Science.gov

Sample records for coolant accidents bruchmechanische

  1. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  2. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    SciTech Connect

    Su'ud, Zaki; Anshari, Rio

    2012-06-06

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  3. Analysis of Loss-of-Coolant Accidents in the NBSR

    SciTech Connect

    Baek J. S.; Cheng L.; Diamond, D.

    2014-05-23

    This report documents calculations of the fuel cladding temperature during loss-of-coolant accidents in the NBSR. The probability of a pipe failure is small and procedures exist to minimize the loss of water and assure emergency cooling water flows into the reactor core during such an event. Analysis in the past has shown that the emergency cooling water would provide adequate cooling if the water filled the flow channels within the fuel elements. The present analysis is to determine if there is adequate cooling if the water drains from the flow channels. Based on photographs of how the emergency water flows into the fuel elements from the distribution pan, it can be assumed that this water does not distribute uniformly across the flow channels but rather results in a liquid film flowing downward on the inside of one of the side plates in each fuel element and only wets the edges of the fuel plates. An analysis of guillotine breaks shows the cladding temperature remains below the blister temperature in fuel plates in the upper section of the fuel element. In the lower section, the fuel plates are also cooled by water outside the element that is present due to the hold-up pan and temperatures are lower than in the upper section. For small breaks, the simulation results show that the fuel elements are always cooled on the outside even in the upper section and the cladding temperature cannot be higher than the blister temperature. The above results are predicated on assumptions that are examined in the study to see their influence on fuel temperature.

  4. Cladding embrittlement during postulated loss-of-coolant accidents.

    SciTech Connect

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  5. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Yoder, G.L. ); Wendel, M.W. )

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs.

  6. Numerical simulation of PWR response to a small break LOCA (loss-of-coolant accident) with reactor coolant pumps operating

    SciTech Connect

    Adams, J.P.; Dobbe, C.A.; Bayless, P.D.

    1986-01-01

    Calculations have been made of the response of pressurized water reactors (PWRs) during a small-break, loss-of-coolant accident with the reactor coolant pumps (RCPs) operating. This study was conducted, as part of a comprehensive project, to assess the relationship between measurable RCP parameters, such as motor power or current, and fluid density, both local (at the RCP inlet) and global (average reactor coolant system). Additionally, the efficacy of using these RCP parameters, together with fluid temperature, to identify an off-nominal transient as either a LOCA, a heatup transient, or a cooldown transient and to follow recovery from the transient was assessed. The RELAP4 and RELAP5 computer codes were used with three independent sets of RCP, two-phase degradation multipliers. These multipliers were based on data obtained in two-phase flow conditions for the Semiscale, LOFT, and Creare/Combustion Engineering (CE)/Electric Power Research Institute (EPRI) pumps, respectively. Two reference PWRs were used in this study: Zion, a four-loop, 1100-MWe, Westinghouse plant operated by Commonwealth Edison Co. in Zion, Illinois and Bellefonte, a two-by-four loop, 1213 MWe, Babcock and Wilcox designed plant being built by the Tennessee Valley Authority in Scottsboro, Alabama. The results from this study showed that RCP operation resulted in an approximately homogeneous reactor coolant system and that this result was independent of reference plant, computer code, or two-phase RCP head degradation multiplier used in the calculation.

  7. Loss-of-coolant accident experiment at the AVR (Arbeitsgemeinschaft Versuchsreaktor) gas-cooled reactor

    SciTech Connect

    Krueger, K. ); Cleveland, J. )

    1989-11-01

    Loss of coolant is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into modular gas-cooled reactor designs, loss-of-coolant accident (LOCA) simulation tests were conducted with the 15-MW(electric), 46-MW(thermal), pebble-bed, high-temperature Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany (FRG). This is the only nuclear power plant ever to have been intentionally subjected to LOCa conditions. Oak Ridge National Laboratory participation in the preparation and conduct of the tests was carried out within the U.S./FRG Agreement for Cooperation in Gas-Cooled Reactor Development.

  8. Loss-of-coolant accident experiment at the AVR gas-cooled reactor

    SciTech Connect

    Cleveland, J.; Krueger, K.; Kernforschungsanlage Juelich G.m.b.H. . Arbeitsgemeinschaft Versuchsreaktor)

    1989-01-01

    Loss-of-coolant is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into small High-Temperature Gas Cooled Reactor (HTGR) designs, loss-of-coolant accident (LOCA) simulation tests have been conducted with the German pebble-bed High-Temperature Reactor AVR. The AVR is the only nuclear power plant ever to have been intentionally subjected to LOCA conditions. The LOCA test was planned to create conditions that would exist if a rapid LOCA occurred with the reactor operating at full power. The tests demonstrated this reactor's safe response to an accident in which the coolant escapes from the reactor core and no emergency system is available to provide coolant flow to the core. The test is of special interest because it demonstrates the inherent safety features incorporated into modular HTGR designs. The main LOCA test lasted for 5 d. After the test began, core temperatures increased for {approximately}13 h and then gradually and continually decreased as the rate of heat dissipation from the core exceeded accident levels of decay power. Throughout the test, temperatures remained below limiting values for the core and other reactor components. 3 refs., 9 figs., 1 tab.

  9. TRAC loss-of-coolant accident analyses of the Savannah River production reactors

    SciTech Connect

    Lime, J.F.; Motley, F.E. )

    1990-06-01

    TRAC loss-of-coolant accident (LOCA) analyses were performed as part of the independent safety review of the US Department of Energy's Savannah River (SR) production reactors. The double-ended guillotine break in a coolant loop is a design-basis LOCA for the SR reactors. Three break locations were analyzed to determine the worst break location: (1) at the pump-suction flange; (2) at the pump discharge flange; or (3) at the plenum inlet. The plenum-inlet break was shown to be the most severe in terms of minimum flow delivered to each fuel assembly in the reactor core.

  10. Large break loss-of-coolant accident analyses for the high flux isotope reactor

    SciTech Connect

    Taleyarkhan, R.P. )

    1989-01-01

    The US Department of Energy's High Flux Isotope Reactor (HFIR) was analyzed to evaluate it's response to a spectrum of loss-of-coolant accidents (LOCAs) with potential for leading to core damage. The MELCOR severe accident analysis code (version 1.7.1) was used to evaluate the overall dynamic response of HFIR. Before conducting LOCA analyses, the steady-state thermal-hydraulic parameters evaluated by MELCOR for various loop sections were verified against steady-state operating data. Thereafter, HFIR depressurization tests were simulated to evaluate the system pressure change for a given depletion in coolant inventory. Interesting and important safety-related phenomena were observed. The current analyses (which should be considered preliminary) that occur over a period from 1 to 3 seconds do not lead to core wide fuel melting. Core fluid flashing during the initial rapid depressurization does cause fuel temperature excursions due to adiabatic-like heatup. 3 refs., 4 figs.

  11. Preparation, conduct, and experimental results of the AVR loss-of-coolant accident simulation test

    SciTech Connect

    Kruger, K.; Bergerfurth, A.; Burger, S.; Pohl, P.; Wimmers, M. ); Cleveland, J.C. )

    1991-02-01

    A loss-of-coolant accident (LOCA) is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into small high-temperature gas-cooled reactor (HTGR) design, LOCA simulation tests have been conducted at the Arbeitsgemeinschaft Versuchsreaktor (AVR), the German pebble-bed-high-temperature reactor plant. The AVR is the only nuclear power plant ever to have been intentionally subjected to LOCA conditions without emergency cooling. This paper presents the planning and licensing activities including pretest predictions performed for the LOCA test are described, and the conduct of the test and experimental results. The LOCA test was planned to create conditions that would exist if a rapid LOCA occurred with the reactor operating at full power. The test demonstrated this reactor's safe response to an accident in which the coolant escapes from the reactor core and no emergency system is available to provide coolant flow to the core. The test is of special interest because it demonstrates the inherent safety features incorporated into optimized modular HTGR designs. The main LOCA test lasted for 5 days. After the test began, core temperatures increased for {approx}13 h and then gradually and continually decreased as the rate of heat dissipation from the core exceeded the simulated decay power. Throughout the test, temperatures remained below limiting values for the core and other reactor components.

  12. Loss-of-coolant accident experiment at the AVR gas-cooled reactor

    SciTech Connect

    Krueger, K. ); Cleveland, J. )

    1990-01-01

    A landmark safety test has been conducted at the AVR-reactor, a high-temperature gas-cooled reactor (HTGR) in the Federal Republic of Germany owned by the Arbeitsgemeinschaft Versuchsreaktor, AVR in Juelich. The 46-MW(t), 15-MW(e) AVR reactor was subjected to a simulated loss-of-coolant accident (LOCA), a very severe occurrence in which the coolant escapes from the reactor core and no emergency system provides coolant flow to the core. The test, which demonstrated the inherently safe response of this reactor to a LOCA, marked the first time ever that a reactor has been intentionally subjected to loss-of-coolant conditions without emergency cooling. Oak Ridge National Laboratory (ORNL) and General Atomics participated in the test by working with AVR staff by jointly performing the analyses needed to obtain the license to conduct the test and by performing post test analyses. This participation was carried out under the cooperative AVR Subprogram which is conducted within the US/FRG Agreement for Cooperation in Gas-Cooled Reactor Development. 7 figs.

  13. JAEA Studies on High Burnup Fuel Behaviors during Reactivity-Initiated Accident and Loss-of-Coolant Accident

    SciTech Connect

    Fuketa, Toyoshi; Sugiyama, Tomoyuki; Nagase, Fumihisa; Suzuki, Motoe

    2007-07-01

    The objectives of fuel safety research program at Japan Atomic Energy Agency (JAEA) are; to evaluate adequacy of present safety criteria and safety margins; to provide a database for future regulation on higher burnup UO{sub 2} and MOX fuels, new cladding and pellets; and to provide reasonably mechanistic computer codes for regulatory application. The JAEA program is comprised of reactivity-initiated accident (RIA) studies including pulse-irradiation experiments in the NSRR and cladding mechanical tests, loss-of-coolant accident (LOCA) tests including integral thermal shock test and oxidation rate measurement, development and verification of computer codes FEMAXI-6 and RANNS, and so on. In addition to an overview of the fuel safety research at JAEA, most recent progresses in the RIA and LOCA tests programs and the codes development are described and discussed in the paper. (authors)

  14. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    SciTech Connect

    Al-Falahi, A.; Haennine, M.; Porkholm, K.

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  15. Thermohydraulic responses of a water-cooled tokamak fusion DEMO to loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Tobita, K.; Someya, Y.; Utoh, H.; Sakamoto, Y.; Gulden, W.

    2015-11-01

    Major in- and ex-vessel loss-of-coolant accidents (LOCAs) of a water-cooled tokamak fusion DEMO reactor have been analysed. Analyses have identified responses of the DEMO systems to these accidents and pressure loads to confinement barriers for radioactive materials. As for the in-VV LOCA, we analysed the multiple double-ended break of the first wall cooling pipes around the outboard toroidal circumference. As for the ex-VV LOCA, we analysed the double-ended break of the primary cooling pipe. The thermohydraulic analysis results suggest that the in- and ex-vessel LOCAs crucially threaten integrity of the primary and final confinement barriers, respectively. Mitigations of the loads to the confinement barriers are also discussed.

  16. Probabilistic assessment of decoupling loss-of-coolant accident and earthquake in nuclear power plant design

    SciTech Connect

    Lu, S.C.; Harris, D.O.

    1981-01-01

    This paper describes a research project conducted at Lawrence Livermore National Laboratory to establish a technical basis for reassessing the requirement of combining large loss-of-coolant-accident (LOCA) and earthquake loads in nuclear power plant design. A large LOCA is defined herein as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressureized water reactor (PWR). A systematic probability approach has been employed to estimate the probability of a large LOCA directly and indirectly induced by earthquakes. The probability of a LOCA directly induced by earthquakes was assessed by a numerical simulation of pipe rupture of a reactor coolant system. The simulation employed a deterministic fracture mechanics model which dictates the fatigue growth of pre-existing cracks in the pipe. The simulation accounts for the stochastic nature of input elements such as the initial crack size distribution, the crack occurrence rate, crack and leak detection probabilities as functions of crack size, plant transient occurrence rates, the seismic hazard, stress histories, and crack growth model parameters. Effects on final results due to variation an uncertainty of input elements were assessed by a limited sensitivity study. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the orer of 10/sup -12/). The probability of a leak was found to be several orders of magnitudes greater than that of a complete break.

  17. Large break loss of coolant severe accident sequences at the HFIR (High Flux Isotope Reactor)

    SciTech Connect

    Simpson, D.B.; Greene, S.R.

    1990-01-01

    An assessment of many potential HFIR severe accident phenomena was conducted during the HFIR design effort, and many severe accident mitigating features were designed into the plant. These evaluation typically incorporated a bounding'' or highly conservative analysis approach and employed tools and techniques representative of the state of knowledge in the mid-1960s. Recently, programs to address severe accident issues were initiated at the Oak Ridge National Laboratory (ORNL) to support the HFIR probabilistic risk assessment (PRA) and equipment qualification and accident management studies. This paper presents the results of environment condition calculations conducted to evaluate a response of HFIR's heat exchanger cell environment to a double-ended rupture of a 0.25 m diameter coolant loop downstream of the circulating pump and check valve. The confinement calculations were performed using an atmospheric fission product source for the heat exchanger cell consistent with, but more conservative than that stipulated in Regulatory Guide 1.89. The results of the calculations indicate that the heat exchanger cell atmospheric temperature peaks at 377 K 225 seconds into the transient and then begins decreasing at approximately 1.7 K per minute. 8 refs., 5 figs.

  18. The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents

    SciTech Connect

    Terrani, Kurt A.; Wang, Dean; Ott, Larry J.; Montgomery, Robert O.

    2014-05-01

    The effect of variation in thermal conductivity of light water reactor fuel elements on core response during loss-of-coolant accident scenarios is examined. Initially, a simplified numerical analysis is utilized to determine the time scales associated with dissipation of stored energy from the fuel into the coolant once the fission reaction is stopped. The analysis is then followed by full reactor system thermal-hydraulics analysis of a typical boiling and pressurized water reactor subjected to a large break loss-of-coolant accident scenario using the TRACE code. Accordingly, sensitivity analyses to examine the effect of an increase in fuel thermal conductivity, up to 500%, on fuel temperature evolution during these transients are performed. Given the major differences in thermal-hydraulics design aspects of boiling and pressurized water reactors, different fuel and temperature responses during the simulated loss-of-coolant transients are observed.

  19. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    SciTech Connect

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.

  20. Estimating Loss-of-Coolant Accident Frequencies for the Standardized Plant Analysis Risk Models

    SciTech Connect

    S. A. Eide; D. M. Rasmuson; C. L. Atwood

    2008-09-01

    The U.S. Nuclear Regulatory Commission maintains a set of risk models covering the U.S. commercial nuclear power plants. These standardized plant analysis risk (SPAR) models include several loss-of-coolant accident (LOCA) initiating events such as small (SLOCA), medium (MLOCA), and large (LLOCA). All of these events involve a loss of coolant inventory from the reactor coolant system. In order to maintain a level of consistency across these models, initiating event frequencies generally are based on plant-type average performance, where the plant types are boiling water reactors and pressurized water reactors. For certain risk analyses, these plant-type initiating event frequencies may be replaced by plant-specific estimates. Frequencies for SPAR LOCA initiating events previously were based on results presented in NUREG/CR-5750, but the newest models use results documented in NUREG/CR-6928. The estimates in NUREG/CR-6928 are based on historical data from the initiating events database for pressurized water reactor SLOCA or an interpretation of results presented in the draft version of NUREG-1829. The information in NUREG-1829 can be used several ways, resulting in different estimates for the various LOCA frequencies. Various ways NUREG-1829 information can be used to estimate LOCA frequencies were investigated and this paper presents two methods for the SPAR model standard inputs, which differ from the method used in NUREG/CR-6928. In addition, results obtained from NUREG-1829 are compared with actual operating experience as contained in the initiating events database.

  1. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    SciTech Connect

    Kao, S.P.; Chang, S.K.; Huang, H.C.

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  2. Cobalt-60 simulation of LOCA (loss of coolant accident) radiation effects

    SciTech Connect

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs.

  3. TRAC large-break loss-of-coolant accident analysis for the AP600 design

    SciTech Connect

    Lime, J.F.; Boyack, B.E.

    1994-02-01

    This report discusses a TRAC model of the Westinghouse AP600 advanced reactor design which has been developed for analyzing large-break loss-of-coolant accident (LBLOCA) transients. A preliminary LBLOCA calculation of a 80% cold-leg break has been performed with TRAC-PF1/MOD2. The 80% break size was calculated by Westinghouse to be the most severe large-break size. The LBLOCA transient was calculated to 92 s. Peak clad temperatures (PCT) were well below the Appendix K limit of 1478 K (2200{degrees}F). Transient event times and PCT for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their WCOBRA/TRAC code.

