity field is zero inside each element, i.e., the approximation is locally conservative. We propose optimal order Algebraic MultiLevel Iteration (AMLI) preconditioners for both, the decoupled scalar parabolic problems at the prediction step as well as to the mixed finite element method (FEM) problem at the projection step. The main contribution of the current paper is the obtained scalability of the AMLI methods for the related composite time-stepping solution method. The algorithm for the Navier-Stokes problem has a total computational complexity of optimal order. We present numerical tests for the efficiency of the AMLI solvers for the case of lid-driven cavity flow for different Reynolds numbers.

  12. Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem

    PubMed Central

    Le Dinh, Luong; Vo Ngoc, Dieu

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790

  13. Artificial bee colony algorithm for solving optimal power flow problem.

    PubMed

    Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790

  14. Optimization in Hardy space and the problem of controller optimization (Review)

    NASA Astrophysics Data System (ADS)

    Larin, V. B.

    1992-02-01

    Problems related to optimization in Hardy space H2 are examined with particular reference to approaches based on the Wiener-Kolmogorov and Wiener-Hopf methods. The existing parametrization procedures for sets of stabilizing controllers are compared. The use of the LQG approach and H2 optimization in applied problems is discussed using specific examples. Consideration is also given to the solution of the Riccati algebraic equation and factorization of matrix polynomials.

  15. Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron

    2008-01-01

    In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.

  16. A Convex Approach to Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Cox, David E.; Bauer, Frank (Technical Monitor)

    2002-01-01

    The design of control laws for dynamic systems with the potential for actuator failures is considered in this work. The use of Linear Matrix Inequalities allows more freedom in controller design criteria than typically available with robust control. This work proposes an extension of fault-scheduled control design techniques that can find a fixed controller with provable performance over a set of plants. Through convexity of the objective function, performance bounds on this set of plants implies performance bounds on a range of systems defined by a convex hull. This is used to incorporate performance bounds for a variety of soft and hard failures into the control design problem.

  17. Optimizing Value and Avoiding Problems in Building Schools.

    ERIC Educational Resources Information Center

    Brevard County School Board, Cocoa, FL.

    This report describes school design and construction delivery processes used by the School Board of Brevard County (Cocoa, Florida) that help optimize value, avoid problems, and eliminate the cost of maintaining a large facility staff. The project phases are examined from project definition through design to construction. Project delivery…

  18. To the optimization problem in minority game model

    SciTech Connect

    Yanishevsky, Vasyl

    2009-12-14

    The article presents the research results of the optimization problem in minority game model to a gaussian approximation using replica symmetry breaking by one step (1RSB). A comparison to replica symmetry approximation (RS) and the results from literary sources received using other methods has been held.

  19. Rees algebras, Monomial Subrings and Linear Optimization Problems

    NASA Astrophysics Data System (ADS)

    Dupont, Luis A.

    2010-06-01

    In this thesis we are interested in studying algebraic properties of monomial algebras, that can be linked to combinatorial structures, such as graphs and clutters, and to optimization problems. A goal here is to establish bridges between commutative algebra, combinatorics and optimization. We study the normality and the Gorenstein property-as well as the canonical module and the a-invariant-of Rees algebras and subrings arising from linear optimization problems. In particular, we study algebraic properties of edge ideals and algebras associated to uniform clutters with the max-flow min-cut property or the packing property. We also study algebraic properties of symbolic Rees algebras of edge ideals of graphs, edge ideals of clique clutters of comparability graphs, and Stanley-Reisner rings.

  20. Optimizing investment fund allocation using vehicle routing problem framework

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita

    2014-07-01

    The objective of investment is to maximize total returns or minimize total risks. To determine the optimum order of investment, vehicle routing problem method is used. The method which is widely used in the field of resource distribution shares almost similar characteristics with the problem of investment fund allocation. In this paper we describe and elucidate the concept of using vehicle routing problem framework in optimizing the allocation of investment fund. To better illustrate these similarities, sectorial data from FTSE Bursa Malaysia is used. Results show that different values of utility for risk-averse investors generate the same investment routes.

  1. Generalized vector calculus on convex domain

    NASA Astrophysics Data System (ADS)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  2. Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian

    2011-06-01

    Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.

  3. A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems.

    PubMed

    Duan, Hai-Bin; Xu, Chun-Fang; Xing, Zhi-Hui

    2010-02-01

    In this paper, a novel hybrid Artificial Bee Colony (ABC) and Quantum Evolutionary Algorithm (QEA) is proposed for solving continuous optimization problems. ABC is adopted to increase the local search capacity as well as the randomness of the populations. In this way, the improved QEA can jump out of the premature convergence and find the optimal value. To show the performance of our proposed hybrid QEA with ABC, a number of experiments are carried out on a set of well-known Benchmark continuous optimization problems and the related results are compared with two other QEAs: the QEA with classical crossover operation, and the QEA with 2-crossover strategy. The experimental comparison results demonstrate that the proposed hybrid ABC and QEA approach is feasible and effective in solving complex continuous optimization problems. PMID:20180252

  4. Near-optimal deterministic algorithms for volume computation via M-ellipsoids

    PubMed Central

    Dadush, Daniel; Vempala, Santosh S.

    2013-01-01

    We give a deterministic algorithm for computing an M-ellipsoid of a convex body, matching a known lower bound. This leads to a nearly optimal deterministic algorithm for estimating the volume of a convex body and improved deterministic algorithms for fundamental lattice problems under general norms.

  5. People Efficiently Explore the Solution Space of the Computationally Intractable Traveling Salesman Problem to Find Near-Optimal Tours

    PubMed Central

    Acuña, Daniel E.; Parada, Víctor

    2010-01-01

    Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant improvement between the first and last trials and that solutions are significantly different from random tours that follow the convex hull and do not have self-crossings. More importantly, we found that participants modified their current better solutions in such a way that edges belonging to the optimal solution (“good” edges) were significantly more likely to stay than other edges (“bad” edges), a hallmark of structural exploitation. We found, however, that more trials harmed the participants' ability to tell good from bad edges, suggesting that after too many trials the participants “ran out of ideas.” In sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-art heuristics. PMID:20686597

  6. People efficiently explore the solution space of the computationally intractable traveling salesman problem to find near-optimal tours.

    PubMed

    Acuña, Daniel E; Parada, Víctor

    2010-01-01

    Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant improvement between the first and last trials and that solutions are significantly different from random tours that follow the convex hull and do not have self-crossings. More importantly, we found that participants modified their current better solutions in such a way that edges belonging to the optimal solution ("good" edges) were significantly more likely to stay than other edges ("bad" edges), a hallmark of structural exploitation. We found, however, that more trials harmed the participants' ability to tell good from bad edges, suggesting that after too many trials the participants "ran out of ideas." In sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-art heuristics. PMID:20686597

  7. Chance-Constrained Guidance With Non-Convex Constraints

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro

    2011-01-01

    Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of failure) is below a user-specified bound known as the risk bound. An example problem is to drive a car to a destination as fast as possible while limiting the probability of an accident to 10(exp -7). This framework allows users to trade conservatism against performance by choosing the risk bound. The more risk the user accepts, the better performance they can expect.

  8. Block-oriented modeling of superstructure optimization problems

    SciTech Connect

    Friedman, Z; Ingalls, J; Siirola, JD; Watson, JP

    2013-10-15

    We present a novel software framework for modeling large-scale engineered systems as mathematical optimization problems. A key motivating feature in such systems is their hierarchical, highly structured topology. Existing mathematical optimization modeling environments do not facilitate the natural expression and manipulation of hierarchically structured systems. Rather, the modeler is forced to "flatten" the system description, hiding structure that may be exploited by solvers, and obfuscating the system that the modeling environment is attempting to represent. To correct this deficiency, we propose a Python-based "block-oriented" modeling approach for representing the discrete components within the system. Our approach is an extension of the Pyomo library for specifying mathematical optimization problems. Through the use of a modeling components library, the block-oriented approach facilitates a clean separation of system superstructure from the details of individual components. This approach also naturally lends itself to expressing design and operational decisions as disjunctive expressions over the component blocks. By expressing a mathematical optimization problem in a block-oriented manner, inherent structure (e.g., multiple scenarios) is preserved for potential exploitation by solvers. In particular, we show that block-structured mathematical optimization problems can be straightforwardly manipulated by decomposition-based multi-scenario algorithmic strategies, specifically in the context of the PySP stochastic programming library. We illustrate our block-oriented modeling approach using a case study drawn from the electricity grid operations domain: unit commitment with transmission switching and N - 1 reliability constraints. Finally, we demonstrate that the overhead associated with block-oriented modeling only minimally increases model instantiation times, and need not adversely impact solver behavior. (C) 2013 Elsevier Ltd. All rights reserved.

  9. Several optimization problems in satellite optical communications: Models and solutions

    NASA Astrophysics Data System (ADS)

    Liu, Xian; Ryu, Seung-Ki; Oh, Yoon-Seuk; Kim, Jung H.

    2011-08-01

    In this paper, we address several optimization problems in satellite optical communications. We show that the inter-satellite links with swaying transmitters can be described as an equivalent fading model. We further indicate that the instantaneous signal-to-noise ratio follows the reciprocal Pareto distribution. Then we conduct the analysis on several performance metrics such as the first and second moments of signal-to-noise ratio, the amount of fading, as well as the outage probability. Based on these metrics, we establish optimization models and provide the corresponding solutions.

  10. Multiresolution strategies for the numerical solution of optimal control problems

    NASA Astrophysics Data System (ADS)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.

  11. Analysis of a turning point problem in flight trajectory optimization

    NASA Technical Reports Server (NTRS)

    Gracey, C.

    1989-01-01

    The optimal control policy for the aeroglide portion of the minimum fuel, orbital plane change problem for maneuvering entry vehicles is reduced to the solution of a turning point problem for the bank angle control. For this problem a turning point occurs at the minimum altitude of the flight, when the flight path angle equals zero. The turning point separates the bank angle control into two outer solutions that are valid away from the turning point. In a neighborhood of the turning point, where the bank angle changes rapidly, an inner solution is developed and matched with the two outer solutions. An asymptotic analysis of the turning point problem is given, and an analytic example is provided to illustrate the construction of the bank angle control.

  12. Analog and digital FPGA implementation of BRIN for optimization problems.

    PubMed

    Ng, H S; Lam, K P

    2003-01-01

    The binary relation inference network (BRIN) shows promise in obtaining the global optimal solution for optimization problem, which is time independent of the problem size. However, the realization of this method is dependent on the implementation platforms. We studied analog and digital FPGA implementation platforms. Analog implementation of BRIN for two different directed graph problems is studied. As transitive closure problems can transform to a special case of shortest path problems or a special case of maximum spanning tree problems, two different forms of BRIN are discussed. Their circuits using common analog integrated circuits are investigated. The BRIN solution for critical path problems is expressed and is implemented using the separated building block circuit and the combined building block circuit. As these circuits are different, the response time of these networks will be different. The advancement of field programmable gate arrays (FPGAs) in recent years, allowing millions of gates on a single chip and accompanying with high-level design tools, has allowed the implementation of very complex networks. With this exemption on manual circuit construction and availability of efficient design platform, the BRIN architecture could be built in a much more efficient way. Problems on bandwidth are removed by taking all previous external connections to the inside of the chip. By transforming BRIN to FPGA (Xilinx XC4010XL and XCV800 Virtex), we implement a synchronous network with computations in a finite number of steps. Two case studies are presented, with correct results verified from simulation implementation. Resource consumption on FPGAs is studied showing that Virtex devices are more suitable for the expansion of network in future developments. PMID:18244587

  13. Tunneling and Speedup in Permutation-Invariant Quantum Optimization Problem

    NASA Astrophysics Data System (ADS)

    Albash, Tameem

    Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via the quantum adiabatic algorithm. Restricting ourselves to qubit-permutation invariant problems, we show that tunneling in these problems can be understood using the semi-classical potential derived from the spin-coherent path integral formalism. Using this, we show that the class of problems that fall under Reichardt's bound (1), i.e., have a constant gap and hence can be efficiently solved using the quantum adiabatic algorithm, do not exhibit tunneling in the large system-size limit. We proceed to construct problems that do not fall under Reichardt's bound but numerically have a constant gap and do exhibit tunneling. However, perhaps counter-intuitively, tunneling does not provide the most efficient mechanism for finding the solution to these problems. Instead, an evolution involving a sequence of diabatic transitions through many avoided level-crossings, involving no tunneling, is optimal and outperforms tunneling in the adiabatic regime. In yet another twist, we show that in this case, classical spin-vector dynamics is as efficient as the diabatic quantum evolution (2).

  14. A matrix product state method for solving combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Pelton, S. S.; Chamon, C.; Mucciolo, E. R.

    2015-03-01

    We present a method based on a matrix product state representation to solve combinatorial optimization problems. All constraints are met by mapping Boolean gates into projection operators and applying operators sequentially. The method provides exact solutions with high success probability, even in the case of frustrated systems. The computational cost of the method is controlled by the maximum relative entropy of the system. Results of numerical simulations for several types of problems will be shown and discussed. NSF Grants CCF-1116590 and CCF-1117241.

  15. Fuel-optimal trajectories for aeroassisted coplanar orbital transfer problem

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni Subbaramaiah; Hibey, Joseph L.; Charalambous, Charalambos D.

    1990-01-01

    The optimal control problem arising in coplanar orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high to low earth orbit via the atmosphere, with the object of minimizing the total fuel consumption. Simulations are carried out to obtain the fuel-optimal trajectories for flying the spacecraft through the atmosphere. A highlight is the application of an efficient multiple-shooting method for treating the nonlinear two-point boundary value problem resulting from the optimizaion procedure. The strategy for the atmospheric portion of the minimum-fuel transfer is to fly at the maximum lift-to-drag ratio L/D initially in order to recover from the downward plunge, and then to fly at a negative L/D to level off the flight so that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.

  16. Game-Theoretic Approaches to Optimization Problems in Communication Networks

    NASA Astrophysics Data System (ADS)

    Bilò, Vittorio; Caragiannis, Ioannis; Fanelli, Angelo; Flammini, Michele; Kaklamanis, Christos; Monaco, Gianpiero; Moscardelli, Luca

    In this chapter we consider fundamental optimization problems arising in communication networks. We consider scenarios where there is no central authority that coordinates the network users in order to achieve efficient solutions. Instead, the users act in an uncoordinated and selfish manner and reach solutions to the above problems that are consistent only with their selfishness. In this sense, the users act aiming to optimize their own objectives with no regard to the globally optimum system performance. Such a behavior poses several intriguing questions ranging from the definition of reasonable and practical models for studying it to the quantification of the efficiency loss due to the lack of users' cooperation. We present several results we achieved recently in this research area and propose interesting future research directions.

  17. Performance of quantum annealing in solving optimization problems: A review

    NASA Astrophysics Data System (ADS)

    Suzuki, S.

    2015-02-01

    Quantum annealing is one of the optimization method for generic optimization problems. It uses quantum mechanics and is implemented by a quantum computer ideally. At the earlier stage, several numerical experiments using conventional computers have provided results showing that quantum annealing produces an answer faster than simulated annealing, a classical counterpart of quantum annealing. Later, theoretical and numerical studies have shown that there are drawbacks in quantum annealing. The power of quantum annealing is still an open problem. What makes quantum annealing a hot topic now is that a quantum computer based on quantum annealing is manufactured and commercialized by a Canadian company named D-Wave Systems. In the present article, we review the study of quantum annealing, focusing mainly on its power.

  18. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  19. A general learning algorithm for solving optimization problems and its application to the spin glass problem

    NASA Astrophysics Data System (ADS)

    Chen, K.

    1998-09-01

    We propose a general learning algorithm for solving optimization problems, based on a simple strategy of trial and adaptation. The algorithm maintains a probability distribution of possible solutions (configurations), which is updated continuously in the learning process. As the probability distribution evolves, better and better solutions are shown to emerge. The performance of the algorithm is illustrated by the application to the problem of finding the ground state of the Ising spin glass. A simple theoretical understanding of the algorithm is also presented.

  20. Guaranteed Discrete Energy Optimization on Large Protein Design Problems.

    PubMed

    Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas

    2015-12-01

    In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids. PMID:26610100

  1. Solving nonlinear equality constrained multiobjective optimization problems using neural networks.

    PubMed

    Mestari, Mohammed; Benzirar, Mohammed; Saber, Nadia; Khouil, Meryem

    2015-10-01

    This paper develops a neural network architecture and a new processing method for solving in real time, the nonlinear equality constrained multiobjective optimization problem (NECMOP), where several nonlinear objective functions must be optimized in a conflicting situation. In this processing method, the NECMOP is converted to an equivalent scalar optimization problem (SOP). The SOP is then decomposed into several-separable subproblems processable in parallel and in a reasonable time by multiplexing switched capacitor circuits. The approach which we propose makes use of a decomposition-coordination principle that allows nonlinearity to be treated at a local level and where coordination is achieved through the use of Lagrange multipliers. The modularity and the regularity of the neural networks architecture herein proposed make it suitable for very large scale integration implementation. An application to the resolution of a physical problem is given to show that the approach used here possesses some advantages of the point of algorithmic view, and provides processes of resolution often simpler than the usual techniques. PMID:25647664

  2. Gaussian optimizers and the additivity problem in quantum information theory

    NASA Astrophysics Data System (ADS)

    Holevo, A. S.

    2015-04-01

    This paper surveys two remarkable analytical problems of quantum information theory. The main part is a detailed report on the recent (partial) solution of the quantum Gaussian optimizer problem which establishes an optimal property of Glauber's coherent states -- a particular case of pure quantum Gaussian states. The notion of a quantum Gaussian channel is developed as a non-commutative generalization of an integral operator with Gaussian kernel, and it is shown that the coherent states, and under certain conditions only they, minimize a broad class of concave functionals of the output of a Gaussian channel. Thus, the output states corresponding to a Gaussian input are the `least chaotic', majorizing all the other outputs. The solution, however, is essentially restricted to the gauge-invariant case where a distinguished complex structure plays a special role. Also discussed is the related well-known additivity conjecture, which was solved in principle in the negative some five years ago. This refers to the additivity or multiplicativity (with respect to tensor products of channels) of information quantities related to the classical capacity of a quantum channel, such as the (1\\to p)-norms or the minimal von Neumann or Rényi output entropies. A remarkable corollary of the present solution of the quantum Gaussian optimizer problem is that these additivity properties, while not valid in general, do hold in the important and interesting class of gauge-covariant Gaussian channels. Bibliography: 65 titles.

  3. Issues and Strategies in Solving Multidisciplinary Optimization Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya

    2013-01-01

    Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. The accumulated multidisciplinary design activity is collected under a testbed entitled COMETBOARDS. Several issues were encountered during the solution of the problems. Four issues and the strategies adapted for their resolution are discussed. This is followed by a discussion on analytical methods that is limited to structural design application. An optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. Optimum solutions obtained were infeasible for aircraft and airbreathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through a set of problems: Design of an engine component, Synthesis of a subsonic aircraft, Operation optimization of a supersonic engine, Design of a wave-rotor-topping device, Profile optimization of a cantilever beam, and Design of a cylindrical shell. This chapter provides a cursory account of the issues. Cited references provide detailed discussion on the topics. Design of a structure can also be generated by traditional method and the stochastic design concept. Merits and limitations of the three methods (traditional method, optimization method and stochastic concept) are illustrated. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions can be produced by all the three methods. The variation in the weight calculated by the methods was found to be modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.

  4. Nonlinear Inertia Weighted Teaching-Learning-Based Optimization for Solving Global Optimization Problem

    PubMed Central

    Wu, Zong-Sheng; Fu, Wei-Ping; Xue, Ru

    2015-01-01

    Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well. PMID:26421005

  5. Nonlinear Inertia Weighted Teaching-Learning-Based Optimization for Solving Global Optimization Problem.

    PubMed

    Wu, Zong-Sheng; Fu, Wei-Ping; Xue, Ru

    2015-01-01

    Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well. PMID:26421005

  6. Computational and statistical tradeoffs via convex relaxation

    PubMed Central

    Chandrasekaran, Venkat; Jordan, Michael I.

    2013-01-01

    Modern massive datasets create a fundamental problem at the intersection of the computational and statistical sciences: how to provide guarantees on the quality of statistical inference given bounds on computational resources, such as time or space. Our approach to this problem is to define a notion of “algorithmic weakening,” in which a hierarchy of algorithms is ordered by both computational efficiency and statistical efficiency, allowing the growing strength of the data at scale to be traded off against the need for sophisticated processing. We illustrate this approach in the setting of denoising problems, using convex relaxation as the core inferential tool. Hierarchies of convex relaxations have been widely used in theoretical computer science to yield tractable approximation algorithms to many computationally intractable tasks. In the current paper, we show how to endow such hierarchies with a statistical characterization and thereby obtain concrete tradeoffs relating algorithmic runtime to amount of data. PMID:23479655

  7. Hardy Uncertainty Principle, Convexity and Parabolic Evolutions

    NASA Astrophysics Data System (ADS)

    Escauriaza, L.; Kenig, C. E.; Ponce, G.; Vega, L.

    2015-11-01

    We give a new proof of the L 2 version of Hardy's uncertainty principle based on calculus and on its dynamical version for the heat equation. The reasonings rely on new log-convexity properties and the derivation of optimal Gaussian decay bounds for solutions to the heat equation with Gaussian decay at a future time.We extend the result to heat equations with lower order variable coefficient.

  8. Optimal Parametric Discrete Event Control: Problem and Solution

    SciTech Connect

    Griffin, Christopher H

    2008-01-01

    We present a novel optimization problem for discrete event control, similar in spirit to the optimal parametric control problem common in statistical process control. In our problem, we assume a known finite state machine plant model $G$ defined over an event alphabet $\\Sigma$ so that the plant model language $L = \\LanM(G)$ is prefix closed. We further assume the existence of a \\textit{base control structure} $M_K$, which may be either a finite state machine or a deterministic pushdown machine. If $K = \\LanM(M_K)$, we assume $K$ is prefix closed and that $K \\subseteq L$. We associate each controllable transition of $M_K$ with a binary variable $X_1,\\dots,X_n$ indicating whether the transition is enabled or not. This leads to a function $M_K(X_1,\\dots,X_n)$, that returns a new control specification depending upon the values of $X_1,\\dots,X_n$. We exhibit a branch-and-bound algorithm to solve the optimization problem $\\min_{X_1,\\dots,X_n}\\max_{w \\in K} C(w)$ such that $M_K(X_1,\\dots,X_n) \\models \\Pi$ and $\\LanM(M_K(X_1,\\dots,X_n)) \\in \\Con(L)$. Here $\\Pi$ is a set of logical assertions on the structure of $M_K(X_1,\\dots,X_n)$, and $M_K(X_1,\\dots,X_n) \\models \\Pi$ indicates that $M_K(X_1,\\dots,X_n)$ satisfies the logical assertions; and, $\\Con(L)$ is the set of controllable sublanguages of $L$.

  9. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.

