Science.gov

Sample records for cool ideas hot

  1. Cool systems for hot cities

    SciTech Connect

    Akbari, Hashem; Bretz, Sarah

    1998-09-02

    On a hot summer day, Los Angeles, CA, like Baltimore, MD, Phoenix, AZ, Washington, D.C., and Tokyo, Japan, is c. 6-8 degrees F hotter than its surrounding areas. Dark buildings and pavement have replaced urban vegetation in these cities, absorbing more solar heat. The urban heat islands that are created result in increased air-conditioning costs, energy use, and pollution. Scientists at the Lawrence Berkeley National Laboratory have been studying the effects of roof system color and type on the energy used to cool a building. The results of this research indicate that roofing professionals should consider the reflectance (albedo) and emittance (release of absorbed heat) of the roof systems they install.

  2. "Hot" for Warm Water Cooling

    SciTech Connect

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  3. Personal cooling in hot workings

    SciTech Connect

    Tuck, M.A.

    1999-07-01

    The number of mines experiencing climatic difficulties worldwide is increasing. In a large number of cases these climatic difficulties are confined to working areas only or to specific locations within working areas. Thus the problem in these mines can be described as highly localized, due to a large extent not to high rock temperatures but due to machine heat loads and low airflow rates. Under such situations conventional means of controlling the climate can be inapplicable and/or uneconomic. One possible means of achieving the required level of climatic control, to ensure worker health and safety whilst achieving economic gains, is to adopt a system of active man cooling. This is the reverse of normal control techniques where the cooling power of the ventilating air is enhanced in some way. Current methods of active man cooling include ice jackets and various umbilical cord type systems. These have numerous drawbacks, such as limited useful exposure times and limitations to worker mobility. The paper suggests an alternative method of active man cooling than those currently available and reviews the design criteria for such a garment. The range of application of such a garment is discussed, under both normal and emergency situations.

  4. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  6. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  7. Cool and hot flux ropes, their helicity

    NASA Astrophysics Data System (ADS)

    Nindos, Alexander

    2016-07-01

    We will review recent indirect and direct evidence for the existence of magnetic flux ropes in the solar atmosphere. Magnetic flux ropes may appear as S-shaped or reverse S-shaped (sigmoidal) structures in regions that are likely to erupt, and may also show in nonlinear force-free field extrapolations that use data from photospheric vector magnetograms as boundary condition. The availability of high sensitivity data recorded with unprecedented spatial and temporal resolution in hot EUV wavelengths by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has revealed the existence of coherent structures identified as hot flux ropes. In this presentation, we will review the properties of both cool and hot flux ropes with an emphasis on the frequency of their occurrence in large flares and on their magnetic helicity content.

  8. 10. NEEDLE SHOWER IN COOLING ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. NEEDLE SHOWER IN COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  9. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  10. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  11. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  12. Cooling method prolongs life of hot-wire transducer

    NASA Technical Reports Server (NTRS)

    Baldwin, L. V.; Sandborn, V. A.

    1964-01-01

    To cool a hot-wire transducer, the two ends of the wire are supported on thermally and electrically conductive rods, surrounded by a fluid cooling medium. By keeping the supporting rods at a substantially constant temperature, the probe is prevented from overheating.

  13. Cooling scheme for turbine hot parts

    DOEpatents

    Hultgren, Kent Goran; Owen, Brian Charles; Dowman, Steven Wayne; Nordlund, Raymond Scott; Smith, Ricky Lee

    2000-01-01

    A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

  14. Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon

    2016-06-01

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.

  15. Cooling system optimization analysis for hot forming processes

    NASA Astrophysics Data System (ADS)

    Ghoo, Bonyoung; Umezu, Yasuyoshi; Watanabe, Yuko

    2013-12-01

    Hot forming technology was developed to produce automotive panels having ultra-high tensile stress over 1500MPa. The elevated temperature corresponds with decreased flow stress and increased ductility. Furthermore, hot forming products have almost zero springback amounts. This advanced forming technology accelerates the needs for numerical simulations coupling with thermal-mechanical formulations. In the present study, 3-dimensional finite element analyses for hot forming processes are conducted using JSTAMP/NV and LS-DYNA considering cooling system. Special attention is paid to the optimization of cooling system using thermo-mechanical finite element analysis through the influence of various cooling parameters. The presented work shows an adequate cooling system functions and microstructural phase transformation material model together with a proper set of numerical parameters can give both efficient and accurate design insight in hot forming manufacturing process. JSTAMP/NV and LS-DYNA can become a robust combination set for complex hot forming analysis which needs thermo-mechanical and microstructural material modeling and various process modeling. The use of the new JSTAMP/NV function for multishot manufacturing process is shown good capabilities in cooling system evaluation. And the use of the advanced LS-DYNA microstructural phase transformation model is shown good evaluation results in martensite amount and Vickers hardness after quenching.

  16. Plasmas are Hot and Fusion is Cool

    SciTech Connect

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  17. Who's bringing you hot ideas and how are you responding?

    PubMed

    Davenport, Thomas H; Prusak, Laurence; Wilson, H James

    2003-02-01

    There's an unsung hero in your organization. It's the person who's bringing in new ideas from the outside about how to manage better. These aren't your product and service innovators--those people are celebrated loudly and often. This is the manager who, for instance, first uttered the phrase "balance scorecard" in your hallways, or "real options," or "intellectual capital." Managerial innovation is an increasingly important source of competitive advantage--especially given the speed with which product innovations are copied--but it doesn't happen automatically. It takes a certain kind of person to welcome new management ideas and usher them into an organization. The authors recently studied 100 such people to find out how they translate new ideas into action in their organizations. They discovered that they are a distinct type of practitioner; that is to say, they resemble their counterparts in other organizations more than they resemble their own colleagues, and they share a common way of working. "Idea practitioners," as the authors call them, begin by scouting for ideas. All of them are avid readers of management literature and enthusiastic participants in business conferences; many are friendly with business gurus. Once they've identified an idea that seems to hold promise, they tailor it to fit their organizations' specific needs. Next, they actively sell the idea--to senior executives, to the rank and file, to middle managers. And finally, they get the ball rolling by participating in small-scale experiments. But when those take off, they get out of the way and let others execute. In this article, the authors identify the characteristics of idea practitioners and offer strategies for managing them wisely. PMID:12577653

  18. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  19. Children's Ideas about Hot and Cold. Learning in Science Project (Primary). Working Paper No. 127.

    ERIC Educational Resources Information Center

    Appleton, Ken

    The Learning in Science Project (Primary)--LISP(P)--investigated the ideas and interests children have about hot and cold. Data were obtained from 25 children (12 boys and 13 girls), ages 8 to 11, using the "interview-about-instances" (IAI) procedure. Areas investigated included: (1) the meanings of the words "hot,""cold,""colder,""hotter," and…

  20. Keeping one's cool when things hot up.

    PubMed

    Spolnik, Adam; Metcalfe, Richard

    2013-09-01

    Hospitals and healthcare facilities use a variety of heating, ventilation, and air-conditioning (HVAC) equipment for a wide range of applications. Here, in our latest technical guidance article, presented in a 'Question and Answer'-type format, Adam Spolnik, director, and Richard Metcalfe, sales director, of temperature control specialist, ICS Cool Energy, focus on some of the key priorities, maintenance-wise, to get the optimum performance from chillers and HVAC components, and identify the units that perform best for particular healthcare applications. They also consider how careful stewardship and proper maintenance of such equipment can help cut carbon footprint, and highlight some of the key regulations that estates teams operating such plant need to ensure they are familiar with. PMID:24137991

  1. A ventilation cooling shirt worn during office work in a hot climate: cool or not?

    PubMed

    Zhao, Mengmeng; Kuklane, Kalev; Lundgren, Karin; Gao, Chuansi; Wang, Faming

    2015-01-01

    The aim of the study was to identify whether a ventilation cooling shirt was effective in reducing heat strain in a hot climate. Eight female volunteers were exposed to heat (38 °C, 45% relative humidity) for 2 h with simulated office work. In the first hour they were in normal summer clothes (total thermal insulation 0.8 clo); in the second hour a ventilation cooling shirt was worn on top. After the shirt was introduced for 1 h, the skin temperatures at the scapula and the chest were significantly reduced (p < 0.05). The mean skin and core temperatures were not reduced. The subjects felt cooler and more comfortable by wearing the shirt, but the cooling effect was most conspicuous only during the initial 10 min. The cooling efficiency of the ventilation shirt was not very effective under the low physical activity in this hot climate. PMID:26693998

  2. Preferential cooling of hot extremes from cropland albedo management

    PubMed Central

    Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-01-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  3. Preferential cooling of hot extremes from cropland albedo management.

    PubMed

    Davin, Edouard L; Seneviratne, Sonia I; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-07-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth's radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  4. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1992-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  5. HITCAN for actively cooled hot-composite thermostructural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.; Lackney, J. J.

    1991-01-01

    A computer code, high temperature composite analyzer (HITCAN), was developed to analyze/design hot metal matrix composite structures. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structural level, including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters, including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model, i.e., the material properties are expressed in terms of a product of several factors that affect the properties. HITCAN structural analysis capabilities (static, load stepping - a multistep static analysis with material properties updated at each step, modal, and buckling) for cooled hot structures are demonstrated through a specific example problem.

  6. AGN-stimulated cooling of hot gas in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Valentini, Milena; Brighenti, Fabrizio

    2015-04-01

    We study the impact of relatively weak active galactic nucleus (AGN) feedback on the interstellar medium (ISM) of intermediate and massive elliptical galaxies. We find that the AGN activity, while globally heating the ISM, naturally stimulates some degree of hot gas cooling on scales of several kpc. This process generates the persistent presence of a cold ISM phase, with mass ranging between 104 and ≳ 5 × 107 M⊙, where the latter value is appropriate for group centred, massive galaxies. Widespread cooling occurs where the ratio of cooling to free-fall time before the activation of the AGN feedback satisfies tcool/tff ≲ 70, that is we find a less restrictive threshold than commonly quoted in the literature. This process helps explaining the body of observations of cold gas (both ionized and neutral/molecular) in Ellipticals and, perhaps, the residual star formation detected in many early-type galaxies. The amount and distribution of the off-centre cold gas vary irregularly with time. The cold ISM velocity field is irregular, initially sharing the (outflowing) turbulent hot gas motion. Typical velocity dispersions of the cold gas lie in the range 100-200 km s-1. Freshly generated cold gas often forms a cold outflow and can appear kinematically misaligned with respect to the stars. We also follow the dust evolution in the hot and cold gas. We find that the internally generated cold ISM has a very low dust content, with representative values of the dust-to-gas ratio of 10-4-10-5. Therefore, this cold gas can escape detection in the traditional dust-absorption maps.

  7. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  8. Hot electron cooling by acoustic phonons in graphene.

    PubMed

    Betz, A C; Vialla, F; Brunel, D; Voisin, C; Picher, M; Cavanna, A; Madouri, A; Fève, G; Berroir, J-M; Plaçais, B; Pallecchi, E

    2012-08-01

    We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T ∝ V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T ∝ √V behavior at high bias, which corresponds to a T(4) dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors. PMID:23006198

  9. Hot Electron Cooling by Acoustic Phonons in Graphene

    NASA Astrophysics Data System (ADS)

    Betz, A. C.; Vialla, F.; Brunel, D.; Voisin, C.; Picher, M.; Cavanna, A.; Madouri, A.; Fève, G.; Berroir, J.-M.; Plaçais, B.; Pallecchi, E.

    2012-08-01

    We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T∝V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T∝V behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.

  10. Hot Technology, Cool Science (LBNL Science at the Theater)

    SciTech Connect

    None available

    2009-05-11

    Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion ? moderated by KTVU's John Fowler ? on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.

  11. Hot Technology, Cool Science (LBNL Science at the Theater)

    ScienceCinema

    None available

    2011-04-28

    Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion ? moderated by KTVU's John Fowler ? on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.

  12. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOEpatents

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  13. Optimum hot water temperature for absorption solar cooling

    SciTech Connect

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  14. Hot explosions in the cool atmosphere of the Sun.

    PubMed

    Peter, H; Tian, H; Curdt, W; Schmit, D; Innes, D; De Pontieu, B; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; Martínez-Sykora, Juan; Kleint, L; Golub, L; McKillop, S; Reeves, K K; Saar, S; Testa, P; Kankelborg, C; Jaeggli, S; Carlsson, M; Hansteen, V

    2014-10-17

    The solar atmosphere was traditionally represented with a simple one-dimensional model. Over the past few decades, this paradigm shifted for the chromosphere and corona that constitute the outer atmosphere, which is now considered a dynamic structured envelope. Recent observations by the Interface Region Imaging Spectrograph (IRIS) reveal that it is difficult to determine what is up and down, even in the cool 6000-kelvin photosphere just above the solar surface: This region hosts pockets of hot plasma transiently heated to almost 100,000 kelvin. The energy to heat and accelerate the plasma requires a considerable fraction of the energy from flares, the largest solar disruptions. These IRIS observations not only confirm that the photosphere is more complex than conventionally thought, but also provide insight into the energy conversion in the process of magnetic reconnection. PMID:25324397

  15. Ideas.

    ERIC Educational Resources Information Center

    Fennell, Francis (Skip); And Others

    1982-01-01

    A variety of ideas for working with money are presented. Activities provide experience in counting nickels and dimes, counting money and making change, determining sale prices by computing the percentage off a base or regular price, and keeping a record of current balances in checking and savings accounts. (MP)

  16. Ideas

    ERIC Educational Resources Information Center

    Immerzeel, George; Wiederanders, Don

    1974-01-01

    Four ideas are presented, each a variation of the tic-tac-toe game. Recognizing three addends is the goal of the primary level game; experiences with basic facts and fractions are objectives for upper levels. Each worksheet includes objectives, directions, and comments. (LS)

  17. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    NASA Astrophysics Data System (ADS)

    Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2016-03-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower

  18. Determination of hot and cool burning residential wood combustion source strengths using chemical mass balance modeling

    SciTech Connect

    Rau, J.A.; Huntzicker, J.J.; Khalil, M.A.K. )

    1987-01-01

    This paper compares CMB results using separate hot and cool RWC source composition profiles, a composite of hot and cool composition profiles weighted according reported stove usage patterns, and the conventional EPA RWC source composition profile. These profiles are shown. Since the composition of hot and cool burn particles is dramatically different, hot and cool burn composition profiles can be used as separate sources in the same CMB model. Hot burning RWC particles are black, have a mild acrid smell and contain from 20 to 60% carbon (up to 80% of the carbon can be in the form of elemental carbon) and high levels of trace elements (5-25%K, 2-5% S and 2-4% Cl). In contrast, cool or smoldering burn smoke particles are tan, have a strong pleasant wood smoke smell, and contain 55-60% carbon which is mostly in the form of organic carbon with only a few percent of elemental carbon. The concentrations of trace elements in cool burning emissions are generally less than 0.1%. During hot burning the RWC smoke plume is practically invisible, while during cool burning the plume is very visible and has the typical blue-gray color associated with wood burning. For similar amounts of fuel burning in a stove, emission levels for cool burning are an average of 4.8 times higher than for hot burning.

  19. The Contributions of "Hot" and "Cool" Executive Function to Children's Academic Achievement, Learning-Related Behaviors, and Engagement in Kindergarten

    ERIC Educational Resources Information Center

    Brock, Laura L.; Rimm-Kaufman, Sara E.; Nathanson, Lori; Grimm, Kevin J.

    2009-01-01

    Executive functioning (EF) refers to higher order thought processes considered foundational for problem-solving. EF has both "cool" cognitive and "hot" emotional components. This study asks: (a) what are the relative contributions of "hot" and "cool" EF to children's academic achievement? (b) What are the relative contributions of "hot" and "cool"…

  20. Exploring Dimensionality of Effortful Control Using Hot and Cool Tasks in a Sample of Preschool Children

    PubMed Central

    Allan, Nicholas P.; Lonigan, Christopher J.

    2015-01-01

    Effortful control (EC) is an important developmental construct associated with academic performance, socioemotional growth, and psychopathology. EC, defined as the ability to inhibit or delay a prepotent response typically in favor of a subdominant response, undergoes rapid development during children’s preschool years. Research involving EC in preschool children can be aided by ensuring that the measured model of EC matches the latent structure of EC. Extant research indicates that EC may be multidimensional, consisting of hot (affectively salient) and cool (affectively neutral) dimensions. However, there are several untested assumptions regarding the defining features of hot EC. Confirmatory factor analysis was used in a sample of 281 preschool children (Mage = 55.92 - months, SD = 4.16; 46.6% male and 53.4% female) to compare a multidimensional model composed of hot and cool EC factors with a unidimensional model. Hot tasks were created by adding affective salience to cool tasks so that hot and cool tasks varied only by this aspect of the tasks. Tasks measuring EC were best described by a single factor and not distinct hot and cool factors, indicating that affective salience alone does not differentiate between hot and cool EC. EC shared gender-invariant associations with academic skills and externalizing behavior problems. PMID:24518050

  1. Exploring dimensionality of effortful control using hot and cool tasks in a sample of preschool children.

    PubMed

    Allan, Nicholas P; Lonigan, Christopher J

    2014-06-01

    Effortful control (EC) is an important developmental construct associated with academic performance, socioemotional growth, and psychopathology. EC, defined as the ability to inhibit or delay a prepotent response typically in favor of a subdominant response, undergoes rapid development during children's preschool years. Research involving EC in preschool children can be aided by ensuring that the measured model of EC matches the latent structure of EC. Extant research indicates that EC may be multidimensional, consisting of hot (affectively salient) and cool (affectively neutral) dimensions. However, there are several untested assumptions regarding the defining features of hot EC. Confirmatory factor analysis was used in a sample of 281 preschool children (Mage=55.92months, SD=4.16; 46.6% male and 53.4% female) to compare a multidimensional model composed of hot and cool EC factors with a unidimensional model. Hot tasks were created by adding affective salience to cool tasks so that hot and cool tasks varied only by this aspect of the tasks. Tasks measuring EC were best described by a single factor and not distinct hot and cool factors, indicating that affective salience alone does not differentiate between hot and cool EC. EC shared gender-invariant associations with academic skills and externalizing behavior problems. PMID:24518050

  2. Perspectives in microclimate cooling involving protective clothing in hot environments

    SciTech Connect

    Speckman, K.L.; Allan, A.E.; Sawka, M.N.; Young, A.J.; Muza, S.R.

    1987-09-01

    The effectiveness of microclimate cooling systems in alleviating the thermal burden imposed upon soldiers by the wearing of chemical protective clothing under varying environmental conditions was examined in a series of studies conducted by the U.S. Army Research Institute of Environmental Medicine on the copper manikin, in the climatic chambers and in the field. Liquid-cooled undergarments (LCU) and air-cooled vests (ACV) were tested under environmental conditions from 29 C, 85% rh to 52 C, 25% rh. These parameters were chosen to stimulate conditions that may be encountered in either armored vehicles or in desert or tropic climates. The authors reviewed seven studies using LCU (including two ice-cooled vests) and six studies using ACV. LXU tests investigated the effect on cooling when the proportion of total skin surface covered by the LCU was varied. ACV tests examined the effects on cooling during different combinations of air temperature, humidity, and air-flow rates. Additionally, these combinations were tested at low and moderate metabolic rates. The findings from these LCU and ACV studies demonstrate that a) cooling can be increased with a greater body-surface coverage by an LCU, and b) evaporative cooling with an ACV is enhanced at low metabolic rates with optimal combinations of air-flow rates and dry bulb/dew point temperatures, resulting in the extension of tolerance time. The application of these findings to industrial work situations is apparent.

  3. Ionization and Cooling of a Hot Plasma with Temperature Fluctuations

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.; Bratsev, V. F.; Ochkur, V. I.

    2002-01-01

    Cooling functions for a stationary plasma are calculated in a wide temperature range from 5·103 K to 108 K, both for a plasma with the solar abundances of elements and for a plasma with an anomalous chemical composition typical of Wolf—Rayet stars. The HILYS project is described, with the aim of calculating cross sections and rates of excitation by electron collision of atoms and ions with a charge Z 26 and principal electron quantum numbers n 10, needed to calculate the ionization and thermal states of a plasma and the development of methods of calculating the plasma's spectrum in the visible, UV, and x-ray ranges. The results of a calculation of cross sections and effective collision strengths obtained within the framework of the project are given. The influence of temperature fluctuations (T/T 0.16) on the relative ion abundances and the total cooling function is studied. It is shown that the presence of such fluctuations considerably increases the temperature range in which the abundances of ions of a given degree of ionization are not negligible, while the cooling function can differ considerably from that calculated for a one-temperature plasma. The contribution of dielectronic recombination to the total cooling function is investigated, and it proves to be significant only for a plasma with high abundances of heavy elements. The x-ray spectrum of the bright supergiant Pup is analyzed.

  4. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  5. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  6. Hot streaks and phantom cooling in a turbine rotor passage. II - Combined effects and analytical modelling

    NASA Technical Reports Server (NTRS)

    Roback, Richard J.; Dring, Robert P.

    1992-01-01

    Experimental documentation and analytical correlations demonstrating the effects of hot streak accumulation and phantom cooling on turbine rotor airfoil surface temperature are presented. Results are shown which quantify the impact of a nonuniform temperature profile at the entrance of a turbine due to combustor-generated hot and cold streaks, and cooling air discharged from the trailing edge of the upstream stator. Experimental results are shown for a range of controlling variables to identify where streak accumulation and phantom cooling were most likely to be strongest. These variables include streak-to-free stream density ratio, streak injection location, and coolant-to-free stream density and velocity ratios. Experimental results are shown for the combined effects of hot streak and stator coolant on the adiabatic recovery temperature of the rotor.

  7. Stochastic behavior of cooling processes in hot nuclei

    SciTech Connect

    de Oliveira, P.M.; Sa Martins, J.S.

    1997-06-01

    The collapse of structure effects observed in hot nuclei is interpreted in terms of a dynamic lattice model which describes the process of nucleon (clusters) evaporation from a hot nucleus, predicting the final mass distribution. Results are compared with experimental data for the {sup 10}B+{sup 9}Be and {sup 10}B+{sup 10}B reactions, and indicate that the structures observed in the low-energy mass distributions in both simulation and experiment are a consequence of the competition between the residual interactions and the thermalization dissipative process. As a characteristic feature of complex evolving systems, this competition leads to long term memory during the dissipative path, the observables becoming thus insensitive to the actual microscopic interactions. {copyright} {ital 1997} {ital The American Physical Society}

  8. Enhanced Boiling-Metal Cooling Of Vanes Exposed To Hot Gases

    NASA Technical Reports Server (NTRS)

    Osofsky, I. B.

    1995-01-01

    Incorporation of automatic, self-powered jet pumps proposed to enhance boiling-liquid-metal cooling of vanes exposed to hot gases. In original intended application, vanes and probes thrust-vector-control devices inserted in supersonic flows of hot gases in rocket-engine nozzles; this cooling concept also applicable to vanes and blades in high-performance turbine engines. In further improvement, additional axial and transverse slots added to coolant passages in vane or probe and to coolant reservoir. Slots reduce stresses caused by thermal expansion and contraction of solid coolant.

  9. Rewetting of hot vertical rod during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun

    2016-06-01

    A stainless steel (SS-316) vertical rod of 12 mm diameter at 800 ± 10 °C initial temperature was cooled by normal impinging round water jet. The surface rewetting phenomenon was investigated for a range of jet diameter 2.5-4.8 mm and jet Reynolds number 5000-24,000 using a straight tube type nozzle. The investigation were made from the stagnation point to maximum 40 mm downstream locations, simultaneously for both upside and downside directions. The cooling performance of the vertical rod was evaluated on the basis of rewetting parameters i.e. rewetting temperature, wetting delay, rewetting velocity and the maximum surface heat flux. Two separate Correlations have been proposed for the dimensionless rewetting velocity in terms of rewetting number and the maximum surface heat flux that predicts the experimental data within an error band of ±20 and ±15 % respectively.

  10. Hot streaks and phantom cooling in a turbine rotor passage. I - Separate effects

    NASA Technical Reports Server (NTRS)

    Roback, Richard J.; Dring, Robert P.

    1992-01-01

    Experimental documentation and analytical correlations demonstrating the effects of hot streak accumulation and phantom cooling on turbine rotor airfoil surface temperature. Test results are shown for a range of controlling variables to identify where streak accumulation and phantom cooling are most likely to be strongest. These variables include streak injection location, streak-to-free stream density ratio and coolant-to-free stream density and velocity ratios.

  11. Cool infalling gas and its interaction with the hot ISM of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors describe work leading to the suggestion that interaction between infalling cool gas and ambient hot, coronal plasma in elliptical galaxies is responsible for emission filaments, and might remove the need for large mass depositions in cooling flows. A test of the hypothesis is undertaken - the run of surface brightness with radius for the emission lines - and the prediction agrees well with the data.

  12. Ideas for GLOBE's Future Drawn from the 7-Year Experience of the CERES S'COOL Project

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Detweiler, P. T.; Fischer, J. D.; Sepulveda, R.; Arabini, E.

    2003-12-01

    As the outreach portion of the Clouds and the Earth's Radiant Energy System (CERES) project, the Students' Cloud Observations On-Line (S'COOL) project is of smaller scale and scope than GLOBE; but its aims and methods are quite similar. As a result, lessons learned from S'COOL since its beginnings in 1997 may provide useful ideas for the future of GLOBE. This is particularly true as the director of S'COOL has also been a GLOBE science principal investigator for the last year (leading the contrail investigation within GLOBE). This paper will discuss a number of lessons learned from the experience with the S'COOL Project, and will make some suggestions for the future of GLOBE based on that experience. It will include discussion of most of the important elements of GLOBE, including 1) teacher training: S'COOL recently conducted its 5th annual Summer S'COOL Teacher Workshop; 2) data collection: S'COOL is nearing 26,000 complete student cloud observations; 3) integration of scientific research with classroom teaching and learning: S'COOL promotes use of real, student-reported, scientific observations for use in the classroom and in student projects. S'COOL also makes scientific satellite data available and accessible to students and teachers; 4) use of data by scientists: S'COOL pursues a statistical analysis of student data which was requested and obtained for a specific purpose. The paper will also present some observations and ideas for GLOBE based on the author's year of experience as a GLOBE principal investigator.

  13. Investigation of Cool and Hot Executive Function in ODD/CD Independently of ADHD

    ERIC Educational Resources Information Center

    Hobson, Christopher W.; Scott, Stephen; Rubia, Katya

    2011-01-01

    Background: Children with oppositional defiant disorder/conduct disorder (ODD/CD) have shown deficits in "cool" abstract-cognitive, and "hot" reward-related executive function (EF) tasks. However, it is currently unclear to what extent ODD/CD is associated with neuropsychological deficits, independently of attention deficit hyperactivity disorder…

  14. Hot proton anisotropies and cool proton temperatures in the outer magnetosphere

    SciTech Connect

    Gary, S.P.; Moldwin, M.B.; Thomsen, M.F.; Winske, D.; McComas, D.J.

    1994-11-01

    The plasma sheet and ring current ions of the outer magnetosphere typically exhibit an anisotropy such that the perpendicular temperature is greater than the parallel temperature. If such an anisotropy is sufficiently large, the electromagnetic proton cyclotron instability will be excited. This instability is studied using linear Vlasov theory and one-dimensional hybrid simulations for a homogeneous plasma model representative of conditions in the outer magnetosphere. The model includes a hot anisotropic proton component and a cool, initially isotropic proton component. Theory and simulations both predict that there is a threshold hot proton anisotropy for this instability which depends inversely on the parallel {beta} of the hot component. The simulations are also used to examine the nonlinear response of the cool protons to the proton cyclotron instability; the late-time temperature of the cool protons is found to increase as the relative hot proton density increases. Analysis of plasma observations obtained by the Los Alamos magnetospheric plasma analyzer in geosynchronous orbit finds that the hot ion anisotropy is indeed bounded by the predicted {beta}-independent threshold.

  15. Hot proton anisotropies and cool proton heating in the outer magnetosphere

    SciTech Connect

    Peter Gary, S.; Moldwin, M.B.; Thomsen, M.F.; Winske, D.; McComas, D.J.

    1996-07-01

    The plasma sheet and ring current ions of the outer magnetosphere typically exhibit an anisotropy such that the perpendicular temperature is greater than the parallel temperature. If such an anisotropy is sufficiently large, the electromagnetic proton cyclotron instability will be excited. This instability is studied using linear Vlasov theory and one-dimensional hybrid simulations for a homogeneous plasma model representative of conditions in the outer magnetosphere. The model includes a hot anisotropic proton component and a cool, initially isotropic proton component. Theory and simulations both predict that there is a threshold hot proton anisotropy for this instability which depends inversely on the parallel {beta} of the hot component. The simulations are also used to study the response of the cool protons to the proton cyclotron instability; the late-time temperature of the cool protons is found to increase as the relative hot proton density increases. Analysis of plasma observations from geosynchronous orbit finds that the hot ion anisotropy is indeed bounded by the predicted {beta}-dependent threshold. {copyright} {ital 1996 American Institute of Physics.}

  16. The Contribution of "Cool" and "Hot" Components of Decision-Making in Adolescence: Implications for Developmental Psychopathology

    ERIC Educational Resources Information Center

    Seguin, Jean R.; Arseneault, Louise; Tremblay, Richard E.

    2007-01-01

    Impairments in either "cool" or "hot" processes may represent two pathways to deficient decision-making. Whereas cool processes are associated with cognitive and rational decisions, hot processes are associated with emotional, affective, and visceral processes. In this study, 168 boys were administered a card-playing task at ages 13 and 14 years…

  17. Femtosecond cooling of hot electrons in CdSe quantum-well platelets.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C; Van Dijk-Moes, Relinde J A; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-04-01

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface. PMID:25764379

  18. Investigation on the Effect of Cooling Rate on Hot Tearing Susceptibility of Al2024 Alloy Using Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Shabestari, S. G.; Ghoncheh, M. H.

    2015-12-01

    Effect of different cooling rates and Al-5Ti-1B grain refiner on hot tearing susceptibility of Al2024 alloy were studied using thermal analysis. Influence of cooling rates on microsegregation, and the amount of gas and shrinkage porosities was investigated. The cooling rates used in the present study range from 0.4 to 17.5 K s-1. To evaluate the hot tearing susceptibility, Clyne and Davies' criterion is used. To calculate solid fraction during solidification, solid fraction vs time is plotted based on Newtonian technique via thermal analysis. The results show that the hot tearing susceptibility reduces initially by increasing the cooling rate and then increases at higher cooling rates. Hot tearing susceptibility is decreased by grain refinement. Solidification characteristics of Al2024 e.g., microsegregation, gas, and shrinkage porosities are decreased by increasing cooling rate.

  19. Ultra fast cooling of hot steel plate by air atomized spray with salt solution

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya S.; Ravikumar, Satya V.; Jha, Jay M.; Singh, Akhilendra K.; Bhattacharya, Chandrima; Pal, Surjya K.; Chakraborty, Sudipto

    2014-05-01

    In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the "finish rolling temperature" in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.

  20. Hot proton anisotropies and cool proton temperatures in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Gary, S. Peter; Moldwin, Mark B.; Thomsen, Michelle F.; Winske, Dan; Mccomas, David J.

    1994-01-01

    The hot protons of the outer magnetosphere typically exhibit a temperature anistropy such that T(sub perp)/T(sub parallel) greater than 1, where perpendicular and parallel symbols denote directions relative to the background magnetic field. If this anisotrpy is sufficiently large, the electomagneitc proton cyclotron anistropy instability may be excited. This instability is studied using linear Vlasov theory and one-dimensional hybrid simulations for a homogeneous plasma model representative of conditions in the outer magnetosphere with a hot anisotropic proton component (denoted by subscript h) and a cool, initially isotropic proton component (subscript c). Linear theory yields an instability threshold condition on the hot proton temperature anistropy where as the simulations imply an upper bound on T(sub perp h)/T(sub parallel h); both the threshold and the upper bound have similar scaling with the maximum growth rate gamma (sub m), the parallel beta of the hot component, beta(sub parallel h), and the relative density of the hot component n(sub h)/n(sub e). An anlysis of plasma observations from the Los Alamos magnetospheric plasma analyzer (MPA) in geosynchronous orbits finds that the maximum value of the hot proton temperature anisotropy approximately satisfies the predicted scaling with beta(sub parallel h) and nu(sub h)/n(sub e) and yields the proportionality factor that quantifies this upper bound. The simulations are also used to examine the heating of the cool proton cyclotron instability. The simulations yield a scaling for the dimensionless late-time cool proton average temperature T(sub c)/T(sub parallel h) as (n(sub h)/n(sub e))/beta(sub parallel h exp 0.5). Analysis of MPA data shows that the observed values of T(sub c)/T(sub parallel h) have similar scaling and again yield the proportionality factor which quantifies this relationship.