  4. Loss-of-coolant accident mitigation for the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr.

    1994-09-01

    A RELAP5 Advanced Neutron Source Reactor system model has been developed for the conceptual design safety analysis. Three major regions modeled are the core, the heat exchanger loops, and letdown/pressurizing system. The model has been used to examine design alternatives for mitigation of loss-of-coolant accident (LOCA) transients. The safety margins to the flow excursion limit and critical heat flux are presented. The results show that the core can survive an instantaneous double-ended guillotine of the core outlet piping break (610 mm-diameter) provided a cavitating venturi is employed. RELAP5 calculations were also used to determine the effects of using a non-instantaneous break opening times. Both break opening time and break formation characteristics were included in these parametric calculations. Accumulator optimization studies were also performed which suggest that an optimum accumulator bubble size exists which improves system performance under some break scenarios.

  5. Conceptual design loss-of-coolant accident analysis for the Advanced Neutron Source reactor

    SciTech Connect

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr. )

    1994-01-01

    A RELAP5 system model for the Advanced Neutron Source Reactor has been developed for performing conceptual safety analysis report calculations. To better represent thermal-hydraulic behavior of the core, three specific changes in the RELAP5 computer code were implemented: a turbulent forced-convection heat transfer correlation, a critical heat flux (CHF) correlation, and an interfacial drag correlation. The model consists of the core region, the heat exchanger loop region, and the pressurizing/letdown system region. Results for three loss-of-coolant accident analyses are presented: (1) an instantaneous double-ended guillotine (DEG) core outlet break with a cavitating venturi installed downstream of the core, (b) a core pressure boundary tube outer wall rupture, and (c) a DEG core inlet break with a finite break-formation time. The results show that the core can survive without exceeding the flow excursion of CHF thermal limits at a 95% probability level if the proper mitigation options are provided.

  6. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-07-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  7. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents

    SciTech Connect

    Mohr, C. L.; Hesson, G. M.; Russcher, G. E.; Marsh, R. K.; King, L. L.; Wildung, N. J.; Rausch, W. N.; Bennett, W. D.

    1981-04-01

    Quick-look test results are reported for the initial test series of the Loss-of-Coolant Accident (LOCA) Simulation in the National Research Universal {NRU) test program, conducted by Pacific Northwest Laboratory (PNL) for the U.S. Nuclear Regulatory Commission (NRC). This test was devoted to evaluating the thermal-hydraulic characteristics of a full-length light water reactor (LWR) fuel bundle during the heatup, reflood, and quench phases of a LOCA. Experimental results from 28 tests cover reflood rates of 0.74 in./sec to 11 in./sec and delay times to initiate reflood of 3 sec to 66 sec. The results indicate that current analysis methods can predict peak temperatures within 10% and measured quench times for the bundle were significantly less than predicted. For reflood rates of 1 in./sec where long quench times were predicted (>2000 sec}, measured quench times of 200 sec were found.

  8. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    SciTech Connect

    Heames, T.J. ); Williams, D.A.; Johns, N.A.; Chown, N.M. ); Bixler, N.E.; Grimley, A.J. ); Wheatley, C.J. )

    1990-10-01

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs.

  9. An investigation of core liquid level depression in small break loss-of-coolant accidents

    SciTech Connect

    Schultz, R.R.; Watkins, J.C. ); Motley, F.E.; Stumpf, H. ); Chen, Y.S. . Div. of Systems Research)

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs.

  10. Component evaluation for intersystem loss-of-coolant accidents in advanced light water reactors

    SciTech Connect

    Ware, A.G.

    1994-07-01

    Using the methodology outlined in NUREG/CR-5603 this report evaluates (on a probabilistic basis) design rules for components in ALWRs that could be subjected to intersystem loss-of-coolant accidents (ISLOCAs). The methodology is intended for piping elements, flange connections, on-line pumps and valves, and heat exchangers. The NRC has directed that the design rules be evaluated for BWR pressures of 7.04 MPa (1025 psig), PWR pressures of 15.4 MPa (2235 psig), and 177{degrees}C (350{degrees}F), and has established a goal of 90% probability that system rupture will not occur during an ISLOCA event. The results of the calculations in this report show that components designed for a pressure of 0.4 of the reactor coolant system operating pressure will satisfy the NRC survival goal in most cases. Specific recommendations for component strengths for BWR and PWR applications are made in the report. A peer review panel of nationally recognized experts was selected to review and critique the initial results of this program.

  11. Analysis of an AP600 intermediate-size loss-of-coolant accident

    SciTech Connect

    Boyack, B.E.; Lime, J.F.

    1995-09-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations preformed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  12. Analysis of an AP600 intermediate-size loss-of-coolant accident

    SciTech Connect

    Boyack, B.E.; Lime, J.F.

    1995-04-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations performed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  13. Sensitivity studies of loss-of-coolant accidents in the Savannah River production reactors

    SciTech Connect

    Edwards, J.N.; Motley, F.E.; Morgan, M.M.; Knight, T.D.; Fischer, S.R. )

    1990-01-01

    Loss-of-coolant accident (LOCA) analyses were completed using the Transient Reactor Analysis Code (TRAC) to support the U.S. Department of Energy efforts to restart the production reactors located at the Savannah River Site. The break location and pump operation after the LOCA were the parameters varied for these sensitivity studies. Three location of double-ended guillotine break were studied: plenum inlet, pump suction, and pump discharge. Three pump operation scenarios were also studied: continued operation of both ac and dc pumps, tripping of the ac motor at 2 s after the LOCA, and tripping of the ac motor at 200 s after the LOCA. The production reactors use low pressure and temperature heavy water as the process fluid. The reactor has a moderator tank that contains the fuel channels. Above the moderator tank is an upper plenum that distributes the heavy water to each fuel assembly. The heavy water flows down through the fuel channels and into the moderator tank. From the tank, the water is pumped back to the upper plenum through six loops. Each loop contains a pump and two heat exchangers. Four of the loops have an emergency core coolant system (ECCS) connection. This TRAC model has been benchmarked extensively against data taken in the actual reactors or in prototypical models of the components of the reactors. The calculations were completed using a version of TRAC-PF1/MOD 2 that was updated to include heavy water properties and other changes that are specific to the production reactors.

  14. Test plan for high-burnup fuel cladding behavior under loss-of- coolant accident conditions

    SciTech Connect

    Chung, H.M.; Neimark, L.A.; Kassner, T.F.

    1996-10-01

    Excessive oxidation, hydriding, and extensive irradiation damage occur in high-burnup fuel cladding, and as result, mechanical properties of high-burnup fuels are degraded significantly. This may influence the current fuel cladding failure limits for loss-of- coolant-accident (LOCA) situations, which are based on fuel cladding behavior for zero burnup. To avoid cladding fragmentation and fuel dispersal during a LOCA, 10 CFR 50.46 requires that peak cladding temperature shall not exceed 1204 degrees C (2200 degrees F) and that total oxidation of the fuel cladding nowhere exceeds 0.17 times total cladding thickness before oxidation. Because of the concern, a new experimental program to investigate high-burnup fuel cladding behavior under LOCA situations has been initiated under the sponsorship of the U.S. Nuclear Regulatory Commission. A hot-cell test plan to investigate single-rod behavior under simulated LOCA conditions is described in this paper. In the meantime, industry fuel design and operating conditions are expected to undergo further changes as more advanced cladding materials are developed. Under these circumstances, mechanical properties of high-burnup fuel cladding require further investigation so that results from studies on LOCA, reactivity- initiated-accident (RIA), operational transient, and power-ramping situations, can be extrapolated to modified or advanced cladding materials and altered irradiation conditions without repeating major integral experiments in test reactors. To provide the applicable data base and mechanistic understanding, tests will be conducted to determine dynamic and static fracture toughness and tensile properties. Background and rationale for selecting the specific mechanical properties tests are also described.

  15. Analysis of fission product revaporization in a BWR Reactor Coolant System during a station blackout accident

    SciTech Connect

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This paper presents an analysis of fission product revaporization from the Reactor Coolant System (RCS) following the Reactor Pressure Vessel (RPV) failure. The station blackout accident in a BWR Mark I Power Plant was considered. The TRAPMELT3 models for vaporization, chemisorption, and the decay heating of RCS structures and gases were used and extended beyond the RPV failure in the analysis. The RCS flow models based on the density-difference or pressure-difference between the RCS and containment pedestal region were developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP was developed for the analysis. The REVAP code was incorporated with the MARCH, TRAPMELT3 and NAUA codes from the Source Term Code Package (STCP) to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors in determining the magnitude of revaporization and subsequent release of the volatile fission product into the environment. 6 refs., 8 figs.

  16. Loads on steam generator tubes during simulated loss-of-coolant accident conditions. Final report. [PWR

    SciTech Connect

    Guerrero, H.N.; Hiestand, J.W.; Rossano, F.V.; Shah, P.K.; Thakkar, J.G.

    1982-11-01

    This report presents the work performed to verify the CEFLASH digital computer code modeling of the hydro-dynamic loads in a steam generator tube during a loss-of-coolant accident (LOCA). The test loop simulated the primary side thermal-hydraulic conditions in an operational nuclear steam generator. The loop consisted of 5 full size double 90/sup 0/ bend tubes and steam generator plena, a pressurizer, a reactor resistance simulator, a heater, a pump, and associated pipes and valves to complete the system. The tubes used were of typical length and the same outside diameter as those used in C-E steam generators. Prototypical supports were provided for the bundle of 5 tubes. Cold leg guillotine breaks were simulated using quick opening valve and rupture disks. Break opening times ranged from less than 1 msec to as much as 67 milliseconds. The loop instrumentation was designed to measure the transient pressure history at various locations and monitor the structural response of the tube to the LOCA hydrodynamic loading. A series of blowdown tests was performed for different operating and boundary conditions. Analytically predicted transient pressure histories and the differential pressure history across the tube span were compared with the experimental data.

  17. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    SciTech Connect

    Nelson, C.F.; Gauthier, G.; Carlin, F.

    1996-10-01

    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40{degrees}C or 70{degrees}C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased.

  18. Aging and loss-of-coolant accident (LOCA) testing of electrical connections

    SciTech Connect

    Nelson, C.F.

    1998-01-01

    This report presents the results of an experimental program to determine the aging and loss-of-coolant accident (LOCA) behavior of electrical connections in order to obtain an initial scoping of their performance. Ten types of connections commonly used in nuclear power plants were tested. These included 3 types of conduit seals, 2 types of cable-to-device connectors, 3 types of cable-to-cable connectors, and 2 types of in-line splices. The connections were aged for 6 months under simultaneous thermal (99 C) and radiation (46 Gy/hr) conditions. A simulated LOCA consisting of sequential high dose-rate irradiation (3 kGy/hr) and high-temperature steam exposures followed the aging. Connection functionality was monitored using insulation resistance measurements during the aging and LOCA exposures. Because only 5 of the 10 connection types passed a post-LOCA, submerged dielectric withstand test, further detailed investigation of electrical connections and the effects of cable jacket integrity on the cable-connection system is warranted.

  19. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  20. Large-Break Loss-of-Coolant Accident Testing and Simulation for 200-MWe Simplified Boiling Water Reactor

    SciTech Connect

    Revankar, S.T.; Xu, Y.; Yoon, H.J.; Ishii, M.

    2002-07-01

    The performance of the safety systems of a new design of the 200-MWe simplified boiling water reactor during a large-break, loss-of-coolant accident transient was investigated through code modeling and integral system testing. The accident considered was a break in the main steam line which is the major design basis accident. RELAP5/MOD3 best estimate reactor thermalhydraulic code was used and its applicability to the reactor safety system evaluation was examined. The integral tests were performed to assess the safety systems and the response of the emergency core cooling systems to accident conditions in a scaled facility called PUMA. The details of the safety system behavior are presented. The integral test simulations examined code applicability at the scaled facility level as well as prototype key safety system performance. (authors)

  1. Analysis of Kuosheng Large-Break Loss-of-Coolant Accident with MELCOR 1.8.4

    SciTech Connect

    Wang, T.-C.; Wang, S.-J.; Chien, C.-S

    2000-09-15

    The MELCOR code, developed by Sandia National Laboratories, is capable of simulating the severe accident phenomena of light water reactor nuclear power plants (NPPs). A specific large-break loss-of-coolant accident (LOCA) for Kuosheng NPP is simulated with the use of the MELCOR 1.8.4 code. This accident is induced by a double-ended guillotine break of one of the recirculation pipes concurrent with complete failure of the emergency core cooling system. The MELCOR input deck for the Kuosheng NPP is established based on the design data of the Kuosheng NPP and the MELCOR users' guides. The initial steady-state conditions are generated with a developed self-initialization algorithm. The effect of the MELCOR 1.8.4-provided initialization process is demonstrated. The main severe accident phenomena and the corresponding fission product released fractions associated with the large-break LOCA sequences are simulated. The MELCOR 1.8.4 predicts a longer time interval between the core collapse and vessel failure and a higher source term. This MELCOR 1.8.4 input deck will be applied to the probabilistic risk assessment, the severe accident analysis, and the severe accident management study of the Kuosheng NPP in the near future.

  2. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical

  3. EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    SciTech Connect

    Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

    1981-04-01

    Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

  4. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    SciTech Connect

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  5. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    SciTech Connect

    Heams, T J; Williams, D A; Johns, N A; Mason, A; Bixler, N E; Grimley, A J; Wheatley, C J; Dickson, L W; Osborn-Lee, I; Domagala, P; Zawadzki, S; Rest, J; Alexander, C A; Lee, R Y

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  6. Dose to man from a hypothetical loss-of-coolant accident at the Rancho Seco Nuclear Power Plant

    SciTech Connect

    Peterson, K.R.; Greenly, G.D.

    1981-02-01

    At the request of the Sacramento Municipal Utilities District, we used our computer codes, MATHEW and ADPIC, to assess the environmental impact of a loss-of-coolant accident at the Rancho Seco Nuclear Power Plant, about 40 kilometres southeast of Sacramento, California. Meteorological input was selected so that the effluent released by the accident would be transported over the Sacramento metropolitan area. With the release rates provided by the Sacramento Municipal Utilities District, we calculated the largest total dose for a 24-hour release as 70 rem about one kilometre northwest of the reactor. The largest total dose in the Sacramento metropolitan area is 780 millirem. Both doses are from iodine-131, via the forage-cow-milk pathway to an infant's thyroid. The largest dose near the nuclear plant can be minimized by replacing contaminated milk and by giving the cows dry feed. To our knowledge, there are no milk cows within the Sacramento metropolitan area.

  7. Analysis of loss-of-coolant and loss-of-flow accidents in the first wall cooling system of NET/ITER

    NASA Astrophysics Data System (ADS)

    Komen, E. M. J.; Koning, H.

    1994-03-01

    This paper presents the thermal-hydraulic analysis of potential accidents in the first wall cooling system of the Next European Torus or the International Thermonuclear Experimental Reactor. Three ex-vessel loss-of-coolant accidents, two in-vessel loss-of-coolant accidents, and three loss-of-flow accidents have been analyzed using the thermal-hydraulic system analysis code RELAP5/MOD3. The analyses deal with the transient thermal-hydraulic behavior inside the cooling systems and the temperature development inside the nuclear components during these accidents. The analysis of the different accident scenarios has been performed without operation of emergency cooling systems. The results of the analyses indicate that a loss of forced coolant flow through the first wall rapidly causes dryout in the first wall cooling pipes. Following dryout, melting in the first wall starts within about 130 s in case of ongoing plasma burning. In case of large break LOCAs and ongoing plasma burning, melting in the first wall starts about 90 s after accident initiation.

  8. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    SciTech Connect

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C.

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  9. ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) simulation of a loss of coolant accident in a space reactor

    SciTech Connect

    Roth, P.A.; Shumway, R.W.

    1988-01-01

    The Advanced Thermal Hydraulic Energy Network Analyzer (ATHENA) code was used to simulate a loss-of-coolant accident (LOCA) in a conceptual space reactor design. ATHENA provides the capability of simulating the thermal-hydraulic behavior of the wide variety of systems which are being considered for use in space reactors. Flow loops containing any one of several available working fluids may interact through thermal connections with other loops containing the same or a different working fluid. The code can be used to model special systems such as: heat pipes, point reactor kinetics, plant control systems, turbines, valves, and pumps. This work demonstrates the application of the thermal radiation model which has been recently incorporated into ATHENA and verifies the need for supplemental reactor cooling to prevent reactor fuel damage in the event of a LOCA.

  10. LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor: Appendix A-4

    SciTech Connect

    Sviatoslavsky, I.N.; Attaya, H.M.; Corradini, M.L.; Lomperski, S.