    PubMed

    Shabanzadeh, Parvaneh; Yusof, Rubiyah

    2015-01-01

    Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification. PMID:26336509

  10. A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.

    PubMed

    Zhang, Geng; Li, Yangmin

    2016-06-01

    It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems. PMID:26292352

  11. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems

    PubMed Central

    Shabanzadeh, Parvaneh; Yusof, Rubiyah

    2015-01-01

    Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification. PMID:26336509

  12. Convex bodies of states and maps

    NASA Astrophysics Data System (ADS)

    Grabowski, Janusz; Ibort, Alberto; Kuś, Marek; Marmo, Giuseppe

    2013-10-01

    We give a general solution to the question of when the convex hulls of orbits of quantum states on a finite-dimensional Hilbert space under unitary actions of a compact group have a non-empty interior in the surrounding space of all density operators. The same approach can be applied to study convex combinations of quantum channels. The importance of both problems stems from the fact that, usually, only sets with non-vanishing volumes in the embedding spaces of all states or channels are of practical importance. For the group of local transformations on a bipartite system we characterize maximally entangled states by the properties of a convex hull of orbits through them. We also compare two partial characteristics of convex bodies in terms of the largest balls and maximum volume ellipsoids contained in them and show that, in general, they do not coincide. Separable states, mixed-unitary channels and k-entangled states are also considered as examples of our techniques.

  13. On the robust optimization to the uncertain vaccination strategy problem

    SciTech Connect

    Chaerani, D. Anggriani, N. Firdaniza

    2014-02-21

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented.

  14. On the robust optimization to the uncertain vaccination strategy problem

    NASA Astrophysics Data System (ADS)

    Chaerani, D.; Anggriani, N.; Firdaniza

    2014-02-01

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented.

  15. Mathematical theory of a relaxed design problem in structural optimization

    NASA Technical Reports Server (NTRS)

    Kikuchi, Noboru; Suzuki, Katsuyuki

    1990-01-01

    Various attempts have been made to construct a rigorous mathematical theory of optimization for size, shape, and topology (i.e. layout) of an elastic structure. If these are represented by a finite number of parametric functions, as Armand described, it is possible to construct an existence theory of the optimum design using compactness argument in a finite dimensional design space or a closed admissible set of a finite dimensional design space. However, if the admissible design set is a subset of non-reflexive Banach space such as L(sup infinity)(Omega), construction of the existence theory of the optimum design becomes suddenly difficult and requires to extend (i.e. generalize) the design problem to much more wider class of design that is compatible to mechanics of structures in the sense of variational principle. Starting from the study by Cheng and Olhoff, Lurie, Cherkaev, and Fedorov introduced a new concept of convergence of design variables in a generalized sense and construct the 'G-Closure' theory of an extended (relaxed) optimum design problem. A similar attempt, but independent in large extent, can also be found in Kohn and Strang in which the shape and topology optimization problem is relaxed to allow to use of perforated composites rather than restricting it to usual solid structures. An identical idea is also stated in Murat and Tartar using the notion of the homogenization theory. That is, introducing possibility of micro-scale perforation together with the theory of homogenization, the optimum design problem is relaxed to construct its mathematical theory. It is also noted that this type of relaxed design problem is perfectly matched to the variational principle in structural mechanics.

  16. Radar rainfall estimation as an optimal prediction problem

    NASA Astrophysics Data System (ADS)

    Ciach, Grzegorz Jan

    A formulation of the radar rainfall estimation problem as optimal statistical prediction of area-averaged rainfall accumulations based on the radar measured reflectivity is presented. Questions of the estimation and validation of such optimal prediction procedures based on large samples of synchronous radar and raingage measurement are analyzed. Our approach accepts the truth that radar cannot mimic the near-point raingage sampling and that proper quantification of the area-point difference is necessary. The questions and consequences which originate from our formulation of the radar rainfall estimation/validation problem are formalized statistically and investigated using both statistical modeling and data analysis. A general definition of the error of the radar rainfall predictions in terms of bivariate probability distributions of the radar and true rainfalls is discussed. The raingage representativeness error structure is analyzed based on the available data. An analytically tractable statistical model of the radar-raingage comparisons is developed. It shows the large impact of the estimation method on the resulting reflectivity-rainrate conversion and the incompleteness of the system due to the radar and raingage errors. These effects prove the need of additional data on the raingage area-point difference structure. Next, an Error Separation Method for the error variance estimation of the radar rainfall predictions is developed. This method is based on additional data on the rainfield small scale correlation structure. Finally, a global optimization approach to the multiparameter radar rainfall prediction is developed. The prediction algorithm is designed to minimize the error variance of the final radar rainfall product. The general radar rainfall estimation/validation methodologies developed here can also be applied to other remote sensing rainfall estimation problems. The work is concluded with a summary discussion of the obtained results and of the research directions that might stem from those results.

  17. Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.

    2016-01-01

    Local a posteriori estimates of the accuracy of approximate solutions to ill-posed inverse problems with discontinuous solutions from the classes of functions of several variables with bounded variations of the Hardy or Giusti type are studied. Unlike global estimates (in the norm), local estimates of accuracy are carried out using certain linear estimation functionals (e.g., using the mean value of the solution on a given fragment of its support). The concept of a locally extra-optimal regularizing algorithm for solving ill-posed inverse problems, which has an optimal in order local a posteriori estimate, was introduced. A method for calculating local a posteriori estimates of accuracy with the use of some distinguished classes of linear functionals for the problems with discontinuous solutions is proposed. For linear inverse problems, the method is bases on solving specialized convex optimization problems. Examples of locally extra-optimal regularizing algorithms and results of numerical experiments on a posteriori estimation of the accuracy of solutions for different linear estimation functionals are presented.

  18. On representation formulas for long run averaging optimal control problem

    NASA Astrophysics Data System (ADS)

    Buckdahn, R.; Quincampoix, M.; Renault, J.

    2015-12-01

    We investigate an optimal control problem with an averaging cost. The asymptotic behaviour of the values is a classical problem in ergodic control. To study the long run averaging we consider both Cesàro and Abel means. A main result of the paper says that there is at most one possible accumulation point - in the uniform convergence topology - of the values, when the time horizon of the Cesàro means converges to infinity or the discount factor of the Abel means converges to zero. This unique accumulation point is explicitly described by representation formulas involving probability measures on the state and control spaces. As a byproduct we obtain the existence of a limit value whenever the Cesàro or Abel values are equicontinuous. Our approach allows to generalise several results in ergodic control, and in particular it allows to cope with cases where the limit value is not constant with respect to the initial condition.

  19. Fast solvers for optimal control problems from pattern formation

    NASA Astrophysics Data System (ADS)

    Stoll, Martin; Pearson, John W.; Maini, Philip K.

    2016-01-01

    The modeling of pattern formation in biological systems using various models of reaction-diffusion type has been an active research topic for many years. We here look at a parameter identification (or PDE-constrained optimization) problem where the Schnakenberg and Gierer-Meinhardt equations, two well-known pattern formation models, form the constraints to an objective function. Our main focus is on the efficient solution of the associated nonlinear programming problems via a Lagrange-Newton scheme. In particular we focus on the fast and robust solution of the resulting large linear systems, which are of saddle point form. We illustrate this by considering several two- and three-dimensional setups for both models. Additionally, we discuss an image-driven formulation that allows us to identify parameters of the model to match an observed quantity obtained from an image.

  20. Finite element solution of optimal control problems with inequality constraints

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1990-01-01

    A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.

  1. Analysis of optimal and near-optimal continuous-thrust transfer problems in general circular orbit

    NASA Astrophysics Data System (ADS)

    Kéchichian, Jean A.

    2009-09-01

    A pair of practical problems in optimal continuous-thrust transfer in general circular orbit is analyzed within the context of analytic averaging for rapid computations leading to near-optimal solutions. The first problem addresses the minimum-time transfer between inclined circular orbits by proposing an analytic solution based on a split-sequence strategy in which the equatorial inclination and node controls are done separately by optimally selecting the intermediate orbit size at the sequence switch point that results in the minimum-time transfer. The consideration of the equatorial inclination and node state variables besides the orbital velocity variable is needed to further account for the important J2 perturbation that precesses the orbit plane during the transfer, unlike the thrust-only case in which it is sufficient to consider the relative inclination and velocity variables thus reducing the dimensionality of the system equations. Further extensions of the split-sequence strategy with analytic J2 effect are thus possible for equal computational ease. The second problem addresses the maximization of the equatorial inclination in fixed time by adopting a particular thrust-averaging scheme that controls only the inclination and velocity variables, leaving the node at the mercy of the J2 precession, providing robust fast-converging codes that lead to efficient near-optimal solutions. Example transfers for both sets of problems are solved showing near-optimal features as far as transfer time is concerned, by directly comparing the solutions to "exact" purely numerical counterparts that rely on precision integration of the raw unaveraged system dynamics with continuously varying thrust vector orientation in three-dimensional space.

  2. Enhanced ant colony optimization for inventory routing problem

    NASA Astrophysics Data System (ADS)

    Wong, Lily; Moin, Noor Hasnah

    2015-10-01

    The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.

  3. Solving the Traveling Salesman's Problem Using the African Buffalo Optimization

    PubMed Central

    Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam

    2016-01-01

    This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman's Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd's collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive. PMID:26880872

  4. Solving the Traveling Salesman's Problem Using the African Buffalo Optimization.

    PubMed

    Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam

    2016-01-01

    This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman's Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd's collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive. PMID:26880872

  5. Solving Globally-Optimal Threading Problems in ''Polynomial-Time''

    SciTech Connect

    Uberbacher, E.C.; Xu, D.; Xu, Y.

    1999-04-12

    Computational protein threading is a powerful technique for recognizing native-like folds of a protein sequence from a protein fold database. In this paper, we present an improved algorithm (over our previous work) for solving the globally-optimal threading problem, and illustrate how the computational complexity and the fold recognition accuracy of the algorithm change as the cutoff distance for pairwise interactions changes. For a given fold of m residues and M core secondary structures (or simply cores) and a protein sequence of n residues, the algorithm guarantees to find a sequence-fold alignment (threading) that is globally optimal, measured collectively by (1) the singleton match fitness, (2) pairwise interaction preference, and (3) alignment gap penalties, in O(mn + MnN{sup 1.5C-1}) time and O(mn + nN{sup C-1}) space. C, the topological complexity of a fold as we term, is a value which characterizes the overall structure of the considered pairwise interactions in the fold, which are typically determined by a specified cutoff distance between the beta carbon atoms of a pair of amino acids in the fold. C is typically a small positive integer. N represents the maximum number of possible alignments between an individual core of the fold and the protein sequence when its neighboring cores are already aligned, and its value is significantly less than n. When interacting amino acids are required to see each other, C is bounded from above by a small integer no matter how large the cutoff distance is. This indicates that the protein threading problem is polynomial-time solvable if the condition of seeing each other between interacting amino acids is sufficient for accurate fold recognition. A number of extensions have been made to our basic threading algorithm to allow finding a globally-optimal threading under various constraints, which include consistencies with (1) specified secondary structures (both cores and loops), (2) disulfide bonds, (3) active sites, etc.

  6. A convex complementarity approach for simulating large granular flows.

    SciTech Connect

    Tasora, A.; Anitescu, M.; Mathematics and Computer Science; Univ. degli Studi di Parma

    2010-07-01

    Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted.

  7. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    SciTech Connect

    Kmet', Tibor; Kmet'ova, Maria

    2009-09-09

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  8. [Design method of convex master gratings for replicating flat-field concave gratings].

    PubMed

    Zhou, Qian; Li, Li-Feng

    2009-08-01

    Flat-field concave diffraction grating is the key device of a portable grating spectrometer with the advantage of integrating dispersion, focusing and flat-field in a single device. It directly determines the quality of a spectrometer. The most important two performances determining the quality of the spectrometer are spectral image quality and diffraction efficiency. The diffraction efficiency of a grating depends mainly on its groove shape. But it has long been a problem to get a uniform predetermined groove shape across the whole concave grating area, because the incident angle of the ion beam is restricted by the curvature of the concave substrate, and this severely limits the diffraction efficiency and restricts the application of concave gratings. The authors present a two-step method for designing convex gratings, which are made holographically with two exposure point sources placed behind a plano-convex transparent glass substrate, to solve this problem. The convex gratings are intended to be used as the master gratings for making aberration-corrected flat-field concave gratings. To achieve high spectral image quality for the replicated concave gratings, the refraction effect at the planar back surface and the extra optical path lengths through the substrate thickness experienced by the two divergent recording beams are considered during optimization. This two-step method combines the optical-path-length function method and the ZEMAX software to complete the optimization with a high success rate and high efficiency. In the first step, the optical-path-length function method is used without considering the refraction effect to get an approximate optimization result. In the second step, the approximate result of the first step is used as the initial value for ZEMAX to complete the optimization including the refraction effect. An example of design problem was considered. The simulation results of ZEMAX proved that the spectral image quality of a replicated concave grating is comparable with that of a directly recorded concave grating. PMID:19839358

  9. Human opinion dynamics: An inspiration to solve complex optimization problems

    PubMed Central

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan

    2013-01-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795

  10. A relaxed reduced space SQP strategy for dynamic optimization problems.

    SciTech Connect

    Logsdon, J. S.; Biegler, L. T.; Carnegie-Mellon Univ.

    1993-01-01

    Recently, strategies have been developed to solve dynamic simulation and optimization problems in a simultaneous manner by applying orthogonal collocation on finite elements and solving the nonlinear program (NLP) with a reduced space successive quadratic programming (SQP) approach. We develop a relaxed simultaneous approach that leads to faster performance. The method operates in the reduced space of the control variables and solves the collocation equations inexactly at each SQP iteration. Unlike previous simultaneous formulations, it is able to consider the state variables one element at a time. Also, this approach is compared on two process examples to the reduced gradient, feasible path approach outlined in Logsdon and Biegler. Nonlinear programs with up to 5500 variables are solved with only 40% of the effort. Finally, a theoretical analysis of this approach is provided.

  11. A scatter learning particle swarm optimization algorithm for multimodal problems.

    PubMed

    Ren, Zhigang; Zhang, Aimin; Wen, Changyun; Feng, Zuren

    2014-07-01

    Particle swarm optimization (PSO) has been proved to be an effective tool for function optimization. Its performance depends heavily on the characteristics of the employed exemplars. This necessitates considering both the fitness and the distribution of exemplars in designing PSO algorithms. Following this idea, we propose a novel PSO variant, called scatter learning PSO algorithm (SLPSOA) for multimodal problems. SLPSOA contains some new algorithmic features while following the basic framework of PSO. It constructs an exemplar pool (EP) that is composed of a certain number of relatively high-quality solutions scattered in the solution space, and requires particles to select their exemplars from EP using the roulette wheel rule. By this means, more promising solution regions can be found. In addition, SLPSOA employs Solis and Wets' algorithm as a local searcher to enhance its fine search ability in the newfound solution regions. To verify the efficiency of the proposed algorithm, we test it on a set of 16 benchmark functions and compare it with six existing typical PSO algorithms. Computational results demonstrate that SLPSOA can prevent premature convergence and produce competitive solutions. PMID:24108491

  12. The protein folding problem: global optimization of the force fields.

    PubMed

    Scheraga, H A; Liwo, A; Oldziej, S; Czaplewski, C; Pillardy, J; Ripoll, D R; Vila, J A; Kazmierkiewicz, R; Saunders, J A; Arnautova, Y A; Jagielska, A; Chinchio, M; Nanias, M

    2004-09-01

    The evolutionary development of a theoretical approach to the protein folding problem, in our laboratory, is traced. The theoretical foundations and the development of a suitable empirical all-atom potential energy function and a global optimization search are examined. Whereas the all-atom approach has thus far succeeded for relatively small molecules and for alpha-helical proteins containing up to 46 residues, it has been necessary to develop a hierarchical approach to treat larger proteins. In the hierarchical approach to single- and multiple-chain proteins, global optimization is carried out for a simplified united residue (UNRES) description of a polypeptide chain to locate the region in which the global minimum lies. Conversion of the UNRES structures in this region to all-atom structures is followed by a local search in this region. The performance of this approach in successive CASP blind tests for predicting protein structure by an ab initio physics-based method is described. Finally, a recent attempt to compute a folding pathway is discussed. PMID:15353359

  13. Convex polytopes and quantum separability

    SciTech Connect

    Holik, F.; Plastino, A.

    2011-12-15

    We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. A 52, 4396 (1995)]. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property.

  14. Convex polytopes and quantum separability

    NASA Astrophysics Data System (ADS)

    Holik, F.; Plastino, A.

    2011-12-01

    We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.52.4396 52, 4396 (1995)]. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property.

  15. Tomographic data selection as wave-based optimization problem

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; Fournier, A.

    2010-12-01

    Albert Tarantola devised the exploitation of full waveforms in both forward and inverse modeling almost 3 decades ago. Powerful numerical techniques and improved hardware capabilities have finally materialized this vision more recently and we now enjoy various methodological options to tackle these problems. Meanwhile, efforts to increase data coverage (e.g. USArray) have enjoyed a similar surge such that constructing a problem-specific database may require delicate selection and significant time investment. To enhance robustness and resolution of imaging capabilities for a given region of interest, we strive to quantify and automate some of the data selection processes for large-scale tomographic inversions by analyzing the nature and parameter dependencies of seismic sensitivity kernels. This is achieved by formulating an optimization problem for 3D region V(x), and computing spatio-temporal seismic sensitivity K(xs,x_r,x,t) for seismograms u(xr,t) upon an earthquake located at xs as a function of source frequency and depth, radiation pattern, receiver component, epicentral distance, azimuth, time windows of the seismogram, misfit parameters (e.g. traveltime versus waveforms), and model parameterization (wavespeeds versus elastic moduli). We sample the corresponding multi-dimensional parameter space discretely using a method described in Nissen-Meyer et al. (2007), which only requires a limited number of forward solutions to yield the full time- and frequency-dependent sensitivity of the waveform, thereby permitting a rather comprehensive sensitivity study. As an illustrative example, we consider the specific case of lowermost mantle phases, and discuss various trade-offs that may help in improving coverage and selecting appropriate data.

  16. Regression model based on convex combinations best correlated with response

    NASA Astrophysics Data System (ADS)

    Dokukin, A. A.; Senko, O. V.

    2015-03-01

    A new regression method based on constructing optimal convex combinations of simple linear regressions of the least squares method (LSM regressions) built from original regressors is presented. It is shown that, in fact, this regression method is equivalent to a modification of the LSM including the additional requirement of the coincidence of the sign of the regression parameter with that of the correlation coefficient between the corresponding regressor and the response. A method for constructing optimal convex combinations based on the concept of nonexpandable irreducible ensembles is described. Results of experiments comparing the developed method with the known glmnet algorithm are presented, which confirm the efficiency of the former.

  17. The Convex Coordinates of the Symmedian Point

    ERIC Educational Resources Information Center

    Boyd, J. N.; Raychowdhury, P. N.

    2006-01-01

    In this note, we recall the convex (or barycentric) coordinates of the points of a closed triangular region. We relate the convex and trilinear coordinates of the interior points of the triangular region. We use the relationship between convex and trilinear coordinates to calculate the convex coordinates of the symmedian point of the triangular…

  18. Algorithms for bilevel optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.

  19. High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem

    SciTech Connect

    Hauck, Cory D; Alldredge, Graham; Tits, Andre

    2012-01-01

    We present a numerical algorithm to implement entropy-based (M{sub N}) moment models in the context of a simple, linear kinetic equation for particles moving through a material slab. The closure for these models - as is the case for all entropy-based models - is derived through the solution of constrained, convex optimization problem. The algorithm has two components. The first component is a discretization of the moment equations which preserves the set of realizable moments, thereby ensuring that the optimization problem has a solution (in exact arithmetic). The discretization is a second-order kinetic scheme which uses MUSCL-type limiting in space and a strong-stability-preserving, Runge-Kutta time integrator. The second component of the algorithm is a Newton-based solver for the dual optimization problem, which uses an adaptive quadrature to evaluate integrals in the dual objective and its derivatives. The accuracy of the numerical solution to the dual problem plays a key role in the time step restriction for the kinetic scheme. We study in detail the difficulties in the dual problem that arise near the boundary of realizable moments, where quadrature formulas are less reliable and the Hessian of the dual objection function is highly ill-conditioned. Extensive numerical experiments are performed to illustrate these difficulties. In cases where the dual problem becomes 'too difficult' to solve numerically, we propose a regularization technique to artificially move moments away from the realizable boundary in a way that still preserves local particle concentrations. We present results of numerical simulations for two challenging test problems in order to quantify the characteristics of the optimization solver and to investigate when and how frequently the regularization is needed.

  20. Lagrangian support vector regression via unconstrained convex minimization.

    PubMed

    Balasundaram, S; Gupta, Deepak; Kapil

    2014-03-01

    In this paper, a simple reformulation of the Lagrangian dual of the 2-norm support vector regression (SVR) is proposed as an unconstrained minimization problem. This formulation has the advantage that its objective function is strongly convex and further having only m variables, where m is the number of input data points. The proposed unconstrained Lagrangian SVR (ULSVR) is solvable by computing the zeros of its gradient. However, since its objective function contains the non-smooth 'plus' function, two approaches are followed to solve the proposed optimization problem: (i) by introducing a smooth approximation, generate a slightly modified unconstrained minimization problem and solve it; (ii) solve the problem directly by applying generalized derivative. Computational results obtained on a number of synthetic and real-world benchmark datasets showing similar generalization performance with much faster learning speed in accordance with the conventional SVR and training time very close to least squares SVR clearly indicate the superiority of ULSVR solved by smooth and generalized derivative approaches. PMID:24374970

  1. Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control

    SciTech Connect

    Gaitsgory, Vladimir; Rossomakhine, Sergey

    2015-04-15

    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.

  2. Multi-label Moves for MRFs with Truncated Convex Priors

    NASA Astrophysics Data System (ADS)

    Veksler, Olga

    Optimization with graph cuts became very popular in recent years. As more applications rely on graph cuts, different energy functions are being employed. Recent evaluation of optimization algorithms showed that the widely used swap and expansion graph cut algorithms have an excellent performance for energies where the underlying MRF has Potts prior. Potts prior corresponds to assuming that the true labeling is piecewise constant. While surprisingly useful in practice, Potts prior is clearly not appropriate in many circumstances. However for more general priors, the swap and expansion algorithms do not perform as well. Both algorithms are based on moves that give each pixel a choice of only two labels. Therefore such moves can be referred to as binary moves. Recently, range moves that act on multiple labels simultaneously were introduced. As opposed to swap and expansion, each pixel has a choice of more than two labels in a range move. Therefore we call them multi-label moves. Range moves were shown to work better for problems with truncated convex priors, which imply a piecewise smooth labeling. Inspired by range moves, we develop several different variants of multi-label moves. We evaluate them on the problem of stereo correspondence and discuss their relative merits.

  3. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  4. Eigenvalue optimization

    NASA Astrophysics Data System (ADS)

    Lewis, Adrian S.; Overton, Michael L.

    Optimization problems involving eigenvalues arise in many different mathematical disciplines. This article is divided into two parts. Part I gives a historical account of the development of the field. We discuss various applications that have been especially influential, from structural analysis to combinatorial optimization, and we survey algorithmic developments, including the recent advance of interior-point methods for a specific problem class: semidefinite programming. In Part II we primarily address optimization of convex functions of eigenvalues of symmetric matrices subject to linear constraints. We derive a fairly complete mathematical theory, some of it classical and some of it new. Using the elegant language of conjugate duality theory, we highlight the parallels between the analysis of invariant matrix norms and weakly invariant convex matrix functions. We then restrict our attention further to linear and semidefinite programming, emphasizing the parallel duality theory and comparing primal-dual interior-point methods for the two problem classes. The final section presents some apparently new variational results about eigenvalues of nonsymmetric matrices, unifying known characterizations of the spectral abscissa (related to Lyapunov theory) and the spectral radius (as an infimum of matrix norms).

  5. Convex combinations for diffusion schemes

    NASA Astrophysics Data System (ADS)

    Vidović, D.; Dotlić, M.; Dimkić, M.; Pušić, M.; Pokorni, B.