  1. Advancements in tailored hot stamping simulations: Cooling channel and distortion analyses

    NASA Astrophysics Data System (ADS)

    Billur, Eren; Wang, Chao; Bloor, Colin; Holecek, Martin; Porzner, Harald; Altan, Taylan

    2013-12-01

    Hot stamped components have been widely used in the automotive industry in the last decade where ultra high strength is required. These parts, however, may not provide sufficient toughness to absorb crash energy. Therefore, these components are "tailored" by controlling the microstructure at various locations. Simulation of tailored hot stamped components requires more detailed analysis of microstructural changes. Furthermore, since the part is not uniformly quenched, severe distortion can be observed. CPF, together with ESI have developed a number of techniques to predict the final properties of a tailored part. This paper discusses the recent improvements in modeling distortion and die design with cooling channels.

  2. Some ideas on the choice of designs and materials for cooled mirrors

    SciTech Connect

    Howells, M.R.

    1994-12-01

    This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highest performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.

  3. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

    NASA Astrophysics Data System (ADS)

    El Abed, Mohamed

    2016-01-01

    The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

  4. Hot carrier solar cell absorbers: investigation of carrier cooling properties of candidate materials

    NASA Astrophysics Data System (ADS)

    Conibeer, G.; Shrestha, Santosh; Huang, Shujuan; Patterson, Robert; Xia, Hongze; Feng, Yu; Zhang, Pengfei; Gupta, Neeti; Smyth, Suntrana; Liao, Yuanxun; Lin, Shu; Wang, Pei; Dai, Xi; Chung, Simon; Yang, Jianfeng; Zhang, Yi

    2015-09-01

    The hot carrier cell aims to extract the electrical energy from photo-generated carriers before they thermalize to the band edges. Hence it can potentially achieve a high current and a high voltage and hence very high efficiencies up to 65% under 1 sun and 86% under maximum concentration. To slow the rate of carrier thermalisation is very challenging, but modification of the phonon energies and the use of nanostructures are both promising ways to achieve some of the required slowing of carrier cooling. A number of materials and structures are being investigated with these properties and test structures are being fabricated. Initial measurements indicate slowed carrier cooling in III-Vs with large phonon band gaps and in multiple quantum wells. It is expected that soon proof of concept of hot carrier devices will pave the way for their development to fully functioning high efficiency solar cells.

  5. [Cool/Hot target effect of the water fog infrared stealth].

    PubMed

    Du, Yong-cheng; Yang, Li; Zhang, Shi-cheng; Yang, Zhen; Hu, Shuang-xi

    2012-08-01

    Artificial spray fog will come into being cool target because of the strong evaporation and convection but weak radiation heat flux, when it is used for defence of infrared imaging guided missile. Also, when it is the contrary condition, the water fog will come into being hot target. In order to open out the phenomenon particularly, a math model which can account for the cool/hot effect produced by water fog shielding the thermal radiation is established by coupling the calculation of radiation transfer equation and energy conversation equation, based on the Mie theory. This model is proved to be accurate in comparison with the Monte-Carlo method and Lambert-Beer' law. The water fog is seemed as absorbing, emitting and anisotropic scattering medium, and the medium radiation, multiple scattering, target radiation flux, and environment influence such as the conductivity, convection turbulent heat diffusion and evaporation is calculated. The phenomenon of cool/hot target effect can be shown in detail with this model. PMID:23156782

  6. The Relationship between Emotional Intelligence and Cool and Hot Cognitive Processes: A Systematic Review.

    PubMed

    Gutiérrez-Cobo, María José; Cabello, Rosario; Fernández-Berrocal, Pablo

    2016-01-01

    Although emotion and cognition were considered to be separate aspects of the psyche in the past, researchers today have demonstrated the existence of an interplay between the two processes. Emotional intelligence (EI), or the ability to perceive, use, understand, and regulate emotions, is a relatively young concept that attempts to connect both emotion and cognition. While EI has been demonstrated to be positively related to well-being, mental and physical health, and non-aggressive behaviors, little is known about its underlying cognitive processes. The aim of the present study was to systematically review available evidence about the relationship between EI and cognitive processes as measured through "cool" (i.e., not emotionally laden) and "hot" (i.e., emotionally laden) laboratory tasks. We searched Scopus and Medline to find relevant articles in Spanish and English, and divided the studies following two variables: cognitive processes (hot vs. cool) and EI instruments used (performance-based ability test, self-report ability test, and self-report mixed test). We identified 26 eligible studies. The results provide a fair amount of evidence that performance-based ability EI (but not self-report EI tests) is positively related with efficiency in hot cognitive tasks. EI, however, does not appear to be related with cool cognitive tasks: neither through self-reporting nor through performance-based ability instruments. These findings suggest that performance-based ability EI could improve individuals' emotional information processing abilities. PMID:27303277

  7. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  8. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  9. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  10. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    SciTech Connect

    Adams, Barbara J

    2009-05-01

    installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  11. Cool in the kitchen: Radiation, conduction, and the Newton ``hot block'' experiment

    NASA Astrophysics Data System (ADS)

    Silverman, Mark P.; Silverman, Christopher R.

    2000-02-01

    Despite frequent reference to Newton's law of cooling in physics and math books, the paper in which Newton reported this law is quite obscure and rarely cited. We have managed to acquire a copy of this paper and discuss the interesting experiment that Newton did in his kitchen. Surprisingly, the paper contains no procedural details or data of any experiments measuring the rate at which a hot object cools. We have performed our own kitchen experiments to investigate the cooling of (a) the burner of an electric range and (b) a block of Styrofoam. Newton's law provides a poor model for both systems, whose th! ! ermal energy loss we can much better understand by examining closely the effects of radiation and conduction.

  12. Nighttime Cooling Is an Effective Method for Improving Milk Production in Lactating Goats Exposed to Hot and Humid Environment

    PubMed Central

    Sunagawa, Katsunori; Nagamine, Itsuki; Kamata, Yasuhiro; Niino, Noriko; Taniyama, Yoshihiko; Kinjo, Kazuhide; Matayoshi, Ayano

    2015-01-01

    Heat production in ruminants follows a diurnal pattern over the course of a day peaking 3 hours following afternoon feeding and then gradually declining to its lowest point prior to morning feeding. In order to clarify the cooling period most effective in reducing decreases in feed intake and milk production, experiments were carried out based on the diurnal rhythm of heat production and heat dissipation. In experiment 1, the effects of hot environment on milk production were investigated. The animals were kept first in a thermoneutral environment (20.0°C, 80.0%) for 12 days, they were then transitioned to a hot environment (32°C, 80.0%) for 13 days before being returned to second thermoneutral environment for a further 12 days. In experiment 2, the effectiveness of daytime cooling or nighttime cooling for improving milk production in hot environment was compared. While ten lactating Japanese Saanen goats (aged 2 years, weighing 41.0 kg) during early lactation were used in experiment 1, ten lactating goats (aged 2 years, weighing 47.5 kg) during mid-lactation were used in experiment 2. The animals were fed 300 g of concentrated feed and excessive amounts of crushed alfalfa hay cubes twice daily. Water was given ad libitum. The animals were milked twice daily. When exposed to a hot environment, milk yield and composition decreased significantly (p<0.05). Milk yield in the hot environment did not change with daytime cooling, but tended to increase with nighttime cooling. Compared to the daytime cooling, milk components percentages in the nighttime cooling were not significantly different but the milk components yields in the nighttime cooling were significantly higher (p<0.05). The results indicate that nighttime cooling is more effective than daytime cooling in the reduction of milk production declines in lactating goats exposed to a hot environment. PMID:26104401

  13. The effect of a coating material on mist cooling of hot metals

    SciTech Connect

    Kikuchi, Yoshihiro; Saka, Mitsuo; Tatsuta, Koichi

    1996-08-01

    The accurate knowledge of mist cooling characteristics is important for analyzing emergency cooling system under loss-of-coolant-accident conditions. Heat transfer characteristics of mist cooling are affected by many factors (Carbajo, 1985). Attention should be given to the effect of thermal conductance of surface materials on the cooling process of used fuels whose surfaces are oxided or contaminated by some impurities in the coolant. This paper deals with transient boiling heat transfer to mist flow of air-water mixture from hot metals coated with a thin layer of insulating (low thermal conductivity) material. The test specimens selected for the present experiment are silver and stainless steel disks whose heat transfer surface is coated with a refractory paint. The heated disk is plunged vertically into the mist flow and is cooled down to the saturation temperature of water under atmospheric pressure. The coating produces a great enhancement in heat transfer, especially in transition and film boiling regions. This enhancement becomes higher with increasing coating thickness. Heat transfer is more enhanced as mass velocity of water increases although it has a weak dependency on linear velocity of air.

  14. Evaluation of the efficiency of microclimate cooling in a hot weather CBR environment. Final report

    SciTech Connect

    Wittmers, L.; Hoffman, R.; Israel, D.; Ingersoll, B.; Canine, K.

    1994-11-22

    The threat of chemical warfare associated with the war in the Persian Gulf revealed that insufficient information available regarding military personnel who can be exposed to both a hot environment and chemical/biological attack. The chemical, biological, radiological (CBR) protective ensembles worn under threat of chemical/biological attack prevent noxious agents from reaching the skin; however heat metabolically generated or gained from the environment is prevented from dissipating. Thus in this scenario, microclimate cooling may be essential to prevent heat injury. This study was designed to determine the efficiency of a microclimate cooling system (MC`S) in preventing heat strain in six unacclimated males who performed moderate exercise walking at 3 mph, 2% (grade) in a hot environment (100f), while encapsulated in a chemical protective overgarment with either no cooling (NC), intermediate cooling (IC) (coolant flow rate = 225 ml/min), or maximal cooling (MC) (coolant flow rate = 450 ml/min). Heart rate (HR), core temperature (Tr%) and stay time were measured as indices of heat strain. There was 110 difference in HR or Tr% at 50 min and 90 min between the IC and MC conditions, and all participants reached the maximal time limit (120 min) in both conditions. HR and T, were lower in the IC and MC conditions than the NC condition at min 90 and stay time was longer in IC and MC than NC. The USC of this MCS reduced cardiovascular stress, as estimated by increases in 1-HR and reduced thermal stress, as estimated by increases in Tr; however, the higher coolant flow rate conferred no thermoregulatory advantage over the lower flow rate.

  15. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  16. Effects of preheating and cooling durations on roll-to-roll hot embossing.

    PubMed

    Kim, Seyoung; Son, Youngsu; Park, Heechang; Kim, Byungin; Yun, Dongwon

    2015-02-01

    In this study, we examined the sensitivity of embossed pattern depth to preheat supply and cooling and investigated how the pattern type and density affect the embossed depth. The main factors that affect embossed pattern qualities of roll-to-roll hot embossing, such as roller temperature, roller speed, and applied force, were determined using the response surface methodology. Eight conditions were then added to determine the time-dependent effects of heat transfer with custom-designed preheating and cooling systems. An extended preheat time for the polymethylmethacrylate substrate contributed to the significant change in the embossed depth, whereas the substrate-cooling did not exhibit a clear increasing or decreasing trend. Larger embossed depths were achieved in the horizontal patterns with lower density than in the vertical patterns, and the lower pattern densities showed greater embossed depths in most embossing conditions. We expect that this result will help to understand the effects of the pre- and posttreatment of roll-to-roll hot embossing by employing time duration factors of heat transfer, depending on the mold pattern type and density. PMID:25311866

  17. Unsteady numerical simulation of hot streak/blades interaction and film cooling

    NASA Astrophysics Data System (ADS)

    Yi, Weilin; Ji, Lucheng; Xiao, Yunhan

    2010-10-01

    Deeply research on management and application of hot streak is an important way to breakthrough technique obstacle of aero engine hot components. Numerical method is a useful instrument to investigate the correlative problems. Firstly the paper developed independently three dimensional unsteady parallel computational code-MpiTurbo based on Fortran 90 and MPI at Linux operating system. Then unsteady numerical simulation was carried out to investigate impacts of the factors, which included circumferential locations of hot streak and clocking positions of blade rows, on the thermal environment of a 1+1 counter-rotating turbine. The results clearly indicated that clocking positions of hot streak/blade row and blade row/blade row had great influence on the time-averaged temperature distribution of the third blade row. Therefore, it can be effective for improving thermal environment of turbine to optimize blade parameters and clocking positions. Lastly film cooling layout was designed by the repetitious steady simulation based on source term method. And the flow structure detail was given by the unsteady simulation.

  18. Comparison Between Hot and Cool Ejections in CME/Flare Events

    NASA Astrophysics Data System (ADS)

    Nitta, N. V.

    2001-05-01

    Comparison between hot and cool ejections in CME/flare events Nariaki Nitta (LMSAL) , Sachiko Akiyama (GUAS) We have shown that high-temperature ejections during the impulsive phase of flares as seen with Yohkoh/SXT are correlated with coronal mass ejections (CMEs) as seen by SOHO/LASCO. Since then we have collected a number of examples of ejections observed with TRACE. In this presentation, we compare ejections in soft X-rays with those in H-alpha and EUV, and study the sequence of processes (reconnection, mass motion, heating, etc.) involved in CMEs so that we can put more constraints on the models.

  19. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  20. Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women

    NASA Technical Reports Server (NTRS)

    Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.

    1982-01-01

    Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.

  1. Some ideas on the choice of designs and materials for cooled mirrors

    SciTech Connect

    Howells, M.R.

    1995-02-01

    Here the author expresses some of his views on how the fabrication of future synchrotron beam-line optics ought to be approached. Many of the most interesting new ideas for beam-line mirrors, especially those with a promise of low costs, involve metals. Historically these materials had posed certain problems, but these have been overcome in recent times to the extent that the initial complement of Advanced-Light-Source (ALS) beam-line optics were made of metal and have met their specifications. To go furthere along that road one needs to get more interested in the metallurgical issues involved in making high-quality metal mirrors. The author recounts the results of some investigations into these materials questions and trys to draw on some of the experiences and achievements of these communities which have hitherto had only limited contact with synchrotron radiation researchers.

  2. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Price, Michael B.; Butkus, Justinas; Jellicoe, Tom C.; Sadhanala, Aditya; Briane, Anouk; Halpert, Jonathan E.; Broch, Katharina; Hodgkiss, Justin M.; Friend, Richard H.; Deschler, Felix

    2015-09-01

    Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ~1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a `phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon-impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance.

  3. The Relationship between Emotional Intelligence and Cool and Hot Cognitive Processes: A Systematic Review

    PubMed Central

    Gutiérrez-Cobo, María José; Cabello, Rosario; Fernández-Berrocal, Pablo

    2016-01-01

    Although emotion and cognition were considered to be separate aspects of the psyche in the past, researchers today have demonstrated the existence of an interplay between the two processes. Emotional intelligence (EI), or the ability to perceive, use, understand, and regulate emotions, is a relatively young concept that attempts to connect both emotion and cognition. While EI has been demonstrated to be positively related to well-being, mental and physical health, and non-aggressive behaviors, little is known about its underlying cognitive processes. The aim of the present study was to systematically review available evidence about the relationship between EI and cognitive processes as measured through “cool” (i.e., not emotionally laden) and “hot” (i.e., emotionally laden) laboratory tasks. We searched Scopus and Medline to find relevant articles in Spanish and English, and divided the studies following two variables: cognitive processes (hot vs. cool) and EI instruments used (performance-based ability test, self-report ability test, and self-report mixed test). We identified 26 eligible studies. The results provide a fair amount of evidence that performance-based ability EI (but not self-report EI tests) is positively related with efficiency in hot cognitive tasks. EI, however, does not appear to be related with cool cognitive tasks: neither through self-reporting nor through performance-based ability instruments. These findings suggest that performance-based ability EI could improve individuals’ emotional information processing abilities. PMID:27303277

  4. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  5. Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate

    NASA Astrophysics Data System (ADS)

    Ravikumar, Satya V.; Jha, Jay M.; Mohapatra, Soumya S.; Sinha, Apurva; Pal, Surjya K.; Chakraborty, Sudipto

    2013-10-01

    The ultrafast cooling that occurs during high mass flux air-atomized spray impingement on a hot 6 mm thick stainless steel plate has been studied experimentally in terms of the nozzle inclination between 0° and 60°. The average mass flux of water used in the study accounts to 510 kg/m2 s. The coolants used in the study are pure water and surfactant water of 600 ppm concentration. The initial temperature of the plate has been maintained at 900 °C, which is the temperature of a hot strip on run-out table in steel industry. The transient surface heat flux and temperature histories have been estimated by an inverse heat solver using measured temperature input data. Heat transfer results demonstrates that optimum cooling efficiency (~2.76 MW/m2, 194 °C/s) for pure water has been achieved at 30° nozzle orientation. The inclined nozzle has not been found beneficial when surfactant water is used as the coolant.

  6. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites.

    PubMed

    Price, Michael B; Butkus, Justinas; Jellicoe, Tom C; Sadhanala, Aditya; Briane, Anouk; Halpert, Jonathan E; Broch, Katharina; Hodgkiss, Justin M; Friend, Richard H; Deschler, Felix

    2015-01-01

    Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ∼ 1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a 'phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon-impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance. PMID:26404048

  7. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites

    PubMed Central

    Price, Michael B.; Butkus, Justinas; Jellicoe, Tom C.; Sadhanala, Aditya; Briane, Anouk; Halpert, Jonathan E.; Broch, Katharina; Hodgkiss, Justin M.; Friend, Richard H.; Deschler, Felix

    2015-01-01

    Metal-halide perovskites are at the frontier of optoelectronic research due to solution processability and excellent semiconductor properties. Here we use transient absorption spectroscopy to study hot-carrier distributions in CH3NH3PbI3 and quantify key semiconductor parameters. Above bandgap, non-resonant excitation creates quasi-thermalized carrier distributions within 100 fs. During carrier cooling, a sub-bandgap transient absorption signal arises at ∼1.6 eV, which is explained by the interplay of bandgap renormalization and hot-carrier distributions. At higher excitation densities, a ‘phonon bottleneck' substantially slows carrier cooling. This effect indicates a low contribution from inelastic carrier-impurity or phonon–impurity scattering in these polycrystalline materials, which supports high charge-carrier mobilities. Photoinduced reflectivity changes distort the shape of transient absorption spectra and must be included to extract physical constants. Using a simple band-filling model that accounts for these changes, we determine a small effective mass of mr=0.14 mo, which agrees with band structure calculations and high photovoltaic performance. PMID:26404048

  8. Hot Gaseous Atmospheres in Galaxy Groups and Clusters Are Both Heated and Cooled by X-Ray Cavities

    NASA Astrophysics Data System (ADS)

    Brighenti, Fabrizio; Mathews, William G.; Temi, Pasquale

    2015-04-01

    Expanding X-ray cavities observed in hot gas atmospheres of many galaxy groups and clusters generate shock waves and turbulence that are primary heating mechanisms required to avoid uninhibited radiatively cooling flows which are not observed. However, we show here that the evolution of buoyant cavities also stimulates radiative cooling of observable masses of low-temperature gas. During their early evolution, radiative cooling occurs in the wakes of buoyant cavities in two locations: in thin radial filaments parallel to the buoyant velocity and more broadly in gas compressed beneath rising cavities. Radiation from these sustained compressions removes entropy from the hot gas. Gas experiencing the largest entropy loss cools first, followed by gas with progressively less entropy loss. Most cooling occurs at late times, ˜ 108-109 yr, long after the X-ray cavities have disrupted and are impossible to detect. During these late times, slightly denser low entropy gas sinks slowly toward the centers of the hot atmospheres where it cools intermittently, forming clouds near the cluster center. Single cavities of energy 1057-1058 ergs in the atmosphere of the NGC 5044 group create 108-109 M⊙ of cooled gas, exceeding the mass of extended molecular gas currently observed in that group. The cooled gas clouds we compute share many attributes with molecular clouds recently observed in NGC 5044 with ALMA: self-gravitationally unbound, dust-free, quasi-randomly distributed within a few kiloparsecs around the group center.

  9. Effect of a cooling gel on pain sensitivity and healing of hot-iron cattle brands.

    PubMed

    Tucker, C B; Mintline, E M; Banuelos, J; Walker, K A; Hoar, B; Drake, D; Weary, D M

    2014-12-01

    Hot-iron branding is painful for cattle, but little is known about how long this pain lasts or effective alleviation methods. Previous work with pigs indicated that cooling burns with a gel (active ingredient: tea tree oil) improved healing compared to untreated wounds. Steers (210±21 kg) were hot-iron branded and allocated to 1 of 3 treatments: control (n=24), 1 gel application immediately after branding (1X; n=12), or 2 gel applications, 1 immediately after branding and one 1 d later (2X; n=12). Pain sensitivity was assessed by applying a known and increasing force with a von Frey anesthesiometer in 5 locations (in the center, at the top of, and 5 and 10 cm above the brand and on the equivalent location on the nonbranded side of the body) until animals showed a behavioral response. Healing was measured with a 6-point scale (1=fresh brand and 6=no scabbing and fully repigmented). Both measures, along with weight gain and surface temperature of the wound, were recorded before and 1, 2, 3, 7, 14, 21, 28, 35, 56, and 70 d after branding. The gel cooled the brand, with the most obvious differences on the day it was applied (3.7 to 4.2°C cooler than control; day×gel interaction, P=0.004). All wounds were at least partially repigmented by 70 d, but only 46% of brands were fully healed at this time. The healing process was slowed when a gel was applied twice (e.g., at 21 d, healing score of 2.5±0.1 and 2.7±0.1 vs. 2.0±0.2 for control and 1X vs. 2X, respectively; P=0.001). Brands tended to remain painful throughout the 70 d (in the center of the brand; before vs. d 1-35, P≤0.001; d 56, P=0.058; and d 70, P=0.092). Overall, gel had little effect on pain sensitivity. Weight gain was reduced on d 1 after branding compared to all other time points (P<0.001) but was not affected by gel application (P=0.277). In conclusion, applying gel did not improve outcomes after branding. In addition, by 70 d after the procedure, hot-iron brands still tended to be more painful than

  10. Reflective Blankets Do Not Effect Cooling Rates after Running in Hot, Humid Conditions

    PubMed Central

    REYNOLDS, KORY A.; EVANICH, JOHN J.; EBERMAN, LINDSEY E.

    2015-01-01

    Reflective blankets (RB) are often provided at the conclusion of endurance events, even in extreme environments. The implications could be dangerous if increased core body temperature (CBT) is exacerbated by RB. To evaluate the effect of RB on cooling rate for individuals walking or sitting after intense running. Pilot, randomized control trial experimental design. Environmental chamber. Recreational runners (age=25±5y; mass=76.8±16.7kg; height=177±9cm) completed an 8km (actual mean distance=7.5±1.1km). We randomly assigned participants into one of four groups: walking with blanket (WB=5), walking without blanket (WNB=5), sitting with blanket (SB=5), or sitting without blanket (SNB=4). Participants ran on a treadmill at their own pace until volitional exhaustion, achieving the 8km distance, or experiencing CBT=40°C. Every three minutes during the running (time determined by pace) and cooling protocol (62 min in chamber), we measured CBT, HR, and Borg scale, and environmental conditions. We evaluated cooling rate, peak physiological variables, pace, and environment by condition using a Kruskal-Wallis non-parametric one-way ANOVAs. We identified similar exercise sessions (df=3; CBT χ2=0.921, p=0.82; HR χ2=7.446, p=0.06; Borg χ2= 5.732, p=0.13; pace χ2=0.747, p=0.86) and similar environmental characteristics between conditions (df=3; Wet Bulb Globe Temperature=26.18±2.78°C, χ2=1.552, p=0.67). No significant differences between conditions on cooling rate (df=3, χ2=2.301, p=0.512) were found, suggesting RBs neither cool nor heat the body, whether seated (SB=0.021±0.011deg/min; SNB=0.029±0.002deg/min) or walking (WB=0.015±0.025deg/min; WNB=0.021±0.011deg/min) in a hot, humid environment. CBT in distance runners is not altered by the use of a RB during a seated or walking cool down after a strenuous run. PMID:27182414

  11. Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1998-01-01

    A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.

  12. Performance evaluation of Iranian cooling vest on the physiological indices in hot climatic chamber

    PubMed Central

    Dehghan, Habibollah; Gharehbaei, Somayeh; Mahaki, Behzad

    2016-01-01

    Background: Heat stress is a threat to those who work in high temperatures. The purpose in this study was an examination of the cooling ability of Iranian phase change material (PCM) cold vest in hot and dry conditions in a climatic chamber. Materials and Methods: This experimental study was implemented on 12 male students (age 23.7 ± 2.8 years, weight 66.1 ± 11.4 kg, and VO2 max 2.53 L/min) in 2013. The heat strain score index (HSSI), skin temperature and oral temperature, and heartbeat in two phases with and without cooling vest was measured during 30 min in a climatic chamber (temperature 38.8 ± 1.3°C humidity ratio 32.9 ± 2.3%) and in two activity intensity of 2.4 and 4.8 km/h speed on the treadmill, and the data differences between groups “with” and “without” vest were tested by t-test and repeated measurement. The level of significance was considered as 0.05. Results: The change in heartbeat at two activities, the oral temperature and heat strain score at 4.8 km/h, did not differ significantly between groups (with and without vest), as expected (P > 0.05). However, the change in skin temperature at two activities, oral temperature and heat strain score at 2.4 km/h, was significant between groups, as expected (P < 0.05). The average of skin temperature at 15th and 30th min during the experiment at two activities of 2.4 and 4.8 km/h was significant. Conclusion: The findings of the study indicated that using the Iranian PCM cold vest in hot and dry climate can affect the reduction of skin temperature, oral temperature, and HSSI in light activities. PMID:27500168

  13. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  14. Black hole-neutron star mergers with a hot equation of state and neutrino cooling

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2014-03-01

    Black hole-neutron star (BHNS) and neutron star-neutron star mergers will be prime candidates for the joint detection of gravitational wave and electromagnetic (EM) signals once the Advanced LIGO/VIRGO/KAGRA detectors come online. For BHNS binaries, the result of the merger strongly depends on the parameters of the system. EM emissions from a post-merger disk (e.g. gamma-ray bursts) are only possible for low mass or high spin black holes. The amount of ejected neutron-rich material, which has important consequences for the emission of more isotropic EM signals and the production of r-process elements, can also vary by a few orders of magnitudes - with high mass, high spin black holes ejecting more than 0 . 1M⊙ of unbound material. I will describe recent simulations of BHNS mergers performed by the SXS collaboration, which explore the parameter space dependence of these mergers while using a hot nuclear equation of state (LS220) and approximate neutrino cooling of the post-merger accretion disk. I will discuss the qualitative differences between these mergers and earlier simulations performed with polytropic equations of state, as well as the effect of neutrino cooling on the post-merger evolution and the general properties of the neutrino radiation.

  15. Hot and Cool Forms of Inhibitory Control and Externalizing Behavior in Children of Mothers Who Smoked during Pregnancy: An Exploratory Study

    ERIC Educational Resources Information Center

    Huijbregts, Stephan C. J.; Warren, Alison J.; de Sonneville, Leo M. J.; Swaab-Barneveld, Hanna

    2008-01-01

    This study examined whether children exposed to prenatal smoking show deficits in "hot" and/or "cool" executive functioning (EF). Hot EF is involved in regulation of affect and motivation, whereas cool EF is involved in handling abstract, decontextualized problems. Forty 7 to 9-year-old children (15 exposed to prenatal smoking, 25 non-exposed)…

  16. Cool and hot executive function as predictors of aggression in early childhood: Differentiating between the function and form of aggression.

    PubMed

    Poland, Sarah E; Monks, Claire P; Tsermentseli, Stella

    2016-06-01

    Executive function (EF) has been implicated in childhood aggression. Understanding of the role of EF in aggression has been hindered, however, by the lack of research taking into account the function and form of aggression and the almost exclusive focus on cool EF. This study examined the role of cool and hot EF in teacher reported aggression, differentiating between reactive and proactive as well as physical and relational aggression. Children (N = 106) completed laboratory tasks measuring cool (inhibition, planning, working memory) and hot EF (affective decision-making, delay of gratification). Cool, but not hot, EF significantly contributed to understanding of childhood aggression. Inhibition was a central predictor of childhood aggression. Planning and working memory, in contrast, were significant independent predictors of proactive relational aggression only. Added to this, prosocial behaviour moderated the relationship between working memory and reactive relational aggression. This study therefore suggests that cool EF, particularly inhibition, is associated with childhood aggression across the different functions and forms. PMID:26615980

  17. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  18. Effects of cool and hot humid environmental conditions on neuroendocrine responses of horses to treadmill exercise.

    PubMed

    Williams, R J; Marlin, D J; Smith, N; Harris, R C; Haresign, W; Davies Morel, M C

    2002-07-01

    To determine the effects of exercise, high heat and humidity and acclimation on plasma adrenaline, noradrenaline, beta-endorphin and cortisol concentrations, five horses performed a competition exercise test (CET; designed to simulate the speed and endurance test of a three-day event) in cool dry (CD) (20 degrees C/40% RH) and hot humid (30 degrees C/80% RH) conditions before (pre-acclimation) and after (post-acclimation) a 15 day period of humid heat acclimation. Plasma adrenaline and noradrenaline concentrations pre-acclimation were significantly increased compared with exercise in the CD trial at the end of Phases C (P<0.05) and D (P<0.05 and P<0.01, respectively) and at 2 min recovery (P<0.01), with adrenaline concentrations still elevated after 5 min of recovery (P<0.001). Plasma beta-endorphin concentrations were increased at the end of Phases C (P<0.05) and X (P<0.01) and at 5 and 30 min recovery (P<0.05) in the pre-acclimation session. Plasma cortisol concentrations were elevated after the initial warm up period pre-acclimation (P<0.01) and at the end of Phase C (P<0.05), compared with the CD trial. A 15 day period of acclimation significantly increased plasma adrenaline concentrations at 2 min recovery (P<0.001) and plasma cortisol concentration at the end of Phase B (P<0.01) compared with pre-acclimation. Acclimation did not significantly influence noradrenaline or beta-endorphin responses to exercise, although there was a trend for plasma beta-endorphin to be lower at the end of Phases C and X and after 30 min recovery compared with pre-acclimation. Plasma adrenaline, noradrenaline, beta-endorphin and cortisol concentrations were increased by exercise in cool dry conditions and were further increased by the same exercise in hot humid conditions. Exercise responses post-acclimation suggest that adrenaline and noradrenaline may play a role in the adaptation of horses to thermal stress and that changes in plasma beta-endorphin concentrations could be used

  19. Radiative Transfer Modeling of the Winds and Circumstellar Environments of Hot and Cool Massive Stars

    NASA Astrophysics Data System (ADS)

    Lobel, A.

    2010-06-01

    We present modeling research work of the winds and circumstellar environments of a variety of prototypical hot and cool massive stars using advanced radiative-transfer calculations. This research aims at unraveling the detailed physics of various mass-loss mechanisms of luminous stars in the upper portion of the H-R diagram. Very recent 3D radiative-transfer calculations, combined with hydrodynamic simulations, show that radiatively-driven winds of OB supergiants are structured due to large-scale density and velocity fields caused by rotating bright spots at the stellar equator. The mass-loss rates computed from matching Discrete Absorption Components (DACs) in IUE observations of HD 64760 (B Ib) do not reveal appreciable changes from the rates of unstructured (smooth) wind models. Intermediate yellow supergiants (such as the yellow hypergiant ρ Cas, F-G Ia0), on the other hand, show prominent spectroscopic signatures of strongly increased mass-loss rates during episodic outbursts that cause dramatic changes of the stellar photospheric conditions. Long-term high-resolution spectroscopic monitoring of cool hypergiants near the Yellow Evolutionary Void reveals that their mass-loss rates and wind-structure are dominated by photospheric eruptions and large-amplitude pulsations that impart mechanical momentum to the circumstellar environment by propagating acoustic (shock) waves. In massive red supergiants, however, clear evidence for mechanical wave propagation from the sub-photospheric convection zones is lacking, despite their frequently observed spectroscopic and photometric variability. Recent spatially resolved HST-STIS observations inside Betelgeuse's (M Iab) very extended chromosphere and dust envelope show evidence of warm chromospheric gas far beyond the dust-condensation radius of radiative-transfer models. Models for these long-term spectroscopic observations demonstrate that the chromospheric pulsations are not spherically symmetric. The STIS observations

  20. Using Activated Transport in Parallel Nanowires for Energy Harvesting and Hot-Spot Cooling

    NASA Astrophysics Data System (ADS)

    Bosisio, Riccardo; Gorini, Cosimo; Fleury, Geneviève; Pichard, Jean-Louis

    2015-05-01

    We study arrays of parallel doped semiconductor nanowires in a temperature range where the electrons propagate through the nanowires by phonon-assisted hops between localized states. By solving the random-resistor-network problem, we compute the thermopower S , the electrical conductance G , and the electronic thermal conductance Ke of the device. We investigate how those quantities depend on the position—which can be tuned with a back gate—of the nanowire impurity band with respect to the equilibrium electrochemical potential. We show that large power factors can be reached near the band edges, when S self-averages to large values while G is small but scales with the number of wires. Calculating the amount of heat exchanged locally between the electrons inside the nanowires and the phonons of the environment, we show that phonons are mainly absorbed near one electrode and emitted near the other when a charge current is driven through the nanowires near their band edges. This phenomenon could be exploited for a field control of the heat exchange between the phonons and the electrons at submicron scales in electronic circuits. It could be also used for cooling hot spots.