    1987-01-01

    This paper describes the preliminary analysis of LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor breeding shield. TIBER-II is a compact reactor with a major radius of 3 m and thus requires a thin, high efficiency shield on the inboard side. The use of tungsten in the inboard shield implies a rather high rate of afterheat upon plasma shutdown, which must be dissipated in a controlled manner to avoid the possibility of radioactivity release or threatening the investment. Because the shield is cooled with an aqueous solution, LOFA does not pose a problem as long as natural convection can be established. LOCA, however, has more serious consequences, particularly on the inboard side. Circulation of air by natural convection is proposed as a means for dissipating the inboard shield decay heat. The safety and environmental implications of such a scheme are evaluated. It is shown that the inboard shield temperature never exceeds 510/sup 0/C following LOCA posing no hazard to reactor personnel and not threatening the investment. 7 refs., 6 figs.

  11. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  12. Experimental investigation on the chemical precipitation generation under the loss of coolant accident of nuclear power plants

    SciTech Connect

    Kim, C. H.; Sung, J. J.; Chung, Y. W.

    2012-07-01

    The PWR containment buildings are designed to facilitate core cooling in the event of a Loss of Coolant Accident (LOCA). The cooling process requires water discharged from the break and containment spray to be collected in a sump for recirculation. The containment sump contains screens to protect the components of the Emergency Core Cooling System (ECCS) and Containment Spray System (CSS) from debris. Since the containment materials may dissolve or corrode when exposed to the reactor coolant and spray solutions, various chemical precipitations can be generated in a post-LOCA environment. These chemical precipitations may become another source of debris loading to be considered in sump screen performance and downstream effects. In this study, new experimental methodology to predict the type and quantity of chemical precipitations has been developed. To generate the plant-specific chemical precipitation in a post-LOCA environment, the plant specific chemical condition of the recirculation sump during post-LOCA is simulated with the experimental reactor for the chemical effect. The plant-specific containment materials are used in the present experiment such as glass fibers, concrete blocks, aluminum specimens, and chemical reagent - boric acid, spray additives or buffering chemicals (sodium hydroxide, Tri-Sodium Phosphate (TSP), or others). The inside temperature of the reactor is controlled to simulate the plant-specific temperature profile of the recirculation sump. The total amount of aluminum released from aluminum specimens is evaluated by ICP-AES analysis to determine the amount of AlOOH and NaAlSi{sub 3}O{sub 8} which induce very adverse effect on the head loss across the sump screens. The amount of these precipitations generated in the present experimental study is compared with the results of WCAP-16530-NP-A. (authors)

  13. Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2

    SciTech Connect

    Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

    1981-09-01

    A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

  14. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    SciTech Connect

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B.

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  15. Neutron Imaging Investigations of the Secondary Hydriding of Nuclear Fuel Cladding Alloys during Loss of Coolant Accidents

    NASA Astrophysics Data System (ADS)

    Grosse, M.; Roessger, C.; Stuckert, J.; Steinbrueck, M.; Kaestner, A.; Kardjilov, N.; Schillinger, B.

    The hydrogen concentration and distribution at both sides of the burst opening of cladding tubes used in three QUENCH-LOCA simulation bundle experiments were investigated by means of neutron radiography and tomography. The quantitative correlation between the total macroscopic neutron cross-section and the atomic number density ratio between hydrogen and zirconium was determined by testing calibration specimens with known hydrogen concentrations. Hydrogen enrichments located at the end of the ballooning zone of the tested tubes were detected in the inner rods of the test bundles. Nearly all of the peripheral claddings exposed to lower temperatures do not show such enrichments. This implies that under the conditions investigated a threshold temperature exists below which no hydrogen enrichments can be formed. In order to understand the hydrogen distribution a model was developed describing the processes occurring during loss of coolant accidents after rod burst. The general shape of the hydrogen distributions with a peak each side of the ballooning region is well predicted by this model whereas the absolute concentrations are underestimated compared to the results of the neutron tomography investigations. The model was also used to discuss the influence of the alloy composition on the secondary hydrogenation. Whereas the relations for the maximal hydrogen concentrations agree well for one and the same alloy, the agreement for tests with different alloys is less satisfying, showing that material parameters such as oxidation kinetics, phase transition temperature for the zirconium oxide, and yield strength and ductility at high temperature have to be taken into account to reproduce the results of neutron imaging investigations correctly.

  16. Assessment of a large break loss of coolant accident scenario requiring operator action to initiate safety injection

    SciTech Connect

    Grendys, R.C.; Nissley, M.E.; Baker, D.C.

    1996-11-01

    As part of the licensing basis for a nuclear power plant, the acceptability of the Emergency Core Cooling Systems (ECCS) following a postulated Loss-of-Coolant Accident (LOCA) as described in the Code of Federal Regulations (CFR), Title 10, Chapter 1, Part 50.46, must be verified. The LOCA analysis is performed with an acceptable ECCS Evaluation Model and results must show compliance with the 10 CFR 50.46 acceptance criteria. Westinghouse Electric Corporation performs Large and Small Break LOCA and LOCA-related analyses to support the licensing basis of various nuclear power plants and also performs evaluations against the licensing basis analyses as required. Occasionally, the need arises for the holder of an operating license of a nuclear power plant to submit a Licensee Event Report (LER) to the US Nuclear Regulatory Commission (USNRC) for any event of the type described in the Code of Federal Regulations, Title 10, Chapter 1, Part 50.73. To support the LER, a Justification for Past Operation (JPO) may be performed to assess the safety consequences and implications of the event based on previous operating conditions. This paper describes the work performed for the Large Break LOCA to assess the impact of an event discovered by Florida Power and Light and reported in LER-94-005-02. For this event, it was determined that under certain circumstances, operator action would have been required to initiate safety injection (SI), thus challenging the acceptability of the ECCS. This event was specifically addressed for the Large Break LOCA by using an advanced thermal hydraulic analysis methodology with realistic input assumptions.

  17. Results of Semiscale Mod-2C small-break (5%) loss-of-coolant accident. Experiments S-LH-1 and S-LH-2

    SciTech Connect

    Loomis, G G; Streit, J E

    1985-11-01

    Two experiments simulating small break (5%) loss-of-coolant accidents (5% SBLOCAs) were performed in the Semiscale Mod-2C facility. These experiments were identical except for downcomer-to-upper-head bypass flow (0.9% in Experiment S-LH-1 and 3.0% in Experiment S-LH-2) and were performed at high pressure and temperature (15.6 MPa (2262 psia) system pressure; 37 K (67F) core differential temperature; 595 K(610F) hot leg fluid temperature). From the experimental results, the signature response and transient mass distribution are determined for a 5% SBLOCA. The core thermal-hydraulic response is characterized, including core void distribution maps, and the effect of core bypass flow on transient severity is assessed. Comparisons are made between postexperiment RELAP5 calculations and the experimental results, and the capability of RELAP5 to calculate the phenomena is assessed. 115 figs.

  18. Thermalhydraulic processes in the reactor coolant system of a BWR (boiling water reactor) under severe accident conditions

    SciTech Connect

    Hodge, S.A.

    1989-01-01

    Boiling water reactors (BWRs) incorporate many unique structural features that make their expected response under accident conditions very different from that predicted in the case of pressurized water reactor accident sequences. Automatic main steam isolation valve (MSIV) closure as the vessel water level approaches the top of the core would cause reactor vessel isolation while automatic recirculation pump trip would limit the in-vessel flows to those characteristic of natural circulation (as disturbed by vessel relief valve actuation). This paper provides a brief discussion of the BWR control blade, channel box, core plate, control rod guide tube, and reactor vessel safety relief valve (SRV) configuration and the effects of these structural components upon thermalhydraulic processes within the reactor vessel under severe accident conditions. The dominant BWR severe accident sequences as determined by probabilistic risk assessment are briefly described and the expected timing of events for the unmitigated short-term station blackout severe accident sequence at the Peach Bottom Atomic Power Station is presented. 12 refs., 4 figs., 1 tab.

  19. Regulatory analysis for the resolution of Generic Safety Issue 105: Interfacing system loss-of-coolant accident in light-water reactors

    SciTech Connect

    Not Available

    1993-07-01

    An interfacing systems loss of coolant accident (ISLOCA) involves failure or improper operation of pressure isolation valves (PIVs) that compose the boundary between the reactor coolant system and low-pressure rated systems. Some ISLOCAs can bypass containment and result in direct release of fission products to the environment. A cost/benefit evaluation, using three PWR analyses, calculated the benefit of two potential modifications to the plants. Alternative 1 is improved plant operations to optimize the operator`s performance and reduce human error probabilities. Alternative 2 adds pressure sensing devices, cabling, and instrumentation between two PIVs to provide operators with continuous monitoring of the first PIV. These two alternatives were evaluated for the base case plants (Case 1) and for each plant, assuming the plants had a particular auxiliary building design in which severe flooding would be a problem if an ISLOCA occurred. The auxiliary building design (Case 2) was selected from a survey that revealed a number of designs with features that provided less than optimal resistance to ECCS equipment loss caused by a ISLOCA-induced environment. The results were judged not to provide sufficient basis for generic requirements. It was concluded that the most viable course of action to resolve Generic Issue 105 is licensee participation in individual plant examinations (IPEs).

  20. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  1. Modeling operator actions during a small break loss-of-coolant accident in a Babcock and Wilcox nuclear power plant

    SciTech Connect

    Ghan, L.S.; Ortiz, M.G.

    1991-12-31

    A small break loss-of-accident (SBLOCA) in a typical Babcock and Wilcox (B&W) nuclear power plant was modeled using RELAP5/MOD3. This work was performed as part of the United States Regulatory Commission`s (USNRC) Code, Scaling, Applicability and Uncertainty (CSAU) study. The break was initiated by severing one high pressure injection (HPI) line at the cold leg. Thus, the small break was further aggravated by reduced HPI flow. Comparisons between scoping runs with minimal operator action, and full operator action, clearly showed that the operator plays a key role in recovering the plant. Operator actions were modeled based on the emergency operating procedures (EOPs) and the Technical Bases Document for the EOPs. The sequence of operator actions modeled here is only one of several possibilities. Different sequences of operator actions are possible for a given accident because of the subjective decisions the operator must make when determining the status of the plant, hence, which branch of the EOP to follow. To assess the credibility of the modeled operator actions, these actions and results of the simulated accident scenario were presented to operator examiners who are familiar with B&W nuclear power plants. They agreed that, in general, the modeled operator actions conform to the requirements set forth in the EOPs and are therefore plausible. This paper presents the method for modeling the operator actions and discusses the simulated accident scenario from the viewpoint of operator actions.

  2. 77 FR 19740 - Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... accident. II. Further Information DG-1234 was published in the Federal Register on July 15 2010, (75 FR... atmosphere cleanup systems. RG 1.82 provides guidelines for evaluating the adequacy and the availability of... containment atmosphere cleanup systems. RG 1.82 provides guidelines for evaluating the adequacy and...

  3. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    SciTech Connect

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  4. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    SciTech Connect

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  5. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential

  6. A study of thermal stratification in the cold legs during the subcooled blowdown phase of a loss of coolant accident in the OSU APEX thermal hydraulic testing facility.

    SciTech Connect

    Wachs, D. M.

    1998-11-04

    Thermal stratification, which has been linked to the occurrence of pressurized thermal shock (PTS), is observed to occur during the early stages of simulated loss of coolant accidents (LOCAS) in the Oregon State University Advanced Plant Experiment (OSU APEX) Thermal Hydraulic Test Facility. The OSU APEX Test Facility is a scaled model of the Westinghouse AP600 nuclear power plant. Analysis of the OSU APEX facility data has allowed the determination of an onset criteria for thermal stratification and has provided support for the postulated mechanisms leading to thermal stratification. CFX 4.1, a computational fluid dynamics code, was used to generate a model of the cold legs and the downcomer that described the phenomena occurring within them. Some mixing phenomena were predicted that lead to non-uniformity between the two cold legs attached to the steam generator on the side of the facility containing the Passive Residual Heat Removal (PRHR) injection system. The stratification was found to be two phase and unlikely to be a factor in PTS.

  7. Evaluation of containment peak pressure and structural response for a large-break loss-of-coolant accident in a VVER-440/213 NPP

    SciTech Connect

    Spencer, B.W.; Sienicki, J.J.; Kulak, R.F.; Pfeiffer, P.A.; Voeroess, L.; Techy, Z.; Katona, T.

    1998-07-01

    A collaborative effort between US and Hungarian specialists was undertaken to investigate the response of a VVER-440/213-type NPP to a maximum design-basis accident, defined as a guillotine rupture with double-ended flow from the largest pipe (500 mm) in the reactor coolant system. Analyses were performed to evaluate the magnitude of the peak containment pressure and temperature for this event; additional analyses were performed to evaluate the ultimate strength capability of the containment. Separate cases were evaluated assuming 100% effectiveness of the bubbler-condenser pressure suppression system as well as zero effectiveness. The pipe break energy release conditions were evaluated from three sources: (1) FSAR release rate based on Soviet safety calculations, (2) RETRAN-03 analysis and (3) ATHLET analysis. The findings indicated that for 100% bubbler-condenser effectiveness the peak containment pressures were less than the containment design pressure of 0.25 MPa. For the BDBA case of zero effectiveness of the bubbler-condenser system, the peak pressures were less than the calculated containment failure pressure of 0.40 MPa absolute.

  8. Multiloop integral system test (MIST): Test Group 31, SBLOCA (small-break loss-of-coolant accident) with varied boundary conditions

    SciTech Connect

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox-designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock and Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility --- the once-through integral system (OTIS) --- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP-5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describe groups of tests by test type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the calculations of RELAP5 MOD2 and MIST observations, and Volume 11 presents the later, Phase 4 tests. This is Volume 3 pertaining to Test Group 31, Boundary Conditions Variations. The specifications, conduct, observations, and results of these tests are described. 8 refs., 328 figs., 15 tabs.

  9. Matrix database of EPRI experimental projects on small-break loss-of-coolant accidents: Final report

    SciTech Connect

    House, R.K.

    1989-08-01

    The large break LOCA had been studied extensively for many years and substantial analytical methods had been developed and verified for evaluation of this DBA. The nature of the physical processes which occur during a SBLOCA are significantly different than those which occur in a DBA LOCA, especially for a pressurized water reactor (PWR). As a result, only a portion of the methods developed for large break LOCA evaluation were applicable to SBLOCA, and a new list of research priorities arose out of questions raised during the evaluation of TMI-2. The nuclear safety research and development program at EPRI responded to the industry's need for improved understanding of SBLOCA. Projects to investigate SBLOCA that were in place prior to the TMI-2 accident were augmented and new projects were implemented. The overall cope of EPRI SBLOCA projects include both analytical development and experimental work. This report focuses on the experimental work sponsored by EPRI to support improved understanding of the SBLOCA. All of the EPRI experimental projects which relate to SBLOCA, both prior to and following TMI-2, were reviewed and the results summarized in an attempt to provide an overall matrix oriented view of the EPRI SBLOCA experimental database. 5 tabs.

  10. A thermodynamic model for noble metal alloy inclusions in nuclear fuel rods and application to the study of loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Kaye, Matthew Haigh

    Metal alloy inclusions comprised of Mo, Pd, Rh, Ru, and Tc (the so-called "noble" metals) develop in CANDU fuel pellets as a result of fission. The thermochemical behaviour of this alloy system during severe accident conditions is of interest in connection with computations of loss of volatile compounds of these elements by reaction with steam-hydrogen gas mixtures that develop in the system as a result of water reacting with the Zircalloy cladding. This treatment focuses on the development of thermodynamic models for the Mo-Pd-Rh-Ru-Tc quinary system. A reasonable prediction was made by modelling the ten binary phase diagrams, five of these evaluations being original to this work. This process provides a complete treatment for the five solution phases (vapour, liquid, bcc-solid, fcc-solid, and cph-solid) in this alloy system, as well as self-consistent Gibbs energies of formation for the Mo 5Ru3 intermetallic phase, and two intermediate phases in the Mo-Tc system. The resulting collection of properties, when treated by Gibbs energy minimization, permits phase equilibria to be computed for specified temperatures and compositions. Experimental work in support of this treatment has been performed. Measurements of the solidus and liquidus temperatures for Pd-Rh alloys were made using differential thermal analysis. These measurements confirm that the liquid solution exhibits positive deviation from Raoult's law. Experimental work as a visiting research engineer at AECL (Chalk River) was performed using a custom developed Knudsen cell/mass spectrometer. The Pd partial pressure was measured above multi-component alloys of known composition over a range of temperatures. These are correlated to predicted activities of Pd from the developed thermodynamic model in the multi-component alloy. The thermodynamic treatment developed for the noble metal alloy inclusions has been combined with considerable other data and applied to selected loss-of-coolant-accident scenarios to

  11. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  12. APT Blanket System Loss-of-Coolant Accident Based on Initial Conceptual Design - Case 5: External RHR Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  13. APT Blanket System Loss-of-Coolant Accident (LOCA) Analysis Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.