    2013-08-01

    An interpolation method for diffusion in anisotropic discontinuous media based on convex combinations and physical relationships is presented. The method is exact for any piecewise linear solution, even if the interpolation nodes lie on the opposite sides of a material discontinuity. Values in points that do not lie within the convex hull of interpolation nodes are computed using flux boundary conditions. The method permits interpolation in every point within most domains, while preserving the maximum and minimum principles. We propose to replace the interpolation techniques in several non-linear finite volume schemes with the present method. Additionally, it is demonstrated that the construction of a convex combination by a simple search strategy may not be economical or even feasible if the grid is distorted. An alternative search structure that behaves well in such cases is proposed.

  6. On Several Fundamental Problems of Optimization, Estimation, and Scheduling in Wireless Communications

    NASA Astrophysics Data System (ADS)

    Gao, Qian

    For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is compared with the conventional decoupled system with the same spectrum efficiency to demonstrate the power efficiency. Crucial lighting requirements are included as optimization constraints. To control non-linear distortion, the optical peak-to-average-power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-equalizer designed and employed, our scheme can achieve lower BER than counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error (LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is applied to improve BER performance. The third part looks into a problem of two-phase channel estimation in a relayed wireless network. The channel estimates in every phase are obtained by the linear minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) channel in phase 2, which is made erroneous. We first derive a close-form expression for the averaged Bayesian mean-square estimation error (ABMSE) for both phase estimates in terms of the length of source and relay training slots, based on which an iterative searching algorithm is then proposed that optimally allocates training slots to the two phases such that estimation errors are balanced. Analysis shows how the ABMSE of the StD channel estimation varies with the lengths of relay training and source training slots, the relay amplification gain, and the channel prior information respectively. The last part deals with a transmission scheduling problem in a uplink multiple-input-multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is assumed as a multiple access scheme and pseudo-random codes are employed for different users. We consider a heavy traffic scenario, in which each user always has packets to transmit in the scheduled time slots. If the relay is scheduled for transmission together with users, then it operates in a full-duplex mode, where the packets previously collected from users are transmitted to the destination while new packets are being collected from users. A novel expression of throughput is first derived and then used to develop a scheduling algorithm to maximize the throughput. Our full-duplex scheduling is compared with a half-duplex scheduling, random access, and time division multiple access (TDMA), and simulation results illustrate its superiority. Throughput gains due to employment of both MIMO and CDMA are observed.

  7. Necessary Optimality Conditions for Some Control Problems of Elliptic Equations with Venttsel Boundary Conditions

    SciTech Connect

    Luo Yousong

    2010-06-15

    In this paper we derive a necessary optimality condition for a local optimal solution of some control problems. These optimal control problems are governed by a semi-linear Vettsel boundary value problem of a linear elliptic equation. The control is applied to the state equation via the boundary and a functional of the control together with the solution of the state equation under such a control will be minimized. A constraint on the solution of the state equation is also considered.

  8. A sparse superlinearly convergent SQP with applications to two-dimensional shape optimization.

    SciTech Connect

    Anitescu, M.

    1998-04-15

    Discretization of optimal shape design problems leads to very large nonlinear optimization problems. For attaining maximum computational efficiency, a sequential quadratic programming (SQP) algorithm should achieve superlinear convergence while preserving sparsity and convexity of the resulting quadratic programs. Most classical SQP approaches violate at least one of the requirements. We show that, for a very large class of optimization problems, one can design SQP algorithms that satisfy all these three requirements. The improvements in computational efficiency are demonstrated for a cam design problem.

  9. Haar wavelet operational matrix method for solving constrained nonlinear quadratic optimal control problem

    NASA Astrophysics Data System (ADS)

    Swaidan, Waleeda; Hussin, Amran

    2015-10-01

    Most direct methods solve finite time horizon optimal control problems with nonlinear programming solver. In this paper, we propose a numerical method for solving nonlinear optimal control problem with state and control inequality constraints. This method used quasilinearization technique and Haar wavelet operational matrix to convert the nonlinear optimal control problem into a quadratic programming problem. The linear inequality constraints for trajectories variables are converted to quadratic programming constraint by using Haar wavelet collocation method. The proposed method has been applied to solve Optimal Control of Multi-Item Inventory Model. The accuracy of the states, controls and cost can be improved by increasing the Haar wavelet resolution.

  10. Active Batch Selection via Convex Relaxations with Guaranteed Solution Bounds.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Sun, Qian; Panchanathan, Sethuraman; Ye, Jieping

    2015-10-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar instances for manual annotation. More recently, there have been attempts towards a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. In this paper, we propose two novel batch mode active learning (BMAL) algorithms: BatchRank and BatchRand. We first formulate the batch selection task as an NP-hard optimization problem; we then propose two convex relaxations, one based on linear programming and the other based on semi-definite programming to solve the batch selection problem. Finally, a deterministic bound is derived on the solution quality for the first relaxation and a probabilistic bound for the second. To the best of our knowledge, this is the first research effort to derive mathematical guarantees on the solution quality of the BMAL problem. Our extensive empirical studies on 15 binary, multi-class and multi-label challenging datasets corroborate that the proposed algorithms perform at par with the state-of-the-art techniques, deliver high quality solutions and are robust to real-world issues like label noise and class imbalance. PMID:26353181

  11. New approach for the solution of optimal control problems on parallel machines. Doctoral thesis

    SciTech Connect

    Stech, D.J.

    1990-01-01

    This thesis develops a highly parallel solution method for nonlinear optimal control problems. Balakrishnan's epsilon method is used in conjunction with the Rayleigh-Ritz method to convert the dynamic optimization of the optimal control problem into a static optimization problem. Walsh functions and orthogonal polynomials are used as basis functions to implement the Rayleigh-Ritz method. The resulting static optimization problem is solved using matrix operations which have well defined massively parallel solution methods. To demonstrate the method, a variety of nonlinear optimal control problems are solved. The nonlinear Raleigh problem with quadratic cost and nonlinear van der Pol problem with quadratic cost and terminal constraints on the states are solved in both serial and parallel on an eight processor Intel Hypercube. The solutions using both Walsh functions and Legendre polynomials as basis functions are given. In addition to these problems which are solved in parallel, a more complex nonlinear minimum time optimal control problem and nonlinear optimal control problem with an inequality constraint on the control are solved. Results show the method converges quickly, even from relatively poor initial guesses for the nominal trajectories.

  12. L2CXCV: A Fortran 77 package for least squares convex/concave data smoothing

    NASA Astrophysics Data System (ADS)

    Demetriou, I. C.

    2006-04-01

    Fortran 77 software is given for least squares smoothing to data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is also unknown of the optimization problem. A highly useful description of the constraints is that they follow from the assumption of initially increasing and subsequently decreasing rates of change, or vice versa, of the process considered. The underlying algorithm partitions the data into two disjoint sets of adjacent data and calculates the required fit by solving a strictly convex quadratic programming problem for each set. The piecewise linear interpolant to the fit is convex on the first set and concave on the other one. The partition into suitable sets is achieved by a finite iterative algorithm, which is made quite efficient because of the interactions of the quadratic programming problems on consecutive data. The algorithm obtains the solution by employing no more quadratic programming calculations over subranges of data than twice the number of the divided differences constraints. The quadratic programming technique makes use of active sets and takes advantage of a B-spline representation of the smoothed values that allows some efficient updating procedures. The entire code required to implement the method is 2920 Fortran lines. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes over subranges of data that is only proportional to the number of data. The results suggest that the package can be used for very large numbers of data values. Some examples with output are provided to help new users and exhibit certain features of the software. Important applications of the smoothing technique may be found in calculating a sigmoid approximation, which is a common topic in various contexts in applications in disciplines like physics, economics, biology and engineering. Distribution material that includes single and double precision versions of the code, driver programs, technical details of the implementation of the software package and test examples that demonstrate the use of the software is available in an accompanying ASCII file. Program summaryTitle of program:L2CXCV Catalogue identifier:ADXM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXM_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC Intel Pentium, Sun Sparc Ultra 5, Hewlett-Packard HP UX 11.0 Operating system:WINDOWS 98, 2000, Unix/Solaris 7, Unix/HP UX 11.0 Programming language used:FORTRAN 77 Memory required to execute with typical data:O(n), where n is the number of data No. of bits in a byte:8 No. of lines in distributed program, including test data, etc.:29 349 No. of bytes in distributed program, including test data, etc.:1 276 663 No. of processors used:1 Has the code been vectorized or parallelized?:no Distribution format:default tar.gz Separate documentation available:Yes Nature of physical problem:Analysis of processes that show initially increasing and then decreasing rates of change (sigmoid shape), as, for example, in heat curves, reactor stability conditions, evolution curves, photoemission yields, growth models, utility functions, etc. Identifying an unknown convex/concave (sigmoid) function from some measurements of its values that contain random errors. Also, identifying the inflection point of this sigmoid function. Method of solution:Univariate data smoothing by minimizing the sum of the squares of the residuals (least squares approximation) subject to the condition that the second order divided differences of the smoothed values change sign at most once. Ideally, this is the number of sign changes in the second derivative of the underlying function. The remarkable property of the smoothed values is that they consist of one separate section of optimal components that give nonnegative second divided differences (convexity) and one separate section of optimal components that give nonpositive second divided differences (concavity). The solution process finds the joint (that is the inflection point estimate of the underlying function) of the sections automatically. The underlying method is iterative, each iteration solving a structured strictly convex quadratic programming problem in order to obtain a convex or a concave section over a subrange of data. Restrictions on the complexity of the problem:Number of data, n, is not limited in the software package, but is limited to 2000 in the main driver. The total work of the method requires 2n-2 structured quadratic programming calculations over subranges of data, which in practice does not exceed the amount of O(n) computer operations. Typical running times:CPU time on a PC with an Intel 733 MHz processor operating in Windows 98: About 2 s to smooth n=1000 noisy measurements that follow the shape of the sine function over one period. Summary:L2CXCV is a package of Fortran 77 subroutines for least squares smoothing to n univariate data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is unknown. The piecewise linear interpolant to the smoothed values gives a convex/concave fit to the data. The underlying algorithm is based on the property that in this best convex/concave fit, the convex and the concave section are both optimal and separate. The algorithm is iterative, each iteration solving a strictly convex quadratic programming problem for the best convex fit to the first k data, starting from the best convex fit to the first k-1 data. By reversing the order and sign of the data, the algorithm obtains the best concave fit to the last n-k data. Then it chooses that k as the optimal position of the required sign change (which defines the inflection point of the fit), if the convex and the concave components to the first k and the last n-k data, respectively, form a convex/concave vector that gives the least sum of squares of residuals. In effect the algorithm requires at most 2n-2 quadratic programming calculations over subranges of data. The package employs a technique for quadratic programming, which takes advantage of a B-spline representation of the smoothed values and makes use of some efficient O(k) updating procedures, where k is the number of data of a subrange. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes that is about n, thus exhibiting quadratic performance in n. The Fortran codes have been designed to minimize the use of computing resources. Attention has been given to computer rounding errors details, which are essential to the robustness of the software package. Numerical examples with output are provided to help the use of the software and exhibit certain features of the method. Distribution material that includes driver programs, technical details of the installation of the package and test examples that demonstrate the use of the software is available in an ASCII file that accompanies this work.

  13. Newton's method for large bound-constrained optimization problems.

    SciTech Connect

    Lin, C.-J.; More, J. J.; Mathematics and Computer Science

    1999-01-01

    We analyze a trust region version of Newton's method for bound-constrained problems. Our approach relies on the geometry of the feasible set, not on the particular representation in terms of constraints. The convergence theory holds for linearly constrained problems and yields global and superlinear convergence without assuming either strict complementarity or linear independence of the active constraints. We also show that the convergence theory leads to an efficient implementation for large bound-constrained problems.

  14. A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.

  15. Detection of Convexity and Concavity in Context

    ERIC Educational Resources Information Center

    Bertamini, Marco

    2008-01-01

    Sensitivity to shape changes was measured, in particular detection of convexity and concavity changes. The available data are contradictory. The author used a change detection task and simple polygons to systematically manipulate convexity/concavity. Performance was high for detecting a change of sign (a new concave vertex along a convex contour…

  16. Optimization in First Semester Calculus: A Look at a Classic Problem

    ERIC Educational Resources Information Center

    LaRue, Renee; Infante, Nicole Engelke

    2015-01-01

    Optimization problems in first semester calculus have historically been a challenge for students. Focusing on the classic optimization problem of finding the minimum amount of fencing required to enclose a fixed area, we examine students' activity through the lens of Tall and Vinner's concept image and Carlson and Bloom's multidimensional…

  17. Improving the efficiency of solving discrete optimization problems: The case of VRP

    NASA Astrophysics Data System (ADS)

    Belov, A.; Slastnikov, S.

    2016-02-01

    Paper is devoted constructing efficient metaheuristics algorithms for discrete optimization problems. Particularly, we consider vehicle routing problem applying original ant colony optimization method to solve it. Besides, some parts of algorithm are separated for parallel computing. Some experimental results are performed to compare the efficiency of these methods.

  18. Solving Continuous-Time Optimal-Control Problems with a Spreadsheet.

    ERIC Educational Resources Information Center

    Naevdal, Eric

    2003-01-01

    Explains how optimal control problems can be solved with a spreadsheet, such as Microsoft Excel. Suggests the method can be used by students, teachers, and researchers as a tool to find numerical solutions for optimal control problems. Provides several examples that range from simple to advanced. (JEH)

  19. Topology optimization of unsteady flow problems using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Nørgaard, Sebastian; Sigmund, Ole; Lazarov, Boyan

    2016-02-01

    This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems. The optimization problem is solved with a gradient based method, and the design sensitivities are computed by solving the discrete adjoint problem. For moderate Reynolds number flows, it is demonstrated that topology optimization can successfully account for unsteady effects such as vortex shedding and time-varying boundary conditions. Such effects are relevant in several engineering applications, i.e. fluid pumps and control valves.

  20. Non-convex entropies for conservation laws with involutions.

    PubMed

    Dafermos, Constantine M

    2013-12-28

    The paper discusses systems of conservation laws endowed with involutions and contingent entropies. Under the assumption that the contingent entropy function is convex merely in the direction of a cone in state space, associated with the involution, it is shown that the Cauchy problem is locally well posed in the class of classical solutions, and that classical solutions are unique and stable even within the broader class of weak solutions that satisfy an entropy inequality. This is on a par with the classical theory of solutions to hyperbolic systems of conservation laws endowed with a convex entropy. The equations of elastodynamics provide the prototypical example for the above setting. PMID:24249772

  1. The effect of model uncertainty on some optimal routing problems

    NASA Technical Reports Server (NTRS)

    Mohanty, Bibhu; Cassandras, Christos G.

    1991-01-01

    The effect of model uncertainties on optimal routing in a system of parallel queues is examined. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using online gradient estimation is also included.

  2. Optimal Conditions for the Control Problem Associated to a Biomedical Process

    NASA Astrophysics Data System (ADS)

    Bundǎu, O.; Juratoni, A.; Chevereşan, A.

    2010-09-01

    This paper considers a mathematical model of infectious disease of SIS type. We will analyze the problem of minimizing the cost of diseases trough medical treatment. Mathematical modeling of this process leads to an optimal control problem with a finite horizon. The necessary conditions for optimality are given. Using the optimality conditions we prove the existence, uniqueness and stability of the steady state for a differential equations system.

  3. Convex Entropy, Hopf Bifurcation, and Viscous and Inviscid Shock Stability

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Freistühler, Heinrich; Zumbrun, Kevin

    2015-07-01

    We consider by a combination of analytical and numerical techniques, some basic questions regarding the relations between inviscid and viscous stability and the existence of a convex entropy. Specifically, for a system possessing a convex entropy, in particular for the equations of gas dynamics with a convex equation of state, we ask: (1) can inviscid instability occur? (2) can viscous instability not detected by inviscid theory occur? (3) can there occur the—necessarily viscous—effect of Hopf bifurcation, or "galloping instability"? and, perhaps most important from a practical point of view, (4) as shock amplitude is increased from the (stable) weak-amplitude limit, can there occur a first transition from viscous stability to instability that is not detected by inviscid theory? We show that (1) does occur for strictly hyperbolic, genuinely nonlinear gas dynamics with certain convex equations of state, while (2) and (3) do occur for an artifically constructed system with convex viscosity-compatible entropy. We do not know of an example for which (4) occurs, leaving this as a key open question in viscous shock theory, related to the principal eigenvalue property of Sturm Liouville and related operators. In analogy with, and partly proceeding close to, the analysis of Smith on (non-)uniqueness of the Riemann problem, we obtain convenient criteria for shock (in)stability in the form of necessary and sufficient conditions on the equation of state.

  4. Foot care: prevention of problems for optimal health.

    PubMed

    Bennett, Patricia C

    2006-05-01

    Problems of the feet generally cause pain but are not life threatening. By making information available regarding ill-fitting shoes and the conditions linked to poor shoe wear, the awareness of our clients can be raised. Home health nurses can contribute to the educational process that may reduce foot problems associated with improper shoe wear. As the foot ages, the normal plantar fat pad begins to atrophy. During the initial visit, foot health should be integrated into health promotion. This article seeks to provide an overview of common foot problems that are not related to diabetes mellitus. PMID:16699346

  5. Some Marginalist Intuition Concerning the Optimal Commodity Tax Problem

    ERIC Educational Resources Information Center

    Brett, Craig

    2006-01-01

    The author offers a simple intuition that can be exploited to derive and to help interpret some canonical results in the theory of optimal commodity taxation. He develops and explores the principle that the marginal social welfare loss per last unit of tax revenue generated be equalized across tax instruments. A simple two-consumer,…

  6. Optimization instances for deterministic and stochastic problems on energy efficient investments planning at the building level

    PubMed Central

    Cano, Emilio L.; Moguerza, Javier M.; Alonso-Ayuso, Antonio

    2015-01-01

    Optimization instances relate to the input and output data stemming from optimization problems in general. Typically, an optimization problem consists of an objective function to be optimized (either minimized or maximized) and a set of constraints. Thus, objective and constraints are jointly a set of equations in the optimization model. Such equations are a combination of decision variables and known parameters, which are usually related to a set domain. When this combination is a linear combination, we are facing a classical Linear Programming (LP) problem. An optimization instance is related to an optimization model. We refer to that model as the Symbolic Model Specification (SMS) containing all the sets, variables, and parameters symbols and relations. Thus, a whole instance is composed by the SMS, the elements in each set, the data values for all the parameters, and, eventually, the optimal decisions resulting from the optimization solution. This data article contains several optimization instances from a real-world optimization problem relating to investment planning on energy efficient technologies at the building level. PMID:26693515

  7. Optimization instances for deterministic and stochastic problems on energy efficient investments planning at the building level.

    PubMed

    Cano, Emilio L; Moguerza, Javier M; Alonso-Ayuso, Antonio

    2015-12-01

    Optimization instances relate to the input and output data stemming from optimization problems in general. Typically, an optimization problem consists of an objective function to be optimized (either minimized or maximized) and a set of constraints. Thus, objective and constraints are jointly a set of equations in the optimization model. Such equations are a combination of decision variables and known parameters, which are usually related to a set domain. When this combination is a linear combination, we are facing a classical Linear Programming (LP) problem. An optimization instance is related to an optimization model. We refer to that model as the Symbolic Model Specification (SMS) containing all the sets, variables, and parameters symbols and relations. Thus, a whole instance is composed by the SMS, the elements in each set, the data values for all the parameters, and, eventually, the optimal decisions resulting from the optimization solution. This data article contains several optimization instances from a real-world optimization problem relating to investment planning on energy efficient technologies at the building level. PMID:26693515

  8. Optimization technique for problems with an inequality constraint

    NASA Technical Reports Server (NTRS)

    Russell, K. J.

    1972-01-01

    General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.

  9. Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation

    NASA Technical Reports Server (NTRS)

    Mook, D. J.; Lew, Jiann-Shiun

    1991-01-01

    Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.

  10. Evaluating convex roof entanglement measures.

    PubMed

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples. PMID:25955038

  11. Enzyme allocation problems in kinetic metabolic networks: optimal solutions are elementary flux modes.

    PubMed

    Müller, Stefan; Regensburger, Georg; Steuer, Ralf

    2014-04-21

    The survival and proliferation of cells and organisms require a highly coordinated allocation of cellular resources to ensure the efficient synthesis of cellular components. In particular, the total enzymatic capacity for cellular metabolism is limited by finite resources that are shared between all enzymes, such as cytosolic space, energy expenditure for amino-acid synthesis, or micro-nutrients. While extensive work has been done to study constrained optimization problems based only on stoichiometric information, mathematical results that characterize the optimal flux in kinetic metabolic networks are still scarce. Here, we study constrained enzyme allocation problems with general kinetics, using the theory of oriented matroids. We give a rigorous proof for the fact that optimal solutions of the non-linear optimization problem are elementary flux modes. This finding has significant consequences for our understanding of optimality in metabolic networks as well as for the identification of metabolic switches and the computation of optimal flux distributions in kinetic metabolic networks. PMID:24295962

  12. Convex Diffraction Grating Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P. (Inventor)

    1999-01-01

    A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

  13. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  14. Singular optimal control and the identically non-regular problem in the calculus of variations

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1985-01-01

    A small but interesting class of optimal control problems featuring a scalar control appearing linearly is equivalent to the class of identically nonregular problems in the Calculus of Variations. It is shown that a condition due to Mancill (1950) is equivalent to the generalized Legendre-Clebsch condition for this narrow class of problems.

  15. Promoting optimal development: screening for behavioral and emotional problems.

    PubMed

    Weitzman, Carol; Wegner, Lynn

    2015-02-01

    By current estimates, at any given time, approximately 11% to 20% of children in the United States have a behavioral or emotional disorder, as defined in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Between 37% and 39% of children will have a behavioral or emotional disorder diagnosed by 16 years of age, regardless of geographic location in the United States. Behavioral and emotional problems and concerns in children and adolescents are not being reliably identified or treated in the US health system. This clinical report focuses on the need to increase behavioral screening and offers potential changes in practice and the health system, as well as the research needed to accomplish this. This report also (1) reviews the prevalence of behavioral and emotional disorders, (2) describes factors affecting the emergence of behavioral and emotional problems, (3) articulates the current state of detection of these problems in pediatric primary care, (4) describes barriers to screening and means to overcome those barriers, and (5) discusses potential changes at a practice and systems level that are needed to facilitate successful behavioral and emotional screening. Highlighted and discussed are the many factors at the level of the pediatric practice, health system, and society contributing to these behavioral and emotional problems. PMID:25624375

  16. A few shape optimization results for a biharmonic Steklov problem

    NASA Astrophysics Data System (ADS)

    Buoso, Davide; Provenzano, Luigi

    2015-09-01

    We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.

  17. Optimal Algorithms for the Economic Lot-Sizing Problem with Multi-supplier

    NASA Astrophysics Data System (ADS)

    Bai, Qing-Guo; Xu, Jian-Teng

    This paper considers the economic lot-sizing problem with multi-supplier in which the retailer may replenish his inventory from several suppliers. Each supplier is characterized by one of two types of order cost structures: incremental quantity discount cost structure and multiple set-ups cost structure. The problem is challenging due to the mix of different cost structures. By analyzing the optimal properties, we reduce the searching range of the optimal solutions and develop several optimal algorithms to solve all cases of this multi-supplier problem.

  18. Discrete-time entropy formulation of optimal and adaptive control problems

    NASA Technical Reports Server (NTRS)

    Tsai, Yweting A.; Casiello, Francisco A.; Loparo, Kenneth A.