  1. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    NASA Astrophysics Data System (ADS)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  2. Simulation of the hot rolling and accelerated cooling of a C-Mn ferrite-bainite strip steel

    NASA Astrophysics Data System (ADS)

    Debray, B.; Teracher, P.; Jonas, J. J.

    1995-01-01

    By means of torsion testing, the microstructures and mechanical properties produced in a 0.14 Pct C-1.18 Pct Mn steel were investigated over a wide range of hot-rolling conditions, cooling rates, and simulated coiling temperatures. The austenite grain size present before accelerated cooling was varied from 10 to 150 μm by applying strains of 0 to 0.8 at temperatures of 850 °C to 1050 °C. Two cooling rates, 55 °C/s and 90 °C/s, were used. Cooling was interrupted at temperatures ranging from 550 °C to 300 °C. Optical microscopy and transmission electron microscopy (TEM) were employed to investigate the microstructures. The mechanical properties were studied by means of tensile testing. When a fine austenite grain size was present before cooling and a high cooling rate (90 °C/s) was used, the microstructure was composed of ferrite plus bainite and a mixture of ferrite and cementite, which may have formed by an interphase mechanism. The use of a lower cooling rate (55 °C/s) led to the presence of ferrite and fine pearlite. In both cases, the cooling interruption temperature and the amount of prior strain had little influence on the mechanical properties. Reheating at 1050 °C, which led to the presence of very coarse austenite, resulted in a stronger influence of the interruption temperature. A method developed at Institut de Recherche Sidérurgique (IRSID, St. Germain-en-Laye, France) for deducing the Continuous-Cooling-Transformation (CCT) diagrams from the cooling data was adapted to the present apparatus and used successfully to interpret the observed influence of the process parameters.

  3. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  4. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  5. The influence of hot and cool executive function on the development of eating styles related to overweight in children.

    PubMed

    Groppe, Karoline; Elsner, Birgit

    2015-04-01

    Studies linking executive function (EF) and overweight suggest that a broad range of executive functions might influence weight via obesity-related behaviors, such as particular eating styles. Currently, however, longitudinal studies investigating this assumption in children are rare. We hypothesized that lower hot and cool EF predicts a stronger increase in eating styles related to greater weight gain (food approach) and a weaker increase in eating styles related to less weight gain (food avoidance) over a 1-year period. Hot (delay of gratification, affective decision-making) and cool (attention shifting, inhibition, working memory updating) EF was assessed experimentally in a sample of 1657 elementary-school children (German school classes 1-3) at two time points, approximately one year apart. The children's food-approach and food-avoidance behavior was rated mainly via parent questionnaires at both time points. As expected, lower levels of hot and cool EF predicted a stronger increase in several food-approach eating styles across a 1-year period, mainly in girls. Unexpectedly, poorer performance on the affective decision-making task also predicted an increase in certain food-avoidance styles, namely, slowness in eating and satiety responsiveness, in girls. Results implicate that lower EF is not only seen in eating-disordered or obese individuals but also acts as a risk factor for an increase in particular eating styles that play a role in the development of weight problems in children. PMID:25528693

  6. Proximity Effects in Aluminum Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Astrophysics Data System (ADS)

    Verevkin, A.; Siddiqi, I.; Prober, D.; Skalare, A.; Karasik, B.; McGrath, W. R.; Echternach, P. M.; Leduc, H. G.

    2000-03-01

    We studied aluminum thin-film hot-electron bolometers (HEB) for THz mixer applications. The devices are L=0.1-1μm long microbridges of 100nm width and 13nm thickness, with superconducting transition T_c1=1.6-1.8K and Al/Ti/Au (63/28/28nm thick) contact pads with T_c2=0.6K. We studied conversion efficiency, intermediate frequency (IF) bandwidth, and dc characteristics at T=0.25-1.8K. When T_c1>T>T_c2, the device is a N-S-N structure, and when Tcooling mechanism while taking proximity effects into account.

  7. Thermal and economic assessment of hot side sensible heat and cold side phase change storage combination fo absorption solar cooling system

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    An analysis of a solar assisted absorption cooling system which employs a combination of phase change on the cold side and sensible heat storage on the hot side of the cooling machine for small commercial buildings is given. The year-round thermal performance of this system for space cooling were determined by simulation and compared against conventional cooling systems in three geographic locations: Phoenix, Arizona; Miami, Florida and Washington, D.C. The results indicate that the hot-cold storage combination has a considerable amount of energy and economical savings over hot side sensible heat storage. Using the hot-cold storage combination, the optimum collector areas for Washington, D.C., Phoenix and Miami are 355 m squared, 250 m squared and 495 m squared, respectively. Compared against conventional vapor compression chiller, the net solar fractions are 61, 67 and 69 percent, respectively.

  8. Effect of hot-rolling and cooling rate on microstructure and high-temperature strength in 9CrODS steel

    NASA Astrophysics Data System (ADS)

    Wu, XCH.; Ukai, S.; Miyata, R.; Oono, N.; Hayashi, S.; Leng, B.; Ohtsuka, S.; Kaito, T.

    2013-09-01

    The 9CrODS steel specimens were prepared by different processing with hot-rolling and different cooling rate. The hardness and high-temperature tensile properties were measured. Microstructure was analyzed by means of EBSD inverse pole figure and kernel average miss-orientation angles. The hot-rolled and then air-cooled specimen has the highest tensile strength. The furnace-cooled specimen also has better tensile strength at 700 °C than air-cooled specimen at normalized condition. The high-temperature strength of 9CrODS steel is significantly improved with increasing grain size that can be induced by hot-rolling or furnace-slow cooling, where the localized grain boundary deformation can be suppressed.

  9. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.

    PubMed

    Wang, F; Annaheim, S; Morrissey, M; Rossi, R M

    2014-06-01

    Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear. PMID:24033668

  10. Flash Mixing on the White-Dwarf Cooling Curve: Understanding Hot Horizontal Branch Anomalies in NGC 2808

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Sweigart, Allen V.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present an ultraviolet color-magnitude diagram (CMD) spanning the hot horizontal branch (HB), blue straggler, and white dwarf populations of the globular cluster NGC 2808. These data, obtained with the Space Telescope Imaging Spectrograph (STIS), demonstrate that NGC 2808 harbors a significant population of hot subluminous HB stars, an anomaly only previously reported for the globular cluster omega Cen. Our theoretical modeling indicates that the location of these subluminous stars in the CMD, as well as the high temperature gap along the HB of NGC 2808, can be explained if these stars underwent a late helium-core flash while descending the white dwarf cooling curve. We show that the convective zone produced by such a late helium flash will penetrate into the hydrogen envelope, thereby mixing hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the "born again" scenario for producing hydrogen-deficient stars following a late helium-shell flash. The flash mixing of the envelope greatly enhances the envelope helium and carbon abundances that, in turn, leads to a discontinuous increase in the HB effective temperatures. We argue that the hot HB gap is associated with this theoretically predicted dichotomy in the HB properties. Moreover, the changes in the emergent spectral energy distribution caused by these abundance changes are primarily responsible for explaining the hot subluminous HB stars. Although further evidence is needed to confirm that a late helium-core flash can account for the subluminous HB stars and the hot HB gap, we demonstrate that an understanding of these stars requires the use of appropriate theoretical models for their evolution, atmospheres, and spectra.

  11. Designing of the Cooling Vest from Paraffin Compounds and Evaluation of its Impact Under Laboratory Hot Conditions

    PubMed Central

    Yazdanirad, Saeid; Dehghan, Habibollah

    2016-01-01

    Background: The phase change materials (PCMs) have the appropriate properties for controlling heat strain. One of the well-known PCMs is paraffin. This study aimed to design the cooling vest from the cheap commercial paraffin compound and evaluation of its effectiveness under laboratory hot conditions. Methods: the cooling vest was made of the polyester fabric and it had 17 aluminum packs. The each of aluminum packs was filled by 135 g of prepared paraffin with a proper melting point in the range of 15–35°C. an experimental study was conducted on ten male students under warm conditions (air temperature = 40°C, relative humidity = 40%) in a climatic chamber. Each participant was tested without cooling vest and with cooling in two activities rate on treadmill to include: light (2.8 km/h) and moderate (4.8 km/h). The time of this test was 30 min in each stage. During the test, the heart rate, the oral temperature, the skin temperature were measured every 4 min. Finally, data were analyzed using the Kolmogrov–Smirnov and repeated measurement ANOVA test in SPSS 16. Results: The latent heat of the prepared paraffin compound and the peak of the melting point were 108 kJ/kg and 30°C, respectively. The mean and standard deviation of heart rate, oral temperature, and skin temperature with cooling vest in light activity were 103.9 (12.12) beat/min, 36.77 (0.32)°C, and 31.01 (1.96)°C and in moderate activity were 109.5 (12.57) beat/min, 36.79 (0.20)°C, and 29.69 (2.23)°C, respectively. There is a significant difference between parameters with a cooling vest and without cooling (P < 0.05). Conclusions: The designed cooling vest with low cost can be used to prevent thermal strain and to increase the physiological stability against the heat. However, the latent heat of this cooling vest was low. PMID:27076885

  12. Cool and Hot Executive Function Impairments in Violent Offenders with Antisocial Personality Disorder with and without Psychopathy

    PubMed Central

    De Brito, Stephane A.; Viding, Essi; Kumari, Veena; Blackwood, Nigel; Hodgins, Sheilagh

    2013-01-01

    Background Impairments in executive function characterize offenders with antisocial personality disorder (ASPD) and offenders with psychopathy. However, the extent to which those impairments are associated with ASPD, psychopathy, or both is unknown. Methods The present study examined 17 violent offenders with ASPD and psychopathy (ASPD+P), 28 violent offenders with ASPD without psychopathy (ASPD−P), and 21 healthy non-offenders on tasks assessing cool (verbal working memory and alteration of motor responses to spatial locations) and hot (reversal learning, decision-making under risk, and stimulus-reinforcement-based decision-making) executive function. Results In comparison to healthy non-offenders, violent offenders with ASPD+P and those with ASPD−P showed similar impairments in verbal working memory and adaptive decision-making. They failed to learn from punishment cues, to change their behaviour in the face of changing contingencies, and made poorer quality decisions despite longer periods of deliberation. Intriguingly, the two groups of offenders did not differ significantly from the non-offenders in terms of their alteration of motor responses to spatial locations and their levels of risk-taking, indicated by betting, and impulsivity, measured as delay aversion. The performance of the two groups of offenders on the measures of cool and hot executive function did not differ, indicating shared deficits. Conclusions These documented impairments may help to explain the persistence of antisocial behaviours despite the known risks of the negative consequences of such behaviours. PMID:23840340

  13. A passive cooling system of residential and commercial buildings in summer or hot season

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Mashud, M.; Chu, C. M.; Misaran, M. S. bin; Sarker, M.; Kumaresen, S.

    2015-12-01

    The increasing number of high rise buildings may contribute to lack of natural ventilation in modern buildings. Generally, fans and air conditioning are used in the modern building for cooling and air ventilation. Most of the energy in tropical regions are consumed by heating, cooling and ventilation appliances. Therefore, solar power appliances for cooling, heating and ventilation will be a suitable option for saving energy from the household sector. A modified-structure building is designed and constructed with solar chimney to enhance ventilation rate that increases cooling performance and ensure thermal comfort. An evaporative cooler is introduced with a newly designed room to enhance the temperature reduction capacity. The room temperature is compared with a non-modified room as well as with ambient temperature. The results show that passive cooling system with evaporative cooler was able to reduce temperature by 5°C compared to the ambient temperature and about 2°C to 3°C below the reference room temperature.

  14. Hot topic, warm loops, cooling plasma? Multithermal analysis of active region loops

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S.; Brooks, D. H.

    2014-11-10

    We have found indications of a relationship between the differential emission measure (DEM) weighted temperature and the cross-field DEM width for coronal loops. The data come from the Hinode X-ray Telescope, the Hinode EUV Imaging Spectrometer, and the Solar Dynamics Observatory Atmospheric Imaging Assembly. These data show that cooler loops tend to have narrower DEM widths. If most loops observed by these instruments are composed of bundles of unresolved magnetic strands and are only observed in their cooling phase, as some studies have suggested, then this relationship implies that the DEM of a coronal loop narrows as it cools. This could imply that fewer strands are seen emitting in the later cooling phase, potentially resolving the long standing controversy of whether the cross-field temperatures of coronal loops are multithermal or isothermal.

  15. Simulator test to study hot-flow problems related to a gas cooled reactor

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Freeman, M. P.; Doak, K. W.; Thorpe, M. L.

    1973-01-01

    An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen.

  16. Solar heating, cooling, and hot water systems installed at Richland, Washington

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  17. The Effect of Cooled Perches on Immunological Parameters of Caged White Leghorn Hens during the Hot Summer Months

    PubMed Central

    Strong, Rebecca A.; Hester, Patricia Y.; Eicher, Susan D.; Hu, Jiaying; Cheng, Heng-Wei

    2015-01-01

    The objective of this study was to determine if thermally cooled perches improve hen immunity during hot summer. White Leghorn pullets at 16 week of age were randomly assigned to 18 cages of 3 banks at 9 hens per cage. Each bank was assigned to 1 of the 3 treatments up to 32 week of age: 1) thermally cooled perches, 2) perches with ambient air, and 3) cages without perches. Hens were exposed to natural ambient temperatures from June through September 2013 in Indiana with a 4 h acute heat episode at 27.6 week of age. The packed cell volume, heterophil to lymphocyte (H/L) ratio, plasma concentrations of total IgG, and cytokines of interleukin-1β and interleukin-6, plus lipopolysaccharide-induced tumor necrosis factor-α factor were measured at both 27.6 and 32 week of age. The mRNA expressions of these cytokines, toll-like receptor-4, and inducible nitric oxide synthase were also examined in the spleen of 32 week-old hens. Except for H/L ratio, thermally cooled perches did not significantly improve currently measured immunological indicators. These results indicated that the ambient temperature of 2013 summer in Indiana (24°C, 17.1 to 33.1°C) was not high enough and the 4 h heat episode at 33.3°C (32 to 34.6°C) was insufficient in length to evoke severe heat stress in hens. However, cooled perch hens had a lower H/L ratio than both air perch hens and control hens at 27.6 week of age and it was still lower compared to control hens (P < 0.05, respectively) at 32 week of age. The lowered H/L ratio of cooled perch hens may suggest that they were able to cope with acute heat stress more effectively than control hens. Further studies are needed to evaluate the effectiveness of thermally cooled perches on hen health under higher ambient temperatures. PMID:26495988

  18. The Effect of Cooled Perches on Immunological Parameters of Caged White Leghorn Hens during the Hot Summer Months.

    PubMed

    Strong, Rebecca A; Hester, Patricia Y; Eicher, Susan D; Hu, Jiaying; Cheng, Heng-Wei

    2015-01-01

    The objective of this study was to determine if thermally cooled perches improve hen immunity during hot summer. White Leghorn pullets at 16 week of age were randomly assigned to 18 cages of 3 banks at 9 hens per cage. Each bank was assigned to 1 of the 3 treatments up to 32 week of age: 1) thermally cooled perches, 2) perches with ambient air, and 3) cages without perches. Hens were exposed to natural ambient temperatures from June through September 2013 in Indiana with a 4 h acute heat episode at 27.6 week of age. The packed cell volume, heterophil to lymphocyte (H/L) ratio, plasma concentrations of total IgG, and cytokines of interleukin-1β and interleukin-6, plus lipopolysaccharide-induced tumor necrosis factor-α factor were measured at both 27.6 and 32 week of age. The mRNA expressions of these cytokines, toll-like receptor-4, and inducible nitric oxide synthase were also examined in the spleen of 32 week-old hens. Except for H/L ratio, thermally cooled perches did not significantly improve currently measured immunological indicators. These results indicated that the ambient temperature of 2013 summer in Indiana (24°C, 17.1 to 33.1°C) was not high enough and the 4 h heat episode at 33.3°C (32 to 34.6°C) was insufficient in length to evoke severe heat stress in hens. However, cooled perch hens had a lower H/L ratio than both air perch hens and control hens at 27.6 week of age and it was still lower compared to control hens (P < 0.05, respectively) at 32 week of age. The lowered H/L ratio of cooled perch hens may suggest that they were able to cope with acute heat stress more effectively than control hens. Further studies are needed to evaluate the effectiveness of thermally cooled perches on hen health under higher ambient temperatures. PMID:26495988

  19. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  20. Dynamic analysis of moisture transport through walls and associated cooling loads in the hot/humid climate of Florianopolis, Brazil

    SciTech Connect

    Mendes, N.; Winkelmann, F.C.; Lamberts, R.; Philippi, P.C.; Da Cunha Neto, J.A.B.

    1996-04-01

    The authors describe the use of a dynamic model of combined heat and mass transfer to analyze the effects on cooling loads of transient moisture storage and transport through walls with porous building materials, under varying boundary conditions. The materials studied were brick, lime mortar and autoclaved cellular concrete. The physical properties of these materials, such as mass transport coefficients, thermal conductivity and specific heat, were taken to be functions of moisture content. The simulation results were compared to those obtained by pure conduction heat transfer without moisture effects. Also analyzed were the influence on cooling loads of high moisture content due to rain soaking of materials, and the influence of solar radiation on sunny and cloudy days. The weather used was a hot/humid summer period in Florianopolis (South Brazil). It is shown that neglecting moisture migration or assuming that the physical properties of wall materials do not depend on moisture content can result in large errors in sensible and latent heat transfer.

  1. Palm cooling does not reduce heat strain during exercise in a hot, dry environment.

    PubMed

    Amorim, Fabiano T; Yamada, Paulette M; Robergs, Robert A; Schneider, Suzanne M

    2010-08-01

    To compare the effectiveness of the rapid thermal exchange device (RTX) in slowing the development of hyperthermia and associated symptoms among hand immersed in water bath (WB), water-perfused vest (WPV), and no cooling condition (NC). Ten subjects performed 4 heat stress trials. The protocol consisted of 2 bouts of treadmill walking, separated by a cooling-rehydration period. The times to reach the predetermined rectal temperature in the first (38.5 degrees C) and second bouts (39 degrees C) were not different among RTX, NC, and WB, but was longer for the WPV in both bouts (p<0.05). Heat storage was significantly lower for WPV only in the first bout vs. the other conditions (p<0.05). Heart rate (HR) was not different at 10, 20, and 30 min during the first bout among RTX, NC, and WB, but was lower for WPV (p<0.05). HR was not different among conditions during the second bout. The RTX was not effective in slowing the development of hyperthermia. PMID:20725114

  2. Cooling off health security hot spots: getting on top of it down under.

    PubMed

    Murray, Kris A; Skerratt, Lee F; Speare, Rick; Ritchie, Scott; Smout, Felicity; Hedlefs, Robert; Lee, Jonathan

    2012-11-01

    Australia is free of many diseases, pests and weeds found elsewhere in the world due to its geographical isolation and relatively good health security practices. However, its health security is under increasing pressure due to a number of ecological, climatic, demographic and behavioural changes occurring globally. North Queensland is a high risk area (a health security hot spot) for Australia, due in part to its connection to neighbouring countries via the Torres Strait and the Indo-Papuan conduit, its high diversity of wildlife reservoirs and its environmental characteristics. Major outbreaks of exotic diseases, pests and weeds in Australia can cost in excess of $1 billion; however, most expenditure on health security is reactive apart from preventive measures undertaken for a few high profile diseases, pests and weeds. Large gains in health security could therefore be made by spending more on pre-emptive approaches to reduce the risk of outbreaks, invasion/spread and establishment, despite these gains being difficult to quantify. Although biosecurity threats may initially have regional impacts (e.g. Hendra virus), a break down in security in health security hot spots can have national and international consequences, as has been seen recently in other regions with the emergence of SARS and pandemic avian influenza. Novel approaches should be driven by building research and management capacity, particularly in the regions where threats arise, a model that is applicable both in Australia and in other regions of the world that value and therefore aim to improve their strategies for maintaining health security. PMID:22836170

  3. Distribution of Sequence-Based Types of Legionella pneumophila Serogroup 1 Strains Isolated from Cooling Towers, Hot Springs, and Potable Water Systems in China

    PubMed Central

    Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing

    2014-01-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea. PMID:24463975

  4. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    PubMed

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea. PMID:24463975

  5. Ambient air cooling for concealed soft body armor in a hot environment.

    PubMed

    Ryan, Greg A; Bishop, Stacy H; Herron, Robert L; Katica, Charles P; Elbon, Bre'anna L; Bosak, Andrew M; Bishop, Phillip

    2014-01-01

    Concealed soft body armor inhibits convective and evaporative heat loss and increases heat storage, especially in hot environments. One option to potentially mitigate heat storage is to promote airflow under the soft body armor. The purpose of this study was to evaluate the effect of ambient air induction (∼100 liters per minute) on heat strain while wearing concealed soft body armor in a hot environment (wet bulb globe temperature = 30°C). A counter-balanced, repeated measures protocol was performed with nine healthy male volunteers. Participants were fitted with either a traditional or modified Level II concealed soft body armor. Participants performed cycles of 12 min of walking (1.25 liters per minute) and 3 min of arm curls (0.6 liters per minute) for a total of 60 min. Two-way repeated measures ANOVA was used to assess the mean differences in physiological measures (rectal temperature, heart rate, micro-environment [temperature and relative humidity]). Post hoc Bonferroni analysis and paired samples t-tests (alpha = 0.01) were conducted on omnibus significant findings. Perceptual measures (perceived exertion, thermal comfort) were analyzed using Wilcoxon Signed Ranks Tests. Modification led to an improvement in perceived exertion at 45 min (MOD: 10 ± 1; CON: 11 ± 2; p ≤ 0.001) and 60 min (MOD: 10 ± 2; CON: 12 ± 2; p ≤ 0.001) and a reduction in micro-environment temperature in MOD (1.0 ± 0.2°C, p = 0.03) compared to CON. Modification did not attenuate change in rectal temperature or heart rate (p < 0.01) during 60-min work bout. Change in rectal temperature approached significance between MOD and CON at the end of the work bout (MOD: 0.4 ± 0.2°C; CON: 0.7 ± 0.3°C; p = 0.048). The slope of rectal temperature was significantly greater (p = 0.04) under CON compared to MOD. These data suggest that air induction may provide small benefits while wearing concealed soft body armor, though improvements are needed to lessen physiological strain

  6. CHARACTERIZING THE COOL KOIs. II. THE M DWARF KOI-254 AND ITS HOT JUPITER

    SciTech Connect

    Johnson, John Asher; Muirhead, Philip S.; Crepp, Justin R.; Morton, Timothy D.; Gazak, J. Zachary; Apps, Kevin; Crossfield, Ian J. M.; Tabetha Boyajian; Von Braun, Kaspar; Rojas-Ayala, Barbara; Howard, Andrew W.; Marcy, Geoffrey W.; Covey, Kevin R.; Schlawin, Everett; Lloyd, James P.; Hamren, Katherine

    2012-05-15

    We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging, and near-infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254 b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J - K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of M{sub P} = 0.505 M{sub Jup}, radius R{sub P} = 0.96 R{sub Jup}, and semimajor axis a = 0.030 AU, based on our measured stellar mass M{sub *} = 0.59 M{sub Sun} and radius R{sub *} = 0.55 R{sub Sun }. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets.

  7. QUENCHING OF CARBON MONOXIDE AND METHANE IN THE ATMOSPHERES OF COOL BROWN DWARFS AND HOT JUPITERS

    SciTech Connect

    Visscher, Channon; Moses, Julianne I. E-mail: jmoses@spacescience.org

    2011-09-01

    We explore CO{r_reversible}CH{sub 4} quench kinetics in the atmospheres of substellar objects using updated timescale arguments, as suggested by a thermochemical kinetics and diffusion model that transitions from the thermochemical-equilibrium regime in the deep atmosphere to a quench-chemical regime at higher altitudes. More specifically, we examine CO quench chemistry on the T dwarf Gliese 229B and CH{sub 4} quench chemistry on the hot-Jupiter HD 189733b. We describe a method for correctly calculating reverse rate coefficients for chemical reactions, discuss the predominant pathways for CO{r_reversible}CH{sub 4} interconversion as indicated by the model, and demonstrate that a simple timescale approach can be used to accurately describe the behavior of quenched species when updated reaction kinetics and mixing-length-scale assumptions are used. Proper treatment of quench kinetics has important implications for estimates of molecular abundances and/or vertical mixing rates in the atmospheres of substellar objects. Our model results indicate significantly higher K{sub zz} values than previously estimated near the CO quench level on Gliese 229B, whereas current-model-data comparisons using CH{sub 4} permit a wide range of K{sub zz} values on HD 189733b. We also use updated reaction kinetics to revise previous estimates of the Jovian water abundance, based upon the observed abundance and chemical behavior of carbon monoxide. The CO chemical/observational constraint, along with Galileo entry probe data, suggests a water abundance of approximately 0.51-2.6 x solar (for a solar value of H{sub 2}O/H{sub 2} = 9.61 x 10{sup -4}) in Jupiter's troposphere, assuming vertical mixing from the deep atmosphere is the only source of tropospheric CO.

  8. Cooling water of power plant creates "hot spots" for tropical fishes and parasites.

    PubMed

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Dörge, Dorian D; Plath, Martin; Miesen, Friedrich W; Klimpel, Sven

    2016-01-01

    Thermally altered water bodies can function as "hot spots" where non-native species are establishing self-sustaining populations beyond their tropical and subtropical native regions. Whereas many tropical fish species have been found in these habitats, the introduction of non-native parasites often remains undetected. Here, n = 77 convict cichlids (Amatitlania nigrofasciata) were sampled by electro-fishing at two sites from a thermally altered stream in Germany and examined for parasite fauna and feeding ecology. Stomach content analysis suggests an opportunistic feeding strategy of A. nigrofasciata: while plant material dominated the diet at the warm water inlet (∼30 °C), relative contributions of insects, plants, and crustaceans were balanced 3 km downstream (∼27 °C). The most abundant non-native parasite species was the tropical nematode Camallanus cotti with P = 11.90 % and P = 80.00 % at the inlet and further downstream, respectively. Additionally, nematode larvae of Anguillicoloides crassus and one specimen of the subtropical species Bothriocephalus acheilognathi were isolated. A. nigrofasciata was also highly infected with the native parasite Acanthocephalus anguillae, which could be linked to high numbers of the parasite's intermediate host Asellus aquaticus. The aim of this study was to highlight the risk and consequences of the release and establishment of ornamental fish species for the introduction and spread of non-indigenous metazoan parasites using the convict cichlid as a model species. Furthermore, the spread of non-native parasites into adjacent fish communities needs to be addressed in the future as first evidence of Camallanus cotti in native fish species was also found. PMID:26374537

  9. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  10. HST Hot-Jupiter Transmission Spectral Survey: Clear Skies for Cool Saturn WASP-39b

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.; Henry, Gregory W.; Williamson, Michael W.; Fortney, Jonathan J.; Burrows, Adam S.; Kataria, Tiffany; Nikolov, Nikolay; Showman, Adam P.; Ballester, Gilda E.; Désert, Jean-Michel; Aigrain, Suzanne; Deming, Drake; Lecavelier des Etangs, Alain; Vidal-Madjar, Alfred

    2016-08-01

    We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μm, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μm. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrum is well matched by a clear H2-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.

  11. Hot-electron cooling by acoustic and optical phonons in monolayers of MoS2 and other transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kaasbjerg, Kristen; Bhargavi, K. S.; Kubakaddi, S. S.

    2014-10-01

    We study hot-electron cooling by acoustic and optical phonons in monolayer MoS2. The cooling power P (Pe=P /n ) is investigated as a function of electron temperature Te (0-500 K) and carrier density n (1010-1013 cm-2) taking into account all relevant electron-phonon (el-ph) couplings. We find that the crossover from acoustic phonon dominated cooling at low Te to optical phonon dominated cooling at higher Te takes place at Te˜50 -75 K. The unscreened deformation potential (DP) coupling to the TA phonon is shown to dominate P due to acoustic phonon scattering over the entire temperature and density range considered. The cooling power due to screened DP coupling to the LA phonon and screened piezoelectric (PE) coupling to the TA and LA phonons is orders of magnitude lower. In the Bloch-Grüneisen (BG) regime, P ˜Te4(Te6) is predicted for unscreened (screened) el-ph interaction and P ˜n-1 /2(Pe˜n-3 /2) for both unscreened and screened el-ph interaction. The cooling power due to optical phonons is dominated by zero-order DP couplings and the Fröhlich interaction, and is found to be significantly reduced by the hot-phonon effect when the phonon relaxation time due to phonon-phonon scattering is large compared to the relaxation time due to el-ph scattering. The Te and n dependence of the hot-phonon distribution function is also studied. Our results for monolayer MoS2 are compared with those in conventional two-dimensional electron gases (2DEGs) as well as monolayer and bilayer graphene.

  12. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  13. Hot versus Cold: the Dichotomy in Spherical Accretion of Cooling Flows onto Supermassive Black Holes in Elliptical Galaxies, Galaxy Groups, and Clusters

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2014-01-01

    Feedback heating from active galactic nuclei (AGNs) has been commonly invoked to suppress cooling flows predicted in hot gas in elliptical galaxies, galaxy groups, and clusters. Previous studies have focused on if and how AGN feedback heats the gas but have little paid attention to its triggering mechanism. Using spherically symmetric simulations, we investigate how large-scale cooling flows are accreted by central supermassive black holes (SMBHs) in eight well-observed systems and find an interesting dichotomy. In massive clusters, the gas develops a central cooling catastrophe within about the cooling time (typically ~100-300 Myr), resulting in cold-mode accretion onto SMBHs. However, in our four simulated systems on group and galaxy scales at a low metallicity Z = 0.3 Z ⊙, the gas quickly settles into a long-term state that has a cuspy central temperature profile extending to several tens to about 100 pc. At the more realistic solar metallicity, two groups (with R e ~ 4 kpc) still host the long-term, hot-mode accretion. Both accretion modes naturally appear in our idealized calculations where only cooling, gas inflow, and compressional heating are considered. The long-term, hot-mode accretion is maintained by the quickly established closeness between the timescales of these processes, preferably in systems with low gas densities, low gas metallicities, and importantly, compact central galaxies, which result in strong gravitational acceleration and compressional heating at the intermediate radii. Our calculations predict that central cuspy temperature profiles appear more often in smaller systems than galaxy clusters, which instead often host significant cold gas and star formation.

  14. Hot versus cold: The dichotomy in spherical accretion of cooling flows onto supermassive black holes in elliptical galaxies, galaxy groups, and clusters

    SciTech Connect

    Guo, Fulai; Mathews, William G.

    2014-01-10

    Feedback heating from active galactic nuclei (AGNs) has been commonly invoked to suppress cooling flows predicted in hot gas in elliptical galaxies, galaxy groups, and clusters. Previous studies have focused on if and how AGN feedback heats the gas but have little paid attention to its triggering mechanism. Using spherically symmetric simulations, we investigate how large-scale cooling flows are accreted by central supermassive black holes (SMBHs) in eight well-observed systems and find an interesting dichotomy. In massive clusters, the gas develops a central cooling catastrophe within about the cooling time (typically ∼100-300 Myr), resulting in cold-mode accretion onto SMBHs. However, in our four simulated systems on group and galaxy scales at a low metallicity Z = 0.3 Z {sub ☉}, the gas quickly settles into a long-term state that has a cuspy central temperature profile extending to several tens to about 100 pc. At the more realistic solar metallicity, two groups (with R {sub e} ∼ 4 kpc) still host the long-term, hot-mode accretion. Both accretion modes naturally appear in our idealized calculations where only cooling, gas inflow, and compressional heating are considered. The long-term, hot-mode accretion is maintained by the quickly established closeness between the timescales of these processes, preferably in systems with low gas densities, low gas metallicities, and importantly, compact central galaxies, which result in strong gravitational acceleration and compressional heating at the intermediate radii. Our calculations predict that central cuspy temperature profiles appear more often in smaller systems than galaxy clusters, which instead often host significant cold gas and star formation.