  14. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  15. Experimental study of void behavior in a suppression pool of a boiling water reactor during the blowdown period of a loss of coolant accident

    NASA Astrophysics Data System (ADS)

    Rassame, Somboon

    The possible failure of an Emergency Core Cooling System (ECCS) train due to a large amount of entrained gas in the ECCS pump suction piping in a Loss of Coolant Accident (LOCA) is one of the potential engineering problems faced in a Boiling Water Reactor (BWR) power plant. To analyze potential gas intrusion into the ECCS pump suction piping, the study of void behavior in the Suppression Pool (SP) during the LOCA is necessary. The void fraction distribution and void penetration are considered as the key parameters in the problem analysis. Two sets of experiments, namely, steady-state tests and transient tests were conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR application (PUMA-E) to study void behavior in the SP during the blowdown. The design of the test apparatus used is based on the scaling analysis from a prototypical BWR containment (MARK-I) with consideration of the downcomer size, the SP water level, and the downcomer water submergence depth. Several instruments were installed to obtain the required experimental data, such as inlet gas volumetric flow, void fraction, pressure, and temperature. For the steady-state tests, the air was injected through a downcomer pipe in the SP in order to simulate the physical phenomena in the SP during the initial blowdown of LOCA. Thirty tests were performed with two different downcomer sizes (0.076 and 0.102 m), various air volumetric flow rates or flux (0.003 to 0.153 m3/s or 0.5 to 24.7 m/s), initial downcomer void conditions (fully filled with water, partially void, and completely void) and air velocity ramp rates (one to two seconds). Two phases of the experiment were observed, namely, the initial phase and the quasi-steady phase. The initial phase produced the maximum void penetration depth; and the quasi-steady phase showed less void penetration with oscillation in the void penetration. The air volumetric flow rate was found to have a minor effect on the void fraction

  16. Multi-Pin Studies of the Effect of Changes in PWR Fuel Design on Clad Ballooning and Flow Blockage in a Large-Break Loss-Of Coolant Accident

    SciTech Connect

    Jones, J.R.; Trow, M.

    2007-07-01

    Fuel pins can credibly balloon to reach very high diametric strains under temperature transients typical of a PWR Loss-of coolant Accident (LOCA), but experiments show that these balloons are sufficiently misaligned axially to prevent total blockage of the flow. Most of the relevant experiments were performed in the 1980's and therefore were principally carried out on the various forms of Zircaloy 4 cladding available at the time. Much of the fuel used was either fresh or of modest burnup compared to the discharge irradiations achievable today. Since then, single pin experiments have been carried out with new cladding material and (to a limited extent) with high-burnup fuel. However, there is a need to interpret the performance of this fuel in the context of the wider body of evidence. A model of the development of flow blockages has been implemented using multiple instances of the fuel pin code MABEL interfaced to a sub-channel coolant flow code. The effect of a change in cladding material from Zircaloy to a 1% niobium alloy has been examined. The assessment concluded that the proposed replacement alloy is more creep hard at high temperature and therefore is expected to fail slightly later in the transient. The new cladding achieved a generally lower diametric strain at failure under the particular conditions of the fault. (authors)

  17. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 1: External HR Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    The APT blanket system has about 57 MW of thermal energy deposited within the blanket region under normal operating conditions from the release of neutrons and the interaction of the High energy particles with the blanket materials. This corresponds to about 48 percent of total thermal energy deposited in the APT target/blanket system. The deposited thermal energy under normal operation conditions is an important input parameter used in the thermal-hydraulic design and accident analysis.

  18. Coolant line hydrometer

    SciTech Connect

    Barber, M.D.; Kipp, W.G.

    1987-03-17

    This patent describes a hydrometer unit for connection in an automobile coolant flow line comprising: a tubular fitting adapted to be connected to the coolant flow line; a coolant receiving chamber means connected to the tubular fitting for receiving coolant from the tubular fitting; and indicating float elements contained within the coolant receiving chamber means and adapted to rise therein individually as a function of the specific gravity of the coolant. The coolant receiving chamber means includes a closure cap which when connected to the tubular fitting forms a coolant receiving chamber, retaining means for retaining the indicating float elements within the coolant receiving chamber, a viewing window member of a substantially clear material through which the float elements can be visually observed within the coolant receiving chamber means, and air venturi means located within the coolant receiving chamber means for automatically removing air which may collect within the coolant chamber means.

  19. TRAC-PF1/MOD1 calculations and data comparisons for MIST (Multi-Loop Integral System Test) small-break loss-of-coolant accidents with scaled 10 cm/sup 2/ and 50 cm/sup 2/ breaks

    SciTech Connect

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E.

    1987-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents (SBLOCAs), loss of feedwater and other transients in Babcock and Wilcox (B and W) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 x 4 (2 hot legs and steam generators, 4 cold legs and reactor-coolant pumps) representation of lowered-loop reactor systems of the B and W design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at Stanford Research Institute. The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are underway at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment have been completed for two transients run in the MIST facility. These are the MIST nominal test. Test 3109AA, a scaled 10 cm/sup 2/ SBLOCA and Test 320201, a scaled 50 cm/sup 2/ SBLOCA. Only MIST assessment results are presented in this paper.

  20. Transient Analysis for Evaluating the Potential Boiling in the High Elevation Emergency Cooling Units of PWR Following a Hypothetical Loss of Coolant Accident (LOCA) and Subsequent Water Hammer Due to Pump Restart

    SciTech Connect

    Husaini, S. Mahmood; Qashu, Riyad K.

    2004-07-01

    The Generic Letter GL-96-06 issued by the U.S. Nuclear Regulatory Commission (NRC) required the utilities to evaluate the potential for voiding in their Containment Emergency Cooling Units (ECUs) due to a hypothetical Loss Of Coolant Accident (LOCA) or a Main Steam Line Break (MSLB) accompanied by the Loss Of Offsite Power (LOOP). When the offsite power is restored, the Component Cooling Water (CCW) pumps restart causing water hammer to occur due to cavity closure. Recently EPRI (Electric Power Research Institute) performed a research study that recommended a methodology to mitigate the water hammer due to cavity closure. The EPRI methodology allows for the cushioning effects of hot steam and released air, which is not considered in the conventional water column separation analysis. The EPRI study was limited in scope to the evaluation of water hammer only and did not provide any guidance for evaluating the occurrence of boiling and the extent of voiding in the ECU piping. This paper presents a complete methodology based on first principles to evaluate the onset of boiling. Also, presented is a methodology for evaluating the extent of voiding and the water hammer resulting from cavity closure by using an existing generalized computer program that is based on the Method of Characteristics. The EPRI methodology is then used to mitigate the predicted water hammer. Thus it overcomes the inherent complications and difficulties involved in performing hand calculations for water hammer. The heat transfer analysis provides an alternative to the use of very cumbersome modeling in using CFD (computational fluid dynamics) based computer programs. (authors)

  1. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    Energy Science and Technology Software Center (ESTSC)

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of themore » plant controls, turbines, condensers, and secondary feedwater systems.« less

  2. Liquid metal reactions under postulated accident conditions for fission and fusion reactors

    SciTech Connect

    Muhlestein, L.D.

    1980-04-01

    Sodium and lithium reactions are considered in the context of a postulated breach of a coolant boundary. Specific topics addressed are coolant-atmosphere and coolant-material reactions which may contribute to the overall consequence of a postulated accident scenario, and coolant reaction extinguishment and effluent control which may be desirable for containment of the spilled coolant.

  3. Machine coolant waste reduction by optimizing coolant life. Project summary

    SciTech Connect

    Pallansch, J.

    1995-08-01

    The project was designed to study the following: A specific water-soluble coolant (Blasocut 2000 Universal) in use with a variety of machines, tools, and materials; Coolant maintenance practices associated with three types of machines; Health effects of use and handling of recycled coolant; Handling practices for chips and waste coolant; Chip/coolant separation; and Oil/water separation.

  4. NUCLEAR REACTOR COOLANT

    DOEpatents

    Colichman, E.L.

    1959-10-20

    The formation of new reactor coolants which suppress polymerization resulting from pyrolytic and radiation decomposition is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to about 5% of beryllium or magnesium dispersed in the hydrocarbon.

  5. NUCLEAR REACTOR COOLANT

    DOEpatents

    Colichman, E.L.

    1959-10-20

    The formation of new reactor coolants which suppress polymerization resulting from pyrolitic and radiation decomposition is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to about 10% of an alkall metal dispersed in the hydrocarbon.

  6. MACHINE COOLANT WASTE REDUCTION BY OPTIMIZING COOLANT LIFE

    EPA Science Inventory

    Machine shops use coolants to improve the life and function of machine tools. hese coolants become contaminated with oils with use, and this contamination can lead to growth of anaerobic bacteria and shortened coolant life. his project investigated methods to extend coolant life ...

  7. Environmentally Friendly Coolant System

    SciTech Connect

    David Jackson Principal Investigator

    2011-11-08

    Energy reduction through the use of the EFCS is most improved by increasing machining productivity. Throughout testing, nearly all machining operations demonstrated less land wear on the tooling when using the EFCS which results in increased tool life. These increases in tool life advance into increased productivity. Increasing productivity reduces cycle times and therefore reduces energy consumption. The average energy savings by using the EFCS in these machining operations with these materials is 9%. The advantage for end milling stays with flood coolant by about 6.6% due to its use of a low pressure pump. Face milling and drilling are both about 17.5% less energy consumption with the EFCS than flood coolant. One additional result of using the EFCS is improved surface finish. Certain machining operations using the EFCS result in a smoother surface finish. Applications where finishing operations are required will be able to take advantage of the improved finish by reducing the time or possibly eliminating completely one or more finishing steps and thereby reduce their energy consumption. Some machining operations on specific materials do not show advantages for the EFCS when compared to flood coolants. More information about these processes will be presented later in the report. A key point to remember though, is that even with equivalent results, the EFCS is replacing petroleum based coolants whose production produces GHG emissions and create unsafe work environments.

  8. Reactor coolant pump flywheel

    SciTech Connect

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  9. Loss of pumping accident limit calculation for Savannah River Reactor

    SciTech Connect

    Paul, P.K.; Barbour, K.L. )

    1992-01-01

    For the Savannah River Site production reactors, the design basis accident reactor power limit ensures that if a double-ended guillotine break (DEGB) in a secondary cooling water pipe were to occur, the reactor will shut down safely. The primary reactor coolant is heavy water (D{sub 2}O) with secondary light water (H{sub 2}O) cooling. The accident scenario is a DEGB in one of two secondary coolant inlet header pipes with several assumed single failures. The recycled primary coolant loses its cooling, and the reactor core temperature begins to rise. Another possible accident is a DEGB in one of two heat exchanger secondary coolant effluent header pipes. The inlet header break is slightly more limiting than the effluent header break. Upon break detection, emergency shutdown begins and the emergency cooling system (ECS) activates. The accident scenario was constructed with regard to physical, mechanical, and human factors. The computer code TRAC simulates the accident.

  10. Coolant mixing and distribution in a transparent reactor model

    SciTech Connect

    Fanning, M.W.; Haury, G.; Pflug, L.; Rothe, P.H.

    1983-11-01

    Following a small break loss-of-coolant accident in a pressurized water reactor, coolant water may be injected at high pressure to help cool the core. This paper reports the results of tests which determined the mixing and distribution of the coolant in a 1/5-scale transparent model of the reactor. The model components included the reactor vessel, cold leg pipe, pump, and loop seal with steam generator and hot leg simulators completing the flow loop. Tests were conducted for a no-refill condition with constant liquid inventory in the facility and zero flow of the primary water. Salt water, dyed red was used for the coolant water to create prototypical density differences in this atmospheric facility. Steady state fluid distribution was determined from flow and density measurements and complete mass balances. Interpretation of the quantitative results was aided by extensive flow visualization studies which include still photographs and motion picture films for all tests. The test parameters included the fluid density ratio, the flow rate of coolant water, and the flow rate of primary water injected in the vessel downcomer to simulate a natural circulation flow through vent valves between the reactor core and the downcomer. Four locations of the small break were tested.

  11. Proposed reactor coolant density monitor

    SciTech Connect

    Mackley, A.D.

    1986-01-01

    Until now there has been no feasible method of monitoring coolant density in the environment of an operating reactor core. By analysis of output from self-powered neutron detectors (SPNDs) in the core of the Loss of Fluid Test (LOFT) Reactor, the author has successfully estimated local coolant densities under post-scram conditions during a large break loss of coolant transient. The model used for estimation is not fully explained by published principles on the interaction of gamma rays with SPNDs. However, based on the success of the model, the author proposes employing self powered gamma detectors (SPGDs) to monitor reactor coolant density and discusses areas of experimental work to establish the best conditions for this application. 9 refs., 12 figs.

  12. 1996 Coolant Flow Management Workshop

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A. (Editor)

    1997-01-01

    The following compilation of documents includes a list of the 66 attendees, a copy of the viewgraphs presented, and a summary of the discussions held after each session at the 1996 Coolant Flow Management Workshop held at the Ohio Aerospace Institute, adjacent to the NASA Lewis Research Center, Cleveland, Ohio on December 12-13, 1996. The workshop was organized by H. Joseph Gladden and Steven A. Hippensteele of NASA Lewis Research Center. Participants in this workshop included Coolant Flow Management team members from NASA Lewis, their support service contractors, the turbine engine companies, and the universities. The participants were involved with research projects, contracts and grants relating to: (1) details of turbine internal passages, (2) computational film cooling capabilities, and (3) the effects of heat transfer on both sides. The purpose of the workshop was to assemble the team members, along with others who work in gas turbine cooling research, to discuss needed research and recommend approaches that can be incorporated into the Center's Coolant Flow Management program. The workshop was divided into three sessions: (1) Internal Coolant Passage Presentations, (2) Film Cooling Presentations, and (3) Coolant Flow Integration and Optimization. Following each session there was a group discussion period.

  13. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-09-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meetings the sanitary sewer discharge limits and subsequent Land Disposal REstriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered {open_quotes}Best Demonstrated Available Technologies,{close_quotes} or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a mutiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  14. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-02-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meeting the sanitary sewer discharge limits and subsequent Land Disposal Restriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered Best Demonstrated Available Technologies, or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a multiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  15. Long life coolant pump technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design concepts were investigated to improve space system coolant pump technology to be suitable for mission durations of two years and greater. These design concepts included an improved bearing system for the pump rotating elements, consisting of pressurized conical bearings. This design was satisfactorily endurance tested as was a new prototype pump built using various other improved design concepts. Based upon an overall assessment of the results of the program it is concluded that reliable coolant pumps can be designed for three year space missions.

  16. Vertical reactor coolant pump instabilities

    NASA Technical Reports Server (NTRS)

    Jones, R. M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corrective measures taken are also described.

  17. Accident investigation

    NASA Technical Reports Server (NTRS)

    Laynor, William G. Bud

    1987-01-01

    The National Transportation Safety Board (NTSB) has attributed wind shear as a cause or contributing factor in 15 accidents involving transport-categroy airplanes since 1970. Nine of these were nonfatal; but the other six accounted for 440 lives. Five of the fatal accidents and seven of the nonfatal accidents involved encounters with convective downbursts or microbursts. Of other accidents, two which were nonfatal were encounters with a frontal system shear, and one which was fatal was the result of a terrain induced wind shear. These accidents are discussed with reference to helping the aircraft to avoid the wind shear or if impossible to help the pilot to get through the wind shear.

  18. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    SciTech Connect

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods.

  19. Organic coolant for ARIES-III

    SciTech Connect

    Sze, D.K. ); Sviatoslavsky, I.; Sawan, M. ); Gierszewski, P. ); Hollies, R. ); Sharafat, S. ); Herring, S. )

    1991-04-01

    ARIES-III is a D-He{sub 3} reactor design study. It is found that the organic coolant is well suited for the D-He{sub 3} reactor. This paper discusses the unique features of the D-He{sub 3} reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs.

  20. INHIBITING THE POLYMERIZATION OF NUCLEAR COOLANTS

    DOEpatents

    Colichman, E.L.

    1959-10-20

    >The formation of new reactor coolants which contain an additive tbat suppresses polymerization of the primary dissoclation free radical products of the pyrolytic and radiation decomposition of the organic coolants is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to 5% of a powdered metal hydride chosen from the group consisting of the group IIA and IVA dispersed in the hydrocarbon.

  1. A passively-safe fusion reactor blanket with helium coolant and steel structure

    SciTech Connect

    Crosswait, K.M.

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  2. Cleaning of uranium vs machine coolant formulations

    SciTech Connect

    Cristy, S.S.; Byrd, V.R.; Simandl, R.F.

    1984-10-01

    This study compares methods for cleaning uranium chips and the residues left on chips from alternate machine coolants based on propylene glycol-water mixtures with either borax, ammonium tetraborate, or triethanolamine tetraborate added as a nuclear poison. Residues left on uranium surfaces machined with perchloroethylene-mineral oil coolant and on surfaces machined with the borax-containing alternate coolant were also compared. In comparing machined surfaces, greater chlorine contamination was found on the surface of the perchloroethylene-mineral oil machined surfaces, but slightly greater oxidation was found on the surfaces machined with the alternate borax-containing coolant. Overall, the differences were small and a change to the alternate coolant does not appear to constitute a significant threat to the integrity of machined uranium parts.