    1992-01-01

    The discrete-time version of the entropy formulation of optimal control of problems developed by G. N. Saridis (1988) is discussed. Given a dynamical system, the uncertainty in the selection of the control is characterized by the probability distribution (density) function which maximizes the total entropy. The equivalence between the optimal control problem and the optimal entropy problem is established, and the total entropy is decomposed into a term associated with the certainty equivalent control law, the entropy of estimation, and the so-called equivocation of the active transmission of information from the controller to the estimator. This provides a useful framework for studying the certainty equivalent and adaptive control laws.

  19. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  20. Finite dimensional approximation of a class of constrained nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, Max D.; Hou, L. S.

    1994-01-01

    An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.

  1. Optimal investment, consumption and retirement choice problem with disutility and subsistence consumption constraints

    NASA Astrophysics Data System (ADS)

    Lim, Byung Hwa; Shin, Yong Hyun; Choi, U. Jin

    2008-09-01

    In this paper we consider a general optimal consumption-portfolio selection problem of an infinitely-lived agent whose consumption rate process is subject to subsistence constraints before retirement. That is, her consumption rate should be greater than or equal to some positive constant before retirement. We integrate three optimal decisions which are the optimal consumption, the optimal investment choice and the optimal stopping problem in which the agent chooses her retirement time in one model. We obtain the explicit forms of optimal policies using a martingale method and a variational inequality arising from the dual function of the optimal stopping problem. We treat the optimal retirement time as the first hitting time when her wealth exceeds a certain wealth level which will be determined by a free boundary value problem and duality approaches. We also derive closed forms of the optimal wealth processes before and after retirement. Some numerical examples are presented for the case of constant relative risk aversion (CRRA) utility class.

  2. Optimal spread spectrum watermark embedding via a multistep feasibility formulation.

    PubMed

    Altun, H Oktay; Orsdemir, Adem; Sharma, Gaurav; Bocko, Mark F

    2009-02-01

    We consider optimal formulations of spread spectrum watermark embedding where the common requirements of watermarking, such as perceptual closeness of the watermarked image to the cover and detectability of the watermark in the presence of noise and compression, are posed as constraints while one metric pertaining to these requirements is optimized. We propose an algorithmic framework for solving these optimal embedding problems via a multistep feasibility approach that combines projections onto convex sets (POCS) based feasibility watermarking with a bisection parameter search for determining the optimum value of the objective function and the optimum watermarked image. The framework is general and can handle optimal watermark embedding problems with convex and quasi-convex formulations of watermark requirements with assured convergence to the global optimum. The proposed scheme is a natural extension of set-theoretic watermark design and provides a link between convex feasibility and optimization formulations for watermark embedding. We demonstrate a number of optimal watermark embeddings in the proposed framework corresponding to maximal robustness to additive noise, maximal robustness to compression, minimal frequency weighted perceptual distortion, and minimal watermark texture visibility. Experimental results demonstrate that the framework is effective in optimizing the desired characteristic while meeting the constraints. The results also highlight both anticipated and unanticipated competition between the common requirements for watermark embedding. PMID:19131302

  3. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    An algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  4. A VLSI optimal constructive algorithm for classification problems

    SciTech Connect

    Beiu, V.; Draghici, S.; Sethi, I.K.

    1997-10-01

    If neural networks are to be used on a large scale, they have to be implemented in hardware. However, the cost of the hardware implementation is critically sensitive to factors like the precision used for the weights, the total number of bits of information and the maximum fan-in used in the network. This paper presents a version of the Constraint Based Decomposition training algorithm which is able to produce networks using limited precision integer weights and units with limited fan-in. The algorithm is tested on the 2-spiral problem and the results are compared with other existing algorithms.

  5. Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem

    PubMed Central

    Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi

    2013-01-01

    Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem. PMID:23935429

  6. Approximate solutions to minimax optimal control problems for aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Basapur, V. K.

    1984-01-01

    The maneuver considered in the present investigation involves the coplanar transfer of a spacecraft from a high earth orbit (HEO) to a low earth orbit (LEO). HEO can be a geosynchronous earth orbit (GEO). The basic concept utilized involves the hybrid combination of propulsive maneuvers in space and aerodynamic maneuvers in the sensible atmosphere. The considered type of flight is also called synergetic space flight. With respect to the atmospheric part of the maneuver, trajectory control is achieved by means of lift modulation. The Bolza problem of optimal control is stated, and the first-order optimality conditions for this problem are given. The one-arc approach, the two-arc approach, and the three-subarc approach are discussed. Attention is given to the Chebyshev problem of optimal control, details concerning aeroassisted orbital transfer (AOT), AOT optimization problems, and numerical experiments.

  7. Optimizing Constrained Single Period Problem under Random Fuzzy Demand

    NASA Astrophysics Data System (ADS)

    Taleizadeh, Ata Allah; Shavandi, Hassan; Riazi, Afshin

    2008-09-01

    In this paper, we consider the multi-product multi-constraint newsboy problem with random fuzzy demands and total discount. The demand of the products is often stochastic in the real word but the estimation of the parameters of distribution function may be done by fuzzy manner. So an appropriate option to modeling the demand of products is using the random fuzzy variable. The objective function of proposed model is to maximize the expected profit of newsboy. We consider the constraints such as warehouse space and restriction on quantity order for products, and restriction on budget. We also consider the batch size for products order. Finally we introduce a random fuzzy multi-product multi-constraint newsboy problem (RFM-PM-CNP) and it is changed to a multi-objective mixed integer nonlinear programming model. Furthermore, a hybrid intelligent algorithm based on genetic algorithm, Pareto and TOPSIS is presented for the developed model. Finally an illustrative example is presented to show the performance of the developed model and algorithm.

  8. Inclusion of known integrals in the optimal trajectory problem

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1974-01-01

    The classical problem of determination of the rocket trajectory which minimizes mass expenditure during motion between two points in the field of a single gravitating body is analyzed. The known integrals of the system are incorporated into the adjoint equations resulting in a reduction from a seventh-order adjoint system to a third-order adjoint system. The first case which is treated in that of planar motion under specific end conditions. In this case a regularization of the recently derived equations is achieved. The general three-dimensional case is also reduced from a seventh-order adjoint system to a third-order adjoint system. In this case a regularization has not been found.

  9. Optimization of location routing inventory problem with transshipment

    NASA Astrophysics Data System (ADS)

    Ghani, Nor Edayu Abd; Shariff, S. Sarifah Radiah; Zahari, Siti Meriam

    2015-05-01

    Location Routing Inventory Problem (LRIP) is a collaboration of the three components in the supply chain. It is confined by location-allocation, vehicle routing and inventory management. The aim of the study is to minimize the total system cost in the supply chain. Transshipment is introduced in order to allow the products to be shipped to a customer who experiences a shortage, either directly from the supplier or from another customer. In the study, LRIP is introduced with the transshipment (LRIPT) and customers act as the transshipment points. We select the transshipment point by using the p-center and we present the results in two divisions of cases. Based on the analysis, the results indicated that LRIPT performed well compared to LRIP.

  10. [Optimal Postoperative Pain Management After Tonsillectomy: An Unsolved Problem].

    PubMed

    Guntinas-Lichius, O; Geiler, K; Preuler, N-P; Meiner, W

    2016-01-01

    Tonsillectomy is one of the most painful surgical procedures. Unfortunately, it is not unusual that the patient hear statement like: "There is no way around" or "You receive already enough pain killers". Asking the anesthetist or the otorhinolaryngologist, one may get to hear: "Pain after tonsillectomy is not a real problem. We have a reliable pain management protocol". In contradiction, many clinical studies are showing that many patients have persistent and even severe pain after tonsillectomy despite postoperative pain therapy. Considering the results of many controlled clinical trials analyzing manifold varieties of pain management regimes it becomes obvious that there is no standard pain therapy after tonsillectomy with reliable proof of sufficient pain suppression. This review wants to give an overview on the current status of clinical research on pain measurement methods and pain management after tonsillectomy. PMID:26756653

  11. Analysis and formulation of a class of complex dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Kameswaran, Shivakumar

    The Direct Transcription approach, also known as the direct simultaneous approach, is a widely used solution strategy for the solution of dynamic optimization problems involving differential-algebraic equations (DAEs). Direct transcription refers to the procedure of approximating the infinite dimensional problem by a finite dimensional one, which is then solved using a nonlinear programming (NLP) solver tailored to large-scale problems. Systems governed by partial differential equations (PDEs) can also be handled by spatially discretizing the PDEs to convert them to a system of DAEs. The objective of this thesis is firstly to ensure that direct transcription using Radau collocation is provably correct, and secondly to widen the applicability of the direct simultaneous approach to a larger class of dynamic optimization and optimal control problems (OCPs). This thesis aims at addressing these issues using rigorous theoretical tools and/or characteristic examples, and at the same time use the results for solving large-scale industrial applications to realize the benefits. The first part of this work deals with the analysis of convergence rates for direct transcription of unconstrained and final-time equality constrained optimal control problems. The problems are discretized using collocation at Radau points. Convergence is analyzed from an NLP/matrix-algebra perspective, which enables the prediction of the conditioning of the direct transcription NLP as the mesh size becomes finer. Several convergence results are presented along with tests on numerous example problems. These convergence results lead to an adjoint estimation procedure given the Lagrange multipliers for the large-scale NLP. The work also reveals the role of process control concepts such as controllability on the convergence analysis, and provides a very important link between control and optimization inside the framework of dynamic optimization. As an effort to extend the applicability of the direct simultaneous approach to a wider class of problems, a PDE-constrained optimal control problem, the spatial discretization of which results in a DAE-constrained problem with an arbitrarily high-index inequality constraint, is studied. Optimal control problems with high-index path constraints are very hard to solve, numerically. Contrary to the intuitive belief that the direct transcription approach would not work for the high-index optimal control problem, an analysis is performed to show that NLP-based methods have flexibility with respect to constraint qualifications, and this can be put to use in the context of high-index inequality path-constrained problems to obtain meaningful solutions. (Abstract shortened by UMI.)

  12. Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.

  13. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods.

    PubMed

    Terekhov, Alexander V; Zatsiorsky, Vladimir M

    2011-02-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423-453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  14. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods

    PubMed Central

    Zatsiorsky, Vladimir M.

    2011-01-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  15. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  16. A distributed approach to the OPF problem

    NASA Astrophysics Data System (ADS)

    Erseghe, Tomaso

    2015-12-01

    This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of the network), the approach guarantees a performance very close to the optimum, with an appreciably fast convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller local computational complexity effort.

  17. Selecting radiotherapy dose distributions by means of constrained optimization problems.

    PubMed

    Alfonso, J C L; Buttazzo, G; García-Archilla, B; Herrero, M A; Núñez, L

    2014-05-01

    The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be instrumental in deriving good quality tests to select radiotherapy treatment plans in rather general situations. PMID:24599739

  18. A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1991-01-01

    The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.

  19. A well-posed optimal spectral element approximation for the Stokes problem

    NASA Technical Reports Server (NTRS)

    Maday, Y.; Patera, A. T.; Ronquist, E. M.

    1987-01-01

    A method is proposed for the spectral element simulation of incompressible flow. This method constitutes in a well-posed optimal approximation of the steady Stokes problem with no spurious modes in the pressure. The resulting method is analyzed, and numerical results are presented for a model problem.

  20. Flat tori in three-dimensional space and convex integration

    PubMed Central

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-01-01

    It is well-known that the curvature tensor is an isometric invariant of C2 Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C1. This unexpected flexibility has many paradoxical consequences, one of them is the existence of C1 isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash’s results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C1 fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C1 and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations. PMID:22523238

  1. Online support vector machine based on convex hull vertices selection.

    PubMed

    Wang, Di; Qiao, Hong; Zhang, Bo; Wang, Min

    2013-04-01

    The support vector machine (SVM) method, as a promising classification technique, has been widely used in various fields due to its high efficiency. However, SVM cannot effectively solve online classification problems since, when a new sample is misclassified, the classifier has to be retrained with all training samples plus the new sample, which is time consuming. According to the geometric characteristics of SVM, in this paper we propose an online SVM classifier called VS-OSVM, which is based on convex hull vertices selection within each class. The VS-OSVM algorithm has two steps: 1) the samples selection process, in which a small number of skeleton samples constituting an approximate convex hull in each class of the current training samples are selected and 2) the online updating process, in which the classifier is updated with newly arriving samples and the selected skeleton samples. From the theoretical point of view, the first d+1 (d is the dimension of the input samples) selected samples are proved to be vertices of the convex hull. This guarantees that the selected samples in our approach keep the greatest amount of information of the convex hull. From the application point of view, the new algorithm can update the classifier without reducing its classification performance. Experimental results on benchmark data sets have shown the validity and effectiveness of the VS-OSVM algorithm. PMID:24808380

  2. Study on Parameter Optimization for Support Vector Regression in Solving the Inverse ECG Problem

    PubMed Central

    Jiang, Mingfeng; Jiang, Shanshan; Zhu, Lingyan; Wang, Yaming; Huang, Wenqing; Zhang, Heng

    2013-01-01

    The typical inverse ECG problem is to noninvasively reconstruct the transmembrane potentials (TMPs) from body surface potentials (BSPs). In the study, the inverse ECG problem can be treated as a regression problem with multi-inputs (body surface potentials) and multi-outputs (transmembrane potentials), which can be solved by the support vector regression (SVR) method. In order to obtain an effective SVR model with optimal regression accuracy and generalization performance, the hyperparameters of SVR must be set carefully. Three different optimization methods, that is, genetic algorithm (GA), differential evolution (DE) algorithm, and particle swarm optimization (PSO), are proposed to determine optimal hyperparameters of the SVR model. In this paper, we attempt to investigate which one is the most effective way in reconstructing the cardiac TMPs from BSPs, and a full comparison of their performances is also provided. The experimental results show that these three optimization methods are well performed in finding the proper parameters of SVR and can yield good generalization performance in solving the inverse ECG problem. Moreover, compared with DE and GA, PSO algorithm is more efficient in parameters optimization and performs better in solving the inverse ECG problem, leading to a more accurate reconstruction of the TMPs. PMID:23983808

  3. Optimization-based additive decomposition of weakly coercive problems with applications

    DOE PAGESBeta

    Bochev, Pavel B.; Ridzal, Denis

    2016-01-27

    In this study, we present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem,more » our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.« less

  4. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.

  5. Algorithm for Solving an Optimization Problem for the Temperature Distribution on a Plate

    NASA Astrophysics Data System (ADS)

    Ayriyan, A.; Donets, E. E.; Grigorian, H.; Kolkovska, N.; Lebedev, A.

    2016-02-01

    The work describes the maximization problem regarding the heating of an area on the surface of a thin plate within a given temperature range. The solution of the problem is applied to ion injectors. The given temperature range corresponds to the required pressure of a saturated gas comprising evaporated atoms of the plate material. In order to find the solution, a one-parameter optimization problem was formulated and implemented leading to the optimization of the plate specific geometry. It was shown that a heated area can be increased up to 23.5% in comparison with a regular rectangle form of a given plate configuration.

  6. Application of statistical mechanics to combinatorial optimization problems: the chromatic number problem and q-partitioning of a graph

    SciTech Connect

    Lai, P.Y.; Goldschmidt, Y.Y.

    1987-08-01

    Methods of statistical mechanics are applied to two important NP-complete combinatorial optimization problems. The first is the chromatic number problem, which seeks the minimal number of colors necessary to color a graph such that no two sites connected by an edge have the same color. The second is partitioning of a graph into q equal subgraphs so as to minimize intersubgraph connections. Both models are mapped into a frustrated Potts model, which is related to the q-state Potts spin glass. For the first problem, the authors obtain very good agreement with numerical simulations and theoretical bounds using the annealed approximation. The quenched model is also discussed. For the second problem they obtain analytic and numerical results by evaluating the groundstate energy of the q = 3 and 4 Potts spin glass using Parisi's replica symmetry breaking. They also perform some numerical simulations to test the theoretical result and obtain very good agreement.

  7. Variational principles and optimal solutions of the inverse problems of creep bending of plates

    NASA Astrophysics Data System (ADS)

    Bormotin, K. S.; Oleinikov, A. I.

    2012-09-01

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and elastic unloading are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software.

  8. A Transformation Approach to Optimal Control Problems with Bounded State Variables

    NASA Technical Reports Server (NTRS)

    Hanafy, Lawrence Hanafy

    1971-01-01

    A technique is described and utilized in the study of the solutions to various general problems in optimal control theory, which are converted in to Lagrange problems in the calculus of variations. This is accomplished by mapping certain properties in Euclidean space onto closed control and state regions. Nonlinear control problems with a unit m cube as control region and unit n cube as state region are considered.

  9. Finite element solution of optimal control problems with state-control inequality constraints

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1992-01-01

    It is demonstrated that the weak Hamiltonian finite-element formulation is amenable to the solution of optimal control problems with inequality constraints which are functions of both state and control variables. Difficult problems can be treated on account of the ease with which algebraic equations can be generated before having to specify the problem. These equations yield very accurate solutions. Owing to the sparse structure of the resulting Jacobian, computer solutions can be obtained quickly when the sparsity is exploited.

  10. The Automatic Formulating Method of the Optimal Operating Planning Problem for Energy Supply Systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Naohiko; Ueda, Takaharu; Sasakawa, Koichi

    The problem of the optimal operating planning for energy supply system is formulated as mixed-integer linear programming (MILP), but, it is too complicated for most untrained operators with little experience to apply the method. This paper proposes an automatic evaluating method of the optimal operating planning for energy supply system in using simple data. The problem can be formulated only from characteristics of equipment, tariff of input energy, and energy demands. The connection of equipment is defined as a matrix, and generated from property data of equipment. The constraints and objective function of the problem are generated from relation-ship data in the matrix and characteristics of equipment. An optimization calculation for the problem is automatically carried out. It is confirmed that any operator can evaluate many alternative configurations of the energy supply systems.

  11. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  12. Tabu search method with random moves for globally optimal design

    NASA Astrophysics Data System (ADS)

    Hu, Nanfang

    1992-09-01

    Optimum engineering design problems are usually formulated as non-convex optimization problems of continuous variables. Because of the absence of convexity structure, they can have multiple minima, and global optimization becomes difficult. Traditional methods of optimization, such as penalty methods, can often be trapped at a local optimum. The tabu search method with random moves to solve approximately these problems is introduced. Its reliability and efficiency are examined with the help of standard test functions. By the analysis of the implementations, it is seen that this method is easy to use, and no derivative information is necessary. It outperforms the random search method and composite genetic algorithm. In particular, it is applied to minimum weight design examples of a three-bar truss, coil springs, a Z-section and a channel section. For the channel section, the optimal design using the tabu search method with random moves saved 26.14 percent over the weight of the SUMT method.

  13. A quasi-Newton approach to optimization problems with probability density constraints. [problem solving in mathematical programming

    NASA Technical Reports Server (NTRS)

    Tapia, R. A.; Vanrooy, D. L.

    1976-01-01

    A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.

  14. The Band around a Convex Body

    ERIC Educational Resources Information Center

    Swanson, David

    2011-01-01

    We give elementary proofs of formulas for the area and perimeter of a planar convex body surrounded by a band of uniform thickness. The primary tool is a integral formula for the perimeter of a convex body which describes the perimeter in terms of the projections of the body onto lines in the plane.

  15. Extremal functions for real convex bodies

    NASA Astrophysics Data System (ADS)

    Burns, Daniel M.; Levenberg, Norman; Ma`u, Sione

    2015-10-01

    We study the smoothness of the Siciak-Zaharjuta extremal function associated to a convex body in . We also prove a formula relating the complex equilibrium measure of a convex body in ( n≥2) to that of its Robin indicatrix. The main tool we use is extremal ellipses.

  16. Incorporating technology-based learning tools into teaching and learning of optimization problems

    NASA Astrophysics Data System (ADS)

    Yang, Irene

    2014-07-01

    The traditional approach of teaching optimization problems in calculus emphasizes more on teaching the students using analytical approach through a series of procedural steps. However, optimization normally involves problem solving in real life problems and most students fail to translate the problems into mathematic models and have difficulties to visualize the concept underlying. As an educator, it is essential to embed technology in suitable content areas to engage students in construction of meaningful learning by creating a technology-based learning environment. This paper presents the applications of technology-based learning tool in designing optimization learning activities with illustrative examples, as well as to address the challenges in the implementation of using technology in teaching and learning optimization. The suggestion activities in this paper allow flexibility for educator to modify their teaching strategy and apply technology to accommodate different level of studies for the topic of optimization. Hence, this provides great potential for a wide range of learners to enhance their understanding of the concept of optimization.

  17. The Sizing and Optimization Language, (SOL): Computer language for design problems

    NASA Technical Reports Server (NTRS)

    Lucas, Stephen H.; Scotti, Stephen J.

    1988-01-01

    The Sizing and Optimization Language, (SOL), a new high level, special purpose computer language was developed to expedite application of numerical optimization to design problems and to make the process less error prone. SOL utilizes the ADS optimization software and provides a clear, concise syntax for describing an optimization problem, the OPTIMIZE description, which closely parallels the mathematical description of the problem. SOL offers language statements which can be used to model a design mathematically, with subroutines or code logic, and with existing FORTRAN routines. In addition, SOL provides error checking and clear output of the optimization results. Because of these language features, SOL is best suited to model and optimize a design concept when the model consits of mathematical expressions written in SOL. For such cases, SOL's unique syntax and error checking can be fully utilized. SOL is presently available for DEC VAX/VMS systems. A SOL package is available which includes the SOL compiler, runtime library routines, and a SOL reference manual.

  18. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGESBeta

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  19. A penalty method for PDE-constrained optimization in inverse problems

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T.; Herrmann, F. J.

    2016-01-01

    Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the parameters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the nonlinearity of the problem and is less sensitive to the initial iterate.

  20. Direct SQP-methods for solving optimal control problems with delays

    SciTech Connect

    Goellmann, L.; Bueskens, C.; Maurer, H.

    1994-12-31

    The maximum principle for optimal control problems with delays leads to a boundary value problem (BVP) which is retarded in the state and advanced in the costate function. Based on shooting techniques, solution methods for this type of BVP have been proposed. In recent years, direct optimization methods have been favored for solving control problems without delays. Direct methods approximate the control and the state over a fixed mesh and solve the resulting NLP-problem with SQP-methods. These methods dispense with the costate function and have shown to be robust and efficient. In this paper, we propose a direct SQP-method for retarded control problems. In contrast to conventional direct methods, only the control variable is approximated by e.g. spline-functions. The state is computed via a high order Runge-Kutta type algorithm and does not enter explicitly the NLP-problem through an equation. This approach reduces the number of optimization variables considerably and is implementable even on a PC. Our method is illustrated by the numerical solution of retarded control problems with constraints. In particular, we consider the control of a continuous stirred tank reactor which has been solved by dynamic programming. This example illustrates the robustness and efficiency of the proposed method. Open questions concerning sufficient conditions and convergence of discretized NLP-problems are discussed.

  1. Probability-based least square support vector regression metamodeling technique for crashworthiness optimization problems

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Li, Enying; Li, G. Y.

    2011-03-01

    This paper presents a crashworthiness design optimization method based on a metamodeling technique. The crashworthiness optimization is a highly nonlinear and large scale problem, which is composed various nonlinearities, such as geometry, material and contact and needs a large number expensive evaluations. In order to obtain a robust approximation efficiently, a probability-based least square support vector regression is suggested to construct metamodels by considering structure risk minimization. Further, to save the computational cost, an intelligent sampling strategy is applied to generate sample points at the stage of design of experiment (DOE). In this paper, a cylinder, a full vehicle frontal collision is involved. The results demonstrate that the proposed metamodel-based optimization is efficient and effective in solving crashworthiness, design optimization problems.