  15. Cooling Hot Topics.

    ERIC Educational Resources Information Center

    Goodman, Marcia Renee

    This paper explores questions about why high school English teachers do and do not teach works that they consider to be controversial. It examines the barriers, both internal and external, that these teachers experience and how they perceive the barriers. The teachers were nine participants in a summer university seminar for teachers which focused…

  16. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-01-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  17. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  18. Photometric Amplitude Distribution of Stellar Rotation of KOIs—Indication for Spin-Orbit Alignment of Cool Stars and High Obliquity for Hot Stars

    NASA Astrophysics Data System (ADS)

    Mazeh, Tsevi; Perets, Hagai B.; McQuillan, Amy; Goldstein, Eyal S.

    2015-03-01

    The observed amplitude of the rotational photometric modulation of a star with spots should depend on the inclination of its rotational axis relative to our line of sight. Therefore, the distribution of observed rotational amplitudes of a large sample of stars depends on the distribution of their projected axes of rotation. Thus, comparison of the stellar rotational amplitudes of the Kepler objects of interest (KOIs) with those of Kepler single stars can provide a measure to indirectly infer the properties of the spin-orbit obliquity of Kepler planets. We apply this technique to the large samples of 993 KOIs and 33,614 single Kepler stars in temperature range of 3500-6500 K. We find with high significance that the amplitudes of cool KOIs are larger, on the order of 10%, than those of the single stars. In contrast, the amplitudes of hot KOIs are systematically lower. After correcting for an observational bias, we estimate that the amplitudes of the hot KOIs are smaller than the single stars by about the same factor of 10%. The border line between the relatively larger and smaller amplitudes, relative to the amplitudes of the single stars, occurs at about 6000 K. Our results suggest that the cool stars have their planets aligned with their stellar rotation, while the planets around hot stars have large obliquities, consistent with the findings of Winn et al. and Albrecht et al. We show that the low obliquity of the planets around cool stars extends up to at least 50 days, a feature that is not expected in the framework of a model that assumes the low obliquity is due to planet-star tidal realignment.

  19. Idea Bank.

    ERIC Educational Resources Information Center

    Science Teacher, 1993

    1993-01-01

    Presents three teaching ideas entitled (1) Rearview Mirrors; (2) Chills and Fevers; and (3) Science Activities and the Learner. The second idea presents a poem to help students with the relationship between Centigrade and Fahrenheit. The third idea presents activities on evaporation. (PR)

  20. Hot and Cool Forms of Inhibitory Control and Externalizing Behavior in Children of Mothers who Smoked during Pregnancy: An Exploratory Study

    PubMed Central

    Warren, Alison J.; de Sonneville, Leo M. J.; Swaab-Barneveld, Hanna

    2007-01-01

    This study examined whether children exposed to prenatal smoking show deficits in “hot” and/or “cool” executive functioning (EF). Hot EF is involved in regulation of affect and motivation, whereas cool EF is involved in handling abstract, decontextualized problems. Forty 7 to 9-year-old children (15 exposed to prenatal smoking, 25 non-exposed) performed two computerized tasks. The Sustained Attention Dots (SA-Dots) Task (as a measure of “cool” inhibitory control) requires 400 non-dominant hand and 200 dominant hand responses. Inhibitory control of the prepotent response is required for dominant hand responses. The Delay Frustration Task (DeFT) (as a measure of “hot” inhibitory control) consists of 55 simple maths exercises. On a number of trials delays are introduced before the next question appears on the screen. The extent of response-button pressing during delays indicates frustration-induced inhibitory control. Prenatally exposed children showed poorer inhibitory control in the DeFT than non-exposed children. A dose–response relationship was also observed. In addition, prenatally exposed children had significantly higher (dose-dependent) conduct problem- and hyperactivity-inattention scores. There were no significant group differences in inhibitory control scores from the SA-Dots. These results indicate that children exposed to prenatal smoking are at higher risk of hot but not cool executive function deficits. PMID:17924184

  1. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D. E-mail: m.duez@wsu.edu

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  2. Bright Ideas.

    ERIC Educational Resources Information Center

    Instructor, 1979

    1979-01-01

    Presents ideas for teaching techniques and learning activities in areas such as: New Year's resolutions, bird feeding, typing to spell, using thermometers, and activities utilizing old calendars. (JMB)

  3. Low-frequency electrical stimulation combined with a cooling vest improves recovery of elite kayakers following a simulated 1000-m race in a hot environment.

    PubMed

    Borne, R; Hausswirth, C; Costello, J T; Bieuzen, F

    2015-06-01

    This study compared the effects of a low-frequency electrical stimulation (LFES; Veinoplus(®) Sport, Ad Rem Technology, Paris, France), a low-frequency electrical stimulation combined with a cooling vest (LFESCR ) and an active recovery combined with a cooling vest (ACTCR ) as recovery strategies on performance (racing time and pacing strategies), physiologic and perceptual responses between two sprint kayak simulated races, in a hot environment (∼32 wet-bulb-globe temperature). Eight elite male kayakers performed two successive 1000-m kayak time trials (TT1 and TT2), separated by a short-term recovery period, including a 30-min of the respective recovery intervention protocol, in a randomized crossover design. Racing time, power output, and stroke rate were recorded for each time trial. Blood lactate concentration, pH, core, skin and body temperatures were measured before and after both TT1 and TT2 and at mid- and post-recovery intervention. Perceptual ratings of thermal sensation were also collected. LFESCR was associated with a very likely effect in performance restoration compared with ACTCR (99/0/1%) and LFES conditions (98/0/2%). LFESCR induced a significant decrease in body temperature and thermal sensation at post-recovery intervention, which is not observed in ACTCR condition. In conclusion, the combination of LFES and wearing a cooling vest (LFESCR ) improves performance restoration between two 1000-m kayak time trials achieved by elite athletes, in the heat. PMID:25943673

  4. Idea Bank.

    ERIC Educational Resources Information Center

    Talesnick, Irwin, Ed.

    1984-01-01

    Provides innovative ideas in biology, chemistry, and physics on the following topics: enzyme decomposition; chemical waste; time measurement; acid-base color magic; ball bouncing properties; heat; cell theory; and specimen boxes. Materials and procedures are listed when appropriate along with hints for expanding these ideas and investigations. (JM)

  5. Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings

    SciTech Connect

    1980-06-01

    These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

  6. Effect of Hot Coiling Under Accelerated Cooling on Development of Non-equiaxed Ferrite in Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Lanjewar, H. A.; Tripathi, Pranavkumar

    2016-06-01

    Strengthening mechanisms dominant in non-equiaxed ferrite structures are not so familiar and well measured. In present study, non-equiaxed ferritic structures were generated and perceived to be strengthened by grain/crystal refinement, presence of varying substructures, solid solution strengthening, and textural hardening. A Nb-V microalloyed steel was modeled under various accelerated cooling and coiling temperature conditions in a thermo-mechanical simulator. Decrease in coiling temperature in conjunction with accelerated cooling resulted in non-equiaxed ferrite structures with array of phase morphologies. Intermediate transformation conditions produced increase in strength concurrent with observed smallness in crystallite size and high amount of microstrain in the matrix phase indicative of high dislocation densities and crystal imperfections. Increase in strength is partially attributed to solid solution and texture hardening owing to increase in (111) pole intensity in structure.

  7. Effect of Hot Coiling Under Accelerated Cooling on Development of Non-equiaxed Ferrite in Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Lanjewar, H. A.; Tripathi, Pranavkumar

    2016-04-01

    Strengthening mechanisms dominant in non-equiaxed ferrite structures are not so familiar and well measured. In present study, non-equiaxed ferritic structures were generated and perceived to be strengthened by grain/crystal refinement, presence of varying substructures, solid solution strengthening, and textural hardening. A Nb-V microalloyed steel was modeled under various accelerated cooling and coiling temperature conditions in a thermo-mechanical simulator. Decrease in coiling temperature in conjunction with accelerated cooling resulted in non-equiaxed ferrite structures with array of phase morphologies. Intermediate transformation conditions produced increase in strength concurrent with observed smallness in crystallite size and high amount of microstrain in the matrix phase indicative of high dislocation densities and crystal imperfections. Increase in strength is partially attributed to solid solution and texture hardening owing to increase in (111) pole intensity in structure.

  8. Idea Bank.

    ERIC Educational Resources Information Center

    Herlocker, Helen; And Others

    1988-01-01

    Provides information on motivational activities, demonstrations, experiments, software, lessons, field trips, and a game as ideas for instructional use. Includes topics on digestion in paramecium, diffusion, cells, interactive displays, slime molds, and the construction of an underwater viewing device. (RT)

  9. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors

    PubMed Central

    Girard, Olivier; Racinais, Sébastien; Périard, Julien D

    2014-01-01

    Objectives To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. Methods The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, –50, –100 and –200 ms during brief (3–5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. Results The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (p<0.05). Reductions in KE RTD occurred within the 0–200 ms epoch after contraction onset postmatch and at 24 h, compared with prematch, independent of environmental conditions (p<0.05). A similar reduction in the KE peak RTD was also observed postmatch relative to prematch (p<0.05). No differences in KE RTD values were observed after normalisation to MVC torque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. Conclusions In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF. PMID:24668381

  10. Solution of boundary heat transfer coefficients between hot stamping die and cooling water based on FEM and optimization method

    NASA Astrophysics Data System (ADS)

    Li, Huiping; He, Lianfang; Zhang, Chunzhi; Cui, Hongzhi

    2016-04-01

    The thermal physical parameters have significant effects on the calculation accuracy of physical fields, and the boundary heat transfer coefficient between the die and water is one of the most important thermal physical parameters in the hot stamping. In order to attain the boundary heat transfer coefficient, the testing devices and test procedures are designed according to the characteristic of heat transfer in the hot stamping die. A method of estimating the temperature-dependent boundary heat transfer coefficient is presented, and an inverse heat conduction software is developed based on finite element method, advance-retreat method and golden section method. The software is used to calculate the boundary heat transfer coefficient according to the temperatures measured by NiCr-NiSi thermocouples in the experiment. The research results show that, the convergence of the method given in the paper is well, the surface temperature of sample has a significant effect on the boundary heat transfer coefficient between the die and water. The boundary heat transfer coefficient increases as the surface temperature of sample reduces, and the variation is nonlinear.

  11. The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction.

    PubMed

    Kawai, Hiroki; Giorgi, Giacomo; Marini, Andrea; Yamashita, Koichi

    2015-05-13

    We report on an analysis of hot-carrier lifetimes from electron-phonon interaction in lead iodide perovskites using first-principles calculations. Our calculations show that the holes in CsPbI3 have very long lifetimes in the valence band region situated 0.6 eV below the top of the valence band. On the other hand, no long lifetime is predicted in PbI3(-). These different results reflect the different electronic density of states (DOSs) in the valence bands, that is, a small DOS for the former structure while a sharp DOS peak for the latter structure. We propose a reduction of the relaxation paths in the small valence DOS as being the origin of the slow hot-hole cooling. Analyzing the generalized Eliashberg functions, we predict that different perovskite A-site cations do not have an impact on the carrier decay mechanism. The similarity between the DOS structures of CsPbI3 and CH3NH3PbI3 enables us to extend the description of the decay mechanism of fully inorganic CsPbI3 to its organic-inorganic counterpart, CH3NH3PbI3. PMID:25807270

  12. Radial turbine cooling

    NASA Astrophysics Data System (ADS)

    Roelke, Richard J.

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  13. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  14. Breakthrough Ideas.

    ERIC Educational Resources Information Center

    American School & University, 1996

    1996-01-01

    Describes innovative strategies that schools and universities are using to save money and reshape operations. Focuses on ideas in energy efficiency and facilities improvement, direct purchasing, energy management, retrofitting buildings, ceiling insulation upgrades, automation systems, electric demand programs, facilities programs, warranty…

  15. Idea Bank.

    ERIC Educational Resources Information Center

    Science Teacher, 1993

    1993-01-01

    Presents a series of science teaching ideas with the following titles: When Demonstrations Are Misleading, Lasers and Refraction, An Improved Stair-Step Model, Correcting Your Compass, Seeing Is Not Believing, Food Coloring: From the Kitchen to the Lab, Punny Business, Portfolios in Science, Feathers or Gold: A Case for Using the Metric System,…

  16. Teaching Ideas.

    ERIC Educational Resources Information Center

    Middleton, Kathleen, Ed.

    1979-01-01

    Ideas to aid the classroom teacher include integration of emphasis on reading into health education; definitions pertinent to contemporary health education; teaching students to read food labels; identification of implications of scientific advances such as test tube reproduction; and a card game to teach food groups to middle school children.…

  17. Bright Ideas.

    ERIC Educational Resources Information Center

    Armstrong, Phil

    1999-01-01

    Discusses how to upgrade lighting technology in schools to reduce energy consumption and cut operating costs. Explores fixture efficiency using ballast and lamp upgrades and compact fluorescent lights. Other ideas include changing exit signs to ones that use less wattage, improving luminary efficiency through use of reflectors and shielding…

  18. Idea Bank.

    ERIC Educational Resources Information Center

    Science Teacher, 1986

    1986-01-01

    Provides descriptions of activities and programs that have been successful with secondary science students. Includes ideas related to repairing radio-controlled cars, cooperative science-library center, observation exercises, recordkeeping skills and peer grading, DC power supply, chemistry of poison ivy, spore science, and a tic-tac-toe review…

  19. Dry idea

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    A century before the federal government established a council for “sustainable development,” John Wesley Powell was touting the idea as way to tame the American West. Powell's quiver of intellectual tools included one that modern environmentalists swear by: integrated assessment.

  20. Hubble Space Telescope spectroscopy of hot helium-rich white dwarfs: metal abundances along the cooling sequence

    NASA Astrophysics Data System (ADS)

    Dreizler, S.

    1999-12-01

    Metal abundances are the indicators of the chemical evolution in white dwarfs, which is dominated by the element separation due to the strong gravitational field. A reliable analysis and interpretation requires high resolution and high signal-to-noise UV spectroscopy. For hot helium rich DO white dwarfs this is currently only feasible with the Hubble Space Telescope. In this paper I report on our HST spectroscopy of DO white dwarfs and describe our model atmospheres employed for the analysis. This includes an introduction to our new self-consistent, chemically stratified non-LTE model atmospheres, which take into account gravitational sedimentation and radiative levitation. The results of the analysis shows that DO white dwarfs can best be fitted with chemically homogeneous models, whereas stratified models show significant deviations. Several possible reasons for this unexpected result are discussed. At the current stage, weak mass loss is the most plausible explanation. Based on observations obtained with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555

  1. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  2. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  3. Pre-cooling with intermittent ice ingestion lowers the core temperature in a hot environment as compared with the ingestion of a single bolus.

    PubMed

    Naito, Takashi; Ogaki, Tetsuro

    2016-07-01

    The timing in which ice is ingested may be important for optimizing its success. However, the effects of differences in the timing of ice ingestion has not been studied in resting participants. Therefore, the purpose of this study was to investigate the effects of differences in the timing of ice ingestion on rectal temperature (Tre) and rating of perceptual sensation in a hot environment. Seven males ingested 1.25gkg(-1) of crushed ice (ICE1.25: 0.5°C) or cold water (CON: 4°C) every 5min for 30min, or were given 7.5gkgBM(-1) of crushed ice (ICE7.5) to consume for 30min in a hot environment (35°C, 30% relative humidity). The participants then remained at rest for 1h. As physiological indices, Tre, body mass and urine specific gravity were measured. Rating of thermal sensation was measured at 5-min intervals throughout the experiment. ICE1.25 continued to decrease Tre until approximately 50min, and resulted in a greater reduction in Tre (-0.56±0.20°C) than ICE7.5 (-0.41±0.14°C). Tre was reduced from 40 to 75min by ICE1.25, which is a significant reduction in comparison to ICE7.5 (p<.05). Mean RTS with ICE1.25 at 50-65min was significantly lower than that with ICE7.5 (p<.05). These results suggest that pre-cooling with intermittent ice ingestion is a more effective strategy both for lowering the Tre and for the rating of thermal sensation. PMID:27264882

  4. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  5. Heating and cooling system

    SciTech Connect

    Imig, L.A.; Gardner, M.R.

    1982-08-01

    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes. Official Gazette of the U.S. Patent and Trademark Office.

  6. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  7. Effect of chlorine and temperature on free-living protozoa in operational man-made water systems (cooling towers and hot sanitary water systems) in Catalonia.

    PubMed

    Canals, Oriol; Serrano-Suárez, Alejandra; Salvadó, Humbert; Méndez, Javier; Cervero-Aragó, Sílvia; Ruiz de Porras, Vicenç; Dellundé, Jordi; Araujo, Rosa

    2015-05-01

    In recent decades, free-living protozoa (FLP) have gained prominence as the focus of research studies due to their pathogenicity to humans and their close relationship with the survival and growth of pathogenic amoeba-resisting bacteria. In the present work, we studied the presence of FLP in operational man-made water systems, i.e. cooling towers (CT) and hot sanitary water systems (HSWS), related to a high risk of Legionella spp. outbreaks, as well as the effect of the biocides used, i.e. chlorine in CT and high temperature in HSWS, on FLP. In CT samples, high-chlorine concentrations (7.5 ± 1.5 mg chlorine L(-1)) reduced the presence of FLP by 63.8 % compared to samples with low-chlorine concentrations (0.04 ± 0.08 mg chlorine L(-1)). Flagellates and amoebae were observed in samples collected with a level of 8 mg chlorine L(-1), which would indicate that some FLP, including the free-living amoeba (FLA) Acanthamoeba spp., are resistant to the discontinuous chlorine disinfection method used in the CT studied. Regarding HSWS samples, the amount of FLP detected in high-temperatures samples (53.1 ± 5.7 °C) was 38 % lower than in low-temperature samples (27.8 ± 5.8 °C). The effect of high temperature on FLP was chiefly observed in the results obtained by the culture method, in which there was a clear reduction in the presence of FLP at temperatures higher than 50 °C, but not in those obtained by PCR. The findings presented here show that the presence of FLP in operational man-made water systems should be taken into account in future regulations. PMID:25410311

  8. Hot Jupiters and cool stars

    SciTech Connect

    Villaver, Eva; Mustill, Alexander J.; Livio, Mario; Siess, Lionel

    2014-10-10

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M {sub ☉}), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  9. Cool Software for Hot Materials

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Deformation Control Technology, Inc. (DCT) used a NASA SBIR contract to develop a computer modeling system for evaluating thermal barrier coatings (TBCs) beforehand. Traditional tests of TBCs required Burner Rig tests, which involved the actual application of a coating to a surface. DCT's software reduces experimentation costs as well as led to a breakthrough in understanding the role of bond coat oxidization. DCT's method has been used in a variety of turbine applications.

  10. Clinical observations made in nonheat acclimated horses performing treadmill exercise in cool (20 degrees C/40%RH), hot, dry (30 degrees C/40%RH) or hot, humid (30 degrees C/80%RH) conditions.

    PubMed

    Harris, P A; Marlin, D J; Mills, P C; Roberts, C A; Scott, C M; Harris, R C; Orme, C E; Schroter, R C; Marr, C M; Barrelet, F

    1995-11-01

    Four horses (H, J, N and M) undertook a treadmill competition exercise test (CET), designed to simulate the physiological and metabolic stresses of the Speed and Endurance phase of a 3-day-event, under 3 different environmental conditions: 20 degrees C/40% relative humidity (RH) (cool, dry [CD]: 2 sessions); 30 degrees C/40%RH (hot, dry [HD]) and 30 degrees C/80%RH (hot, humid [HH]) (Marlin et al. 1995). A number of subjective clinical observations were made at designated time points throughout the exercise test and initial recovery period including buccal mucous membrane colouration, capillary refill time, neck and point of shoulder skin pinch recovery time, grade of abdominal sounds; anal sphincter tone as well as the presence or absence of fatigue and ataxia. The aim was to investigate their value in predicting performance in the final canter phase of the CET equivalent to the cross-country or Phase D of a field competition. In addition, the use of a more objective assessment, the cardiac recovery index (CRI), was investigated together with the heart rate, rectal temperature and respiratory frequency at the end of Phase C and at the 8 min point of the 10 Minute Box (8'X). The CRI was calculated according to the formula CRI = P2-P1 where P2 = the heart rate in beats/min at the 8 min point of the '10 Minute Box' (Phase X) of the CET. P1 = the heart rate (beats/min) at the 7 min point just before the horse was made to trot over a distance of 80 m at a speed of 3.7 m/s (at a 3 degrees incline) before returning to a walk. The study suggested that the subjective tests carried out at the 'End-C' and/or '8'X' time points were not useful in predicting subsequent performance in the final canter phase (Phase D) and neither were heart rate, rectal temperature or respiratory frequency. However, the only horse (Horse H) to complete the full CET under HH conditions was the only animal to show a decrease in respiratory frequency between the End-C and 8'X time points. All others

  11. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  12. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    NASA Astrophysics Data System (ADS)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  13. Too Cool for School? No Way! Using the TPACK Framework: You Can Have Your Hot Tools and Teach with Them, Too

    ERIC Educational Resources Information Center

    Mishra, Punya; Koehler, Matthew

    2009-01-01

    This is the age of cool tools. Facebook, iPhone, Flickr, blogs, cloud computing, Smart Boards, YouTube, Google Earth, and GPS are just a few examples of new technologies that bombard people from all directions. As individuals people see a new technology and can appreciate its coolness, but as educators they wonder how these tools can be used for…

  14. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  15. Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    Bartera, R. E.

    1978-01-01

    To emphasize energy conservation and low cost energy, the systems of solar heating and cooling are analyzed and compared with fossil fuel systems. The application of solar heating and cooling systems for industrial and domestic use are discussed. Topics of discussion include: solar collectors; space heating; pools and spas; domestic hot water; industrial heat less than 200 F; space cooling; industrial steam; and initial systems cost. A question and answer period is generated which closes out the discussion.

  16. Microstructures and Mechanical Properties of a New As-Hot-Rolled High-Strength DP Steel Subjected to Different Cooling Schedules

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Du, Lin-Xiu; Wang, Jian-Jun; Gao, Cai-Ru; Yang, Tong-Zi; Wang, An-Yang; Misra, R. D. K.

    2013-11-01

    Controlled rolling followed by accelerated cooling was carried out in-house to study the microstructure and mechanical properties of a low carbon dual-phase steel. The objective of the study described here was to explore the effect of cooling schedule, such as air cooling temperature and coiling temperature, on the final microstructure and mechanical properties of dual-phase steels. Furthermore, the precipitation behavior and yield ratio are discussed. The study demonstrates that it is possible to obtain tensile strength and elongation of 780 MPa and 22 pct, respectively, at the two cooling schedules investigated. The microstructure consists of 90 pct ferrite and 10 pct martensite when subjected to moderate air cooling and low temperature coiling, such that the yield ratio is a low 0.69. The microstructure consists of 75 pct ferrite and 25 pct granular bainite with a high yield ratio of 0.84 when the steel is directly cooled to the coiling temperature. Compared to the conventional dual-phase steels, the high yield strength is attributed to precipitation hardening induced by nanoscale TiC particles and solid solution strengthening by high Si content. The interphase precipitates form at a suitable ledge mobility, and the row spacing changes with the rate of ferrite transformation. There are different orientations of the rows in the same grain because of the different growth directions of the ferrite grain boundaries, and the interface of the two colonies is devoid of precipitates because of the competitive mechanisms of the two orientations.

  17. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  18. Overview of Recent Trends in Beam Cooling Methods and Technology

    SciTech Connect

    Meshkov, Igor; Moehl, Dieter

    2006-03-20

    In this introductory paper, we try to give an idea of new developments in beam cooling since COOL03. We will concentrate on trends in electron cooling, stochastic cooling, muon cooling and beam crystallization; trends, which we think, will mark the future. We hope to touch upon some of the major ideas and topics that will be developed in detail at this workshop.

  19. Three-Dimensional Numerical Simulation on Passively Excited Flows by Distributed Local Hot Sources Settled at the D" Layer Below Hotspots and/or Large-Scale Cool Masses at Subduction Zones Within the Static Layered Mantle

    NASA Astrophysics Data System (ADS)

    Eguchi, T.; Matsubara, K.; Ishida, M.

    2001-12-01

    To unveil dynamic process associated with three-dimensional unsteady mantle convection, we carried out numerical simulation on passively exerted flows by simplified local hot sources just above the CMB and large-scale cool masses beneath smoothed subduction zones. During the study, we used our individual code developed with the finite difference method. The basic three equations are for the continuity, the motion with the Boussinesq (incompressible) approximation, and the (thermal) energy conservation. The viscosity of our model is sensitive to temperature. To get time integration with high precision, we used the Newton method. In detail, the size and thermal energy of the hot or cool sources are not uniform along the latitude, because we could not select uniform local volumes assigned for the sources within the finite difference grids throughout the mantle. Our results, thus, accompany some latitude dependence. First, we treated the case of the hotspots, neglecting the contribution of the subduction zones. The local hot sources below the currently active hotspots were settled as dynamic driving forces included in the initial condition. Before starting the calculation, we assumed that the mantle was statically layered with zero velocity component. The thermal anomalies inserted instantaneously in the initial condition do excite dynamically passive flows. The type of the initial hot sources was not 'plume' but 'thermal.' The simulation results represent that local upwelling flows which were directly excited over the initial heat sources reached the upper mantle by approximately 30 My during the calculation. Each of the direct upwellings above the hotspots has its own dynamic potential to exert concentric down- and up-welling flows, alternately, at large distances. Simultaneously, the direct upwellings interact mutually within the spherical mantle. As an interesting feature, we numerically observed secondary upwellings somewhere in a wide region covering east Eurasia

  20. Hydrogen film cooling investigation

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Ewen, R. L.

    1973-01-01

    Effects of flow turning, flow acceleration, and supersonic flow on film cooling were determined experimentally and correlated in terms of an entrainment film cooling model. Experiments were conducted using thin walled metal test sections, hot nitrogen mainstream gas, and ambient hydrogen or nitrogen as film coolants. The entrainment film cooling model relates film cooling effectiveness to the amount of mainstream gases entrained with the film coolant in a mixing layer. The experimental apparatus and the analytical model used are described in detail and correlations for the entrainment fraction and film coolant-to-wall heat transfer coefficient are presented.

  1. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  2. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  3. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this…

  4. Influence of the hot-fill water-spray-cooling process after continuous pasteurization on the number of decimal reductions and on Alicyclobacillus acidoterrestris CRA 7152 growth in orange juice stored at 35 degrees C.

    PubMed

    Spinelli, Ana Cláudia N F; Sant'Ana, Anderson S; Pacheco-Sanchez, Cristiana P; Massaguer, Pilar R

    2010-02-28

    In this study, the influence of the hot-fill water-spray-cooling process after continuous pasteurization on the number of decimal reductions (gamma) and growth parameters (lag time; lambda, ratio N(f)/N(o); kappa, maximum growth rate; mu) of Alicyclobacillus acidoterrestris CRA 7152 in orange juice stored at 35 degrees C were investigated. Two different inoculum levels of A. acidoterrestris CRA 7152 (10(2) and 10(3) spores/mL) in orange juice (11(0)Brix, pH 3.7) and a Microthermics UHT-HTST pilot plant were used to simulate industrial conditions. Results have shown that regardless of the inoculum level (10(2) or 10(3) spores/mL), the pasteurization processes were unable to cause even 1 gamma. Predictive modeling using the Baranyi model showed that only kappa and time to reach 10(4)spores/mL (t10(4) - time to juice spoilage) were affected by the spore inoculum used (p<0.05). It has been concluded that A. acidoterrestris was able to survive the hot-fill process and to grow and spoil orange juice in 5-6 days when the final storage temperature was 35 degrees C. PMID:20015562

  5. Creative Teaching Ideas.

    ERIC Educational Resources Information Center

    Chapman, Patricia H., Comp.; And Others

    This book contains 172 creative teaching ideas pertaining to various subject areas and aspects of business education. Most of the ideas included are intended for use in secondary and postsecondary classrooms; however, a few are applicable at all grade levels. The teaching ideas are organized according to the following subject areas/topics:…

  6. Big Ideas in Art

    ERIC Educational Resources Information Center

    Day, Kathleen

    2008-01-01

    In this article, the author shares how she was able to discover some big ideas about art education. She relates how she found great ideas to improve her teaching from the book "Rethinking Curriculum in Art." She also shares how she designed a "Big Idea" unit in her class.

  7. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  8. On cooling tea and coffee

    NASA Astrophysics Data System (ADS)

    Rees, W. G.; Viney, C.

    1988-05-01

    Factors influencing the rate of cooling of hot coffee and tea have been investigated theoretically and studied experimentally using deliberately ``domestic'' apparatus. It is demonstrated that black coffee cools faster than white coffee under the same conditions. Under most (but not all) circumstances, if coffee is required to be as hot as possible several minutes after its preparation, any milk or cream should be added immediately, rather than just before drinking.

  9. Coherent electron cooling

    SciTech Connect

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  10. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  11. Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling.

    PubMed

    Martínez-Pinedo, G; Fischer, T; Lohs, A; Huther, L

    2012-12-21

    We perform three-flavor Boltzmann neutrino transport radiation hydrodynamics simulations covering a period of 3 s after the formation of a protoneutron star in a core-collapse supernova explosion. Our results show that a treatment of charged-current neutrino interactions in hot and dense matter as suggested by Reddy et al. [Phys. Rev. D 58, 013009 (1998)] has a strong impact on the luminosities and spectra of the emitted neutrinos. When compared with simulations that neglect mean-field effects on the neutrino opacities, we find that the luminosities of all neutrino flavors are reduced while the spectral differences between electron neutrinos and antineutrinos are increased. Their magnitude depends on the equation of state and in particular on the symmetry energy at subnuclear densities. These modifications reduce the proton-to-nucleon ratio of the outflow, increasing slightly their entropy. They are expected to have a substantial impact on nucleosynthesis in neutrino-driven winds, even though they do not result in conditions that favor an r process. Contrary to previous findings, our results show that the spectra of electron neutrinos remain substantially different from those of other (anti)neutrino flavors during the entire deleptonization phase of the protoneutron star. The obtained luminosity and spectral changes are also expected to have important consequences for neutrino flavor oscillations and neutrino detection on Earth. PMID:23368446

  12. Air cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  13. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  14. Three Seductive Ideas.

    ERIC Educational Resources Information Center

    Kagan, Jerome

    Noting that a reluctance to question some assumptions of social and behavior sciences is one reason for the halting progress in these fields, this book examines three potentially misleading ideas and reasons for their continued popularity. Chapter 1 critiques the idea that all behavior is influenced by one's psychological construction of the…

  15. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important Information in…

  16. Teaching Ideas Notebook

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1977

    1977-01-01

    Presents teaching ideas for topics in aerospace education including: commemorating Robert Goddard Day on March 16th, commemorating Wright Brothers Day on December 17, utilizing newspaper clippings, and aerospace displays. Ideas are presented in notebook form for removal from the journal. (SL)

  17. ERM Ideas and Innovations

    ERIC Educational Resources Information Center

    England, Lenore

    2012-01-01

    Welcome to the new "Journal of Electronic Resources Librarianship" column entitled "ERM Ideas and Innovations," which will appear in each issue of JERL for the next 2 years, and possibly more, beginning with this issue. The overall focus of each column will be to introduce and expand ideas, discuss innovations, and ultimately encourage and foster…

  18. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1982

    1982-01-01

    The first idea presented is an activity aimed at teaching students to reduce a fraction to lowest terms by looking for the greatest common factor (GCF) of the numerator and denominator. The second idea looks at ways to construct solution problems that are challenging but which do not bog pupils down. (MP)

  19. Ideas for Directors.

    ERIC Educational Resources Information Center

    Child Care Information Exchange, 1988

    1988-01-01

    Presents various ideas and suggestions for day care directors. These include reasons for executive failure; profiles of communicator effectiveness; ideas for retaining donor gifts; descriptions of qualities of outstanding consultants; and suggestions for using power effectively and holding effective staff meetings. (BB)

  20. Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ellis, B. S.; Ramos, F. C.; Starkel, W. A.; Boroughs, S.; Olin, P. H.; Bachmann, O.

    2015-11-01

    produced with little mass contribution from the invading magma. This model reconciles evidence for thermal rejuvenation, preserved in crystals, with evidence for the production of zoning by crystallization-differentiation, apparent in whole-rock chemistry. Fusibility of the cumulate is key to the process; high-temperature 'Snake River'-type rhyolites are not zoned because their cumulates are dominated by a refractory assemblage of pyroxene, plagioclase, and Fe-Ti oxides. Previous models of compositional zoning have envisaged a pot of silicic magma undergoing slow cooling towards thermal senescence. In contrast, we contend that zoning records a history of thermal rejuvenation in which any one recharge event has the potential to trigger a caldera-forming eruption.

  1. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  2. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  3. Research on cooling effectiveness in stepped slot film cooling vane

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Wu, Hong; Zhou, Feng; Rong, Chengjun

    2016-06-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cooling technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.

  4. District cooling in Scandinavia

    SciTech Connect

    Andersson, B.

    1996-11-01

    This paper will present the status of the development of district cooling systems in Scandinavia over the last 5 years. It will describe the technologies used in the systems that have been constructed as well as the options considered in different locations. It will identify the drivers for the development of the cooling business to-date, and what future drivers for a continuing development of district cooling in Sweden. To-date, approximately 25 different cities of varying sizes have completed feasibility studies to determine if district cooling is an attractive option. In a survey, that was conducted by the Swedish District Heating Association, some 25 cities expected to have district cooling systems in place by the year 2000. In Sweden, district heating systems with hot water is very common. In many cases, it is simply an addition to the current service for the district heating company to also supply district cooling to the building owners. A parallel from this can be drawn to North America where district cooling systems now are developing rapidly. I am convinced that in these cities a district heating service will be added as a natural expansion of the district cooling company`s service.

  5. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    SciTech Connect

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-08-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T{sub eff} > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  6. 5. HORIZONTAL COOLEDWATER STORAGE TANKS. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HORIZONTAL COOLED-WATER STORAGE TANKS. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  7. The Main Idea Organizer.

    ERIC Educational Resources Information Center

    Burke, Jim

    2003-01-01

    Presents the Main Idea Organizer (MIO) to help students who may struggle with writing, reading, and thinking--though in different ways and for different reasons. Describes many different ways the author uses the MIO. (SG)

  8. Ideas by Design

    ERIC Educational Resources Information Center

    Nation's Schools, 1974

    1974-01-01

    Describes two new design ideas -- a combination study carrel-locker for use in high schools and a geodesic dome made of transparent vinyl for housing ping pong games in densely populated activity area on a college campus. (DN)

  9. Smarter snack ideas

    MedlinePlus

    ... milk, 100% orange or pineapple juice, and sliced bananas or strawberries Frozen fruit bars (without added sugar) ... slices topped with cinnamon Frozen chunks of melons, bananas, or other fruit Check out more snack ideas . ...

  10. Ideas from Everywhere.

    ERIC Educational Resources Information Center

    Smith, Douglas D.

    1978-01-01

    Presents few ideas and tips on demonstrations for secondary school teachers; the concept of one part per billion, the running flame tests, models of atoms and molecules. Supplies the names of some useful high school science books. (GA)

  11. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1990

    1990-01-01

    Two ideas for teaching mathematical Concepts are presented: "Writing Study Cards for Understanding"; and "A Conceptual Approach to Solving Equations." Examples of the applications of these methods are discussed. (CW)

  12. Waveguide cooling system

    NASA Technical Reports Server (NTRS)

    Chen, B. C. J.; Hartop, R. W. (Inventor)

    1981-01-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  13. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  14. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  15. IDEA Clean Energy Application Center

    SciTech Connect

    Thornton, Robert

    2013-09-30

    /feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEAC’s for EPA’s Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the award’s incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

  16. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  17. Significant Ideas and Progressive Change

    ERIC Educational Resources Information Center

    Morgan, Gwen; Mitchell, Anne

    2012-01-01

    Ideas are not one-time "Eureka" moments, but are parts of concepts progressing forward. Sometimes years pass before ideas are implemented. They then resurface, connect with other ideas, and move policies ahead. Meanwhile, the idea remains alive in the field, influencing decisions and goals. Ideas build on one another when implemented. The field of…

  18. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  19. Ideas from Everywhere.

    ERIC Educational Resources Information Center

    Smith, Douglas D.

    1980-01-01

    Indicates that at least 50 percent carbon monoxide is produced during the dehydration of sugar by sulfuric acid to a hot, black, expanded solid. Consequently, students should not be allowed to smell this product. Also lists six other findings related to this reaction. (Author/JN)

  20. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, C.D Jr.

    1983-08-08

    The invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  1. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, Jr., Carl D.

    1985-01-01

    The present invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  2. The Force of Ideas

    ERIC Educational Resources Information Center

    Ascher, Carol

    2005-01-01

    "The Force of Ideas" describes a little-known aspect of both educational history and Viennese psychoanalysis during the interwar years: the movement for psychoanalytic pedagogy. The author traces her father's own story, beginning with his application to the Vienna Psychoanalytic Society for training as a psychoanalytic pedagogue, as a way to…

  3. Teaching an IDEA.

    ERIC Educational Resources Information Center

    Parker, Walter C.

    1991-01-01

    Presents five essential strands that should be spiraled through social studies curriculum. Argues these strands suggest concepts that need to be developed. Lists key concepts and presents a way to teach ideas and concepts to intermediate-grade students. Outlines a teaching/learning sequence for concept development and illustrates how the concepts…

  4. Ideas for Intercultural Education

    ERIC Educational Resources Information Center

    Marginson, Simon; Sawir, Erlenawati

    2011-01-01

    Written by a cross-cultural pair of authors, "Ideas for Intercultural Education" takes a critical look at present approaches to international education, focusing on the intercultural potential that it offers but mostly fails to deliver. The underlying premise of this profound, engaging book is that international education can be a transforming…

  5. Seeing Children's Ideas

    ERIC Educational Resources Information Center

    Curtis, Deb

    2012-01-01

    A group of toddlers was offered long, colorful, translucent tubes to enjoy and explore. As always, they amazed adults with the many ideas they used to investigate and learn with them. The tubes are long and the children marveled at how they could easily lift these objects up taller than their bodies. At the center of the children's explorations…

  6. Bad Ideas Revisited.

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2000-01-01

    Supplements a previous column's laundry list of bad technology ideas with further provisos: fixating on processor speed; relying on user support; developing non-visionary long-range technology plans; leaving people out of long-range planning; and concentrating technology at the center of a network. (MLH)

  7. 100 Winning Curriculum Ideas.

    ERIC Educational Resources Information Center

    National School Boards Association, Alexandria, VA.

    The editors of "The American School Board Journal" and "The Executive Educator" magazines recently invited school leaders from across North America to send in curriculum ideas that work. From among the 1,026 entries that were submitted, a panel of judges selected 100, which are published in this special report. Criteria for selection included (1)…

  8. Ideas for Science Projects.

    ERIC Educational Resources Information Center

    Showalter, Victor; Slesnick, Irwin

    This booklet was written for students as a source of ideas for research type science projects. Part One shows how three high school students developed individual projects a s a result of asking questions about the same natural phenomena. Part Two contains project suggestions and sample questions designed to stimulate student thinking along…

  9. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1981

    1981-01-01

    The following ideas are presented: plans for constructing a calculator bin rack that provides a place for a school to store and charge calculators; a lesson in geometry based on a news article about salt containers; and a very simple approach to the concept of infinite geometric series. (MP)

  10. Rethinking the Microworld Idea.

    ERIC Educational Resources Information Center

    Hoyles, Celia; Noss, Richard; Adamson, Ross

    2002-01-01

    Reflects on the meaning and evaluation of the microworld idea. Distinguishes between user manipulation and modification at three levels: the interface, superstructural, and platform levels; presents a case study of two eight-year-old girls playing a video game based on Logo; and discusses mathematical learning. (Author/LRW)

  11. A Sobering Big Idea

    ERIC Educational Resources Information Center

    Wineburg, Sam

    2006-01-01

    Since Susan Adler, Alberta Dougan, and Jesus Garcia like "big ideas," the author offers one to ponder: young people in this country can not read with comprehension. The saddest thing about this crisis is that it is no secret. The 2001 results of the National Assessment of Educational Progress (NAEP) for reading, published in every major newspaper,…

  12. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1982

    1982-01-01

    The following ideas are presented: (1) an approach to exploring some of the patterns of prime numbers as a junior high activity; and (2) an informal introduction to continuity functions that uses pictures to represent simple physical situations, with suggestions for follow-up exercises. (MP)

  13. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1991

    1991-01-01

    Presented are two ideas to improve instruction. The first celebrates the Christmas birthday of Isaac Newton with an essay assignment related to Newton and a party. The second suggests a more appropriate moment to introduce the technique of completing the square to promote greater flexibility in factoring problems. (MDH)

  14. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Entrekin, Virginia S.; And Others

    1992-01-01

    Presents two teaching ideas for mathematics instruction. The first employs "mind maps" as a method to help students learn, record, and recall mathematical information. Provides examples for solving quadratic equations and complex numbers. The second discusses two ways to find the average speed during a trip employing differing constant speeds.…

  15. Middle Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1983

    1983-01-01

    Activities for middle/junior high school students are presented, including use of string variables, science lesson ideas, computer scavenger hunt, and guidelines for interviewing people who own/use computers. Includes "I'll Write...Just Lead Me to My Computer" by Robert Engberg, discussing word processing instruction. (JN)

  16. To Sell An Idea.

    ERIC Educational Resources Information Center

    Stone, Alan J.

    1986-01-01

    The experiences of Aurora University, a small university that not only raised money but established new links with donors, are described. The key to fund raising is selling an idea. As donors become more sophisticated, sentiment and traditional patterns play a less significant role in motivating donors. (MLW)

  17. Teaching Ideas. Potpourri 8.

    ERIC Educational Resources Information Center

    Kahl, Marilyn, Ed.

    This publication contains a collection of teaching ideas and class activities for organization, journals, dictation, creative writing, outlines, poetry, vocabulary, film review word cards, paragraphing, career research and much more. Some of the materials, listed with their authors, include: (1) "Magazine Board" (Frieda Owen); (2) "Survival"…

  18. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Lippold, George C.

    1982-01-01

    Ideas are presented regarding: (1) unique learning activities for students who have difficulty with operations with signed numbers; (2) a mathematical inspection of a unique card trick that can be expressed as an equation; and (3) sketching of graphs of composite trigonometric functions. (MP)

  19. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1980

    1980-01-01

    Four teaching ideas are discussed: a "giant" math problem designed to motivate students to use library sources, calculators, computers, and textbooks; a different way of finding fractional equivalents; a task-card project designed to encourage mathematics students to use libraries; and journal writing in a mathematics class. (MP)

  20. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1981

    1981-01-01

    Three ideas are shared: using geometric figures in motivational practice of order operations with prealgebra students; constructing a test with a holiday theme to increase student interest; and coding greeting cards for students that can be solved mathematically through the use of previously learned concepts. (MP)

  1. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1980

    1980-01-01

    The use of a 25-pin lattice geoboard in a six-week course in middle school geometry is presented, with sample activity cards and test items. Two other ideas discuss the use of algebra in solving verbal problems and teaching negative exponents. (MP)

  2. 50 Practical Promotion Ideas.

    ERIC Educational Resources Information Center

    Madeyski, Tom

    1997-01-01

    Includes 50 cost-effective ideas for promoting camp in the areas of recruiting new campers, encouraging returning campers, advertising strategies, printing brochures and other written materials, using photographs, targeting groups for camp facility rental, and effectively using the media. (LP)

  3. Early Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1984

    1984-01-01

    Presented are six practical teaching suggestions selected from commercially available materials and ideas submitted by readers. A personalized poster program, a hiking program, and activities in which students send the Logo turtle on an egg hunt and study pattern block programing are included. (JN)

  4. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Flax, Rosabel; Geyer, John R.

    1982-01-01

    The following ideas are included: (1) solving a quadratic equation geometrically by completing the square, which helped a class of secondary physics students understand the formulas; and (2) a way of teaching factoring of quadratic trinomials that is based on the behavior of odd and even numerals under addition and multiplication. (MP)

  5. The Idea of Property

    ERIC Educational Resources Information Center

    Starr, Isidore

    1987-01-01

    Reviews case law, constitutional principles, and early American writings which deal with the idea of private property. Concludes that, in the future, the issues of laissez-fare capitalism, government regulation, and the welfare state will require further clarification of our conception of private property. (JDH)

  6. Brainstorming for Ideas

    ERIC Educational Resources Information Center

    Mogahed, Mogahed M.

    2011-01-01

    Learners occasionally complain that they lack ideas when sitting down to write a composition. Teachers complain that they do not want to spend half the class time telling students what to write. There is an answer. Teachers brainstorm words connected with the topic in class before setting the composition for homework. The question remains: how to…

  7. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Crouse, Richard J.; And Others

    1991-01-01

    The first idea concerns a board game similar to tic-tac-toe in which the strategy involves the knowledge of the factorization of quadratic polynomials. The second game uses the calculation of the surface areas of solid figures applying the specific examples of cigar boxes and cylindrical tin cans. (JJK)

  8. Classroom Idea-Sparkers

    ERIC Educational Resources Information Center

    Kieff, Judith

    2007-01-01

    This article presents four Idea-Sparkers that were submitted by Jason McKinney, a graduate student at Southern Mississippi University and a 1st-grade teacher at Pisgah Elementary in Hattiesburg, Mississippi. First is entitled, "Raceway in the Classroom." This activity can help increase children's fluency and ability to identify numerous sight…

  9. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Tunis, Harry B., Ed.

    1993-01-01

    Presents three teaching ideas: (1) investigating patterns in the sum of four numbers in a square array, no two from the same column or row; (2) using three-dimensional coordinates to generate models of three tetrahedra; and (3) applying the K=rs area formula for a triangle to other polygons. (MDH)

  10. A Stirling Idea

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  11. Solar-Cooled Hotel in the Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1982-01-01

    Performance of solar cooling system is described in 21-page report. System provides cooling for public areas including ball rooms, restaurant, lounge, lobby and shops. Chilled water from solar-cooling system is also used to cool hot water from hotel's desalinization plant.

  12. The problem of cooling an air-cooled cylinder on an aircraft engine

    NASA Technical Reports Server (NTRS)

    Brevoort, M J; Joyner, U T

    1941-01-01

    An analysis of the cooling problem has been to show by what means the cooling of an air-cooled aircraft engine may be improved. Each means of improving cooling is analyzed on the basis of effectiveness in cooling with respect to power for cooling. The altitude problem is analyzed for both supercharged and unsupercharged engines. The case of ground cooling is also discussed. The heat-transfer process from the hot gases to the cylinder wall is discussed on the basis of the fundamentals of heat transfer and thermodynamics. Adiabatic air-temperature rise at a stagnation point in compressible flow is shown to depend only on the velocity of flow.

  13. Electronic cooling using thermoelectric devices

    SciTech Connect

    Zebarjadi, M.

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  14. Electronic cooling using thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2015-05-01

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  15. Hot Ideas. A Mathematical Response to a Piece of Text

    ERIC Educational Resources Information Center

    Grey, Melinda

    2005-01-01

    Children's literature can enhance mathematics lessons by providing a meaningful context, demonstrating that mathematics develops from human experiences and contributes an aesthetic dimension to learning mathematics. Written as a series of real life inspired snapshots of mathematical thinking, "Counting on Frank" (Rod Clement, 1990) provides a…

  16. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  17. Adopting Employees' Ideas: Moderators of the Idea Generation-Idea Implementation Link

    ERIC Educational Resources Information Center

    Da Silva, Nancy; Oldham, Greg R.

    2012-01-01

    This study examined the possibility that the relationship between the number of ideas an employee generated and the number of those ideas that were adopted by the organization was moderated by the general radicalness of the employee's ideas (i.e., the extent to which the ideas were breakthrough or groundbreaking), the employee's intention to stay,…

  18. The alchemy of ideas.

    PubMed

    Apuzzo, Michael L J; Elder, James B; Faccio, Rodrick; Liu, Charles Y

    2008-12-01

    This article presents an assessment of the power of ideas and their role in initiating change and progress. The enormous potential cascade effect is illustrated by examining the movement of Modernism in the arts. Next, the immense scope and capabilities of the modern scientific endeavor-with robotic space exploration at the scale of 10 meters at one extreme and the wonders of nanoscience at the scale of 10 m at the other-are examined. The attitudes and philosophies of neurological surgery are related to those involved in the Modernist movement and placed on the defined scale of contemporary scientific activity. PMID:19057316

  19. Mechanics: Ideas, problems, applications

    NASA Astrophysics Data System (ADS)

    Ishlinskii, A. Iu.

    The book contains the published articles and reports by academician Ishlinskii which deal with the concepts and ideas of modern mechanics, its role in providing a general understanding of the natural phenomena, and its applications to various problems in science and engineering. Attention is given to the methodological aspects of mechanics, to the history of the theories of plasticity, friction, gyroscopic and inertial systems, and inertial navigation, and to mathematical methods in mechanics. The book also contains essays on some famous scientists and engineers.

  20. Rocket engine hot-spot detector

    NASA Astrophysics Data System (ADS)

    Collamore, F. N.

    1985-04-01

    On high performance devices such as rocket engines it is desirable to know if local hot spots or areas of reduced cooling margin exist. The objective of this program is to design, fabricate and test an electronic hot spot detector capable of sensing local hot spot on the exterior circumference of a regeneratively cooled combustion chamber in order to avoid hardware damage. The electronic hot spot sensor consists of an array of 120 thermocouple elements which are bonded in a flexible belt of polyimide film. The design temperature range is from +30 F to +400 F continuously with an intermittent temperature of 500 F maximum. The thermocouple belt consists of 120 equally spaced copper-Constantan thermocouple junctions which is wrapped around the OMS liquid rocket engine combustion chamber, to monitor temperatures of individual cooling channels. Each thermocouple is located over a cooling channel near the injector end of the combustion chamber. The thermocouple array sensor is held in place by a spring loaded clamp band. Analyses show that in the event of a blocked cooling channel the surface temperature of the chamber over the blocked channel will rise from a normal operating temperature of approx. 300 F to approx. 600 F. The hot spot detector will respond quickly to this change with a response time constant less than 0.05 seconds. The hot spot sensor assembly is fabricated with a laminated construction of layers of Kapton film and an outer protective layer of fiberglass reinforced silicone rubber.

  1. FCC combustion zone catalyst cooling apparatus

    SciTech Connect

    Cetinkaya, I.B.; Myers, D.N.

    1987-12-01

    An apparatus for the combustion of a combustible material present on fluidized solid particles which apparatus is described comprises: (a) a vertically oriented combustion chamber having a cylindrical vertical sidewall, with an opening being located in the sidewall; (b) a disengagement chamber located superadjacent to the combustion chamber and in communication therewith, there being a hot fluid particle collection section located at the bottom of the disengagement chamber; (c) a cooling chamber surrounding at least one heat exchanger; (d) a hot particle conduit of vertical orientation connecting the hot particle collection section of the disengagement chamber with the cooling chamber particle inlet opening such that hot particles can flow downwardly from the disengagement chamber to the cooling chamber; (e) a particle flow restriction means in the hot particle conduit; (f) an open passageway connecting the particle outlet opening of the cooling chamber with the opening located in the sidewall of the combustion chamber and providing means for the flow of cooled particles and fluidizing gas from the heat exchanger to the combustion chamber; (g) a fluidizing gas inlet conduit connected to a bottom portion of the cooling chamber providing means for the passage of fluidizing gas onto the shell side of the heat exchanger and maintaining a fluidized catalyst bed within the cooling chamber; and, (h) a means to control the flow of fluidizing gas in the fluidizing gas inlet conduit.

  2. Cool Roofs Through Time and Space

    SciTech Connect

    Levinson, Ronnen

    2014-10-17

    Ronnen Levinson, from the Lab's Heat Island Group, presents his research on cool roofs and introduces the California Cities Albedo Map at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California

  3. Mergers, cooling flows, and evaporation

    NASA Technical Reports Server (NTRS)

    Sparks, W. B.

    1993-01-01

    Mergers (the capture of cold gas, especially) can have a profound influence on the hot coronal gas of early-type galaxies and clusters, potentially inducing symptoms hitherto attributed to a cooling flow, if thermal conduction is operative in the coronal plasma. Heat can be conducted from the hot phase into the cold phase, simultaneously ionizing the cold gas to make optical filaments, while locally cooling the coronal gas to mimic a cooling-flow. If there is heat conduction, though, there is no standard cooling-flow since radiative losses are balanced by conduction and not mass deposition. Amongst the strongest observational support for the existence of cooling-flows is the presence of intermediate temperature gas with x-ray emission-line strengths in agreement with cooling-flow models. Here, x-ray line strengths are calculated for this alternative model, in which mergers are responsible for the observed optical and x-ray properties. Since gas around 10(exp 4) K is thermally stable, the cold cloud need not necessarily evaporate and hydrostatic solutions exist. Good agreement with the x-ray data is obtained. The relative strengths of intermediate temperature x-ray emission lines are in significantly better agreement with a simple conduction model than with published cooling-flow models. The good agreement of the conduction model with optical, infrared and x-ray data indicates that significantly more theoretical effort into this type of solution would be profitable.

  4. Cooling of dried coal

    SciTech Connect

    Siddoway, M.A.

    1988-06-14

    This patent describes a process for noncombustibly drying particulate coal comprising: separating the coal into two wet coal streams; passing one wet coal system into a dryer to form a bed; heating air in a furnace; admitting the heated air to the dryer to fluidize the bed; withdrawing dryer exhaust gas; passing the exhaust gas through a cyclone and withdrawing coal fines from the cyclone; withdrawing a hot, dry coal stream from the dryer; blending the drier hot dry coal stream with the cyclone coal fines; withdrawing cyclone exhaust gas; wet scrubbing the cyclone exhaust gas to form a coal fines slurry and scrubber exhaust gas; passing the coal fines slurry to a sedimentation pool; blending the second wet coal stream with the drier hot dry coal stream and the cyclone coal fines; passing the latter blended stream to a cooler to form a bed; fluidizing the latter bed with ambient air; withdrawing cooler exhaust gas and passing the gas to a cyclone; passing exhaust gas from the latter cyclone to a baghouse and collecting coal fines therein; passing the latter coal fines to the furnace as fuel for heating the air; and withdrawing cooled coal from the cooler and blending the cooled coal with coal fines from the latter cyclone.

  5. Idea Generation Techniques for Sparking Creative Advertising Ideas.

    ERIC Educational Resources Information Center

    Marra, James L.

    In advertising, a creative idea can be defined as being right or on strategy in a unique way. For a copywriter, it is not easy to create an ad that has the "Big Idea" in it. Some helpful techniques that advertising students can use to generate creative ideas are (1) analogy, (2) forced relationships, (3) doing the opposite of what everyone else is…

  6. Cab Heating and Cooling

    SciTech Connect

    Damman, Dennis

    2005-10-31

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  7. Liquid Cooling Technology Increases Exercise Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To keep astronauts' airtight spacesuits from becoming hot and humid, Ames Research Center developed liquid cooling garments that were integrated into each suit's long underwear. Vasper Systems, in San Jose, California, is using the technology in its liquid-cooled compression cuffs, which help people exercise more efficiently by concentrating lactic acid in their muscles.

  8. Regeneratively cooled transition duct with transversely buffered impingement nozzles

    SciTech Connect

    Morrison, Jay A; Lee, Ching-Pang; Crawford, Michael E

    2015-04-21

    A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In the impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.

  9. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  10. Pouring 'Cold Water' on Hot Accretion

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1995-09-01

    was concluded that the textures must have formed during cooling after hot accretion. However, because spinodal decomposition textures develop over the temperature range 1400-1100 K [14,15] and type-4 and -5 OC were probably not heated above 1000 K and 1050 K, respectively [16], these textures are probably relicts of chondrule formation. It was also suggested [14] that compositional zoning in pyroxenes indicates that type-3 OC cooled more rapidly than type-4 to -5 OC. However, OC metallographic cooling rates are not correlated with petrologic type [17]. Furthermore, experimental data [13] show that rare thick opx lamellae in H4 Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid cooling (1700 to 1000 K within days to weeks) [18]; by analogy, it was proposed that all H3-6 chondrites containing polycrystalline taenite cooled rapidly from 1700 K [4], an idea inconsistent with prograde metamorphism. However, cooling rates in equilibrated chondrites that were slow enough to permit significant growth of kamacite would erase prior solidification zoning in taenite by solid-state diffusion [19,20]. This hypothesis, confirmed by computer modeling [21], invalidates the assumption that equilibrated OC containing polycrystalline taenite cooled rapidly. Polycrystalline taenite is most likely a pre-metamorphic relict. Heterogeneous metal grains. Compositionally and texturally heterogeneous metal grains in L6 Bruderheim are unlikely to have survived solid-state diffusion during prograde metamorphism [22]; these authors favored hot accretion followed by low-temperature annealing. However, Bruderheim is a fragmental breccia of shock

  11. Geoboard Areas: Students' Remarkable Ideas

    ERIC Educational Resources Information Center

    Utley, Juliana; Wolfe, John

    2004-01-01

    Two ideas of mathematics that the students discuss here, demonstrate how sometimes a teacher can learn something new from the students. The examples given use geoboard and show relationships of the two ideas with the Pick's theorem.

  12. Discovery Ideas for the Gifted.

    ERIC Educational Resources Information Center

    Elgersma, Robert

    1990-01-01

    Provided are 20 ideas for learning activities in mathematics suitable for individual independent use by gifted elementary and middle school students. Typical ideas include making models of various triangles, scale drawings, exploring prime numbers, and drawing graphs. (DB)

  13. Growing Ideas, 1990-1993.

    ERIC Educational Resources Information Center

    Pranis, Eve, Ed.

    1993-01-01

    This series of journals includes volumes 1-4 of "Growing Ideas," a journal of garden-based learning. Each issue provides instructional ideas, horticultural information and a forum for exchange among teachers using classroom gardening to stimulate learning. Ideas in each issue are separated into three sections. The "Green Tips" section presents…

  14. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  15. Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots.

    PubMed

    Spoor, Frank C M; Kunneman, Lucas T; Evers, Wiel H; Renaud, Nicolas; Grozema, Ferdinand C; Houtepen, Arjan J; Siebbeles, Laurens D A

    2016-01-26

    In semiconductor quantum dots (QDs), charge carrier cooling is in direct competition with processes such as carrier multiplication or hot charge extraction that may improve the light conversion efficiency of photovoltaic devices. Understanding charge carrier cooling is therefore of great interest. We investigate high-energy optical transitions in PbSe QDs using hyperspectral transient absorption spectroscopy. We observe bleaching of optical transitions involving higher valence and conduction bands upon band edge excitation. The kinetics of rise of the bleach of these transitions after a pump laser pulse allow us to monitor, for the first time, cooling of hot electrons and hot holes separately. Our results show that holes cool significantly faster than electrons in PbSe QDs. This is in contrast to the common assumption that electrons and holes behave similarly in Pb chalcogenide QDs and has important implications for the utilization of hot charge carriers in photovoltaic devices. PMID:26654878

  16. Solar-Heated and Cooled Office Building--Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  17. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  18. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  19. Hot Tickets

    ERIC Educational Resources Information Center

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  20. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  1. Turbine airfoil film cooling

    NASA Astrophysics Data System (ADS)

    Hylton, Larry D.

    1986-10-01

    Emphasis is placed on developing more accurate analytical models for predicting turbine airfoil external heat transfer rates. Performance goals of new engines require highly refined, accurate design tools to meet durability requirements. In order to obtain improvements in analytical capabilities, programs are required which focus on enhancing analytical techniques through verification of new models by comparison with relevant experimental data. The objectives of the current program are to develop an analytical approach, based on boundary layer theory, for predicting the effects of airfoil film cooling on downstream heat transfer rates and to verify the resulting analytical method by comparison of predictions with hot cascade data obtained under this program.

  2. Can One’s Temper be Cooled?: A Role for Agreeableness in Moderating Neuroticism’s Influence on Anger and Aggression

    PubMed Central

    Ode, Scott; Robinson, Michael D.; Wilkowski, Benjamin M.

    2008-01-01

    The study followed from the idea that neuroticism captures hot or facilitative vulnerabilities related to anger and aggression, whereas agreeableness captures cool or inhibitory processes in relation to these same outcomes. As such, it was predicted that neuroticism and agreeableness should interact to predict anger and aggression according to hot/cool models of self-regulation. This hypothesis was systematically examined among three independent samples of participants (total N = 176). As predicted, neuroticism and agreeableness interacted to predict anger and aggression among all samples, and did so in a manner consistent with the hypothesis that neuroticism-anger relations would be lower at high levels of agreeableness. The results therefore highlight the distinct roles of neuroticism and agreeableness in predicting anger and aggression, while placing these traits in a common interactive self-regulatory framework. PMID:19343089

  3. Heating and cooling system. [for fatigue test specimens

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Gardner, M. R. (Inventor)

    1982-01-01

    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes.

  4. Hot isostatic pressing of ceramics

    NASA Technical Reports Server (NTRS)

    Honma, K.

    1985-01-01

    A mixture containing glass 70 to 95 and BN or B4C powder (0.1-10 microns) 5 to 30 vol. % is used as a secondary pressure medium in hot isostatic pressing of ceramics. Thus, Pyrex beads were mixed with 15% vol. BN powder (average diameter 2 microns), fused at 1400 deg for 2 h, cooled, crushed, and put into a graphite crucible. A Si3N4 sintered body was embedded in the powder, heated in vacuum at 1200 deg for 2 h, treated in a hot isostatic press furnace at 1700 deg and 1000 atm. for 1 h, and cooled to give a Si3N4 ceramic. It was easily separated from the crucible.

  5. Hot tearing evaluation for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Brůna, Marek

    2016-06-01

    Hot tearing during solidification of aluminium alloys castings can be a serious problem. This phenomenon is well known but still insufficiently investigated. Hot tearing occurs in form of irregular cracks in metal castings that develop during solidification and cooling. The cause of hot tearing is generally attributed to the development of thermally induced tensile stresses and strains in a casting as the molten metal contracts during solidification and solid state shrinkage. Submited paper consists of two parts. The first part introduces the reader to the phenomenon of hot tearing. The second part describes newly developed method for assessing hot tearing susceptibility of aluminium alloys, and also gives the results on hot tearing for various aluminium alloys.

  6. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  7. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  8. Liquid-metal atomization for hot working preforms

    NASA Technical Reports Server (NTRS)

    Grant, N. J.; Pelloux, R. M.

    1974-01-01

    Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.

  9. Recent Innovations in Muon Beam Cooling

    SciTech Connect

    Johnson, Rolland P.; Alsharo'a, Mohammad; Hanlet, Pierrick M.; Hartline, Robert; Kuchnir, Moyses; Paul, Kevin; Roberts, Thomas J.; Ankenbrandt, Charles; Barzi, Emanuela; Del Frate, Licia; Gonin, Ivan; Moretti, Alfred; Neuffer, David; Popovic, Milorad; Romanov, Gennady; Turrioni, Daniele; Yarba, Victor; Beard, Kevin; Bogacz, S. Alex; Derbenev, Yaroslav

    2006-03-20

    Eight new ideas are being developed under SBIR/STTR grants to cool muon beams for colliders, neutrino factories, and muon experiments. Analytical and simulation studies have confirmed that a six-dimensional (6D) cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas can provide effective beam cooling. This helical cooling channel (HCC) has solenoidal, helical dipole, helical quadrupole, and helical sextupole magnetic fields to generate emittance exchange and achieve 6D emittance reduction of over 3 orders of magnitude in a 100 m segment. Four such sequential HCC segments, where the RF frequencies are increased and transverse physical dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost five orders of magnitude. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, then can be employed to reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that can be used as MANX, an exceptional 6D cooling demonstration experiment.

  10. Recent Innovations in Muon Beam Cooling

    SciTech Connect

    Rolland P. Johnson; Mohammad Alsharo'a; Charles Ankenbrandt; Emanuela Barzi; Kevin Beard; S. Alex Bogacz; Yaroslav Derbenev; Licia Del Frate; Ivan Gonin; Pierrick M. Hanlet; Robert Hartline; Daniel M. Kaplan; Moyses Kuchnir; Alfred Moretti; David Neuffer; Kevin Paul; Milorad Popovic; Thomas J. Roberts; Gennady Romanov; Daniele Turrioni; Victor Yarba; and Katsuya Yonehara

    2006-03-01

    Eight new ideas are being developed under SBIR/STTR grants to cool muon beams for colliders, neutrino factories, and muon experiments. Analytical and simulation studies have confirmed that a six-dimensional (6D) cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas can provide effective beam cooling. This helical cooling channel (HCC) has solenoidal, helical dipole, helical quadrupole, and helical sextupole magnetic fields to generate emittance exchange and achieve 6D emittance reduction of over 3 orders of magnitude in a 100 m segment. Four such sequential HCC segments, where the RF frequencies are increased and transverse physical dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost five orders of magnitude. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, then can be employed to reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that can be used as MANX, an exceptional 6D cooling demonstration experiment.

  11. Passive cooling systems in residential buildings

    NASA Astrophysics Data System (ADS)

    Ingersoll, John G.; Givoni, Baruch

    1985-11-01

    The performance of four passive cooling systems, nocturnal convective cooling, nocturnal radiative cooling, direct evaporative cooling and conductive earth-coupled cooling, is evaluated for representative environmental conditions in the temperate, hot-humid and hot-arid climatic zones of the United States. The analysis indicates that substantial portion of the cooling load of a typical energy-efficient single family residential building can be eliminated with any of these passive systems. Depending on system type and climatic zone, the building cooling load can be reduced by 1/3 to over 4/5 of its original value. The corresponding energy savings would amount to a minimum of 25 TWh/yr and could potentially exceed 50 TWh/yr, if proper passive cooling systems were to be employed throughout the country. Incorporation of passive cooling models in building energy analysis codes will be necessary to determine more precisely the potential of each system. Field testing will also be required to further evaluate this potential. Moreover, the extension of analytical modeling to include additional passive cooling systems and the research of advanced building—natural environment coupling systems and materials constitute tasks requiring further effort.

  12. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  13. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  14. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  15. The IDEAS**2 computing environment

    NASA Technical Reports Server (NTRS)

    Racheli, Ugo

    1990-01-01

    This document presents block diagrams of the IDEAS**2 computing environment. IDEAS**2 is the computing environment selected for system engineering (design and analysis) by the Center for Space Construction (CSC) at the University of Colorado (UCB). It is intended to support integration and analysis of any engineering system and at any level of development, from Pre-Phase A conceptual studies to fully mature Phase C/D projects. The University of Colorado (through the Center for Space Construction) has joined the Structural Dynamics Research Corporation (SDRC) University Consortium which makes available unlimited software licenses for instructional purposes. In addition to providing the backbone for the implementation of the IDEAS**2 computing environment, I-DEAS can be used as a stand-alone product for undergraduate CAD/CAE instruction. Presently, SDRC is in the process of releasing I-DEAS level 5.0 which represents a substantial improvement in both the user interface and graphic processing capabilities. IDEAS**2 will be immediately useful for a number of current programs within CSC (such as DYCAM and the 'interruptability problem'). In the future, the following expansions of the basic IDEAS**2 program will be pursued, consistent with the overall objectives of the Center and of the College: upgrade I-DEAS and IDEAS**2 to level 5.0; create new analytical programs for applications not limited to orbital platforms; research the semantic organization of engineering databases; and create an 'interoperability' testbed.

  16. The Boldest New Idea? An End to Bold Ideas

    ERIC Educational Resources Information Center

    Rothstein, Richard

    2011-01-01

    The past two decades have proven that bold, single-factor reform ideas have little power to change the face of education. Pundits and policymakers would have schools and school systems make grand changes to accommodate the reform idea du jour--and then profess the incompetence of schools and teachers when those changes prove less than effective.…

  17. Ideas Plus: A Collection of Practical Teaching Ideas. Book 16.

    ERIC Educational Resources Information Center

    Kaufmann, Felice, Comp.; Kent, Jeannette, Ed.

    Culled from ideas contributed by people attending conferences of the National Council of Teachers of English and by readers of "NOTES Plus" and "IDEAS Plus," the activities contained in this booklet are intended to promote the effective teaching of writing and literature. Teaching strategies offered in the first section of the booklet involve…

  18. Cool Cosmology: ``WHISPER" better than ``BANG"

    NASA Astrophysics Data System (ADS)

    Carr, Paul

    2007-10-01

    Cosmologist Fred Hoyle coined ``big bang'' as a term of derision for Belgian priest George Lemaitre's prediction that the universe had originated from the expansion of a ``primeval atom'' in space-time. Hoyle referred to Lamaitre's hypothesis sarcastically as ``this big bang idea'' during a program broadcast on March 28, 1949 on the BBC. Hoyle's continuous creation or steady state theory can not explain the microwave background radiation or cosmic whisper discovered by Penzias and Wilson in 1964. The expansion and subsequent cooling of Lemaitre's hot ``primeval atom'' explains the whisper. ``Big bang'' makes no physical sense, as there was no matter (or space) to carry the sound that Hoyle's term implies. The ``big bang'' is a conjecture. New discoveries may be able to predict the observed ``whispering cosmos'' as well as dark matter and the nature of dark energy. The ``whispering universe'' is cooler cosmology than the big bang. Reference: Carr, Paul H. 2006. ``From the 'Music of the Spheres' to the 'Whispering Cosmos.' '' Chapter 3 of Beauty in Science and Spirit. Beech River Books. Center Ossipee, NH, http://www.MirrorOfNature.org.

  19. Cool WISPs for stellar cooling excesses

    NASA Astrophysics Data System (ADS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  20. Turbine blade cooling using Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert; Colannino, Joseph; Dees, John; Goodson, David; Krichtafovitch, Igor; Prevo, Tracy

    2012-11-01

    Video photography and thermocouples reveal the effect of an electric field on the flow around a stationary, idealized turbine blade downstream of a combustor. The hot products of combustion naturally include positive ions. When the blade is an electrode and elevated to a positive potential, it tends to attract the free electrons and repel the positive ions. Due to their lower mass, the light electrons are rapidly swept toward the blade, while the positive ions are repelled. As they collide with the neutrals in the hot gas, the positive ions transfer their momentum so that a Coulomb body force is exerted on the hot gas. Cool, compressed air is injected out of the stationary blade near its leading edge to form a layer of film cooling. In contrast to the hot combustion products, the cool air is not ionized. At the interface between the hot gas and the cool air, the Coulomb repulsion force acts on the former but not the latter, analogous to gravity at a stratified interface. An effective Richardson number representing the ratio of potential to kinetic energy characterizes the topography of the interface. When the electric field is turned on, the repulsion of the hot gas from the idealized blade is evident in video recordings and thermocouple measurements.

  1. Transitional Boundary Layers Under the Influence of High Free Stream Turbulence, Intensive Wall Cooling and High Pressure Gradients in Hot Gas Circulation. Ph.D. Thesis - Technische Hochschule, Karlsruhe, 1985

    NASA Technical Reports Server (NTRS)

    Rued, Klaus

    1987-01-01

    The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.

  2. Cooling performance of solar cell-driven, thermoelectric cooling prototype headgear

    SciTech Connect

    Hara, T.; Obora, H.; Sato, S.

    1998-07-01

    Cooling performance of solar cell driven, thermoelectric cooling prototype headgear was examined experimentally. Three types of prototype headgear were made and examined. They were cooled by thermoelectric elements and driven by solar cells. The authors are always able to be cooled anytime and anywhere inside the house in hot season. However, they were not able to be cooled when they worked outside the house. Especially, a personal air-conditioning system is required for the people working outside. Some cooling caps with an electric fan driven by solar cells can be often seen now. However, the fan only blows hot air to the face. They cannot cool down the face below the ambient temperature. The authors tried to cool down the face to the lower temperature below the ambient by a refrigeration system. A thermoelectric element was set at the front of a headgear such as baseball cap or straw hat to cool a forehead. Some pieces of solar cells were mounted on the top and the brim of the headgear to work the thermoelectric element. Hot side of thermoelectric element was cooled by a plate fin an electric fan. The electric fan was also driven by a solar cell. Two types of baseball caps with solar cells and a thermoelectric element and a type of straw hat with them were made and tested. Solar cells were connected to optimize the electric power for the thermoelectric element. An electric fan and its power input were selected to cool maximum the thermoelectric element. Cooling performance and thermal comfort of the headgear were examined by testers in case of sitting, walking and bicycling. The temperature difference between ambient and cooling temperature was required only about 4 degree Celsius. Required power by solar cells was up to about 1.5 watt for a personal cooling.

  3. Students' Ideas and Radical Constructivism

    ERIC Educational Resources Information Center

    Sánchez Gómez, Pedro J.

    2016-01-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of "narrow mental states"; that is, the idea that the mental content of an individual can be fully characterised without…

  4. Essential Ideas for Healthy Childhoods

    ERIC Educational Resources Information Center

    Exchange: The Early Childhood Leaders' Magazine Since 1978, 2012

    2012-01-01

    This article presents essential ideas from various people on how to cultivate healthy childhood. Amelia Gambetti says that in terms of young children, the element of complexity offers to them the possibility to have an opportunity to learn how to think and to generate ideas. Diane Levin shares how a three-year-old kid taught her that children do…

  5. Research Ideas for Science Projects.

    ERIC Educational Resources Information Center

    Goyal, K. C.; Swami, Piyush

    This book was developed for use in India and is adapted from "Ideas for Science Investigations" by Victor M. Showalter and Irwin L. Slesnick. It is a source book of ideas for student research projects. Three model projects are described, illustrating different approaches taken by three students to the investigation of the rise of sap in plants.…

  6. Hot Meetings

    NASA Technical Reports Server (NTRS)

    Chiu, Mary

    2002-01-01

    A colleague walked by my office one time as I was conducting a meeting. There were about five or six members of my team present. The colleague, a man who had been with our institution (The Johns Hopkins Applied Physics Lab, a.k.a. APL) for many years, could not help eavesdropping. He said later it sounded like we we re having a raucous argument, and he wondered whether he should stand by the door in case things got out of hand and someone threw a punch. Our Advanced Composition Explorer (ACE) team was a hot group, to invoke the language that is fashionable today, although we never thought of ourselves in those terms. It was just our modus operandi. The tenor of the discussion got loud and volatile at times, but I prefer to think of it as animated, robust, or just plain collaborative. Mary Chiu and her "hot" team from the Johns Hopkins Applied Physics Laboratory built the Advanced Composition Explorer spacecraft for NASA. Instruments on the spacecraft continue to collect data that inform us about what's happening on our most important star, the Sun.

  7. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  8. Weldability and hot ductility of iron aluminides

    SciTech Connect

    Ash, D.I.; Edwards, G.R. . Center for Welding and Joining Research); David, S.A. )

    1991-05-01

    The weldability of iron aluminide alloys is discussed. Although readily welded with electron beam (EB) and gas-tungsten arc (GTA) techniques, iron aluminides are sometimes susceptible to cracking during cooling when welded with the GTA welding process. Taken into account are the effects of microstructural instability (grain growth), weld heat input (cooling rate) and environment on the hot ductility of an iron aluminide alloy designated FA-129. 64 refs., 59 figs., 3 tabs.

  9. An experimental investigation of a gas turbine disk cooling system

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Matsumato, M.; Shizuya, M.

    1983-03-01

    The results of an experimental study of the cooling of a model disk similar to an engine disk are compared with the results obtained by three-dimensional finite difference computation, and it is reconfirmed that the determination of cooling air temperature is one of the most important data for predicting the disk temperature. The minimum cooling air flow rate necessary to prevent ingress of external hot gas is determined by the fluctuation of cooling air temperature inside the wheel space with the external axial hot gas flow for values of the rotational Reynolds number of 0-6.5 million. The effect of rotational speed on the minimum cooling air flow rate is found to be negligible, and it is shown that the determination of the ingress of hot gas using the pressure difference criterion underestimates the minimum cooling air flow rate.

  10. Annual DOE Active Solar Heating and Cooling Contractors Review meeting

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Ninety three project summaries dicussing the following aspects of active solar heating and cooling are presented: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology.

  11. Ideas in Context and the Idea of Renaissance Philosophy.

    PubMed

    Celenza, Christopher S

    2014-10-01

    This contribution to the symposium marking the publication of the 100th volume in the series Ideas in Context (Cambridge University Press) assesses the significance of the series for work on Renaissance philosophy. PMID:27424236

  12. Ion acceleration by hot electrons in microclusters

    SciTech Connect

    Breizman, Boris N.; Arefiev, Alexey V.

    2007-07-15

    A self-consistent analytical description is presented for collisionless expansion of a fully ionized cluster with a two-component electron distribution. The problem is solved for an initial 'water-bag' distribution of hot electrons with no angular momentum, which reflects the mechanism of electron heating. This distribution evolves in time due to adiabatic cooling of hot electrons. The solution involves a cold core of the cluster, a thin double layer at the cluster edge, and a quasineutral flow with a rarefaction wave. The presented analysis predicts a substantial number of accelerated ions with energies greater than the cutoff energy of the initial distribution of the hot electrons.

  13. Project S'COOL

    NASA Technical Reports Server (NTRS)

    Green, Carolyn J.; Chambers, Lin H.

    1998-01-01

    The Students Clouds Observations On-Line or S'COOL project was piloted in 1997. It was created with the idea of using students to serve as one component of the validation for the Clouds and the Earth's Radiant Energy System (CERES) instrument which was launched with the Tropical Rainfall Measuring Mission (TRMM) in November, 1997. As part of NASA's Earth Science Enterprise CERES is interested in the role clouds play in regulating our climate. Over thirty schools became involved in the initial thrust of the project. The CERES instrument detects the location of clouds and identifies their physical properties. S'COOL students coordinate their ground truth observations with the exact overpass of the satellite at their location. Their findings regarding cloud type, height, fraction and opacity as well as surface conditions are then reported to the NASA Langley Distributed Active Archive Center (DAAC). The data is then accessible to both the CERES team for validation and to schools for educational application via the Internet. By March of 1998 ninety-three schools, in nine countries had enrolled in the S'COOL project. Joining the United States participants were from schools in Australia, Canada, France, Germany, Norway, Spain, Sweden, and Switzerland. The project is gradually becoming the global project envisioned by the project s creators. As students obtain the requested data useful for the scientists, it was hoped that students with guidance from their instructors would have opportunity and motivation to learn more about clouds and atmospheric science as well.

  14. Ideas as art. Interview by Dane Cutu.

    PubMed

    March, James G

    2006-10-01

    Three years ago, consultants Laurence Prusak and Thomas H. Davenport asked prominent management thinkers to name their gurus and reported the results in HBR. James G. March appeared on more lists than any other person except Peter Drucker. A professor emeritus in management, sociology, political science, and education at Stanford University, March has taught courses in subjects as diverse as organizational psychology, behavioral economics, leadership, rules for killing people, friendship, computer simulation, and statistics. He is perhaps best known for his pioneering contributions to organization and management theory. March's accomplishments in that field, and in many others, have conferred on him an almost unprecedented reputation as a rigorous scholar and a deep source of wisdom. As University of Chicago professor John Padgett wrote in the journal Contemporary Sociology, "March's influence, unlike that of any of his peers, is not limited to any possible subset of the social science disciplines; it is pervasive." March approaches thought aesthetically; he cares that ideas have "some form of elegance or grace or surprise." His poetic sensibility can be felt in the metaphors he has created over the years--the "garbage can theory" of organizational choice, for instance, and the "hot-stove effect" in learning. In this edited interview with HBR senior editor Diane Coutu, March shares his thinking on aesthetics, leadership, the role of folly, and the irrelevance of relevance when it comes to the pursuit of ideas. He also comments on the fundamental differences between academic and experiential knowledge, underscoring the need for both. PMID:17040042

  15. Laser cooling of solids

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2010-08-01

    Laser cooling of solids, sometimes also known as optical refrigeration, is a fast developing area of optical science, investigating the interaction of light with condensed matter. Apart from being of fundamental scientific interest, this topic addresses a very important practical issue: design and construction of laser pumped solid-state cryocoolers, which are compact, free from mechanical vibrations, moving parts, fluids and can cause only low electromagnetic interference in the cooled area. The optical cryocooler has a broad area of applications such as in the development of magnetometers for geophysical sensors, in biomedical sensing and can be beneficial for satellite instrumentations and small sensors, where compactness and the lack of vibrations are very important. Simply, a laser cooler works on the conversion of low energy pump photons into high-energy anti-Stokes fluorescence photons by extracting some of the phonons (heat energy) in a material. That is, the process of laser cooling of solids is based on anti-Stokes fluorescence also known as luminescence upconversion, when light quanta in the red tail of the absorption spectrum are absorbed from a pump laser, and blue-shifted photons are spontaneously emitted. The extra energy extracted from the solid-state lattice in the form of the phonons is the quanta of vibrational energy which generates heat. The idea to cool solids with anti-Stokes fluorescence was proposed in 1929 by Peter Pringsheim and first demonstrated experimentally by Epstein's research team in 1995. In 1999, Steven Bowman proposed to use the optical refrigeration by anti-Stokes fluorescence within the laser medium to balance the heat generated by the Stokes shifted stimulated emission in a high-power solid-state bulk laser. Such a laser without internal heating named radiation-balanced or athermal laser was experimentally demonstrated for the first time in 2002. At the present time laser cooling of solids can be largely divided into three

  16. Stochastic cooling

    SciTech Connect

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  17. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  18. Eleven Wonderful Learning Center Ideas!

    ERIC Educational Resources Information Center

    Instructor, 1978

    1978-01-01

    Describes eleven ideas for classroom learning centers including: dinosaurs, pets, role playing, music, your own zoo, a bright circuit board, typing, a talking bull, weather, dictionary, and pen pals. (JMB)

  19. Dynamic Visualizations of Calculus Ideas.

    ERIC Educational Resources Information Center

    Embse, Charles Vonder

    2001-01-01

    Presents three fundamental ideas of calculus and explains using the coordinate plane geometrically. Uses Cabri Geometry II to show how computer geometry systems can facilitate student understanding of general conic objects and its dynamic algebraic equations. (KHR)

  20. Advances in Beam Cooling for Muon Colliders

    SciTech Connect

    R.P. Johnson, Y.S. Derbenev

    2006-09-01

    A six-dimensional (6D) ionization cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas is the basis for the latest plans for muon colliders. This helical cooling channel (HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields, where emittance exchange is achieved by using a continuous homogeneous absorber. Momentum-dependent path length differences in the dense hydrogen energy absorber provide the required correlation between momentum and ionization loss to accomplish longitudinal cooling. Recent studies of an 800 MHz RF cavity pressurized with hydrogen, as would be used in this application, show that the maximum gradient is not limited by a large external magnetic field, unlike vacuum cavities. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, will be employed to further reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that is being developed for an exceptional 6D cooling demonstration experiment. The status of the designs, simulations, and tests of the cooling components for a high luminosity, low emittance muon collider will be reviewed.

  1. The state of the art in hadron beam cooling

    SciTech Connect

    Prost, L.R.; Derwent, P.; /Fermilab

    2008-09-01

    Cooling of hadron beams (including heavy-ions) is a powerful technique by which accelerator facilities around the world achieve the necessary beam brightness for their physics research. In this paper, we will give an overview of the latest developments in hadron beam cooling, for which high energy electron cooling at Fermilab's Recycler ring and bunched beam stochastic cooling at Brookhaven National Laboratory's RHIC facility represent two recent major accomplishments. Novel ideas in the field will also be introduced.

  2. Stata Hybrids: Updates and Ideas

    NASA Technical Reports Server (NTRS)

    Fieldler, James

    2014-01-01

    At last year's Stata conference I presented two projects for using Python with Stata: a plugin that embeds the Python programming language within Stata and code for using Stata data sets in Python. In this talk I will describe some small improvements being made to these projects, and I will present other ideas for combining tools with Stata. Some of these ideas use Python, some use JavaScript and a web browser.

  3. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  4. Water-Cooled Total-Temperature Probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Reece, Garland D.

    1992-01-01

    Water-cooled supersonic total-pressure, static-pressure, and total-temperature probes developed to study high-temperature jet plumes. Total-temperature probe tested up to 2,000 degrees F incorporates annular cooling system up to thermocouple lead. Lead extends into test chamber to sense temperature of supersonic external flow. Design novel and significant. Applicable in development of jet engines and in research on fast flows of hot gases.

  5. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  6. Ideas.

    ERIC Educational Resources Information Center

    Kroll, Diana Lambdin

    1985-01-01

    Presented are four activities (each accompanied by ready-to-duplicate worksheets) dealing with: colors and shapes (grades K-2); using a coordinate grid in map reading (grades 3-4); order pairs of whole numbers (grades 5-6); and locating ordered pairs of rational numbers in the coordinate plane (grades 7-8). (JN)

  7. Ideas

    ERIC Educational Resources Information Center

    Burns, Marilyn

    1976-01-01

    Four activities and related worksheets are provided. The activities, all concerned with multiplication, are directed toward students at different levels, and deal with repeated addition, basic facts, and factorization. (SD)

  8. Ideas

    ERIC Educational Resources Information Center

    Burns, Marilyn

    1975-01-01

    Completing these worksheets leads students to discover patterns in the distribution of even numbers and numbers obtained by successive additions of 9 (primary grades). Worksheets for intermediate grades involve counting the number of factorizations for integers, and addition of the first nine whole numbers. (SD)

  9. IDEAS.

    ERIC Educational Resources Information Center

    Young, Sharon L.

    1991-01-01

    Presented are four activities that focus on gathering and interpreting data about pizza as a basis for integrating mathematics, health, and social studies. Reproducible sheets for parents to use with their children, class-activity sheets, and a data sheet are provided. Each activity includes the objective, needed materials, directions, extensions,…

  10. Ideas.

    ERIC Educational Resources Information Center

    Cook, Marcy

    1989-01-01

    Provided are four activities focusing on the application of mathematics to real-world situations: (1) Baby Weight; (2) High Temperature; (3) Skin Weight; and (4) Whale Weight. Each activity contains the objective, directions, extensions, and answers with worksheet. The activities required include the skills of making charts and graphs. (YP)

  11. Ideas.

    ERIC Educational Resources Information Center

    Bazik, Edna F.; Tucker, Benny F.

    1983-01-01

    The activities presented here focus on symmetry. The materials aim to provide experience in: (1) observing grid-drawn pictures and coloring in appropriate squares; (2) making symmetric designs about two lines of symmetry; (3) using a ruler and protractor; and (4) using a ruler, protractor, and compass. Worksheet masters are provided. (MP)

  12. IDEAS

    ERIC Educational Resources Information Center

    Burns, Marilyn

    1975-01-01

    This set of worksheets provides exercises related to making change, spending a fixed amount of money by "buying" items at listed prices, and deciding which of two quantities of coins has greater value. (SD)

  13. IDEAS.

    ERIC Educational Resources Information Center

    Weiss, Mikki

    1990-01-01

    Presents four activities for the exploration of a balance, mass, the length of the balance arm, and the position of the fulcrum. Provides objectives, directions, extensions, answers, and worksheets for each activity. (YP)

  14. Ideas.

    ERIC Educational Resources Information Center

    Speer, William R., Ed.

    1993-01-01

    Presents activities appropriate for levels K-2, 2-4, 4-6, 7-8, and for student-parent interaction that connect the Van Hiele levels of thinking in geometry with stages of thinking outlined by art educators. Activities utilize the context of art to examine visualization, figure recognition, geometric transformations, and real-life applications of…

  15. IDEAS.

    ERIC Educational Resources Information Center

    Young, Sharon L.

    1990-01-01

    The focus of these four activities is on gathering, using and interpreting data about bicycles as a basis for integrating mathematics. Measurement, ratios, and other relationships are explored through making graphs, finding bicycling speeds and a parent-involvement activity sheet. (CW)

  16. Ideas.

    ERIC Educational Resources Information Center

    Hopkins, Martha H.; Gard, Diane M.

    1992-01-01

    Describes 4 activities for levels K-2, 3-5, 4-6, and 6-8 and a family activity that asks students to describe their community; use coordinates to represent the 4 voyages of Columbus; write a story based on a line graph of Lewis and Clark's expedition; determine serving sizes for astronauts in space; and investigate different modes of…

  17. IDEAS.

    ERIC Educational Resources Information Center

    Young, Sharon L., Ed.

    1990-01-01

    Included are five activities which focus on using and interpreting data about popcorn. The integration of mathematics with science, health and social studies is stressed. Each activity includes procedures, a reproducible activity sheet, and several suggestions for extension activities. (CW)

  18. Ideas.

    ERIC Educational Resources Information Center

    Jacobson, Marilyn Hall; Tabler, M. Bernadine

    1981-01-01

    Problem posters that focus on the use of information from a chart to find a solution are featured. One poster looks at the prices of picture postcards and is geared for grades one through three. The second poster, designed for levels four through eight, focuses on postage rates. (MP)

  19. IDEAS.

    ERIC Educational Resources Information Center

    Young, Sharon L.

    1991-01-01

    Presented are activities that focus on gathering, using, and interpreting data about fingerprints as a basis for integrating mathematics and science. Patterns, classification, logical reasoning, and mathematical relationships are explored by making graphs, classifying fingerprints, and matching identical fingerprints. A parent-involvement activity…

  20. IDEAS.

    ERIC Educational Resources Information Center

    Barnett, Carne S.

    1991-01-01

    Four activities are described which focus on consumer awareness and judgment using data collection and judgment skills involving data from footwear. Worksheets for data collection and activities at home and at school are included. A set of ratings of sneakers from "Consumer Reports" magazine is provided. (CW)

  1. Ideas.

    ERIC Educational Resources Information Center

    Arithmetic Teacher, 1987

    1987-01-01

    Activities are presented that focus on attributes of numbers. The activities highlight such attributes as more than, equal to, greater than, less than, LCM, prime and factor. The activities provide practice in motivational game-oriented situations. (RH)

  2. Ideas.

    ERIC Educational Resources Information Center

    Cook, Marcy

    1993-01-01

    Presents 5 activities for the K-1, 2-3, 4-5, 6-8 grade levels and for in the home in which students explore the concept of combinations. Each activity includes a lesson plan to investigate a combinatorics problem appropriate for that grade level. Provides reproducible worksheets. (MDH)

  3. Measurement and Empirical Correlation of Transpiration-Cooling Parameters on a 25 degree Cone in a Turbulent Boundary Layer in Both Free Flight and a Hot-Gas Jet

    NASA Technical Reports Server (NTRS)

    Walton, Thomas E., Jr.; Rashis, Bernard

    1961-01-01

    Transpiration-cooling parameters are presented for a turbulent boundary layer on a cone configuration with a total angle of 250 which was tested in both free flight and in an ethylene-heated high-temperature jet at a Mach number of 2.0. The flight-tested cone was flown to a maximum Mach number of 4.08 and the jet tests were conducted at stagnation temperatures ranging from 937 R to 1,850 R. In general, the experimental heat transfer was in good agreement with the theoretical values. Inclusion of the ratio of local stream temperature to wall temperature in the nondimensional flow rate parameter enabled good correlation of both sets of transpiration data. The measured pressure at the forward station coincided with the theoretical pressure over a sharp cone; however, the measured pressure increased with distance from the nose tip.

  4. Innovative Ideas in Elementary Schools: A Compilation. Agates and Ideas.

    ERIC Educational Resources Information Center

    Armitage, Jim, Ed.; Denham, Harvey, Ed.

    The first part of the document presents a collection of workable ideas, organized by topic, which were submitted by principals who used them to improve the programs in their schools. Some areas of interest covered include community involvement, student-choice electives, parent reporting, career education, and counseling and changing behavior. Also…

  5. Idea Swap: The Best Ideas Come from Teachers Like You!

    ERIC Educational Resources Information Center

    Instructor, 2006

    2006-01-01

    This article presents several activities and teaching ideas shared by teachers. One teacher shared how an Egyptian mummy-making activity can be a great hands-on learning through time. Another teacher shared how a bowl filled with popcorn kernels has made it easy for her to get the attention of her students.

  6. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  7. Turbine stator vane segment having internal cooling circuits

    DOEpatents

    Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret

    2003-01-01

    A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.

  8. Laser cooling by collisional redistribution of radiation.

    PubMed

    Vogl, Ulrich; Weitz, Martin

    2009-09-01

    The general idea that optical radiation may cool matter was put forward 80 years ago. Doppler cooling of dilute atomic gases is an extremely successful application of this concept. More recently, anti-Stokes cooling in multilevel systems has been explored, culminating in the optical refrigeration of solids. Collisional redistribution of radiation has been proposed as a different cooling mechanism for atomic two-level systems, although experimental investigations using moderate-density gases have not reached the cooling regime. Here we experimentally demonstrate laser cooling of an atomic gas based on collisional redistribution of radiation, using rubidium atoms in argon buffer gas at a pressure of 230 bar. The frequent collisions in the ultradense gas transiently shift a highly red-detuned laser beam (that is, one detuned to a much lower frequency) into resonance, whereas spontaneous decay occurs close to the unperturbed atomic resonance frequency. During each excitation cycle, kinetic energy of order k(B)T-that is, the thermal energy (k(B), Boltzmann's constant; T, temperature)-is extracted from the dense atomic sample. In a proof-of-principle experiment with a thermally non-isolated sample, we demonstrate relative cooling by 66 K. The cooled gas has a density more than ten orders of magnitude greater than the typical values used in Doppler-cooling experiments, and the cooling power reaches 87 mW. Future applications of the technique may include supercooling beyond the homogeneous nucleation temperature and optical chillers. PMID:19727195

  9. New Ideas for School Construction.

    ERIC Educational Resources Information Center

    Producers' Council, Inc., Washington, DC.

    Present educators, architects, engineers, and building product manufacturers with a medium of common interest for discussion of mutual school construction problems, objectives, needs, ideas, capabilities and limitations. Contents include--(1) modern wood construction, (2) school room in a steel mill, (3) masonry in new school design, (4) the…

  10. Children's Ideas on Solar Cells

    ERIC Educational Resources Information Center

    Palmer, W. P.; Wilks, Jamie

    1996-01-01

    The main author of this paper (J.W.) wrote the original as two separate essays for a Bachelor of Education unit at Northern Territory University (The Teaching of Science: EBE 483) for the second author (B.P.). This unit contains as a major component student/teacher research on children's ideas (misconceptions) in science. This paper seems very…

  11. Children, Computers, and Powerful Ideas

    ERIC Educational Resources Information Center

    Bull, Glen

    2005-01-01

    Today it is commonplace that computers and technology permeate almost every aspect of education. In the late 1960s, though, the idea that computers could serve as a catalyst for thinking about the way children learn was a radical concept. In the early 1960s, Seymour Papert joined the faculty of MIT and founded the Artificial Intelligence Lab with…

  12. School Leadership: Some Key Ideas.

    ERIC Educational Resources Information Center

    Fidler, Brian

    1997-01-01

    Highlights some key ideas and several perspectives on leadership, including: situational leadership; a leadership framework suggested by T.E. Deal and L.G. Bolman; leadership of the chief executive/leading professional; moral leadership; and curricular leadership. Identifies leadership by its contribution to outcomes and its influence on…

  13. Exploring Classroom Hydroponics. Growing Ideas.

    ERIC Educational Resources Information Center

    National Gardening Association, Burlington, VT.

    Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…

  14. Scholarship can help ideas flourish.

    PubMed

    Pearce, Lynne

    2016-03-01

    Scholarships from the Florence Nightingale Foundation are providing nurses with the financial means to put innovative ideas into practice. Nurses from all four countries of the UK can apply for leadership, travel and research scholarships to support their career development and help improve patient care. PMID:26959448

  15. Transforming Ideas: The Design Process

    ERIC Educational Resources Information Center

    Nicol, Candace

    2004-01-01

    In this article, the author discusses how to teach students to think creatively. In the author's search for a way to teach students that there are multiple approaches to visual problems, she found inspiration from advertising. The author asserts students first need permission to explore their latent ideas, and second, they need the tools to…

  16. 115 Years of Teaching Ideas

    ERIC Educational Resources Information Center

    Chanko, Pamela

    2006-01-01

    This article presents some of the best, most surprising and funniest advice from the longest running teacher magazine, "Instructor." Included are snippets from issues of "Instructor" published between 1891 and 2005 such as: "5 Tips from Our First Issue" (1891); Advice for "Teacher Ladies" (1894, 1941); Teacher-to-Teacher (Idea Swapping) (1905,…

  17. Sparking Old and New Ideas

    ERIC Educational Resources Information Center

    Williams-Rossi, Dara; Campbell, Laurie O.

    2012-01-01

    In the past, teachers have used chalkboards for "chalk talks," a strategy where a teacher wrote words and drew images to demonstrate reflecting, document generating ideas, and explore knowledge. Out with the old-school version and in with the "Marker Sparker" method, which uses whiteboards or poster paper and colorful markers to achieve the same…

  18. 30 Ideas for Teaching Writing

    ERIC Educational Resources Information Center

    Peterson, Art, Comp.

    2003-01-01

    The National Writing Project's (NWP) "30 Ideas for Teaching Writing" discusses making grammar lessons dynamic, using casual student conversation as a source for writing, home language as an assisting tool to attain standard English and other topics by presenting strategies contributed by experienced writing project teachers. NWP does not promote a…

  19. I Can; Ideas for Teachers.

    ERIC Educational Resources Information Center

    Clukey, Ronald

    Intended for Maine teachers working with disadvantaged high school students in programs emphasizing vocational education, the booklet suggests alternative classroom ideas in the areas of finding a job, filling out forms, choosing an occupation, gaining confidence, job skills, managing money, mathematics, consumer education, communication, science,…

  20. Idea Building through Thumbnail Sketches

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2011-01-01

    Many educators would say that pencils, paint, and paper are the most important tools in the artroom, but are they really? If they look deeply at how students create art, it is their beginning ideas and concepts that gauge the success of a work of art. Without proper planning and guidance, even the most talented students will struggle through their…

  1. HOT AND COLD DUST NEAR H II REGIONS

    SciTech Connect

    Sreenilayam, Gopika; Fich, Michel

    2011-07-15

    We estimate the mass, temperature, and luminosity of the hot ({>=}100 K), cool (20-40 K), and cold ({<=}20 K) dust in the environs of Galactic H II regions using Infrared Astronomical Satellite (IRAS) and Submillimeter Common User Bolometric Array (SCUBA) data. A total of 83 clouds have been examined using IRAS data. A two-component model spectral energy distribution (SED) of hot and cool dust is used to fit the IRAS data. All of the SEDs use a graphite/silicate mix of grains in an MRN distribution. A three-component model SED is fitted to combined SCUBA and IRAS data for 15 clouds near H II regions to measure the cold dust component. Surprisingly, the ratio of the bolometric luminosity of the cool dust to the hot dust appears to be the same (2.8) in virtually all objects. The cool dust has typically four-five orders of magnitude greater mass than the hot dust. However, the mass in cold dust is much greater than the mass in cool and hot dust. We also find some evidence for a relationship between the cool and cold dust masses. These results may prove useful for using IR observations for estimating gas masses in extragalactic systems with active high-mass star formation.

  2. Religious ideas and psychiatric disorders.

    PubMed

    Beit-Hallahmi, B; Argyle, M

    1977-01-01

    The evidence presented above points to the need for considering factors other than purely religious ones in determining the role of religious ideas in psychiatric disorders. The occurrence of religious ideas as part of the content of individual delusional systems in psychiatric patients can be explained on the basis of exposure to religious ideas through the social environment. It may be also related to the prominence of religion, vis-a-vis other belief systems, in the social envirnment. When considering psychopathological explanations for intense religious experiences, one has to be conscious again of the social factors involved. When an unusual experience having religious content becomes normative in a certain group (for whatever reasons), trying to explain its appearance on the basis of individual psychodynamics or psychopathology becomes very difficult. There seems to be an inverse relationship between the social nature of a religious experience and its psychopathological nature, i.e., there is more psychopathology in individuals reporting solitary religious experiences, or individual religious ideas. Thus the solitary experience seems to be more influenced by disturbed individual dynamics, but in other cases social factors seem to be crucial. Our overall conclusion is that a psychiatric analysis of the role of religious factors in psychopathology has to be first a social-psychiatric analysis. An individual presenting psychiatric symptoms and religious ideas has to be evaluated in light of his social background, since the specific content of psychiatric symptoms seems to be determined by social background factors. Individual psychodynamics determine the appearance of symptoms, but their particular form will be the result of these background factors, one of which is religion. PMID:863602

  3. Optimation of cooled shields in insulations

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.

    1984-01-01

    A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.

  4. Hot-Jupiter Breakfasts Realign Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Two researchers at the University of Chicago have recently developed a new theory to explain an apparent dichotomy in the orbits of planets around cool vs. hot stars. Their model proposes that the spins of cool stars are affected when they ingest hot Jupiters (HJs) early in their stellar lifetimes. A Puzzling Dichotomy: In exoplanet studies, there is a puzzling difference observed between planet orbits around cool and hot (those with Teff ≥ 6250 K) stars: the orbital planes of planets around cool stars are primarily aligned with the host star's spin, whereas the orbital planes of planets around hot stars seem to be randomly distributed. Previous attempts to explain this dichotomy have focused on tidal interactions between the host star and the planets observed in the system. Now Titos Matsakos and Arieh Königl have taken these models a step further — by including in their calculations not only the effects of observed planets, but also those of HJs that may have been swallowed by the star long before we observed the systems. Modeling Meals: Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015]" class="size-thumbnail wp-image-223" height="386" src="http://aasnova.org/wp-content/uploads/2015/08/fig22-260x386.png" width="260" /> Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015] The authors' model assumes that as HJs are formed and migrate inward through the protoplanetary disk, they stall out near

  5. Saturn's Hot Spot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is the sharpest image of Saturn's temperature emissions taken from the ground; it is a mosaic of 35 individual exposures made at the W.M. Keck I Observatory, Mauna Kea, Hawaii on Feb. 4, 2004.

    The images to create this mosaic were taken with infrared radiation. The mosaic was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The prominent hot spot at the bottom of the image is right at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The tropospheric temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole.

    Ring particles are not at a uniform temperature everywhere in their orbit around Saturn. The ring particles are orbiting clockwise in this image. Particles are coldest just after having cooled down in Saturn's shadow (lower left). As they orbit Saturn, the particles increase in temperature up to a maximum (lower right) just before passing behind Saturn again in shadow.

    A small section of the ring image is missing because of incomplete mosaic coverage during the observing sequence.

  6. Solutions for Hot Situations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    From the company that brought the world an integral heating and cooling food service system after originally developing it for NASA's Apollo Program, comes yet another orbital offshoot: a product that can be as thin as paper and as strong as steel. Nextel Ceramic Textiles and Composites from 3M Company offer space-age protection and innovative solutions for hot situations, ranging from NASA to NASCAR. With superior thermal protection, Nextel fabrics, tape, and sleevings outperform other high temperature textiles such as aramids, carbon, glass, and quartz, permitting engineers and manufacturers to handle applications up to 2,500 F (1,371 C). The stiffness and strength of Nextel Continuous Ceramic Fibers make them a great match for improving the rigidity of aluminum in metal matrix composites. Moreover, the fibers demonstrate low shrinkage at operating temperatures, which allow for the manufacturing of a dimensionally stable product. These novel fibers also offer excellent chemical resistance, low thermal conductivity, thermal shock resistance, low porosity, and unique electrical properties.

  7. Students' Ideas and Radical Constructivism

    NASA Astrophysics Data System (ADS)

    Sánchez Gómez, Pedro J.

    2016-04-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of narrow mental states; that is, the idea that the mental content of an individual can be fully characterised without any reference external to her or him. I show that this fact imposes some severe restrictions to SIS to be incorporated into RC. In particular, I argue that only qualitative studies can comply with the requirement of narrowness. Nevertheless, I propose that quantitative works can be employed as sources of types in order to study token actual students. I use this type-token dichotomy to put forward an outline of a theory of the relation between school contents and mental contents. In this view, token mental contents regarding a given topic can be defined, and probed, only by resorting to typical school contents.

  8. Students' Ideas and Radical Constructivism

    NASA Astrophysics Data System (ADS)

    Sánchez Gómez, Pedro J.

    2016-08-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of narrow mental states; that is, the idea that the mental content of an individual can be fully characterised without any reference external to her or him. I show that this fact imposes some severe restrictions to SIS to be incorporated into RC. In particular, I argue that only qualitative studies can comply with the requirement of narrowness. Nevertheless, I propose that quantitative works can be employed as sources of types in order to study token actual students. I use this type-token dichotomy to put forward an outline of a theory of the relation between school contents and mental contents. In this view, token mental contents regarding a given topic can be defined, and probed, only by resorting to typical school contents.

  9. The idea of philosophical sociology.

    PubMed

    Chernilo, Daniel

    2014-06-01

    This article introduces the idea of philosophical sociology as an enquiry into the relationships between implicit notions of human nature and explicit conceptualizations of social life within sociology. Philosophical sociology is also an invitation to reflect on the role of the normative in social life by looking at it sociologically and philosophically at the same: normative self-reflection is a fundamental aspect of sociology's scientific tasks because key sociological questions are, in the last instance, also philosophical ones. For the normative to emerge, we need to move away from the reductionism of hedonistic, essentialist or cynical conceptions of human nature and be able to grasp the conceptions of the good life, justice, democracy or freedom whose normative contents depend on more or less articulated conceptions of our shared humanity. The idea of philosophical sociology is then sustained on three main pillars and I use them to structure this article: (1) a revalorization of the relationships between sociology and philosophy; (2) a universalistic principle of humanity that works as a major regulative idea of sociological research, and; (3) an argument on the social (immanent) and pre-social (transcendental) sources of the normative in social life. As invitations to embrace posthuman cyborgs, non-human actants and material cultures proliferate, philosophical sociology offers the reminder that we still have to understand more fully who are the human beings that populate the social world. PMID:24798103

  10. Unconventional Reservoirs: Ideas to Commercialization

    NASA Astrophysics Data System (ADS)

    Tinker, S. W.

    2015-12-01

    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  11. Towards Modifying Children's Ideas about Electric Current.

    ERIC Educational Resources Information Center

    Osborne, Roger

    1983-01-01

    Investigated ideas used/favored by 40 California students (ages 8-12) who received little/no formal teaching about electric currents. Also investigated whether they were interested in or could discuss other childrens' ideas and whether they would change their ideas following exposure to experimental evidence that was at variance with these ideas.…

  12. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  13. New Ideas for Teaching Physics

    NASA Astrophysics Data System (ADS)

    Matsler, Karen Jo; Restivo, Evelyn

    2010-03-01

    If you are teaching physics for the first time or even if you are a veteran teacher, it is always good to look at new activities or renew ideas to inspire your students. As it is late in October, we are half way through first semester and it is time to look past Newton's Laws. Activities presented in this workshop will include methods for figuring physics, gaining just a little momentum, collisions, toying around with impulse and inverse square relationships. Each activity will be presented in a lesson cycle format, which can be easily transitioned into your classroom. Limited to 24 participants - 2 hours - Cost 5.00

  14. Alternatives to compressor cooling in California climates

    SciTech Connect

    Feustel, H. ); de Almeida, A. . Dept. of Electrical Engineering); Blumstein, C. . Universitywide Energy Research Group)

    1991-01-01

    This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

  15. Static Characteristics of Absorption Chiller-Heater Supplying Cold and Hot Water Simultaneously

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi

    Absorption chiller-heaters which can supply both chilled water and hot water at the same time, are used for cooling and heating air conditioning systems. In this paper, we classified absorption cold and hot water generating cycles and control methods, studied these absorption cycles by cycle simulation. In economizer cycle, condensed refrigerant which heats hot water is transported to cooling cycle and used effectively for cooling chilled water, Concerning with transported condensed refrigerant, there are two methods, all condensed refrigerant or required refrigerant for cooling are transported to cooling cycle, and required refrigerant method is better for energy saving. Adding improvement of solution control to this economizer cycle, simultaneous cold and hot water supplying chiller-heaters have good characteristics of energy saving in the all region.

  16. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  17. Effects of a hot intergalactic medium

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory B.; Wright, Edward L.

    1989-01-01

    One effect a hot intergalactic medium (IGM) would have would be to produce an isotropic X-ray background through thermal bremsstrahlung. Such a background was modeled including both relativistic electron-ion and electron-electron emission; the observed X-ray measurements could be fit with a current temperature of 10.2 keV and Omega (IGM) of 0.27, assuming that the IGM was instantaneously heated at a redshift of 5 and cools by relativistic adiabatic expansion and Compton cooling. Such a hot IGM would also distort the cosmic microwave background spectrum by inverse Compton scattering off relativistic electrons. This distortion was modeled using the relativistic treatment. When including the recent data of Matsumoto et al., an undistorted radiation temperature of 2.86 K and an Omega (IGM) of 0.41 was found.

  18. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    PubMed

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport. PMID:25950746

  19. Red-Hot Saturn

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These side-by-side false-color images show Saturn's heat emission. The data were taken on Feb. 4, 2004, from the W. M. Keck I Observatory, Mauna Kea, Hawaii. Both images were taken with infrared radiation. The image on the left was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The image on the right was taken at a wavelength of 8 microns and is sensitive to temperatures in Saturn's stratosphere. The prominent hot spot at the bottom of each image is at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected.

    The troposphere temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Near 70 degrees latitude, the stratospheric temperature increases even more abruptly from 146 to 150 Kelvin (-197 to -189 degrees Fahrenheit) and then again to 151 Kelvin (-188 degrees Fahrenheit) right at the pole.

    While the rings are too faint to be detected at 8 microns (right), they show up at 17.65 microns. The ring particles are orbiting Saturn to the left on the bottom and to the right on the top. The lower left ring is colder than the lower right ring, because the particles are just moving out of Saturn's shadow where they have cooled off. As they orbit Saturn, they warm up to a maximum just before passing behind Saturn again in shadow.

  20. Thermal history of chondrites - Hot accretion vs. metamorphic reheating

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Taylor, G. J.; Scott, E. R. D.; Keil, Klaus

    1992-01-01

    The thermal evolution of chondrules is investigated for the stages including primary heating through accretion to parent-body processing to determine whether the chondrules could be hot during accretion. Theoretical attention is given to whether chondrites of different petrologic types could have originated by means of hot accretion or metamorphic reheating. Data are presented from cooling-rate experiments and from calculations of heat retention required for the hot-accretion scenario. The accretion of chondrules hotter than 800 C is shown to be inconsistent with constraints on chondrule thermal evolution, in particular the slow cooling environment of chondrules vs the apparent cooling of chondrites in cold environments. It is argued that petrologic chondrites are formed by cold accretion and subsequently by metamorphic heating.

  1. Hot tail runaway electron generation in tokamak disruptions

    SciTech Connect

    Smith, H. M.; Verwichte, E.

    2008-07-15

    Hot tail runaway electron generation is caused by incomplete thermalization of the electron velocity distribution during rapid plasma cooling. It is an important runaway electron mechanism in tokamak disruptions if the thermal quench phase is sufficiently fast. Analytical estimates of the density of produced runaway electrons are derived for cases of exponential-like temperature decay with a cooling rate lower than the collision frequency. Numerical simulations, aided by the analytical results, are used to compare the strength of the hot tail runaway generation with the Dreicer mechanism for different disruption parameters (cooling rate, post-thermal quench temperature, and electron density) assuming that no losses of runaway electrons occur. It is seen that the hot tail runaway production is going to be the dominant of these two primary runaway mechanisms in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)].

  2. Helping Students Revise Disruptive Experientially Supported Ideas about Thermodynamics: Computer Visualizations and Tactile Models

    ERIC Educational Resources Information Center

    Clark, Douglas; Jorde, Doris

    2004-01-01

    This study analyzes the impact of an integrated sensory model within a thermal equilibrium visualization. We hypothesized that this intervention would not only help students revise their disruptive experientially supported ideas about why objects feel hot or cold, but also increase their understanding of thermal equilibrium. The analysis…

  3. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    NASA Astrophysics Data System (ADS)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  4. Hot electron plasmon-protected solar cell.

    PubMed

    Kong, J; Rose, A H; Yang, C; Wu, X; Merlo, J M; Burns, M J; Naughton, M J; Kempa, K

    2015-09-21

    A solar cell based on a hot electron plasmon protection effect is proposed and made plausible by simulations, non-local modeling of the response, and quantum mechanical calculations. In this cell, a thin-film, plasmonic metamaterial structure acts as both an efficient photon absorber in the visible frequency range and a plasmonic resonator in the IR range, the latter of which absorbs and protects against phonon emission the free energy of the hot electrons in an adjacent semiconductor junction. We show that in this structure, electron-plasmon scattering is much more efficient than electron-phonon scattering in cooling-off hot electrons, and the plasmon-stored energy is recoverable as an additional cell voltage. The proposed structure could become a prototype of a new generation of high efficiency solar cells. PMID:26406739

  5. Are Spicules the Primary Source of Hot Coronal Plasma?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2011-01-01

    The recent discovery of Type II spicules has generated considerable excitement. It has even been suggested that these ejections can account for a majority of the hot plasma observed in the corona, thus obviating the need for "coronal" heating. If this is the case, however, then there should be observational consequences. We have begun to examine some of these consequences and find reason to question the idea that spicules are the primary source of hot coronal plasma.

  6. IDEAS: Blazing the Innovation Trail

    NASA Astrophysics Data System (ADS)

    Eisenhamer, B.

    1999-12-01

    Over the years, IDEAS has pioneered the education and public outreach arena in astronomy and space science. As a result, a collection of innovative education and public outreach programs has emerged across the United States. These programs have taken astronomy and space science information and, through new, sometimes unusual, but mostly creative processes, transformed it into engaging activities and lessons that not only grab the interest of the students but helps them understand concepts and principals in astronomy and space science. This poster session will bring some of these innovative programs to the AAS community to show some of the things being done in education and public outreach. We will also present some techniques on developing program evaluations.

  7. Agency as a psychoanalytic idea.

    PubMed

    Caston, Joseph

    2011-10-01

    Competent agency is a basic assumption of psychoanalytic change. Yet as an aspect of health, personal agency has in the main been only intuitively addressed and remains clinically unsystematized. Here experience-near and observer-centered criteria are developed that assess a person-as-agent's competence in particular domains. These ideas, clinically illustrated, stand as an operational framework that helps thinking and talking about agency in everyday clinical events and psychoanalytic outcomes. Three specific criteria are proposed: reversibility, self-observation, and appropriateness. The first is descriptively polar; together the three apply to each given context of action. They can also serve to ground future research. In this regard, several empirical psychoanalytic studies of adults and children that exemplify measurable aspects of agency are reviewed. Once clinical markers of personal agency are articulated, it will not be necessary to resolve the free will debate: pragmatically, we need only put such distinctions to work. PMID:21980137

  8. Integrated Approach for Prediction of Hot Tearing

    NASA Astrophysics Data System (ADS)

    Suyitno; Kool, W. H.; Katgerman, L.

    2009-10-01

    Shrinkage, imposed strain rate, and (lack of) feeding are considered the main factors that determine cavity formation or the formation of hot tears. A hot-tearing model is proposed that will combine a macroscopic description of the casting process and a microscopic model. The micromodel predicts whether porosity will form or a hot tear will develop. Results for an Al-4.5 pct Cu alloy are presented as a function of the constant strain rate and cooling rate. Also, incorporation of the model in a finite element method (FEM) simulation of the direct-chill (DC) casting process is reported. The model shows features well known from literature such as increasing hot-tearing sensitivity with increasing deformation rate, cooling rate, and grain size. Similar trends are found for the porosity formation as well. The model also predicts a beneficial effect of applying a ramping procedure during the start-up phase, which is an improvement in comparison with earlier findings obtained with alternative models. In principle, the model does not contain adjustable parameters, but several parameters are not well known. A full quantitative validation not only requires detailed casting trials but also independent determination of some thermophysical parameters of the semisolid mush.

  9. Thirty Simple Ideas for Interactive Whiteboards

    ERIC Educational Resources Information Center

    Adams, Caralee

    2011-01-01

    This article presents thirty simple ideas for interactive whiteboards and how IWB can make one's teaching life easier. These teaching ideas for the interactive whiteboard can be used by teachers every day. Tips for classroom management are also presented.

  10. Analysis and comparison of wall cooling schemes for advanced gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1972-01-01

    The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.

  11. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  12. Analysis of cooling systems for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1991-01-01

    A computer program has been written to analyze cooling systems of hypersonic aircraft. This computer program called NASP/SINDA is written into the SINDA'85 command structure and uses the SINDA'85 finite difference subroutines. Both internal fluid flow and heat transfer must be analyzed, because increased heating causes a decrease in the flow of the coolant. Also local hot spots will cause a redistribution of the coolant in the system. Both steady state and transient analyses have been performed. Details of empirical correlations are presented. Results for two cooling system applications are given.

  13. ATHENA X-IFU detector cooling chain

    NASA Astrophysics Data System (ADS)

    Branco, M. B. C.; Charles, I.; Butterworth, J.

    2014-07-01

    The TES (Transition Edge Sensors) micro-calorimeter detector technology in the X-IFU instrument for ATHENA (Astrophyics of the Hot and Energetic universe - Europe's next generation X-ray observatory ATHENA) will require cooling down to 50 mK, and a stable and quiet Electro-Magnetic and micro-vibrations environment. In order to achieve this temperature and environment, a cooling chain integrated in a compact cryostat with an optimized electromagnetic environment has to be developed. Critical technology developments are covered, such as mechanical cryocoolers, support structures, radiative and EMC shields, micro-vibrations reduction, and others.

  14. Cooling power of transverse thermoelectrics for cryogenic cooling

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Ma, Ming; Grayson, M.

    2016-05-01

    Transverse Peltier coolers have been experimentally and theoretically studied since 1960s due to their capability of achieving cooling in a single-leg geometry. Recently proposed pxn-type transverse thermoelectrics reveal the possibility of intrinsic or undoped transverse coolers that can, in principle, function at cryogenic temperatures, which has drawn more attention to the performance of such transverse coolers. However, unlike longitudinal thermoelectrics, the equations for transverse thermoelectrics cannot be solved analytically. In this study, we therefore calculate the thermoelectric transport in transverse coolers numerically, and introduce a normalized notation, which reduces the independent parameters in the governing equations to a normalized electric field E* and a hot-side transverse figure of merit zTh, only. A numerical study of the maximum cooling temperature difference and cooling power reveals the superior performance of transverse thermoelectric coolers compared to longitudinal coolers with the same figure of merit, providing another motivation in the search for new transverse thermoelectric materials with large figure of merit.

  15. Great Constitutional Ideas: Justice, Equality, and Property.

    ERIC Educational Resources Information Center

    Starr, Isidore

    1987-01-01

    Examines the ideas of justice, equality, and property as they are represented in the Declaration of Independence, the U.S. Constitution and the Bill of Rights. Discusses how these ideas affect the way public schools operate and the lessons educators teach or don't teach about our society. Includes ideas for classroom activities. (JDH)

  16. A Systematic Procedure for Teaching Main Idea.

    ERIC Educational Resources Information Center

    Dishner, Ernest K.; Readence, John E.

    This paper suggests a sequence of requisite skills for the identification of main ideas including identifying the key words or topic of a sentence, identifying the key words or topic of a paragraph, identifying the topic sentence of a paragraph, recognizing an explicitly stated main idea of a paragraph, recalling an explicitly stated main idea,…

  17. Hot compression process for making edge seals for fuel cells

    DOEpatents

    Dunyak, Thomas J.; Granata, Jr., Samuel J.

    1994-01-01

    A hot compression process for forming integral edge seals in anode and cade assemblies wherein the assemblies are made to a nominal size larger than a finished size, beads of AFLAS are applied to a band adjacent the peripheral margins on both sides of the assemblies, the assemblies are placed in a hot press and compressed for about five minutes with a force sufficient to permeate the peripheral margins with the AFLAS, cooled and cut to finished size.

  18. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  19. ON THE TIDAL ORIGIN OF HOT JUPITER STELLAR OBLIQUITY TRENDS

    SciTech Connect

    Dawson, Rebekah I.

    2014-08-01

    It is debated whether the two hot Jupiter populations—those on orbits misaligned from their host star's spin axis and those well-aligned—result from two migration channels or from two tidal realignment regimes. Here I demonstrate that equilibrium tides raised by a planet on its star can account for three observed spin-orbit alignment trends: the aligned orbits of hot Jupiters orbiting cool stars, the planetary mass cut-off for retrograde planets, and the stratification by planet mass of cool host stars' rotation frequencies. The first trend can be caused by strong versus weak magnetic braking (the Kraft break), rather than realignment of the star's convective envelope versus the entire star. The second trend can result from a small effective stellar moment of inertia participating in the tidal realignment in hot stars, enabling massive retrograde planets to partially realign to become prograde. The third trend is attributable to higher-mass planets more effectively counteracting braking to spin up their stars. Both hot and cool stars require a small effective stellar moment of inertia participating in the tidal realignment, e.g., an outer layer weakly coupled to the interior. I demonstrate via Monte Carlo that this model can match the observed trends and distributions of sky-projected misalignments and stellar rotation frequencies. I discuss implications for inferring hot Jupiter migration mechanisms from obliquities, emphasizing that even hot stars do not constitute a pristine sample.

  20. A "vaccine" made of ideas.

    PubMed

    Owur, M

    1989-03-01

    Mathematical modelling techniques suggest that health education campaigns that promote safe sex--"a vaccine made of ideas"--have a magnified effect on rates of human immunodeficiency virus (HIV) transmission. However, surveys conducted in a range of countries have shown that mass media educational campaigns increase knowledge yet have a limited impact on behavior. Most effective are community-based initiatives that utilize existing networks and draw on local cultural traditions. For example, a Nairobi health education program in which prostitutes selected by their peers led group meetings where condoms were distributed led to increasing rates of condom use and a reduction in the risk of HIV infection. There is agreement that young people should receive education on the transmission of acquired immunodeficiency syndrome (AIDS) before they become sexually active and at risk, yet the age at which such education should begin and the content of the curriculum are controversial issues. It is further essential to recognize that about 40 million of the world's children do not attend school, and many are "street kids" who are forced into prostitution by economic necessity at an early age. Research, pretesting, and evaluation of any AIDS prevention campaigns are essential, especially under conditions of limited resources. PMID:12316486

  1. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  2. COOLING TOWER PUMP HOUSE, TRA606. THREE OF SIX SECTIONS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. THREE OF SIX SECTIONS OF COOLING TOWER ARE VISIBLE ABOVE RAILING. PUMP HOUSE IN FOREGROUND IS ON SOUTH SIDE OF COOLING TOWER. NOTE THREE PIPES TAKING WATER FROM PUMP HOUSE TO HOT DECK OF COOLING TOWER. EMERGENCY WATER SUPPLY TOWER IS ALSO IN VIEW. INL NEGATIVE NO. 6197. Unknown Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. The Five Biggest Ideas in Science

    NASA Astrophysics Data System (ADS)

    Wynn, Charles M.; Wiggins, Arthur W.

    1996-12-01

    In a thought-provoking and entertaining exploration of The Five Biggest Ideas in Science, authors Charles Wynn and Arthur Wiggins provide a panoramic view of the questions scientists seek to answer about the natural world: Do basic building blocks of matter exist, and if so, what do they look like? BIG IDEA #1: Physics' Model of the Atom What relationships, if any, exist among different kinds of atoms? BIG IDEA #2: Chemistry's Periodic Law Where did the atoms of the universe come from,and what is their destiny? BIG IDEA #3: Astronomy's Big Bang Theory How is the matter of the universe arranged in planet Earth? BIG IDEA #4: Geology's Plate Tectonics Model How did life on planet Earth originate and develop? BIG IDEA #5: Biology's Theory of Evolution Get set for a lively and informative discussion, as you also learn how to evaluate potential applications of these and other scientific ideas.

  4. Developing, testing, evaluating, and optimizing solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991 to 92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  5. Developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect

    Not Available

    1992-01-24

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  6. Ejection of cool plasma into the hot corona

    NASA Astrophysics Data System (ADS)

    Zacharias, P.; Peter, H.; Bingert, S.

    2011-08-01

    Context. The corona is highly dynamic and shows transient events on various scales in space and time. Most of these features are related to changes in the magnetic field structure or impulsive heating caused by the conversion of magnetic to thermal energy. Aims: We investigate the processes that lead to the formation, ejection and fall of a confined plasma ejection that was observed in a numerical experiment of the solar corona. By quantifying physical parameters such as mass, velocity, and orientation of the plasma ejection relative to the magnetic field, we provide a description of the nature of this particular plasma ejection. Methods: The time-dependent three-dimensional magnetohydrodynamic (3D MHD) equations are solved in a box extending from the chromosphere, which serves as a reservoir for mass and energy, to the lower corona. The plasma is heated by currents that are induced through field line braiding as a consequence of photospheric motions included in the model. Spectra of optically thin emission lines in the extreme ultraviolet range are synthesized, and magnetic field lines are traced over time. We determine the trajectory of the plasma ejection and identify anomalies in the profiles of the plasma parameters. Results: Following strong heating just above the chromosphere, the pressure rapidly increases, leading to a hydrodynamic explosion above the upper chromosphere in the low transition region. The explosion drives the plasma, which needs to follow the magnetic field lines. The ejection is then moving more or less ballistically along the loop-like field lines and eventually drops down onto the surface of the Sun. The speed of the ejection is in the range of the sound speed, well below the Alfvén velocity. Conclusions: The plasma ejection observed in a numerical experiment of the solar corona is basically a hydrodynamic phenomenon, whereas the rise of the heating rate is of magnetic nature. The granular motions in the photosphere lead (by chance) to a strong braiding of the magnetic field lines at the location of the explosion that in turn is causing strong currents which are dissipated. Future studies need to determine if this process is a ubiquitous phenomenon on the Sun on small scales. Data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO) might provide the relevant information. Appendix and movie are available in electronic form at http://www.aanda.org

  7. THERMAL PROCESSES GOVERNING HOT-JUPITER RADII

    SciTech Connect

    Spiegel, David S.; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-07-20

    There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (1) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (2) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (3) the degree of heat redistribution to the nightside; and (4) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more similar to isotropically irradiated models when there is more heat redistributed from the dayside to the nightside. In addition, we consider the efficacy of ohmic heating in the atmosphere and/or convective interior in inflating hot Jupiters. Among our conclusions are that (1) the most highly irradiated planets cannot stably have uB {approx}> 10 km s{sup -1} G over a large fraction of their daysides, where u is the zonal wind speed and B is the dipolar magnetic field strength in the atmosphere, and (2) that ohmic heating cannot in and of itself lead to a runaway in planet radius.

  8. An Alternative to Kirk's Idea of the Idea and a Future for Physical Education

    ERIC Educational Resources Information Center

    Smith, Wayne

    2011-01-01

    In his book "Physical Education Futures" (Routledge, London) David Kirk (2010) introduces the notion of the idea of the idea of physical education, which challenges all physical educators to think more deeply and broadly about physical education as a school subject. The notion of the idea of the idea enables a "big picture" conceptualisation of…

  9. Editorial Comment: Virus-Like Ideas: The Role of Critical Thinking in the Ecology of Ideas.

    ERIC Educational Resources Information Center

    Blanchard, Jay; Carey, John

    1987-01-01

    Suggests that critical thinking (the ideological immune system) can prevent or inactivate virus-like ideas (ideas that can invade a host, damage the host, and cause the host to replicate and transmit the ideas--infecting other hosts and propagating the ideas). Proposes that critical thinking alleviates many mental health problems. (SKC)

  10. Preguntas y Respuestas sobre IDEA (Questions and Answers about the IDEA).

    ERIC Educational Resources Information Center

    Kupper, Lisa, Ed.

    1994-01-01

    This digest examines the mandates and requirements of the Individuals with Disabilities Education Act (IDEA). (Its scope does not include the IDEA's Part H program.) The digest gives a brief history of the IDEA, procedures for obtaining a copy of the IDEA and its regulations, and procedures for obtaining a copy of an individual state's special…

  11. An Overview of Building America Industrialized Housing Partnership (BAIHP) Activities in Hot-Humid Climates

    SciTech Connect

    Chandra, Subrato; Parker, Danny; Sherwin, John; Colon, Carlos; Fonorow, Ken; Stroer, Dennis; Martin, Eric; McIlvaine, Janet; Chasar, Dave; Moyer, Neil; Thomas-Rees, Stephanie; Hoak, David; Beal, David; Gil, Camilo

    2009-04-08

    This report summarizes progress of the BAIHP tasks including: NightCool; interior duct systems in manufactured houses, ventilation and dehumidification, plug load reduction, solar and conventional domestic hot water testing.

  12. Reflection enhances creativity: Beneficial effects of idea evaluation on idea generation.

    PubMed

    Hao, Ning; Ku, Yixuan; Liu, Meigui; Hu, Yi; Bodner, Mark; Grabner, Roland H; Fink, Andreas

    2016-03-01

    The present study aimed to explore the neural correlates underlying the effects of idea evaluation on idea generation in creative thinking. Participants were required to generate original uses of conventional objects (alternative uses task) during EEG recording. A reflection task (mentally evaluating the generated ideas) or a distraction task (object characteristics task) was inserted into the course of idea generation. Behavioral results revealed that participants generated ideas with higher originality after evaluating the generated ideas than after performing the distraction task. The EEG results revealed that idea evaluation was accompanied with upper alpha (10-13 Hz) synchronization, most prominent at frontal cortical sites. Moreover, upper alpha activity in frontal cortices during idea generation was enhanced after idea evaluation. These findings indicate that idea evaluation may elicit a state of heightened internal attention or top-down activity that facilitates efficient retrieval and integration of internal memory representations. PMID:26808451

  13. Adiabatic cooling of antiprotons.

    PubMed

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511

  14. Adiabatic Cooling of Antiprotons

    SciTech Connect

    Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.

  15. Gas-cooled nuclear reactor

    DOEpatents

    Peinado, Charles O.; Koutz, Stanley L.

    1985-01-01

    A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

  16. Performance study of a heat recovery desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Sabek, Seifennasr; Ben Nasr, Kaouther; Chouikh, Ridha; Guizani, Amenallah

    2015-04-01

    The comparison between the experimental and theoretical simulations of a desiccant cooling system under various climatic conditions (outdoor temperature and relative humidity) on the system performance has been presented. The performance of the system is evaluated using Cooling Capacity (CC) parameter. The system under a typical summer day of hot and humid climate was tested. A remarkable decrease about 40-65% in the specific humidity and with a supply air temperature lower than 25°C of the proposed system was observed. The study is important and helpful to improve the effectiveness of this kind of liquid desiccant system in hot and humid places.

  17. Cool pool development. Quarterly technical report No. 2, June-December 1979

    SciTech Connect

    Crowther, K.

    1980-01-05

    The Cool Pool is a variation of the evaporating roof pond idea. The pool is isolated from the living space and the cooled pond water thermosiphons into the water columns located within the building. A computer model of the Cool Pool and the various heat and mass transfer mechanisms involved in the system are discussed. Theory will be compared to experimental data collected from a Cool Pool test building.

  18. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  19. PCM Passive Cooling System Containing Active Subsystems

    NASA Technical Reports Server (NTRS)

    Blanding, David E.; Bass, David I.

    2005-01-01

    A multistage system has been proposed for cooling a circulating fluid that is subject to intermittent intense heating. The system would be both flexible and redundant in that it could operate in a basic passive mode, either sequentially or simultaneously with operation of a first, active cooling subsystem, and either sequentially or simultaneously with a second cooling subsystem that could be active, passive, or a combination of both. This flexibility and redundancy, in combination with the passive nature of at least one of the modes of operation, would make the system more reliable, relative to a conventional cooling system. The system would include a tube-in-shell heat exchanger, within which the space between the tubes would be filled with a phase-change material (PCM). The circulating hot fluid would flow along the tubes in the heat exchanger. In the basic passive mode of operation, heat would be conducted from the hot fluid into the PCM, wherein the heat would be stored temporarily by virtue of the phase change.

  20. Analysis of Regen Cooling in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  1. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  2. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  3. Should We Use Colours as Symbolic Representations of Hot and Cold?

    ERIC Educational Resources Information Center

    Carvalho, Paulo Simeao; Sampaio e Sousa, Adriano

    2006-01-01

    People usually talk about "hot and cold" colours without really thinking of the impact these definitions may have on scientific understanding. These colours are associated with the human sensations of hot and cold, and this idea is consistent with commonsense and daily experience. Interacting with students, we detect conceptual conflicts when they…

  4. Innovating with HOTS for the ESL Reading Class

    ERIC Educational Resources Information Center

    Yoke, Soo Kum; Hasan, Nor Haniza; Jangga, Rohani; Kamal, Siti Nuur-Ila Mat

    2015-01-01

    The idea of integrating higher order thinking skills (HOTS) in language classrooms has been viewed negatively by language teachers. Students have been found to be passive and teachers have been found to lack creativity in innovating their lessons. The government's effort of introducing thinking skills in the Malaysian Education Blueprint (MEB)…

  5. Changing ideas of global limits.

    PubMed

    Goddy, D

    1984-03-01

    In this discussion of changing ideas of global limits, attention is directed to world trade, moral restraint, and the "green revolution." A fresh look at the work of those who first considered population problems, e.gg., Malthur, can help make some sense of the population problems the world faces today. Malthus, writing in the late 1700s, concluded that population multiplies with each generation. He saw that food production was limited by the amount of available cropland and that the more people there are, the less food they will have to eat -- assuming that all available cropland is planted. This grim view of the future led Malthus to oppose government aid to the poor maintaining that such assistance would only encourage poor people to have large families. His solution was "moral restratin," seeing it as the duty of each individual to refrain from marriage until he was able to support his children. At the time this advice seemed cruel and Malthus was bitterly attacked by writers everywhere in Europe. Karl Marx and other ctitics of Malthus believed that poverty was caused by unjust governments and the selfishness of the rich. Marx clamied that the problem was too few jobs rather than too many people. The dire predictions of Malthus were soon forgotten as manufacturing industries began to transform the economies of Western Europe in the 1800s. Along with soaring economic growth came a host of developments that improved people's lives, e.g., better transportation, better sanitiation and nutrition, and better medicine. New inventions helped farmers fo produce more food. Next came the "demographic transition." Population grew quickly in Europe and North America as people became healthier and lived longer. Gradually, people in the industrial nations began deciding to have smaller families to enable them to afford an even higher living standard. By the late 1920s birthrates in Europe and the US had dropped so low that mention of the "population problem" usually referred

  6. Transpiration cooling using air as a coolant

    SciTech Connect

    Kikkawa, Shinzo; Senda, Mamoru; Sakagushi, Katsuji; Shibutani, Hideki )

    1993-02-01

    Transpiration cooling is one of the most effective techniques for protecting a surface exposed to a high-temperature gas stream. In the present paper, the transpiration cooling effectiveness was measured under steady state. Air as a coolant was transpired from the surface of a porous plate exposed to hot gas stream, and the transpiration rate was varied in the range of 0.001 [approximately] 0.006. The transpiration cooling effectiveness was evaluated by measuring the temperature of the upper surface of the plate. Also, a theoretical study was performed and it was clarified that the effectiveness increases with increasing transpiration rate and heat-transfer coefficient of the upper surface. Further, the effectiveness was expressed as a function of the blowing parameter only. The agreement between the experimental results and theoretical ones was satisfactory.

  7. Large Diameter Lasing Tube Cooling Arrangement

    DOEpatents

    Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  8. Evaporative cooling and the Mpemba effect

    NASA Astrophysics Data System (ADS)

    Vynnycky, M.; Mitchell, S. L.

    2010-10-01

    The Mpemba effect is popularly summarized by the statement that “hot water can freeze faster than cold”, and has been observed experimentally since the time of Aristotle; however, there exist almost no theoretical models that predict the effect. With a view to initiating rigorous modelling activity on this topic, this paper analyzes in some depth the only available model in literature, which considers the potential role of evaporative cooling and treats the cooling water as a lumped mass. Certain omissions in the original work are highlighted and corrected, and results are obtained for a wide range of operating conditions—in particular, initial liquid temperature and cooling temperature. The implications and importance of the results of the model for experimental design are discussed, as are extensions of the model to handle more realistic 1-, 2- and 3-dimensional configurations.

  9. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. Idea processing for creativity and management

    SciTech Connect

    Miller, P E

    1988-01-01

    Tips and case histories on computer use for idea and outline processing: Productivity software to solve problems of idea hierarchy, transitions, and developments is matched to solutions for communicators. One case is text that ranges from methods and procedures to histories and legal definitions of classification for the US Department of Energy. Applications of value to writers, editors, and managers are for research; calendars; creativity; prioritization; idea discovery and manipulation; file and time management; and contents, indexes, and glossaries. 6 refs., 7 figs.

  11. Living in the WOW of Your Ideas

    ERIC Educational Resources Information Center

    Mabry, M. Parker

    2012-01-01

    Recently, the author got to thinking about some of the ideas that have crossed her mind in the last couple of weeks. The list made her smile. And as she went over it point by point in her head she tried to determine what, if any, reasonable or logical patterns were emerging in her myriad of ideas. The four divergent ideas presented in this article…

  12. Fighting Fire with Fire: Superlattice Cooling of Silicon Hotspots to Reduce Global Cooling Requirements

    SciTech Connect

    Biswas, S; Tiwari, M; Sherwood, T; Theogarajan, L; Chong, F T

    2010-10-05

    The running costs of data centers are dominated by the need to dissipate heat generated by thousands of server machines. Higher temperatures are undesirable as they lead to premature silicon wear-out; in fact, mean time to failure has been shown to decrease exponentially with temperature (Black's law). Although other server components also generate heat, microprocessors still dominate in most server configurations and are also the most vulnerable to wearout as the feature sizes shrink. Even as processor complexity and technology scaling have increased the average energy density inside a processor to maximally tolerable levels, modern microprocessors make extensive use of hardware structures such as the load-store queue and other CAM-based units, and the peak temperatures on chip can be much worse than even the average temperature of the chip. In recent studies, it has been shown that hot-spots inside a processor can generate {approx} 800W/cm{sup 2} heat flux whereas the average heat flux is only 10-50W/cm{sup 2}, and due to this disparity in heat generation, the temperature in hot spots may be up to 30 C more than average chip temperature. The key problem processor hot-spots create is that in order to prevent some critical hardware structures from wearing out faster, the air conditioners in a data center have to be provisioned for worst case requirements. Worse yet, air conditioner efficiencies decrease exponentially as the desired ambient temperature decreases relative to the air outside. As a result, the global cooling costs in data centers, which nearly equals the IT equipment power consumption, are directly correlated with the maximum hot spot temperatures of processors, and there is a distinct requirement for a cooling technique to mitigate hot-spots selectively so that the global air conditioners can operate at higher, more efficient, temperatures. We observe that localized cooling via superlattice microrefrigeration presents exactly this opportunity whereby

  13. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  14. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  15. Debuncher cooling performance

    SciTech Connect

    Derwent, P.F.; McGinnis, David; Pasquinelli, Ralph; Vander Meulen, David; Werkema, Steven; /Fermilab

    2005-11-01

    We present measurements of the Fermilab Debuncher momentum and transverse cooling systems. These systems use liquid helium cooled waveguide pickups and slotted waveguide kickers covering the frequency range 4-8 GHz.

  16. Debuncher Cooling Performance

    SciTech Connect

    Derwent, P. F.; McGinnis, David; Pasquinelli, Ralph; Vander Meulen, David; Werkema, Steven

    2006-03-20

    We present measurements of the Fermilab Debuncher momentum and transverse cooling systems. These systems use liquid helium cooled waveguide pickups and slotted waveguide kickers covering the frequency range 4-8 GHz.

  17. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  18. IDEM: A Prediction Market for Idea Management

    NASA Astrophysics Data System (ADS)

    Bothos, Efthimios; Apostolou, Dimitris; Mentzas, Gregoris

    Collaborative systems and methods are used within corporate environments to support innovation and management of new ideas. The aggregation of innovation-related information from a community of users is a non-trivial task that requires the use of specialized collaborative systems and methods. In this paper we explore the use of Prediction Markets for community-based idea management and present IDEM, a software system that is used for generating and evaluating new ideas utilizing the concept of Prediction Markets. In addition to trading, IDEM supports users submit new ideas, rate and comment on them. Academic experiments and industrial pilots reveal the perceived usefulness of the system.

  19. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  20. When does hot water freeze faster then cold water? A search for the Mpemba effect

    NASA Astrophysics Data System (ADS)

    Brownridge, James D.

    2011-01-01

    It is possible to consistently observe hot water freezing faster than cold water under certain conditions. All conditions except the initial temperature of water specimens must be the same and remain so during cooling, and the cold water must supercool to a temperature significantly lower than the temperature to which the hot water supercools. For hot water at an initial temperature of >≈80 °C and cold water at <≈20 °C, the cold water must supercool to a temperature of at least ≈5.5 °C, lower than the temperature to which hot water supercools. With these conditions satisfied, we observed initially hot water freezing before the initially cold water 28 times in 28 attempts. If the cold water does not supercool, it will freeze before the hot water because it always cools to 0 °C first regardless of the initial temperatures.

  1. Integrating district cooling with cogeneration

    SciTech Connect

    Spurr, M.

    1996-11-01

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

  2. Controlled Rate Cooling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled-rate cooling is one of several techniques available for the long-term storage of plants in liquid nitrogen. In this technique samples are slowly cooled to an intermediate temperature and then plunged in liquid nitrogen. Controlled rate cooling is based on osmotic regulation of cell conte...

  3. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  4. Cooling apparatus for water-cooled engines

    SciTech Connect

    Fujikawa, T.; Tamba, S.

    1986-05-20

    A cooling apparatus is described for a water-cooled internal combustion engine including a shaft that rotates when the engine is running, the apparatus comprising a centrifugal fan adapted to be connected to and rotated by the shaft, the fan having an intake air port and a discharge air opening, a rotary screen adapted to be operatively connected to and rotated by the shaft, the screen being disposed in the intake air port, a cooling radiator, a spiral-shaped duct connecting the radiator with the discharge air opening, and separating means on the duct, the separating means comprising an opening formed in the outer wall of the duct.

  5. The Origin of Nonradiative Heating/momentum in Hot Stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B. (Editor); Michalitsianos, A. G. (Editor)

    1985-01-01

    The origin of nonradiative heating and momentum in the atmospheres of stars is studied. The similarities and differences between what occurs in the hot stars and what occurs in cool stars are emphasized. Key points in the theory are reviewed. Areas requiring new study are indicated.

  6. On analog simulation of ionization cooling of muons

    SciTech Connect

    Xie, Ming

    2001-06-18

    Analog simulation, proposed here as an alternative approach for the study of ionization cooling of muons, is a scaled cooling experiment, using protons instead of muons as simulation particles. It is intended to be an effective and flexible, quick and inexpensive experiment for the understanding and validation of unprecedentedly complicated cooling physics, for the demonstration and optimization of various elaborated techniques for beam manipulation in 6D phase space. It can be done and perhaps should be done before the costly and time-consuming development of extremely challenging, muon-specific cooling technology. In a nutshell, the idea here is to build a toy machine in a playground of ideas, before staking the Imperial Guard of Napoleon into the bloody battlefield of Waterloo.

  7. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOEpatents

    Chiu, Rong-Shi Paul; Hasz, Wayne Charles; Johnson, Robert Alan; Lee, Ching-Pang; Abuaf, Nesim

    2002-01-01

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  8. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  9. Grants: Genesis of Some Funded Proposal Ideas

    ERIC Educational Resources Information Center

    Pazdar, John

    2011-01-01

    While "thinking outside the box" can be an over-used phase at times, in the world of grants it can provide the genesis of ideas. The "box" is the world of academia accepted by most educators, while "thinking outside" is the process that leads to grant ideas. In the grant world, "thinking outside the box" is a process of doing something that has…

  10. Entrepreneurial Idea Identification through Online Social Networks

    ERIC Educational Resources Information Center

    Lang, Matthew C.

    2010-01-01

    The increasing use of social network websites may signal a change in the way the next generation of entrepreneurs identify entrepreneurial ideas. An important part of the entrepreneurship literature emphasizes how vital the use of social networks is to entrepreneurial idea identification, opportunity recognition, and ultimately new venture…

  11. 10 Best Ideas for Reading Teachers.

    ERIC Educational Resources Information Center

    Fry, Edward, Ed.

    This book contains 44 articles on the topic "10 Best Ideas for Reading Teachers." Each of the articles, however, is different, because each of the authors sees the assigned title from a different perspective and from a different background. Some of the articles in the book concentrate on seminal ideas, and others give actual teaching suggestions.…

  12. The Five Great Ideas of Our Constitution.

    ERIC Educational Resources Information Center

    Starr, Isidore

    1987-01-01

    Identifies five great ideas of the U.S. Constitution as power, liberty, justice, equality, and property. The first of two installments, article focuses on how ideas of power and liberty are presented in the Constitution. It also discusses how people may exercise power through voting and public protest and liberty through their First Amendment…

  13. Selling Your Ideas to Your Organization

    ERIC Educational Resources Information Center

    Scharlatt, Harold

    2008-01-01

    If you've got an idea you want to sell, you need to do two things: scan your environment and use effective tactics. This guidebook explains how to scan your environment and provides a collection of tactics you can use to sell your idea. Using this systematic approach will make you more likely to accomplish your objective--solving a problem or…

  14. Student Ideas: What Is an Environment?

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.

    2005-01-01

    The author investigated students' ideas about what defines an environment and how these ideas change across grade level and educational experience. A total of 81 students were sampled: 18 seventh graders, 20 eighth graders, and 24 ninth graders from general biology, and 19 ninth graders from college preparatory biology. The environments task was a…

  15. Structuring the Curriculum around Big Ideas

    ERIC Educational Resources Information Center

    Alleman, Janet; Knighton, Barbara; Brophy, Jere

    2010-01-01

    This article provides an inside look at Barbara Knighton's classroom teaching. She uses big ideas to guide her planning and instruction and gives other teachers suggestions for adopting the big idea approach and ways for making the approach easier. This article also represents a "small slice" of a dozen years of collaborative research,…

  16. Translating Ovide Decroly's Ideas to Brazilian Teachers

    ERIC Educational Resources Information Center

    Hai, Alessandra Arce; Simon, Frank; Depaepe, Marc

    2015-01-01

    This article seeks to analyse, comprehend and apprehend the appropriation processes of Ovide Decroly's ideas in Brazil through the translation of his books and that of Amélie Hamaïde into Portuguese. The article discusses the following questions. Why did Brazilian intellectuals and teachers need to import Decroly's ideas to be applied in Brazilian…

  17. 25 Great Ideas for Hispanic Heritage

    ERIC Educational Resources Information Center

    Instructor, 2007

    2007-01-01

    Hispanic Heritage Month, celebrated September 15th through October 15th, is a great opportunity to kick off a whole year of cultural discovery. This article presents 25 great ideas for Hispanic heritage. These 25 fresh ideas--from Aztec math to Carnaval masks--are easy to put together, and they offer students the chance to celebrate their own…

  18. 101 Innovative Ideas for Creative Kids.

    ERIC Educational Resources Information Center

    Dodson, Claudia J.

    As an alternative to the drill and practice worksheets that typically supplement student learning, this book provides a reference for kindergarten through fifth grade teachers containing ideas for interactive activities to invigorate daily lessons in many areas of the elementary school curriculum, as well as providing ideas for home school…

  19. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this study.…

  20. Serious Ideas and Middle School Students

    ERIC Educational Resources Information Center

    Palumbo, Anthony; Sanacore, Joseph

    2013-01-01

    With support, young adolescents crave the challenge of learning about serious ideas through serious literature. Middle-level learners also enjoy opportunities to become immersed in activities that foster a deeper understanding of serious ideas. After discussing the value of using serious narrative literature, a rationale is provided for supporting…

  1. The secret life of scientific ideas

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor

    2015-09-01

    Dispelling the myth of Eureka moments, Vitor Cardoso describes what he's learned about how ideas in physics really come about, thanks to the essays penned by physicists in The Birth of an Idea - the web-based project he co-founded with artist Ana Sousa Carvalho.

  2. An Idea Whose Time Had Come

    ERIC Educational Resources Information Center

    Tuckett, Alan

    2012-01-01

    Good ideas have many parents, bad ones are often orphans. And since it is now 20 years since the first Adult Learners' Week in England, and the idea has been adopted and adapted to local circumstances in 55 countries, there must be something going for it. As the twenty-first Adult Learners' Week gets underway, the author reflects on the origins of…

  3. Ecosystem stewardship: good idea, but how?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystem stewardship and resilience-based management are admirable concepts that remain largely conceptual. Beyond a suite of general ideas, including linkages among ecological models, monitoring, stakeholder engagement, and social learning, there is not a replicable method to use the ideas in the ...

  4. Heat pipe cooling of an aerospace foam mold manufacturing process

    SciTech Connect

    Hahn, D.R.; Feldman, K.T.; Marjon, P.L.

    1980-01-01

    A passive heat pipe cooling system was developed to cool a Bendix foam mold used to manufacture aerospace foam parts. The cooling system consists of ten copper-water heat pipes with cooling fins implanted into the aluminum mold and cooled by a domestic size fan blowing ambient air. The number and location of the heat pipes was determined to provide the most effective cooling and mold isothermalization based on experimental measurements of mold temperatures during the exothermic foaming process and from practical considerations of the mold geometry and use. Performance tests were cnducted on an individual heat pipe and on the ten heat pipes implanted in the mold. Both exothermic foam heating and internal electrical heat input were used in the experiments. The experimental test results indicate that the heat pipe cooling system with a fan is four to six times faster than free convection cooling of the mold with no heat pipes or fan and nearly twice as fast as cooling by the fan only. Similarly fast increases in mold heating time in the cure furnace could be realized if the heat pipes are used during this part of the production process. The heat pipes also cool hot spots in the mold and help isothermalize the mold so that better quality foam parts should be produced.

  5. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  6. Modulated gas turbine cooling air

    SciTech Connect

    Schwarz, F.M.; Candelori, D.J.; Brooke, R.D.

    1993-07-06

    In an axial flow gas turbine engine in an aircraft, the engine having an annular flow of hot working fluid passing sequentially through a first bladed rotor stage, a vaned stator assembly having a plurality of hollow vanes, and a second bladed rotor stage; a flow resistant labyrinth seal comprised of an annular seal runner sealingly secured to the first and second rotor stages and a seal shroud surrounding and secured to the seal runner, forming a labyrinth flow passage therebetween; an upstream plenum in restricted fluid communication with the annular flow upstream of the vaned stator assembly and with the labyrinth flow passage; a downstream plenum in fluid communication with the labyrinth flow passage and in restricted flow communication with the annular flow downstream of the vaned stator assembly; a compressor; a conduit network connected to deliver a cooling airflow from the compressor to the upstream plenum, and a modulatable control valve means located in the conduit network, the method of operation comprising: measuring the temperature of gas passing through the labyrinth flow passage; sensing aircraft speed and comparing the sensed speed to a preselected air craft speed range; holding the valves open any item the sensed aircraft speed is less than the preselected aircraft speed range; and modulating he quantity of the cooling airflow in response to the measurement of the temperature of the gas passing through the labyrinth flow passage to keep the temperature at a substantially constant maximum value when the sensed aircraft speed is greater than the aircraft speed range.

  7. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-12-31

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  8. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  9. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  10. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  11. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  12. Laser cooling of a high-temperature oscillator by a three-level system

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-08-01

    We study the laser cooling of a mechanical oscillator through the coupling with a dissipative three-level system. Under a background temperature beyond the Lamb-Dicke regime, we extend the standard cooling analysis by separately studying the classical motion and the quantum dynamics of the oscillator. In ladder-system cooling, the cooling rate degrades by orders of magnitude at large classical motion. This phenomenon causes a critical transition of the final temperature at a hot background. In stark contrast, electromagnetic-induced-transparency (EIT) cooling with a Λ system produces significant negative cooling rate at high motional excitation. At steady state, the oscillator could exhibit both cooling and lasing behaviors. We argue that a successful EIT cooling requires either a poor quality oscillator to suppress the lasing effect, or terminating the cooling process at a transient stage.

  13. Comparison of effectiveness of convection-, transpiration-, and film-cooling methods with air as coolant

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Livingood, N B

    1954-01-01

    Various parts of aircraft propulsion engines that are in contact with hot gases often require cooling. Transpiration and film cooling, new methods that supposedly utilize cooling air more effectively than conventional convection cooling, have already been proposed. This report presents material necessary for a comparison of the cooling requirements of these three methods. Correlations that are regarded by the authors as the most reliable today are employed in evaluating each of the cooling processes. Calculations for the special case in which the gas velocity is constant along the cooled wall (flat plate) are presented. The calculations reveal that a comparison of the three cooling processes can be made on quite a general basis. The superiority of transpiration cooling is clearly shown for both laminar and turbulent flow. This superiority is reduced when the effects of radiation are included; for gas-turbine blades, however, there is evidence indicating that radiation may be neglected.

  14. Computational simulation of hot composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1991-01-01

    Three different computer codes developed in-house are described for application to hot composite structures. These codes include capabilities for: (1) laminate behavior (METCAN); (2) thermal/structural analysis of hot structures made from high temperature metal matrix composites (HITCAN); and (3) laminate tailoring (MMLT). Results for select sample cases are described to demonstrate the versatility as well as the application of these codes to specific situations. The sample case results show that METCAN can be used to simulate cyclic life in high temperature metal matrix composites; HITCAN can be used to evaluate the structural performance of curved panels as well as respective sensitivities of various nonlinearities, and MMLT can be used to tailor the fabrication process in order to reduce residual stresses in the matrix upon cool-down.

  15. Computational simulation of hot composites structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, P. L. N.; Singhal, S. N.

    1991-01-01

    Three different computer codes developed in-house are described for application to hot composite structures. These codes include capabilities for: (1) laminate behavior (METCAN); (2) thermal/structural analysis of hot structures made from high temperature metal matrix composites (HITCAN); and (3) laminate tailoring (MMLT). Results for select sample cases are described to demonstrate the versatility as well as the application of these codes to specific situations. The sample case results show that METCAN can be used to simulate cyclic life in high temperature metal matrix composites; HITCAN can be used to evaluate the structural performance of curved panels as well as respective sensitivities of various nonlinearities, and MMLT can be used to tailor the fabrication process in order to reduce residual stresses in the matrix upon cool-down.

  16. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  17. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  18. In hot water, again

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Watkins, Sheila

    2009-10-01

    Regarding Norman Willcox's letter about the problems of using solar panels for domestic heating (August p21), I also have thermal solar panels installed. However, contrary to his disappointing experience, I have found that they provide my family with a useful amount of hot water. In our system, the solar energy is used to heat a store of water, which has no other source of heat. Mains-pressure cold water passes through this store via a heat exchanger, removing heat from it and warming up. If the water becomes warm enough, an unpowered thermostatic valve allows it to go straight to the hot taps (mixing it with cold if it is too hot). However, if it is not hot enough, then the water is directed first through our previously installed gaspowered combination boiler and then to the taps.

  19. Reactor hot spot analysis

    SciTech Connect

    Vilim, R.B.

    1985-08-01

    The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

  20. Saturn's Hot Plasma Explosions

    NASA Video Gallery

    This animation based on data obtained by NASA's Cassini Spacecraft shows how the "explosions" of hot plasma on the night side (orange and white) periodically inflate Saturn's magnetic field (white ...

  1. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (ESTSC)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  2. Removal of glass adhered to sintered ceramics in hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.

  3. Evaluation of three commercial microclimate cooling systems

    NASA Astrophysics Data System (ADS)

    Cadarette, Bruce S.; Decristofano, Barry S.; Speckman, Karen N.; Sawka, Michael N.

    1988-11-01

    Three commercially available microclimate cooling systems were evaluated for their ability to reduce heat stress in men exercising in a hot environment while wearing high insulative, low permeability clothing. The cooling systems were: (1) ILC Dover Model 19 Coolvest (ILC) (2) LSSI Coolhead(LSSI), and (3) Thermacor Cooling vest (THERM). Endurance Time (ET), Heart Rate (HR), rectal temperature (Tre), mean skin temperature (TSK), Sweating Rate (SR), Rated Perceived Exertion (RPE) and Thermal Sensation (TS) were measured. The subjects self-terminated on all LSSI tests because of headaches. Statistical analyses were performed on data collected at 60 minutes to have values on all subjects. There were no differences in HR, Tre, SR or TS values among the cooling vests. The subjects' TSK was lower (P less than 0.05) for the LSSI than THERM: and RPE values were higher (P less than 0.05) for LSSI than the other two vests. These data suggest an improved physiological response to exercise heat stress with all three commercial systems with the greatest benefit in performance time provided by the ILC cooling system.

  4. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  5. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  6. Solar--heated and cooled office building--Dalton, Georgia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modern energy efficient building is heated and cooled by five rows of flat plate solar collectors; its domestic hot water needs are also met. Final report includes detailed drawings and photographs, manufacturer's literature, performance specifications, acceptance test data, and performance verification statements. Operation and maintenance manual is also attached.

  7. RS-600 programmable controller: Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Three identical microprocessor control subsystems were developed which can be used in heating, heating and cooling, and/or hot water systems for single family, multifamily, or commercial applications. The controller incorporates a low cost, highly reliable (all solid state) microprocessor which can be easily reprogrammed.

  8. Evaluation of thermal-storage concepts for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Hughes, P. J.; Morehouse, J. H.; Choi, M. K.; White, N. M.; Scholten, W. B.

    1981-10-01

    Various configuration concepts for utilizing thermal energy storage to improve the thermal and economic performance of solar cooling systems for buildings were analyzed. The storge concepts evaluated provide short-term thermal storge via the bulk containment of water or salt hydrates. The evaluations were made for both residential-size cooling systems (3-ton) and small commercial-size cooling systems (25-ton). The residential analysis considers energy requirements for space heating, space cooling and water heating, while the commercial building analysis is based only on energy requirements for space cooling. The commercial building analysis considered a total of 10 different thermal storage/solar systems, 5 each for absorption and Rankine chiller concepts. The residential analysis considered 4 thermal storage/solar systems, all utilizing an absorption chiller. The trade-offs considered include: cold-side versus hot-side storage, single vs multiple stage storage, and phase-change vs sensible heat storage.

  9. Industrial and biomedical use of aerospace personal cooling garments

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Mcewen, G. N., Jr.; Montgomery, L. D.; Elkins, W. E.

    1975-01-01

    Liquid-cooled garments (LCG) have been developed which utilize liquid-cooled modules rather than the network of tygon tubing typical of Apollo LCG's. The ultra-thin, heat-sealed, polyurethane modules are situated over the body to cover 50 percent of the body surface area with special emphasis on the 'working' muscles and the head-neck area. These garments are being designed specifically for industrial and biomedical uses, such as: a head-neck cooling system which is being tested for race-car drivers, tractor drivers, truck drivers, or a head-neck cooling system tested for the reduction of the scalp hair loss which normally accompanies cancer treatments. A combined head-neck and thorax unit is being developed for use during mine distaster rescue operations, and for other hazardous hot applications. Finally applications for head-neck and partitional cooling are anticipated for military pilots, tank drivers, and heavy equipment operations.

  10. Secular cooling of Earth as a source of intraplate stress

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The once popular idea that changes in planetary volume play an important role in terrestrial orogeny and tectonics was generally discarded with the acceptance of plate tectonics. It is nonetheless likely that the Earth has been steadily cooling over the past 3-4 billion years, and the global contraction that accompanied such cooling would have led to a secular decrease in the radius of curvature of the plates. The implications of this global cooling and contraction are explored here for the intraplate stress field and the evolution of continental plates.

  11. Advances in open-cycle solid desiccant cooling

    SciTech Connect

    Penney, T R; Maclaine-cross, I

    1985-05-01

    Of the solar cooling options available open cycle solid desiccant cooling looks very promising. A brief review of the experimental and analytical efforts to date shows that within the last 10 years thermal performance has doubled. Research centers have been developed to explore new materials and geometry options and to improve and validate mathematical models that can be used by design engineers to develop new product lines. Typical results from the Solar Energy Research Institute's (SERI) Desiccant Cooling Research Program are shown. Innovative ideas for new cycles and spinoff benefits provide incentives to continue research in this promising field.

  12. NASA Microclimate Cooling Challenges

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  13. Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan

    2013-12-01

    Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.

  14. Cooling flows in clusters of galaxies

    SciTech Connect

    Meiksin, A.A.

    1988-01-01

    X-ray measurements of many clusters of galaxies reveal a hot Intracluster Medium (ICM) that has a cooling time less than a Hubble time. The consequent decrease in the central pressure support of the ICM will result in an inward cooling flow. The inferred accretion rates are typically several hundred solar masses per year. The cD or giant elliptical found at the center of every cooling flow would be substantially altered by the accreted gas, and may even have been created by the flow. Optical, UV, and radio measurements, however, fail to find adequate evidence for massive amounts of cool gas. The lore is that the gas is transformed into stars of such low mass that they do not give very peculiar colors to the central galaxy. In this thesis, after a review of past and current literature, two tasks are undertaken. The first is to examine the role heat conduction could play. It is demonstrated that the density and temperature profiles of the cooling flows in Virgo and Perseus are consistent with a steady-state model in which that conduction reduces the accretion rates by an order of magnitude. The second task is to simulate the evolution of a cooling flow, and possible formation of a galaxy from thermal instabilities, in a proper cosmological setting. Two evolutionary stages are found, a dynamical accretion state composed of two competing similarity solutions followed by a quasi-steady-state cooling flow. The onset of the second stage is very recent. During either stage, so few stars may be created that their colors, even adopting a standard initial mass function, would be consistent with the existing optical and UV constraints.

  15. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  16. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  17. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    ERIC Educational Resources Information Center

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  18. System design package for a solar heating and cooling system installed at Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  19. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  20. Causes of the hot ductility drops of steels

    NASA Astrophysics Data System (ADS)

    Kolbasnikov, N. G.; Matveev, M. A.; Mishin, V. V.; Mishnev, P. A.; Nikonov, S. V.

    2014-09-01

    The effect of conditions of continuous casting and hot rolling of steel on the high-temperature ductility of a microalloyed pipe steel of strength class Kh42 and 17G1S-U steel is studied. A Gleeble-3800 thermomechanical facility is used to perform physical modeling of the hot ductility of steel. The temperature dependence of the hot ductility of steel is determined under various slab cooling conditions in a continuous caster and during hot rolling. The ductility drops of iron and steels is found to be mainly caused by an increase in the elastic modulus near the temperatures of the polymorphic transformation caused by first- and secondorder phase transformations (polymorphic and magnetic transformations, respectively). Structural factors, such as the grain size, excess-phase inclusions located along initial grain boundaries, and interstitial impurities, lead to an additional decrease in the ductility.