  3. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    SciTech Connect

    Ruger, C.J.; Higgins, J.C.

    1993-11-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970`s and early 1980`s raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.

  4. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  5. Loss of coolant analysis for the tower shielding reactor 2

    SciTech Connect

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs.

  6. Emergency cooling analysis for the loss of coolant malfunction

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1972-01-01

    This report examines the dynamic response of a conceptual space power fast-spectrum lithium cooled reactor to the loss of coolant malfunction and several emergency cooling concepts. The results show that, following the loss of primary coolant, the peak temperatures of the center most 73 fuel elements can range from 2556 K to the region of the fuel melting point of 3122 K within 3600 seconds after the start of the accident. Two types of emergency aftercooling concepts were examined: (1) full core open loop cooling and (2) partial core closed loop cooling. The full core open loop concept is a one pass method of supplying lithium to the 247 fuel pins. This method can maintain fuel temperature below the 1611 K transient damage limit but requires a sizable 22,680-kilogram auxiliary lithium supply. The second concept utilizes a redundant internal closed loop to supply lithium to only the central area of each hexagonal fuel array. By using this method and supplying lithium to only the triflute region, fuel temperatures can be held well below the transient damage limit.

  7. Computing Flows Of Coolants In Turbomachines

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.

    1994-01-01

    Coolant Passage Flow (CPF) computer code developed to predict accurately coolant flow and heat transfer inside turbomachinery cooling passages (either radial or axial blading). Computes flow in one-inlet/one-outlet passage of any shape. Calculates rate of flow of coolant, temperature, pressure, velocity, and heat-transfer coefficients along passage. Integrates one-dimensional momentum and energy equations along defined flow path, taking into account change in area, addition or subtraction of mass, pumping, friction, and transfer of heat. Written in FORTRAN IV.

  8. Bi-coolant flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Chon, W. Y.; Green, L. L.

    The feasibility study of a flat plate solar collector which heats air and water concurrently or separately was carried out. Air flows above the collector absorber plate, while water flows in tubes soldered or brazed beneath the plate. The collector efficiencies computed for the flow of both air and water are compared with those for the flow of a single coolant. The results show that the bi-coolant collector efficiency computed for the entire year in Buffalo, New York is higher than the single-coolant collector efficiency, although the efficiency of the water collector is higher during the warmer months.

  9. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  10. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Higgins, A. W.

    1985-10-01

    The objective is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques, and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  11. MELCOR analyses of severe accident scenarios in Oconee, a B&W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S.; Foulds, R.

    1993-03-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock & Wilcox (B&W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  12. MELCOR analyses of severe accident scenarios in Oconee, a B W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S. ); Foulds, R. )

    1993-01-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock Wilcox (B W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  13. Nuclear reactor loss of coolant protection system

    SciTech Connect

    Loose, R.A.

    1986-03-18

    A pressurized water reactor system is described of a nuclear power plant having a water storage tank for providing emergency coolant water and means provided external to the containment vessel, for use in the event of a primary loss of coolant situation, to circulate emergency water as a coolant by withdrawal through a wall of the containment vessel and return the same back through the wall of the containment vessel and passing the water through a heat exchange means prior to use as a coolant for the reactor core. The improvement described here consists of: an enslosure, the interior of which is sealed to the atmosphere, positioned adjacent to and exterior of a wall of the containment vessel; an inlet conduit, enclosed within a sealed outer casing, communicating between the interior of the containment vessel and the interior of the enclosure; an exhaust conduit, enclosed within a sealed outer casing, communicating between the interior of the enclosure and the interior of the containment vessel; a rupture disc on the inlet conduit within the enclosure, such that failure of the exhaust conduit within the enclosure will produce an increase of the pressure within the enclosure and above a predetermined pressure will fracture the rupture disc, and will circulate the coolant within the enclosure; and means within the interior of the enclosure for pumping coolant from the interior of the containment vessel through the inlet conduit, and back to the interior of the containment vessel through the exhaust conduit; whereby if either of the conduits should fail, coolant will be collected within the enclosure and sealed to the atmosphere.

  14. Full-length fuel rod behavior under severe accident conditions

    SciTech Connect

    Lombardo, N J; Lanning, D D; Panisko, F E

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors.

  15. A New Application of Support Vector Machine Method: Condition Monitoring and Analysis of Reactor Coolant Pump

    NASA Astrophysics Data System (ADS)

    Meng, Qinghu; Meng, Qingfeng; Feng, Wuwei

    2012-05-01

    Fukushima nuclear power plant accident caused huge losses and pollution and it showed that the reactor coolant pump is very important in a nuclear power plant. Therefore, to keep the safety and reliability, the condition of the coolant pump needs to be online condition monitored and fault analyzed. In this paper, condition monitoring and analysis based on support vector machine (SVM) is proposed. This method is just to aim at the small sample studies such as reactor coolant pump. Both experiment data and field data are analyzed. In order to eliminate the noise and useless frequency, these data are disposed through a multi-band FIR filter. After that, a fault feature selection method based on principal component analysis is proposed. The related variable quantity is changed into unrelated variable quantity, and the dimension is descended. Then the SVM method is used to separate different fault characteristics. Firstly, this method is used as a two-kind classifier to separate each two different running conditions. Then the SVM is used as a multiple classifier to separate all of the different condition types. The SVM could separate these conditions successfully. After that, software based on SVM was designed for reactor coolant pump condition analysis. This software is installed on the reactor plant control system of Qinshan nuclear power plant in China. It could monitor the online data and find the pump mechanical fault automatically.

  16. Lead Coolant Test Facility Development Workshop

    SciTech Connect

    Paul A. Demkowicz

    2005-06-01

    A workshop was held at the Idaho National Laboratory on May 25, 2005, to discuss the development of a next generation lead or lead-alloy coolant test facility. Attendees included representatives from the Generation IV lead-cooled fast reactor (LFR) program, Advanced Fuel Cycle Initiative, and several universities. Several participants gave presentations on coolant technology, existing experimental facilities for lead and lead-alloy research, the current LFR design concept, and a design by Argonne National Laboratory for an integral heavy liquid metal test facility. Discussions were focused on the critical research and development requirements for deployment of an LFR demonstration test reactor, the experimental scope of the proposed coolant test facility, a review of the Argonne National Laboratory test facility design, and a brief assessment of the necessary path forward and schedule for the initial stages of this development project. This report provides a summary of the presentations and roundtable discussions.

  17. Molecular Design for Cryogenic Magnetic Coolants.

    PubMed

    Liu, Jun-Liang; Chen, Yan-Cong; Tong, Ming-Liang

    2016-04-01

    The area of molecular magnetic coolants has developed rapidly in recent years. A large number of competitive candidates have been reported, with the cooling performances chasing each other. In this account, four explicit strategies, namely, increasing ground-state spin, reducing magnetic anisotropy, weakening magnetic interactions, and lowering the molecular weight, are proposed from the theoretical viewpoint towards improving the magnetocaloric effect (MCE). According to this guidance, these successful strategies are discussed to pursue excellent magnetic coolants. This is accompanied by a discussion of the representative examples reported by our group. The magnetic entropy change increases from one compound to another, which in the most pronounced cases is suggestive of being the largest MCE in magnetic coolants. PMID:26929130

  18. On-Line Coolant Chemistry Analysis

    SciTech Connect

    LM Bachman

    2006-07-19

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level.

  19. Coolant monitoring apparatus for nuclear reactors

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A system for monitoring coolant conditions within a pressurized vessel. A length of tubing extends outward from the vessel from an open end containing a first line restriction at the location to be monitored. The flowing fluid is cooled and condensed before passing through a second line restriction. Measurement of pressure drop at the second line restriction gives an indication of fluid condition at the first line restriction. Multiple lengths of tubing with open ends at incremental elevations can measure coolant level within the vessel.

  20. K-Reactor emergency core coolant system response during a double-ended guillotine break LOCA

    SciTech Connect

    Rodriguez, S.B. )

    1990-01-01

    This paper describes the modeling and benchmarking of the Savannah River Site K-Reactor emergency core coolant system (ECCS), using the Transient Reactor Analysis Code (TRAC). The ECCS model was benchmarked against plant data obtained from various ECCS configurations. Next, the benchmarked model was used to simulate various loss-of-coolant accidents (LOCAs). The adequacy of the model's behavior during the LOCAs was then analyzed. The K-Reactor ECCS model can adequately simulate a wide variety of system configurations. The TRAC output compared favorably with the plant data for the different ECCS configurations. The results of the plenum-inlet double-ended guillotine break LOCA simulation showed the ECCS protected the core.

  1. NGNP Reactor Coolant Chemistry Control Study

    SciTech Connect

    Brian Castle

    2010-11-01

    The main focus of this paper is to identify the most desirable ranges of impurity levels in the primary coolant to optimize component life in the primary circuit of the Next Generation Nuclear Plant (NGNP), which will either be a prismatic block or pebble bed reactor.

  2. MELCOR accident analysis for ARIES-ACT

    SciTech Connect

    Paul W. Humrickhouse; Brad J. Merrill

    2012-08-01

    We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system.

  3. Severe accident sequence assessment for boiling water reactors: program overview

    SciTech Connect

    Fontana, M. H.

    1980-10-01

    The Severe Accident Sequence Assessment (SASA) Program was started at the Oak Ridge National Laboratory (ORNL) in June 1980. This report documents the initial planning, specification of objectives, potential uses of the results, plan of attack, and preliminary results. ORNL was assigned the Brown's Ferry Unit 1 Plant with the station blackout being the initial sequence set to be addressed. This set includes: (1) loss of offsite and onsite ac power with no coolant injection; and (2) loss of offsite and onsite ac power with high pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) as long as dc power supply lasts. This report includes representative preliminary results for the former case.

  4. Radiation accidents.

    PubMed

    Saenger, E L

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity. PMID:3526994

  5. Radiation accidents

    SciTech Connect

    Saenger, E.L.

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity.

  6. Investigations on optimization of accident management measures following a station blackout accident in a VVER-1000 pressurized water reactor

    SciTech Connect

    Tusheva, P.; Schaefer, F.; Kliem, S.

    2012-07-01

    The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safety systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)

  7. Severe accident testing of electrical penetration assemblies

    SciTech Connect

    Clauss, D.B. )

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs.

  8. Design criteria for Waste Coolant Processing Facility and preliminary proposal 722 for Waste Coolant Processing Facility

    SciTech Connect

    Not Available

    1991-09-27

    This document contains the design criteria to be used by the architect-engineer (A-E) in the performance of Titles 1 and 2 design for the construction of a facility to treat the biodegradable, water soluble, waste machine coolant generated at the Y-12 plant. The purpose of this facility is to reduce the organic loading of coolants prior to final treatment at the proposed West Tank Farm Treatment Facility.

  9. Extravehicular Mobility Unit (EMU) / International Space Station (ISS) Coolant Loop Failure and Recovery

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Cole, Harold; Cronin, Gary; Gazda, Daniel B.; Steele, John

    2006-01-01

    Following the Colombia accident, the Extravehicular Mobility Units (EMU) onboard ISS were unused for several months. Upon startup, the units experienced a failure in the coolant system. This failure resulted in the loss of Extravehicular Activity (EVA) capability from the US segment of ISS. With limited on-orbit evidence, a team of chemists, engineers, metallurgists, and microbiologists were able to identify the cause of the failure and develop recovery hardware and procedures. As a result of this work, the ISS crew regained the capability to perform EVAs from the US segment of the ISS.

  10. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Wagner, J.; Johnson, B. V.

    1986-10-01

    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  11. Evaluation of engine coolant recycling processes: Part 2

    SciTech Connect

    Bradley, W.H.

    1999-08-01

    Engine coolant recycling continues to provide solutions to both economic and environmental challenges often faced with the disposal of used engine coolant. General Motors` Service Technology Group (STG), in a continuing effort to validate the general practice of recycling engine coolants, has conducted an in-depth study on the capabilities of recycled coolants. Various recycling processes ranging from complex forms of fractional distillation to simple filtration were evaluated in this study to best represent the current state of coolant recycling technology. This study incorporates both lab and (limited) fleet testing to determine the performance capabilities of the recycled coolants tested. While the results suggest the need for additional studies in this area, they reveal the true capabilities of all types of engine coolant recycling technologies.

  12. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    SciTech Connect

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J; Wilson, C L

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  13. Severe Accident Test Station Activity Report

    SciTech Connect

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  14. ANS severe accident program overview & planning document

    SciTech Connect

    Taleyarkhan, R.P.

    1995-09-01

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.

  15. Secondary coolant circuit for nuclear-reactors

    SciTech Connect

    Brachet, A.

    1981-10-06

    A secondary coolant circuit for a nuclear-reactor of the liquid metal cooled type is described. The circuit comprises at least one intermediate exchanger mounted in the vessel of said reactor, Also included is a steam-generator for the exchange of calories between the secondary liquid-metal flowing through said secondary circuit and water-steam, at least one pump for circulating said secondary sodium and one tank for storing said secondary liquid-metal andrecovering those products generated by a possible liquid-metal-water reaction in said steam-generator.

  16. Cryogenic-coolant He-4-superconductor interaction

    NASA Technical Reports Server (NTRS)

    Caspi, S.; Lee, J. Y.; Kim, Y. I.; Allen, R. J.; Frederking, T. H. K.

    1978-01-01

    The thermodynamic and thermal interaction between a type 2 composite alloy and cryo-coolant He4 was studied with emphasis on post quench phenomena of formvar coated conductors. The latter were investigated using a heater simulation technique. Overall heat transfer coefficients were evaluated for the quench onset point. Heat flux densities were determined for phenomena of thermal switching between a peak and a recovery value. The study covered near saturated liquid, pressurized He4, both above and below the lambda transition, and above and below the thermodynamic critical pressure. In addition, friction coefficients for relative motion between formvar insulated conductors were determined.

  17. Nuclear fuel assembly with coolant conducting tube

    SciTech Connect

    Dunlap, T. G.; Cearley, J. E.; Jameson, W. G. Jr.; Mefford, C. R.; Nelson, H. L.

    1983-12-13

    In a nuclear fuel assembly having a coolant conducting or water tube which also retains the spacers in axial position, the fuel rods experience greater axial growth with exposure than the water tube creating a risk that the water tube might become disengaged from the supporting tie plates. An arrangement for preventing such disengagement is described including lengthened end plug shanks for the water tube, a protective boss surrounding the lower end plug shank to protect it from flow induced vibration, a conical seat for the lower end plug and an arrangement for limiting upward movement of the water tube.

  18. Accident analysis of heavy water cooled thorium breeder reactor

    NASA Astrophysics Data System (ADS)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  19. Accident analysis of heavy water cooled thorium breeder reactor

    SciTech Connect

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  20. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Steady state and transient computations

    SciTech Connect

    Martin, A.; Alvarez, D.; Cases, F.

    1996-06-01

    After the Tchernobyl accident a working group was created to analyze the French PWR Safety with a respect to potential risk of reactivity accident. Potentially risky situations are those which can lead to heterogeneous boron concentration or temperature of the primary coolant fluid. This paper reports a Research and Development action based on numerical simulations and experiments on the primary coolant temperature or boron mixing capabilities in a PWR vessel. New numerical results obtained with the thermal hydraulic Finite Element (FE) Code N3S are presented. In these calculations the FE mesh takes into account the geometry of the lower plenum plates and columns. Two configurations have been investigated The first one is a steady state fluid flow mixing case. The reactor is cooled by free convection and the three loops, balanced in mass flow rate, are in operation. The second is a free boron plug transient case. It is related to the mixing of a clear plug injected in the vessel when a primary coolant pump starts-up. Two clear plug volumes have been investigated (3 and 8 m{sup 3}). Comparisons between these new numerical results and the data previously obtained (see Alvarez et al., 1992, Alvarez, Martin and Schneider, 1994) are presented in this paper.

  1. Coupled thermal analysis applied to the study of the rod ejection accident

    SciTech Connect

    Gonnet, M.

    2012-07-01

    An advanced methodology for the assessment of fuel-rod thermal margins under RIA conditions has been developed by AREVA NP SAS. With the emergence of RIA analytical criteria, the study of the Rod Ejection Accident (REA) would normally require the analysis of each fuel rod, slice by slice, over the whole core. Up to now the strategy used to overcome this difficulty has been to perform separate analyses of sampled fuel pins with conservative hypotheses for thermal properties and boundary conditions. In the advanced methodology, the evaluation model for the Rod Ejection Accident (REA) integrates the node average fuel and coolant properties calculation for neutron feedback purpose as well as the peak fuel and coolant time-dependent properties for criteria checking. The calculation grid for peak fuel and coolant properties can be specified from the assembly pitch down to the cell pitch. The comparative analysis of methodologies shows that coupled methodology allows reducing excessive conservatism of the uncoupled approach. (authors)

  2. A Heated Tube Facility for Rocket Coolant Channel Research

    NASA Technical Reports Server (NTRS)

    Green, James M.; Pease, Gary M.; Meyer, Michael L.

    1995-01-01

    The capabilities of a heated tube facility used for testing rocket engine coolant channels at the NASA Lewis Research Center are presented. The facility uses high current, low voltage power supplies to resistively heat a test section to outer wall temperatures as high as 730 C (1350 F). Liquid or gaseous nitrogen, gaseous helium, or combustible liquids can be used as the test section coolant. The test section is enclosed in a vacuum chamber to minimize heat loss to the surrounding system. Test section geometry, size, and material; coolant properties; and heating levels can be varied to generate heat transfer and coolant performance data bases.

  3. Progress in accident analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Latkowski, J F; Gomez del Rio, J; Sanz, J

    2000-10-11

    The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li{sub 2}BeF{sub 4}) was lost at the beginning of the accident. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that his dose was dominated by the tritium released during the accident.

  4. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  5. Designing an Experimental "Accident"

    ERIC Educational Resources Information Center

    Picker, Lester

    1974-01-01

    Describes an experimental "accident" that resulted in much student learning, seeks help in the identification of nematodes, and suggests biology teachers introduce similar accidents into their teaching to stimulate student interest. (PEB)

  6. Test Data for USEPR Severe Accident Code Validation

    SciTech Connect

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  7. Transpiration cooling using air as a coolant

    SciTech Connect

    Kikkawa, Shinzo; Senda, Mamoru; Sakagushi, Katsuji; Shibutani, Hideki )

    1993-02-01

    Transpiration cooling is one of the most effective techniques for protecting a surface exposed to a high-temperature gas stream. In the present paper, the transpiration cooling effectiveness was measured under steady state. Air as a coolant was transpired from the surface of a porous plate exposed to hot gas stream, and the transpiration rate was varied in the range of 0.001 [approximately] 0.006. The transpiration cooling effectiveness was evaluated by measuring the temperature of the upper surface of the plate. Also, a theoretical study was performed and it was clarified that the effectiveness increases with increasing transpiration rate and heat-transfer coefficient of the upper surface. Further, the effectiveness was expressed as a function of the blowing parameter only. The agreement between the experimental results and theoretical ones was satisfactory.

  8. Testing of organic acids in engine coolants

    SciTech Connect

    Weir, T.W.

    1999-08-01

    The effectiveness of 30 organic acids as inhibitors in engine coolants is reported. Tests include glassware corrosion of coupled and uncoupled metals. FORD galvanostatic and cyclic polarization electrochemistry for aluminum pitting, and reserve alkalinity (RA) measurements. Details of each test are discussed as well as some general conclusions. For example, benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In general, the organic acids provide little RA when titrated to a pH of 5.5, titration to a pH of 4.5 can result in precipitation of the acid. Trends with respect to acid chain length are reported also.

  9. Power module assemblies with staggered coolant channels

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  10. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  11. 73. View of line of stainless steel coolant storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. View of line of stainless steel coolant storage tanks for bi-sodium sulfate/water coolant solution at first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. Severe Accident Test Station Design Document

    SciTech Connect

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  13. Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.

    1991-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.

  14. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  15. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  16. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  17. Reclamation and disposal of water-based machining coolants

    SciTech Connect

    Taylor, P.A.

    1982-01-01

    The Oak Ridge Y-12 Plant, which is operated by the Union Carbide Corporation, Nuclear Division for the Department of Energy under US government contract W-7405-eng-26, currently uses about 10{sup 6} L/yr (260,000 gal/yr) of water-based coolants in its machining operations. These coolants are disposed of in a 110,000-L (29,000-gal) activated sludge reactor. The reactor has oxidized an average of 38.6 kg of total organic carbon (TOC) per day with an overall efficiency of 90%. The predominant bacteria in the reactor have been identified once each year for the past three years. Six primary types of water-based coolants are currently used in the machine shops. In order to reduce the coolant usage rate, efforts are being made to introduce one universal coolant into the shops. By using a biocide to limit bacterial deterioration and using a filter and centrifuge system to remove dirt and tramp oils from the coolant, the coolant discard rate can be greatly reduced. 1 tab.

  18. Heat transfer processes during intermediate and large break loss-of-coolant accidents (LOCAs)

    SciTech Connect

    Vojtek, I

    1986-09-01

    The general purpose of this project was the investigation of the heat transfer regimes during the high pressure portion of blowdown. The main attention has been focussed on the evaluation of those phenomena which are most important in reactor safety, such as maximum and minimum critical heat flux and forced convection film boiling heat transfer. The experimental results of the 25-rod bundle blowdown heat transfer tests, which were performed at the KWU heat transfer test facility in Karlstein, were used as a database for the verification of different correlations which are used or were developed for the analysis of reactor safety problems. The computer code BRUDI-VA was used for the calculation of local values of important thermohydraulic parameters in the bundle.

  19. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    SciTech Connect

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  20. Fuel rod mechanical deformation during the PBF/LOFT lead rod loss-of-coolant experiments

    SciTech Connect

    Varacalle, Jr., D. J.; MacDonald, P. E.; Shiozawa, S.; Driskell, W. E.

    1980-01-01

    Results of four PBF/LOFT Lead Rod (LLR) sequential blowdown tests conducted in the Power Burst Facility (PBF) are presented. Each test employed four separately shrouded fuel rods. The primary objective of the test series was to evaluate the extent of mechanical deformation that would be expected to occur to low pressure (0.1 MPa), light water reactor design fuel rods when subjected to a series of double ended cold leg break loss-of-coolant accident (LOCA) tests, and to determine whether subjecting these deformed fuel rods to subsequent testing would result in rod failure. The extent of mechanical deformation (buckling, collapse, or waisting of the cladding) was evaluated by comparison of cladding temperature and system pressure measurements with out-of-pile experimental data, and by posttest visual examinations and cladding diametral measurements.

  1. Two-phase performance of scale models of a primary coolant pump. Final report

    SciTech Connect

    Kamath, P.S.; Swift, W.L.

    1982-09-01

    Scale models of PWR primary coolant pumps were tested in steady and transient two-phase flows in order to generate a data base to aid in the development and assessment of pump performance models for use in computer codes for the analysis of postulated Loss-of-Coolant Accidents (LOCA). This report summarizes and unifies the single and two-phase air/water and steam/water performance data on the relatively high specific speed pumps (4200 rpm (US gpm) /sup 1/2//ft /sup 3/4/) tested in these programs. These data are compared with those acquired from tests on the lower specific speed Semiscale pump (926 rpm (US gpm)/sup 1/2//ft/sup 3/4/) to better understand the mechanism of performance degradation with increasing void fraction. The study revealed that scaling down the size of the pump while maintaining the same design specific speed produces very similar performance characteristics both in single and two-phase flows. Effects due to size and operating speed were not discernible within the range of test conditions and within experimental uncertainties. System pressure appears to affect the rate of degradation as a function of void fraction. The report includes a survey of the existing two-phase pump performance correlations. A correlation synthesized from the B and W, C-E and Creare two-phase data is also presented.

  2. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  3. Corrosion problems with aqueous coolants, final report

    SciTech Connect

    Diegle, R B; Beavers, J A; Clifford, J E

    1980-04-11

    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  4. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, Richard P.

    1986-01-01

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium

  5. Steam as turbine blade coolant: Experimental data generation

    SciTech Connect

    Wilmsen, B.; Engeda, A.; Lloyd, J.R.

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  6. Turbomachine injection nozzle including a coolant delivery system

    DOEpatents

    Zuo, Baifang

    2012-02-14

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  7. Longer life for glyco-based stationary engine coolants

    SciTech Connect

    Hohlfeld, R.

    1996-07-01

    Large, stationary diesel engines used to compress natural gas that is to be transported down pipelines generate a great deal of heat. Unless this heat is dissipated efficiently, it will eventually cause an expensive breakdown. Whether the coolant uses ethylene glycol or propylene glycol, the two major causes of glycol degradation are heat and oxidation. The paper discusses inhibitors that enhance coolant service life and presents a comprehensive list of do`s and don`ts for users to gain a 20-year coolant life.

  8. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  9. Accident mortality among children

    PubMed Central

    Swaroop, S.; Albrecht, R. M.; Grab, B.

    1956-01-01

    The authors present statistics on mortality from accidents, with special reference to those relating to the age-group 1-19 years. For a number of countries figures are given for the proportional mortality from accidents (the number of accident deaths expressed as a percentage of the number of deaths from all causes) and for the specific death-rates, per 100 000 population, from all causes of death, from selected causes, from all causes of accidents, and from various types of accident. From these figures it appears that, in most countries, accidents are becoming relatively increasingly prominent as a cause of death in childhood, primarily because of the conquest of other causes of death—such as infectious and parasitic diseases, which formerly took a heavy toll of children and adolescents—but also to some extent because the death-rate from motor-vehicle accidents is rising and cancelling out the reduction in the rate for other causes of accidental death. In the authors' opinion, further epidemiological investigations into accident causation are required for the purpose of devising quicker and more effective methods of accident prevention. PMID:13383361

  10. Transient two-phase performance of LOFT reactor coolant pumps

    SciTech Connect

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  11. INVESTIGATION OF CLEANER TECHNOLOGIES TO MINIMIZE AUTOMOTIVE COOLANT WASTES

    EPA Science Inventory

    The US Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction and econo...

  12. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... greater, plus the maximum working pressure of the system; and (b) For a tank with a nonmetallic liner the... specimen liner must be conducted with the coolant at operating temperature. Induction System...

  13. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... greater, plus the maximum working pressure of the system; and (b) For a tank with a nonmetallic liner the... specimen liner must be conducted with the coolant at operating temperature. Induction System...

  14. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... greater, plus the maximum working pressure of the system; and (b) For a tank with a nonmetallic liner the... specimen liner must be conducted with the coolant at operating temperature. Induction System...

  15. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... greater, plus the maximum working pressure of the system; and (b) For a tank with a nonmetallic liner the... specimen liner must be conducted with the coolant at operating temperature. Induction System...

  16. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... greater, plus the maximum working pressure of the system; and (b) For a tank with a nonmetallic liner the... specimen liner must be conducted with the coolant at operating temperature. Induction System...

  17. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive engine coolants at a New Jersey Department of Transportation garage. he specific recycling units evaluated are based on the technologies of filtration and distilla...

  18. Optimized Coolant-Flow Diverter For Increased Bearing Life

    NASA Technical Reports Server (NTRS)

    Subbaraman, Maria R.; Butner, Myles F.

    1995-01-01

    Coolant-flow diverter for rolling-element bearings in cryogenic turbopump designed to enhance cooling power of flow in contact with bearings and thereby reduce bearing wear. Delivers jets of coolant as close as possible to hot spots at points of contact between balls and race. Also imparts swirl that enhances beneficial pumping effect. Used with success in end ball bearing of high-pressure-oxidizer turbopump.

  19. Hydrodynamics of large-scale fuel-coolant interactions. [LMFBR

    SciTech Connect

    Baines, M.; Board, S.J.; Buttery, N.E.

    1980-06-01

    The analogy between thermal reactive and chemical reactive flows suggests that all propagating thermal explosions have a detonation-like (i.e., shock) structure. A vapor detonation model, which allows for thermal disequilibrium in the coolant, is developed. It is suggested that similar nonequilibrium effects may limit the efficiency of UO/sub 2/-sodium system, however, because of high conductivity of the coolant. 34 refs.

  20. Investigation of cleaner technologies to minimize automotive coolant wastes

    SciTech Connect

    Randall, P.M.

    1993-01-01

    The U.S. Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction, and economic issues. In addition, the authors examined the potential for substituting propylene glycol for ethylene glycol based engine coolant formulations. (Copyright (c) 1993 Butterworth-Heinemann Ltd.)

  1. Development of a coolant channel helium and nitrogen gas ratio sensor for a high temperature gas reactor

    SciTech Connect

    Cadell, S. R.; Woods, B. G.

    2012-07-01

    To measure the changing gas composition of the coolant during a postulated High Temperature Gas Reactor (HTGR) accident, an instrument is needed. This instrument must be compact enough to measure the ratio of the coolant versus the break gas in an individual coolant channel. This instrument must minimally impact the fluid flow and provide for non-direct signal routing to allow minimal disturbance to adjacent channels. The instrument must have a flexible geometry to allow for the measurement of larger volumes such as in the upper or lower plenum of a HTGR. The instrument must be capable of accurately functioning through the full operating temperature and pressure of a HTGR. This instrument is not commercially available, but a literature survey has shown that building off of the present work on Capacitance Sensors and Cross-Capacitors will provide a basis for the development of the desired instrument. One difficulty in developing and instrument to operate at HTGR temperatures is acquiring an electrical conductor that will not melt at 1600 deg. C. This requirement limits the material selection to high temperature ceramics, graphite, and exotic metals. An additional concern for the instrument is properly accounting for the thermal expansion of both the sensing components and the gas being measured. This work covers the basic instrument overview with a thorough discussion of the associated uncertainty in making these measurements. (authors)

  2. Airline accident response.

    PubMed

    Bettes, Thomas

    2002-01-01

    This article outlines government regulations affecting accident response and offers guidelines for airline contingency plans in the face of major air disasters, such as those encountered on September 11, 2001. The author also touches upon the role of the corporate medical department in accident investigation and victim identification. PMID:11872433

  3. Civil aircraft accident investigation.

    PubMed

    Haines, Daniel

    2013-01-01

    This talk reviews some historic aircraft accidents and some more recent. It reflects on the division of accident causes, considering mechanical failures and aircrew failures, and on aircrew training. Investigation results may lead to improved aircraft design, and to appropriate crew training. PMID:24057309

  4. Anatomy of an Accident.

    ERIC Educational Resources Information Center

    Mobley, Michael

    1984-01-01

    The findings of industrial safety engineers in the areas of accident causation and prevention are wholly applicable to adventure programs. Adventure education instructors can use safety engineering concepts to assess the risk in a particular activity, understand factors that cause accidents, and intervene to minimize injuries and damages if…

  5. Radiological Impact Assessment (RIA) following a postulated accident in PHWRS

    SciTech Connect

    Soni, N.; Kansal, M.; Rammohan, H. P.; Malhotra, P. K.

    2012-07-01

    Radiological Impact Assessment (RIA) following postulated accident i.e Loss of Coolant Accident (LOCA) with failed Emergency Core Cooling System (ECCS), performed as part of the reactor safety analysis of a typical 700 MWe Indian Pressurized Heavy Water Reactor(PHWR). The rationale behind the assessment is that the public needs to be protected in the event that the postulated accident results in radionuclide release outside containment. Radionuclides deliver dose to the human body through various pathways namely, plume submersion, exposure due to ground deposition, inhalation and ingestion. The total exposure dose measured in terms of total effective dose equivalent (TEDE) is the sum of doses to a hypothetical adult human at exclusion zone boundary by all the exposure pathways. The analysis provides the important inputs to decide upon the type of emergency counter measures to be adopted during the postulated accident. The importance of the various pathways in terms of contribution to the total effective dose equivalent(TEDE) is also assessed with respect to time of exposure. Inhalation and plume gamma dose are the major contributors towards TEDE during initial period of accident whereas ingestion and ground shine dose start dominating in TEDE in the extended period of exposure. Moreover, TEDE is initially dominated by I-131, Kr-88, Te-132, I-133 and Sr-89, whereas, as time progresses, Xe-133,I-131 and Te-132 become the main contributors. (authors)

  6. Safety analysis results for cryostat ingress accidents in ITER

    SciTech Connect

    Merrill, B.J.; Cadwallader, L.C.; Petti, D.A.

    1997-06-01

    Accidents involving the ingress of air, helium, or water into the cryostat of the International Thermonuclear Experimental Reactor (ITER) tokamak design have been analyzed with a modified version of the MELCOR code for the ITER Non-site Specific Safety Report (NSSR-1). The air ingress accident is the result of a postulated breach of the cryostat boundary into an adjoining room. MELCOR results for this accident demonstrate that the condensed air mass and increased heat loads are not a magnet safety concern, but that the partial vacuum in the adjoining room must be accommodated in the building design. The water ingress accident is the result of a postulated magnet arc that results in melting of a Primary Heat Transport System (PHTS) coolant pipe, discharging PHTS water and PHTS water activated corrosion products and HTO into the cryostat. MELCOR results for this accident demonstrate that the condensed water mass and increased heat loads are not a magnet safety concern, that the cryostat pressure remains below design limits, and that the corrosion product and HTO releases are well within the ITER release limits. 6 refs., 2 figs., 1 tab.

  7. Safety analysis results for cryostat ingress accidents in ITER

    SciTech Connect

    Merrill, B.J.; Cadwallader, L.C.; Petti, D.A.

    1996-12-31

    Accidents involving the ingress of air or water into the cryostat of the International Thermonuclear Experimental Reactor (ITER) tokamak design have been analyzed with a modified version of the MELCOR code for the ITER Non-site Specific Safety Report (NSSR-1). The air ingress accident is the result of a postulated breach of the cryostat boundary into an adjoining room. MELCOR results for this accident demonstrate that the condensed air mass and increased heat loads are not a magnet safety concern, but that the partial vacuum in the adjoining room must be accommodated in the building design. The water ingress accident is the result of a postulated magnet arc that results in melting of a Primary Heat Transport System (PHTS) coolant pipe, discharging PHTS water and PHTS water activated corrosion products and HTO into the cryostat. MELCOR results for this accident demonstrate that the condensed water mass and increased heat loads are not a magnet safety concern, that the cryostat pressure remains below design limits, and that the corrosion product and HTO releases are well within the ITER release limits.

  8. Safety Analysis Results for Cryostat Ingress Accidents in ITER

    NASA Astrophysics Data System (ADS)

    Merrill, B. J.; Cadwallader, L. C.; Petti, D. A.

    1997-06-01

    Accidents involving the ingress of air, helium, or water into the cryostat of the International Thermonuclear Experimental Reactor (ITER) tokamak design have been analyzed with a modified version of the MELCOR code for the ITER Non-site Specific Safety Report (NSSR-1). The air ingress accident is the result of a postulated breach of the cryostat boundary into an adjoining room. MELCOR results for this accident demonstrate that the condensed air mass and increased heat loads are not a magnet safety concern, but that the partial vacuum in the adjoining room must be accommodated in the building design. The water ingress accident is the result of a postulated magnet arc that results in melting of a Primary Heat Transport System (PHTS) coolant pipe, discharging PHTS water and PHTS water activated corrosion products and HTO into the cryostat. MELCOR results for this accident demonstrate that the condensed water mass and increased heat loads are not a magnet safety concern, that the cryostat pressure remains below design limits, and that the corrosion product and HTO releases are well within the ITER release limits.

  9. Sealing of a shrouded rotor-stator system with pre-swirl coolant

    NASA Astrophysics Data System (ADS)

    El-Oun, Z. B.; Neller, P. H.; Turner, A. B.

    1987-05-01

    Experimental results for a modeled gas turbine rotor-stator system using both preswirled blade coolant and radially outward flowing disc coolant are presented. Although the preswirled coolant flow is found to have little effect on the pressure distribution below the preswirl nozzles, it is shown that considerable contamination of the preswirled coolant by the frictionally heated disc coolant can occur. A clear pressure inversion effect was found when coolant was provided by the preswirl nozzles alone, while the pressure under the rim seal increased with increasing rotational speed. Blade coolant flow increases the sealing flow requirement, except at the lowest flow rates.

  10. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    DOEpatents

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  11. CFD modeling of turbulent duct flows for coolant channel analysis

    NASA Astrophysics Data System (ADS)

    Ungewitter, Ronald J.; Chan, Daniel C.

    1993-07-01

    The design of modern liquid rocket engines requires the analysis of chamber coolant channels to maximize the heat transfer while minimizing the coolant flow. Coolant channels often do not remain at a constant cross section or at uniform curvature. New designs require higher aspect ratio coolant channels than previously used. To broaden the analysis capability and to complement standard analysis tools an investigation on the accuracy of CFD predictions for coolant channel flow has been initiated. Validation of CFD capabilities for coolant channel analysis will enhance the capabilities for optimizing design parameters without resorting to extensive experimental testing. The eventual goal is to use CFD to determine the flow fields of unique coolant channel designs and therefore determine critical heat transfer coefficients. In this presentation the accuracy of a particular CFD code is evaluated for turbulent flows. The first part of the presentation is a comparison of numerical results to existing cold flow data for square curved ducts (NASA CR-3367, 'Measurements of Laminar and Turbulent Flow in a Curved Duct with Thin Inlet Boundary Layers'). The results of this comparison show good agreement with the relatively coarse experimental data. The second part of the presentation compares two cases of higher aspect ratio channels (AR=2.5,10) to show changes in axial and secondary flow strength. These cases match experimental work presently in progress and will be used for future validation. The comparison shows increased secondary flow strength of the higher aspect ratio case due to the change in radius of curvature. The presentation includes a test case with a heated wall to demonstrate the program's capability. The presentation concludes with an outline of the procedure used to validate the CFD code for future design analysis.

  12. Persistence of airline accidents.

    PubMed

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. PMID:20618386

  13. Sleep related vehicle accidents.

    PubMed Central

    Horne, J. A.; Reyner, L. A.

    1995-01-01

    OBJECTIVES--To assess the incidence, time of day, and driver morbidity associated with vehicle accidents where the most likely cause was the driver falling asleep at the wheel. DESIGN--Two surveys were undertaken, in southwest England and the midlands, by using police databases or on the spot interviews. SUBJECTS--Drivers involved in 679 sleep related vehicle accidents. RESULTS--Of all vehicle accidents to which the police were summoned, sleep related vehicle accidents comprised 16% on major roads in southwest England, and over 20% on midland motorways. During the 24 hour period there were three major peaks: at around 0200, 0600, and 1600. About half these drivers were men under 30 years; few such accidents involved women. CONCLUSIONS--Sleep related vehicle accidents are largely dependent on the time of day and account for a considerable proportion of vehicle accidents, especially those on motorways and other monotonous roads. As there are no norms for the United Kingdom on road use by age and sex for time of day with which to compare these data, we cannot determine what the hourly exposure v risk factors are for these subgroups. The findings are in close agreement with those from other countries. PMID:7888930

  14. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    SciTech Connect

    Robb, Kevin R.

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramic microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, Fe

  15. Reactor coolant seal testing under station blackout conditions

    SciTech Connect

    Marsi, J.A.

    1988-01-01

    Failures of reactor coolant pump (RCP) seals that could result in a significant loss-of-coolant inventory are of current concern to the US Nuclear Regulatory Commission. Particular attention is being focused on seal behavior during station blackout conditions, when failure of on-site emergency diesel generators occurs simultaneously with loss of all off-site alternating current power. Under these conditions, both seal injection flow and component cooling water flow are lost, and the RCP seals are exposed to full reactor coolant temperature. Overheating of elastomeric components and flashing of coolant across the sealing faces can cause unacceptably high leakage rates, with potential catastrophic consequences. A test program has been conducted that subjects full-scale seal cartridges to typical pressurized water reactor (PWR) coolant system steady-state and transient operation conditions including associated dynamic shaft motions. A special test segment was developed to evaluate seal operation under station blackout conditions. The test program successfully mirrored the severity of an actual loss-of-seal cooling water event under station blackout conditions, and the Byron Jackson{reg sign} N-9000 seal cartridge maintained its integrity.

  16. Nuclear criticality safety assessment of the proposed CFC replacement coolants

    SciTech Connect

    Jordan, W.C.; Dyer, H.R.

    1993-12-01

    The neutron multiplication characteristics of refrigerant-114 (R-114) and proposed replacement coolants perfluorobutane (C{sub 4}F{sub 10}) and cycloperfluorobutane C{sub 4}F{sub 8}) have been compared by evaluating the infinite media multiplication factors of UF{sub 6}/H/coolant systems and by replacement calculations considering a 10-MW freezer/sublimer. The results of these comparisons demonstrate that R-114 is a neutron absorber, due to its chlorine content, and that the alternative fluorocarbon coolants are neutron moderators. Estimates of critical spherical geometries considering mixtures of UF{sub 6}/HF/C{sub 4}F{sub 10} indicate that the flourocarbon-moderated systems are large compared with water-moderated systems. The freezer/sublimer calculations indicate that the alternative coolants are more reactive than R-114, but that the reactivity remains significantly below the condition of water in the tubes, which was a limiting condition. Based on these results, the alternative coolants appear to be acceptable; however, several follow-up tasks have been recommended, and additional evaluation will be required on an individual equipment basis.

  17. Stagnation region gas film cooling: Effects of dimensionless coolant temperature

    NASA Technical Reports Server (NTRS)

    Bonnice, M. A.; Lecuyer, M. R.

    1983-01-01

    An experimental investigation was conducted to mode the film cooling performance for a turbine vane leading edge using the stagnation region of a cylinder in cross flow. Experiments were conducted with a single row of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio and dimensionless coolant temperature with free stream-to-wall temperature ratio approximately 1.7 and Re sub D = 90000. the cylindrical test surface was instrumented with miniature heat flux gages and wall thermocouples to determine the percentage reduction in the Stanton number as a function of the distance downstream from injection (x/d sub 0) and the location between adjacent holes (z/S). Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, from stagnation using a hole spacing ratio of S/d = 5. The film coolant was injected with T sub c T sub w with a dimensionless coolant temperature in the range 1.18 or equal to theta sub c or equal to 1.56. The data for local Stanton Number Reduction (SNR) showed a significant increase in SNR as theta sub c was increased above 1.0.

  18. Diesel engine coolant analysis, new application for established instrumentation

    SciTech Connect

    Anderson, D.P.; Lukas, M.; Lynch, B.K.

    1998-09-01

    Rotating disk electrode (RDE) arc emission spectrometers are used in many commercial, industrial and military laboratories throughout the world to analyze millions of oil and fuel samples each year. In fact, RDE spectrometers have been used exclusively for oil and fuel analysis for so long, that most practitioners have probably forgotten that when RDE spectrometers were first introduced more than 40 years ago, they were also routinely used for aqueous samples. This paper describes recent work to calibrate and modify RDE arc emission spectrometers for the analysis of engine coolant samples; a mixture of approximately 50% water and 50% glycol. The technique has been shown to be effective for the analysis of wear metals, contamination and supplemental coolant additives in ethylene and propylene glycol. A comparison of results for coolant samples measured by both inductively coupled plasma (ICP) and RDE spectrometers will be presented. The data correlates extremely well on new and relatively clean coolants. However, not surprisingly, RDE results are sometimes higher for samples containing particles larger than a few micrometers. This paper suggests that RDE spectrometers are appropriate, and sometimes preferred, for most types of coolants and certain types of aqueous samples. Actual field data is be presented to support the arguments.

  19. Safety Is No Accident.

    ERIC Educational Resources Information Center

    Christiansen, Monty L.

    1985-01-01

    Liability suits involving accidents in park and recreation areas are expensive and intangible costs are incalculable. Risk management practices related to park planning, personnel, and administrative practices are discussed. (MT)

  20. Accident resistant transport container

    DOEpatents

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  1. Accident resistant transport container

    DOEpatents

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  2. FATAL ACCIDENT REPORTING SYSTEM (FARS)

    EPA Science Inventory

    The Fatal Accident Reporting System (FARS) database consist of three relational tables, containing data on automobile accidents on public U.S. roads that resulted in the death of one or more people within 30 days of the accident. Truck and trailer accidents are also included.

  3. MELCOR code analysis of a severe accident LOCA at Peach Bottom Plant

    SciTech Connect

    Carbajo, J.J. )

    1993-01-01

    A design-basis loss-of-coolant accident (LOCA) concurrent with complete loss of the emergency core cooling systems (ECCSs) has been analyzed for the Peach Bottom atomic station unit 2 using the MELCOR code, version 1.8.1. The purpose of this analysis is to calculate best-estimate times for the important events of this accident sequence and best-estimate source terms. Calculated pressures and temperatures at the beginning of the transient have been compared to results from the Peach Bottom final safety analysis report (FSAR). MELCOR-calculated source terms have been compared to source terms reported in the NUREG-1465 draft.

  4. Accident management information needs

    SciTech Connect

    Hanson, D.J.; Ward, L.W.; Nelson, W.R.; Meyer, O.R. )

    1990-04-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, a methodology has been developed for identifying the plant information needs necessary for personnel involved in the management of an accident to diagnose that an accident is in progress, select and implement strategies to prevent or mitigate the accident, and monitor the effectiveness of these strategies. This report describes the methodology and presents an application of this methodology to a Pressurized Water Reactor (PWR) with a large dry containment. A risk-important severe accident sequence for a PWR is used to examine the capability of the existing measurements to supply the necessary information. The method includes an assessment of the effects of the sequence on the measurement availability including the effects of environmental conditions. The information needs and capabilities identified using this approach are also intended to form the basis for more comprehensive information needs assessment performed during the analyses and development of specific strategies for use in accident management prevention and mitigation. 3 refs., 16 figs., 7 tabs.

  5. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, R.P.

    1983-08-10

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  6. Actively controlling coolant-cooled cold plate configuration

    SciTech Connect

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  7. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  8. Estimate of radionuclide release characteristics into containment under severe accident conditions. Final report

    SciTech Connect

    Nourbakhsh, H.P.

    1993-11-01

    A detailed review of the available light water reactor source term information is presented as a technical basis for development of updated source terms into the containment under severe accident conditions. Simplified estimates of radionuclide release and transport characteristics are specified for each unique combination of the reactor coolant and containment system combinations. A quantitative uncertainty analysis in the release to the containment using NUREG-1150 methodology is also presented.

  9. Code System to Calculate Reactor Coolant System Leak Rate.

    Energy Science and Technology Software Center (ESTSC)

    1999-10-19

    Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report ofmore » the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.« less

  10. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    NASA Astrophysics Data System (ADS)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  11. Code System to Calculate Reactor Coolant System Leak Rate.

    SciTech Connect

    Bell, Pat

    1999-10-19

    Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report of the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.

  12. Evaluation of engine coolants under flow boiling conditions

    SciTech Connect

    McAssey, E.V. Jr.; Stinson, C.; Gollin, M.

    1995-12-31

    An experimental program has been conducted to evaluate the heat transfer performance of two engine coolant mixtures, propylene-glycol/water and ethylene-glycol/water. In each mixture, the concentration was 50-50 by volume. Performance in this situation is defined as the ability to maintain a lower surface temperature for a given flux. The heat transfer regimes considered covered the range from single phase forced convection through saturated flow boiling. Results show that both coolants perform satisfactorily. However, in single phase convection, ethylene-glycol/water is slightly more effective. Conversely, for sub-cooled nucleate boiling and saturated boiling, propylene-glycol/water results in slightly lower metal temperatures.

  13. Development of Figure of Merits (FOMs) for Intermediate Coolant Characterization and Selection

    SciTech Connect

    Eung Soo Kim; Piyush Sabharwall; Nolan Anderson

    2011-06-01

    This paper focuses on characterization of several coolant performances in the IHTL. There are lots of choices available for the IHTL coolants; gases, liquid metals, molten salts, and etc. Traditionally, the selection of coolants is highly dependent on engineer's experience and decisions. In this decision, the following parameters are generally considered: melting point, vapor pressure, density, thermal conductivity, heat capacity, viscosity, and coolant chemistry. The followings are general thermal-hydraulic requirements for the coolant in the IHTL: (1) High heat transfer performance - The IHTL coolant should exhibit high heat transfer performance to achieve high efficiency and economics; (2) Low pumping power - The IHTL coolant requires low pumping power to improve economics through less stringent pump requirements; (3) Low amount of coolant volume - The IHTL coolant requires less coolant volume for better economics; (4) Low amount of structural materials - The IHTL coolant requires less structural material volume for better economics; (5) Low heat loss - The IHTL requires less heat loss for high efficiency; and (6) Low temperature drop - The IHTL should allow less temperature drop for high efficiency. Typically, heat transfer coolants are selected based on various fluid properties such as melting point, vapor pressure, density, thermal conductivity, heat capacity, viscosity, and coolant chemistry. However, the selection process & results are highly dependent on the engineer's personal experience and skills. In the coolant selection, if a certain coolant shows superior properties with respect to the others, the decision will be very straightforward. However, generally, each coolant material exhibits good characteristics for some properties but poor for the others. Therefore, it will be very useful to have some figures of merits (FOMs), which can represent and quantify various coolant thermal performances in the system of interest. The study summarized in this

  14. a Simplified Methodology for the Prediction of the Small Break Loss-Of Accident.

    NASA Astrophysics Data System (ADS)

    Ward, Leonard William

    1988-12-01

    This thesis describes a complete methodology which has allowed for the development of a faster than real time computer program designed to simulate a small break loss -of-coolant accident in the primary system of a pressurized water reactor. By developing an understanding of the major phenomenon governing the small break LOCA fluid response, the system model representation can be greatly simplified leading to a very fast executing transient system blowdown code. Because of the fast execution times, the CULSETS code, or Columbia University Loss-of-Coolant Accident and System Excursion Transient Simulator code, is ideal for performing parametric studies of Emergency Core Cooling system or assessing the consequences of the many operator actions performed to place the system in a long term cooling mode following a small break LOCA. While the methodology was designed with specific application to the small break loss-of-coolant accident, it can also be used to simulate loss-of-feedwater, steam line breaks, and steam generator tube rupture events. The code is easily adaptable to a personal computer and could also be modified to provide the primary and secondary system responses to supply the required inputs to a simulator for a pressurized water reactor.

  15. [Psychogenesis of accidents].

    PubMed

    Giannattasio, E; Nencini, R; Nicolosi, N

    1988-01-01

    After having carried out a historical review of industrial psychology with specific attention to the evolution of the concept of causality in accidents, the Authors formulate their work hypothesis from that research which take into highest consideration the executives' attitudes in the genesis of the accidents. As dogmatism appears to be one of the most negative of executives' attitudes, the Authors administered Rockeach's Scale to 130 intermediate executives from 6 industries in Latium and observed the frequency index for accidents and the morbidity index (absenteeism) of the 2149 workhand. The Authors assumed that to high degree of dogmatism on the executives' side should correspond o a higher level of accidents and absenteeism among the staff. The data processing revealed that, due to the type of machinery employed, three of the industries examined should be considered as High Risk Industrie (HRI), while the remaining three could be considered as Low Risk Industries (LRI): in fact, due to the different working conditions, a significant lower number of accidents occurred in last the three. A statistically significant correlation between the executives' dogmatism and the number of accidents among their workhand in the HRI has been noticed, while this has not been observed in the LRI. This confirms, as had already been pointed out by Gemelli in 1944, that some "objective conditions" are requested so that the accident may actually take place. On the other hand the morbidity index has not shown any difference related to the different kind of industries (HRI, LRI): in both cases statistically significant correlations were obtained between the executives' dogmatism and the staff's absenteeism. absenteeism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3154344

  16. Advanced sodium fast reactor accident source terms : research needs.

    SciTech Connect

    Powers, Dana Auburn; Clement, Bernard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  17. Coolants with selective optical filtering characteristics for ruby laser applications

    NASA Technical Reports Server (NTRS)

    Mc Devitt, F. R.; Rasquin, J. R.

    1968-01-01

    Coolant-filtering medium developed consists of a solution of copper sulfate in a 4-1 volumetric mixture of ethanol and methanol. This solution should be a useful addition to ruby laser systems, particularily in large pulse or Q switching applications.

  18. Corrosion of structural materials by lead-based reactor coolants.

    SciTech Connect

    Abraham, D. P.; Leibowitz, L.; Maroni, V. A.; McDeavitt, S. M.; Raraz, A. G.

    2000-11-16

    Advanced nuclear reactor design has, in recent years, focused increasingly on the use of heavy-liquid-metal coolants, such as lead and lead-bismuth eutectic. Similarly, programs on accelerator-based transmutation systems have also considered the use of such coolants. Russian experience with heavy-metal coolants for nuclear reactors has lent credence to the validity of this approach. Of significant concern is the compatibility of structural materials with these coolants. We have used a thermal convection-based test method to allow exposure of candidate materials to molten lead and lead-bismuth flowing under a temperature gradient. The gradient was deemed essential in evaluating the behavior of the test materials in that should preferential dissolution of components of the test material occur we would expect dissolution in the hotter regions and deposition in the colder regions, thus promoting material transport. Results from the interactions of a Si-rich mild steel alloy, AISI S5, and a ferritic-martensitic stainless steel, HT-9, with the molten lead-bismuth are presented.

  19. Integral coolant channels supply made by melt-out method

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.

    1964-01-01

    Melt-out method of constructing strong, pressure-tight fluid coolant channels for chambers is accomplished by cementing pins to the surface and by depositing a melt-out material on the surface followed by two layers of epoxy-resin impregnated glass fibers. The structure is heated to melt out the low-melting alloy.

  20. Fuels, Lubricants, and Coolants. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual on fuels, lubricants, and coolants is one of a series of power mechanics tests and visual aids on automotive and off-the-road agricultural and construction equipment. Materials present basic information with illustrations for use by vocational students and teachers as well as shop servicemen and laymen. Focusing on fuels, the first of…

  1. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  2. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT.

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  3. 37. Upper level, chromate tanks (formerly provided coolant to missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Upper level, chromate tanks (formerly provided coolant to missile guidance section, retractor cables for lock pin in front of ladder at left - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  4. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY FILTRATION

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction and economic issues involved in recycling automotive and heavy-duty engine coolants. he specific recycling units evaluated are a fleet-size unit and a portable unit, both based on the technology of chemical filtration...

  5. PIPING FOR COOLANT WATER IS INSTALLED INSIDE REACTOR STRUCTURE PRIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PIPING FOR COOLANT WATER IS INSTALLED INSIDE REACTOR STRUCTURE PRIOR TO EMBEDMENT IN CONCRETE. HIGHER PIPE IS INLET; THE OTHER, THE OUTLET LOOP. INLET PIPE WILL CONNECT TO TOP SECTION OF REACTOR VESSEL. INL NEGATIVE NO. 1287. Unknown Photographer, 1/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Coolant Characteristics and Control in Direct Chill Casting

    SciTech Connect

    2001-10-01

    This project focuses on understanding the fundamentals of coolant behavior and developing strategies to control the cooling rate of DC casting of aluminum ingots. Project partners will conduct a fundamental study to identify various parameters affecting critical heat flux and boiling transition and evaluate the effects of various additives (impurity particulates, sodium and calcium salts, carbonates, bicarbonates, surfactants, etc.).

  7. Thermal explosions resulting from fuel-coolant interactions

    SciTech Connect

    Bartusiak, R.D.; Caram, H.S.

    1988-08-01

    High-speed photographic data and pressure traces of thermal explosions from the contact of single drops of ion oxide with water were analyzed according to models describing underwater chemical explosion and cavitation bubbles. The objective was to develop a simple method for analyzing the microscale hydrodynamics of fuel-coolant interactions (FCI). For a given external pressure and liquid density essentially all the features of the radial motion of the explosion bubble, including the total energy release, are uniquely determined by a single parameter - the bubble period. Nearly all of the heat transfer from fuel to coolant occurs during the 10/sup -5/ to 10/sup -4/ sec timespan of coolant vapor film collapse during which the fuel fragments. The features of the resulting explosion bubble are not significantly affected by the degree of heat transfer from vapor to coolant liquid and the bubble can be modeled as an empty cavity. The method developed during this study should facilitate investigations on FCI by simplifying the analyses of thermal explosion data. Further attention can be given to experiments on the effects of fuel parameters, e.g., surface tension and viscosity, on fragmentation, heat transfer, and explosive yield.

  8. INVESTIGATION OF CLEANER TECHNOLOGIES TO MINIMIZE AUTOMOTIVE COOLANT WASTES

    EPA Science Inventory

    The U.S. Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. hese evaluations addressed the product quality, waste reduction, and eco...

  9. Antimony tartrate corrosion inhibitive composition for coolant systems

    SciTech Connect

    Payerle, N.E.

    1987-08-11

    An automobile coolant concentrate is described comprising (a) a liquid polyhydric alcohol chosen from the group consisting of ethylene glycol, propylene glycol, diethylene glycol and mixtures thereof, and (b) corrosion inhibitors in a corrosion inhibitory amount with respect to corrosion of lead-containing solders, the corrosion inhibitors comprising (i) an alkali metal antimony tartrate, and (ii) an azole compound.

  10. Directly connected heat exchanger tube section and coolant-cooled structure

    DOEpatents

    Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2014-04-01

    A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  11. Experimental interaction of magma and “dirty” coolants

    NASA Astrophysics Data System (ADS)

    Schipper, C. Ian; White, James D. L.; Zimanowski, Bernd; Büttner, Ralf; Sonder, Ingo; Schmid, Andrea

    2011-03-01

    The presence of water at volcanic vents can have dramatic effects on fragmentation and eruption dynamics, but little is known about how the presence of particulate matter in external water will further alter eruptions. Volcanic edifices are inherently “dirty” places, where particulate matter of multiple origins and grainsizes typically abounds. We present the results of experiments designed to simulate non-explosive interactions between molten basalt and various “coolants,” ranging from homogeneous suspensions of 0 to 30 mass% bentonite clay in pure water, to heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass beads and/or naturally-sorted pumice. Four types of data are used to characterise the interactions: (1) visual/video observations; (2) grainsize and morphology of resulting particles; (3) heat-transfer data from a network of eight thermocouples; and (4) acoustic data from three force sensors. In homogeneous coolants with <~10% bentonite, heat transfer is by convection, and the melt is efficiently fragmented into blocky particles through multiple thermal granulation events which produce associated acoustic signals. For all coolants with >~20% sediment, heat transfer is by forced convection and conduction, and thermal granulation is less efficient, resulting in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. Both of these particle types indicate significant hydrodynamic magma-coolant mingling, and many of them are rewelded into compound particles. The addition of coarse material to heterogeneous suspensions further slows heat transfer thus reducing thermal granulation, and variable interlocking of large particles prevents efficient hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient distribution of melt and heat throughout the coolant volume. Our results indicate

  12. Injuries are not accidents

    PubMed Central

    Gutiérrez, María Isabel

    2014-01-01

    Injuries are the result of an acute exposure to exhort of energy or a consequence of a deficiency in a vital element that exceeds physiological thresholds resulting threatens life. They are classified as intentional or unintentional. Injuries are considered a global health issue because they cause more than 5 million deaths per year worldwide and they are an important contributor to the burden of disease, especially affecting people of low socioeconomic status in low- and middle-income countries. A common misconception exists where injuries are thought to be the same as accidents; however, accidents are largely used as chance events, without taken in consideration that all these are preventable. This review discusses injuries and accidents in the context of road traffic and emphasizes injuries as preventable events. An understanding of the essence of injuries enables the standardization of terminology in public use and facilitates the development of a culture of prevention among all of us. PMID:25386040

  13. Accidents in Childhood

    PubMed Central

    Keddy, J. Arthur

    1964-01-01

    The causes of injury to 17,141 children brought to the emergency department of a large pediatric hospital in one year were studied. The leading causes of injury were: falls, 5682; cuts or piercings, 1902; poisonings, 1597; and transportation accidents, 1368. Included in these are 587 falls on or down stairs, 401 cuts due to glass, 630 poisonings from household or workshop substances, 510 poisonings from salicylate tablets, and 449 accidents involving bicycles or tricycles. Other findings included 333 injuries to fingers or hands in doors, usually car doors; 122 instances of pulled arms; 384 ingestions and 53 inhalations of foreign bodies; 60 alleged sexual assaults, 58 chemical burns, 127 wringer injuries, and four attempted suicides. A rewarding opportunity in accident prevention exists for hospitals that undertake to compile and distribute pertinent source data. PMID:14201260

  14. The Fukushima radiation accident: consequences for radiation accident medical management.

    PubMed

    Meineke, Viktor; Dörr, Harald

    2012-08-01

    The March 2011 radiation accident in Fukushima, Japan, is a textbook example of a radiation accident of global significance. In view of the global dimensions of the accident, it is important to consider the lessons learned. In this context, emphasis must be placed on consequences for planning appropriate medical management for radiation accidents including, for example, estimates of necessary human and material resources. The specific characteristics of the radiation accident in Fukushima are thematically divided into five groups: the exceptional environmental influences on the Fukushima radiation accident, particular circumstances of the accident, differences in risk perception, changed psychosocial factors in the age of the Internet and globalization, and the ignorance of the effects of ionizing radiation both among the general public and health care professionals. Conclusions like the need for reviewing international communication, interfacing, and interface definitions will be drawn from the Fukushima radiation accident. PMID:22951483

  15. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    NASA Technical Reports Server (NTRS)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  16. Physics in Accident Investigations.

    ERIC Educational Resources Information Center

    Brake, Mary L.

    1981-01-01

    Describes physics formulas which can be used by law enforcement officials to determine the possible velocity of vehicles involved in traffic accidents. These include, among others, the slide to stop-level road, slide to stop-sloping roadway, and slide to stop-two different surfaces formulas. (JN)

  17. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  18. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  19. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  20. Directly connected heat exchanger tube section and coolant-cooled structure

    DOEpatents

    Chainer, Timothy J.; Coico, Patrick A.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2015-09-15

    A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  1. Analysis of two small break loss-of-coolant experiments in the BETHSY facility using RELAP5/MOD3

    SciTech Connect

    Roth, P.A.; Schultz, R.R. ); Choi, C.J. )

    1992-07-01

    Small break loss-of-coolant accident (SBLOCA) data were recorded during tests 9.lb and 6.2 TC in the Boucle d'Etudes Thermohydrouliques Systeme (BETHSY) facility at the Centre d'Etudes Nucleares de Grenoble (CENG) complex in Grenoble, France. The data from test 9.lb form the basis for the International Standard Problem number 27 (ISP-27). For each test the primary system depressurization, break flow rate, core heat-up, and effect of operator actions were analyzed. Based on the test 9.lb/ISP-27 and 6.2 TC data, an assessment study of the RELAP5/MOD3 version 7 code was performed which included a study of the above phenomena along with countercurrent flow limitation and vapor pull-through. The code provided a reasonable simulation of the various phenomena which occurred during the tests.

  2. Analysis of two small break loss-of-coolant experiments in the BETHSY facility using RELAP5/MOD3

    SciTech Connect

    Roth, P.A.; Schultz, R.R.; Choi, C.J.

    1992-07-01

    Small break loss-of-coolant accident (SBLOCA) data were recorded during tests 9.lb and 6.2 TC in the Boucle d`Etudes Thermohydrouliques Systeme (BETHSY) facility at the Centre d`Etudes Nucleares de Grenoble (CENG) complex in Grenoble, France. The data from test 9.lb form the basis for the International Standard Problem number 27 (ISP-27). For each test the primary system depressurization, break flow rate, core heat-up, and effect of operator actions were analyzed. Based on the test 9.lb/ISP-27 and 6.2 TC data, an assessment study of the RELAP5/MOD3 version 7 code was performed which included a study of the above phenomena along with countercurrent flow limitation and vapor pull-through. The code provided a reasonable simulation of the various phenomena which occurred during the tests.

  3. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    SciTech Connect

    Wong, S.; DiBiasio, A.; Gunther, W.

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failure modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.

  4. Qualification of data obtained during a severe accident. Illustrative examples from TMI-2 evaluations

    SciTech Connect

    Rempe, Joy L.; Knudson, Darrell L.

    2015-02-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.

  5. Health physics aspects of processing EBR-I coolant

    SciTech Connect

    Burke, L.L.; Thalgott, J.O.; Poston, J.W. Jr.

    1998-12-31

    The sodium-potassium reactor coolant removed from the Experimental Breeder Reactor Number One after a partial reactor core meltdown had been stored at the Idaho National Engineering and Environmental Laboratory for 40 years. The State of Idaho considered this waste the most hazardous waste stored in the state and required its processing. The reactor coolant was processed in three phases. The first phase converted the alkali metal into a liquid sodium-potassium hydroxide. The second phase converted this caustic to a liquid sodium-potassium carbonate. The third phase solidified the sodium-potassium carbonate into a form acceptable for land disposal. Health physics aspects and dose received during each phase of the processing are discussed.

  6. Copper-triazole interaction and coolant inhibitor depletion

    SciTech Connect

    Bartley, L.S.; Fritz, P.O.; Pellet, R.J.; Taylor, S.A.; Van de Ven, P.

    1999-08-01

    To a large extent, the depletion of tolyltriazole (TTZ) observed in several field tests may be attributed to the formation of a protective copper-triazole layer. Laboratory aging studies, shown to correlate with field experience, reveal that copper-TTZ layer formation depletes coolant TTZ levels in a fashion analogous to changes observed in the field. XPS and TPD-MS characterization of the complex formed indicates a strong chemical bond between copper and the adsorbed TTZ which can be desorbed thermally only at elevated temperatures. Electrochemical polarization experiments indicate that the layer provides good copper protection even when TTZ is absent from the coolant phase. Examination of copper cooling system components obtained after extensive field use reveals the presence of a similar protective layer.

  7. Glycol coolants improve heat transfer and corrosion control

    SciTech Connect

    Holfield, R.

    1995-03-01

    Various liquids from plain water to exotic fluids have been used as coolants in large stationary diesel engines that drive compressors on natural gas pipeline distribution systems. Although water is an efficient heat transfer medium, its drawbacks of freezing at {minus}32 F and boiling at 212 F seriously limit its usefulness. Special glycol-based heat transfer fluids are available and refined specifically for long-term needs of gas compressor engines. Appropriate corrosion inhibitors have been formulated for metallurgy and operating conditions encountered with these engines. Propylene glycol was developed as an alternative for use in environmentally sensitive areas. Glycol-based fluids must be specifically inhibited for industrial applications because uninhibited or improperly inhibited coolants can seriously damage reciprocating engines.

  8. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  9. 92. View of transmitter building no. 102 first floor coolant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. View of transmitter building no. 102 first floor coolant process water tanks (sodium bisulfate solution), stainless steel, for electronic systems cooling in transmitter and MIP rooms. RCA Services Company 29 September, 1960, official photograph BMEWS Project by unknown photograph, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. A-1226 - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. Experimental investigations of thermal interaction between corium and coolants

    NASA Astrophysics Data System (ADS)

    Zagorul'ko, Yu. I.; Zhmurin, V. G.; Volov, A. N.; Kovalev, Yu. P.

    2008-03-01

    We present a generalized analysis of the experimental results from investigations of thermal interaction in corium simulators (melts of thermite mixtures U + Mo3 and Zr + Fe2O3)-coolant (Na and H2O) systems. We also present the results from experimental assessments of the kinematic characteristics pertinent to the displacement of materials during the thermal interaction process and the coefficients for conversion of the corium thermal energy into mechanical work.