  2. Application of multidisciplinary design optimization formulation theory to a wind design problems

    SciTech Connect

    Frank, P.; Benton, J.R.; Borland, C.; Kao, T.J.; Barthelemy, J.

    1994-12-31

    Multidisciplinary Design Optimization, MDO, is optimal design with simultaneous consideration of several disciplines. MDO in conjunction with coupled high-fidelity analysis codes is in a formative stage of development. This talk describes application of MDO formulation theory to the problem of aeroelastic wing design. That is, wing design with simultaneous consideration of the disciplines of structures and aerodynamics. In addition to MDO formulation theory, particular attention is paid to practical problems. These problems include validation of the individual discipline analysis codes, the need for distributed computing and the need for inexpensive models to serve as optimization surrogates for compute intensive aerodynamics codes. An MDO solution method and associated test results will be presented.

  3. Vortex generator design for aircraft inlet distortion as a numerical optimization problem

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.

  4. The optimal control frequency response problem in manual control. [of manned aircraft systems

    NASA Technical Reports Server (NTRS)

    Harrington, W. W.

    1977-01-01

    An optimal control frequency response problem is defined within the context of the optimal pilot model. The problem is designed to specify pilot model control frequencies reflective of important aircraft system properties, such as control feel system dynamics, airframe dynamics, and gust environment, as well as man machine properties, such as task and attention allocation. This is accomplished by determining a bounded set of control frequencies which minimize the total control cost. The bounds are given by zero and the neuromuscular control frequency response for each control actuator. This approach is fully adaptive, i.e., does not depend upon user entered estimates. An algorithm is developed to solve this optimal control frequency response problem. The algorithm is then applied to an attitude hold task for a bare airframe fighter aircraft case with interesting dynamic properties.

  5. A proposed simulation optimization model framework for emergency department problems in public hospital

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ireen Munira; Liong, Choong-Yeun; Bakar, Sakhinah Abu; Ahmad, Norazura; Najmuddin, Ahmad Farid

    2015-12-01

    The Emergency Department (ED) is a very complex system with limited resources to support increase in demand. ED services are considered as good quality if they can meet the patient's expectation. Long waiting times and length of stay is always the main problem faced by the management. The management of ED should give greater emphasis on their capacity of resources in order to increase the quality of services, which conforms to patient satisfaction. This paper is a review of work in progress of a study being conducted in a government hospital in Selangor, Malaysia. This paper proposed a simulation optimization model framework which is used to study ED operations and problems as well as to find an optimal solution to the problems. The integration of simulation and optimization is hoped can assist management in decision making process regarding their resource capacity planning in order to improve current and future ED operations.

  6. Using the PORS Problems to Examine Evolutionary Optimization of Multiscale Systems

    SciTech Connect

    Reinhart, Zachary; Molian, Vaelan; Bryden, Kenneth

    2013-01-01

    Nearly all systems of practical interest are composed of parts assembled across multiple scales. For example, an agrodynamic system is composed of flora and fauna on one scale; soil types, slope, and water runoff on another scale; and management practice and yield on another scale. Or consider an advanced coal-fired power plant: combustion and pollutant formation occurs on one scale, the plant components on another scale, and the overall performance of the power system is measured on another. In spite of this, there are few practical tools for the optimization of multiscale systems. This paper examines multiscale optimization of systems composed of discrete elements using the plus-one-recall-store (PORS) problem as a test case or study problem for multiscale systems. From this study, it is found that by recognizing the constraints and patterns present in discrete multiscale systems, the solution time can be significantly reduced and much more complex problems can be optimized.

  7. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  8. A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction

    PubMed Central

    Konkle, Justin J.; Goodwill, Patrick W.; Hensley, Daniel W.; Orendorff, Ryan D.; Lustig, Michael; Conolly, Steven M.

    2015-01-01

    Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications. PMID:26495839

  9. Optimization problems in natural gas transportation systems. A state-of-the-art review

    SciTech Connect

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-term basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.

  10. Solution of the optimal plant location and sizing problem using simulated annealing and genetic algorithms

    SciTech Connect

    Rao, R.; Buescher, K.L.; Hanagandi, V.

    1995-12-31

    In the optimal plant location and sizing problem it is desired to optimize cost function involving plant sizes, locations, and production schedules in the face of supply-demand and plant capacity constraints. We will use simulated annealing (SA) and a genetic algorithm (GA) to solve this problem. We will compare these techniques with respect to computational expenses, constraint handling capabilities, and the quality of the solution obtained in general. Simulated Annealing is a combinatorial stochastic optimization technique which has been shown to be effective in obtaining fast suboptimal solutions for computationally, hard problems. The technique is especially attractive since solutions are obtained in polynomial time for problems where an exhaustive search for the global optimum would require exponential time. We propose a synergy between the cluster analysis technique, popular in classical stochastic global optimization, and the GA to accomplish global optimization. This synergy minimizes redundant searches around local optima and enhances the capable it of the GA to explore new areas in the search space.

  11. A hybrid approach using chaotic dynamics and global search algorithms for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Igeta, Hideki; Hasegawa, Mikio

    Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.

  12. An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints.

    PubMed

    Zeng, Sanyou Y; Kang, Lishan S; Ding, Lixin X

    2004-01-01

    In this paper, an orthogonal multi-objective evolutionary algorithm (OMOEA) is proposed for multi-objective optimization problems (MOPs) with constraints. Firstly, these constraints are taken into account when determining Pareto dominance. As a result, a strict partial-ordered relation is obtained, and feasibility is not considered later in the selection process. Then, the orthogonal design and the statistical optimal method are generalized to MOPs, and a new type of multi-objective evolutionary algorithm (MOEA) is constructed. In this framework, an original niche evolves first, and splits into a group of sub-niches. Then every sub-niche repeats the above process. Due to the uniformity of the search, the optimality of the statistics, and the exponential increase of the splitting frequency of the niches, OMOEA uses a deterministic search without blindness or stochasticity. It can soon yield a large set of solutions which converges to the Pareto-optimal set with high precision and uniform distribution. We take six test problems designed by Deb, Zitzler et al., and an engineering problem (W) with constraints provided by Ray et al. to test the new technique. The numerical experiments show that our algorithm is superior to other MOGAS and MOEAs, such as FFGA, NSGAII, SPEA2, and so on, in terms of the precision, quantity and distribution of solutions. Notably, for the engineering problem W, it finds the Pareto-optimal set, which was previously unknown. PMID:15096306

  13. Using a modified invasive weed optimization algorithm for a personalized urban multi-criteria path optimization problem

    NASA Astrophysics Data System (ADS)

    Pahlavani, Parham; Delavar, Mahmoud R.; Frank, Andrew U.

    2012-08-01

    The personalized urban multi-criteria quasi-optimum path problem (PUMQPP) is a branch of multi-criteria shortest path problems (MSPPs) and it is classified as a NP-hard problem. To solve the PUMQPP, by considering dependent criteria in route selection, there is a need for approaches that achieve the best compromise of possible solutions/routes. Recently, invasive weed optimization (IWO) algorithm is introduced and used as a novel algorithm to solve many continuous optimization problems. In this study, the modified algorithm of IWO was designed, implemented, evaluated, and compared with the genetic algorithm (GA) to solve the PUMQPP in a directed urban transportation network. In comparison with the GA, the results have shown the significant superiority of the proposed modified IWO algorithm in exploring a discrete search-space of the urban transportation network. In this regard, the proposed modified IWO algorithm has reached better results in fitness function, quality metric and running-time values in comparison with those of the GA.

  14. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2002-01-01

    In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.

  15. Numerical solution of optimal control problems using multiple-interval integral Gegenbauer pseudospectral methods

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojun

    2016-04-01

    The main purpose of this work is to provide multiple-interval integral Gegenbauer pseudospectral methods for solving optimal control problems. The latest developed single-interval integral Gauss/(flipped Radau) pseudospectral methods can be viewed as special cases of the proposed methods. We present an exact and efficient approach to compute the mesh pseudospectral integration matrices for the Gegenbauer-Gauss and flipped Gegenbauer-Gauss-Radau points. Numerical results on benchmark optimal control problems confirm the ability of the proposed methods to obtain highly accurate solutions.

  16. Solution to Electric Power Dispatch Problem Using Fuzzy Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Chaturvedi, D. K.; Kumar, S.

    2015-03-01

    This paper presents the application of fuzzy particle swarm optimization to constrained economic load dispatch (ELD) problem of thermal units. Several factors such as quadratic cost functions with valve point loading, ramp rate limits and prohibited operating zone are considered in the computation models. The Fuzzy particle swarm optimization (FPSO) provides a new mechanism to avoid premature convergence problem. The performance of proposed algorithm is evaluated on four test systems. Results obtained by proposed method have been compared with those obtained by PSO method and literature results. The experimental results show that proposed FPSO method is capable of obtaining minimum fuel costs in fewer numbers of iterations.

  17. Two Point Exponential Approximation Method for structural optimization of problems with frequency constraints

    NASA Technical Reports Server (NTRS)

    Fadel, G. M.

    1991-01-01

    The point exponential approximation method was introduced by Fadel et al. (Fadel, 1990), and tested on structural optimization problems with stress and displacement constraints. The reports in earlier papers were promising, and the method, which consists of correcting Taylor series approximations using previous design history, is tested in this paper on optimization problems with frequency constraints. The aim of the research is to verify the robustness and speed of convergence of the two point exponential approximation method when highly non-linear constraints are used.

  18. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    SciTech Connect

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-12-10

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  19. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    NASA Astrophysics Data System (ADS)

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-12-01

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  20. The Hamilton-Jacobi theory for solving optimal feedback control problems with general boundary conditions

    NASA Astrophysics Data System (ADS)

    Park, Chandeok

    This dissertation presents a general methodology for solving the optimal feedback control problem in the context of Hamiltonian system theory. It is first formulated as a two point boundary value problem for a standard Hamiltonian system, and the associated phase flow is viewed as a canonical transformation. Then relying on the Hamilton-Jacobi theory, we employ generating functions to develop a unified methodology for solving a variety of optimal feedback control formulations with general types of boundary conditions. The major accomplishment is to establish a theoretical connection between the optimal cost function and a special kind of generating function. Guided by this recognition, we are ultimately led to a new flexible representation of the optimal feedback control law for a given system, which is adjustable to various types of boundary conditions by algebraic conversions and partial differentiations. This adaptive property provides a substantial advantage over the classical dynamic programming method in the sense that we do not need to solve the Hamilton-Jacobi-Bellman equation repetitively for varying types of boundary conditions. Furthermore for a special type of boundary condition, it also enables us to work around an inherent singularity of the Hamilton-Jacobi-Bellman equation by a special algebraic transformation. Taking full advantage of these theoretical insights, we develop a systematic algorithm for solving a class of optimal feedback control problems represented by smooth analytic Hamiltonians, and apply it to problems with different characteristics. Then, broadening the practical utility of generating functions for problems where the relevant Hamiltonian is non-smooth, we construct a pair of Cauchy problems from the associated Hamilton-Jacobi equations. This alternative formulation is justified by solving problems with control constraints which usually feature non-smoothness in the control logic. The main result of this research establishes that the optimal feedback control problem can be solved by the generating functions of the canonical solution flow corresponding to the necessary conditions. This result demonstrates the power of analyzing the optimal feedback control problem within the comprehensive field of classical Hamiltonian system theory.

  1. Determining the robust counterpart of uncertain spatial optimization model for water supply allocation problem

    NASA Astrophysics Data System (ADS)

    Chaerani, D.; Ruchjana, B. N.; Dewanto, S. P.; Abdullah, A. S.; Rejito, J.; Rosandi, Y.; Dharmawan, I. A.

    2016-02-01

    In this paper we discuss how to get the robust counterpart for the spatial optimization model for water supply allocation (SOMWSA) problem that is proposed by [6]. We employ the robust counterpart methodology that is proposed by Ben-Tal and Nemirovskii [2] also use the new paradigm of robust counterpart methodology of den Hertog et al. [4]. To this end, first we define the uncertain family class of SOMWSA and derive the robust version of the uncertain problem. We assume that there are two uncertain data in SOMWSA problem, ie., the total population and the water demand in a region i at time t. Since the tractability of the problem is very important in Robust Optimization, we discuss three types of uncertainty set, i.e., box, ellipsoidal and polyhedral uncertainty set.

  2. Branch-and-bound methods for euclidean registration problems.

    PubMed

    Olsson, Carl; Kahl, Fredrik; Oskarsson, Magnus

    2009-05-01

    In this paper, we propose a practical and efficient method for finding the globally optimal solution to the problem of determining the pose of an object. We present a framework that allows us to use point-to-point, point-to-line, and point-to-plane correspondences for solving various types of pose and registration problems involving euclidean (or similarity) transformations. Traditional methods such as the iterative closest point algorithm or bundle adjustment methods for camera pose may get trapped in local minima due to the nonconvexity of the corresponding optimization problem. Our approach of solving the mathematical optimization problems guarantees global optimality. The optimization scheme is based on ideas from global optimization theory, in particular convex underestimators in combination with branch-and-bound methods. We provide a provably optimal algorithm and demonstrate good performance on both synthetic and real data. We also give examples of where traditional methods fail due to the local minima problem. PMID:19299855

  3. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    PubMed Central

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  4. An investigation of exploitation versus exploration in GBEA optimization of PORS 15 and 16 Problems

    SciTech Connect

    Koch, Kaelynn

    2012-05-08

    It was hypothesized that the variations in time to solution are driven by the competing mechanisms of exploration and exploitation.This thesis explores this hypothesis by examining two contrasting problems that embody the hypothesized tradeoff between exploration and exploitation. Plus one recall store (PORS) is an optimization problem based on the idea of a simple calculator with four buttons: plus, one, store, and recall. Integer addition and store are classified as operations, and one and memory recall are classified as terminals. The goal is to arrange a fixed number of keystrokes in a way that maximizes the numerical result. PORS 15 (15 keystrokes) represents the subset of difficult PORS problems and PORS 16 (16 keystrokes) represents the subset of PORS problems that are easiest to optimize. The goal of this work is to examine the tradeoff between exploitation and exploration in graph based evolutionary algorithm (GBEA) optimization. To do this, computational experiments are used to examine how solutions evolve in PORS 15 and 16 problems when solved using GBEAs. The experiment is comprised of three components; the graphs and the population, the evolutionary algorithm rule set, and the example problems. The complete, hypercube, and cycle graphs were used for this experiment. A fixed population size was used.

  5. Computing the three-dimensional convex hull

    NASA Astrophysics Data System (ADS)

    Allison, D. C. S.; Noga, M. T.

    1997-06-01

    The program tetra computes the three-dimensional convex hull of a set of n points in ( x, y, z) space. The input consists of the coordinates of the points and the output is the identification numbers of the points that are on the convex hull. Since the convex hull is constructed as a set of triangular faces, called facets, additional output information can be requested about these interlocking facets. This additional information may be used to reconstruct and verify the correctness of the computed hull.

  6. An approximation for the boundary optimal control problem of a heat equation defined in a variable domain

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Ren, Zhi-Gang; Xu, Chao

    2014-04-01

    In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the boundary of the domain is moving and the shape of the boundary is defined by a known time-dependent function. By making use of the Galerkin finite element method, we first project the original optimal control problem into a semi-discrete optimal control problem governed by a system of ordinary differential equations. Then, based on the aforementioned semi-discrete problem, we apply the control parameterization method to obtain an optimal parameter selection problem governed by a lumped parameter system, which can be solved as a nonlinear optimization problem by a Sequential Quadratic Programming (SQP) algorithm. The numerical simulation is given to illustrate the effectiveness of our numerical approximation for the variable domain problem with the finite element method and the control parameterization method.

  7. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    SciTech Connect

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for solving discretized optimization models. Our optimization models are multi-level models, however. They are more general, involving different governing equations at each level. A major aspect of this project was the development of flexible software that can be used to solve a variety of hierarchical optimization problems.

  8. Adiabatic quantum optimization in the presence of discrete noise: Reducing the problem dimensionality

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Guerreschi, Gian Giacomo; Aspuru-Guzik, Alán

    2015-12-01

    Adiabatic quantum optimization is a procedure to solve a vast class of optimization problems by slowly changing the Hamiltonian of a quantum system. The evolution time necessary for the algorithm to be successful scales inversely with the minimum energy gap encountered during the dynamics. Unfortunately, the direct calculation of the gap is strongly limited by the exponential growth in the dimensionality of the Hilbert space associated to the quantum system. Although many special-purpose methods have been devised to reduce the effective dimensionality, they are strongly limited to particular classes of problems with evident symmetries. Moreover, little is known about the computational power of adiabatic quantum optimizers in real-world conditions. Here we propose and implement a general purposes reduction method that does not rely on any explicit symmetry and which requires, under certain general conditions, only a polynomial amount of classical resources. Thanks to this method, we are able to analyze the performance of "nonideal" quantum adiabatic optimizers to solve the well-known Grover problem, namely the search of target entries in an unsorted database, in the presence of discrete local defects. In this case, we show that adiabatic quantum optimization, even if affected by random noise, is still potentially faster than any classical algorithm.

  9. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    PubMed

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  10. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    PubMed Central

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  11. Infinite Horizon Stochastic Optimal Control Problems with Degenerate Noise and Elliptic Equations in Hilbert Spaces

    SciTech Connect

    Masiero, Federica

    2007-05-15

    Semilinear elliptic partial differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. These results are applied to a stochastic optimal control problem with infinite horizon. Applications to controlled stochastic heat and wave equations are given.

  12. Constrained Optimization Problems in Cost and Managerial Accounting--Spreadsheet Tools

    ERIC Educational Resources Information Center

    Amlie, Thomas T.

    2009-01-01

    A common problem addressed in Managerial and Cost Accounting classes is that of selecting an optimal production mix given scarce resources. That is, if a firm produces a number of different products, and is faced with scarce resources (e.g., limitations on labor, materials, or machine time), what combination of products yields the greatest profit…

  13. A Convex Formulation for Learning a Shared Predictive Structure from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Tang, Lei; Liu, Jun; Ye, Jieping

    2013-01-01

    In this paper, we consider the problem of learning from multiple related tasks for improved generalization performance by extracting their shared structures. The alternating structure optimization (ASO) algorithm, which couples all tasks using a shared feature representation, has been successfully applied in various multitask learning problems. However, ASO is nonconvex and the alternating algorithm only finds a local solution. We first present an improved ASO formulation (iASO) for multitask learning based on a new regularizer. We then convert iASO, a nonconvex formulation, into a relaxed convex one (rASO). Interestingly, our theoretical analysis reveals that rASO finds a globally optimal solution to its nonconvex counterpart iASO under certain conditions. rASO can be equivalently reformulated as a semidefinite program (SDP), which is, however, not scalable to large datasets. We propose to employ the block coordinate descent (BCD) method and the accelerated projected gradient (APG) algorithm separately to find the globally optimal solution to rASO; we also develop efficient algorithms for solving the key subproblems involved in BCD and APG. The experiments on the Yahoo webpages datasets and the Drosophila gene expression pattern images datasets demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical analysis. PMID:23520249

  14. An algorithm for the weighting matrices in the sampled-data optimal linear regulator problem

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.; Caglayan, A. K.

    1976-01-01

    The sampled-data optimal linear regulator problem provides a means whereby a control designer can use an understanding of continuous optimal regulator design to produce a digital state variable feedback control law which satisfies continuous system performance specifications. A basic difficulty in applying the sampled-data regulator theory is the requirement that certain digital performance index weighting matrices, expressed as complicated functions of system matrices, be computed. Infinite series representations are presented for the weighting matrices of the time-invariant version of the optimal linear sampled-data regulator problem. Error bounds are given for estimating the effect of truncating the series expressions after a finite number of terms, and a method is described for their computer implementation. A numerical example is given to illustrate the results.

  15. Traveltime tomography and nonlinear constrained optimization

    SciTech Connect

    Berryman, J.G.

    1988-10-01

    Fermat's principle of least traveltime states that the first arrivals follow ray paths with the smallest overall traveltime from the point of transmission to the point of reception. This principle determines a definite convex set of feasible slowness models - depending only on the traveltime data - for the fully nonlinear traveltime inversion problem. The existence of such a convex set allows us to transform the inversion problem into a nonlinear constrained optimization problem. Fermat's principle also shows that the standard undamped least-squares solution to the inversion problem always produces a slowness model with many ray paths having traveltime shorter than the measured traveltime (an impossibility even if the trial ray paths are not the true ray paths). In a damped least-squares inversion, the damping parameter may be varied to allow efficient location of a slowness model on the feasibility boundary. 13 refs., 1 fig., 1 tab.

  16. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  17. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  18. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    SciTech Connect

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  19. K/S two-point-boundary-value problems. [for orbital trajectory optimization

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1976-01-01

    A method for developing the missing general K/S (Kustaanheimo/Stiefel) boundary conditions is presented, with use of the formalism of optimal control theory. As an illustrative example, the method is applied to the K/S Lambert problem to derive the missing terminal condition. The necessary equations are developed for a solution to this problem with the generalized eccentric anomaly, E, as the independent variable. This formulation, requiring the solution of only one nonlinear, well-behaved equation in one unknown, E, results in considerable simplification of the problem.

  20. Electronic neural network for solving traveling salesman and similar global optimization problems

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P. (Inventor); Moopenn, Alexander W. (Inventor); Duong, Tuan A. (Inventor); Eberhardt, Silvio P. (Inventor)

    1993-01-01

    This invention is a novel high-speed neural network based processor for solving the 'traveling salesman' and other global optimization problems. It comprises a novel hybrid architecture employing a binary synaptic array whose embodiment incorporates the fixed rules of the problem, such as the number of cities to be visited. The array is prompted by analog voltages representing variables such as distances. The processor incorporates two interconnected feedback networks, each of which solves part of the problem independently and simultaneously, yet which exchange information dynamically.

  1. Recent characterizations of generalized convexity in convexity in cooperative game thoery

    SciTech Connect

    Driessen, T.

    1994-12-31

    The notion of convexity for a real-valued function on the power set of the finite set N (the so-called cooperative game with player set N) is defined as in other mathematical fields. The study of convexity plays an important role within the field of cooperative game theory because the application of the solution part of game theory to convex games provides elegant results for the solution concepts involved. Especially, the well known solution concept called core is, for convex games, very well characterized. The current paper focuses on a notion of generalized convexity, called k- convexity, for cooperative n-person games. Due to very recent characterizations of convexity for cooperative games, the goal is to provide similar new characterizations of k-convexity. The main characterization states that for the k-convexity of an n-person game it is both necessary and sufficient that half of all the so-called marginal worth vectors belong to the core of the game. Here it is taken into account whether a marginal worth vector corresponds to an even or odd ordering of k elements of the n-person player set N. Another characterization of k-convexity is presented in terms of a so-called finite min-modular decomposition. That is, some specific cover game of a k-convex game can be decomposed as the minimum of a finite number of modular (or additive) games. Finally it is established that the k-convexity of a game can be characterized in terms of the second order partial derivates of the so-called multilinear extension of the game.

  2. Determination of optimal self-drive tourism route using the orienteering problem method

    NASA Astrophysics Data System (ADS)

    Hashim, Zakiah; Ismail, Wan Rosmanira; Ahmad, Norfaieqah

    2013-04-01

    This paper was conducted to determine the optimal travel routes for self-drive tourism based on the allocation of time and expense by maximizing the amount of attraction scores assigned to each city involved. Self-drive tourism represents a type of tourism where tourists hire or travel by their own vehicle. It only involves a tourist destination which can be linked with a network of roads. Normally, the traveling salesman problem (TSP) and multiple traveling salesman problems (MTSP) method were used in the minimization problem such as determination the shortest time or distance traveled. This paper involved an alternative approach for maximization method which is maximize the attraction scores and tested on tourism data for ten cities in Kedah. A set of priority scores are used to set the attraction score at each city. The classical approach of the orienteering problem was used to determine the optimal travel route. This approach is extended to the team orienteering problem and the two methods were compared. These two models have been solved by using LINGO12.0 software. The results indicate that the model involving the team orienteering problem provides a more appropriate solution compared to the orienteering problem model.

  3. A hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay M.; Murthy, ANN; Chandrashekara, K.

    2012-05-01

    The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to the relevant machines are made. Such problems are not only combinatorial optimization problems, but also happen to be non-deterministic polynomial-time-hard, making it difficult to obtain satisfactory solutions using traditional optimization techniques. In this paper, an attempt has been made to address the machine loading problem with objectives of minimization of system unbalance and maximization of throughput simultaneously while satisfying the system constraints related to available machining time and tool slot designing and using a meta-hybrid heuristic technique based on genetic algorithm and particle swarm optimization. The results reported in this paper demonstrate the model efficiency and examine the performance of the system with respect to measures such as throughput and system utilization.

  4. An Integer-Coded Chaotic Particle Swarm Optimization for Traveling Salesman Problem

    NASA Astrophysics Data System (ADS)

    Yue, Chen; Yan-Duo, Zhang; Jing, Lu; Hui, Tian

    Traveling Salesman Problem (TSP) is one of NP-hard combinatorial optimization problems, which will experience “combination explosion” when the problem goes beyond a certain size. Therefore, it has been a hot topic to search an effective solving method. The general mathematical model of TSP is discussed, and its permutation and combination based model is presented. Based on these, Integer-coded Chaotic Particle Swarm Optimization for solving TSP is proposed. Where, particle is encoded with integer; chaotic sequence is used to guide global search; and particle varies its positions via “flying”. With a typical 20-citys TSP as instance, the simulation experiment of comparing ICPSO with GA is carried out. Experimental results demonstrate that ICPSO is simple but effective, and better than GA at performance.

  5. Time dependent adjoint-based optimization for coupled fluid-structure problems

    NASA Astrophysics Data System (ADS)

    Mishra, Asitav; Mani, Karthik; Mavriplis, Dimitri; Sitaraman, Jay

    2015-07-01

    A formulation for sensitivity analysis of fully coupled time-dependent aeroelastic problems is given in this paper. Both forward sensitivity and adjoint sensitivity formulations are derived that correspond to analogues of the fully coupled non-linear aeroelastic analysis problem. Both sensitivity analysis formulations make use of the same iterative disciplinary solution techniques used for analysis, and make use of an analogous coupling strategy. The information passed between fluid and structural solvers is dimensionally equivalent in all cases, enabling the use of the same data structures for analysis, forward and adjoint problems. The fully coupled adjoint formulation is then used to perform rotor blade design optimization for a four bladed HART2 rotor in hover conditions started impulsively from rest. The effect of time step size and mesh resolution on optimization results is investigated.

  6. A convex hull algorithm for neural networks

    SciTech Connect

    Wennyre, E. )

    1989-11-01

    A convex hull algorithm for neural networks is presented. It is applicable in both two and three dimensions, and has a time complexity of O(N) for the off-line case, O(log N) for the on-line case in two dimensions, and O(hN), O(N), respectively, for three dimensions (h is the number of faces in the convex hull). The constant bounding the complexity is expected to be very small.

  7. On the complexity of a combined homotopy interior method for convex programming

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Xu, Qing; Feng, Guochen

    2007-03-01

    In [G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Anal. 32 (1998) 761-768; G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics, Proceedings of the Second Japan-China Seminar on Numerical Mathematics, Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9-16; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Appl. Math. Comput. 84 (1997) 193-211.], a combined homotopy was constructed for solving non-convex programming and convex programming with weaker conditions, without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. It was proven that a smooth interior path from an interior point of the feasible set to a K-K-T point of the problem exists. This shows that combined homotopy interior point methods can solve the problem that commonly used interior point methods cannot solveE However, so far, there is no result on its complexity, even for linear programming. The main difficulty is that the objective function is not monotonically decreasing on the combined homotopy path. In this paper, by taking a piecewise technique, under commonly used conditions, polynomiality of a combined homotopy interior point method is given for convex nonlinear programming.

  8. Reduced Complexity Regularization of Geophysical Inverse Problems

    NASA Astrophysics Data System (ADS)

    Ely, Gregory

    This thesis explores the application of complexity penalized algorithms to solve a variety of geophysical inverse problems: Hydraulic Fracture Monitoring (HFM), hyper-spectral imaging, and reflection seismology. Through these examples, the thesis examines how the physics of several systems gives rise to sparsity or low-dimensionality when posed in the proper basis. This low complexity can be quantified into several types of convex norms such as the ℓ 1 and nuclear norm. In this work we demonstrate how optimization algorithms which exploit this complexity by penalizing the relevant convex norms can improve inversion. First and second order as well as stochastic algorithms are used to solve these minimization problems and I give details as to how the structure of the problem dictates the best technique to apply.

  9. Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material

    SciTech Connect

    Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena

    2011-05-04

    This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.

  10. A Hybrid Optimization Method for Solving Bayesian Inverse Problems under Uncertainty

    PubMed Central

    Zhang, Kai; Wang, Zengfei; Zhang, Liming; Yao, Jun; Yan, Xia

    2015-01-01

    In this paper, we investigate the application of a new method, the Finite Difference and Stochastic Gradient (Hybrid method), for history matching in reservoir models. History matching is one of the processes of solving an inverse problem by calibrating reservoir models to dynamic behaviour of the reservoir in which an objective function is formulated based on a Bayesian approach for optimization. The goal of history matching is to identify the minimum value of an objective function that expresses the misfit between the predicted and measured data of a reservoir. To address the optimization problem, we present a novel application using a combination of the stochastic gradient and finite difference methods for solving inverse problems. The optimization is constrained by a linear equation that contains the reservoir parameters. We reformulate the reservoir model’s parameters and dynamic data by operating the objective function, the approximate gradient of which can guarantee convergence. At each iteration step, we obtain the relatively ‘important’ elements of the gradient, which are subsequently substituted by the values from the Finite Difference method through comparing the magnitude of the components of the stochastic gradient, which forms a new gradient, and we subsequently iterate with the new gradient. Through the application of the Hybrid method, we efficiently and accurately optimize the objective function. We present a number numerical simulations in this paper that show that the method is accurate and computationally efficient. PMID:26252392

  11. Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material

    NASA Astrophysics Data System (ADS)

    Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena

    2011-05-01

    This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.

  12. A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems.

    PubMed

    Ayvaz, M Tamer

    2010-09-20

    This study proposes a linked simulation-optimization model for solving the unknown groundwater pollution source identification problems. In the proposed model, MODFLOW and MT3DMS packages are used to simulate the flow and transport processes in the groundwater system. These models are then integrated with an optimization model which is based on the heuristic harmony search (HS) algorithm. In the proposed simulation-optimization model, the locations and release histories of the pollution sources are treated as the explicit decision variables and determined through the optimization model. Also, an implicit solution procedure is proposed to determine the optimum number of pollution sources which is an advantage of this model. The performance of the proposed model is evaluated on two hypothetical examples for simple and complex aquifer geometries, measurement error conditions, and different HS solution parameter sets. Identified results indicated that the proposed simulation-optimization model is an effective way and may be used to solve the inverse pollution source identification problems. PMID:20633952

  13. Energy optimization in mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  14. Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth

    NASA Astrophysics Data System (ADS)

    Duerinckx, Mitia; Gloria, Antoine

    2016-03-01

    We consider the well-trodden ground of the problem of the homogenization of random integral functionals. When the integrand has standard growth conditions, the qualitative theory is well-understood. When it comes to unbounded functionals, that is, when the domain of the integrand is not the whole space and may depend on the space-variable, there is no satisfactory theory. In this contribution we develop a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with convex growth. We first prove that if the integrand is convex and has p-growth from below (with p > d, the dimension), then it admits homogenization regardless of growth conditions from above. This result, that crucially relies on the existence and sublinearity at infinity of correctors, is also new in the periodic case. In the case of nonconvex integrands, we prove that a similar homogenization result holds provided that the nonconvex integrand admits a two-sided estimate by a convex integrand (the domain of which may depend on the space variable) that itself admits homogenization. This result is of interest to the rigorous derivation of rubber elasticity from polymer physics, which involves the stochastic homogenization of such unbounded functionals.

  15. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE PAGESBeta

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  16. [On the problems of the evolutionary optimization of life history. II. To justification of optimization criterion for nonlinear Leslie model].

    PubMed

    Pasekov, V P

    2013-03-01

    The paper considers the problems in the adaptive evolution of life-history traits for individuals in the nonlinear Leslie model of age-structured population. The possibility to predict adaptation results as the values of organism's traits (properties) that provide for the maximum of a certain function of traits (optimization criterion) is studied. An ideal criterion of this type is Darwinian fitness as a characteristic of success of an individual's life history. Criticism of the optimization approach is associated with the fact that it does not take into account the changes in the environmental conditions (in a broad sense) caused by evolution, thereby leading to losses in the adequacy of the criterion. In addition, the justification for this criterion under stationary conditions is not usually rigorous. It has been suggested to overcome these objections in terms of the adaptive dynamics theory using the concept of invasive fitness. The reasons are given that favor the application of the average number of offspring for an individual, R(L), as an optimization criterion in the nonlinear Leslie model. According to the theory of quantitative genetics, the selection for fertility (that is, for a set of correlated quantitative traits determined by both multiple loci and the environment) leads to an increase in R(L). In terms of adaptive dynamics, the maximum R(L) corresponds to the evolutionary stability and, in certain cases, convergent stability of the values for traits. The search for evolutionarily stable values on the background of limited resources for reproduction is a problem of linear programming. PMID:23755539

  17. Pseudo-time methods for constrained optimization problems governed by PDE

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1995-01-01

    In this paper we present a novel method for solving optimization problems governed by partial differential equations. Existing methods are gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equations per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step since, in most problems of practical interest, the design equation involves much less unknowns that that of either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests show that the new method allows the solution of the optimization problem in a cost of solving the analysis problems just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers.

  18. A finite element based method for solution of optimal control problems

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.; Calise, Anthony J.

    1989-01-01

    A temporal finite element based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables that are expanded in terms of elemental values and simple shape functions. Unlike other variational approaches to optimal control problems, however, time derivatives of the states and costates do not appear in the governing variational equation. Instead, the only quantities whose time derivatives appear therein are virtual states and virtual costates. Also noteworthy among characteristics of the finite element formulation is the fact that in the algebraic equations which contain costates, they appear linearly. Thus, the remaining equations can be solved iteratively without initial guesses for the costates; this reduces the size of the problem by about a factor of two. Numerical results are presented herein for an elementary trajectory optimization problem which show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The goal is to evaluate the feasibility of this approach for real-time guidance applications. To this end, a simplified two-stage, four-state model for an advanced launch vehicle application is presented which is suitable for finite element solution.

  19. On large-scale nonlinear programming techniques for solving optimal control problems

    SciTech Connect

    Faco, J.L.D.

    1994-12-31

    The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.

  20. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    PubMed Central

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  1. Convexity and Stiffness in Energy Functions for Electrostatic Simulations.

    PubMed

    Pujos, Justine S; Maggs, A C

    2015-04-14

    We study the properties of convex functionals which have been proposed for the simulation of charged molecular systems within the Poisson-Boltzmann approximation. We consider the extent to which the functionals reproduce the true fluctuations of electrolytes and thus the one-loop correction to mean field theory-including the Debye-Hückel correction to the free energy of ionic solutions. We also compare the functionals for use in numerical optimization of a mean field model of a charged polymer and show that different functionals have very different stiffnesses leading to substantial differences in accuracy and speed. PMID:26574353

  2. Variational Inequalities in Hilbert Spaces with Measures and Optimal Stopping Problems

    SciTech Connect

    Barbu, Viorel Marinelli, Carlo

    2008-04-15

    We study the existence theory for parabolic variational inequalities in weighted L{sup 2} spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L{sup 2} setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coefficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.

  3. Near-optimal, asymptotic tracking in control problems involving state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Markopoulos, N.; Calise, A. J.

    1993-01-01

    The class of all piecewise time-continuous controllers tracking a given hypersurface in the state space of a dynamical system can be split by the present transformation technique into two disjoint classes; while the first of these contains all controllers which track the hypersurface in finite time, the second contains all controllers that track the hypersurface asymptotically. On this basis, a reformulation is presented for optimal control problems involving state-variable inequality constraints. If the state constraint is regarded as 'soft', there may exist controllers which are asymptotic, two-sided, and able to yield the optimal value of the performance index.

  4. Legendre spectral-collocation method for solving some types of fractional optimal control problems

    PubMed Central

    Sweilam, Nasser H.; Al-Ajami, Tamer M.

    2014-01-01

    In this paper, the Legendre spectral-collocation method was applied to obtain approximate solutions for some types of fractional optimal control problems (FOCPs). The fractional derivative was described in the Caputo sense. Two different approaches were presented, in the first approach, necessary optimality conditions in terms of the associated Hamiltonian were approximated. In the second approach, the state equation was discretized first using the trapezoidal rule for the numerical integration followed by the Rayleigh–Ritz method to evaluate both the state and control variables. Illustrative examples were included to demonstrate the validity and applicability of the proposed techniques. PMID:26257937

  5. Optimization problems for WSNs: trade-off between synchronization errors and energy consumption

    NASA Astrophysics Data System (ADS)

    Manita, Larisa

    2016-02-01

    We discuss a class of optimization problems related to stochastic models of wireless sensor networks (WSNs). We consider a sensor network that consists of a single server node and m groups of identical client nodes. The goal is to minimize the cost functional which accumulates synchronization errors and energy consumption over a given time interval. The control function u(t) = (u1(t),...,um(t)) corresponds to the power of the server node transmitting synchronization signals to the groups of clients. We find the structure of extremal trajectories. We show that optimal solutions for such models can contain singular arcs.

  6. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem

    PubMed Central

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171

  7. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.

    PubMed

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171

  8. Comparison of Two Spatial Optimization Techniques: A Framework to Solve Multiobjective Land Use Distribution Problems

    NASA Astrophysics Data System (ADS)

    Meyer, Burghard Christian; Lescot, Jean-Marie; Laplana, Ramon

    2009-02-01

    Two spatial optimization approaches, developed from the opposing perspectives of ecological economics and landscape planning and aimed at the definition of new distributions of farming systems and of land use elements, are compared and integrated into a general framework. The first approach, applied to a small river catchment in southwestern France, uses SWAT (Soil and Water Assessment Tool) and a weighted goal programming model in combination with a geographical information system (GIS) for the determination of optimal farming system patterns, based on selected objective functions to minimize deviations from the goals of reducing nitrogen and maintaining income. The second approach, demonstrated in a suburban landscape near Leipzig, Germany, defines a GIS-based predictive habitat model for the search of unfragmented regions suitable for hare populations ( Lepus europaeus), followed by compromise optimization with the aim of planning a new habitat structure distribution for the hare. The multifunctional problem is solved by the integration of the three landscape functions (“production of cereals,” “resistance to soil erosion by water,” and “landscape water retention”). Through the comparison, we propose a framework for the definition of optimal land use patterns based on optimization techniques. The framework includes the main aspects to solve land use distribution problems with the aim of finding the optimal or best land use decisions. It integrates indicators, goals of spatial developments and stakeholders, including weighting, and model tools for the prediction of objective functions and risk assessments. Methodological limits of the uncertainty of data and model outcomes are stressed. The framework clarifies the use of optimization techniques in spatial planning.

  9. Comparison of two spatial optimization techniques: a framework to solve multiobjective land use distribution problems.

    PubMed

    Meyer, Burghard Christian; Lescot, Jean-Marie; Laplana, Ramon

    2009-02-01

    Two spatial optimization approaches, developed from the opposing perspectives of ecological economics and landscape planning and aimed at the definition of new distributions of farming systems and of land use elements, are compared and integrated into a general framework. The first approach, applied to a small river catchment in southwestern France, uses SWAT (Soil and Water Assessment Tool) and a weighted goal programming model in combination with a geographical information system (GIS) for the determination of optimal farming system patterns, based on selected objective functions to minimize deviations from the goals of reducing nitrogen and maintaining income. The second approach, demonstrated in a suburban landscape near Leipzig, Germany, defines a GIS-based predictive habitat model for the search of unfragmented regions suitable for hare populations (Lepus europaeus), followed by compromise optimization with the aim of planning a new habitat structure distribution for the hare. The multifunctional problem is solved by the integration of the three landscape functions ("production of cereals," "resistance to soil erosion by water," and "landscape water retention"). Through the comparison, we propose a framework for the definition of optimal land use patterns based on optimization techniques. The framework includes the main aspects to solve land use distribution problems with the aim of finding the optimal or best land use decisions. It integrates indicators, goals of spatial developments and stakeholders, including weighting, and model tools for the prediction of objective functions and risk assessments. Methodological limits of the uncertainty of data and model outcomes are stressed. The framework clarifies the use of optimization techniques in spatial planning. PMID:19015827

  10. hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems

    NASA Astrophysics Data System (ADS)

    Darby, Christopher L.

    2011-12-01

    In this dissertation, a direct hp-pseudospectral method for approximating the solution to nonlinear optimal control problems is proposed. The hp-pseudospectral method utilizes a variable number of approximating intervals and variable-degree polynomial approximations of the state within each interval. Using the hp-discretization, the continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming problem (NLP). The differential-algebraic constraints of the optimal control problem are enforced at a finite set of collocation points, where the collocation points are either the Legendre-Gauss or Legendre-Gauss-Radau quadrature points. These sets of points are chosen because they correspond to high-accuracy Gaussian quadrature rules for approximating the integral of a function. Moreover, Runge phenomenon for high-degree Lagrange polynomial approximations to the state is avoided by using these points. The key features of the hp-method include computational sparsity associated with low-order polynomial approximations and rapid convergence rates associated with higher-degree polynomials approximations. Consequently, the hp-method is both highly accurate and computationally efficient. Two hp-adaptive algorithms are developed that demonstrate the utility of the hp-approach. The algorithms are shown to accurately approximate the solution to general continuous-time optimal control problems in a computationally efficient manner without a priori knowledge of the solution structure. The hp-algorithms are compared empirically against local (h) and global (p) collocation methods over a wide range of problems and are found to be more efficient and more accurate. The hp-pseudospectral approach developed in this research not only provides a high-accuracy approximation to the state and control of an optimal control problem, but also provides high-accuracy approximations to the costate of the optimal control problem. The costate is approximated by mapping the Karush-Kuhn-Tucker (KKT) multipliers of the NLP to the Lagrange multipliers of the continuous-time first-order necessary conditions. It is found that if the costate is continuous, the hp-pseudospectral method is a discrete representation of the continuous-time first-order necessary conditions of the optimal control problem. If the costate is discontinuous, however, and a mesh point is at the location of a discontinuity, the hp-method is an inexact discrete representation of the continuous-time first-order necessary conditions. The computational efficiency and accuracy of the proposed hp -method is demonstrated on several examples ranging from problems whose solutions are smooth to problems whose solutions are not smooth. Furthermore, a particular application of a multiple-pass aeroassisted orbital maneuver is studied. In this application, the minimum-fuel transfer of a small maneuverable spacecraft between two low-Earth orbits (LEO) with an inclination change is analyzed. In the aeroassisted maneuvers, the vehicle deorbits into the atmosphere and uses lift and drag to change its inclination. It is found that the aeroassisted maneuvers are more fuel efficient than all-propulsive maneuvers over a wide range of inclination changes. The examples studied in this dissertation demonstrate the effectiveness of the hp-method.

  11. Compensation of convex corners in sensors with bossed structure etched in TMAH and TMAH+IPA solutions

    NASA Astrophysics Data System (ADS)

    Barycka, Irena; Dziuban, Jan; Kramkowska, Malgorzata; Zubel, Irena

    2001-08-01

    Under etching of convex corners during the fabrication process of pressure sensor with the 'bossed' type structure seriously deteriorates parameters of these devices. The problem can be solved by application of properly designed masks with compensating corners.

  12. DG method for the numerical solution of the state problem in shape optimization

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Šimůnková, M.

    2015-11-01

    In this article we are concerned with the discontinuous Galerkin (DG) method in connection with the numerical solution of the state problem in the field of shape optimization techniques. The presented state problem is described by the stationary energy equation of the system of the mould, glass piece, plunger and plunger cavity arising from the forming process in the glass industry. The attention is paid to the development of the numerical scheme based on the piecewise polynomial, generally discontinuous approximation, which enables to better resolve various phenomena typical for such a heterogeneous medium problem, compared with standard common numerical techniques. The studied problem is supplemented with the preliminary numerical results demonstrating the potency of the proposed scheme.

  13. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  14. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  15. An efficient initialization procedure for simulation and optimization of large distillation problems

    SciTech Connect

    Rabeau, P.; Gani, R.; Leibovici, C.

    1997-10-01

    An efficient initialization procedure for steady-state distillation simulation problems involving a large number of components is presented. The proposed initialization procedure employs lumping and delumping of the components present in the mixture. The problem of initialization is then reduced to a system of component mass balance equations for each plate. The procedure generates good initial estimates and is not time consuming. The method initially developed for petroleum fluids has proven to be efficient also for other hydrocarbon mixtures. This is shown with two series of examples of distillation problems, by comparison with traditional methods of initialization. Two optimization problems solved with a lumped system are also presented and compared to the optimum solution found with the original system.

  16. On the nature of the optimal control problem at leaking underground fuel tank sites

    SciTech Connect

    McDowell, B

    1998-12-01

    In California, leaking underground fuel tank (LUFT) legislation was conceived because of concern that ''time bomb plumes'' would ultimately impact a significant portion of the state's ground and surface water resources. However, it has been found that fuel hydrocarbons (FHC) plumes are stable at relatively short distances from the source in areas of shallow groundwater. In urban areas, these shallow aquifers are not even recommended for use because they are subject to contamination from sewers, storm drains, septic fields and a variety of other sources. After the FHC source has been removed, risk to human health or the environment is insignificant in most cases. For this reason, cleanup to maximum contaminant levels (MCLs) will not significantly reduce the social damages associated with current or near-term human health or ecological risk. Based on these findings, California would be able to save significant resources that had been allocated for LUFT-site cleanup. Non-convexities in the rate of decay function and non-differentiability in the cleanup and social damage functions appear to limit the usefulness of models, such as Caputo and Wilen's (1995), that attempt to characterize the optimal cleanup path using marginal analyses. Furthermore, the effect of active remediation efforts on the natural rate of decay in stable plumes is not taken into account in their model. The imposition of deed restrictions prior to a demonstration of cleanup to MCLs is an additional conservative measure imposed by the California Regional Water Quality Control Boards (RWQCBs) to reduce the uncertainty associated with health risks to future users. These measures impose costs on society in the form of lost rents that have not been considered by regulators. By estimating the differential rents during the time to cleanup, regulators would be able to compare the costs of imposing deed restrictions with the values that society imparts to protection of future users. Both land and water sources are unique in that the value of each is highly dependent upon location. For cost-benefit analysis to be effective, site-specific estimates of property and groundwater values need to be established. Future research may focus on deriving site-specific estimates of restricted and unrestricted land and water usage.

  17. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  18. Ant Colony Optimization with Genetic Operation and Its Application to Traveling Salesman Problem

    NASA Astrophysics Data System (ADS)

    Wang, Rong-Long; Zhou, Xiao-Fan; Okazaki, Kozo

    Ant colony optimization (ACO) algorithms are a recently developed, population-based approach which has been successfully applied to optimization problems. However, in the ACO algorithms it is difficult to adjust the balance between intensification and diversification and thus the performance is not always very well. In this work, we propose an improved ACO algorithm in which some of ants can evolve by performing genetic operation, and the balance between intensification and diversification can be adjusted by numbers of ants which perform genetic operation. The proposed algorithm is tested by simulating the Traveling Salesman Problem (TSP). Experimental studies show that the proposed ACO algorithm with genetic operation has superior performance when compared to other existing ACO algorithms.

  19. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems.

    PubMed

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the "elite strategy" to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  20. Robust optimization model and algorithm for railway freight center location problem in uncertain environment.

    PubMed

    Liu, Xing-Cai; He, Shi-Wei; Song, Rui; Sun, Yang; Li, Hao-Dong

    2014-01-01

    Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA) was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable. PMID:25435867

  1. Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2005-10-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.

  2. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows

    PubMed Central

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-01-01

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following. PMID:26343655

  3. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  4. Robust Optimization Model and Algorithm for Railway Freight Center Location Problem in Uncertain Environment

    PubMed Central

    He, Shi-wei; Song, Rui; Sun, Yang; Li, Hao-dong

    2014-01-01

    Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA) was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable. PMID:25435867

  5. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong

    2015-11-01

    The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. PMID:26356598

  6. Efficient implementation and application of the artificial bee colony algorithm to low-dimensional optimization problems

    NASA Astrophysics Data System (ADS)

    von Rudorff, Guido Falk; Wehmeyer, Christoph; Sebastiani, Daniel

    2014-06-01

    We adapt a swarm-intelligence-based optimization method (the artificial bee colony algorithm, ABC) to enhance its parallel scaling properties and to improve the escaping behavior from deep local minima. Specifically, we apply the approach to the geometry optimization of Lennard-Jones clusters. We illustrate the performance and the scaling properties of the parallelization scheme for several system sizes (5-20 particles). Our main findings are specific recommendations for ranges of the parameters of the ABC algorithm which yield maximal performance for Lennard-Jones clusters and Morse clusters. The suggested parameter ranges for these different interaction potentials turn out to be very similar; thus, we believe that our reported values are fairly general for the ABC algorithm applied to chemical optimization problems.

  7. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  8. The Riccati equation, imprimitive actions and symplectic forms. [with application to decentralized optimal control problem

    NASA Technical Reports Server (NTRS)

    Garzia, M. R.; Loparo, K. A.; Martin, C. F.

    1982-01-01

    This paper looks at the structure of the solution of a matrix Riccati differential equation under a predefined group of transformations. The group of transformations used is an expanded form of the feedback group. It is shown that this group of transformations is a subgroup of the symplectic group. The orbits of the Riccati differential equation under the action of this group are studied and it is seen how these techniques apply to a decentralized optimal control problem.

  9. A General Optimality Conditions for Stochastic Control Problems of Jump Diffusions

    SciTech Connect

    Bahlali, Seid; Chala, Adel

    2012-02-15

    We consider a stochastic control problem where the system is governed by a non linear stochastic differential equation with jumps. The control is allowed to enter into both diffusion and jump terms. By only using the first order expansion and the associated adjoint equation, we establish necessary as well as sufficient optimality conditions of controls for relaxed controls, who are a measure-valued processes.

  10. Applications of numerical optimization methods to helicopter design problems: A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1984-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  11. Applications of numerical optimization methods to helicopter design problems - A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1985-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  12. Applications of numerical optimization methods to helicopter design problems - A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1984-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  13. Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Turner, J. D.; Chun, H. M.

    1984-01-01

    Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.

  14. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  15. Optimization of the heating surface shape in the contact melting problem

    NASA Technical Reports Server (NTRS)

    Fomin, Sergei A.; Cheng, Shangmo

    1991-01-01

    The theoretical analysis of contact melting by the migrating heat source with an arbitrary shaped isothermal heating surface is presented. After the substantiated simplification, the governing equations are transformed to the convenient equations for engineering calculations relationships. Analytical solutions are used for numerical prediction of optimal shape of the heating surface. The problem is investigated for the constant and for temperature dependent physical properties of the melt.

  16. Weak Convergence and Fluid Limits in Optimal Time-to-Empty Queueing Control Problems

    SciTech Connect

    Day, Martin V.

    2011-12-15

    We consider a class of controlled queue length processes, in which the control allocates each server's effort among the several classes of customers requiring its service. Served customers are routed through the network according to (prescribed) routing probabilities. In the fluid rescaling, X{sup n}(t) = 1/nX(nt) , we consider the optimal control problem of minimizing the integral of an undiscounted positive running cost until the first time that X{sup n}=0. Our main result uses weak convergence ideas to show that the optimal value functions V{sup n} of the stochastic control problems for X{sup n}(t) converge (as n{yields}{infinity}) to the optimal value V of a control problem for the limiting fluid process. This requires certain equicontinuity and boundedness hypotheses on (V{sup n}). We observe that these are essentially the same hypotheses that would be needed for the Barles-Perthame approach in terms of semicontinuous viscosity solutions. Sufficient conditions for these equicontinuity and boundedness properties are briefly discussed.

  17. Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem

    NASA Astrophysics Data System (ADS)

    Rotbart, Tal; Reuveni, Shlomi; Urbakh, Michael

    2015-12-01

    We study the effect of restart, and retry, on the mean completion time of a generic process. The need to do so arises in various branches of the sciences and we show that it can naturally be addressed by taking advantage of the classical reaction scheme of Michaelis and Menten. Stopping a process in its midst—only to start it all over again—may prolong, leave unchanged, or even shorten the time taken for its completion. Here we are interested in the optimal restart problem, i.e., in finding a restart rate which brings the mean completion time of a process to a minimum. We derive the governing equation for this problem and show that it is exactly solvable in cases of particular interest. We then continue to discover regimes at which solutions to the problem take on universal, details independent forms which further give rise to optimal scaling laws. The formalism we develop, and the results obtained, can be utilized when optimizing stochastic search processes and randomized computer algorithms. An immediate connection with kinetic proofreading is also noted and discussed.

  18. Coupling ant colony optimization and the extended great deluge algorithm for the discrete facility layout problem

    NASA Astrophysics Data System (ADS)

    Nourelfath, M.; Nahas, N.; Montreuil, B.

    2007-12-01

    This article uses a hybrid optimization approach to solve the discrete facility layout problem (FLP), modelled as a quadratic assignment problem (QAP). The idea of this approach design is inspired by the ant colony meta-heuristic optimization method, combined with the extended great deluge (EGD) local search technique. Comparative computational experiments are carried out on benchmarks taken from the QAP-library and from real life problems. The performance of the proposed algorithm is compared to construction and improvement heuristics such as H63, HC63-66, CRAFT and Bubble Search, as well as other existing meta-heuristics developed in the literature based on simulated annealing (SA), tabu search and genetic algorithms (GAs). This algorithm is compared also to other ant colony implementations for QAP. The experimental results show that the proposed ant colony optimization/extended great deluge (ACO/EGD) performs significantly better than the existing construction and improvement algorithms. The experimental results indicate also that the ACO/EGD heuristic methodology offers advantages over other algorithms based on meta-heuristics in terms of solution quality.

  19. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency. PMID:23193246

  20. A linear decomposition method for large optimization problems. Blueprint for development

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1982-01-01

    A method is proposed for decomposing large optimization problems encountered in the design of engineering systems such as an aircraft into a number of smaller subproblems. The decomposition is achieved by organizing the problem and the subordinated subproblems in a tree hierarchy and optimizing each subsystem separately. Coupling of the subproblems is accounted for by subsequent optimization of the entire system based on sensitivities of the suboptimization problem solutions at each level of the tree to variables of the next higher level. A formalization of the procedure suitable for computer implementation is developed and the state of readiness of the implementation building blocks is reviewed showing that the ingredients for the development are on the shelf. The decomposition method is also shown to be compatible with the natural human organization of the design process of engineering systems. The method is also examined with respect to the trends in computer hardware and software progress to point out that its efficiency can be amplified by network computing using parallel processors.

  1. Randomized fully-scalable BSP techniques for multi-searching and convex hull construction

    SciTech Connect

    Goodrich, M.T.

    1997-06-01

    We study randomized techniques for designing efficient algorithms on a p-processor bulk-synchronous parallel (BSP) computer, which is a parallel multicomputer that allows for general processor-to-processor communication rounds provided each processor is guaranteed to send and receive at most h items in any round. The measure of efficiency we use is in terms of the internal computation time of the processors and the number of communication rounds needed to solve the problem at hand. We present techniques that achieve optimal efficiency in these bounds over all possible values for p, and we call such techniques fully-scalable for this reason. In particular, we address two fundamental problems: multi-searching and convex hull construction. Our methods result in algorithms that use internal time that is O(n log n/p) and, for h = {Theta}(n/p), a number of communication rounds that is O(log n/log (h + 1)) with high probability. Both of these bounds are asymptotically optimal for the BSP model.

  2. Spacecraft fuel-optimal and balancing maneuvers for a class of formation reconfiguration problems

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Lee, Sangjin; Park, Chandeok; Park, Sang-Young

    2013-10-01

    This paper presents fuel optimal and balancing methodologies for reconfiguring multiple spacecraft in formation subject to a Newtonian gravity field. For a kind of continuous-thrust propulsion system, a fuel-optimal control problem is formulated to minimize the integral squared control subject to the linearized Hill or Clohessy-Wiltshire dynamics of relative motion with respect to a circular reference orbit. Palmer's analytical solution for general reconfiguration is adapted to maneuvers between projected circular orbits, resulting in the optimal fuel consumption index as a function of configuration parameters such as orbit radius, phase angle, and transfer time. Parametric analyses reveal unique characteristics of individual fuel optimality and gross fuel consumption: for an arbitrary selection of initial/terminal orbit radii, (i) there exist special transfer times such that individual fuel consumption is optimally uniform for all phase angles, and (ii) the total fuel expenditure for a group of three or more spacecraft is invariant for the relatively same configuration with respect to the departure phase. These results serve to effectively design fuel balancing strategies for formation reconfiguration of multiple spacecraft.

  3. Fuzzy Random λ-Mean SAD Portfolio Selection Problem: An Ant Colony Optimization Approach

    NASA Astrophysics Data System (ADS)

    Thakur, Gour Sundar Mitra; Bhattacharyya, Rupak; Mitra, Swapan Kumar

    2010-10-01

    To reach the investment goal, one has to select a combination of securities among different portfolios containing large number of securities. Only the past records of each security do not guarantee the future return. As there are many uncertain factors which directly or indirectly influence the stock market and there are also some newer stock markets which do not have enough historical data, experts' expectation and experience must be combined with the past records to generate an effective portfolio selection model. In this paper the return of security is assumed to be Fuzzy Random Variable Set (FRVS), where returns are set of random numbers which are in turn fuzzy numbers. A new λ-Mean Semi Absolute Deviation (λ-MSAD) portfolio selection model is developed. The subjective opinions of the investors to the rate of returns of each security are taken into consideration by introducing a pessimistic-optimistic parameter vector λ. λ-Mean Semi Absolute Deviation (λ-MSAD) model is preferred as it follows absolute deviation of the rate of returns of a portfolio instead of the variance as the measure of the risk. As this model can be reduced to Linear Programming Problem (LPP) it can be solved much faster than quadratic programming problems. Ant Colony Optimization (ACO) is used for solving the portfolio selection problem. ACO is a paradigm for designing meta-heuristic algorithms for combinatorial optimization problem. Data from BSE is used for illustration.

  4. Modeling and Optimization of the Multiobjective Stochastic Joint Replenishment and Delivery Problem under Supply Chain Environment

    PubMed Central

    Dun, Cai-xia

    2013-01-01

    As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880

  5. Modeling and optimization of the multiobjective stochastic joint replenishment and delivery problem under supply chain environment.

    PubMed

    Wang, Lin; Qu, Hui; Liu, Shan; Dun, Cai-xia

    2013-01-01

    As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880

  6. Optimal parallel algorithms for problems modeled by a family of intervals

    NASA Technical Reports Server (NTRS)

    Olariu, Stephan; Schwing, James L.; Zhang, Jingyuan

    1992-01-01

    A family of intervals on the real line provides a natural model for a vast number of scheduling and VLSI problems. Recently, a number of parallel algorithms to solve a variety of practical problems on such a family of intervals have been proposed in the literature. Computational tools are developed, and it is shown how they can be used for the purpose of devising cost-optimal parallel algorithms for a number of interval-related problems including finding a largest subset of pairwise nonoverlapping intervals, a minimum dominating subset of intervals, along with algorithms to compute the shortest path between a pair of intervals and, based on the shortest path, a parallel algorithm to find the center of the family of intervals. More precisely, with an arbitrary family of n intervals as input, all algorithms run in O(log n) time using O(n) processors in the EREW-PRAM model of computation.

  7. Sequential RBF surrogate-based efficient optimization method for engineering design problems with expensive black-box functions

    NASA Astrophysics Data System (ADS)

    Peng, Lei; Liu, Li; Long, Teng; Guo, Xiaosong

    2014-11-01

    As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of the material volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems.

  8. Control of water distribution networks with dynamic DMA topology using strictly feasible sequential convex programming

    NASA Astrophysics Data System (ADS)

    Wright, Robert; Abraham, Edo; Parpas, Panos; Stoianov, Ivan

    2015-12-01

    The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. This article was corrected on 12 JAN 2016. See the end of the full text for details.

  9. Rotamer Optimization for Protein Design through MAP Estimation and Problem-Size Reduction

    PubMed Central

    Hong, Eun-Jong; Lippow, Shaun M.; Tidor, Bruce; Lozano-Pérez, Tomás

    2012-01-01

    The search for the global minimum energy conformation (GMEC) of protein side chains is an important computational challenge in protein structure prediction and design. Using rotamer models, the problem is formulated as a NP-hard optimization problem. Dead-end elimination (DEE) methods combined with systematic A* search (DEE/A*) has proven useful, but may not be strong enough as we attempt to solve protein design problems where a large number of similar rotamers is eligible and the network of interactions between residues is dense. In this work, we present an exact solution method, named BroMAP (branch-and-bound rotamer optimization using MAP estimation), for such protein design problems. The design goal of BroMAP is to be able to expand smaller search trees than conventional branch-and-bound methods while performing only a moderate amount of computation in each node, thereby reducing the total running time. To achieve that, BroMAP attempts reduction of the problem size within each node through DEE and elimination by lower bounds from approximate maximum-a-posteriori (MAP) estimation. The lower bounds are also exploited in branching and subproblem selection for fast discovery of strong upper bounds. Our computational results show that BroMAP tends to be faster than DEE/A* for large protein design cases. BroMAP also solved cases that were not solved by DEE/A* within the maximum allowed time, and did not incur significant disadvantage for cases where DEE/A* performed well. Therefore, BroMAP is particularly applicable to large protein design problems where DEE/A* struggles and can also substitute for DEE/A* in general GMEC search. PMID:19123203

  10. A fast finite volume method for conservative space-fractional diffusion equations in convex domains

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2016-04-01

    We develop a fast finite volume method for variable-coefficient, conservative space-fractional diffusion equations in convex domains via a volume-penalization approach. The method has an optimal storage and an almost linear computational complexity. The method retains second-order accuracy without requiring a Richardson extrapolation. Numerical results are presented to show the utility of the method.

  11. Automation of reverse engineering process in aircraft modeling and related optimization problems

    NASA Technical Reports Server (NTRS)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for quadratic programming problems.

  12. Solving iTOUGH2 simulation and optimization problems using the PEST protocol

    SciTech Connect

    Finsterle, S.A.; Zhang, Y.

    2011-02-01

    The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstrate the flexibility added by the PEST protocol for the solution of a variety of simulation-optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems.

  13. Solving optimum operation of single pump unit problem with ant colony optimization (ACO) algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Liu, C.

    2012-11-01

    For pumping stations, the effective scheduling of daily pump operations from solutions to the optimum design operation problem is one of the greatest potential areas for energy cost-savings, there are some difficulties in solving this problem with traditional optimization methods due to the multimodality of the solution region. In this case, an ACO model for optimum operation of pumping unit is proposed and the solution method by ants searching is presented by rationally setting the object function and constrained conditions. A weighted directed graph was constructed and feasible solutions may be found by iteratively searching of artificial ants, and then the optimal solution can be obtained by applying the rule of state transition and the pheromone updating. An example calculation was conducted and the minimum cost was found as 4.9979. The result of ant colony algorithm was compared with the result from dynamic programming or evolutionary solving method in commercial software under the same discrete condition. The result of ACO is better and the computing time is shorter which indicates that ACO algorithm can provide a high application value to the field of optimal operation of pumping stations and related fields.

  14. Phase and TV Based Convex Sets for Blind Deconvolution of Microscopic Images

    NASA Astrophysics Data System (ADS)

    Tofighi, Mohammad; Yorulmaz, Onur; Kose, Kivanc; Yildirim, Deniz Cansen; Cetin-Atalay, Rengul; Cetin, A. Enis

    2016-02-01

    In this article, two closed and convex sets for blind deconvolution problem are proposed. Most blurring functions in microscopy are symmetric with respect to the origin. Therefore, they do not modify the phase of the Fourier transform (FT) of the original image. As a result blurred image and the original image have the same FT phase. Therefore, the set of images with a prescribed FT phase can be used as a constraint set in blind deconvolution problems. Another convex set that can be used during the image reconstruction process is the epigraph set of Total Variation (TV) function. This set does not need a prescribed upper bound on the total variation of the image. The upper bound is automatically adjusted according to the current image of the restoration process. Both of these two closed and convex sets can be used as a part of any blind deconvolution algorithm. Simulation examples are presented.

  15. A modified ant colony optimization to solve multi products inventory routing problem

    NASA Astrophysics Data System (ADS)

    Wong, Lily; Moin, Noor Hasnah

    2014-07-01

    This study considers a one-to-many inventory routing problem (IRP) network consisting of a manufacturer that produces multi products to be transported to many geographically dispersed customers. We consider a finite horizon where a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, transport products from the warehouse to meet the demand specified by the customers in each period. The demand for each product is deterministic and time varying and each customer requests a distinct product. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount on inventory and to construct a delivery schedule that minimizes both the total transportation and inventory holding costs while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer solution) for each problem considered. We propose a modified ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. ACO performs better on large instances compared to the upper bound.

  16. A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems

    NASA Astrophysics Data System (ADS)

    Kollat, J. B.; Reed, P. M.; Kasprzyk, J. R.

    2008-05-01

    This study focuses on the development of a next generation multiobjective evolutionary algorithm (MOEA) that can learn and exploit complex interdependencies and/or correlations between decision variables in monitoring design applications to provide more robust performance for large problems (defined in terms of both the number of objectives and decision variables). The proposed MOEA is termed the epsilon-dominance hierarchical Bayesian optimization algorithm ( ɛ-hBOA), which is representative of a new class of probabilistic model building evolutionary algorithms. The ɛ-hBOA has been tested relative to a top-performing traditional MOEA, the epsilon-dominance nondominated sorted genetic algorithm II ( ɛ-NSGAII) for solving a four-objective LTM design problem. A comprehensive performance assessment of the ɛ-NSGAII and various configurations of the ɛ-hBOA have been performed for both a 25 well LTM design test case (representing a relatively small problem with over 33 million possible designs), and a 58 point LTM design test case (with over 2.88×1017 possible designs). The results from this comparison indicate that the model building capability of the ɛ-hBOA greatly enhances its performance relative to the ɛ-NSGAII, especially for large monitoring design problems. This work also indicates that decision variable interdependencies appear to have a significant impact on the overall mathematical difficulty of the monitoring network design problem.

  17. Robust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization

    NASA Astrophysics Data System (ADS)

    Vafaeinezhad, Moghadaseh; Kia, Reza; Shahnazari-Shahrezaei, Parisa

    2015-11-01

    Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and worker assignment is implemented with uncertain scenario-based data. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all possible future scenarios. In this research, miscellaneous cost parameters of the cell formation and demand fluctuations are subject to uncertainty and a mixed-integer nonlinear programming model is developed to formulate the related robust dynamic cell formation problem. The objective function seeks to minimize total costs including machine constant, machine procurement, machine relocation, machine operation, inter-cell and intra-cell movement, overtime, shifting labors between cells and inventory holding. Finally, a case study is carried out to display the robustness and effectiveness of the proposed model. The tradeoff between solution robustness and model robustness is also analyzed in the obtained results.

  18. A Stochastic Optimal Control Problem For Predation of Models And Mimics

    NASA Astrophysics Data System (ADS)

    Tsoularis, A.

    2007-11-01

    In Ecology, the term mimicry describes a situation in which one type of species, the mimic, shares common external features with another type of species, the model with the sole purpose of confusing potential predators. In Batesian mimicry, named after Henry Walter Bates, the English naturalist, the mimics, which are palatable to predators, send similar signals to model species, which are unpalatable. His theory of mimicry postulates that predators tend to avoid nauseous (in smell or taste) models and the mimics derive some form of protection by resembling the models. This theory carries the assumption that models are more abundant than mimics so that predators can learn to avoid them. In this work a stochastic optimal control problem for optimal predation is presented. The objective is to maximize the predator's net energetic benefit. Mimic consumption is beneficial (positive) whereas model consumption is detrimental (negative).

  19. A GENERALIZED STOCHASTIC COLLOCATION APPROACH TO CONSTRAINED OPTIMIZATION FOR RANDOM DATA IDENTIFICATION PROBLEMS

    SciTech Connect

    Webster, Clayton G; Gunzburger, Max D

    2013-01-01

    We present a scalable, parallel mechanism for stochastic identification/control for problems constrained by partial differential equations with random input data. Several identification objectives will be discussed that either minimize the expectation of a tracking cost functional or minimize the difference of desired statistical quantities in the appropriate $L^p$ norm, and the distributed parameters/control can both deterministic or stochastic. Given an objective we prove the existence of an optimal solution, establish the validity of the Lagrange multiplier rule and obtain a stochastic optimality system of equations. The modeling process may describe the solution in terms of high dimensional spaces, particularly in the case when the input data (coefficients, forcing terms, boundary conditions, geometry, etc) are affected by a large amount of uncertainty. For higher accuracy, the computer simulation must increase the number of random variables (dimensions), and expend more effort approximating the quantity of interest in each individual dimension. Hence, we introduce a novel stochastic parameter identification algorithm that integrates an adjoint-based deterministic algorithm with the sparse grid stochastic collocation FEM approach. This allows for decoupled, moderately high dimensional, parameterized computations of the stochastic optimality system, where at each collocation point, deterministic analysis and techniques can be utilized. The advantage of our approach is that it allows for the optimal identification of statistical moments (mean value, variance, covariance, etc.) or even the whole probability distribution of the input random fields, given the probability distribution of some responses of the system (quantities of physical interest). Our rigorously derived error estimates, for the fully discrete problems, will be described and used to compare the efficiency of the method with several other techniques. Numerical examples illustrate the theoretical results and demonstrate the distinctions between the various stochastic identification objectives.

  20. Improving the accuracy of convexity splitting methods for gradient flow equations

    NASA Astrophysics Data System (ADS)

    Glasner, Karl; Orizaga, Saulo

    2016-06-01

    This paper introduces numerical time discretization methods which significantly improve the accuracy of the convexity-splitting approach of Eyre (1998) [7], while retaining the same numerical cost and stability properties. A first order method is constructed by iteration of a semi-implicit method based upon decomposing the energy into convex and concave parts. A second order method is also presented based on backwards differentiation formulas. Several extrapolation procedures for iteration initialization are proposed. We show that, under broad circumstances, these methods have an energy decreasing property, leading to good numerical stability. The new schemes are tested using two evolution equations commonly used in materials science: the Cahn-Hilliard equation and the phase field crystal equation. We find that our methods can increase accuracy by many orders of magnitude in comparison to the original convexity-splitting algorithm. In addition, the optimal methods require little or no iteration, making their computation cost similar to the original algorithm.

  1. A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements

    NASA Astrophysics Data System (ADS)

    Pu, Xun; Lu, XianLiang

    2011-10-01

    Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.

  2. Optimal discrete-time LQR problems for parabolic systems with unbounded input: Approximation and convergence

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An abstract approximation and convergence theory for the closed-loop solution of discrete-time linear-quadratic regulator problems for parabolic systems with unbounded input is developed. Under relatively mild stabilizability and detectability assumptions, functional analytic, operator techniques are used to demonstrate the norm convergence of Galerkin-based approximations to the optimal feedback control gains. The application of the general theory to a class of abstract boundary control systems is considered. Two examples, one involving the Neumann boundary control of a one-dimensional heat equation, and the other, the vibration control of a cantilevered viscoelastic beam via shear input at the free end, are discussed.

  3. Rotation in vibration, optimization, and aeroelastic stability problems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.

    1974-01-01

    The effects of rotation in the areas of vibrations, dynamic stability, optimization, and aeroelasticity were studied. The governing equations of motion for the study of vibration and dynamic stability of a rapidly rotating deformable body were developed starting from the nonlinear theory of elasticity. Some common features such as the limitations of the classical theory of elasticity, the choice of axis system, the property of self-adjointness, the phenomenon of frequency splitting, shortcomings of stability methods as applied to gyroscopic systems, and the effect of internal and external damping on stability in gyroscopic systems are identified and discussed, and are then applied to three specific problems.

  4. On strongly GA-convex functions and stochastic processes

    SciTech Connect

    Bekar, Nurgül Okur; Akdemir, Hande Günay; İşcan, İmdat

    2014-08-20

    In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.

  5. Hybrid particle swarm optimization for hybrid flowshop scheduling problem with maintenance activities.

    PubMed

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  6. Vector direction of filled function method on solving unconstrained global optimization problem

    NASA Astrophysics Data System (ADS)

    Napitupulu, Herlina; Mohd, Ismail Bin

    2016-02-01

    Filled function method is one of deterministic methods for solving global minimization problems. Filled function algorithm method generally contains of two main phases. First phase is to obtain local minimizer of objective function, second is to obtain minimizer or saddle point of filled function. In the second phase, vector direction plays an important role on finding stationary point of filled function, by assist in escaping from neighborhood of current minimizer of objective function of the first phase. In this paper, we introduce parameter free filled function and some typical vector direction to be applied in filled function algorithm. The algorithm method is implemented into some benchmark test functions. General computational and numerical results are presented to show the performance of each vector direction on filled function method for solving two dimensional unconstrained global optimization problems.

  7. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  8. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  9. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    PubMed Central

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  10. Microcanonical optimization algorithm for the Euclidean Steiner problem in Rn with application to phylogenetic inference.

    PubMed

    Montenegro, Flávio; Torreão, José R A; Maculan, Nelson

    2003-11-01

    The Euclidean Steiner tree problem in R(n) (ESTP) is that of finding the shortest interconnecting network spanning p given nodes in the Euclidean R(n), with the possible use of extra nodes. Combinatorial explosion precludes the use of exact methods for large high-dimensional ESTP instances, but very few heuristic approaches have so far been proposed for them. Here we introduce a microcanonical optimization algorithm that works over a topology-describing data structure associated to the ESTP solutions, and which is proven able to find close-to-minimum Steiner trees in reasonable computational time, even for configurations of up to p=50 points in n=50 dimensions. Moreover, its performance is shown to increase with n, which makes it especially suited for high-dimensional clustering problems such as those of phylogenetic inference, an instance of which is considered here. PMID:14682906

  11. Optimal control problems with mixed control-phase variable equality and inequality constraints

    NASA Technical Reports Server (NTRS)

    Makowski, K.; Neustad, L. W.

    1974-01-01

    In this paper, necessary conditions are obtained for optimal control problems containing equality constraints defined in terms of functions of the control and phase variables. The control system is assumed to be characterized by an ordinary differential equation, and more conventional constraints, including phase inequality constraints, are also assumed to be present. Because the first-mentioned equality constraint must be satisfied for all t (the independent variable of the differential equation) belonging to an arbitrary (prescribed) measurable set, this problem gives rise to infinite-dimensional equality constraints. To obtain the necessary conditions, which are in the form of a maximum principle, an implicit-function-type theorem in Banach spaces is derived.

  12. Local Convexity-Preserving C2 Rational Cubic Spline for Convex Data

    PubMed Central

    Abd Majid, Ahmad; Ali, Jamaludin Md.

    2014-01-01

    We present the smooth and visually pleasant display of 2D data when it is convex, which is contribution towards the improvements over existing methods. This improvement can be used to get the more accurate results. An attempt has been made in order to develop the local convexity-preserving interpolant for convex data using C2 rational cubic spline. It involves three families of shape parameters in its representation. Data dependent sufficient constraints are imposed on single shape parameter to conserve the inherited shape feature of data. Remaining two of these shape parameters are used for the modification of convex curve to get a visually pleasing curve according to industrial demand. The scheme is tested through several numerical examples, showing that the scheme is local, computationally economical, and visually pleasing. PMID:24757421

  13. Application of optimization to the inverse problem of finding the worst-case heating configuration in a fire

    SciTech Connect

    Romero, V.J.; Eldred, M.S.; Bohnhoff, W.J.; Outka, D.E.

    1995-07-01

    Thermal optimization procedures have been applied to determine the worst-case heating boundary conditions that a safety device can be credibly subjected to. There are many interesting aspects of this work in the areas of thermal transport, optimization, discrete modeling, and computing. The forward problem involves transient simulations with a nonlinear 3-D finite element model solving a coupled conduction/radiation problem. Coupling to the optimizer requires that boundary conditions in the thermal model be parameterized in terms of the optimization variables. The optimization is carried out over a diverse multi-dimensional parameter space where the forward evaluations are computationally expensive and of unknown duration a priori. The optimization problem is complicated by numerical artifacts resulting from discrete approximation and finite computer precision, as well as theoretical difficulties associated with navigating to a global minimum on a nonconvex objective function having a fold and several local minima. In this paper we report on the solution of the optimization problem, discuss implications of some of the features of this problem on selection of a suitable and efficient optimization algorithm, and share lessons learned, fixes implemented, and research issues identified along the way.

  14. Deriving multiple near-optimal solutions to deterministic reservoir operation problems

    NASA Astrophysics Data System (ADS)

    Liu, Pan; Cai, Ximing; Guo, Shenglian

    2011-08-01

    Even deterministic reservoir operation problems with a single objective function may have multiple near-optimal solutions (MNOS) whose objective values are equal or sufficiently close to the optimum. MNOS is valuable for practical reservoir operation decisions because having a set of alternatives from which to choose allows reservoir operators to explore multiple options whereas the traditional algorithm that produces a single optimum does not offer them this flexibility. This paper presents three methods: the near-shortest paths (NSP) method, the genetic algorithm (GA) method, and the Markov chain Monte Carlo (MCMC) method, to explore the MNOS. These methods, all of which require a long computation time, find MNOS using different approaches. To reduce the computation time, a narrower subspace, namely a near-optimal space (NOSP, described by the maximum and minimum bounds of MNOS) is derived. By confining the MNOS search within the NOSP, the computation time of the three methods is reduced. The proposed methods are validated with a test function before they are examined with case studies of both a single reservoir (the Three Gorges Reservoir in China) and a multireservoir system (the Qing River Cascade Reservoirs in China). It is found that MNOS exists for the deterministic reservoir operation problems. When comparing the three methods, the NSP method is unsuitable for large-scale problems but provides a benchmark to which solutions of small- and medium-scale problems can be compared. The GA method can produce some MNOS but is not very efficient in terms of the computation time. Finally, the MCMC method performs best in terms of goodness-of-fit to the benchmark and computation time, since it yields a wide variety of MNOS based on all retained intermediate results as potential MNOS. Two case studies demonstrate that the MNOS identified in this study are useful for real-world reservoir operation, such as the identification of important operation time periods and tradeoffs among objectives in multipurpose reservoirs.

  15. Research on inverse, hybrid and optimization problems in engineering sciences with emphasis on turbomachine aerodynamics: Review of Chinese advances

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.

  16. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

    PubMed

    Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

    2015-02-01

    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite. PMID:24951713

  17. Allometric relationships between traveltime channel networks, convex hulls, and convexity measures

    NASA Astrophysics Data System (ADS)

    Tay, Lea Tien; Sagar, B. S. Daya; Chuah, Hean Teik

    2006-06-01

    The channel network (S) is a nonconvex set, while its basin [C(S)] is convex. We remove open-end points of the channel connectivity network iteratively to generate a traveltime sequence of networks (Sn). The convex hulls of these traveltime networks provide an interesting topological quantity, which has not been noted thus far. We compute lengths of shrinking traveltime networks L(Sn) and areas of corresponding convex hulls C(Sn), the ratios of which provide convexity measures CM(Sn) of traveltime networks. A statistically significant scaling relationship is found for a model network in the form L(Sn) ˜ A[C(Sn)]0.57. From the plots of the lengths of these traveltime networks and the areas of their corresponding convex hulls as functions of convexity measures, new power law relations are derived. Such relations for a model network are CM(Sn) ˜ ? and CM(Sn) ˜ ?. In addition to the model study, these relations for networks derived from seven subbasins of Cameron Highlands region of Peninsular Malaysia are provided. Further studies are needed on a large number of channel networks of distinct sizes and topologies to understand the relationships of these new exponents with other scaling exponents that define the scaling structure of river networks.

  18. On the Optimization of the Inverse Problem for Bouguer Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Velasco, A. A.; Gutierrez, A. E.

    2013-12-01

    Inverse modeling of gravity data presents a very ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting Earth's model. Although implementing 2- and 3-Dimensional gravitational inverse problems can determine the structural composition of the Earth, traditional inverse modeling approaches can be very unstable. A model of the shallow substructure is based on the density contrasts of anomalous bodies -with different densities with respect to a uniform region- or the boundaries between layers in a layered environment. We implement an interior-point method constrained optimization technique to improve the 2-D model of the Earth's structure through the use of known density constraints for transitional areas obtained from previous geological observations (e.g. core samples, seismic surveys, etc.). The proposed technique is applied to both synthetic data and gravitational data previously obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. We find improvements on the models obtained from this optimization scheme given that getting rid of geologically unacceptable models that would otherwise meet the required geophysical properties reduces the solution space.

  19. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.

  20. Solution to automatic generation control problem using firefly algorithm optimized I(λ)D(µ) controller.

    PubMed

    Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul

    2014-03-01

    Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations. PMID:24139308

  1. Parallel-vector computation for linear structural analysis and non-linear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.

    1991-01-01

    Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.

  2. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    PubMed Central

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  3. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    PubMed

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc; Geiselmann, Johannes; de Jong, Hidde

    2016-03-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  4. Stable and accurate hybrid finite volume methods based on pure convexity arguments for hyperbolic systems of conservation law

    NASA Astrophysics Data System (ADS)

    De Vuyst, Florian

    2004-01-01

    This exploratory work tries to present first results of a novel approach for the numerical approximation of solutions of hyperbolic systems of conservation laws. The objective is to define stable and "reasonably" accurate numerical schemes while being free from any upwind process and from any computation of derivatives or mean Jacobian matrices. That means that we only want to perform flux evaluations. This would be useful for "complicated" systems like those of two-phase models where solutions of Riemann problems are hard, see impossible to compute. For Riemann or Roe-like solvers, each fluid model needs the particular computation of the Jacobian matrix of the flux and the hyperbolicity property which can be conditional for some of these models makes the matrices be not R-diagonalizable everywhere in the admissible state space. In this paper, we rather propose some numerical schemes where the stability is obtained using convexity considerations. A certain rate of accuracy is also expected. For that, we propose to build numerical hybrid fluxes that are convex combinations of the second-order Lax-Wendroff scheme flux and the first-order modified Lax-Friedrichs scheme flux with an "optimal" combination rate that ensures both minimal numerical dissipation and good accuracy. The resulting scheme is a central scheme-like method. We will also need and propose a definition of local dissipation by convexity for hyperbolic or elliptic-hyperbolic systems. This convexity argument allows us to overcome the difficulty of nonexistence of classical entropy-flux pairs for certain systems. We emphasize the systematic feature of the method which can be fastly implemented or adapted to any kind of systems, with general analytical or data-tabulated equations of state. The numerical results presented in the paper are not superior to many existing state-of-the-art numerical methods for conservation laws such as ENO, MUSCL or central scheme of Tadmor and coworkers. The interest is rather the systematic feature of the method and its very fast implementation for prototypying and fluid model validation. In this context, the Rusanov scheme is often used; the present approach here gives far better results.

  5. LP based approach to optimal stable matchings

    SciTech Connect

    Teo, Chung-Piaw; Sethuraman, J.

    1997-06-01

    We study the classical stable marriage and stable roommates problems using a polyhedral approach. We propose a new LP formulation for the stable roommates problem. This formulation is non-empty if and only if the underlying roommates problem has a stable matching. Furthermore, for certain special weight functions on the edges, we construct a 2-approximation algorithm for the optimal stable roommates problem. Our technique uses a crucial geometry of the fractional solutions in this formulation. For the stable marriage problem, we show that a related geometry allows us to express any fractional solution in the stable marriage polytope as convex combination of stable marriage solutions. This leads to a genuinely simple proof of the integrality of the stable marriage polytope. Based on these ideas, we devise a heuristic to solve the optimal stable roommates problem. The heuristic combines the power of rounding and cutting-plane methods. We present some computational results based on preliminary implementations of this heuristic.

  6. The Influence of Pump-and-Treat Problem Formulation on the Performance of a Hybrid Global-Local Optimizer

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Gray, G. A.

    2011-12-01

    Pump-and-treat systems are a common strategy for groundwater remediation, wherein a system of extraction wells is installed at an affected site to address pollutant migration. In this context, the likely performance of candidate remedial systems is often assessed using groundwater flow modeling. When linked with an optimizer, these models can be utilized to identify a least-cost system design that nonetheless satisfies remediation goals. Moreover, the resulting design problems serve as important tools in the development and testing of optimization algorithms. For example, consider EAGLS (Evolutionary Algorithm Guiding Local Search), a recently developed derivative-free simulation-optimization code that seeks to efficiently solve nonlinear problems by hybridizing local and global search techniques. The EAGLS package was designed to specifically target mixed variable problems and has a limited ability to intelligently adapt its behavior to given problem characteristics. For instance, to solve problems in which there are no discrete or integer variables, the EAGLS code defaults to a multi-start asynchronous parallel pattern search. Therefore, to better understand the behavior of EAGLS, the algorithm was applied to a representative dual-plume pump-and-treat containment problem. A series of numerical experiments were performed involving four different formulations of the underlying pump-and-treat optimization problem, namely: (1) optimization of pumping rates, given fixed number of wells at fixed locations; (2) optimization of pumping rates and locations of a fixed number of wells; (3) optimization of pumping rates and number of wells at fixed locations; and (4) optimization of pumping rates, locations, and number of wells. Comparison of the performance of the EAGLS software with alternative search algorithms across different problem formulations yielded new insights for improving the EAGLS algorithm and enhancing its adaptive behavior.

  7. Stability analysis for neural networks with time-varying delay based on quadratic convex combination.

    PubMed

    Zhang, Huaguang; Yang, Feisheng; Liu, Xiaodong; Zhang, Qingling

    2013-04-01

    In this paper, a novel method is developed for the stability problem of a class of neural networks with time-varying delay. New delay-dependent stability criteria in terms of linear matrix inequalities for recurrent neural networks with time-varying delay are derived by the newly proposed augmented simple Lyapunov-Krasovski functional. Different from previous results by using the first-order convex combination property, our derivation applies the idea of second-order convex combination and the property of quadratic convex function which is given in the form of a lemma without resorting to Jensen's inequality. A numerical example is provided to verify the effectiveness and superiority of the presented results. PMID:24808373

  8. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    NASA Astrophysics Data System (ADS)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.

  9. Hodograph analysis in aircraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    Cliff, Eugene M.; Seywald, Hans; Bless, Robert R.

    1993-01-01

    An account is given of key geometrical concepts involved in the use of a hodograph as an optimal control theory resource which furnishes a framework for geometrical interpretation of the minimum principle. Attention is given to the effects of different convexity properties on the hodograph, which bear on the existence of solutions and such types of controls as chattering controls, 'bang-bang' control, and/or singular control. Illustrative aircraft trajectory optimization problems are examined in view of this use of the hodograph.

  10. Some Optimal Runge-Kutta Collocation Methods for Stiff Problems and DAEs

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinto, S.; Hernández-Abreu, D.; Montijano, J. I.

    2008-09-01

    A new family of implicit Runge-Kutta methods was introduced at ICCAM 2008 (Gent) by the present authors. This family of methods is intended to solve numerically stiff problems and DAEs. The s-stage method (for s⩾3) has the following features: it is a collocation method depending on a real free parameter β, has classical convergence order 2s-3 and is strongly A-stable for β ranging in some nonempty open interval Is = (-γs,0). In addition, for β∈Is, all the collocation nodes fall in the interval [0,1]. Moreover, these methods also involve a similar computational cost as that of the corresponding counterpart in the Runge-Kutta Radau IIA family (the method having the same classical order) when solving for their stage values. However, our methods have the additional advantage of possessing a higher stage order than the respective Radau IIA counterparts. This circumstance is important when integrating stiff problems in which case most of numerical methods are affected by an order reduction. In this talk we discuss how to optimize the free parameter depending on the special features of the kind of stiff problems and DAEs to be solved. This point is highly important in order to make competitive our methods when compared with those of the Radau IIA family.

  11. Convex nonnegative matrix factorization with manifold regularization.

    PubMed

    Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong

    2015-03-01

    Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. PMID:25523040

  12. Compact coverings for Baire locally convex spaces

    NASA Astrophysics Data System (ADS)

    Ka[Combining Cedilla]Kol, J.; Lopez Pellicer, M.

    2007-08-01

    Very recently Tkachuk has proved that for a completely regular Hausdorff space X the space Cp(X) of continuous real-valued functions on X with the pointwise topology is metrizable, complete and separable iff Cp(X) is Baire (i.e. of the second Baire category) and is covered by a family of compact sets such that K[alpha][subset of]K[beta] if [alpha][less-than-or-equals, slant][beta]. Our general result, which extends some results of De Wilde, Sunyach and Valdivia, states that a locally convex space E is separable metrizable and complete iff E is Baire and is covered by an ordered family of relatively countably compact sets. Consequently every Baire locally convex space which is quasi-Suslin is separable metrizable and complete.

  13. Subaperture stitching test of large steep convex spheres.

    PubMed

    Chen, Shanyong; Xue, Shuai; Dai, Yifan; Li, Shengyi

    2015-11-01

    Limited by the aperture and f/number of the transmission sphere (TS), large convex spheres with very small R/number (ratio of the radius of curvature to the aperture) cannot be tested in a single measurement with a standard interferometer. We present the algorithm and troubleshooting for subaperture stitching test of a half meter-class convex sphere with R/0.61. Totally 90 off-axis subapertures are arranged on 5 rings around the central one. Since the subaperture is so small, its surface error is comparable with that of the TS reference error. Hence a self-calibrated stitching algorithm is proposed to separate the reference error from the measurements. Another serious problem is the nonlinear mapping between the subaperture's local coordinates and the full aperture's global coordinates. The nonlinearity increases remarkably with the off-axis angle. As a result, we cannot directly remove power from the full aperture error map as we usually do. Otherwise incorrect spherical aberration will be generated. We therefore propose the sphericity assessment algorithm to match the stitched surface error with a best-fit sphere. The residual is true surface error which can be used for corrective figuring or for tolerance assessment. The self-calibrated stitching and troubleshooting are demonstrated experimentally. PMID:26561174

  14. Convex cone-based endmember extraction for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Tsai, Ching Tsorng; Yang, Ching Wen; Chang, Chein-I.

    2010-08-01

    N-finder algorithm (N-FINDR) is a simplex-based fully abundance constrained technique which is operated on the original data space. This paper presents an approach, convex-cone N-FINDR (CC N-FINDR) which combines N-FINDR with convex cone data obtained from the original data so as to improve the N-FINDR in computational complexity and performance. The same convex cone approach can be also applied to simplex growing algorithm (SGA) to derive a new convex cone-based growing algorithm (CCGA) which also improves the SGA in the same manner as it does for NFINDR. With success in CC N-FINDR and CCGA a similar treatment of using convex cone can be further used to improve any endmember extraction algorithm (EEA). Experimental results are included to demonstrate advantages of the convex cone-based EEAs over EEAs without using convex cone.

  15. On the convexity of relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ibáñez, José M.; Cordero-Carrión, Isabel; Martí, José M.; Miralles, Juan A.

    2013-03-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla

  16. An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension

    PubMed Central

    Pesin, Yakov B.; Niu, Xun; Latash, Mark L.

    2010-01-01

    We consider the problem of what is being optimized in human actions with respect to various aspects of human movements and different motor tasks. From the mathematical point of view this problem consists of finding an unknown objective function given the values at which it reaches its minimum. This problem is called the inverse optimization problem. Until now the main approach to this problems has been the cut-and-try method, which consists of introducing an objective function and checking how it reflects the experimental data. Using this approach, different objective functions have been proposed for the same motor action. In the current paper we focus on inverse optimization problems with additive objective functions and linear constraints. Such problems are typical in human movement science. The problem of muscle (or finger) force sharing is an example. For such problems we obtain sufficient conditions for uniqueness and propose a method for determining the objective functions. To illustrate our method we analyze the problem of force sharing among the fingers in a grasping task. We estimate the objective function from the experimental data and show that it can predict the force-sharing pattern for a vast range of external forces and torques applied to the grasped object. The resulting objective function is quadratic with essentially non-zero linear terms. PMID:19902213

  17. Convex crystal x-ray spectrometer for laser plasma experiments

    SciTech Connect

    May, M.; Heeter, R.; Emig, J.

    2004-10-01

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.

  18. A solution by operational calculus to the problem of the optimization of tidal power

    NASA Astrophysics Data System (ADS)

    Alderson, Steven G.

    1992-01-01

    The linear response of a rectangular tidal basin is derived using Laplace transforms. The exact solution to the problem of a basin forced from its mouth is then determined in order to model tidal power generation schemes. For operation at fixed flow through the barrier, the solution confirms Robinson's (1980) criterion for the optimum duration of flow in each half-period without pumping. Any barrier flow regime can be approximated as a summation of short square pulses. The total energy generated can be optimized by integration over a tidal cycle. The method provides a useful first-order investigative tool for proposed operating regimes. It has the advantage over more complex models of allowing a wide range of parameters to be easily and cheaply varied.

  19. An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems

    NASA Technical Reports Server (NTRS)

    Deng, Qingping

    1996-01-01

    A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.

  20. A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1988-01-01

    The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear.