Science.gov

Sample records for coordinates ccl3-mediated neutrophil

  1. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia.

    PubMed

    McDonald, Braedon; Jenne, Craig N; Zhuo, Lisheng; Kimata, Koji; Kubes, Paul

    2013-12-01

    A key pathological feature of the systemic inflammatory response of sepsis/endotoxemia is the accumulation of neutrophils within the microvasculature of organs such as the liver, where they cause tissue damage and vascular dysfunction. There is emerging evidence that the vascular endothelium is critical to the orchestration of inflammatory responses to blood-borne microbes and microbial products in sepsis/endotoxemia. In this study, we aimed to understand the role of endothelium, and specifically endothelial TLR4 activation, in the regulation of neutrophil recruitment to the liver during endotoxemia. Intravital microscopy of bone marrow chimeric mice revealed that TLR4 expression by non-bone marrow-derived cells was required for neutrophil recruitment to the liver during endotoxemia. Furthermore, LPS-induced neutrophil adhesion in liver sinusoids was equivalent between wild-type mice and transgenic mice that express TLR4 only on endothelium (tlr4(-/-)Tie2(tlr4)), revealing that activation of endothelial TLR4 alone was sufficient to initiate neutrophil adhesion. Neutrophil arrest within sinusoids of endotoxemic mice requires adhesive interactions between neutrophil CD44 and endothelial hyaluronan. Intravital immunofluorescence imaging demonstrated that stimulation of endothelial TLR4 alone was sufficient to induce the deposition of serum-derived hyaluronan-associated protein (SHAP) within sinusoids, which was required for CD44/hyaluronan-dependent neutrophil adhesion. In addition to endothelial TLR4 activation, Kupffer cells contribute to neutrophil recruitment via a distinct CD44/HA/SHAP-independent mechanism. This study sheds new light on the control of innate immune activation within the liver vasculature during endotoxemia, revealing a key role for endothelial cells as sentinels in the detection of intravascular infections and coordination of neutrophil recruitment to the liver. PMID:24113769

  2. Tumor-Recruited Neutrophils and Neutrophil TIMP-Free MMP-9 Regulate Coordinately the Levels of Tumor Angiogenesis and Efficiency of Malignant Cell Intravasation

    PubMed Central

    Bekes, Erin M.; Schweighofer, Bernhard; Kupriyanova, Tatyana A.; Zajac, Ewa; Ardi, Veronica C.; Quigley, James P.; Deryugina, Elena I.

    2011-01-01

    Tumor-associated neutrophils contribute to neovascularization by supplying matrix metalloproteinase-9 (MMP-9), a protease that has been genetically and biochemically linked to induction of angiogenesis. Specific roles of inflammatory neutrophils and their distinct proMMP-9 in the coordinate regulation of tumor angiogenesis and tumor cell dissemination, however, have not been addressed. We demonstrate that the primary tumors formed by highly disseminating variants of human fibrosarcoma and prostate carcinoma recruit elevated levels of infiltrating MMP-9-positive neutrophils and concomitantly exhibit enhanced levels of angiogenesis and intravasation. Specific inhibition of neutrophil influx by interleukin 8 (IL-8) neutralization resulted in the coordinated diminishment of tumor angiogenesis and intravasation, both of which were rescued by purified neutrophil proMMP-9. However, if neutrophil proMMP-9, naturally devoid of tissue inhibitor of metalloproteinases (TIMP), was delivered in complex with TIMP-1 or in a mixture with TIMP-2, the protease failed to rescue the inhibitory effects of anti-IL8 therapy, indicating that the TIMP-free status of proMMP-9 is critical for facilitating tumor angiogenesis and intravasation. Our findings directly link tumor-associated neutrophils and their TIMP-free proMMP-9 with the ability of aggressive tumor cells to induce the formation of new blood vessels that serve as conduits for tumor cell dissemination. Thus, treatment of cancers associated with neutrophil infiltration may benefit from specific targeting of neutrophil MMP-9 at early stages to prevent ensuing tumor angiogenesis and tumor metastasis. PMID:21741942

  3. Sex Hormones Coordinate Neutrophil Immunity in the Vagina by Controlling Chemokine Gradients.

    PubMed

    Lasarte, Sandra; Samaniego, Rafael; Salinas-Muñoz, Laura; Guia-Gonzalez, Mauriel A; Weiss, Linnea A; Mercader, Enrique; Ceballos-García, Elena; Navarro-González, Teresa; Moreno-Ochoa, Laura; Perez-Millan, Federico; Pion, Marjorie; Sanchez-Mateos, Paloma; Hidalgo, Andres; Muñoz-Fernandez, Maria A; Relloso, Miguel

    2016-02-01

    Estradiol-based contraceptives and hormonal replacement therapy predispose women to Candida albicans infections. Moreover, during the ovulatory phase (high estradiol), neutrophil numbers decrease in the vaginal lumen and increase during the luteal phase (high progesterone). Vaginal secretions contain chemokines that drive neutrophil migration into the lumen. However, their expression during the ovarian cycle or in response to hormonal treatments are controversial and their role in vaginal defense remains unknown.To investigate the transepithelial migration of neutrophils, we used adoptive transfer of Cxcr2(-/-) neutrophils and chemokine immunofluorescence quantitative analysis in response to C. albicans vaginal infection in the presence of hormones.Our data show that the Cxcl1/Cxcr2 axis drives neutrophil transepithelial migration into the vagina. Progesterone promotes the Cxcl1 gradient to favor neutrophil migration. Estradiol disrupts the Cxcl1 gradient and favors neutrophil arrest in the vaginal stroma; as a result, the vagina becomes more vulnerable to pathogens. PMID:26238687

  4. Neutrophil swarming: an essential process of the neutrophil tissue response.

    PubMed

    Kienle, Korbinian; Lämmermann, Tim

    2016-09-01

    Neutrophil infiltration into inflamed and infected tissues is a fundamental process of the innate immune response. While neutrophil interactions with the blood vessel wall have been intensely studied over the last decades, neutrophil dynamics beyond the vasculature have for a long time remained poorly investigated. Recent intravital microscopy studies of neutrophil populations directly at the site of tissue damage or microbial invasion have changed our perspective on neutrophil responses within tissues. Swarm-like migration patterns of neutrophils, referred to as 'neutrophil swarming', have been detected in diverse tissues under conditions of sterile inflammation and infection with various pathogens, including bacteria, fungi, and parasites. Current work has begun to unravel the molecular pathways choreographing the sequential phases of highly coordinated chemotaxis followed by neutrophil accumulation and the formation of substantial neutrophil clusters. It is now clear that intercellular communication among neutrophils amplifies their recruitment in a feed-forward manner, which provides them with a level of self-organization during neutrophil swarming. This review will summarize recent developments and current concepts on neutrophil swarming, an important process of the neutrophil tissue response with a critical role in maintaining the balance between host protection and inflammation-driven tissue destruction. PMID:27558329

  5. The lymph node neutrophil.

    PubMed

    Hampton, Henry R; Chtanova, Tatyana

    2016-04-01

    Secondary lymphoid organs provide a specialized microenvironment tailored to foster communication between cells of the innate and adaptive immune systems. These interactions allow immune cells to coordinate multilayered defense against pathogens. Until recently dendritic cells and macrophages were thought to comprise the main innate immune cell subsets responsible for delivering signals that drive the adaptive immune response, while the function of neutrophils was largely confined to the innate immune system. However, the discovery of neutrophils in lymph nodes has raised the question of whether neutrophils might play a more extensive role not only in innate immunity per se, but also in coordinating the interactions between innate and adaptive immune responses. In this review we discuss the mechanisms and consequences of neutrophil recruitment to lymph nodes and how this recruitment influences subsequent immune responses both in situ and at distant sites. PMID:27025975

  6. APPLICATION OF PROTEOMICS TO NEUTROPHIL BIOLOGY

    PubMed Central

    Luerman, Gregory C.; Uriarte, Silvia M.; Rane, Madhavi J.; McLeish, Kenneth R.

    2009-01-01

    Polymorphonuclear leukocytes or neutrophils are a primary effector cell of the innate immune system and contribute to the development of adaptive immunity. Neutrophils participate in both the initiation and resolution of inflammatory responses through a series of highly coordinated molecular and phenotypic changes. To accomplish these changes, neutrophils express numerous receptors and use multiple overlapping and redundant signal transduction pathways. Dysregulation of the activation or resolution pathways plays a role in a number of human diseases. A comprehensive understanding of the regulation of neutrophil responses can be provided by high throughput proteomic technologies and sophisticated computational analysis. The first steps in the application of proteomics to understanding neutrophil biology have been taken. Here we review the application of expression, structural, and functional proteomic studies to neutrophils. Although defining the complex molecular events associated with neutrophil activation is in the early stages, the data generated to date suggest that proteomic technologies will dramatically enhance our understanding of neutrophil biology. PMID:19580889

  7. Intracellular signalling during neutrophil recruitment.

    PubMed

    Mócsai, Attila; Walzog, Barbara; Lowell, Clifford A

    2015-08-01

    Recruitment of leucocytes such as neutrophils to the extravascular space is a critical step of the inflammation process and plays a major role in the development of various diseases including several cardiovascular diseases. Neutrophils themselves play a very active role in that process by sensing their environment and responding to the extracellular cues by adhesion and de-adhesion, cellular shape changes, chemotactic migration, and other effector functions of cell activation. Those responses are co-ordinated by a number of cell surface receptors and their complex intracellular signal transduction pathways. Here, we review neutrophil signal transduction processes critical for recruitment to the site of inflammation. The two key requirements for neutrophil recruitment are the establishment of appropriate chemoattractant gradients and the intrinsic ability of the cells to migrate along those gradients. We will first discuss signalling steps required for sensing extracellular chemoattractants such as chemokines and lipid mediators and the processes (e.g. PI3-kinase pathways) leading to the translation of extracellular chemoattractant gradients to polarized cellular responses. We will then discuss signal transduction by leucocyte adhesion receptors (e.g. tyrosine kinase pathways) which are critical for adhesion to, and migration through the vessel wall. Finally, additional neutrophil signalling pathways with an indirect effect on the neutrophil recruitment process, e.g. through modulation of the inflammatory environment, will be discussed. Mechanistic understanding of these pathways provide better understanding of the inflammation process and may point to novel therapeutic strategies for controlling excessive inflammation during infection or tissue damage. PMID:25998986

  8. Neutrophils: game changers in glomerulonephritis?

    PubMed Central

    Mayadas, Tanya N.; Rosetti, Florencia; Ernandez, Thomas; Sethi, Sanjeev

    2010-01-01

    Glomerulonephritides represent a diverse array of diseases that have in common immune cell-mediated effector mechanisms that cause organ damage. The contribution of neutrophils to the pathogenesis of proliferative glomerulonephritis (GN) is not well recognized. Most equate neutrophils with killing pathogens and causing collateral tissue damage during acute inflammation. However, these phagocytes are endowed with additional characteristics that have been traditionally reserved for cells of the adaptive immune system. They communicate with other cells, exhibit plasticity in their responses and have the potential to coordinate and inform the subsequent immune response, thus countering the notion that they arrive, destroy and then disappear. Therefore, neutrophils, which are the first to arrive at a site of inflammation, are potential game changers in GN. PMID:20667782

  9. Dynamics of neutrophil migration in lymph nodes during infection

    PubMed Central

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G.; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A.

    2008-01-01

    Summary While the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes, or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning laser microscopy (TPSLM) to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We find that neutrophils form both small, transient or large, persistent swarms via a strikingly coordinated migration pattern. We provide evidence that cooperative action of neutrophils and parasite egress from host cells can trigger swarm formation. Neutrophil swarm formation coincides in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses. PMID:18718768

  10. How neutrophils kill fungi.

    PubMed

    Gazendam, Roel P; van de Geer, Annemarie; Roos, Dirk; van den Berg, Timo K; Kuijpers, Taco W

    2016-09-01

    Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus. PMID:27558342

  11. Neutrophil's weapons in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2015-12-01

    Neutrophils are important components of immunity associated with inflammatory responses against a broad spectrum of pathogens. These cells could be rapidly activated by proinflammatory stimuli and migrate to the inflamed and infected sites where they release a variety of cytotoxic molecules with antimicrobial activity. Neutrophil antibacterial factors include extracellular proteases, redox enzymes, antimicrobial peptides, and small bioactive molecules. In resting neutrophils, these factors are stored in granules and released upon activation during degranulation. These factors could be also secreted in a neutrophil-derived microparticle-dependent fashion. Neutrophils exhibit a unique property to produce neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins to catch and kill bacteria. Neutrophil-released factors are efficient in inactivation and elimination of pathogens through oxidation-dependent or independent damage of bacterial cells, inactivation and neutralization of virulence factors and other mechanisms. However, in chronic atherosclerosis-associated inflammation, protective function of neutrophils could be impaired and misdirected against own cells. This could lead to deleterious effects and progressive vascular injury. In atherogenesis, a pathogenic role of neutrophils could be especially seen in early stages associated with endothelial dysfunction and induction of vascular inflammation and in late atherosclerosis associated with plaque rupture and atherothrombosis. Assuming a prominent impact of neutrophils in cardiovascular pathology, developing therapeutic strategies targeting neutrophil-specific antigens could have a promising clinical potential. PMID:26551083

  12. Dimethylfumarate Impairs Neutrophil Functions.

    PubMed

    Müller, Susen; Behnen, Martina; Bieber, Katja; Möller, Sonja; Hellberg, Lars; Witte, Mareike; Hänsel, Martin; Zillikens, Detlef; Solbach, Werner; Laskay, Tamás; Ludwig, Ralf J

    2016-01-01

    Host defense against pathogens relies on neutrophil activation. Inadequate neutrophil activation is often associated with chronic inflammatory diseases. Neutrophils also constitute a significant portion of infiltrating cells in chronic inflammatory diseases, for example, psoriasis and multiple sclerosis. Fumarates improve the latter diseases, which so far has been attributed to the effects on lymphocytes and dendritic cells. Here, we focused on the effects of dimethylfumarate (DMF) on neutrophils. In vitro, DMF inhibited neutrophil activation, including changes in surface marker expression, reactive oxygen species production, formation of neutrophil extracellular traps, and migration. Phagocytic ability and autoantibody-induced, neutrophil-dependent tissue injury ex vivo was also impaired by DMF. Regarding the mode of action, DMF modulates-in a stimulus-dependent manner-neutrophil activation using the phosphoinositide 3-kinase/Akt-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 pathways. For in vivo validation, mouse models of epidermolysis bullosa acquisita, an organ-specific autoimmune disease caused by autoantibodies to type VII collagen, were employed. In the presence of DMF, blistering induced by injection of anti-type VII collagen antibodies into mice was significantly impaired. DMF treatment of mice with clinically already-manifested epidermolysis bullosa acquisita led to disease improvement. Collectively, we demonstrate a profound inhibitory activity of DMF on neutrophil functions. These findings encourage wider use of DMF in patients with neutrophil-mediated diseases. PMID:26763431

  13. ISOLATION OF MOUSE NEUTROPHILS

    PubMed Central

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E.; Lionakis, Michail S.

    2015-01-01

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT 19.6. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments. PMID:26237011

  14. Neutrophilic dermatoses in children.

    PubMed

    Berk, David R; Bayliss, Susan J

    2008-01-01

    The neutrophilic dermatoses are rare disorders, especially in children, and are characterized by neutrophilic infiltrates in the skin and less commonly in extracutaneous tissue. The neutrophilic dermatoses share similar clinical appearances and associated conditions, including inflammatory bowel disease, malignancies, and medications. Overlap forms of disease demonstrating features of multiple neutrophilic dermatoses may be seen. The manuscript attempts to provide an up-to-date review of (i) classical neutrophilic dermatoses, focusing on distinctive features in children and (ii) neutrophilic dermatoses which may largely be pediatric or genodermatosis-associated (Majeed, SAPHO [synovitis, severe acne, sterile palmoplantar pustulosis, hyperostosis, and osteitis] syndrome, PAPA (pyogenic sterile arthritis, pyoderma gangrenosum, and acne), PFAPA (periodic fever with aphthous stomatitis, pharyngitis, and cervical adenopathy), and other periodic fever syndromes, and congenital erosive and vesicular dermatosis healing with reticulated supple scarring). PMID:18950391

  15. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues.

    PubMed

    Lämmermann, Tim

    2016-07-01

    Neutrophils are sentinel cells that express in higher vertebrates >30 chemokine and chemoattractant receptors to sense and quickly react to tissue damage signals. Intravital microscopy studies in mouse models of wounding, inflammation, and infection have revealed that neutrophils form cell swarms at local sites of tissue injury and cell death. This swarming response is choreographed by chemokines, lipids, and other chemoattractants, controlling sequential phases of highly coordinated chemotaxis, intercellular signal relay, and cluster formation among neutrophils. This review will give a brief overview about the basic principles and key molecules that have led to the refined multistep model of how neutrophils come together to isolate sites of tissue injury and microbial invasion from healthy tissue. Whereas auto- and paracrine signaling among neutrophils during later phases of swarming can provide a level of self-organization for robust navigation in diverse inflammatory settings, guidance factors from primary tissue lesions, resident bystander cells, and dying cells regulate the initial phases of the swarming response. This review will discuss how the specific environmental context and mixture of attractants at the locally inflamed site can lead to variants of the multistep attraction model and influence the extent of neutrophil swarming, ranging from accumulations of only few individual cells to the aggregation of several hundreds of neutrophils, as found in abscesses. Given the critical roles of neutrophils in both host protection and tissue destruction, novel insights on neutrophil swarming might provide useful for the therapeutic modulation of neutrophil-dependent inflammatory processes. PMID:26416718

  16. Immunoreceptors on neutrophils.

    PubMed

    van Rees, Dieke J; Szilagyi, Katka; Kuijpers, Taco W; Matlung, Hanke L; van den Berg, Timo K

    2016-04-01

    Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention. PMID:26976825

  17. Neutrophils in cancer.

    PubMed

    Treffers, Louise W; Hiemstra, Ida H; Kuijpers, Taco W; van den Berg, Timo K; Matlung, Hanke L

    2016-09-01

    Neutrophils play an important role in cancer. This does not only relate to the well-established prognostic value of the presence of neutrophils, either in the blood or in tumor tissue, in the context of cancer progression or for the monitoring of therapy, but also to their active role in the progression of cancer. In the current review, we describe what is known in general about the role of neutrophils in cancer. What is emerging is a complex, rather heterogeneous picture with both pro- and anti-tumorigenic roles, which apparently differs with cancer type and disease stage. Furthermore, we will discuss the well-known role of neutrophils as myeloid-derived suppressor cells (MDSC), and also on the role of neutrophils as important effector cells during antibody therapy in cancer. It is clear that neutrophils contribute substantially to cancer progression in multiple ways, and this includes both direct effects on the cancer cells and indirect effect on the tumor microenvironment. While in many cases neutrophils have been shown to promote tumor progression, for instance by acting as MDSC, there are also protective effects, particularly when antibody immunotherapy is performed. A better understanding of the role of neutrophils is likely to provide opportunities for immunomodulation and for improving the treatment of cancer patients. PMID:27558343

  18. Myeloperoxidase Stimulates Neutrophil Degranulation.

    PubMed

    Grigorieva, D V; Gorudko, I V; Sokolov, A V; Kostevich, V A; Vasilyev, V B; Cherenkevich, S N; Panasenko, O M

    2016-08-01

    Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation. PMID:27597056

  19. [Neutrophilic functional heterogeneity].

    PubMed

    2006-02-01

    Blood neutrophilic functional heterogeneity is under discussion. The neutrophils of one subpopulation, namely killer neutrophils (Nk), potential phagocytes, constitute a marginal pool and a part of the circulating pool, intensively produce active oxygen forms (AOF) and they are adherent to the substrate. The neutrophils of another subpopulation, cager neutrophils (Nc), seem to perform a transport function of delivering foreign particles to the competent organs, to form about half of the circulating pool, to produce APC to a lesser extent, exclusively for self-defense and, probably, in usual conditions, to fail to interact with substrate. Analysis of the experimental findings suggests that the phylogenetic age of Nk is older than that of Nc and Nk has predominantly a tendency to spontaneous apoptosis under physiological conditions. PMID:16610631

  20. Neutrophil kinetics in man.

    PubMed Central

    Dancey, J T; Deubelbeiss, K A; Harker, L A; Finch, C A

    1976-01-01

    A method has been developed for measuring neutrophil cellularity in normal human bone marrow, in which the neutrophil-erythroid ratio was determined from marrow sections and marrow normoblasts were estimated by the erythron iron turnover. Neutrophil maturational categories, defined by morphologic criteria, were supported by autoradiographs of marrow flashed-labeled with 3H-thymidine. Correction for multiple counting error was empirically derived by counting serial sections through cells of each maturational category. The normal neutrophil-erythroid ratio in 13 normal human subjects was 1.5 +/- 0.07. The mean number of normoblasts in the same subjects was estimated to be 5.07 +/- 0.84 X 10(9) cells/kg. Total marrow neutrophils (X 10(9) cells/kg) were 7.70 +/- 1.20, the postmitotic pool (metamyelocytes, bands, and segmented forms) was 5.59 +/- 0.90 and the mitotic pool (promyelocytes + myelocytes) was 2.11 +/- 0.36. Marrow neutrophil ("total") production has been determined from the number of neutrophils comprising the postmitotic marrow pool divided by their transit time Transit time was derived from the appearance in circulating neutrophils of injected 3H-thymidine. The postmitotic pool comprised 5.59 +/- 0.90 X 10(9) neutrophils/kg, and the transit time was 6.60 +/- 0.03 days. From these data marrow neutrophil production was calculated to be 0.85 X 10(9) cells/kg per day. Effective production, measured as the turnover of circulating neutrophils labeled with 3H-thymidine, was 0.87 +/- 0.13 X 10(9) cells/kg per day. This value correlated well with the calculation of marrow neutrophil production. A larger turnover of 1.62 +/- 0.46 X 10(9) cells/kg per day was obtained when diisopropylfluorophosphate-32P was used to label circulating neutrophils. Studies using isologous cells doubly labeled with 3H-thymidine and diisopropylfluorophosphate-32P demonstrated a lower recovery and shorter t1/2 of the 32P label. Images PMID:956397

  1. Neutrophils in cystic fibrosis.

    PubMed

    Laval, Julie; Ralhan, Anjali; Hartl, Dominik

    2016-06-01

    Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease. PMID:26854289

  2. Neutrophil biology: an update

    PubMed Central

    Kobayashi, Yoshiro

    2015-01-01

    Neutrophil extracellular traps (NETs) are involved in bacterial killing as well as autoimmunity, because NETs contain proteases, bactericidal peptides, DNA and ribonucleoprotein. NETs are formed via a novel type of cell death called NETosis. NETosis is distinct from apoptosis, but it resembles necrosis in that both membranes are not intact so that they allow intracellular proteins to leak outside of the cells. Removal of NETs and neutrophils undergoing NETosis by phagocytes and its subsequent response are not completely clarified, as compared with the response after removal of either apoptotic or necrotic neutrophils by phagocytes. How neutrophil density in peripheral blood is kept within a certain range is important for health and disease. Although the studies on severe congenital neutropenia and benign ethnic neutropenia have provided unbiased views on it, the studies are rather limited to human neutropenia, and mice with a mutation of mouse counterpart gene often fail to exhibit neutropenia. Degranulation plays a critical role in bactericidal action. The recent studies revealed that it is also involved in immunomodulation, pain control and estrous cycle control. N1 and N2 are representative of neutrophil subpopulations. The dichotomy holds true in patients or mice with severe trauma or cancer, providing the basis of differential roles of neutrophils in diseases. PMID:26600743

  3. The Multifaceted Functions of Neutrophils

    PubMed Central

    Mayadas, Tanya N.; Cullere, Xavier; Lowell, Clifford A.

    2014-01-01

    Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases. PMID:24050624

  4. Platelets enhance neutrophil transendothelial migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Platelets are increasingly recognized as important mediators of inflammation in addition to thrombosis. While platelets have been shown to promote neutrophil (PMN) adhesion to endothelium in various inflammatory models, it is unclear whether platelets enhance neutrophil transmigration across inflame...

  5. Review of the neutrophil response to Bordetella pertussis infection.

    PubMed

    Eby, Joshua C; Hoffman, Casandra L; Gonyar, Laura A; Hewlett, Erik L

    2015-12-01

    The nature and timing of the neutrophil response to infection with Bordetella pertussis is influenced by multiple virulence factors expressed by the bacterium. After inoculation of the host airway, the recruitment of neutrophils signaled by B. pertussis lipooligosaccharide (LOS) is suppressed by pertussis toxin (PTX). Over the next week, the combined activities of PTX, LOS and adenylate cyclase toxin (ACT) result in production of cytokines that generate an IL-17 response, promoting neutrophil recruitment which peaks at 10-14 days after inoculation in mice. Arriving at the site of infection, neutrophils encounter the powerful local inhibitory activity of ACT, in conjunction with filamentous hemagglutinin. With the help of antibodies, neutrophils contribute to clearance of B. pertussis, but only after 28-35 days in a naïve mouse. Studies of the lasting, antigen-specific IL-17 response to infection in mice and baboons has led to progress in vaccine development and understanding of pathogenesis. Questions remain about the mediators that coordinate neutrophil recruitment and the mechanisms by which neutrophils overcome B. pertussis virulence factors. PMID:26432818

  6. [Leukemic neutrophilic dermatosis].

    PubMed

    Török, L; Kirschner, A; Gurzó, M; Krenács, L

    1999-03-28

    A case of a 67 year-old female patient with acute myeloid leukemia is presented. As the first manifestation of the disease, the patient had symptoms of Sweet's syndrome, later signs of gangrenous pyoderma have developed. This transient form is termed as a "leukemic neutrophilic dermatosis". The authors focus on the important diagnostic and prognostic value of this entity. PMID:10349319

  7. Neutrophil Functions in Periodontal Homeostasis.

    PubMed

    Cortés-Vieyra, Ricarda; Rosales, Carlos; Uribe-Querol, Eileen

    2016-01-01

    Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed. PMID:27019855

  8. Neutrophil Functions in Periodontal Homeostasis

    PubMed Central

    Cortés-Vieyra, Ricarda; Rosales, Carlos

    2016-01-01

    Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed. PMID:27019855

  9. Feedback Amplification of Neutrophil Function.

    PubMed

    Németh, Tamás; Mócsai, Attila

    2016-06-01

    As the first line of innate immune defense, neutrophils need to mount a rapid and robust antimicrobial response. Recent studies implicate various positive feedback amplification processes in achieving that goal. Feedback amplification ensures effective migration of neutrophils in shallow chemotactic gradients, multiple waves of neutrophil recruitment to the site of inflammation, and the augmentation of various effector functions of the cells. We review here such positive feedback loops including intracellular and autocrine processes, paracrine effects mediated by lipid (LTB4), chemokine, and cytokine mediators, and bidirectional interactions with the complement system and with other immune and non-immune cells. These amplification mechanisms are not only involved in antimicrobial immunity but also contribute to neutrophil-mediated tissue damage under pathological conditions. PMID:27157638

  10. Neutrophil Elastase Inhibitors

    PubMed Central

    Groutas, William C.; Dou, Dengfeng; Alliston, Kevin R.

    2011-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis, and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. Areas covered An overview of major developments in COPD research with emphasis on low molecular weight neutrophil elastase inhibitors is described in this review. Expert opinion Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is till limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as, for instance, an HNE or MMP-12 inhibitor with an anti-inflammatory agent such as a phosphodiesterase-4 inhibitor, or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress PMID:21235378

  11. AUTOINFLAMMATORY PUSTULAR NEUTROPHILIC DISEASES

    PubMed Central

    Naik, Haley B.; Cowen, Edward W.

    2013-01-01

    SYNOPSIS The inflammatory pustular dermatoses constitute a spectrum of non-infectious conditions ranging from localized involvement to generalized disease with associated acute systemic inflammation and multi-organ involvement. Despite the variability in extent and severity of cutaneous presentation, each of these diseases is characterized by non-infectious neutrophilic intra-epidermal microabscesses. Many share systemic findings including fever, elevated inflammatory markers, inflammatory bowel disease and/or osteoarticular involvement, suggesting potential common pathogenic links (Figure 1). The recent discoveries of several genes responsible for heritable pustular diseases have revealed a distinct link between pustular skin disease and regulation of innate immunity. These genetic advances have led to a deeper exploration of common pathways in pustular skin disease and offer the potential for a new era of biologic therapy which targets these shared pathways. This chapter provides a new categorization of inflammatory pustular dermatoses in the context of recent genetic and biologic insights. We will discuss recently-described monogenic diseases with pustular phenotypes, including deficiency of IL-1 receptor antagonist (DIRA), deficiency of the IL-36 receptor antagonist (DITRA), CARD14-associated pustular psoriasis (CAMPS), and pyogenic arthritis, pyoderma gangrenosum, acne (PAPA). We will then discuss how these new genetic advancements may inform how we view previously described pustular diseases, including pustular psoriasis and its clinical variants, with a focus on historical classification by clinical phenotype. PMID:23827244

  12. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo

    PubMed Central

    Lämmermann, Tim; Afonso, Philippe V.; Angermann, Bastian R.; Wang, Ji Ming; Kastenmüller, Wolfgang; Parent, Carole A.; Germain, Ronald N.

    2013-01-01

    Neutrophil recruitment from blood to extravascular sites of sterile or infectious tissue damage is a hallmark of early innate immune responses, and the molecular events leading to cell exit from the bloodstream have been well defined1,2. Once outside the vessel, individual neutrophils often show extremely coordinated chemotaxis and cluster formation reminiscent of the swarming behaviour of insects3–11. The molecular players that direct this response at the single-cell and population levels within the complexity of an inflamed tissue are unknown. Using two-photon intravital microscopy in mouse models of sterile injury and infection, we show a critical role for intercellular signal relay among neutrophils mediated by the lipid leukotriene B4, which acutely amplifies local cell death signals to enhance the radius of highly directed interstitial neutrophil recruitment. Integrin receptors are dispensable for long-distance migration12, but have a previously unappreciated role in maintaining dense cellular clusters when congregating neutrophils rearrange the collagenous fibre network of the dermis to form a collagen-free zone at the wound centre. In this newly formed environment, integrins, in concert with neutrophil-derived leukotriene B4 and other chemoattractants, promote local neutrophil interaction while forming a tight wound seal. This wound seal has borders that cease to grow in kinetic concert with late recruitment of monocytes and macrophages at the edge of the displaced collagen fibres. Together, these data provide an initial molecular map of the factors that contribute to neutrophil swarming in the extravascular space of a damaged tissue. They reveal how local events are propagated over large-range distances, and how auto-signalling produces coordinated, self-organized neutrophil-swarming behaviour that isolates the wound or infectious site from surrounding viable tissue. PMID:23708969

  13. Neutrophil ageing is regulated by the microbiome.

    PubMed

    Zhang, Dachuan; Chen, Grace; Manwani, Deepa; Mortha, Arthur; Xu, Chunliang; Faith, Jeremiah J; Burk, Robert D; Kunisaki, Yuya; Jang, Jung-Eun; Scheiermann, Christoph; Merad, Miriam; Frenette, Paul S

    2015-09-24

    Blood polymorphonuclear neutrophils provide immune protection against pathogens, but may also promote tissue injury in inflammatory diseases. Although neutrophils are generally considered to be a relatively homogeneous population, evidence for heterogeneity is emerging. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and replenishment by newly released neutrophils from the bone marrow. Aged neutrophils upregulate CXCR4, a receptor allowing their clearance in the bone marrow, with feedback inhibition of neutrophil production via the IL-17/G-CSF axis, and rhythmic modulation of the haematopoietic stem-cell niche. The aged subset also expresses low levels of L-selectin. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties. Here, using in vivo ageing analyses in mice, we show that neutrophil pro-inflammatory activity correlates positively with their ageing whilst in circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin activation and neutrophil extracellular trap formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptor and myeloid differentiation factor 88-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle-cell disease or endotoxin-induced septic shock. These results identify a role for the microbiota in regulating a disease-promoting neutrophil subset. PMID:26374999

  14. Role of neutrophils in systemic autoimmune diseases

    PubMed Central

    2013-01-01

    Neutrophils have emerged as important regulators of innate and adaptive immune responses. Recent evidence indicates that neutrophils display marked abnormalities in phenotype and function in various systemic autoimmune diseases, and may play a central role in initiation and perpetuation of aberrant immune responses and organ damage in these conditions. This review discusses the putative roles that neutrophils and aberrant neutrophil cell death play in the pathogenesis of various systemic autoimmune diseases, including systemic lupus erythematosus, small vessel vasculitis and rheumatoid arthritis. PMID:24286137

  15. Neutral serine proteases of neutrophils.

    PubMed

    Kettritz, Ralph

    2016-09-01

    Neutrophil serine proteases (NSPs) exercise tissue-degrading and microbial-killing effects. The spectrum of NSP-mediated functions grows continuously, not least because of methodological progress. Sensitive and specific FRET substrates were developed to study the proteolytic activity of each NSP member. Advanced biochemical methods are beginning to characterize common and specific NSP substrates. The resulting novel information indicates that NSPs contribute not only to genuine inflammatory neutrophil functions but also to autoimmunity, metabolic conditions, and cancer. Tight regulatory mechanisms control the proteolytic potential of NSPs. However, not all NSP functions depend on their enzymatic activity. Proteinase-3 (PR3) is somewhat unique among the NSPs for PR3 functions as an autoantigen. Patients with small-vessel vasculitis develop autoantibodies to PR3 that bind their target antigens on the neutrophil surface and trigger neutrophil activation. These activated cells subsequently contribute to vascular necrosis with life-threatening multiorgan failure. This article discusses various aspects of NSP biology and highlights translational aspects with strong clinical implications. PMID:27558338

  16. Neutrophils in cancer: neutral no more.

    PubMed

    Coffelt, Seth B; Wellenstein, Max D; de Visser, Karin E

    2016-07-01

    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets. PMID:27282249

  17. Regulation of immune responses by neutrophils.

    PubMed

    Wang, Jing; Arase, Hisashi

    2014-06-01

    Neutrophils, the most abundant circulating cells in humans, are major pathogen-killing immune cells. For many years, these cells were considered to be simple killers at the "bottom" of immune responses. However, recent studies have revealed more sophisticated mechanisms associated with neutrophilic cytotoxic functions, and neutrophils have been shown to contribute to various infectious and inflammatory diseases. In this review, we discuss the key features of neutrophils during inflammatory responses, from their release from the bone marrow to their death in inflammatory loci. We also discuss the expanding roles of neutrophils that have been identified in the context of several inflammatory diseases. We further focus on the mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against both pathogens and host tissues. PMID:24850053

  18. Neutrophil extracellular traps - the dark side of neutrophils.

    PubMed

    Sørensen, Ole E; Borregaard, Niels

    2016-05-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those originally described in vitro. Citrullination of histones by peptidyl arginine deiminase 4 (PAD4) is central for NET formation in vivo. NETs may spur formation of autoantibodies and may also serve as scaffolds for thrombosis, thereby providing a link among infection, autoimmunity, and thrombosis. In this review, we present the mechanisms by which NETs are formed and discuss the physiological and pathophysiological consequences of NET formation. We conclude that NETs may be of more importance in autoimmunity and thrombosis than in innate immune defense. PMID:27135878

  19. Retinoid agonist Am80-enhanced neutrophil bactericidal activity arising from granulopoiesis in vitro and in a neutropenic mouse model.

    PubMed

    Ding, Wanjing; Shimada, Hiroyuki; Li, Lin; Mittal, Rahul; Zhang, Xiaokun; Shudo, Koichi; He, Qiaojun; Prasadarao, Nemani V; Wu, Lingtao

    2013-02-01

    Despite advances in the therapeutic use of recombinant granulocyte colony-stimulating factor (G-CSF) to promote granulopoiesis of human hematopoietic stem cells (HSCs), neutropenia remains one of the most serious complications of cancer chemotherapy. We discovered that retinoid agonist Am80 (tamibarotene) is more potent than G-CSF in coordinating neutrophil differentiation and immunity development. Am80-induced neutrophils (AINs) either in vitro or in neutropenic mouse model displayed strong bactericidal activities, similar to those of human peripheral blood neutrophils (PBNs) or mouse peripheral blood neutrophils (MPBNs) but markedly greater than did G-CSF–induced neutrophils (GINs). In contrast to GINs but similar to PBNs, the enhanced bacterial killing by AINs accompanied both better granule maturation and greater coexpression of CD66 antigen with the integrin β2 subunit CD18. Consistently, anti-CD18 antibody neutralized Am80-induced bactericidal activities of AINs. These studies demonstrate that Am80 is more effective than G-CSF in promoting neutrophil differentiation and bactericidal activities, probably through coordinating the functional interaction of CD66 with CD18 to enhance the development of neutrophil immunity during granulopoiesis. Our findings herein suggest a molecular rationale for developing new therapy against neutropenia using Am80 as a cost-effective treatment option. PMID:23243275

  20. Retinoid agonist Am80-enhanced neutrophil bactericidal activity arising from granulopoiesis in vitro and in a neutropenic mouse model

    PubMed Central

    Ding, Wanjing; Shimada, Hiroyuki; Li, Lin; Mittal, Rahul; Zhang, Xiaokun; Shudo, Koichi; He, Qiaojun; Prasadarao, Nemani V.

    2013-01-01

    Despite advances in the therapeutic use of recombinant granulocyte colony-stimulating factor (G-CSF) to promote granulopoiesis of human hematopoietic stem cells (HSCs), neutropenia remains one of the most serious complications of cancer chemotherapy. We discovered that retinoid agonist Am80 (tamibarotene) is more potent than G-CSF in coordinating neutrophil differentiation and immunity development. Am80-induced neutrophils (AINs) either in vitro or in neutropenic mouse model displayed strong bactericidal activities, similar to those of human peripheral blood neutrophils (PBNs) or mouse peripheral blood neutrophils (MPBNs) but markedly greater than did G-CSF–induced neutrophils (GINs). In contrast to GINs but similar to PBNs, the enhanced bacterial killing by AINs accompanied both better granule maturation and greater coexpression of CD66 antigen with the integrin β2 subunit CD18. Consistently, anti-CD18 antibody neutralized Am80-induced bactericidal activities of AINs. These studies demonstrate that Am80 is more effective than G-CSF in promoting neutrophil differentiation and bactericidal activities, probably through coordinating the functional interaction of CD66 with CD18 to enhance the development of neutrophil immunity during granulopoiesis. Our findings herein suggest a molecular rationale for developing new therapy against neutropenia using Am80 as a cost-effective treatment option. PMID:23243275

  1. Neutrophil ageing is regulated by the microbiome

    PubMed Central

    Zhang, Dachuan; Chen, Grace; Manwani, Deepa; Mortha, Arthur; Xu, Chunliang; Faith, Jeremiah J.; Burk, Robert D.; Kunisaki, Yuya; Jang, Jung-Eun; Scheiermann, Christoph; Merad, Miriam; Frenette, Paul S.

    2015-01-01

    Blood polymorphonuclear neutrophils provide immune protection against pathogens but also may promote tissue injury in inflammatory diseases1,2. Although neutrophils are generally considered as a relatively homogeneous population, evidence for heterogeneity is emerging3,4. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and the replenishment by newly released neutrophils from the bone marrow5. Aged neutrophils up-regulate CXCR4, a receptor allowing their clearance in the bone marrow6,7, with feedback inhibition of neutrophil production via the IL17/G-CSF axis8, and rhythmic modulation of the haematopoietic stem cell niche5. The aged subset also expresses low levels of L-selectin (CD62L)5,9. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties6,10. Here, we show using in vivo ageing analyses that the neutrophil pro-inflammatory activity correlates positively with their ageing in the circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin (Mac-1) activation and neutrophil extracellular trap (NET) formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptors (TLRs)- and myeloid differentiation factor 88 (Myd88)-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle cell disease or endotoxin-induced septic shock. These results thus identify an unprecedented role for the microbiota in regulating a disease-promoting neutrophil subset. PMID:26374999

  2. Neutrophil Responses to Sterile Implant Materials

    PubMed Central

    Jhunjhunwala, Siddharth; Aresta-DaSilva, Stephanie; Tang, Katherine; Alvarez, David; Webber, Matthew J.; Tang, Benjamin C.; Lavin, Danya M.; Veiseh, Omid; Doloff, Joshua C.; Bose, Suman; Vegas, Arturo; Ma, Minglin; Sahay, Gaurav; Chiu, Alan; Bader, Andrew; Langan, Erin; Siebert, Sean; Li, Jie; Greiner, Dale L.; Newburger, Peter E.; von Andrian, Ulrich H.; Langer, Robert; Anderson, Daniel G.

    2015-01-01

    In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30–500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs) on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices. PMID:26355958

  3. Different Leishmania Species Drive Distinct Neutrophil Functions.

    PubMed

    Hurrell, Benjamin P; Regli, Ivo B; Tacchini-Cottier, Fabienne

    2016-05-01

    Leishmaniases are vector-borne diseases of serious public health importance. During a sand fly blood meal, Leishmania parasites are deposited in the host dermis where neutrophils are rapidly recruited. Neutrophils are the first line of defense and can kill pathogens by an array of mechanisms. They can also form web-like structures called neutrophil extracellular traps (NETs) that can trap and/or kill microbes. The function of neutrophils in leishmaniasis was reported to be either beneficial by contributing to parasite killing or detrimental by impairing immune response development and control of parasite load. Here we review recent data showing that different Leishmania species elicit distinct neutrophil functions thereby influencing disease outcomes. Emerging evidence suggests that neutrophils should be considered important modulators of leishmaniasis. PMID:26944469

  4. Alarmins Link Neutrophils and Dendritic Cells

    PubMed Central

    Yang, De; de la Rosa, Gonzalo; Tewary, Poonam; Oppenheim, Joost J.

    2009-01-01

    Neutrophils are the first major population of leukocyte to infiltrate infected or injured tissues and are crucial for initiating host innate defense and adaptive immunity. Although the contribution of neutrophils to innate immune defense is mediated predominantly by phagocytosis and killing of microorganisms, neutrophils also participate in the induction of adaptive immune responses. At sites of infection and/or injury, neutrophils release numerous mediators upon degranulation or death, among these are alarmins which have a characteristic dual capacity to mobilize and activate antigen-presenting cells. We describe here how alarmins released by neutrophil degranulation and/or death can link neutrophils to dendritic cells by promoting their recruitment and activation, resulting in the augmentation of innate and adaptive immune responses. PMID:19699678

  5. Proteome Mapping of Adult Zebrafish Marrow Neutrophils Reveals Partial Cross Species Conservation to Human Peripheral Neutrophils

    PubMed Central

    Singh, Sachin Kumar; Sethi, Sachin; Aravamudhan, Sriram; Krüger, Marcus; Grabher, Clemens

    2013-01-01

    Neutrophil granulocytes are pivotal cells within the first line of host defense of the innate immune system. In this study, we have used a gel-based LC-MS/MS approach to explore the proteome of primary marrow neutrophils from adult zebrafish. The identified proteins originated from all major cellular compartments. Gene ontology analysis revealed significant association of proteins with different immune-related network and pathway maps. 75% of proteins identified in neutrophils were identified in neutrophils only when compared to neutrophil-free brain tissue. Moreover, cross-species comparison with human peripheral blood neutrophils showed partial conservation of immune-related proteins between human and zebrafish. This study provides the first zebrafish neutrophil proteome and may serve as a valuable resource for an understanding of neutrophil biology and innate immunity. PMID:24019943

  6. Therapeutic exercise attenuates neutrophilic lung injury and skeletal muscle wasting.

    PubMed

    Files, D Clark; Liu, Chun; Pereyra, Andrea; Wang, Zhong-Min; Aggarwal, Neil R; D'Alessio, Franco R; Garibaldi, Brian T; Mock, Jason R; Singer, Benjamin D; Feng, Xin; Yammani, Raghunatha R; Zhang, Tan; Lee, Amy L; Philpott, Sydney; Lussier, Stephanie; Purcell, Lina; Chou, Jeff; Seeds, Michael; King, Landon S; Morris, Peter E; Delbono, Osvaldo

    2015-03-11

    Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs. We found that a short duration of moderate intensity exercise in ALI mice attenuated muscle ring finger 1 (MuRF1)-mediated atrophy of the limb and respiratory muscles and improved limb muscle force generation. Exercise also limited the influx of neutrophils into the alveolar space through modulation of a coordinated systemic neutrophil chemokine response. Granulocyte colony-stimulating factor (G-CSF) concentrations were systemically reduced by exercise in ALI mice, and in vivo blockade of the G-CSF receptor recapitulated the lung exercise phenotype in ALI mice. Additionally, plasma G-CSF concentrations in humans with acute respiratory failure (ARF) undergoing early mobility therapy showed greater decrements over time compared to control ARF patients. Together, these data provide a mechanism whereby early mobility therapy attenuates muscle wasting and limits ongoing alveolar neutrophilia through modulation of systemic neutrophil chemokines in lung-injured mice and humans. PMID:25761888

  7. Neutrophil function and dysfunction in periodontal disease.

    PubMed

    Van Dyke, T E; Vaikuntam, J

    1994-01-01

    The polymorphonuclear leukocyte or neutrophil is an integral part of the acute inflammatory response. Its function as a protective cell in the pathogenesis of periodontal disease has been studied extensively. Abnormal neutrophil function has been associated (directly or indirectly) with the pathogenesis of early onset periodontal disease. This paper reviews the recent developments in neutrophil function and dysfunction as they relate to periodontal disease progression. PMID:8032460

  8. Nicotine is Chemotactic for Neutrophils and Enhances Neutrophil Responsiveness to Chemotactic Peptides

    NASA Astrophysics Data System (ADS)

    Totti, Noel; McCusker, Kevin T.; Campbell, Edward J.; Griffin, Gail L.; Senior, Robert M.

    1984-01-01

    Neutrophils contribute to chronic bronchitis and pulmonary emphysema associated with cigarette smoking. Nicotine was found to be chemotactic for human neutrophils but not monocytes, with a peak activity at ~ 31 micromolar. In lower concentrations (comparable to those in smokers' plasma), nicotine enhanced the response of neutrophils to two chemotactic peptides. In contrast to most other chemoattractants for neutrophils, however, nicotine did not affect degranulation or superoxide production. Nicotine thus may promote inflammation and consequent lung injury in smokers.

  9. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils

    PubMed Central

    Lee, Cheng-Yuk; Thompson III, George R.; Hastey, Christine J.; Hodge, Gregory C.; Lunetta, Jennine M.; Pappagianis, Demosthenes; Heinrich, Volkmar

    2015-01-01

    Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever) in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis) as well as upon contact (by serum-dependent adhesion and phagocytosis). This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores. PMID:26070210

  10. Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transendothelial migration of neutrophils induces phenotypic changes that influence the interactions of neutrophils with extravascular tissue components. To assess the influence of transmigration on neutrophil chemokinetic motility, we used polyethylene glycol hydrogels covalently modified with spec...

  11. A Radical Break: Restraining Neutrophil Migration.

    PubMed

    Renkawitz, Jörg; Sixt, Michael

    2016-09-12

    When neutrophils infiltrate a site of inflammation, they have to stop at the right place to exert their effector function. In this issue of Developmental Cell, Wang et al. (2016) show that neutrophils sense reactive oxygen species via the TRPM2 channel to arrest migration at their target site. PMID:27623379

  12. Mechanotransduction in neutrophil activation and deactivation.

    PubMed

    Ekpenyong, Andrew E; Toepfner, Nicole; Chilvers, Edwin R; Guck, Jochen

    2015-11-01

    Mechanotransduction refers to the processes through which cells sense mechanical stimuli by converting them to biochemical signals and, thus, eliciting specific cellular responses. Cells sense mechanical stimuli from their 3D environment, including the extracellular matrix, neighboring cells and other mechanical forces. Incidentally, the emerging concept of mechanical homeostasis,long term or chronic regulation of mechanical properties, seems to apply to neutrophils in a peculiar manner, owing to neutrophils' ability to dynamically switch between the activated/primed and deactivated/deprimed states. While neutrophil activation has been known for over a century, its deactivation is a relatively recent discovery. Even more intriguing is the reversibility of neutrophil activation and deactivation. We review and critically evaluate recent findings that suggest physiological roles for neutrophil activation and deactivation and discuss possible mechanisms by which mechanical stimuli can drive the oscillation of neutrophils between the activated and resting states. We highlight several molecules that have been identified in neutrophil mechanotransduction, including cell adhesion and transmembrane receptors, cytoskeletal and ion channel molecules. The physiological and pathophysiological implications of such mechanically induced signal transduction in neutrophils are highlighted as a basis for future work. This article is part of a Special Issue entitled: Mechanobiology. PMID:26211453

  13. Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions.

    PubMed

    Bain, Barbara J; Ahmad, Shahzaib

    2015-11-01

    Many cases reported as 'chronic neutrophilic leukaemia' have had an associated plasma cell neoplasm. Recent evidence suggests that the great majority of such cases represent a neutrophilic leukaemoid reaction to the underlying multiple myeloma or monoclonal gammopathy of undetermined significance. We have analysed all accessible reported cases to clarify the likely diagnosis and to ascertain whether toxic granulation, Döhle bodies and an increased neutrophil alkaline phosphatase score were useful in making a distinction between chronic neutrophilic leukaemia and a neutrophilic leukaemoid reaction. We established that all these changes occur in both conditions. Toxic granulation and Döhle bodies are more consistently present in leukaemoid reactions but also occur quite frequently in chronic neutrophilic leukaemia. The neutrophil alkaline phosphatase score is increased in both conditions and is of no value in making a distinction. PMID:26218186

  14. Neutrophil Elastase Modulates Cytokine Expression

    PubMed Central

    Benabid, Rym; Wartelle, Julien; Malleret, Laurette; Guyot, Nicolas; Gangloff, Sophie; Lebargy, François; Belaaouaj, Azzaq

    2012-01-01

    There is accumulating evidence that following bacterial infection, the massive recruitment and activation of the phagocytes, neutrophils, is accompanied with the extracellular release of active neutrophil elastase (NE), a potent serine protease. Using NE-deficient mice in a clinically relevant model of Pseudomonas aeruginosa-induced pneumonia, we provide compelling in vivo evidence that the absence of NE was associated with decreased protein and transcript levels of the proinflammatory cytokines TNF-α, MIP-2, and IL-6 in the lungs, coinciding with increased mortality of mutant mice to infection. The implication of NE in the induction of cytokine expression involved at least in part Toll-like receptor 4 (TLR-4). These findings were further confirmed following exposure of cultured macrophages to purified NE. Together, our data suggest strongly for the first time that NE not only plays a direct antibacterial role as it has been previously reported, but released active enzyme can also modulate cytokine expression, which contributes to host protection against P. aeruginosa. In light of our findings, the long held view that considers NE as a prime suspect in P. aeruginosa-associated diseases will need to be carefully reassessed. Also, therapeutic strategies aiming at NE inhibition should take into account the physiologic roles of the enzyme. PMID:22927440

  15. Evasion of Neutrophil Killing by Staphylococcus aureus.

    PubMed

    McGuinness, Will A; Kobayashi, Scott D; DeLeo, Frank R

    2016-01-01

    Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions. PMID:26999220

  16. Evasion of Neutrophil Killing by Staphylococcus aureus

    PubMed Central

    McGuinness, Will A.; Kobayashi, Scott D.; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions. PMID:26999220

  17. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  18. Dynamic interactions of neutrophils and biofilms

    PubMed Central

    Hirschfeld, Josefine

    2014-01-01

    Background The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown. PMID:25523872

  19. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase

    PubMed Central

    2013-01-01

    Background Tumor cells produce various cytokines and chemokines that attract leukocytes. Leukocytes can amplify parenchymal innate immune responses, and have been shown to contribute to tumor promotion. Neutrophils are among the first cells to arrive at sites of inflammation, and the increased number of tumor-associated neutrophils is linked to poorer outcome in patients with lung cancer. Results We have previously shown that COPD-like airway inflammation promotes lung cancer in a K-ras mutant mouse model of lung cancer (CC-LR). This was associated with severe lung neutrophilic influx due to the increased level of neutrophil chemoattractant, KC. To further study the role of neutrophils in lung tumorigenesis, we depleted neutrophils in CC-LR mice using an anti-neutrophil antibody. This resulted in a significant reduction in lung tumor number. We further selectively inhibited the main receptor for neutrophil chemo-attractant KC, CXCR2. Similarly, this resulted in suppression of neutrophil recruitment into the lung of CC-LR mice followed by significant tumor reduction. Neutrophil elastase (NE) is a potent elastolytic enzyme produced by neutrophils at the site of inflammation. We crossed the CC-LR mice with NE knock-out mice, and found that lack of NE significantly inhibits lung cancer development. These were associated with significant reduction in tumor cell proliferation and angiogenesis. Conclusion We conclude that lung cancer promotion by inflammation is partly mediated by activation of the IL-8/CXCR2 pathway and subsequent recruitment of neutrophils and release of neutrophil elastase. This provides a baseline for future clinical trials using the IL-8/CXCR2 pathway or NE inhibitors in patients with lung cancer. PMID:24321240

  20. Proliferating cell nuclear antigen in neutrophil fate.

    PubMed

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  1. Activation of bovine neutrophils by Brucella spp.

    PubMed

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. PMID:27436438

  2. Neutrophil gene expression in rheumatoid arthritis.

    PubMed

    Cross, Andrew; Bakstad, Denise; Allen, John C; Thomas, Luke; Moots, Robert J; Edwards, Steven W

    2005-10-01

    There is now a growing awareness that infiltrating neutrophils play an important role in the molecular pathology of rheumatoid arthritis. In part, this arises from the fact that neutrophils have potent cytotoxic activity, but additionally from the fact that inflammatory neutrophils can generate a number of cytokines and chemokines that can have a direct influence on the progress of an inflammatory episode. Furthermore, the molecular properties of inflammatory neutrophils are quite different from those normally found in the circulation. For example, inflammatory neutrophils, but not blood neutrophils, can express cell surface receptors (such as MHC Class II molecules and FcgammaRI) that dramatically alter the way in which these cells can interact with ligands to modulate immune function. Cytokine/chemokine expression and surface expression of these novel cell surface receptors is dependent upon the neutrophil responding to local environmental factors to selectively up-regulate the expression of key cellular components via signalling pathways coupled to transcriptional activation. However, major changes in the expression levels of some proteins are also regulated by post-translational modifications that alter rates of proteolysis, and hence changes in the steady-state levels of these molecules. PMID:16112850

  3. Neutrophil dysfunction and increased susceptibility to infection.

    PubMed

    Ottonello, L; Dapino, P; Pastorino, G; Dallegri, F; Sacchetti, C

    1995-09-01

    A critical evaluation of 3 years' experience using laboratory screening to detect neutrophil dysfunction is described. Neutrophil dysfunctions in patients with recurrent bacterial infections were investigated by using the following screening tests: (1) neutrophil chemotaxis towards N-formylmethionyl peptides (FMLP) and the complement fragment C5a; (2) neutrophil production of superoxide anions (O2-) in response to phorbol myristate acetate and opsonized zymosan particles; and (3) examination of May-Grünwald and myeloperoxidase cytochemical staining of peripheral blood smears. These tests were carried out in 100 patients suffering from infections and suspected of having altered neutrophil functional competence. A minority of patients was found to have well defined neutrophil dysfunction syndromes: chronic granulomatous disease (four cases), Chediak-Higashi disease (one case) and myeloperoxidase deficiency (one case). Of the remaining 94 patients, in whom infections localized to airways and/or skin predominated, 53 cases were found to have impaired chemotaxis (41 cases) or partial defects of the O2- production. Defects of chemotaxis toward FMLP and those towards both FLMP and C5a were the most frequent abnormalities. No defect was found in the other 41 patients. Moreover, impaired neutrophil chemotaxis was found in some patients with selective IgA deficiency (five cases) or immotile cilia syndrome (seven cases). The results suggest that (a) additional screening tests are required to ameliorate the efficiency of the diagnostic work-up of the patients suspected to have neutrophil dysfunction; and (b) further evaluation, also at the molecular level, should be considered at least in selected cases of non-classified neutrophil dysfunction in order to clarify diagnosis and plan rational therapeutic strategies. PMID:7498244

  4. Neutrophil-Mediated Phagocytosis of Staphylococcus aureus

    PubMed Central

    van Kessel, Kok P. M.; Bestebroer, Jovanka; van Strijp, Jos A. G.

    2014-01-01

    Initial elimination of invading Staphylococcus aureus from the body is mediated by professional phagocytes. The neutrophil is the major phagocyte of the innate immunity and plays a key role in the host defense against staphylococcal infections. Opsonization of the bacteria with immunoglobulins and complement factors enables efficient recognition by the neutrophil that subsequently leads to intracellular compartmentalization and killing. Here, we provide a review of the key processes evolved in neutrophil-mediated phagocytosis of S. aureus and briefly describe killing. As S. aureus is not helpless against the professional phagocytes, we will also highlight its immune evasion arsenal related to phagocytosis. PMID:25309547

  5. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven

    1992-01-01

    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.

  6. Neutrophil chemotactic factor release and neutrophil alveolitis in asbestos-exposed individuals

    SciTech Connect

    Hayes, A.A.; Rose, A.H.; Musk, A.W.; Robinson, B.W.

    1988-09-01

    Alveolar neutrophil accumulation occurs in asbestosis. To evaluate a possible role for release of neutrophil chemotactic factor (NCF) in the pathogenesis of asbestosis, spontaneous NCF release from alveolar macrophages obtained by bronchoalveolar lavage (BAL) in eight individuals with asbestosis, 13 asbestos-exposed individuals without asbestosis, and five control subjects has been studied. Alveolar macrophages were incubated in medium (four hours; 37 degrees C), and neutrophil responses to the supernatants were assayed in a microchemotaxis chamber. Alveolar macrophages from subjects with asbestosis released more NCF (97 +/- 19 neutrophils per high-power field (N/HPF)) than controls (3 +/- 1 N/HPF; p less than 0.01). Alveolar macrophages from individuals with asbestos exposure and increased BAL neutrophil proportions (n = 7) released more NCF (93 +/- 24 N/HPF) than individuals with asbestos exposure and normal BAL neutrophil proportions (n = 6; 11 +/- 6 N/HPF; p less than 0.02). The results show that spontaneous NCF release occurs in asbestosis and that NCF release is associated with neutrophil alveolitis in asbestos-exposed individuals without asbestosis, suggesting a pathogenic role for NCF in mediating this neutrophil alveolitis. The results of the study also suggest that the presence of crackles is a better predictor of the presence of neutrophil alveolitis than is an abnormal chest x-ray film.

  7. Moesin regulates neutrophil rolling velocity in vivo.

    PubMed

    Matsumoto, Masanori; Hirata, Takako

    2016-01-01

    During inflammation, the selectin-induced slow rolling of neutrophils on venules cooperates with chemokine signaling to mediate neutrophil recruitment into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) and CD44 as E-selectin ligands that activate integrins to induce slow rolling. We show here that in TNF-α-treated cremaster muscle venules, slow leukocyte rolling was impaired in mice deficient in moesin, a member of the ezrin-radixin-moesin (ERM) family. Accordingly, neutrophil recruitment in a peritonitis model was decreased in moesin-deficient mice when chemokine signaling was blocked with pertussis toxin. These results suggest that moesin contributes to the slow rolling and subsequent recruitment of neutrophils during inflammation. PMID:27131737

  8. [Effect of erythromycin on neutrophil adhesion molecules].

    PubMed

    Kusano, S; Mukae, H; Morikawa, T; Asai, T; Sawa, H; Morikawa, N; Oda, H; Sakito, O; Shukuwa, C; Senju, R

    1993-01-01

    The mechanisms of erythromycin (EM) in chronic lower respiratory tract diseases including diffuse panbronchiolitis (DPB) has been reported. In this study we investigated the effect of EM on peripheral neutrophil adhesion molecules such as LFA-1 and Mac-1 obtained from six healthy subjects. Pretreatment of neutrophils with each concentration (10 ng/ml approximately 100 micrograms/ml) of EM resulted in no significant reduction in the expression of LFA-1 alpha, beta and Mac-1. Moreover, EM had no capability of reducing these expressions even when neutrophils were pretreated with 1 microgram/ml of EM at time from 0 to 60 min. These findings indicate that EM does not directly reduce the expression of LFA-1 alpha, beta and Mac-1 on peripheral neutrophil obtained from healthy subjects. PMID:8450276

  9. Rosette nanotubes inhibit bovine neutrophil chemotaxis

    PubMed Central

    Le, Minh Hong Anh; Suri, Sarabjeet Singh; Rakotondradany, Felaniaina; Fenniri, Hicham; Singh, Baljit

    2010-01-01

    Migration of activated neutrophils that have prolonged lifespan into inflamed organs is an important component of host defense but also contributes to tissue damage and mortality. In this report, we used biologically-inspired RGD-tagged rosette nanotubes (RNT) to inhibit neutrophil chemotaxis. We hypothesize that RGD-RNT will block neutrophil migration through inhibition of MAPK. In this report, RNT conjugated to lysine (K–RNT) and arginine-glycine-aspartic acid-serine-lysine (RGDSK-RNT) were co-assembled in a molar ratio of 95/5. The effect of the resulting composite RNT (RGDSK/K–RNT) on neutrophil chemotaxis, cell signaling and apoptosis was then investigated. Exposure to RGDSK/K–RNT reduced bovine neutrophil migration when compared to the non-treated group (p < 0.001). Similar effect was seen following treatment with ERK1/2 or p38 MAPK inhibitors. Phosphorylation of the ERK1/2 and p38 MAPK was inhibited at 5 min by RGDSK/K–RNT (p < 0.05). The RGDSD/K-RNT did not affect the migration of neutrophils pre-treated with αvβ3 integrin antibody suggesting that both bind to the same receptor. RGDSK/K–RNT did not induce apoptosis in bovine neutrophils, which was suppressed by pre-exposing them to LPS (p < 0.001). We conclude that RGDSK/K–RNT inhibit phosphorylation of ERK1/2 and p38 MAPK and inhibit chemotaxis of bovine neutrophils. PMID:20663476

  10. Neutrophils in asthma--a review.

    PubMed

    Ciepiela, Olga; Ostafin, Magdalena; Demkow, Urszula

    2015-04-01

    Asthma is a chronic inflammatory disease, with an array of cells involved in the pathogenesis of the disease. The role of neutrophils in the development of bronchial asthma is found to be complex, as they may trigger activation of immunocompetent cells and are a potent source of free oxygen radicals and enzymes participating in airway remodeling. The review highlights the role of neutrophils in bronchial asthma. PMID:25511380

  11. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    PubMed Central

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L.; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not “heat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells. PMID:21960987

  12. What really happens in the neutrophil phagosome?

    PubMed Central

    Hurst, James K.

    2015-01-01

    Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed. PMID:22609248

  13. Human neutrophils contain and bind high molecular weight kininogen.

    PubMed Central

    Gustafson, E J; Schmaier, A H; Wachtfogel, Y T; Kaufman, N; Kucich, U; Colman, R W

    1989-01-01

    Because plasma kallikrein activates human neutrophils, and in plasma prekallikrein (PK) circulates complexed with high molecular weight kininogen (HMWK), we determined whether HMWK could mediate kallikrein's association with neutrophils. HMWK antigen (237 +/- 61 ng HMWK/10(8) neutrophils) was present in lysates of washed human neutrophils. Little if any plasma HMWK was tightly bound and nonexchangeable with the neutrophil surface. Human neutrophils were found to possess surface membrane-binding sites for HMWK but no internalization was detected at 37 degrees C. 125I-HMWK binding to neutrophils was dependent upon Zn2+. Binding of 125I-HMWK to neutrophils was specific and 90% reversible. 125I-HMWK binding to neutrophils was saturable with an apparent Kd of 9-18 nM and 40,000-70,000 sites per cell. Upon binding to neutrophils, 125I-HMWK was proteolyzed by human neutrophil elastase (HNE) into lower relative molecular mass derivatives. Furthermore, HMWK found in neutrophils also served as a cofactor for HNE secretion because neutrophils deficient in HMWK have reduced HNE secretion when stimulated in plasma deficient in HMWK or with purified kallikrein. These studies indicate that human neutrophils contain a binding site for HMWK that could serve to localize plasma or neutrophil HMWK on their surface to possibly serve as a receptor for kallikrein and to participate in HNE secretion by this enzyme. Images PMID:2738152

  14. Interactions of human neutrophils with leukotoxic streptococci.

    PubMed Central

    Sullivan, G W; Mandell, G L

    1980-01-01

    Most strains of Streptococcus pyogenes contain a toxin which can kill neutrophils. Previous workers failed to show any correlation between leukotoxin content and virulence of animals or humans. We examined the in vitro interactions of a leukotoxic streptococcus and a nonleukotoxic variant with human neutrophils. At ratios of 200 streptococcal colony-forming units per neutrophil, the toxic strain killed 92.8 +/- 2.0% of neutrophils, and the nontoxic strain killed only 9.0 +/- 1.2%. Despite this, ingestion of the two strains was equal. Postphagocytic oxidative metabolism was equivalent with low numbers of either toxic or nontoxic streptococci but depressed with high numbers of leukotoxic streptococci. At 20 min, neutrophils were able to kill leukotoxic (99.6 +/- 0.3% killed) and nonleukotoxic streptococci (99.5 +/- 0.2% killed) equally efficiently (P = 0.42). Thus, leukotoxicity does not interfere with the ability of neutrophils to destroy streptococci. This may explain why leukotoxicity does not appear to be an important factor in streptococcal virulence. Images Fig. 1 PMID:7002789

  15. Reactive Oxygen Species and Neutrophil Function.

    PubMed

    Winterbourn, Christine C; Kettle, Anthony J; Hampton, Mark B

    2016-06-01

    Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling. PMID:27050287

  16. Proteomic Analysis of Neutrophil Priming by PAF.

    PubMed

    Aquino, Elaine N; Neves, Anne C D; Santos, Karina C; Uribe, Carlos E; Souza, Paulo E N; Correa, José R; Castro, Mariana S; Fontes, Wagner

    2016-01-01

    Polymorphonuclear neutrophils are the main cells of the innate immunity inflammatory response. Several factors can activate or stimulate neutrophils, including platelet-activating factor (PAF), a lipid mediator. Some authors consider the activation induced by PAF priming because it triggers limited production of reactive oxygen species (ROS) and it amplifies the response of the cell to a subsequent activator. The stimulation is reversible, which is critical for modulating the inflammatory response. Exacerbated inflammatory responses lead to serious diseases, such as systemic inflammatory response syndrome (SIRS), among others. Characterizing the stimulation of neutrophils during the possible reversion or prevention of an exaggerated inflammatory response is critical for the development of control strategies. In this study, a proteomic approach was used to identify 36 proteins that differ in abundance between quiescent neutrophils and PAFstimulated neutrophils. The identified proteins were associated with increased DNA repair processes, calcium flux, protein transcription, cytoskeleton alterations that facilitate migration and degranulation, and the release of proinflammatory cytokines and proteins that modulate the inflammatory response. Some of the identified proteins have not been previously reported in neutrophils. PMID:26631175

  17. NET amyloidogenic backbone in human activated neutrophils.

    PubMed

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role. PMID:26462606

  18. Differential expression of pentraxin 3 in neutrophils.

    PubMed

    Razvina, Olga; Jiang, Shuying; Matsubara, Koichi; Ohashi, Riuko; Hasegawa, Go; Aoyama, Takashi; Daigo, Kenji; Kodama, Tatsuhiko; Hamakubo, Takao; Naito, Makoto

    2015-02-01

    Pentraxins belong to the superfamily of conserved proteins that are characterized by a cyclic multimeric structure. Pentraxin 3 (PTX3) is a long pentraxin which can be produced by different cell types upon exposure to various inflammatory signals. Inside the neutrophil PTX3 is stored in form of granules localized in the cytoplasm. Neutrophilic granules are divided into three types: azurophilic (primary) granules, specific (secondary) granules and gelatinase (tertiary) granules. PTX3 has been considered to be localized in specific (secondary) granules. Immunofluorescent analyses using confocal laser microscopic examination were performed to clarify the localization of all three groups of granules within the cytoplasm of the mature neutrophils and neutrophils stimulated with IL-8. Furthermore, PTX3 was localized in primary granules of promyelocyte cell line HL-60. As a result, we suggest that PTX3 is localized not only in specific granules, but is also partly expressed in primary and tertiary granules. After the stimulation with IL-8, irregular reticular structures called neutrophil extracellular traps (NETs) were formed, three types of granules were trapped by NETs and PTX3 showed partial colocalization with these granular components. PTX3 localized in all three types of granules in neutrophils may play important roles in host defense. PMID:25449330

  19. Regulators and Effectors of Arf GTPases in Neutrophils

    PubMed Central

    Gamara, Jouda; Chouinard, François; Davis, Lynn; Aoudjit, Fawzi; Bourgoin, Sylvain G.

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology. PMID:26609537

  20. Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin

    PubMed Central

    Jann, Naja J.; Schmaler, Mathias; Kristian, Sascha A.; Radek, Katherine A.; Gallo, Richard L.; Nizet, Victor; Peschel, Andreas; Landmann, Regine

    2009-01-01

    Neutrophils kill invading pathogens by AMPs, including cathelicidins, ROS, and NETs. The human pathogen Staphylococcus aureus exhibits enhanced resistance to neutrophil AMPs, including the murine cathelicidin CRAMP, in part, as a result of alanylation of teichoic acids by the dlt operon. In this study, we took advantage of the hypersusceptible phenotype of S. aureus ΔdltA against cationic AMPs to study the impact of the murine cathelicidin CRAMP on staphylococcal killing and to identify its key site of action in murine neutrophils. We demonstrate that CRAMP remained intracellular during PMN exudation from blood and was secreted upon PMA stimulation. We show first evidence that CRAMP was recruited to phagolysosomes in infected neutrophils and exhibited intracellular activity against S. aureus. Later in infection, neutrophils produced NETs, and immunofluorescence revealed association of CRAMP with S. aureus in NETs, which similarly killed S. aureus wt and ΔdltA, indicating that CRAMP activity was reduced when associated with NETs. Indeed, the presence of DNA reduced the antimicrobial activity of CRAMP, and CRAMP localization in response to S. aureus was independent of the NADPH oxidase, whereas killing was partially dependent on a functional NADPH oxidase. Our study indicates that neutrophils use CRAMP in a timed and locally coordinated manner in defense against S. aureus. PMID:19638500

  1. Neutrophils in Cancer: Two Sides of the Same Coin

    PubMed Central

    Uribe-Querol, Eileen; Rosales, Carlos

    2015-01-01

    Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions. PMID:26819959

  2. Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis

    PubMed Central

    Narasaraju, Teluguakula; Yang, Edwin; Samy, Ramar Perumal; Ng, Huey Hian; Poh, Wee Peng; Liew, Audrey-Ann; Phoon, Meng Chee; van Rooijen, Nico; Chow, Vincent T.

    2011-01-01

    Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage. PMID:21703402

  3. Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation.

    PubMed

    Hahn, Jonas; Knopf, Jasmin; Maueröder, Christian; Kienhöfer, Deborah; Leppkes, Moritz; Herrmann, Martin

    2016-01-01

    Neutrophils, the most abundant leukocytes in the human body, are considered to be the first line of defense in the fight against microorganisms. In this fight neutrophils employ weaponry such as reactive oxygen species produced via the NADPH oxidase complex 2 together with the release of intracellular granules containing antimicrobial agents. The discovery that activated neutrophils release decondensed chromatin as DNase-sensitive neutrophil extracellular traps (NETs) lead to a renewed interest in these leukocytes and the function of NETs in vivo. In this review, we will focus on desirable as well as detrimental features of NETs by the example of gout and pancreatitis. In our models we observed that neutrophils drive the initiation of inflammation and are required for the resolution of inflammation. PMID:27586795

  4. Neutrophilic and Pauci-immune Phenotypes in Severe Asthma.

    PubMed

    Panettieri, Reynold A

    2016-08-01

    Although 2 T-helper type 2 inflammation evokes airway hyperresponsiveness and narrowing, neutrophilic or pauci-immune asthma accounts for significant asthma morbidity. Viruses, toxicants, environmental tobacco smoke exposure, and bacterial infections induce asthma exacerbations mediated by neutrophilic inflammation or by structural cell (pauci-immune) mechanisms. Therapeutic challenges exist in the management of neutrophilic and pauci-immune phenotypes because both syndromes manifest steroid insensitivity. The recognition that neutrophil subsets exist and their functions are unique poses exciting opportunities to develop precise therapies. The conventional thought to target neutrophil activation or migration globally may explain why current drug development in neutrophilic asthma remains challenging. PMID:27401627

  5. Magnetosheath Coordinates

    NASA Astrophysics Data System (ADS)

    Schulz, M.; Chen, M. W.

    2010-12-01

    The eventual goal of this work is to develop an approximate analytical representation of solar-wind streamlines in the magnetosheath surrounding a magnetosphere of rather general shape. Previous analytical representations of magnetosheath streamlines and magnetic fields have invoked magnetopause shapes that conform to standard coordinate systems (e.g., spherical, cylindrical, paraboloidal, ellipsoidal), but it seems now that such a restriction on magnetopause shape is unnecessary. In the present work it is assumed only that the magnetopause is a continuously differentiable convex surface axisymmetric about the Sun-Earth line. This geometry permits the construction of an orthogonal coordinate system (mu, eta, chi) such that eta is the cosine of the cone angle between the Sun-Earth line and any conical surafce extending normally outward from the magnetopause, mu is a measure of the perpendicular distance of any magnetosheath point from the magnetopause, and chi is an azimuthal coordinate measured around the Sun-Earth line. It is convenient here to assign a label mu = mu* to the magnetopause itself, so that mu - mu* denotes perpendicular distance from the magnetopause and mu* is an adjustable parameter roughly comparable to the radius of the magnetotail. This choice provides for a rough correspondence between the (mu, eta, chi) coordinates introduced here and the ellipsoidal coordinates used in our previous efforts at magnetosheath modeling.

  6. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia.

    PubMed

    Hillgruber, Carina; Pöppelmann, Birgit; Weishaupt, Carsten; Steingräber, Annika Kathrin; Wessel, Florian; Berdel, Wolfgang E; Gessner, J Engelbert; Ho-Tin-Noé, Benoît; Vestweber, Dietmar; Goerge, Tobias

    2015-07-27

    Spontaneous organ hemorrhage is the major complication in thrombocytopenia with a potential fatal outcome. However, the exact mechanisms regulating vascular integrity are still unknown. Here, we demonstrate that neutrophils recruited to inflammatory sites are the cellular culprits inducing thrombocytopenic tissue hemorrhage. Exposure of thrombocytopenic mice to UVB light provokes cutaneous petechial bleeding. This phenomenon is also observed in immune-thrombocytopenic patients when tested for UVB tolerance. Mechanistically, we show, analyzing several inflammatory models, that it is neutrophil diapedesis through the endothelial barrier that is responsible for the bleeding defect. First, bleeding is triggered by neutrophil-mediated mechanisms, which act downstream of capturing, adhesion, and crawling on the blood vessel wall and require Gαi signaling in neutrophils. Second, mutating Y731 in the cytoplasmic tail of VE-cadherin, known to selectively affect leukocyte diapedesis, but not the induction of vascular permeability, attenuates bleeding. Third, and in line with this, simply destabilizing endothelial junctions by histamine did not trigger bleeding. We conclude that specifically targeting neutrophil diapedesis through the endothelial barrier may represent a new therapeutic avenue to prevent fatal bleeding in immune-thrombocytopenic patients. PMID:26169941

  7. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence

    PubMed Central

    Allen, Robert C.

    2015-01-01

    Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2) facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (1O2*) is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism. PMID:26783542

  8. [Neuro-neutrophilic Disease and Dementia].

    PubMed

    Hisanaga, Kinya

    2016-04-01

    Neuro-neutrophilic diseases are multisystem inflammatory disorders that include neuro-Behçet and neuro-Sweet disease. These disorders ectopically damage the nervous system due to the abnormal chemotaxis of neutrophils. The neutrophils' chemotaxis is induced by oral muco-cutaneous bacterial infections and the dysregulation of cytokines, including interleukins. The frequencies of human leukocyte antigen (HLA)-B51 in neuro-Behçet disease and HLA-B54 as well as Cw1 in neuro-Sweet disease significantly higher than the levels present in Japanese normal controls. Notably, their frequencies are also higher in patients exhibiting neurological complications than in patients without neurological complications. These HLA types are considered risk factors that are directly related to the etiology of these diseases. Prednisolone and colchicine, which suppress neutrophil activation, are used to treat the acute phase of both diseases. Alternatively, dapsone is prescribed to prednisolone-dependent recurrent cases of neuro-Sweet disease. Dementia is a neurological symptom of these disorders, especially in the chronic progressive subtype of neuro-Behçet disease. Other immunosuppressant drugs, including methotrexate and infliximab, are administered to patients with the chronic progressive type of neuro-Behçet disease. Neuro-neutrophilic diseases are a form of dementia considered treatable. PMID:27056853

  9. Exercise, training and neutrophil microbicidal activity.

    PubMed

    Smith, J A; Telford, R D; Mason, I B; Weidemann, M J

    1990-06-01

    The concentration in human plasma of putative neutrophil-"priming" cytokines like endogenous pyrogens is known to increase significantly in response to moderate exercise (11). This is characteristic of an acute-phase response. The ability of blood neutrophils isolated from both trained and untrained human subjects (n = 11, 9) to produce microbicidal reactive oxygen species was determined using luminol-enhanced chemiluminescence both before and after one hour of aerobic exercise at 60% VO2max. Irrespective of training and stimulus concentration, exercise nearly always caused significant "priming" of the capacity of neutrophils to produce H2O2 and HOCl upon stimulation with opsonized zymosan (P less than 0.01); however, compared to their untrained counterparts, the activity of cells isolated from trained individuals was depressed about 50% at unit stimulus concentration, both before and after exercise (P less than 0.075), whilst remaining unaltered at saturating concentrations. Although neutrophil oxygenation activity is only one parameter that contributes to immunological status, regular episodes of moderate exercise may increase resistance to infection by priming the "killing capacity" of neutrophils. In contrast, prolonged periods of intensive training may lead to increased susceptibility to common infections by diminishing this activity. PMID:2115507

  10. Decreased apoptosis of beta 2- integrin-deficient bovine neutrophils.

    PubMed

    Nagahata, Hajime; Higuchi, Hidetoshi; Teraoka, Hiroki; Takahashi, Kenji; Takahashi, Kensi; Kuwabara, Mikinori; Inanami, Osamu; Kuwabara, Mikwori

    2004-02-01

    Stimulant-induced viability of neutrophils, nuclear-fragmentation, increase in intracellular calcium ([Ca2+]i), expression of annexin V on neutrophils and proteolysis of a fluorogenic peptide substrate Ac-DEVD-MCA (acetyl Asp-Glu-Val-Asp alpha-[4-methyl-coumaryl-7-amide]) by neutrophil lysates from five normal calves and three calves with leucocyte adhesion deficiency were determined to evaluate the apoptosis of normal and CD18-deficient neutrophils. Viability was markedly decreased in control neutrophils stimulated with opsonized zymosan (OPZ), compared to CD18-deficient neutrophils at 37 degrees C after incubation periods of 6 and 24 hours. The rate of apoptosis of control neutrophils stimulated with OPZ increased significantly depending on the incubation time, whereas no apparent increase in apoptosis was found in CD18-deficient neutrophils under the same conditions. Aggregated bovine (Agg) IgG-induced apoptosis of control neutrophils was not significantly different from that of CD18-deficient neutrophils. The expression of annexin V on OPZ-stimulated control neutrophils was greater than that of unstimulated ones 6 h after stimulation. No apparent increase in annexin V expression on CD18-deficient neutrophils was found with OPZ stimulation. A delay in apoptosis was demonstrated in CD18-deficient bovine neutrophils and this appeared to be closely associated with lowered signalling via [Ca2+]i, diminished annexin V expression on the cell surface, and decreased caspase 3 activity in lysates. PMID:14984592

  11. The structure of neutrophil defensin genes.

    PubMed

    Linzmeier, R; Michaelson, D; Liu, L; Ganz, T

    1993-04-26

    Defensins are a family of microbicidal peptides abundant in the granules of mammalian neutrophils, in rabbit alveolar macrophages, and in human and murine intestinal Paneth cells. We cloned and sequenced the genes of three neutrophil-specific defensins. Human HNP-1 and HNP-3 are nearly identical and rabbit NP-3a is closely related. The four known neutrophil-specific defensin genes are strikingly similar in the structure and organization of their three exons and two introns, but the three defensin genes expressed in macrophages (MCP-1 and -2) or Paneth cells (HD-5) are organized differently: HD-5 had only two exons, and MCP-1 and -2 have a comparatively short first intron. The diverse genomic organization of defensin genes may contribute to their cell-specific expression. PMID:8477861

  12. Granulopoiesis and granules of human neutrophils.

    PubMed

    Cowland, Jack B; Borregaard, Niels

    2016-09-01

    Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated. PMID:27558325

  13. Major neutrophil functions subverted by Porphyromonas gingivalis

    PubMed Central

    Olsen, Ingar; Hajishengallis, George

    2016-01-01

    Polymorphonuclear leukocytes (neutrophils) constitute an integrated component of the innate host defense in the gingival sulcus/periodontal pocket. However, the keystone periodontal pathogen Porphyromonas gingivalis has in the course of evolution developed a number of capacities to subvert this defense to its own advantage. The present review describes the major mechanisms that P. gingivalis uses to subvert neutrophil homeostasis, such as impaired recruitment and chemotaxis, resistance to granule-derived antimicrobial agents and to the oxidative burst, inhibition of phagocytic killing while promoting a nutritionally favorable inflammatory response, and delay of neutrophil apoptosis. Studies in animal models have shown that at least some of these mechanisms promote the dysbiotic transformation of the periodontal polymicrobial community, thereby leading to inflammation and bone loss. It is apparent that neutrophil–P. gingivalis interactions and subversion of innate immunity are key contributing factors to the pathogenesis of periodontal disease. PMID:26993626

  14. Defective neutrophil chemotaxis in juvenile periodontitis.

    PubMed Central

    Clark, R A; Page, R C; Wilde, G

    1977-01-01

    Neutrophil chemotaxis was evaluated in nine patients with juvenile periodontitis, with normal subjects and patients with the adult form of periodontitis as controls. Defective chemotactic responses were observed in neutrophils from seven of nine juvenile patients, and a reduced level of complement-derived chemotactic activity was demonstrated in serum from four patients. These determinations were normal in all the patients with adult periodontitis. Serum from five of the juvenile patients contained a heat-stable, non-dialyzable factor that markedly inhibited the chemotaxis of normal neutrophils. Thus the characteristic tissue destruction seen in juvenile periodontitis may be, at least in part, a consequence of a failure of host defense mechanisms. PMID:591063

  15. Clinical Microfluidics for Neutrophil Genomics and Proteomics

    PubMed Central

    Kotz, Kenneth T.; Xiao, Wenzong; Miller-Graziano, Carol; Qian, Wei-Jun; Russom, Aman; Warner, Elizabeth A.; Moldawer, Lyle L.; De, Asit; Bankey, Paul E.; Petritis, Brianne O.; Camp, David G.; Rosenbach, Alan E.; Goverman, Jeremy; Fagan, Shawn P.; Brownstein, Bernard H.; Irimia, Daniel; Xu, Weihong; Wilhelmy, Julie; Mindrinos, Michael N.; Smith, Richard D.; Davis, Ronald W.; Tompkins, Ronald G.; Toner, Mehmet

    2010-01-01

    Neutrophils play critical roles in modulating the immune response. We present a robust methodology for rapidly isolating neutrophils directly from whole blood and develop ‘on-chip’ processing for mRNA and protein isolation for genomics and proteomics. We validate this device with an ex vivo stimulation experiment and by comparison with standard bulk isolation methodologies. Lastly, we implement this tool as part of a near patient blood processing system within a multi-center clinical study of the immune response to severe trauma and burn injury. The preliminary results from a small cohort of patients in our study and healthy controls show a unique time-dependent gene expression pattern clearly demonstrating the ability of this tool to discriminate temporal transcriptional events of neutrophils within a clinical setting. PMID:20802500

  16. The role of neutrophils in inflammation resolution.

    PubMed

    Jones, Hefin R; Robb, Calum T; Perretti, Mauro; Rossi, Adriano G

    2016-04-01

    The fundamental role played by neutrophils for an efficient, acute inflammatory response has long been appreciated, with the underlying molecular and cellular mechanisms largely elucidated over the past decades. However, more recent work suggests that the biological functions exerted by this fascinating leucocyte are somewhat more extensive than previously acknowledged. Here we discuss how extravasated neutrophils govern the initiation of the resolution phase of inflammation by enabling activation of pro-resolving circuits to ensure the safe conclusion of the inflammatory response. The neutrophil 'alarm bell' on resolution is effected through release of soluble mediators as well as apoptotic bodies and other vesicles, which, in turn, can inform and modify the microenvironment ultimately leading to termination of the inflammatory response coinciding with re-establishment of tissue homeostasis and functionality. PMID:27021499

  17. COORDINATED AV.

    ERIC Educational Resources Information Center

    CLEAVES, PAUL C.; AND OTHERS

    THE INSTRUCTIONAL MATERIALS CENTER IS LOCATED IN THE LOCAL HIGH SCHOOL AND SUPPLIES ALL SCHOOLS IN THE AREA. AUDIOVISUAL EQUIPMENT ORDERS, AFTER SELECTIONS ARE MADE BY THE CLASSROOM TEACHER, ARE PROCESSED BY THE CENTER, CONFIRMED AND DELIVERED BY TRUCK THREE TIMES EACH WEEK. EACH SCHOOL HAS A BUILDING COORDINATOR WHO CHECKS THE ORDERS INTO THE…

  18. Metabolic requirements for neutrophil extracellular traps formation

    PubMed Central

    Rodríguez-Espinosa, Oscar; Rojas-Espinosa, Oscar; Moreno-Altamirano, María Maximina Bertha; López-Villegas, Edgar Oliver; Sánchez-García, Francisco Javier

    2015-01-01

    As part of the innate immune response, neutrophils are at the forefront of defence against infection, resolution of inflammation and wound healing. They are the most abundant leucocytes in the peripheral blood, have a short lifespan and an estimated turnover of 1010 to 1011 cells per day. Neutrophils efficiently clear microbial infections by phagocytosis and by oxygen-dependent and oxygen-independent mechanisms. In 2004, a new neutrophil anti-microbial mechanism was described, the release of neutrophil extracellular traps (NETs) composed of DNA, histones and anti-microbial peptides. Several microorganisms, bacterial products, as well as pharmacological stimuli such as PMA, were shown to induce NETs. Neutrophils contain relatively few mitochondria, and derive most of their energy from glycolysis. In this scenario we aimed to analyse some of the metabolic requirements for NET formation. Here it is shown that NETs formation is strictly dependent on glucose and to a lesser extent on glutamine, that Glut-1, glucose uptake, and glycolysis rate increase upon PMA stimulation, and that NET formation is inhibited by the glycolysis inhibitor, 2-deoxy-glucose, and to a lesser extent by the ATP synthase inhibitor oligomycin. Moreover, when neutrophils were exposed to PMA in glucose-free medium for 3 hr, they lost their characteristic polymorphic nuclei but did not release NETs. However, if glucose (but not pyruvate) was added at this time, NET release took place within minutes, suggesting that NET formation could be metabolically divided into two phases; the first, independent from exogenous glucose (chromatin decondensation) and, the second (NET release), strictly dependent on exogenous glucose and glycolysis. PMID:25545227

  19. Chlorination of Taurine by Human Neutrophils

    PubMed Central

    Weiss, Stephen J.; Klein, Roger; Slivka, Adam; Wei, Maria

    1982-01-01

    The model hydrogen peroxide-myeloperoxidase-chloride system is capable of generating the powerful oxidant hypochlorous acid, which can be quantitated by trapping the generated species with the β-amino acid, taurine. The resultant stable product, taurine chloramine, can be quantitated by its ability to oxidize the sulfhydryl compound, 5-thio-2-nitro-benzoic acid to the disulfide, 5,5′-dithiobis(2-nitroben-zoic acid) or to oxidize iodide to iodine. Using this system, purified myeloperoxidase in the presence of chloride and taurine converted stoichiometric quantities of hydrogen peroxide to taurine chloramine. Chloramine generation was absolutely dependent on hydrogen peroxide, myeloperoxidase, and chloride and could be inhibited by catalase, myeloperoxidase inhibitors, or chloride-free conditions. In the presence of taurine, intact human neutrophils stimulated with either phorbol myristate acetate or opsonized zymosan particles generated a stable species capable of oxidizing 5-thio-2-nitrobenzoic acid or iodide. Resting cells did not form this species. The oxidant formed by the stimulated neutrophils was identified as taurine chloramine by both ultraviolet spectrophotometry and electrophoresis. Taurine chloramine formation by the neutrophil was dependent on the taurine concentration, time, and cell number. Neutrophil-dependent chloramine generation was inhibited by catalase, the myeloperoxidase inhibitors, azide, cyanide, or aminotriazole and by chloride-free conditions, but not by superoxide dismutase or hydroxyl radical scavengers. Thus, it appears that stimulated human neutrophils can utilize the hydrogen peroxide-myeloperoxidase-chloride system to generate taurine chloramine. Based on the demonstrated ability of the myeloperoxidase system to generate free hypochlorous acid we conclude that neutrophils chlorinate taurine by producing this powerful oxidant. The biologic reactivity and cytotoxic potential of hypochlorous acid and its chloramine derivatives

  20. A variable immunoreceptor in a subpopulation of human neutrophils

    PubMed Central

    Puellmann, Kerstin; Kaminski, Wolfgang E.; Vogel, Mandy; Nebe, C. Thomas; Schroeder, Josef; Wolf, Hans; Beham, Alexander W.

    2006-01-01

    Neutrophils are thought to rely solely on nonspecific immune mechanisms. Here we provide molecular biological, immunological, ultrastructural, and functional evidence for the presence of a T cell receptor (TCR)-based variable immunoreceptor in a 5–8% subpopulation of human neutrophils. We demonstrate that these peripheral blood neutrophils express variable and individual-specific TCRαβ repertoires and the RAG1/RAG2 recombinase complex. The proinflammatory cytokine granulocyte colony-stimulating factor regulates expression of the neutrophil immunoreceptor and RAG1/RAG2 in vivo. Specific engagement of the neutrophil TCR complex protects from apoptosis and stimulates secretion of the neutrophil-activating chemokine IL-8. Our results, which also demonstrate the presence of the TCR in murine neutrophils, suggest the coexistence of a variable and an innate host defense system in mammalian neutrophils. PMID:16983085

  1. Nucleotide chloramines and neutrophil-mediated cytotoxicity.

    PubMed

    Bernofsky, C

    1991-03-01

    Hypochlorite is a reactive oxidant formed as an end product of the respiratory burst in activated neutrophils. It is responsible for killing bacteria and has been implicated in neutrophil-mediated tissue injury associated with the inflammatory process. Although hypochlorite is a potent cytotoxic agent, the primary mechanism by which it exerts its effect is unclear. This review examines evidence that the primary event in hypochlorite cytotoxicity is the loss of adenine nucleotides from the target cell. This loss appears to be mediated by the formation of adenine nucleotide chloramines which are reactive intermediates with a free radical character and are capable of forming stable ligands with proteins and nucleic acids. PMID:1848195

  2. Neutrophils come of age in chronic inflammation

    PubMed Central

    Caielli, Simone; Banchereau, Jacques; Pascual, Virginia

    2013-01-01

    Neutrophils have long been known to participate in acute inflammation, but a role in chronic inflammatory and autoimmune diseases is now emerging. These cells are key players in the recognition and elimination of pathogens, but they also sense self components, including nucleic acids and products of sterile tissue damage. While this normally contributes to tissue repair, it can also lead to the release of highly immunogenic products that can trigger and/or amplify autoimmune pathogenic loops. Understanding the mechanisms that underlie neutrophil activation, migration, survival and their various forms of death in health and disease might provide us with new approaches to treat chronic inflammatory conditions. PMID:23127555

  3. Migration of canine neutrophils to chitin and chitosan.

    PubMed

    Usami, Y; Okamoto, Y; Minami, S; Matsuhashi, A; Kumazawa, N H; Tanioka, S; Shigemasa, Y

    1994-12-01

    Suspension of chitin and chitosan particles (mean size of 1 micron) were found to attract canine neutrophils chemotactically as determined by a checkerboard assay through polycarbonate filter with 5 microns pore size in Blind well chamber. Suspension of chitin induced chemokinetic migrations of the neutrophils. These evidences might reflect accumulation of neutrophils to chitin- and chitosan-implanted regions in dogs. PMID:7696425

  4. Myeloperoxidase in human neutrophil host defence.

    PubMed

    Nauseef, William M

    2014-08-01

    Human neutrophils represent the predominant leucocyte in circulation and the first responder to infection. Concurrent with ingestion of microorganisms, neutrophils activate and assemble the NADPH oxidase at the phagosome, thereby generating superoxide anion and hydrogen peroxide. Concomitantly, granules release their contents into the phagosome, where the antimicrobial proteins and enzymes synergize with oxidants to create an environment toxic to the captured microbe. The most rapid and complete antimicrobial action by human neutrophils against many organisms relies on the combined efforts of the azurophilic granule protein myeloperoxidase and hydrogen peroxide from the NADPH oxidase to oxidize chloride, thereby generating hypochlorous acid and a host of downstream reaction products. Although individual components of the neutrophil antimicrobial response exhibit specific activities in isolation, the situation in the environment of the phagosome is far more complicated, a consequence of multiple and complex interactions among oxidants, proteins and their by-products. In most cases, the cooperative interactions among the phagosomal contents, both from the host and the microbe, culminate in loss of viability of the ingested organism. PMID:24844117

  5. Neutrophilic dermatoses and inflammatory bowel diseases.

    PubMed

    Marzano, A V; Menicanti, C; Crosti, C; Trevisan, V

    2013-04-01

    Pyoderma gangrenosum (PG) and Sweet's Syndrome (SS) are inflammatory skin diseases caused by the accumulation of neutrophils in the skin and, rarely, in internal organs, which led to coining the term of neutrophilic dermatoses (ND) to define these conditions. Recently, ND have been included among the autoinflammatory diseases, which are forms due to mutations of genes regulating the innate immune responses. Both PG and SS are frequently associated with inflammatory bowel diseases (IBD), a group of chronic intestinal disorders which comprises ulcerative colitis and Crohn's disease and whose pathogenesis involves both the innate and adaptive immunity in genetically prone individuals. Patients with IBD develop PG in 1-3% of cases, while SS is rarer. PG presents with deep erythematous-to-violaceous painful ulcers with undermined borders, but bullous, pustular, and vegetative variants can also occur. SS, also known as acute febrile neutrophilic dermatosis, is characterized by the abrupt onset of fever, peripheral neutrophilia, tender erythematous skin lesions and a diffuse neutrophilic dermal infiltrate. In this review that will be focused on PG and SS, we will describe also the aseptic abscesses syndrome, a new entity within the spectrum of ND which frequently occurs in association with IBD and is characterized by deep abscesses mainly involving the spleen and skin and by polymorphic cutaneous manifestations including PG- and SS-like lesions. PMID:23588144

  6. Interaction of neutrophils with vascular smooth muscle: identification of a neutrophil-derived relaxing factor.

    PubMed

    Rimele, T J; Sturm, R J; Adams, L M; Henry, D E; Heaslip, R J; Weichman, B M; Grimes, D

    1988-04-01

    Experiments were designed to study the interaction of rat peritoneal neutrophils with the vascular smooth muscle of the rat aorta. Rings of aorta, suspended in 10-ml organ chambers containing a physiologic salt solution, were precontracted with phenylephrine. Neutrophils (1 X 10(5) -4 X 10(7) cells/organ chamber) caused a cell number-dependent relaxation of the rat aorta that was augmented by superoxide dismutase (100 U/ml) or changing the oxygen content from 95 to 21%. The neutrophil-induced smooth muscle relaxation occurred in rings with and without endothelium and in rings precontracted with increasing concentrations of phenylephrine, prostaglandin F2 alpha or KCI. Catalase (1000 U/ml) and mannitol (1 X 10(-3) M) did not block the neutrophil-induced relaxation, whereas phenazine methosulfate (1 X 10(-5) M), hydroquinone (3 X 10(-5) M) and methylene blue (1 X 10(-5) M) reversed the neutrophil-induced relaxation. Pre-exposure of endothelium-rubbed rings to neutrophils (2 X 10(7) cells/organ chamber; 15 min) depressed the subsequent concentration-response curve to phenylephrine but augmented the relaxation induced by the phosphodiesterase inhibitor zaprinast (1 X 10(-5) M). The effluent from a column restraining the neutrophils induced a relaxation of endothelium-rubbed aortic rings that was prevented by methylene blue (1 X 10(-5) M). These results demonstrate that rat neutrophils release a factor that has a pharmacologic profile similar to that previously reported for the relaxing factor released from the vascular endothelium. PMID:3129547

  7. The effect of leptin on the respiratory burst of human neutrophils cultured in synovial fluid

    PubMed Central

    Rzodkiewicz, Przemysław; Gajewska, Joanna; Wojtecka-Łukasik, Elżbieta

    2015-01-01

    Objectives Leptin is a hormone responsible for nutritional status and immune competence coordination. In rheumatoid arthritis (RA) increased leptin levels were observed in both serum and synovial fluid. Its influence on development of the disease still remains unclear. So far, research on leptin's influence on the emission of reactive oxygen intermediates (ROI) measured with chemiluminescence (CL) has provided unclear and contradictory results. In this study, we evaluated the influence of leptin on oxidative activity of neutrophils isolated from blood of healthy volunteers and cultured in different amounts of synovial fluid (SF) from patients with RA. Material and methods Neutrophils’ oxidative metabolism was measured by two types of CL. The first one, luminol-dependent CL (CL-lum), allows one to determine phagocytic activity and the level of ROI generated in a myeloperoxidase-dependent manner. The second method used was lucigenin-dependent CL (CL-luc), which monitors ROI production dependent on the NADPH oxidase enzyme complex located in the cell membranes of neutrophils and enables one to determine the scope of extracellular ROI emission. Results Neutrophils stimulated by opsonized zymosan show a decrease in the level of CL-lum, proportional to the increasing concentration of both SF and serum collected from healthy donors. The observed effect of decreased CL-lum may, therefore, be dependent on the physical conditions (viscosity of fluids used). None of these experiments showed any effect of leptin on the level of CL-lum. Conclusions The present study showed that leptin does not affect the level of any of the CL types in inactive neutrophils incubated in normal serum, and it does not affect the level of oxidative activity in resting neutrophils incubated with SF. However, leptin influences extracellular ROI emission (measured by CL-luc). Leptin reduces extracellular emission of ROI, and this effect is dependent on concentration and duration of exposure to

  8. Effects of phosphodiester and phosphorothioate ODN2216 on leukotriene synthesis in human neutrophils and neutrophil apoptosis.

    PubMed

    Viryasova, Galina M; Golenkina, Ekaterina A; Galkina, Svetlana I; Gaponova, Tatjana V; Romanova, Yulia M; Sud'ina, Galina F

    2016-06-01

    Polymorphonuclear leukocytes (PMNLs, neutrophils) play a major role in the initiation and resolution of the inflammatory response, and neutrophil apoptosis is a critical step in resolving inflammation. We examined the effects of oligodeoxynucleotide (ODN) species with different numbers of phosphodiester and phosphorothioate bonds on leukotriene synthesis in PMNLs and on neutrophil apoptosis. Our modifications were based on the well-known ODN2216 molecule (Krug et al., 2001). Treatment of cultured human neutrophils with ODN2216 accelerated apoptosis except in the case of a species with only phosphodiester bonds. The ODNs with poly(g) (phosphorothioate) sequences at both ends and a phosphodiester inner core had maximal effects on leukotriene synthesis in neutrophils and inhibited formation of 5-lipoxygenase metabolites. Addition of phosphodiester and phosphorothioate ODNs to PMNLs produced distinct effects on superoxide and nitric oxide formation: phosphorothioate-containing ODNs concomitantly stimulated production of nitric oxide and superoxide, which may rapidly combine to generate peroxynitrite. Altogether, our results describe strong activation of neutrophil's cellular responses by phosphorothioate ODN2216. We propose that phosphorothioate modification of ODNs represents a potential mechanism of PMNL activation. PMID:27036535

  9. Changes in Neutrophil Functions in Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  10. Pneumolysin activates neutrophil extracellular trap formation.

    PubMed

    G Nel, J; Theron, A J; Durandt, C; Tintinger, G R; Pool, R; Mitchell, T J; Feldman, C; Anderson, R

    2016-06-01

    The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection. PMID:26749379

  11. [Perfluorocarbon emulsions and other corpuscular systems influence on neutrophil activity].

    PubMed

    Shekhtman, D G; Safronova, V G; Sklifas, A N; Alovskaia, A A; Gapeev, A B; Obraztsov, V V; Chemeris, N K

    1997-01-01

    Influence of perfluorodecalin, perfluoromethilcyclohexylpiperidine, perfluorotributylamine emulsions on active oxygen form (AOF) generation by neutrophils has been studied. All investigated emulsions stabilized both proxanol 268 and egg yolk phospholipids inhibited PMA-stimulated neutrophil activity. Castor oil emulsion also inhibited the neutrophil activity. Neutrophil response for chemotactic peptide, was unchanged in the presence of all tested emulsions. We suppose that fast hydrophobic attachment of inert submicrone emulsion particles to cell surface provokes alteration of neutrophil plasma membrane function resulting in a decrease of AOF generation. PMID:9490112

  12. Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Merchant, Michael L.; Jin, Shunying; Lentsch, Alex B.; Ward, Richard A.; McLeish, Kenneth R.

    2013-01-01

    Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALf). Administration of TAT-SNAP-23, but not TAT-Control, significantly reduced albumin leakage, total protein levels in the BALf, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALf neutrophils and a decrease in neutrophil granule proteins in BALf. Similar degree of neutrophil accumulation in the lungs and/or BALf suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALf revealed that components of the complement and coagulation pathways were significantly reduced in BALf from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI. PMID:23364427

  13. Neutrophil extracellular traps: Their role in periodontal disease

    PubMed Central

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Swarna, Chakrapani; Devulapalli, Narasimha Swamy

    2014-01-01

    Neutrophils are the first line of innate immune defense against infectious diseases. Since their discovery, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during infections. Extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation along with other antimicrobial molecules. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophil extracellular trap production in the regulation of immune response and its role in periodontal disease. PMID:25624623

  14. Neutrophil extracellular traps: Their role in periodontal disease.

    PubMed

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Swarna, Chakrapani; Devulapalli, Narasimha Swamy

    2014-01-01

    Neutrophils are the first line of innate immune defense against infectious diseases. Since their discovery, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during infections. Extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation along with other antimicrobial molecules. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophil extracellular trap production in the regulation of immune response and its role in periodontal disease. PMID:25624623

  15. Distinct Oral Neutrophil Subsets Define Health and Periodontal Disease States.

    PubMed

    Fine, N; Hassanpour, S; Borenstein, A; Sima, C; Oveisi, M; Scholey, J; Cherney, D; Glogauer, M

    2016-07-01

    Neutrophils exit the vasculature and swarm to sites of inflammation and infection. However, these cells are abundant in the healthy, inflammation-free human oral environment, suggesting a unique immune surveillance role within the periodontium. We hypothesize that neutrophils in the healthy oral cavity occur in an intermediary parainflammatory state that allows them to interact with and contain the oral microflora without eliciting a marked inflammatory response. Based on a high-throughput screen of neutrophil CD (cluster of differentiation) marker expression and a thorough literature review, we developed multicolor flow cytometry panels to determine the surface marker signatures of oral neutrophil subsets in periodontal health and disease. We define here 3 distinct neutrophil subsets: resting/naive circulatory neutrophils, parainflammatory neutrophils found in the healthy oral cavity, and proinflammatory neutrophils found in the oral cavity during chronic periodontal disease. Furthermore, parainflammatory neutrophils manifest as 2 distinct subpopulations-based on size, granularity, and expression of specific CD markers-and exhibit intermediate levels of activation as compared with the proinflammatory oral neutrophils. These intermediately activated parainflammatory populations occur in equal proportions in the healthy oral cavity, with a shift to one highly activated proinflammatory neutrophil population in chronic periodontal disease. This work is the first to identify and characterize oral parainflammatory neutrophils that interact with commensal biofilms without inducing an inflammatory response, thereby demonstrating that not all neutrophils trafficking through periodontal tissues are fully activated. In addition to establishing possible diagnostic and treatment monitoring biomarkers, this oral neutrophil phenotype model builds on existing literature suggesting that the healthy periodontium may be in a parainflammatory state. PMID:27270666

  16. Induction of neutrophil chemotactic factor production by staurosporine in rat peritoneal neutrophils

    PubMed Central

    Edamatsu, Takeo; Xiao, Yi-Qun; Tanabe, Jun-ichi; Mue, Suetsugu; Ohuchi, Kazuo

    1997-01-01

    Incubation of rat peritoneal neutrophils in medium containing various concentrations of staurosporine (6.4–64 nM) increased the neutrophil chemotactic activity in the conditioned medium in a time- and concentration-dependent manner. Separation of the neutrophil chemotactic activity in the conditioned medium by isoelectric focusing revealed that staurosporine (64 nM) stimulated the production of basic (pH>8) neutrophil chemotactic factors, while TPA (12-O-tetradecanoylphorbol 13-acetate, 49 nM) stimulated the production of both basic (pH>8) and acidic (pH 5) neutrophil chemotactic factors. Determination by immunoassay of cytokine-induced neutrophil chemoattractant (CINC)-1, -2α, -2β and -3 in the conditioned medium at 4 h revealed that staurosporine (64 nM) and TPA (49 nM) strongly stimulated the production of CINC-3 (staurosporine, 133.0±3.8; TPA, 26.7±1.0; control, 0.32±0.01 ng ml−1, means±s.e.mean from four samples) compared to CINC-1 (staurosporine, 55.0±1.2; TPA, 12.2±0.3; control, 0.56±0.01 ng ml−1), and CINC-2α (staurosporine, 1.09±0.03; TPA, 0.90±0.02; control, <0.10 ng ml−1). CINC-2β was below the detectable amount (<0.078 ng ml−1). The level of CINC-3 mRNA in the peritoneal neutrophils was determined by reverse transcription-polymerase chain reaction. Staurosporine (64 nM) and TPA (49 nM) enhanced the level of CINC-3 mRNA time-dependently, but had no effect on GAPDH mRNA levels. Production of staurosporine-induced neutrophil chemotactic factor was inhibited by the protein kinase C inhibitors, H-7 (IC50, 12.3 μM), calphostin C (IC50, 0.77 μM) and Ro 31-8425 (24.3% inhibition at 10 μM), and by the tyrosine kinase inhibitor, genistein (IC50, 68.5 μM). Production of TPA-induced neutrophil chemotactic factor was also inhibited by both inhibitors. Both the staurosporine- and the TPA-induced increase in CINC-3 mRNA levels were suppressed by H-7 and genistein. PMID:9283699

  17. Neutrophil extracellular traps in physiology and pathology

    PubMed Central

    Manda, Aneta; Araźna, Magdalena; Demkow, Urszula A.

    2014-01-01

    Neutrophil extracellular traps (NETs) are developed by nature to protect the body from furious invaders. On the other hand NET s can play an important role in human pathology. Recent studies have shown that neutrophils are able to perform beneficial suicide to create an unique microbicidal net composed from cellular content attached to chromatic frame. It is a powerful tool that primary serve as protector from severe infections, but this weapon is also a double ended sword of the immunity. If overproduced NET s provoke certain autoimmune diseases, coagulation disorders and even cancer metastases. Moreover, due to the competition between host and pathogens, the microorganism have developed a width repertoire of sophisticated evading mechanisms, like creation of polysaccharide capsule or changes in cell wall charge. Therefore it is important to increase the knowledge about paths underlying NET s formation and degradation processes if we want to efficiently fight with bacterial infections and certain diseases. PMID:26155111

  18. [Inhibition of neutrophil adhesion by pectic galacturonans].

    PubMed

    Popov, S V; Ovodova, R G; Popova, G Iu; Nikitina, I R; Ovodov, Iu S

    2007-01-01

    The inhibition of the adhesion of neutrophils to fibronectin by the fragments of the main galacturonan chain of the following pectins was demonstrated: comaruman from the marsh cinquefoil Comarum polustre, bergenan from the Siberian tea Bergenia crassifolia, lemnan from the duckweed Lemna minor, zosteran from the seagrass Zostera marina, and citrus pectin. The parent pectins, except for comaruman, did not affect the cell adhesion. Galacturonans prepared from the starting pectins by acidic hydrolysis were shown to reduce the neutrophil adhesion stimulated by phorbol 12-myristate 13-acetate (1.625 microM) and dithiothreitol (0.5 mM) at a concentration of 50-200 microg/ml. The presence of carbohydrate chains with molecular masses higher than 300, from 100 to 300, and from 50 to 100 kDa in the galacturonan fractions was proved by membrane ultrafiltration. PMID:17375675

  19. Neutrophil myeloperoxidase destruction by ultraviolet irradiation

    SciTech Connect

    Hanker, J.; Giammara, B.; Strauss, G.

    1988-01-01

    The peroxidase activity of enriched leukocyte preparations on coverslips was determined cytochemically with a newly developed method. The techniques utilizes diaminobenzidine medium and cupric nitrate intensification and is suitable for analysis with light microscopy, SEM, and TEM. Blood specimens from control individuals were studied with and without in vitro UV irradiation and compared with those from psoriasis patients exposed therapeutically to various types of UV in phototherapy. All UV irradiated samples showed diminished neutrophil myeloperoxidase (MP) activity although that of the principal eosinophil peroxidase was unaffected. The SEMs supported the contention that decreased neutrophil MP activity might be related to UV induced degranulation. It is believed to be possible, eventually, to equate the observed MP degranulation effect after UV irradiation with diminished ability to fight bacterial infections.

  20. Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils.

    PubMed

    Freitas, Marisa; Costa, Vera M; Ribeiro, Daniela; Couto, Diana; Porto, Graça; Carvalho, Félix; Fernandes, Eduarda

    2013-05-23

    Acetaminophen is a frequently prescribed over-the-counter drug to reduce fever and pain in the event of inflammatory process. As neutrophils are relevant cells in inflammatory processes, the putative interaction of acetaminophen with these cells, if present, would be of paramount importance. The present study was undertaken to evaluate the effect of acetaminophen in human neutrophils' oxidative burst and lifespan in vitro. The obtained results demonstrate that acetaminophen efficiently modulates neutrophils' oxidative burst in phorbol myristate acetate-activated neutrophils, in a concentration-dependent manner, at in vivo relevant concentrations. It was clearly demonstrated that acetaminophen is a strong scavenger of HOCl and H2O2, which probably contributed to the effect observed in neutrophils. Acetaminophen also induced the depletion of glutathione in stimulated neutrophils, suggesting its transformation into a reactive intermediate. Obtained results further revealed that acetaminophen affects programmed cell death of human neutrophils, resulting in a delay of previously stimulated neutrophils-mediated apoptosis. Overall, our data suggested that acetaminophen has considerable potential to be included in anti-inflammatory therapeutic strategies, by preventing biological damage induced by an excessive production of reactive species generated in activated neutrophils and by extending the lifespan of neutrophils, favoring the elimination of pathogens, thus contributing to tissue healing and resolution of inflammation. PMID:23518321

  1. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    NASA Astrophysics Data System (ADS)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  2. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    PubMed

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  3. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils.

    PubMed

    Rocha, Juliana D B; Nascimento, Michelle T C; Decote-Ricardo, Debora; Côrte-Real, Suzana; Morrot, Alexandre; Heise, Norton; Nunes, Marise P; Previato, José Osvaldo; Mendonça-Previato, Lucia; DosReis, George A; Saraiva, Elvira M; Freire-de-Lima, Célio G

    2015-01-01

    In the present study, we characterized the in vitro modulation of NETs (neutrophil extracellular traps) induced in human neutrophils by the opportunistic fungus Cryptococcus neoformans, evaluating the participation of capsular polysaccharides glucuronoxylomanan (GXM) and glucuronoxylomannogalactan (GXMGal) in this phenomenon. The mutant acapsular strain CAP67 and the capsular polysaccharide GXMGal induced NET production. In contrast, the wild-type strain and the major polysaccharide GXM did not induce NET release. In addition, C. neoformans and the capsular polysaccharide GXM inhibited PMA-induced NET release. Additionally, we observed that the NET-enriched supernatants induced through CAP67 yeasts showed fungicidal activity on the capsular strain, and neutrophil elastase, myeloperoxidase, collagenase and histones were the key components for the induction of NET fungicidal activity. The signaling pathways associated with NET induction through the CAP67 strain were dependent on reactive oxygen species (ROS) and peptidylarginine deiminase-4 (PAD-4). Neither polysaccharide induced ROS production however both molecules blocked the production of ROS through PMA-activated neutrophils. Taken together, the results demonstrate that C. neoformans and the capsular component GXM inhibit the production of NETs in human neutrophils. This mechanism indicates a potentially new and important modulation factor for this fungal pathogen. PMID:25620354

  4. Leptin as a uremic toxin interferes with neutrophil chemotaxis.

    PubMed

    Ottonello, Luciano; Gnerre, Paola; Bertolotto, Maria; Mancini, Marina; Dapino, Patrizia; Russo, Rodolfo; Garibotto, Giacomo; Barreca, Tommaso; Dallegri, Franco

    2004-09-01

    Leptin is a pleiotropic molecule involved in energy homeostasis, hematopoiesis, inflammation, and immunity. Hypoleptinemia characterizing starvation has been strictly related to increased susceptibility to infection secondary to malnutrition. Nevertheless, ESRD is characterized by high susceptibility to bacterial infection despite hyperleptinemia. Defects in neutrophils play a crucial role in the infectious morbidity, and several uremic toxins that are capable of depressing neutrophil functions have been identified. Only a few and contrasting reports about leptin and neutrophils are available. This study provides evidence that leptin inhibits neutrophil migration in response to classical chemoattractants. Moreover, serum from patients with ESRD inhibits migration of normal neutrophils in response to N-formyl-methionyl-leucyl-phenylalanine with a strict correlation between serum leptin levels and serum ability to suppress neutrophil locomotion. Finally, the serum inhibitory activity can be effectively prevented by immune depletion of leptin. The results also show, however, that leptin by itself is endowed with chemotactic activity toward neutrophils. The two activities-inhibition of the cell response to chemokines and stimulation of neutrophil migration-could be detected at similar concentrations. On the contrary, neutrophils exposed to leptin did not display detectable [Ca(2+)](i) mobilization, oxidant production, or beta(2)-integrin upregulation. The results demonstrate that leptin is a pure chemoattractant devoid of secretagogue properties that are capable of inhibiting neutrophil chemotaxis to classical neutrophilic chemoattractants. Taking into account the crucial role of neutrophils in host defense, the leptin-mediated ability of ERSD serum to inhibit neutrophil chemotaxis appears as a potential mechanism that contributes to the establishment of infections in ERSD. PMID:15339985

  5. Characterization of prostanoid receptors on rat neutrophils.

    PubMed Central

    Wise, H; Jones, R L

    1994-01-01

    1. The effects of various prostanoid agonists have been compared on the increase in intracellular free calcium ([Ca2+]i) and the aggregation reaction of rat peritoneal neutrophils induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP). 2. Prostaglandin E2 (PGE2) and the specific IP-receptor agonist, cicaprost, both inhibited the FMLP-induced increase in [Ca2+]i (IC50 33 nM and 18 nM respectively) and the FMLP-induced aggregation reaction (IC50 5.6 nM and 7.9 nM respectively). PGD2, PGF2 alpha, and the TP-receptor agonist, U 46619, were inactive at the highest concentration tested (1 microM). 3. The EP1-receptor agonist, 17-phenyl-omega-trinor PGE2, and the EP3-receptor agonists, GR 63799X and sulprostone, had no inhibitory effect on FMLP-stimulated rat neutrophils. 4. PGE1 (EP/IP-receptor agonist) and iloprost (IP-receptor agonist) inhibited the FMLP-induced increase in [Ca2+]i with IC50 values of 34 nM and 38 nM respectively. The EP2-receptor agonists, butaprost and misoprostol (1 microM), inhibited both FMLP-stimulated [Ca2+]i and aggregation. However another EP2-receptor agonist, AH 13205, was inactive in both assays. 5. Prostanoid receptors present on rat neutrophils were further characterized by measuring [3H]-adenosine 3':5'-cyclic monophosphate ([3H]-cyclic AMP) accumulation. Only those agonists capable of stimulating [3H]-cyclic AMP accumulation were able to inhibit both FMLP-stimulated [Ca2+]i and aggregation. 6. These results indicate that rat neutrophils possess inhibitory IP and EP-receptors; the relative potencies of PGE2, misoprostol and butaprost are those expected for the EP2-receptor subtype. No evidence for DP, FP, TP or EP1 and EP3-receptors was obtained. PMID:7834211

  6. Peripheral neutrophils after allergic asthmatic reactions.

    PubMed

    Asman, B; Strand, V; Bylin, G; Bergström, K

    1997-01-01

    The response of peripheral neutrophils was studied in 16 patients with allergic asthma after challenge with birch/grass pollen allergen, in order to identify inflammatory markers associated with only the early asthmatic reaction and those associated with both early and late asthmatic reactions. The allergen challenge proceeded until the patients had an early asthmatic reaction with 100% increase in specific airway resistance. Bronchoconstriction after allergen challenge was monitored hourly over 9 h and finally after 18 h, by measurement of the forced expiratory volume in 1 s. Seven patients had a late reaction, defined as a decrease in forced expiratory volume in 1 s of more than 15%. Blood samples were taken before and 18 h after challenge. After allergen challenge (18 h) the blood concentration of neutrophils in patients with a late asthmatic reaction was 1.4 times higher than before challenge and there was a tendency for increased Fc gamma receptor-mediated chemiluminescence. Lewis X-antigen (CD 15), which is associated with endothelial adhesion and extravasation, significantly decreased at the same time. Neutrophils were incubated with the tetrapeptide arginine-glycine-aspartate-serine before and 18 h after allergen challenge. Both patient groups showed an increased Fc gamma receptor-mediated chemiluminescence and a decreased Fc gamma receptor membrane expression following allergen challenge, suggesting a preactivation. In conclusion, patients with a dual asthmatic reaction show a sustained primed inflammatory response and primed neutrophils compared with patients with only an early reaction when measured after the decline of clinical symptoms provoked by allergen challenge. PMID:9352381

  7. [Neutrophil activation by sea hydrobiont biopolymers].

    PubMed

    Zaporozhets, T S

    2003-01-01

    Biopolymers of sea hydrobionts such as mytilan, alpha-1,4;1,6-D-glycan isolated from the muntle of the mussel Crenomytilus grayanus; translam, beta-1,3;1,6-D-glucan isolated from the seaweed Laminaria cichorioides; fucoidan, a sulfated polysccharide isolated from the algae Fucus evanescens; zosterin, a pectin isolated from sea grass of the family Zosteraceae were comparatively studied. The mechanisms of the phagocyte activation were investigated and the dose-dependent ability of the biopolymers to increase in vitro adhesion of the intact cells and to restore the neutrophil functions at cyclophosphamide-induced immunodepression was detected. The neutrophil activation by mytilan, zosterin and fucoidan linked with the adhesion potentiation was shown to be associated with their ability to increase the number of the adhesion receptors and in particular CD116b on the cell surface. The lower potential of the neutrophils preincubated in vitro with high doses of translam beta-glucan could be due to blockade of the beta-glucan receptors participating in the complex multicomponent adhesion process. The use of the biopolymers of the sea hydrobionts of the glycobiological nature for modulation of the immunity processes provided rather convenient in vivo management of intracellular processes through direct and competing carbohydrate specific interactions of the modifiers with the membrane receptors and formation of active and inactive lectin-glycoligand and carbohydrate-carbohydrate complexes. PMID:15002173

  8. Differentiating neutrophils using the optical coulter counter

    NASA Astrophysics Data System (ADS)

    Schonbrun, Ethan; Di Caprio, Giuseppe

    2015-11-01

    We present an optofluidic measurement system that quantifies cell volume, dry mass, and nuclear morphology of neutrophils in high-throughput. While current clinical hematology analyzers can differentiate neutrophils from a blood sample, they do not give other quantitative information beyond their count. In order to better understand the distribution of neutrophil phenotypes in a blood sample, we perform two distinct multivariate measurements. In both measurements, white blood cells are driven through a microfluidic channel and imaged while in flow onto a color camera using a single exposure. In the first measurement, we quantify cell volume, scattering strength, and cell dry mass by combining quantitative phase imaging with dye exclusion cell volumetric imaging. In the second measurement, we quantify cell volume and nuclear morphology using a nucleic acid fluorescent stain. In this way, we can correlate cell volume to other cellular characteristics, which would not be possible using an electrical coulter counter. Unlike phase imaging or cell scattering analysis, the optical coulter counter is capable of quantifying cell volume virtually independent of the cell's refractive index and unlike optical tomography, measurements are possible on quickly flowing cells, enabling high-throughput.

  9. Differentiating neutrophils using the optical coulter counter

    NASA Astrophysics Data System (ADS)

    Schonbrun, E.; Di Caprio, G.

    2015-03-01

    We present an opto-fluidic measurement system that quantifies cell volume, dry mass and nuclear morphology of neutrophils in high-throughput. While current clinical hematology analyzers can differentiate neutrophils from a blood sample, they do not give other quantitative information beyond their count. In order to better understand the distribution of neutrophil phenotypes in a blood sample, we perform two distinct multivariate measurements. In both measurements, white blood cells are driven through a microfluidic channel and imaged while in flow onto a color camera using a single exposure. In the first measurement, we quantify cell volume, scattering strength, and cell dry mass by combining quantitative phase imaging with dye exclusion cell volumetric imaging. In the second measurement, we quantify cell volume and nuclear morphology using a nucleic acid fluorescent stain. In this way, we can correlate cell volume to other cellular characteristics, which would not be possible using an electrical coulter counter. Unlike phase imaging or cell scattering analysis, the optical coulter counter is capable of quantifying cell volume virtually independent of the cell's refractive index and unlike optical tomography, measurements are possible on quickly flowing cells, enabling high-throughput.

  10. Palisaded neutrophilic granulomatous dermatitis in rheumatoid arthritis.

    PubMed

    Sangueza, Omar P; Caudell, Misty D; Mengesha, Yebabe M; Davis, Loretta S; Barnes, Cheryl J; Griffin, Julia E; Fleischer, Alan B; Jorizzo, Joseph L

    2002-08-01

    Palisaded neutrophilic granulomatous dermatitis (PNGD) is an entity that has not been clearly defined either clinically or histopathologically. It is seen in patients with rheumatoid arthritis and other connective tissue diseases. In the past, many cases of PNGD have been described under several different names including palisaded neutrophilic and granulomatous dermatitis, linear subcutaneous bands, interstitial granulomatous dermatitis with cutaneous cords and arthritis, rheumatoid papules, and Churg-Strauss granuloma. We report 7 additional cases of PNGD. Clinically, 6 patients presented with erythematous to violaceous plaques, papules, and nodules on multiple body sites; one presented with subcutaneous linear bands on the shoulder. Five had rheumatoid arthritis; one had adult-onset Still's disease; and one showed clinical signs of rheumatoid arthritis, although serologically the rheumatoid factor was negative. On histologic examination, a spectrum of changes was observed ranging from urticaria-like infiltrates to leukocytoclastic vasculitis and granuloma annulare with neutrophils. We report these cases to expand the histologic spectrum of this entity and to further delineate the different forms of clinical presentation. PMID:12140472

  11. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination. PMID:17086359

  12. Pulmonary vascular sequestration of neutrophils in endotoxemia is initiated by an effect of endotoxin on the neutrophil in the rabbit

    SciTech Connect

    Haslett, C.; Worthen, G.S.; Giclas, P.C.; Morrison, D.C.; Henson, J.E.; Henson, P.M.

    1987-07-01

    Endotoxemia causes neutrophil sequestration in the pulmonary vascular bed. Such sequestration may be a critical initiating event in the generation of microvascular injury, although the mechanisms that lead to this localization are not understood. To investigate these phenomena, the following study employed intravenous pulses of /sup 111/Indium-tropolonate-labeled neutrophils (/sup 111/In-neutrophils), which circulated in the rabbit with normal kinetics and responded in a manner indistinguishable from unlabeled, circulating neutrophils in response to an intravenous injection of purified endotoxic lipopolysaccharide (LPS) or epinephrine. Pulmonary sequestration of /sup 111/In-neutrophils was assessed by quantitative external gamma camera scintigraphy of a lung suprahilar region of interest. Noninvasive assessment of radioactivity by this method accurately reflected total lung radioactivity, which was shown by autoradiography to be confined to the injected /sup 111/In-neutrophils. Intravenously administered LPS caused a marked, dose-dependent sequestration of /sup 111/In-neutrophils in the pulmonary vasculature, and exhaustive ultrastructural autoradiography showed discretely radiolabeled neutrophils located within pulmonary capillaries. A distinct effect was seen with an intravenous injection of as little as 100 ng per rabbit (i.e., 500 pg/ml blood). A 5-min ex vivo pretreatment of /sup 111/In-neutrophils with 10 ng to 10 micrograms/ml LPS in heat-inactivated plasma also caused dose-dependent pulmonary sequestration of the pretreated /sup 111/In-neutrophils but did not cause generalized neutropenia in recipient rabbits.

  13. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    SciTech Connect

    Yokoyama, Hideshi; Tsuruta, Osamu; Akao, Naoya; Fujii, Satoshi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}- or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.

  14. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

    PubMed Central

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Macallan, Derek

    2016-01-01

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  15. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives.

    PubMed

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek

    2016-06-30

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  16. Neutrophil depletion delays wound repair in aged mice

    PubMed Central

    Nishio, Naomi; Okawa, Yayoi; Sakurai, Hidetoshi

    2008-01-01

    One of the most important clinical problems in caring for elderly patients is treatment of pressure ulcers. One component of normal wound healing is the generation of an inflammatory reaction, which is characterized by the sequential infiltration of neutrophils, macrophages and lymphocytes. Neutrophils migrate early in the wound healing process. In aged C57BL/6 mice, wound healing is relatively inefficient. We examined the effects of neutrophil numbers on wound healing in both young and aged mice. We found that the depletion of neutrophils by anti-Gr-1 antibody dramatically delayed wound healing in aged mice. The depletion of neutrophils in young mice had less effect on the kinetics of wound healing. Intravenous G-CSF injection increased the migration of neutrophils to the wound site. While the rate of wound repair did not change significantly in young mice following G-CSF injection, it increased significantly in old mice. PMID:19424869

  17. Differential regulation of protrusion and polarity by PI(3)K during neutrophil motility in live zebrafish

    PubMed Central

    Yoo, Sa Kan; Deng, Qing; Cavnar, Peter J.; Wu, Yi I.; Hahn, Klaus M.; Huttenlocher, Anna

    2010-01-01

    Summary Cell polarity is crucial for directed migration. Here we show that phosphoinositide 3-kinase (PI(3)K) mediates neutrophil migration in vivo by differentially regulating cell protrusion and polarity. The dynamics of PI(3)K products PI(3,4,5)P3-PI(3,4)P2 during neutrophil migration were visualized in living zebrafish, revealing that PI(3)K activation at the leading edge is critical for neutrophil motility in intact tissues. A genetically encoded photoactivatable Rac was used to demonstrate that localized activation of Rac is sufficient to direct migration with precise temporal and spatial control in vivo. Similar stimulation of PI(3)K-inhibited cells did not direct migration. Localized Rac activation rescued membrane protrusion but not anteroposterior polarization of F-actin dynamics of PI(3)K-inhibited cells. Uncoupling Rac-mediated protrusion and polarization suggests a paradigm of two-tiered PI(3)K-mediated regulation of cell motility. This work provides new insight into how cell signaling at the front and back of the cell is coordinated during polarized cell migration in intact tissues within a multicellular organism. PMID:20159593

  18. Neutrophil lipoxygenase metabolism and adhesive function following acute thermal injury.

    PubMed

    Damtew, B; Marino, J A; Fratianne, R B; Spagnuolo, P J

    1993-02-01

    Leukotrienes, especially leukotriene B4, are important modulators of various neutrophil functions including adherence and chemotaxis. In previous work, we demonstrated that neutrophil adherence to extracellular matrixes was diminished in the acute stages of burn injury. In this study, we demonstrated that neutrophil adhesion to human and bovine endothelium in the baseline state and after stimulation with leukotriene B4 is depressed markedly after burn injury. The defect in stimulated adherence to endothelium was not specific to leukotriene B4 because impaired adhesion was observed with n-formyl-methionyl-leucyl-phenylalanine and ionophore A23187 as well. Moreover, the adherence defect correlated with 95% and 81% decreases in the release of leukotriene B4 and 5-hydroxy-(6E,87,117,147)-eicosatetraenoic acid, respectively, from burn PMN treated with A23187. Burn neutrophils also released proportionately more byproducts of leukotriene B4 omega oxidation, particularly 20-COOH-leukotriene B4, than did control neutrophils. When examined 3 1/2 weeks after injury, abnormalities in neutrophil leukotriene B4 generation and the adherence of burn neutrophils had recovered to near normal values. To determine whether the decreased release of leukotriene B4 from burn neutrophils was due to increased degradation or diminished synthesis of leukotriene B4, we examined the degradation of exogenous tritiated leukotriene B4 as well as the production of leukotriene B4 from tritiated arachidonic acid in neutrophils. Burn neutrophils converted significantly greater quantities of tritiated leukotriene B4 to tritiated 20-COOH-leukotriene B4 and synthesized markedly less tritiated leukotriene B4 from tritiated arachidonic acid than did control neutrophils, suggesting that decreased leukotriene B4 release by burn neutrophils was the result of both enhanced degradation and decreased synthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8381849

  19. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  20. SRF is required for neutrophil migration in response to inflammation

    PubMed Central

    Taylor, Ashley; Tang, Wenwen; Bruscia, Emanuela M.; Zhang, Ping-Xia; Lin, Aiping; Gaines, Peter; Wu, Dianqing

    2014-01-01

    Serum response factor (SRF) is a ubiquitously expressed transcription factor and master regulator of the actin cytoskeleton. We have previously shown that SRF is essential for megakaryocyte maturation and platelet formation and function. Here we elucidate the role of SRF in neutrophils, the primary defense against infections. To study the effect of SRF loss in neutrophils, we crossed Srffl/fl mice with select Cre-expressing mice and studied neutrophil function in vitro and in vivo. Despite normal neutrophil numbers, neutrophil function is severely impaired in Srf knockout (KO) neutrophils. Srf KO neutrophils fail to polymerize globular actin to filamentous actin in response to N-formyl-methionine-leucine-phenylalanine, resulting in significantly disrupted cytoskeletal remodeling. Srf KO neutrophils fail to migrate to sites of inflammation in vivo and along chemokine gradients in vitro. Polarization in response to cytokine stimuli is absent and Srf KO neutrophils show markedly reduced adhesion. Integrins play an essential role in cellular adhesion, and although integrin expression levels are maintained with loss of SRF, integrin activation and trafficking are disrupted. Migration and cellular adhesion are essential for normal cell function, but also for malignant processes such as metastasis, underscoring an essential function for SRF and its pathway in health and disease. PMID:24574460

  1. Neutrophilic Skin Lesions in Autoimmune Connective Tissue Diseases

    PubMed Central

    Hau, Estelle; Vignon Pennamen, Marie-Dominique; Battistella, Maxime; Saussine, Anne; Bergis, Maud; Cavelier-Balloy, Benedicte; Janier, Michel; Cordoliani, Florence; Bagot, Martine; Rybojad, Michel; Bouaziz, Jean-David

    2014-01-01

    Abstract The pathophysiology of neutrophilic dermatoses (NDs) and autoimmune connective tissue diseases (AICTDs) is incompletely understood. The association between NDs and AICTDs is rare; recently, however, a distinctive subset of cutaneous lupus erythematosus (LE, the prototypical AICTD) with neutrophilic histological features has been proposed to be included in the spectrum of lupus. The aim of our study was to test the validity of such a classification. We conducted a monocentric retrospective study of 7028 AICTDs patients. Among these 7028 patients, a skin biopsy was performed in 932 cases with mainly neutrophilic infiltrate on histology in 9 cases. Combining our 9 cases and an exhaustive literature review, pyoderma gangrenosum, Sweet syndrome (n = 49), Sweet-like ND (n = 13), neutrophilic urticarial dermatosis (n = 6), palisaded neutrophilic granulomatous dermatitis (n = 12), and histiocytoid neutrophilic dermatitis (n = 2) were likely to occur both in AICTDs and autoinflammatory diseases. Other NDs were specifically encountered in AICTDs: bullous LE (n = 71), amicrobial pustulosis of the folds (n = 28), autoimmunity-related ND (n = 24), ND resembling erythema gyratum repens (n = 1), and neutrophilic annular erythema (n = 1). The improvement of AICTDS neutrophilic lesions under neutrophil targeting therapy suggests possible common physiopathological pathways between NDs and AICTDs. PMID:25546688

  2. Human filarial Wolbachia lipopeptide directly activates human neutrophils in vitro.

    PubMed

    Tamarozzi, F; Wright, H L; Johnston, K L; Edwards, S W; Turner, J D; Taylor, M J

    2014-10-01

    The host inflammatory response to the Onchocerca volvulus endosymbiont, Wolbachia, is a major contributing factor in the development of chronic pathology in humans (onchocerciasis/river blindness). Recently, the toll-like pattern recognition receptor motif of the major inflammatory ligands of filarial Wolbachia, membrane-associated diacylated lipoproteins, was functionally defined in murine models of pathology, including mediation of neutrophil recruitment to the cornea. However, the extent to which human neutrophils can be activated in response to this Wolbachia pattern recognition motif is not known. Therefore, the responses of purified peripheral blood human neutrophils to a synthetic N-terminal diacylated lipopeptide (WoLP) of filarial Wolbachia peptidoglycan-associated lipoprotein (PAL) were characterized. WoLP exposure led to a dose-dependent activation of healthy, human neutrophils that included gross morphological alterations and modulation of surface expressed integrins involved in tethering, rolling and extravasation. WoLP exposure induced chemotaxis but not chemokinesis of neutrophils, and secretion of the major neutrophil chemokine, interleukin 8. WoLP also induced and primed the respiratory burst, and enhanced neutrophil survival by delay of apoptosis. These results indicate that the major inflammatory motif of filarial Wolbachia lipoproteins directly activates human neutrophils in vitro and promotes a molecular pathway by which human neutrophils are recruited to sites of Onchocerca parasitism. PMID:24909063

  3. Distinct Functions of Neutrophil in Cancer and Its Regulation

    PubMed Central

    Granot, Zvi; Jablonska, Jadwiga

    2015-01-01

    Neutrophils are the most abundant of all white blood cells in the human circulation and are usually associated with inflammation and with fighting infections. In recent years the role immune cells play in cancer has been a matter of increasing interest. In this context the function of neutrophils is controversial as neutrophils were shown to possess both tumor promoting and tumor limiting properties. Here we provide an up-to-date review of the pro- and antitumor properties neutrophils possess as well as the environmental cues that regulate these distinct functions. PMID:26648665

  4. [Neutrophils and immunity: is it innate or acquired?].

    PubMed

    Chakravarti, Arpita; Allaeys, Isabelle; Poubelle, Patrice E

    2007-10-01

    The neutrophil has long been considered a phagocytic cell with a short life-span whose major role is to destroy intruders to the body. Toll receptors and anti-infectious factors such as defensin, perforin and granzymes are newly discovered mechanisms used by neutrophils for the first line of defense against invaders. Moreover, subpopulations of neutrophils share specific functions like the synthesis of certain cytokines and chemokines, as well as the expression of immunoreceptors like the T cell receptor. A primary consequence of inflammation on neutrophils is a delay in their spontaneous programmed cell death. Hence, this multifunctional cell is also a necessary actor of the acquired immune response. Neutrophils have the capacity to degrade and process antigens as well as efficiently present antigenic peptides to lymphocytes. Neutrophil interactions with immune cells, in particular dendritic cells, lead to the formation of IL-12 and TNF-alpha deviating the immune response towards a Th1 phenotype. Thus, the neutrophil exhibits a cellular plasticity that explains its capacity to transdifferentiate depending on the local requirements of the immune response. The neutrophil is probably the most underappreciated immune cell among hematopoietic leukocytes, and many neutrophil functions remain to be unraveled. PMID:17937896

  5. Mechanism of neutrophil recruitment to the lung after pulmonary contusion.

    PubMed

    Hoth, J Jason; Wells, Jonathan D; Hiltbold, Elizabeth M; McCall, Charles E; Yoza, Barbara K

    2011-06-01

    Blunt chest trauma resulting in pulmonary contusion is a common but poorly understood injury. We previously demonstrated that lung contusion activates localized and systemic innate immune mechanisms and recruits neutrophils to the injured lung. We hypothesized that the innate immune and inflammatory activation of neutrophils may figure prominently in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated postinjury lung function and pulmonary neutrophil recruitment. Comparisons were made between injured mice with and without neutrophil depletion. We further examined the role of chemokines and adhesion receptors in neutrophil recruitment to the injured lung. We found that lung injury and resultant physiological dysfunction after contusion were dependent on the presence of neutrophils in the alveolar space. We show that CXCL1, CXCL2/3, and CXCR2 are involved in neutrophil recruitment to the lung after injury and that intercellular adhesion molecule 1 is locally expressed and actively participates in this process. Injured gp91-deficient mice showed improved lung function, indicating that oxidant production by neutrophil NADPH oxidase mediates lung dysfunction after contusion. These data suggest that both neutrophil presence and function are required for lung injury after lung contusion. PMID:21330942

  6. Exploring inflammatory disease drug effects on neutrophil function.

    PubMed

    Wu, Xiaojie; Kim, Donghyuk; Young, Ashlyn T; Haynes, Christy L

    2014-08-21

    Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs on neutrophil function in the context of inflammatory diseases. Herein, chemically guided neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the single cell level using a microfluidic platform, complemented by cell viability assays and calcium imaging. Three representative drugs known to inhibit surface receptor expression, signaling enzyme activity, and the elevation of intracellular Ca(2+) levels, each playing a significant role in neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular behaviors. The microfluidic device establishes a stable concentration gradient of chemokines across a cell culture chamber so that neutrophil migration can be monitored under various drug-exposure conditions. Different time- and concentration-dependent regulatory effects were observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in response to the three drugs. Viability assays revealed distinct drug capabilities in reducing neutrophil viability while calcium imaging clarified the role of Ca(2+) in the neutrophil chemotaxis. This study provides mechanistic insight into the drug effects on neutrophil function, facilitating comparison of current and potential pharmaceutical approaches. PMID:24946254

  7. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    PubMed Central

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil. PMID:27034964

  8. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil. PMID:27034964

  9. Cationic liposomes evoke proinflammatory mediator release and neutrophil extracellular traps (NETs) toward human neutrophils.

    PubMed

    Hwang, Tsong-Long; Hsu, Ching-Yun; Aljuffali, Ibrahim A; Chen, Chun-Han; Chang, Yuan-Ting; Fang, Jia-You

    2015-04-01

    Cationic liposomes are widely used as nanocarriers for therapeutic and diagnostic purposes. The cationic components of liposomes can induce inflammatory responses. This study examined the effect of cationic liposomes on human neutrophil activation. Cetyltrimethylammonium bromide (CTAB) or soyaethyl morpholinium ethosulfate (SME) was incorporated into liposomes as the cationic additive. The liposomes' cytotoxicity and their induction of proinflammatory mediators, intracellular calcium, and neutrophil extracellular traps (NETs) were investigated. The interaction of the liposomes with the plasma membrane triggered the stimulation of neutrophils. CTAB liposomes induced complete leakage of lactate dehydrogenase (LDH) at all concentrations tested, whereas SME liposomes released LDH in a concentration-dependent manner. CTAB liposomes proved to more effectively activate neutrophils compared with SME liposomes, as indicated by increased superoxide anion and elastase levels. Calcium influx increased 9-fold after treatment with CTAB liposomes. This influx was not changed by SME liposomes compared with the untreated control. Scanning electron microscopy (SEM) and immunofluorescence images indicated the presence of NETs after treatment with cationic liposomes. NETs could be quickly formed, within minutes, after CTAB liposomal treatment. In contrast to this result, NET formation was slowly and gradually increased by SME liposomes, within 4h. Based on the data presented here, it is important to consider the toxicity of cationic liposomes during administration in the body. This is the first report providing evidence of NET production induced by cationic liposomes. PMID:25731102

  10. Energy Metabolism of Human Neutrophils during Phagocytosis

    PubMed Central

    Borregaard, Niels; Herlin, Troels

    1982-01-01

    Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose. In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell. Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism. PMID:7107894

  11. Characterization of C1 inhibitor binding to neutrophils.

    PubMed Central

    Chang, N S; Boackle, R J; Leu, R W

    1991-01-01

    In a previous study we have isolated neutrophil membrane proteins that non-covalently bind to native C1-INH (105,000 MW) and a non-functional, degraded C1-INH (88,000 MW; C1-INH-88). To further characterize the binding nature, we have designed a novel kinetic C1 titration assay which enables not only a quantification of the removal of fluid-phase C1-INH by neutrophils, but also a concomitant measure of residual C1-INH function. Native C1-INH, when adsorbed to EDTA-pretreated neutrophils, lost its function in the inhibition of fluid-phase C1. The non-functional C1-INH-88, which is probably devoid of a reactive centre, was found to block the binding of native C1-INH to neutrophils. Pretreatment of neutrophils with serine esterase inhibitors did not abrogate binding capacity of the cells for C1-INH, whereas the binding affinity for C1-INH was lost when the cells were pretreated with trypsin. An array of human peripheral blood leucocytes and several lymphoid cell lines has surface binding sites for C1-INH, but not on human erythrocytes and U937 cells. Binding was further confirmed using (i) C1-INH-microsphere beads to neutrophils, in which the binding was blocked when pretreating neutrophils with excess C1-INH or with trypsin, and (ii) radiolabelled C1-INH to neutrophils, which was competitively blocked by unlabelled non-functional C1-INH-88. Desialylation of C1-INH significantly reduced its binding affinity for neutrophils, indicating that the membrane receptor sites on neutrophils could be specific for the binding of sialic acid residues on C1-INH. Overall, our studies indicate that neutrophils or other leucocytes possess specific surface binding sites for the sialic acid-containing portion of C1-INH. PMID:2045131

  12. Salmonella Transiently Reside in Luminal Neutrophils in the Inflamed Gut

    PubMed Central

    Loetscher, Yvonne; Wieser, Andreas; Lengefeld, Jette; Kaiser, Patrick; Schubert, Sören; Heikenwalder, Mathias; Hardt, Wolf-Dietrich; Stecher, Bärbel

    2012-01-01

    Background Enteric pathogens need to grow efficiently in the gut lumen in order to cause disease and ensure transmission. The interior of the gut forms a complex environment comprising the mucosal surface area and the inner gut lumen with epithelial cell debris and food particles. Recruitment of neutrophils to the intestinal lumen is a hallmark of non-typhoidal Salmonella enterica infections in humans. Here, we analyzed the interaction of gut luminal neutrophils with S. enterica serovar Typhimurium (S. Tm) in a mouse colitis model. Results Upon S. Tmwt infection, neutrophils transmigrate across the mucosa into the intestinal lumen. We detected a majority of pathogens associated with luminal neutrophils 20 hours after infection. Neutrophils are viable and actively engulf S. Tm, as demonstrated by live microscopy. Using S. Tm mutant strains defective in tissue invasion we show that pathogens are mostly taken up in the gut lumen at the epithelial barrier by luminal neutrophils. In these luminal neutrophils, S. Tm induces expression of genes typically required for its intracellular lifestyle such as siderophore production iroBCDE and the Salmonella pathogenicity island 2 encoded type three secretion system (TTSS-2). This shows that S. Tm at least transiently survives and responds to engulfment by gut luminal neutrophils. Gentamicin protection experiments suggest that the life-span of luminal neutrophils is limited and that S. Tm is subsequently released into the gut lumen. This “fast cycling” through the intracellular compartment of gut luminal neutrophils would explain the high fraction of TTSS-2 and iroBCDE expressing intra- and extracellular bacteria in the lumen of the infected gut. Conclusion In conclusion, live neutrophils recruited during acute S. Tm colitis engulf pathogens in the gut lumen and may thus actively engage in shaping the environment of pathogens and commensals in the inflamed gut. PMID:22493718

  13. Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice.

    PubMed

    Bucher, Kirsten; Schmitt, Fee; Autenrieth, Stella E; Dillmann, Inken; Nürnberg, Bernd; Schenke-Layland, Katja; Beer-Hammer, Sandra

    2015-09-01

    Fluorescently labeled Ly6G antibodies enable the tracking of neutrophils in mice, whereas purified anti-Ly6G rapidly depletes neutrophils from the circulation. The mechanisms underlying neutrophil depletion are still under debate. Here, we examined how identical Ly6G antibodies coupled to different fluorochromes affect neutrophil fate in vivo. BM cells stained with Ly6G antibodies were injected into mice. The number of retrieved anti-Ly6G-FITC(+) cells was reduced significantly in comparison with anti-Ly6G-APC(+) or anti-Ly6G-PE(+) cells. Flow cytometry and multispectral imaging flow cytometry analyses revealed that anti-Ly6G-FITC(+) neutrophils were preferentially phagocytosed by BMMs in vitro and by splenic, hepatic, and BM macrophages in vivo. Direct antibody injection of anti-Ly6G-FITC but not anti-Ly6G-PE depleted neutrophils to the same degree as purified anti-Ly6G, indicating that the FITC-coupled antibody eliminates neutrophils by a similar mechanism as the uncoupled antibody. With the use of a protein G-binding assay, we demonstrated that APC and PE but not FITC coupling inhibited access to interaction sites on the anti-Ly6G antibody. We conclude the following: 1) that neutrophil phagocytosis by macrophages is a central mechanism in anti-Ly6G-induced neutrophil depletion and 2) that fluorochrome-coupling can affect functional properties of anti-Ly6G antibodies, thereby modifying macrophage uptake of Ly6G-labeled neutrophils and neutrophil retrieval following adoptive cell transfer or injection of fluorescent anti-Ly6G. PMID:26019296

  14. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors.

    PubMed

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels H H; Borregaard, Niels

    2013-10-01

    Neutrophils are indispensable in the innate immune defense against invading microorganisms. Neutrophils contain SVs and several subsets of granules that are essential for their function. Proteins present in neutrophil SVs and granules are synthesized during terminal granulopoiesis in the bone marrow. The heterogeneity of granules, as determined by marker proteins characteristic of each granule subset, is thought to result from differences in the biosynthetic windows of major classes of granule proteins, a process referred to as targeting by timing. Qualitative proteomic analysis of neutrophil granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in-gel-digested with trypsin. The resulting peptides were analyzed using LTQ Orbitrap XL tandem MS. A total of 1292 unique proteins were identified and grouped, according to the neutrophil fraction, in which they displayed maximal expression. In addition to various known neutrophil proteins, several uncharacterized proteins were found, as well as proteins not described previously in neutrophils. To study the correlation between mRNA expression in neutrophil precursors and the localization of their cognate proteins, the distribution of 126 identified proteins was compared with their mRNA expression profiles. The neutrophil subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes. PMID:23650620

  15. Intergrin-dependent neutrophil migration in the injured mouse cornea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an early responder to an inflammatory stimulus, neutrophils must exit the vasculature and migrate through the extravascular tissue to the site of insult, which is often remote from the point of extravasation. Following a central epithelial corneal abrasion, neutrophils recruited from the peripher...

  16. Transepithelial migration of neutrophils into the lung requires TREM-1

    PubMed Central

    Klesney-Tait, Julia; Keck, Kathy; Li, Xiaopeng; Gilfillan, Susan; Otero, Karel; Baruah, Sankar; Meyerholz, David K.; Varga, Steven M.; Knudson, Cory J.; Moninger, Thomas O.; Moreland, Jessica; Zabner, Joseph; Colonna, Marco

    2012-01-01

    Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung. PMID:23241959

  17. Human neutrophil leukocyte elastase activity is inhibited by Phenol Red

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutrophil elastase (NE) activity in urine, sputum and nasal mucous is used as an indicator of inflammation due to viral or bacterial infection. However, bovine nasal mucous neutrophils collected, lysed and stored in Dulbecco's minimal medium containing Phenol Red, showed no NE activity with methox...

  18. Cytokine induced expression of programmed death ligands in human neutrophils

    PubMed Central

    Bankey, Paul E.; Banerjee, Sanjib; Zucchiatti, Andrea; De, Mita; Sleem, Rami W.; Lin, Chuen-Fu L.; Miller-Graziano, Carol L.; De, Asit K.

    2010-01-01

    1. Summary Recent evidence indicates that human neutrophils can serve as non-professional antigen presenting cells (APC). Although expression of MHC class II and co-stimulatory molecules on human neutrophils is limited, these molecules can be significantly induced following in vitro exposure to the cytokines IFNγ and GM-CSF. Since professional APCs such as dendritic cells express both co-stimulatory and co-inhibitory molecules for activation and regulation of adaptive immunity, we determined whether cytokines induce increased expression of specific co-signaling molecules on human neutrophils. We report here that circulating human neutrophils express co-inhibitory molecules such as immunoglobulin–like transcript (ILT) 4 and 5, and also comparatively low and highly variable levels of ILT2 and 3, but the expression of these ILTs was not significantly changed by cytokine treatment. In contrast, we demonstrate for the first time that human peripheral blood neutrophils, although do not express the co-inhibitory molecule, programmed death ligand (PD-L) 1 on their surface, can express this molecule at moderate levels following cytokine exposure. Although moderate PD-L1 levels on healthy volunteers’ neutrophils were not inhibitory to T cells, our findings do not exclude a possible robust increase in neutrophil PD-L1 expression in pathological conditions with immunosuppressive functions. These results suggest a possible immunoregulatory role for human neutrophils in adaptive immunity. PMID:20123111

  19. Promoting metastasis: neutrophils and T cells join forces.

    PubMed

    Fridlender, Zvi G; Albelda, Steven M; Granot, Zvi

    2015-07-01

    The role neutrophils play in cancer is a matter of debate as both pro- and anti-tumor functions have been documented. In a recent publication in Nature, Coffelt et al. identify a new mechanism where neutrophils and T cells cooperate to generate metastasis-supporting immune suppression. PMID:26138787

  20. How Neutrophil Extracellular Traps Become Visible

    PubMed Central

    2016-01-01

    Neutrophil extracellular traps (NETs) have been identified as a fundamental innate immune defense mechanism against different pathogens. NETs are characterized as released nuclear DNA associated with histones and granule proteins, which form an extracellular web-like structure that is able to entrap and occasionally kill certain microbes. Furthermore, NETs have been shown to contribute to several noninfectious disease conditions when released by activated neutrophils during inflammation. The identification of NETs has mainly been succeeded by various microscopy techniques, for example, immunofluorescence microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Since the last years the development and improvement of new immunofluorescence-based techniques enabled optimized visualization and quantification of NETs. On the one hand in vitro live-cell imaging led to profound new ideas about the mechanisms involved in the formation and functionality of NETs. On the other hand different intravital, in vivo, and in situ microscopy techniques led to deeper insights into the role of NET formation during health and disease. This paper presents an overview of the main used microscopy techniques to visualize NETs and describes their advantages as well as disadvantages. PMID:27294157

  1. Neutrophilic dermatoses: pyoderma gangrenosum and Sweet's syndrome.

    PubMed Central

    Lear, J. T.; Atherton, M. T.; Byrne, J. P.

    1997-01-01

    Pyoderma gangrenosum and Sweet's syndrome are classified as neutrophilic dermatoses as they exhibit intense dermal inflammatory infiltrates composed of neutrophils with little evidence of a primary vasculitis. They share several characteristics and respond to immunosuppressives. Aetiology is felt to represent a manifestation of altered immunologic reactivity. Patients with both conditions concurrently have been described. Diagnosis is based on clinical and histopathological findings. However, clinically the typical forms of the two conditions are quite distinct: pyoderma showing cutaneous ulceration with a purple undermined border and Sweet's syndrome having tender, erythematous, nonulcerated plaques and nodules. Approximately 50% of cases of pyoderma are associated with a specific systemic disorder. These include inflammatory bowel disease, rheumatoid arthritis, non-Hodgkin's lymphoma and myeloproliferative disorders. Many associations with Sweet's syndrome have been described, including acute myeloid leukaemia, myeloma and adenocarcinomas, and haematological malignancy. There is overlap between the two conditions with lesions categorised as Sweet's syndrome being clinically more characteristic of atypical pyoderma and vice versa. We believe that pyoderma and Sweet's syndrome represent a continuum of spectrum of disease. The reason for the clinical differences between the conditions is unclear and merits further investigation but may be explained by varying levels of intensity and extent of the inflammatory process. This review will describe the pathogenesis, clinical features, diagnosis, associations and treatment of the two conditions. Images Figure 1 Figure 2 PMID:9122099

  2. Identifying neutrophils in H&E staining histology tissue images.

    PubMed

    Wang, Jiazhuo; MacKenzie, John D; Ramachandran, Rageshree; Chen, Danny Z

    2014-01-01

    Identifying neutrophils lays a crucial foundation for diagnosing acute inflammation diseases. But, such computerized methods on the commonly used H&E staining histology tissue images are lacking, due to various inherent difficulties of identifying cells in such image modality and the challenge that a considerable portion of neutrophils do not have a "textbook" appearance. In this paper, we propose a new method for identifying neutrophils in H&E staining histology tissue images. We first segment the cells by applying iterative edge labeling, and then identify neutrophils based on the segmentation results by considering the "context" of each candidate cell constructed by a new Voronoi diagram of clusters of other neutrophils. We obtain good performance compared with two baseline algorithms we constructed, on clinical images collected from patients suspected of having inflammatory bowl diseases. PMID:25333103

  3. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    PubMed

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  4. Cytoprotection against neutrophil-delivered oxidant attack by antibiotics.

    PubMed

    Ottonello, L; Dallegri, F; Dapino, P; Pastorino, G; Sacchetti, C

    1991-11-27

    In the present study we have investigated the effect of six antibiotics (penicillin G, ceftazidime, cephotaxime, cephoperazon, ampicillin and piperacillin) on the neutrophil cytolytic activity by using a system constituted of phorbol-12-myristate-13-acetate-triggered neutrophils and 51Cr-labelled lymphoblastoid Daudi target cells. The results demonstrate that five of these drugs (ceftazidime, cephotaxime, cephoperazon, ampicillin and piperacillin) are capable of inhibiting the neutrophil cytolytic activity by inactivating the hypochlorous acid (HOCl) generated extracellularly by the myeloperoxidase pathway and crucial to the target cell lysis. Penicillin G had no effect on neutrophil-mediated cytolysis. Thus, these data demonstrate that ceftazidime, cephotaxime, cephoperazon, ampicillin and piperacillin lower the neutrophil-mediated target cell damage by a HOCl-scavenging mechanism, suggesting a possible cytoprotective role for these drugs during infections. PMID:1662510

  5. Reverse Migration of Neutrophils: Where, When, How, and Why?

    PubMed

    Nourshargh, Sussan; Renshaw, Stephen A; Imhof, Beat A

    2016-05-01

    Neutrophil migration to injured and pathogen-infected tissues is a fundamental component of innate immunity. An array of cellular and molecular events mediate this response to collectively guide neutrophils out of the vasculature and towards the core of the ensuing inflammatory reaction where they exert effector functions. Advances in imaging modalities have revealed that neutrophils can also exhibit motility away from sites of inflammation and injury, although it is unclear under what circumstances this reverse migration is a physiological protective response, and when it has pathophysiological relevance. Here we review different types of neutrophil reverse migration and discuss the current understanding of the associated mechanisms. In this context we propose clarifications to the existing terminology used to describe the many facets of neutrophil reverse migration. PMID:27055913

  6. Clearance of apoptotic neutrophils and resolution of inflammation.

    PubMed

    Greenlee-Wacker, Mallary C

    2016-09-01

    The engulfment of apoptotic cells by phagocytes, a process referred to as efferocytosis, is essential for maintenance of normal tissue homeostasis and a prerequisite for the resolution of inflammation. Neutrophils are the predominant circulating white blood cell in humans, and contain an arsenal of toxic substances that kill and degrade microbes. Neutrophils are short-lived and spontaneously die by apoptosis. This review will highlight how the engulfment of apoptotic neutrophils by human phagocytes occurs, how heterogeneity of phagocyte populations influences efferocytosis signaling, and downstream consequences of efferocytosis. The efferocytosis of apoptotic neutrophils by macrophages promotes anti-inflammatory signaling, prevents neutrophil lysis, and dampens immune responses. Given the immunomodulatory properties of efferocytosis, understanding pathways that regulate and enhance efferocytosis could be harnessed to combat infection and chronic inflammatory conditions. PMID:27558346

  7. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  8. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious

    PubMed Central

    Sônego, Fabiane; Castanheira, Fernanda Vargas e Silva; Ferreira, Raphael Gomes; Kanashiro, Alexandre; Leite, Caio Abner Vitorino Gonçalves; Nascimento, Daniele Carvalho; Colón, David Fernando; Borges, Vanessa de Fátima; Alves-Filho, José Carlos; Cunha, Fernando Queiróz

    2016-01-01

    Sepsis, an overwhelming inflammatory response syndrome secondary to infection, is one of the costliest and deadliest medical conditions worldwide. Neutrophils are classically considered to be essential players in the host defense against invading pathogens. However, several investigations have shown that impairment of neutrophil migration to the site of infection, also referred to as neutrophil paralysis, occurs during severe sepsis, resulting in an inability of the host to contain and eliminate the infection. On the other hand, the neutrophil antibacterial arsenal contributes to tissue damage and the development of organ dysfunction during sepsis. In this review, we provide an overview of the main events in which neutrophils play a beneficial or deleterious role in the outcome of sepsis. PMID:27199981

  9. Neutrophils--a key component of ischemia-reperfusion injury.

    PubMed

    Schofield, Zoe Victoria; Woodruff, Trent Martin; Halai, Reena; Wu, Mike Chia-Lun; Cooper, Matthew Allister

    2013-12-01

    Ischemia-reperfusion injury (IRI) is a common occurrence following myocardial infarction, transplantation, stroke, and trauma that can lead to multiple organ failure, which remains the foremost cause of death in critically ill patients. Current therapeutic strategies for IRI are mainly palliative, and there is an urgent requirement for a therapeutic that could prevent or reverse tissue damage caused by IRI. Neutrophils are the primary responders following ischemia and reperfusion and represent important components in the protracted inflammatory response and severity associated with IRI. Experimental studies demonstrate neutrophil infiltration at the site of ischemia and show that inducing neutropenia can protect organs from IRI. In this review, we highlight the mechanisms involved in neutrophil recruitment, activation, and adherence and how this contributes to disease severity in IRI. Inhibiting neutrophil mobilization, tissue recruitment, and ultimately neutrophil-associated activation of local and systemic inflammatory responses may have therapeutic potential in the amelioration of local and remote tissue damage following IRI. PMID:24088997

  10. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis

    PubMed Central

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A.

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  11. Human plasma kallikrein releases neutrophil elastase during blood coagulation.

    PubMed Central

    Wachtfogel, Y T; Kucich, U; James, H L; Scott, C F; Schapira, M; Zimmerman, M; Cohen, A B; Colman, R W

    1983-01-01

    Elastase is released from human neutrophils during the early events of blood coagulation. Human plasma kallikrein has been shown to stimulate neutrophil chemotaxis, aggregation, and oxygen consumption. Therefore, the ability of kallikrein to release neutrophil elastase was investigated. Neutrophils were isolated by dextran sedimentation, and elastase release was measured by both an enzyme-linked immunosorbent assay, and an enzymatic assay using t-butoxy-carbonyl-Ala-Ala-Pro-Val-amino methyl coumarin as the substrate. Kallikrein, 0.1-1.0 U/ml, (0.045-0.45 microM), was incubated with neutrophils that were preincubated with cytochalasin B (5 micrograms/ml). The release of elastase was found to be proportional to the kallikrein concentration. Kallikrein released a maximum of 34% of the total elastase content, as measured by solubilizing the neutrophils in the nonionic detergent Triton X-100. A series of experiments was carried out to determine if kallikrein was a major enzyme involved in neutrophil elastase release during blood coagulation. When 10 million neutrophils were incubated in 1 ml of normal plasma in the presence of 30 mM CaCl2 for 90 min, 2.75 micrograms of elastase was released. In contrast, neutrophils incubated in prekallikrein-deficient or Factor XII-deficient plasma released less than half of the elastase, as compared with normal plasma. The addition of purified prekallikrein to prekallikrein-deficient plasma restored neutrophil elastase release to normal levels. Moreover, release of elastase was enhanced in plasma deficient in C1-inhibitor, the major plasma inhibitor of kallikrein. This release was not dependent upon further steps in the coagulation pathway, or on C5a, since levels of elastase, released in Factor XI- or C5-deficient plasma, were similar to that in normal plasma, and an antibody to C5 failed to inhibit elastase release. These data suggest that kallikrein may be a major enzyme responsible for the release of elastase during blood

  12. Effect of perfluorochemical blood substitutes on human neutrophil function.

    PubMed

    Virmani, R; Fink, L M; Gunter, K; English, D

    1984-01-01

    This investigation was undertaken to determine the influence of perfluorochemical blood substitutes (PFCs) on human neutrophil function. Neutrophils isolated from blood of healthy donors were incubated at 37 degrees C for 1 hour with 25 percent Oxypherol (perfluorotributylamine) or Fluosol-DA (perfluorodecalin and perfluorotripropylamine) in the presence of fresh autologous serum. In comparison to cells incubated with Hank's balanced salt solution (buffer), neutrophils exposed to PFCs were markedly inhibited in their chemotactic and phagocytic responses. With 25 percent PFCs, chemotaxis to zymosan-activated serum was inhibited to approximately 25 percent of control by Fluosol-DA and 11 percent by Oxypherol. Phagocytosis of polystyrene beads in the presence of fresh serum was decreased to 52 and 50 percent of control by both Oxypherol and Fluosol-DA, respectively. Neutrophils exposed to PFCs aggregated slower and with an extended activation time upon addition of phorbol myristate acetate (PMA). When activated with n-formyl-methionyl-leucyl-phenylalanine (FMLP), neutrophils exposed to PFCs aggregated at a faster rate but with a longer lag phase in comparison to control cells. Neutrophil superoxide (O-2) release stimulated by PMA also was depressed by prior exposure of cells to Oxypherol (6 nmoles O-2/1.5 X 10(6) neutrophils) compared to buffer (32 nmoles O-2/1.5 X 10(6) neutrophils). PMA-stimulated neutrophil adherence was depressed significantly by prior exposure to Fluosol-DA compared to control. In contrast, Oxypherol had insignificant influence on stimulated adherence. Since PFCs have a profound influence on several important neutrophil functions, patients receiving PFC should be monitored closely for possible infectious complications. PMID:6087518

  13. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury.

    PubMed

    Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Gregoire, Murielle; Deshane, Jessy; Pittet, Jean Francois; Abraham, Edward; Zmijewski, Jaroslaw W

    2014-05-15

    Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role. PMID:24719460

  14. Polymorphonuclear neutrophil function in systemic sclerosis.

    PubMed Central

    Czirják, L; Dankó, K; Sipka, S; Zeher, M; Szegedi, G

    1987-01-01

    In vitro functions of polymorphonuclear (PMN) neutrophils were studied in 20 patients with progressive systemic sclerosis (PSS). An increase in the basal chemiluminescence (CL) activity of peripheral blood PMNs was found, suggesting that these cells had been preactivated in vivo. Patients with more extensive skin disease or signs of disease progression tended to have higher basal CL values. Active oxygen products during the respiratory burst may increase the extent of inflammatory and fibrotic processes and could be involved in the endothelial injury in PSS. The stimulatory capacity of CL response was normal in our study. No alterations were found in the opsonised yeast phagocytic activity of granulocytes when compared with control values. The binding of erythrocyte-antibody particles was found also to be normal. A depressed chemotactic activity of PMN cells against zymosan activated serum was also shown. The cause of the decreased chemotaxis of PMNs remains to be elucidated. PMID:3592786

  15. A Classic Clinical Case: Neutrophilic Eccrine Hidradenitis

    PubMed Central

    Copaescu, Ana-Maria; Castilloux, Jean-François; Chababi-Atallah, Myrna; Sinave, Christian; Bertrand, Janie

    2013-01-01

    Background Neutrophilic eccrine hidradenitis (NEH) is a rare condition described mostly in adult patients receiving chemotherapy for acute myelogenous leukemia. When it affects the facial region, it can mimic cellulitis and delay the diagnostic, thus proper recognition is essential. Objective This article describes a classic case of NEH. We will review the diagnostic, the differential diagnostic (mostly cellulitis) and the management of this condition. Methods After a literature review, the patient's file was properly studied in order to portray a clear picture of this condition. Medical photographs and appropriate physical examination upon presentation are also included. Results The diagnostic for NEH was suggested by the clinical presentation and confirmed histopathologically (skin biopsy). Conclusion The diagnostic of NEH is essential in order to prevent multiple unnecessary antibiotics. PMID:24474918

  16. Hyperalgesia due to nerve injury: role of neutrophils.

    PubMed

    Perkins, N M; Tracey, D J

    2000-01-01

    The hypothesis that the early inflammatory cell, the neutrophil, contributes to the hyperalgesia resulting from peripheral nerve injury was tested in rats in which the sciatic nerve was partially transected on one side. The extent and time-course of neutrophilic infiltration of the sciatic nerve and innervated paw skin after partial nerve damage was characterized using immunocytochemistry. The number of endoneurial neutrophils was significantly elevated in sections of operated nerve compared to sections of sham-operated nerve for the entire period studied, i.e. up to seven days post-surgery. This considerable elevation in endoneurial neutrophil numbers was only observed at the site of nerve injury. Depletion of circulating neutrophils at the time of nerve injury significantly attenuated the induction of hyperalgesia. However, depletion of circulating neutrophils at day 8 post-injury did not alleviate hyperalgesia after its normal induction. It is concluded that endoneurial accumulation of neutrophils at the site of peripheral nerve injury is important in the early genesis of the resultant hyperalgesia. The findings support the notion that a neuroimmune interaction occurs as a result of peripheral nerve injury and is important in the subsequent development of neuropathic pain. PMID:11113323

  17. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment.

    PubMed

    Sionov, Ronit Vogt; Fridlender, Zvi G; Granot, Zvi

    2015-12-01

    Neutrophils are myeloid cells that constitute 50-70 % of all white blood cells in the human circulation. Traditionally, neutrophils are viewed as the first line of defense against infections and as a major component of the inflammatory process. In addition, accumulating evidence suggest that neutrophils may also play a key role in multiple aspects of cancer biology. The possible involvement of neutrophils in cancer prevention and promotion was already suggested more than half a century ago, however, despite being the major component of the immune system, their contribution has often been overshadowed by other immune components such as lymphocytes and macrophages. Neutrophils seem to have conflicting functions in cancer and can be classified into anti-tumor (N1) and pro-tumor (N2) sub-populations. The aim of this review is to discuss the varying nature of neutrophil function in the cancer microenvironment with a specific emphasis on the mechanisms that regulate neutrophil mobilization, recruitment and activation. PMID:24895166

  18. Blocking neutrophil integrin activation prevents ischemia–reperfusion injury

    PubMed Central

    Yago, Tadayuki; Petrich, Brian G.; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H.

    2015-01-01

    Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia–reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin’s capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia–reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin–mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin–mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia–reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. PMID:26169939

  19. Fluid phase recognition molecules in neutrophil-dependent immune responses.

    PubMed

    Jaillon, Sébastien; Ponzetta, Andrea; Magrini, Elena; Barajon, Isabella; Barbagallo, Marialuisa; Garlanda, Cecilia; Mantovani, Alberto

    2016-04-01

    The innate immune system comprises both a cellular and a humoral arm. Neutrophils are key effector cells of the immune and inflammatory responses and have emerged as a major source of humoral pattern recognition molecules (PRMs). These molecules, which include collectins, ficolins, and pentraxins, are specialised in the discrimination of self versus non-self and modified-self and share basic multifunctional properties including recognition and opsonisation of pathogens and apoptotic cells, activation and regulation of the complement cascade and tuning of inflammation. Neutrophils act as a reservoir of ready-made soluble PRMs, such as the long pentraxin PTX3, the peptidoglycan recognition protein PGRP-S, properdin and M-ficolin, which are stored in neutrophil granules and are involved in neutrophil effector functions. In addition, other soluble PRMs, such as members of the collectin family, are not expressed in neutrophils but can modulate neutrophil-dependent immune responses. Therefore, soluble PRMs are an essential part of the innate immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on molecules involved in neutrophil effector functions. PMID:27021644

  20. Chemokine Regulation of Neutrophil Infiltration of Skin Wounds

    PubMed Central

    Su, Yingjun; Richmond, Ann

    2015-01-01

    Significance: Efficient recruitment of neutrophils to an injured skin lesion is an important innate immune response for wound repair. Defects in neutrophil recruitment lead to impaired wound healing. Recent Advances: Chemokines and chemokine receptors are known to regulate neutrophil recruitment. Recent research advances reveal more mechanistic details about the regulation of chemokines and chemokine receptors on neutrophil egress from bone marrow, transmigration into the wound site, spatial navigation toward the necrotic skin tissue, and apoptosis-induced clearance by efferocytosis. Critical Issues: Skin injury triggers local and systemic alterations in the expression of multiple chemotactic molecules and the magnitude of chemokine receptor-mediated signaling. The responses of a number of CXC and CX3C chemokines and their receptors closely associate with the temporal and spatial recruitment of neutrophils to wound sites during the inflammatory phase and promote the clearance of necrotic neutrophils during the transition into the proliferative phase. Functional aberrancy in these chemokines and chemokine receptor systems is recognized as one of the important mechanisms underlying the pathology of impaired wound healing. Future Directions: Future research should aim to investigate the therapeutic modulation of neutrophil activity through the targeting of specific chemokines or chemokine receptors in the early inflammatory phase to improve clinical management of wound healing. PMID:26543677

  1. Neutrophil extracellular traps in sheep mastitis.

    PubMed

    Pisanu, Salvatore; Cubeddu, Tiziana; Pagnozzi, Daniela; Rocca, Stefano; Cacciotto, Carla; Alberti, Alberto; Marogna, Gavino; Uzzau, Sergio; Addis, Maria Filippa

    2015-01-01

    Neutrophil extracellular traps (NETs) are structures composed of DNA, histones, and antimicrobial proteins that are released extracellularly by neutrophils and other immune cells as a means for trapping and killing invading pathogens. Here, we describe NET formation in milk and in mammary alveoli of mastitic sheep, and provide a dataset of proteins found in association to these structures. Nucleic acid staining, immunomicroscopy and fluorescent in-situ hybridization of mastitic mammary tissue from sheep infected with Streptococcus uberis demonstrated the presence of extranuclear DNA colocalizing with antimicrobial proteins, histones, and bacteria. Then, proteomic analysis by LTQ-Orbitrap Velos mass spectrometry provided detailed information on protein abundance changes occurring in milk upon infection. As a result, 1095 unique proteins were identified, of which 287 being significantly more abundant in mastitic milk. Upon protein ontology classification, the most represented localization classes for upregulated proteins were the cytoplasmic granule, the nucleus, and the mitochondrion, while function classes were mostly related to immune defence and inflammation pathways. All known NET markers were massively increased, including histones, granule proteases, and antimicrobial proteins. Of note was the detection of protein arginine deiminases (PAD3 and PAD4). These enzymes are responsible for citrullination, the post-translational modification that is known to trigger NET formation by inducing chromatin decondensation and extracellular release of NETs. As a further observation, citrullinated residues were detected by tandem mass spectrometry in histones of samples from mastitic animals. In conclusion, this work provides novel microscopic and proteomic information on NETs formed in vivo in the mammary gland, and reports the most complete database of proteins increased in milk upon bacterial mastitis. PMID:26088507

  2. The hepatic inflammatory response after acetaminophen overdose: role of neutrophils.

    PubMed

    Lawson, J A; Farhood, A; Hopper, R D; Bajt, M L; Jaeschke, H

    2000-04-01

    Acetaminophen overdose induces severe liver injury and hepatic failure. There is evidence that inflammatory cells may be involved in the pathophysiology. Thus, the aim of this investigation was to characterize the neutrophilic inflammatory response after treatment of C3Heb/FeJ mice with 300 mg/kg acetaminophen. A time course study showed that neutrophils accumulate in the liver parallel to or slightly after the development of liver injury. The number of neutrophils in the liver was substantial (209 +/- 64 PMN/50 high-power fields at 12 h) compared to baseline levels (7 +/- 1). Serum levels of TNF-alpha and the C-X-C chemokines KC and MIP-2 increased by 28-, 14-, and 295-fold, respectively, over levels found in controls during the injury process. In addition, mRNA expression of MIP-2 and KC were upregulated in livers of acetaminophen-treated animals as determined by ribonuclease protection assay. However, none of these mediators were generated in large enough quantities to account for neutrophil sequestration in the liver. There was no upregulation of Mac-1 (CD11b/ CD18) or shedding of L-selectin on circulating neutrophils. Moreover, an anti-CD18 antibody had no protective effect against acetaminophen overdose during the first 24 h. These results indicate that there is a local inflammatory response after acetaminophen overdose, including a substantial accumulation of neutrophils in the liver. Because of the critical importance of beta2 integrins for neutrophil cytotoxicity, these results suggest that neutrophils do not contribute to the initiation or progression of AAP-induced liver. The inflammation observed after acetaminophen overdose may be characteristic for a response sufficient to recruit neutrophils for the purpose of removing necrotic cells but is not severe enough to cause additional damage. PMID:10774834

  3. Translational control of human neutrophil responses by MNK1.

    PubMed

    Fortin, Carl F; Mayer, Thomas Z; Cloutier, Alexandre; McDonald, Patrick P

    2013-10-01

    A growing number of inflammatory and immune processes in vivo have been shown to be influenced by neutrophil-derived cytokines. Whereas the underlying transcriptional mechanisms are increasingly well understood, the translational regulation of this neutrophil response remains largely unexplored. Here, we show that the MNK1, which participates in translational control in several cell types, is activated in response to physiological neutrophil agonists (LPS, TNF-α) in the cytoplasmic and nuclear compartments. With the use of various pharmacological inhibitors, we found that MNK1 activation takes place downstream of the TAK1-p38 MAPK axis in neutrophils, whereas the MEK/ERK, JNK, PI3K, and PKC pathways are not involved. Pharmacological blockade of MNK1, as well as overexpression experiments, established that cytokine protein synthesis (but not gene expression) is under the control of MNK1 in neutrophils. Likewise, MNK1 inhibition reversed the antiapoptotic effect of LPS and TNF-α in neutrophils, and this was accompanied by a decreased expression of the antiapoptotic protein Mcl-1. Thus, MNK1 appears to be an important regulator of neutrophil responses. Although MNK1 inhibition did not affect protein recruitment to mRNA caps, it decreased the phosphorylation of molecules implicated in translation initiation control, such as S6K, S6, and hyperphosphorylated 4E-BP1. These molecular targets of MNK1 are shared with those of PI3K in neutrophils, and accordingly, MNK1 inhibition partially impaired the belated PI3K/Akt activation elicited by LPS or TNF in these cells. Given the importance of neutrophils and their products in numerous chronic inflammatory disorders, MNK1 could represent an attractive therapeutic target. PMID:23401599

  4. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    NASA Astrophysics Data System (ADS)

    Jannat, Risat A.; Robbins, Gregory P.; Ricart, Brendon G.; Dembo, Micah; Hammer, Daniel A.

    2010-05-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  5. Effects of Staphylococcal Enterotoxins on Human Neutrophil Functions and Apoptosis

    PubMed Central

    Moulding, Dale A.; Walter, Catherine; Hart, C. Anthony; Edwards, Steven W.

    1999-01-01

    Staphylococcal enterotoxins have marked effects on the properties of T cells and monocytes and have recently been reported to affect neutrophil function. In this study, we investigated the abilities of staphylococcal enterotoxins A and B and toxic shock syndrome toxin 1 to affect respiratory burst activity and to delay apoptosis in human neutrophils. When cultures containing approximately 97% neutrophils were tested, the toxins all delayed neutrophil apoptosis in a dose-dependent manner and induced the expression of FcγRI on the neutrophil cell surface. These effects on apoptosis and expression of FcγRI were largely abrogated by the addition of a neutralizing anti-gamma interferon antibody. Similarly, the effects of these toxins on phorbol ester-induced chemiluminescence were decreased after neutralization of gamma interferon. These effects on neutrophil function were mimicked by the addition of conditioned medium from peripheral blood mononuclear cells incubated with the toxins, and again, neutralizing anti-gamma interferon antibodies largely negated the effects. However, when highly purified neutrophils prepared by immunodepletion of T cells and major histocompatibility complex class II-expressing cells were analyzed, the toxins were without effect on apoptosis and FcγRI expression, but granulocyte-macrophage colony-stimulating factor and gamma interferon could still delay apoptosis. These data indicate that these toxins have no direct effect on neutrophil apoptosis but can act indirectly via the production of T-cell-derived and monocyte-derived cytokines. It is noteworthy that such effects are detected in neutrophil suspensions containing only 3% contamination with T cells and other mononuclear cells. PMID:10225889

  6. Tempol inhibits neutrophil and hydrogen peroxide-mediated DNA damage.

    PubMed

    Hahn, S M; Mitchell, J B; Shacter, E

    1997-01-01

    Inflammatory conditions characterized by neutrophil activation are associated with a variety of chronic diseases. Reactive oxygen species are produced by activated neutrophils and produce DNA damage which may lead to tissue damage. Previous studies have shown that activated murine neutrophils induce DNA strand breaks in a target plasmacytoma cell, RIMPC 2394. We studied the effect of a water soluble nitroxide anti-oxidant, Tempol, on murine neutrophil induction of DNA strand breaks in this system. Murine neutrophils were isolated from the peritoneal cavity of BALB/cAn mice after an i.p. injection of pristane oil. Neutrophils were activated by the phorbol ester PMA and co-incubated with RIMPC 2394 cells. Control alkaline elution studies revealed progressive DNA strand breaks in RIMPC cells with time. The addition of Tempol to the incubation mixture prevented DNA damage in a dose dependent fashion. Five mM Tempol provided complete protection. Tempol protection against DNA strand breaks was similar for both stimulated neutrophils and exogenously added hydrogen peroxide. Measurement of hydrogen peroxide produced by stimulated neutrophils demonstrated that Tempol did not decrease hydrogen peroxide concentration. Oxidation of reduced metals, thereby interfering with the production of hydroxyl radical, is the most likely mechanism of nitroxide protection, although superoxide dismutase (SOD) like activity and scavenging of carbon-based free radicals may also account for a portion of the observed protection. The anti-oxidant activity of Tempol inhibited DNA damage by activated neutrophils. The nitroxides as a class of compounds may have a role in the investigation and modification of inflammatory conditions. PMID:9378367

  7. Mannheimia haemolytica leukotoxin binds cyclophilin D on bovine neutrophil mitochondria.

    PubMed

    Aulik, Nicole A; Hellenbrand, Katrina M; Kisiela, Dagmara; Czuprynski, Charles J

    2011-01-01

    Mannheimia haemolytica is an important member of the bovine respiratory disease (BRD) complex that causes fibrinous and necrotizing pleuropneumonia in cattle. BRD is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. The most important virulence factor of M. haemolytica is its leukotoxin. Previous research in our laboratory has shown that the leukotoxin is able to enter into and traffic to the mitochondria of a bovine lymphoblastoid cell line (BL-3). In this study, we evaluated the ability of LKT to be internalized and travel to mitochondria in bovine neutrophils. We demonstrate that LKT binds bovine neutrophil mitochondria and co-immunoprecipitates with TOM22 and TOM40, which are members of the translocase of the outer mitochondrial (TOM) membrane family. Upon entry into mitochondria, LKT co-immunoprecipitates with cyclophilin D, a member of the mitochondria permeability transition pore. Unlike BL-3 cells, bovine neutrophil mitochondria are not protected against LKT by the membrane-stabilizing agent cyclosporin A, nor were bovine neutrophil mitochondria protected by the permeability transition pore antagonist bongkrekic acid. In addition, we found that bovine neutrophil cyclophilin D is significantly smaller than that found in BL-3 cells. Bovine neutrophils were protected against LKT by protein transfection of an anti-cyclophilin D antibody directed at the C-terminal amino acids, but not an antibody against the first 50 N-terminal amino acids. In contrast, BL-3 cells were protected by antibodies against either the C-terminus or N-terminus of cyclophilin. These data confirm that LKT binds to bovine neutrophil mitochondria, but indicate there are distinctions between neutrophil and BL-3 mitochondria that might reflect differences in cyclophilin D. PMID:21220005

  8. [Neutrophilic dermatosis in ulcerative colitis occurring in advanced age].

    PubMed

    López Maldonado, M D; Calvo Catalá, J; Ronda Gasulla, A; Hortelano Martínez, E; Herrera Ballester, A; Febrer Bosch, I

    1994-08-01

    The Neutrophilic dermatosis (ND) is considered as an independent entity with diverse clinical manifestations among which there are: gangrenous pyoderma, nodous erythema, Sweets Syndrome, vesiculopustula eruptions associated to ulcerous colitis and intestinal short circuit syndrome with or without short circuit. Histologically, they are characterized by infiltration of polymorphonuclear neutrophils, generally at the dermic level, but also at the epidermic. They are usually associated to systemic diseases, especially to chronic intestinal inflammatory disease. Our aim was to describe two forms of clinical presentation of neutrophilic dermatosis: gangrenous pyoderma and vesiculopustula eruption, associated to ulcerous colitis starting at advances ages. PMID:7772690

  9. Hidden truth of circulating neutrophils (polymorphonuclear neutrophil) function in periodontally healthy smoker subjects

    PubMed Central

    Agarwal, Chitra; Baron, Tarun Kumar; Mehta, Dhoom Singh

    2016-01-01

    Context: Tobacco smoking is considered to be a major risk factor associated with periodontal disease. Smoking exerts a major effect on the protective elements of the immune response, resulting in an increase in the extent and severity of periodontal destruction. Aims: The aim of the present study was to assess viability and phagocytic function of neutrophils in circulating blood of the smokers and nonsmokers who are periodontally healthy. Settings and Design: Two hundred subjects in the mean range of 20–30 years of age were included in the study population. It was a retrospective study carried out for 6 months. Materials and Methods: Two hundred subjects were divided into four groups: 50 nonsmokers, 50 light smokers (<5 cigarettes/day), 50 moderate smokers (5–15 cigarettes/day), and 50 heavy smokers (>15 cigarettes/day). Full mouth plaque index, sulcus bleeding index, and probing depths were measured. Percentage viability of circulating neutrophils and average number of phagocytosed Candida albicans were recorded. Statistical Analysis Used: Means and standard deviations were calculated from data obtained within the groups. Comparison between the smokers and nonsmokers was performed by Kruskal–Wallis ANOVA analysis. Comparison between smoker groups was performed using Mann–Whitney–Wilcoxon test. Results: Percentage viability of neutrophils was significantly less in heavy smokers (66.9 ± 4.0), moderate (76.6 ± 4.2), light smokers (83.1 ± 2.5) as compared to nonsmokers (92.3 ± 2.6) (P < 0.01). The ability of neutrophils to phagocytose, i.e., mean particle number was significantly less in light smokers (3.5 ± 0.5), moderate smokers (2.3 ± 0.5), and heavy smokers (1.4 ± 0.5) compared to nonsmokers (4.9 ± 0.7) (P < 0.01) with evidence of dose-response effect. Conclusions: Smoking significantly affects neutrophils viability and phagocytic function in periodontally healthy population. PMID:27143827

  10. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps.

    PubMed

    Schneider, Andrea E; Sándor, Noémi; Kárpáti, Éva; Józsi, Mihály

    2016-04-01

    Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood. Because neutrophils are important innate immune cells in inflammatory processes and the host defense against pathogens, we aimed at studying the effects of FH on various neutrophil functions, including the generation of extracellular traps. FH co-localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by modulating NET formation. PMID:26938503

  11. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  12. [The phagocytosis of polymorphonuclear neutrophilic granulocytes in progressive periodontitis].

    PubMed

    Konopka, T; Zietek, M

    1995-01-01

    The aim of this paper was the evaluation of the phagocytic activity of neutrophils in blood and in gingival pocket fluid in patients suffering from rapidly progressive periodontitis (RPP) and postjuvenile periodontitis (PJP). Prior to periodontal treatment the authors evaluated the capacity to phagocytose latex particles of peripheral blood neutrophils from 21 patients with RPP, 51 with PJP and 59 healthy subjects (control group) as well as the phagocytic activity of neutrophils in pocket fluid from 21 patients with RPP, 14 with PJP and from 20 healthy subjects. This phagocytic activity was significantly lower in all examined groups in comparison with the control group. A similar evaluation executed 3 months after treatment revealed normal phagocytosis of blood neutrophils from patients with RPP. In patients receiving complementary pharmacotherapy (spiramycine combined with metronidazol), a better improvement of phagocytosis was noted, than that observed in patients treated only surgically. PMID:7481699

  13. Relationships between lifestyle factors and neutrophil functions in the elderly.

    PubMed

    Tsukamoto, Kazumasa; Suzuki, Katsuhiko; Machida, Kazuhiko; Saiki, Chinatsu; Murayama, Rumiko; Sugita, Minoru

    2002-01-01

    We investigated the relationships between neutrophil functions and lifestyle factors in the elderly. The subjects (84 males, 73.9+/-5.8 years old; and 63 females, 70.0+/-4.6 years old) belonged to a recreational seniors club in Japan. Investigations of the subjects' stress, exercise habits, smoking habits, and alcohol-drinking habits were performed. The phagocytosis and superoxide productivity of the neutrophils were measured with a nitroblue tetrazolium (NBT) reduction test. In addition, leukocyte counts and serum total protein (TP) levels were determined. The results revealed that aging, high serum levels, and stress-coping factors (e.g., having hobbies, keeping pets, and close links with friends or family) significantly correlated with preferable neutrophil functions. In addition, significant effects of lifestyle factors on the balance between phagocytosis and subsequent superoxide production were observed. Thus, the results of the present study suggest that there are correlations between neutrophil functions and lifestyle factors in the elderly. PMID:12357457

  14. Fatty acids as modulators of neutrophil recruitment, function and survival.

    PubMed

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed. PMID:25987417

  15. Neutrophil-derived cathelicidin protects from neointimal hyperplasia

    PubMed Central

    Soehnlein, Oliver; Wantha, Sarawuth; Simsekyilmaz, Sakine; Döring, Yvonne; Megens, Remco T. A.; Mause, Sebastian F.; Drechsler, Maik; Smeets, Ralf; Weinandy, Stefan; Schreiber, Fabian; Gries, Thomas; Jockenhoevel, Stefan; Möller, Martin; Vijayan, Santosh; van Zandvoort, Marc A. M. J.; Agerberth, Birgitta; Pham, Christine T.; Gallo, Richard L.; Hackeng, Tilman M.; Liehn, Elisa A.; Zernecke, Alma; Klee, Doris; Weber, Christian

    2011-01-01

    Percutaneous transluminal angioplasty with stent implantation is used to dilate of arteries narrowed by atherosclerotic plaques and to revascularize coronary arteries occluded by atherothrombosis in myocardial infarction. Commonly applied drug-eluting stents release anti-proliferative or anti-inflammatory agents to reduce the incidence of in-stent stenosis. However, these stents may lead to in-stent stenosis and increase the rate late stent thrombosis, an obstacle to optimal revascularization possibly related to endothelial recovery. Here we examined the contribution of neutrophils and neutrophilic granule proteins to arterial healing after injury. We found that neutrophil-born cathelicidin (mouse CRAMP, human LL-37) promoted re-endothelization and thereby limited neointima formation after stent implantation. We then translated these findings, generating a neutrophil-instructing biofunctionalized miniaturized Nitinol stent coated with LL-37. This stent reduced in-stent stenosis in a mouse model of atherosclerosis, suggesting that LL-37 may promote vascular healing after interventional therapy. PMID:21974936

  16. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    PubMed Central

    Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  17. Role of PTEN in neutrophil extracellular trap formation.

    PubMed

    Teimourian, Shahram; Moghanloo, Ehsan

    2015-08-01

    NETosis has been associated with a particular mode of cell death although it is still controversial as to what extent autophagy is involved in NETosis. Class I/AKT/mTOR pathway is a key regulator of autophagy. PTEN tumor suppressor gene encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase in class the I/AKT/mTOR pathway. In this study, we investigated the effects of PTEN down-regulation as well as overexpression on NETosis. Our results show that 35% of HL-60 differentiated neutrophil-like cells generated NETs by PMA. The portion of the population that produced NETs in PTEN knockdown HL-60 differentiated neutrophils was 9% and in PTEN overexpressed HL-60 differentiated neutrophils, it was 56%. Our results show that increasing PTEN expression increases NETs formation in neutrophils, and its suppression reduces NETs. PMID:25913476

  18. Oxidative burst of neutrophils against melanoma B16-F10.

    PubMed

    Zivkovic, Morana; Poljak-Blazi, Marija; Zarkovic, Kamelija; Mihaljevic, Danijela; Schaur, Rudolf Joerg; Zarkovic, Neven

    2007-02-01

    Intensive oxidative burst was determined by chemiluminescence of peripheral blood neutrophils of mice that were intramuscularly injected with melanoma B16-F10 and/or subcutaneously with Sephadex G-200. The neutrophils from papula developed at the site of Sephadex injection were cytotoxic for the B16-F10 cells in vitro. However, survival of Sephadex injected tumour-bearing mice was lower than of control animals bearing B16-F10, while their tumours grew faster and were less necrotic. Thus, it is likely that injection of Sephadex distracted the neutrophils from the tumour allowing faster progression of the tumour, indicating that neutrophils may have an important role in the host defence against malignant cells in the early stage of tumour development. PMID:16564616

  19. Disentangling the effects of tocilizumab on neutrophil survival and function.

    PubMed

    Gaber, Timo; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Dörffel, Yvonne; Feist, Eugen; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2016-06-01

    The synovial tissue in rheumatoid arthritis (RA) represents a hypoxic environment with up-regulated pro-inflammatory cytokines and cellular infiltrates including neutrophils. Although inhibition of the interleukin (IL)6 receptor pathway by tocilizumab is a potent treatment option for RA, it may also cause adverse effects such as an occasionally high-grade neutropenia. We analysed the impact of tocilizumab on survival, mediator secretion, oxidative burst, phagocytosis and energy availability of high-dose toll-like receptor (TLR)2/4-stimulated neutrophils (to mimic an arthritis flare) under normoxic versus hypoxic conditions. Human neutrophils were purified, pre-treated with varying doses of tocilizumab, dexamethasone or human IgG1 and high-dose-stimulated with lipopolysaccharide (LPS) alone-triggering TLR2/4-, LPS plus IL6, or left unstimulated. Cells were then incubated under normoxic (18 % O2) or hypoxic (1 % O2) conditions and subsequently analysed. Neutrophil survival and energy availability were significantly decreased by tocilizumab in a dose-dependent manner in high-dose TLR2/4-stimulated cells, but to a greater extent under normoxia as compared to hypoxia. We also found high-dose LPS-stimulated oxidative burst and phagocytosis of neutrophils to be higher under hypoxic versus normoxic conditions, but this difference was reduced by tocilizumab. Finally, we observed that tocilizumab affected neutrophil mediator secretion as a function of oxygen availability. Tocilizumab is known for both beneficial effects and a higher incidence of neutropenia when treating RA patients. Our results suggest that both effects can at least in part be explained by a reduction in neutrophil survival, a dose-dependent inhibition of hypoxia-induced NADPH oxidase-mediated oxidative burst and phagocytosis of infiltrating hypoxic neutrophils and an alteration of mediator secretion. PMID:26721805

  20. [MORPHOLOGICAL FEATURES OF NEUTROPHILS AND EOSINOPHILS GRANULES IN SAPPHIRE MINKS].

    PubMed

    Uzenbaeva, L B; Kizhina, A G; Ilyukha, V A

    2015-01-01

    It has been established that sapphire minks have abnormality of subcellular structure of blood and bone marrow neutrophils and eosinophils. The abnormality consists in forming of abnormal "giant" granules. The si- ze and the number of abnormal granules significantly change during maturation of leucocytes in bone marrow. We have found differences between abnormal granules forming in neutrophils and eosinophils that depend on the maturing stage and the cells life cycle duration as well as morphofunctional features of these granulocytes. PMID:26863773

  1. Neutrophil extracellular traps: Is immunity the second function of chromatin?

    PubMed Central

    2012-01-01

    Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed “NETosis.” Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation. PMID:22945932

  2. Neutrophils express oncomodulin and promote optic nerve regeneration.

    PubMed

    Kurimoto, Takuji; Yin, Yuqin; Habboub, Ghaith; Gilbert, Hui-Ya; Li, Yiqing; Nakao, Shintaro; Hafezi-Moghadam, Ali; Benowitz, Larry I

    2013-09-11

    Although neurons are normally unable to regenerate their axons after injury to the CNS, this situation can be partially reversed by activating the innate immune system. In a widely studied instance of this phenomenon, proinflammatory agents have been shown to cause retinal ganglion cells, the projection neurons of the eye, to regenerate lengthy axons through the injured optic nerve. However, the role of different molecules and cell populations in mediating this phenomenon remains unclear. We show here that neutrophils, the first responders of the innate immune system, play a central role in inflammation-induced regeneration. Numerous neutrophils enter the mouse eye within a few hours of inducing an inflammatory reaction and express high levels of the atypical growth factor oncomodulin (Ocm). Immunodepletion of neutrophils diminished Ocm levels in the eye without altering levels of CNTF, leukemia inhibitory factor, or IL-6, and suppressed the proregenerative effects of inflammation. A peptide antagonist of Ocm suppressed regeneration as effectively as neutrophil depletion. Macrophages enter the eye later in the inflammatory process but appear to be insufficient to stimulate extensive regeneration in the absence of neutrophils. These data provide the first evidence that neutrophils are a major source of Ocm and can promote axon regeneration in the CNS. PMID:24027282

  3. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    PubMed

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment. PMID:19728023

  4. Faropenem enhances superoxide anion production by human neutrophils in vitro.

    PubMed

    Sato, K; Sato, N; Shimizu, H; Tsutiya, T; Takahashi, H; Kakizaki, S; Takayama, H; Takagi, H; Mori, M

    1999-09-01

    Neutrophils are important cellular components in the defence against infections and many studies in vitro have shown that some antibiotics affect neutrophil function. We examined the effect of faropenem, a new oral penem antibiotic on neutrophil killing function by determining the generation of superoxide anion in vitro. The production of superoxide anion was measured by chemiluminescence amplified by a Cypridina luciferin analogue in the presence of N-formyl-Met-Leu-Phe (fMLP). Faropenem significantly enhanced chemiluminescence in a dose-dependent manner. The effect of faropenem was maximal at 5 min of incubation time and continued for at least 30 min. The effect of faropenem was also observed when neutrophils were stimulated by a calcium ionophore (ionomycin), while the effect of faropenem did not change in the presence of 12-O-tetra-decanoylphorbolmyristate acetate. Cytosol Ca2+ concentration ([Ca2+]i) monitored with Fura-2 increased in response to fMLP, however, faropenem did not influence the response of [Ca2+]i to fMLP. Our results suggest that faropenem enhanced the generation of superoxide anion by neutrophils, probably at the site where cytosol Ca2+ regulates NADPH oxidase. Faropenem might be potentially advantageous in the treatment of infections because a synergic interaction of antibodies and cytocidal neutrophils is necessary for the early eradication of the pathogenic bacteria. PMID:10511400

  5. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    PubMed Central

    Kim, Jaehong; Bae, Jong-Sup

    2016-01-01

    Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors. PMID:26966341

  6. Genomic modulators of gene expression in human neutrophils.

    PubMed

    Naranbhai, Vivek; Fairfax, Benjamin P; Makino, Seiko; Humburg, Peter; Wong, Daniel; Ng, Esther; Hill, Adrian V S; Knight, Julian C

    2015-01-01

    Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases. PMID:26151758

  7. Neutrophil migration into the placenta: Good, bad or deadly?

    PubMed Central

    Giaglis, Stavros; Stoikou, Maria; Grimolizzi, Franco; Subramanian, Bibin Y.; van Breda, Shane V.; Hoesli, Irene; Lapaire, Olav; Hasler, Paul; Than, Nandor Gabor; Hahn, Sinuhe

    2016-01-01

    ABSTRACT Almost 2 decades have passed since the discovery that pregnancy is associated with a basal inflammatory state involving neutrophil activation, and that this is more overt in cases with preeclampsia, than in instances with sepsis. This pivotal observation paved the way for our report, made almost a decade ago, describing the first involvement of neutrophil extracellular traps (NETs) in a non-infectious human pathology, namely preeclampsia, where an abundance of these structures were detected directly in the placental intervillous space. Despite these remarkable findings, there remains a paucity of interest among reproductive biologists in further exploring the role or involvement of neutrophils in pregnancy and related pathologies. In this review we attempt to redress this deficit by highlighting novel recent findings including the discovery of a novel neutrophil subset in the decidua, the interaction of placental protein 13 (PP13) and neutrophils in modulating spiral artery modification, as well as the use of animal model systems to elucidate neutrophil function in implantation, gestation and parturition. These model systems have been particularly useful in identifying key components implicated in recurrent fetal loss, preeclampsia or new signaling molecules such as sphingolipids. Finally, the recent discovery that anti-phospolipid antibodies can trigger NETosis, supports our hypothesis that these structures may contribute to placental dysfunction in pertinent cases with recurrent fetal loss. PMID:26933824

  8. Granule Protein Processing and Regulated Secretion in Neutrophils

    PubMed Central

    Sheshachalam, Avinash; Srivastava, Nutan; Mitchell, Troy; Lacy, Paige; Eitzen, Gary

    2014-01-01

    Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection. PMID:25285096

  9. Stimulus-dependent secretion of plasma proteins from human neutrophils.

    PubMed Central

    Borregaard, N; Kjeldsen, L; Rygaard, K; Bastholm, L; Nielsen, M H; Sengeløv, H; Bjerrum, O W; Johnsen, A H

    1992-01-01

    In search for matrix proteins released from secretory vesicles of human neutrophils, a prominent 67-kD protein was identified in the extracellular medium of neutrophils stimulated by the chemotactic peptide, FMLP. The protein was purified to apparent homogeneity and partially sequenced. The sequence of the first 32 NH2-terminal amino acids was identical to the sequence of albumin. mRNA for human albumin could not be detected in bone marrow cells, nor could biosynthetic labeling of albumin be demonstrated in bone marrow cells during incubation with [14C]leucine. Immunofluorescence studies on single cells demonstrated the presence of intracellular albumin in fixed permeabilized neutrophils. Light microscopy of immunogold-silver-stained cryosections visualized albumin in cytoplasmic "granules." The morphology of these was determined by immunoelectron microscopy as vesicles of varying form and size. Subcellular fractionation studies on unstimulated neutrophils demonstrated the presence of albumin in the low density pre-gamma and gamma-regions that contain secretory vesicles, but are devoid of specific granules and azurophil granules. Albumin was readily released from these structures during activation of neutrophils with inflammatory mediators. Immunoblotting demonstrated the presence of immunoglobulin and transferrin along with albumin in exocytosed material from stimulated neutrophils. This indicates that secretory vesicles are unique endocytic vesicles that can be triggered to exocytose by inflammatory stimuli. Images PMID:1378856

  10. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling.

    PubMed

    Najmeh, Sara; Cools-Lartigue, Jonathan; Giannias, Betty; Spicer, Jonathan; Ferri, Lorenzo E

    2015-01-01

    Neutrophil Extracellular Traps (NETs) have been recently identified as part of the neutrophil's antimicrobial armamentarium. Apart from their role in fighting infections, recent research has demonstrated that they may be involved in many other disease processes, including cancer progression. Isolating purified NETs is a crucial element to allow the study of these functions. In this video, we demonstrate a simplified method of cell free NET isolation from human whole blood using readily available reagents. Isolated NETs can then be used for immunofluorescence staining, blotting or various functional assays. This enables an assessment of their biologic properties in the absence of the potential confounding effects of neutrophils themselves. A density gradient separation technique is employed to isolate neutrophils from healthy donor whole blood. Isolated neutrophils are then stimulated by phorbol 12-myristate 13-acetate (PMA) to induce NETosis. Activated neutrophils are then discarded, and a cell-free NET stock is obtained. We then demonstrate how isolated NETs can be used in an adhesion assay with A549 human lung cancer cells. The NET stock is used to coat the wells of a 96 well cell culture plate O/N, and after ensuring an adequate NET monolayer formation on the bottom of the wells, CFSE labeled A549 cells are added. Adherent cells are quantified using a Nikon TE300 fluorescent microscope. In some wells, 1000U DNAse1 is added 10 min before counting to degrade NETs. PMID:25938591

  11. Identification of dipeptidyl peptidase III in human neutrophils.

    PubMed

    Hashimoto, J; Yamamoto, Y; Kurosawa, H; Nishimura, K; Hazato, T

    2000-07-01

    We have found activity of dipeptidyl peptidase (DPP) III, one of the most important enkephalin-degrading enzymes in the central nervous system, in human neutrophils. HPLC analysis of the peptide fragments produced by treatment of leucine-enkephalin with isolated neutrophils in the presence of inhibitors of other enkephalin-degrading enzymes revealed that the enzyme in human neutrophils cleaved dipeptides from the NH(2) terminus of leucine-enkephalin, suggesting the presence of DPPIII activity in human neutrophils. Using a specific synthesized substrate and proteinase inhibitors, it was found that the neutrophils have 19.2 +/- 3.6 microM/h/5 x 10(6) cells of beta-naphthylamine for the enzyme. It was also confirmed that spinorphin and tynorphin, both reported to inhibit the activities of enkephalin-degrading enzymes, had potent inhibitory activities (IC(50): 4.0 and 0.029 microg/ml, respectively) against the enzyme. The presence of DPPIII activity in human neutrophils suggests that the biologically active peptides which are associated with enkephalin play a physiological role in regulating enkephalin or inflammatory mechanisms in peripheral tissues. PMID:10873616

  12. Genomic modulators of gene expression in human neutrophils

    PubMed Central

    Naranbhai, Vivek; Fairfax, Benjamin P.; Makino, Seiko; Humburg, Peter; Wong, Daniel; Ng, Esther; Hill, Adrian V. S.; Knight, Julian C.

    2015-01-01

    Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases. PMID:26151758

  13. Structural and functional characterization of elastases from horse neutrophils.

    PubMed Central

    Dubin, A; Potempa, J; Travis, J

    1994-01-01

    In order better to understand the pathophysiology of the equine form of emphysema, two elastinolytic enzymes from horse neutrophils, referred to as proteinases 2A and 2B, have been extensively characterized and compared with the human neutrophil proteinases, proteinase-3 and elastase. Specificity studies using both the oxidized insulin B-chain and synthetic peptides revealed that cleavage of peptide bonds with P1 alanine or valine residues was preferred. Further characterization of the two horse elastases by N-terminal sequence and reactive-site analyses indicated that proteinases 2A and 2B have considerable sequence similarity to each other, to proteinase-3 from human neutrophils (proteinase 2A), to human neutrophil elastase (proteinase 2B) and to a lesser extent to pig pancreatic elastase. Horse and human elastases differed somewhat in their interaction with some natural protein proteinase inhibitors. For example, in contrast with its action on human neutrophil elastase, aprotinin did not inhibit either of the horse proteinases. However, the Val15, alpha-aminobutyric acid-15 (Abu15), alpha-aminovaleric acid-15 (Nva15) and Ala15 reactive-site variants of aprotinin were good inhibitors of proteinase 2B (Ki < 10(-9) M) but only weak inhibitors of proteinase 2A (Ki > 10(-7) M). In summary, despite these differences, the horse neutrophil elastases were found to resemble closely their human counterparts, thus implicating them in the pathological degradation of connective tissue in chronic lung diseases in the equine species. PMID:7516152

  14. Effect of Prototheca zopfii on neutrophil function from bovine milk.

    PubMed

    Cunha, Luciane T; Pugine, Silvana P; Valle, Claudia R; Ribeiro, Andrea R; Costa, Ernane J X; De Melo, Mariza P

    2006-12-01

    This study was carried to investigate neutrophil function in the presence of Prototheca zopfii. For this purpose, bovine milk neutrophils were incubated in the absence (control) of and presence of P. zopfii, and then they were examined hydrogen peroxide (H(2)O(2)) production, antioxidant enzyme activities, and phagocytic capacity. Milk was collected from negative "California Mastitis Test" (CMT) quarter from three lactating Holstein cows after induction of leukocytosis with an intramammary infusion of oyster glycogen. H(2)O(2) production was measured using the phenol red method. Catalase activity was measured following H(2)O(2) reduction at 240 nm and the activity of glutathione reductase was determined by measuring the rate of NADPH oxidation at 340 nm. P. zopfii death was assessed by fluorescent microscopy using acridine orange assay and by colony forming units (CFUs). Comparisons between the groups were initially performed by analysis of variance (ANOVA). Significant differences were then compared using Tukey's test with a significance coefficient of 0.05. Hydrogen peroxide production, catalase and glutathione reductase activities by neutrophils incubated in presence of P. zopfii were stimulated five times, 21% and 27% respectively, compared to the unstimulated-neutrophils. Neutrophils did not affect P. zopfii death as shown by microscopy and CFUs. These observations led to the conclusion that the P. zopfii promote a high increase of H(2)O(2) production by neutrophils from bovine milk during algae exposition accompanied by increase of antioxidant enzyme activities; however, this process did not affect P. zopfii death. PMID:17146586

  15. Permissive and protective roles for neutrophils in leishmaniasis.

    PubMed

    Carlsen, E D; Liang, Y; Shelite, T R; Walker, D H; Melby, P C; Soong, L

    2015-11-01

    Leishmania parasites are the causative agents of leishmaniasis, a neglected tropical disease that causes substantial morbidity and considerable mortality in many developing areas of the world. Recent estimates suggest that roughly 10 million people suffer from cutaneous leishmaniasis (CL), and approximately 76,000 are afflicted with visceral leishmaniasis (VL), which is universally fatal without treatment. Efforts to develop therapeutics and vaccines have been greatly hampered by an incomplete understanding of the parasite's biology and a lack of clear protective correlates that must be met in order to achieve immunity. Although parasites grow and divide preferentially in macrophages, a number of other cell types interact with and internalize Leishmania parasites, including monocytes, dendritic cells and neutrophils. Neutrophils appear to be especially important shortly after parasites are introduced into the skin, and may serve a dual protective and permissive role during the establishment of infection. Curiously, neutrophil recruitment to the site of infection appears to continue into the chronic phase of disease, which may persist for many years. The immunological impact of these cells during chronic leishmaniasis is unclear at this time. In this review we discuss the ways in which neutrophils have been observed to prevent and promote the establishment of infection, examine the role of anti-neutrophil antibodies in mouse models of leishmaniasis and consider recent findings that neutrophils may play a previously unrecognized role in influencing chronic parasite persistence. PMID:26126690

  16. Free p-Cresol Alters Neutrophil Function in Dogs.

    PubMed

    Bosco, Anelise Maria; Pereira, Priscila Preve; Almeida, Breno Fernando Martins; Narciso, Luis Gustavo; Dos Santos, Diego Borba; Santos-Neto, Álvaro José Dos; Ferreira, Wagner Luis; Ciarlini, Paulo César

    2016-05-01

    To achieve a clearer understanding of the mechanisms responsible for neutrophil dysfunction recently described in dogs with chronic renal failure (CRF), the plasma concentrations of free p-cresol in healthy dogs (n = 20) and those with CRF (n = 20) were compared. The degree of correlation was determined between plasma levels of p-cresol and markers of oxidative stress and function of neutrophils in these dogs. The effect of this compound on oxidative metabolism and apoptosis was assessed in neutrophils isolated from 16 healthy dogs incubated in RPMI 1640 supplemented with p-cresol (0.405 mg/L) and compared with medium supplemented with uremic plasma (50%). To achieve this, the plasma concentration of p-cresol was quantified by liquid phase high-performance liquid chromatography. The neutrophil oxidative metabolism was determined using the probes hydroethidine and 2',7'-dichlorofluorescein diacetate and apoptosis was measured using Annexin V-PE by capillary flow cytometry. Compared with the healthy dogs, uremic dogs presented higher concentrations of free p-cresol, greater oxidative stress, and neutrophils primed for accelerated apoptosis. The free p-cresol induced in neutrophils from healthy dogs increased apoptosis and decreased reactive oxygen species production. We conclude that the health status presented during uremia concomitant with the increase in plasma free p-cresol can contribute to the presence of immunosuppression in dogs with CRF. PMID:26496142

  17. P-selectin promotes neutrophil extracellular trap formation in mice.

    PubMed

    Etulain, Julia; Martinod, Kimberly; Wong, Siu Ling; Cifuni, Stephen M; Schattner, Mirta; Wagner, Denisa D

    2015-07-01

    Neutrophil extracellular traps (NETs) can be released in the vasculature. In addition to trapping microbes, they promote inflammatory and thrombotic diseases. Considering that P-selectin induces prothrombotic and proinflammatory signaling, we studied the role of this selectin in NET formation. NET formation (NETosis) was induced by thrombin-activated platelets rosetting with neutrophils and was inhibited by anti-P-selectin aptamer or anti-P-selectin glycoprotein ligand-1 (PSGL-1) inhibitory antibody but was not induced by platelets from P-selectin(-/-) mice. Moreover, NETosis was also promoted by P-selectin-immunoglobulin fusion protein but not by control immunoglobulin. We isolated neutrophils from mice engineered to overproduce soluble P-selectin (P-selectin(ΔCT/ΔCT) mice). Although the levels of circulating DNA and nucleosomes (indicative of spontaneous NETosis) were normal in these mice, basal neutrophil histone citrullination and presence of P-selectin on circulating neutrophils were elevated. NET formation after stimulation with platelet activating factor, ionomycin, or phorbol 12-myristate 13-acetate was significantly enhanced, indicating that the P-selectin(ΔCT/ΔCT) neutrophils were primed for NETosis. In summary, P-selectin, cellular or soluble, through binding to PSGL-1, promotes NETosis, suggesting that this pathway is a potential therapeutic target for NET-related diseases. PMID:25979951

  18. Role of reverse transendothelial migration of neutrophils in inflammation.

    PubMed

    Hirano, Yohei; Aziz, Monowar; Wang, Ping

    2016-06-01

    Transmigration of neutrophils through vascular endothelial walls into the inflamed tissues is a critical defense mechanism of innate immune system against infection and injury caused by sepsis, trauma, ischemia-reperfusion, and other acute or chronic inflammatory diseases. However, their excessive infiltration and uncontrolled activation may lead to the destruction of normal tissue architecture and unrestrained inflammation. Transendothelial migration (TEM) in a luminal-to-abluminal direction is widely known as the final step of neutrophil migration cascade into the inflamed tissues. Recent studies have shown that neutrophils not necessarily move from the vascular lumen to the extravascular tissues in a one way direction; they also proceed in an opposite direction, known as reverse transendothelial migration (rTEM) to get back into the vascular lumen again. This novel paradigm of neutrophil round trip is currently on the spotlight due to its possible interaction with immune system. Current review highlighting the growing demand of this newly identified neutrophil migratory event will not only rewrite the disease pathophysiology, but also help scientists design novel therapeutic strategy leading to the remission of inflammatory diseases in which controlling exaggerated neutrophil infiltration is a major challenge. PMID:26872312

  19. Influence of suspension on the oxidative burst by rat neutrophils

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Koebel, D. A.; Davis, S. A.; Klein, J. B.; McLeish, K. R.; Goldwater, D.; Sonnenfeld, G.

    1994-01-01

    The influence of spaceflight on the oxidative burst of neutrophils is not known. The present study was designed to evaluate the influence of antiorthostatic suspension, a ground-based modeling system designed to simulate certain aspects of weightlessness that occur after spaceflight, on the capacity of rat neutrophils to express the oxidative burst, an important host defense mechanism against microbial pathogens. Rats were suspended in whole body harnesses in the antiorthostatic orientation for a 3- or 7-day period. Control rats were suspended orthostatically or allowed to remain in vivarium cages without the attachment of any suspension materials. After suspension, peripheral blood was harvested and neutrophils were isolated by density gradient centrifugation. The enriched neutrophil preparations were stimulated with N-formyl-methionyl-leucine-phenylalanine and phorbol myristic acid to induce the oxidative burst. It was found that neutrophils isolated from suspended animals released the same levels of superoxide anion as did vivarium control animals that were not suspended, indicating that whole body suspension did not alter this aspect of rat neutrophil function.

  20. Chronic neutrophilic leukemia: a clinical perspective

    PubMed Central

    Menezes, Juliane; Cigudosa, Juan Cruz

    2015-01-01

    Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm (MPN) that includes only 150 patients described to date meeting the latest World Health Organization (WHO) criteria and the recently reported CSF3R mutations. The diagnosis is based on morphological criteria of granulocytic cells and the exclusion of genetic drivers that are known to occur in others MPNs, such as BCR-ABL1, PDGFRA/B, or FGFR1 rearrangements. However, this scenario changed with the identification of oncogenic mutations in the CSF3R gene in approximately 83% of WHO-defined and no monoclonal gammopathy-associated CNL patients. CSF3R T618I is a highly specific molecular marker for CNL that is sensitive to inhibition in vitro and in vivo by currently approved protein kinase inhibitors. In addition to CSF3R mutations, other genetic alterations have been found, notably mutations in SETBP1, which may be used as prognostic markers to guide therapeutic decisions. These findings will help to understand the pathogenesis of CNL and greatly impact the clinical management of this disease. In this review, we discuss the new genetic alterations recently found in CNL and the clinical perspectives in its diagnosis and treatment. Fortunately, since the diagnosis of CNL is not based on exclusion anymore, the molecular characterization of the CSF3R gene must be included in the WHO criteria for CNL diagnosis. PMID:26366092

  1. Cinnoline derivatives as human neutrophil elastase inhibitors.

    PubMed

    Giovannoni, Maria Paola; Schepetkin, Igor A; Crocetti, Letizia; Ciciani, Giovanna; Cilibrizzi, Agostino; Guerrini, Gabriella; Khlebnikov, Andrei I; Quinn, Mark T; Vergelli, Claudia

    2016-08-01

    Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure-activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value = 56 nM) and chemical stability (t1/2 = 114 min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195. PMID:26194018

  2. Movement and Coordination

    MedlinePlus

    ... will seem to be continually on the go—running, kicking, climbing, jumping. His attention span, which was ... his coordination. In the months ahead, your child’s running will become smoother and more coordinated. He’ll ...

  3. The role of neutrophils in myocardial ischemia-reperfusion injury.

    PubMed

    Jordan, J E; Zhao, Z Q; Vinten-Johansen, J

    1999-09-01

    Reperfusion of ischemic myocardium is necessary to salvage tissue from eventual death. However, reperfusion after even brief periods of ischemia is associated with pathologic changes that represent either an acceleration of processes initiated during ischemia per se, or new pathophysiological changes that were initiated after reperfusion. This 'reperfusion injury' shares many characteristics with inflammatory responses in the myocardium. Neutrophils feature prominently in this inflammatory component of postischemic injury. Ischemia-reperfusion prompts a release of oxygen free radicals, cytokines and other proinflammatory mediators that activate both the neutrophils and the coronary vascular endothelium. Activation of these cell types promotes the expression of adhesion molecules on both the neutrophils and endothelium, which recruits neutrophils to the surface of the endothelium and initiate a specific cascade of cell-cell interactions, leading first to adherence of neutrophils to the vascular endothelium, followed later by transendothelial migration and direct interaction with myocytes. This specific series of events is a prerequisite to the phenotypic expression of reperfusion injury, including endothelial dysfunction, microvascular collapse and blood flow defects, myocardial infarction and apoptosis. Pharmacologic therapy can target the various components in this critical series of events. Effective targets for these pharmacologic agents include: (a) inhibiting the release or accumulation of proinflammatory mediators, (b) altering neutrophil or endothelial cell activation and (c) attenuating adhesion molecule expression on endothelium, neutrophils and myocytes. Monoclonal antibodies to adhesion molecules (P-selectin, L-selectin, CD11, CD18), complement fragments and receptors attenuate neutrophil-mediated injury (vascular injury, infarction), but clinical application may encounter limitations due to antigen-antibody reactions with the peptides. Humanized

  4. Processing Coordination Ambiguity

    ERIC Educational Resources Information Center

    Engelhardt, Paul E.; Ferreira, Fernanda

    2010-01-01

    We examined temporarily ambiguous coordination structures such as "put the butter in the bowl and the pan on the towel." Minimal Attachment predicts that the ambiguous noun phrase "the pan" will be interpreted as a noun-phrase coordination structure because it is syntactically simpler than clausal coordination. Constraint-based theories assume…

  5. Analysis Coordinator Report

    NASA Technical Reports Server (NTRS)

    Nothnagel, A.

    2013-01-01

    We present the IVS analysis coordination issues of 2012. The IVS Analysis Coordinator is responsible for generating and disseminating the official IVS products. This requires consistency of the input data by strict adherence to models and conventions. The term of the current IVS Analysis Coordinator will end on February 28, 2013.

  6. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; Simon, S. I.

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  7. Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis.

    PubMed

    Gonzalez, Anjelica L; El-Bjeirami, Wafa; West, Jennifer L; McIntire, Larry V; Smith, C Wayne

    2007-03-01

    Transendothelial migration of neutrophils induces phenotypic changes that influence the interactions of neutrophils with extravascular tissue components. To assess the influence of transmigration on neutrophil chemokinetic motility, we used polyethylene glycol hydrogels covalently modified with specific peptide sequences relevant to extracellular matrix proteins. We evaluated fMLP-stimulated human neutrophil motility on peptides Arg-Gly-Asp-Ser (RGDS) and TMKIIPFNRTLIGG (P2), alone and in combination. RGDS is a bioactive sequence found in a number of proteins, and P2 is a membrane-activated complex-1 (Mac-1) ligand located in the gamma-chain of the fibrinogen protein. We evaluated, via video microscopy, cell motility by measuring cell displacement from origin and total accumulated distance traveled and then calculated average velocity. Results indicate that although adhesion and shape change were supported by hydrogels containing RGD alone, motility was not. Mac-1-dependent motility was supported on hydrogels containing P2 alone. Motility was enhanced through combined presentation of RGD and P2, engaging Mac-1, alpha(V)beta(3), and beta(1) integrins. Naïve neutrophil motility on combined peptide substrates was dependent on Mac-1, and alpha(4)beta(1) while alpha(6)beta(1) contributed to speed and linear movement. Transmigrated neutrophil motility was dependent on alpha(v)beta(3) and alpha(5)beta(1), and alpha(4)beta(1), alpha(6)beta(1), and Mac-1 contributed to speed and linear motion. Together, the data demonstrate that efficient neutrophil migration, dependent on multi-integrin interaction, is enhanced after transendothelial migration. PMID:17164427

  8. Movement Coordination during Conversation

    PubMed Central

    Latif, Nida; Barbosa, Adriano V.; Vatiokiotis-Bateson, Eric; Castelhano, Monica S.; Munhall, K. G.

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  9. Neutrophil function in children with kwashiorkor.

    PubMed

    Schopfer, K; Douglas, S D

    1976-09-01

    Peripheral blood polymorphonuclear neutrophil (PMN) function has been investigated for 46 children with kwashiorkor (without overt infection) in the Ivory Coast, West Africa. In vitro chemotactic response, candidacidal activity, and kinetic studies of metabolism during phagocytosis have been performed. Postphagocytic morphological events were evaluated by electron microscopy. The reduction of nitroblue tetrazolium (NBT), measurement of enzyme activities, activity of glycolysis, and hexose monophosphate shunt (HMS) activity were assessed. The extent of iodide incorporation into trichloracetic acid (TCA)-precipitable protein by phagocytizing PMN'S and thyroid hormone degradation were measured. Chemotactic response was reduced at early time intervals (30, 60, and 120 minutes) and reached control values after 180 minutes. Whereas PMN's of controls killed 32.13 +/- 11.10 per cent of Candida albicans after 60 minutes, PMN's from kwashiorkor patients killed 18.55 +/- 7.74 per cent (p less than 0.01). HMS activity for resting PMN's of kwashiorkor children was higher than for controls, and during particle ingestion the extent of stimulation was comparable to controls. Electron microscopic assessment of phagocytic vacuole formation and degranulation showed no difference between PMN's from kwashiorkor and and control subjects. Incorporation of 131 I into TCA-precipitable proteins by phagocytizing PMN's from kwashiorkor children was reduced in compraison to controls, with either viable or heat-killed lactobacilli. No impairment in thyroxine (T4) degradation was observed for PMN's from kwashiorkor cases. PMS's from kwashiorkor patients show toxic granules, Dohle bodies, evidence of high baseline NBT reduction, and glucose decarboxylation. Functional studies indicate impaired kinetics of chemotaxis, diminished candidacidal activity, and reduced iodination. Enzymatic activities of resting cells are normal. Lactate production, HMS activity during phagocytosis, and morphological

  10. Isolation and Characterization of Low- vs. High-Density Neutrophils in Cancer.

    PubMed

    Sagiv, Jitka Y; Voels, Sandra; Granot, Zvi

    2016-01-01

    Neutrophils are the most abundant of all white blood cells in the human circulation and serve as the first line of defense against microbial infections. Traditionally, neutrophils were viewed as a homogeneous population of myeloid cells. However, in recent years accumulating evidence has suggested that neutrophils are heterogeneous and that distinct neutrophil subsets may play very different roles. Here, we describe the methodology for isolation of high- and low-density neutrophils from the murine and human circulation using a density gradient and antibody based enrichment. We further describe the methodology for functional characterization of these different neutrophil subsets in the context of cancer. PMID:27581022

  11. Contributions of neutrophils to the adaptive immune response in autoimmune disease

    PubMed Central

    Pietrosimone, Kathryn M; Liu, Peng

    2016-01-01

    Neutrophils are granulocytic cytotoxic leukocytes of the innate immune system that activate during acute inflammation. Neutrophils can also persist beyond the acute phase of inflammation to impact the adaptive immune response during chronic inflammation. In the context of the autoimmune disease, neutrophils modulating T and B cell functions by producing cytokines and chemokines, forming neutrophil extracellular traps, and acting as or priming antigen presentation cells. Thus, neutrophils are actively involved in chronic inflammation and tissue damage in autoimmune disease. Using rheumatoid arthritis as an example, this review focuses on functions of neutrophils in adaptive immunity and the therapeutic potential of these cells in the treatment of autoimmune disease and chronic inflammation. PMID:27042404

  12. Adventures in Coordinate Space

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2003-08-01

    A variety of coordinate systems have been used to study the N-body problem for cases involving a dominant central mass. These include the traditional Keplerian orbital elements and the canonical Delaunay variables, which both incorporate conserved quantities of the two-body problem. Recently, Cartesian coordinate systems have returned to favour with the rise of mixed-variable symplectic integrators, since these coordinates prove to be more efficient than using orbital elements. Three sets of canonical Cartesian coordinates are well known, each with its own advantages and disadvantages. Inertial coordinates (which include barycentric coordinates as a special case) are the simplest and easiest to implement. However, they suffer from the disadvantage that the motion of the central body must be calculated explicitly, leading to relatively large errors in general. Jacobi coordinates overcome this problem by replacing the coordinates and momenta of the central body with those of the system as a whole, so that momentum is conserved exactly. This leads to substantial improvements in accuracy, but has the disadvantage that every object is treated differently, and interactions between each pair of bodies are now expressed in a complicated manner involving the coordinates of many bodies. Canonical heliocentric coordinates (also known as democratic heliocentric coordinates) treat all bodies equally, and conserve the centre of mass motion, but at the cost of introducing momentum cross terms into the kinetic energy. This complicates the development of higher order symplectic integrators and symplectic correctors, as well as the development of methods used to resolve close encounters with the central body. Here I will re-examine the set of possible canonical Cartesian coordinate systems to determine if it is possible to (a) conserve the centre of mass motion, (b) treat all bodies equally, and (c) eliminate the momentum cross terms. I will demonstrate that this is indeed possible

  13. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA

    PubMed Central

    Duchez, Anne-Claire; Boudreau, Luc H.; Naika, Gajendra S.; Bollinger, James; Belleannée, Clémence; Cloutier, Nathalie; Laffont, Benoit; Mendoza-Villarroel, Raifish E.; Lévesque, Tania; Rollet-Labelle, Emmanuelle; Rousseau, Matthieu; Allaeys, Isabelle; Tremblay, Jacques J.; Poubelle, Patrice E.; Lambeau, Gérard; Pouliot, Marc; Provost, Patrick; Soulet, Denis; Gelb, Michael H.; Boilard, Eric

    2015-01-01

    Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms. PMID:26106157

  14. Characterization and purification of neutrophil ecto-phosphatidic acid phosphohydrolase.

    PubMed Central

    English, D; Martin, M; Harvey, K A; Akard, L P; Allen, R; Widlanski, T S; Garcia, J G; Siddiqui, R A

    1997-01-01

    Phosphatidic acid and its derivatives play potentially important roles as extracellular messengers in biological systems. An ecto-phosphatidic acid phosphohydrolase (ecto-PAPase) has been identified which effectively regulates neutrophil responses to exogenous phosphatidic acid by converting the substrate to diacylglycerol. The present study was undertaken to characterize this ecto-enzyme on intact cells and to isolate the enzyme from solubilized neutrophil extracts. In the absence of detergent, short chain phosphatidic acids were hydrolysed most effectively by neutrophil plasma membrane ecto-PAPase; both saturated and unsaturated long chain phosphatidic acids were relatively resistant to hydrolysis. Both long (C18:1) and short (C8) chain lyso-phosphatidic acids were hydrolysed at rates comparable with those observed for short chain (diC8) phosphatidic acid. Activity of the ecto-enzyme accounted for essentially all of the N-ethylmaleimide-insensitive, Mg2+-independent PAPase activity recovered from disrupted neutrophils. At 37 degrees C and pH7.2, the apparent Km for dioctanoyl phosphatidic acid (diC8PA) was 1. 4x10(-3) M. Other phosphatidic acids and lysophosphatidic acids inhibited hydrolysis of [32P]diC8PA in a rank order that correlated with competitor solubility, lysophosphatidic acids and unsaturated phosphatidic acids being much more effective inhibitors than long chain saturated phosphatidic acids. Dioleoyl (C18:1) phosphatidic acid was an unexpectedly strong inhibitor of activity, in comparison with its ability to act as a direct substrate in the absence of detergent. Other inhibitors of neutrophil ecto-PAPase included sphingosine, dimethyl- and dihydro-sphingosine, propranolol, NaF and MgCl2. Of several leucocyte populations isolated from human blood by FACS, including T cells, B cells, NK lymphocytes and monocytes, ecto-PAPase was most prevalent on neutrophils; erythrocytes were essentially devoid of activity. A non-hydrolysable, phosphonate analogue of

  15. The Mechanics of Neutrophils: Synthetic Modeling of Three Experiments

    PubMed Central

    Herant, Marc; Marganski, William A.; Dembo, Micah

    2003-01-01

    Much experimental data exist on the mechanical properties of neutrophils, but so far, they have mostly been approached within the framework of liquid droplet models. This has two main drawbacks: 1), It treats the cytoplasm as a single phase when in reality, it is a composite of cytosol and cytoskeleton; and 2), It does not address the problem of active neutrophil deformation and force generation. To fill these lacunae, we develop here a comprehensive continuum-mechanical paradigm of the neutrophil that includes proper treatment of the membrane, cytosol, and cytoskeleton components. We further introduce two models of active force production: a cytoskeletal swelling force and a polymerization force. Armed with these tools, we present computer simulations of three classic experiments: the passive aspiration of a neutrophil into a micropipette, the active extension of a pseudopod by a neutrophil exposed to a local stimulus, and the crawling of a neutrophil inside a micropipette toward a chemoattractant against a varying counterpressure. Principal results include: 1), Membrane cortical tension is a global property of the neutrophil that is affected by local area-increasing shape changes. We argue that there exists an area dilation viscosity caused by the work of unfurling membrane-storing wrinkles and that this viscosity is responsible for much of the regulation of neutrophil deformation. 2), If there is no swelling force of the cytoskeleton, then it must be endowed with a strong cohesive elasticity to prevent phase separation from the cytosol during vigorous suction into a capillary tube. 3), We find that both swelling and polymerization force models are able to provide a unifying fit to the experimental data for the three experiments. However, force production required in the polymerization model is beyond what is expected from a simple short-range Brownian ratchet model. 4), It appears that, in the crawling of neutrophils or other amoeboid cells inside a micropipette

  16. Leukocyte subsets and neutrophil function after short-term spaceflight

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Sams, C. F.; Mehta, S. K.; Kaur, I.; Jones, M. L.; Feeback, D. L.; Pierson, D. L.

    1999-01-01

    Changes in leukocyte subpopulations and function after spaceflight have been observed but the mechanisms underlying these changes are not well defined. This study investigated the effects of short-term spaceflight (8-15 days) on circulating leukocyte subsets, stress hormones, immunoglobulin levels, and neutrophil function. At landing, a 1.5-fold increase in neutrophils was observed compared with preflight values; lymphocytes were slightly decreased, whereas the results were variable for monocytes. No significant changes were observed in plasma levels of immunoglobulins, cortisol, or adrenocorticotropic hormone. In contrast, urinary epinephrine, norepinephrine, and cortisol were significantly elevated at landing. Band neutrophils were observed in 9 of 16 astronauts. Neutrophil chemotactic assays showed a 10-fold decrease in the optimal dose response after landing. Neutrophil adhesion to endothelial cells was increased both before and after spaceflight. At landing, the expression of MAC-1 was significantly decreased while L-selectin was significantly increased. These functional alterations may be of clinical significance on long-duration space missions.

  17. Entamoeba histolytica induces human neutrophils to form NETs.

    PubMed

    Ventura-Juarez, J; Campos-Esparza, Mr; Pacheco-Yepez, J; López-Blanco, J A; Adabache-Ortíz, A; Silva-Briano, M; Campos-Rodríguez, R

    2016-08-01

    Entamoeba histolytica invades the intestine and other organs during the pathogenesis of amoebiasis. In the early stages, the host organism responds with an inflammatory infiltrate composed mostly of neutrophils. It has been reported that these immune cells, activated by E. histolytica, exert a protective role by releasing proteolytic enzymes and generating reactive oxygen/nitrogen species (ROS/RNS) and antimicrobial peptides. It is now known that neutrophils also produce neutrophil extracellular traps (NETs), which are able to damage and kill pathogens. Studies have shown that intracellular protozoan pathogens, including Toxoplasma gondi, Plasmodium falciparum and Leishmania spp, induce neutrophils to release NETs and are damaged by them. However, the action of this mechanism has not been explored in relation to E. histolytica trophozoites. Through scanning electron, epifluorescence microscopy and viability assays, we show for first time that during in vitro interaction with E. histolytica trophozoites, human neutrophils released NETs that covered amoebas and reduced amoebic viability. These NETs presented histones, myeloperoxidase and decondensed chromatin. The results suggest that NETs participate in the elimination of the parasite. PMID:27138813

  18. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation.

    PubMed

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  19. Neutrophil-Epithelial Interactions: A Double-Edged Sword.

    PubMed

    Parkos, Charles A

    2016-06-01

    In recent years, it has become clear that innate immune cells termed neutrophils act as double-edged swords by playing essential roles in clearing infection but also causing tissue damage, yet being critical for wound healing. Neutrophil recruitment to sites of injured tissue or infection has been well studied, and many of the molecular events that regulate passage of leukocytes out of the microcirculation are now understood. However, after exiting the circulation, the molecular details that regulate neutrophil passage to end targets, such mucosal surfaces, are just beginning to be appreciated. Given that migration of neutrophils across mucosal epithelia is associated with disease symptoms and disruption of critical barrier function in disorders such as inflammatory bowel disease, there has been long-standing interest in understanding the molecular basis and functional consequences of neutrophil-epithelial interactions. It is a great honor that my work was recognized by the Rous-Whipple Award this past year, giving me the opportunity to summarize what we have learned during the past few decades about leukocyte interactions with epithelial cells. PMID:27083514

  20. Nitrite attenuated peroxynitrite and hypochlorite generation in activated neutrophils.

    PubMed

    Ren, Xiaoming; Ding, Yun; Lu, Naihao

    2016-03-15

    Oxidative stress is usually considered as an important factor to the pathogenesis of various diseases. Peroxynitrite (ONOO(-)) and hypochlorite (OCl(-)) are formed in immune cells as a part of the innate host defense system, but excessive reactive oxygen species generation can cause progressive inflammation and tissue damage. It has been proven that through mediating nitric oxide (NO) homeostasis, inorganic nitrite (NO2(-)) shows organ-protective effects on oxidative stress and inflammation. However, the effects of NO2(-) on the function of immune cells were still not clear. The potential role of NO2(-) in modulating ONOO(-) and OCl(-) generation in neutrophil cells was investigated in this study. As an immune cell activator, lipopolysaccharide (LPS) increased both ONOO(-) and OCl(-) production in neutrophils, which was significantly attenuated by NO2(-). NO2(-) reduced superoxide (O2(·-)) generation via a NO-dependent mechanism and increased NO formation in activated neutrophils, suggesting a crucial role of O2(·-) in NO2(-)-mediated reduction of ONOO(-). Moreover, the reduced effect of NO2(-) on OCl(-) production was attributed to that NO2(-) reduced H2O2 production in activated neutrophils without influencing the release of myeloperoxidase (MPO), thus limiting OCl(-) production by MPO/H2O2 system. Therefore, NO2(-) attenuates ONOO(-) and OCl(-) formation in activated neutrophils, opening a new direction to modulate the inflammatory response. PMID:26854590

  1. Synthesis and biological evaluation of neutrophilic inflammation inhibitors.

    PubMed

    Bruno, Olga; Brullo, Chiara; Arduino, Nicoletta; Schenone, Silvia; Ranise, Angelo; Bondavalli, Francesco; Ottonello, Luciano; Dapino, Patrizia; Dallegri, Franco

    2004-03-01

    In several non-infectious human diseases, such as ulcerous colitis, rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), the extravasal recruitment of neutrophils plays a crucial role in the development of tissue damage, which, when persistent, can lead to the irreversible organ dysfunction. The neutrophil activation is controlled by a number of intracellular pathways, particularly by a cAMP-dependent protein kinase A (PKA) which also acts on phosphodiesterase IV (PDE4) gene stimulating the synthesis of this enzyme, able to transform cAMP to inactive AMP. PDE4 inhibitors enhance intracellular cAMP and decrease inflammatory cell activation. Several 3-cyclopentyloxy-4-methoxybenzaldehyde and 3-cyclopentyloxy-4-methoxybenzoic acid derivatives were synthesized and studied by us to evaluate their ability to inhibit the superoxide anion production in human neutrophils. These compounds were found able to inhibit the neutrophil activation and some of them increased the cAMP level on tumor necrosis factor-alpha-stimulated neutrophils. Moreover, they also inhibited selectively the human PDE4 enzyme, although they are less potent than the reference compound Rolipram. We report here synthesis, biological studies and some SAR considerations concerning the above mentioned compounds. PMID:14987986

  2. Characterizing asthma from a drop of blood using neutrophil chemotaxis.

    PubMed

    Sackmann, Eric Karl-Heinz; Berthier, Erwin; Schwantes, Elizabeth A; Fichtinger, Paul S; Evans, Michael D; Dziadzio, Laura L; Huttenlocher, Anna; Mathur, Sameer K; Beebe, David J

    2014-04-22

    Asthma is a chronic inflammatory disorder that affects more than 300 million people worldwide. Asthma management would benefit from additional tools that establish biomarkers to identify phenotypes of asthma. We present a microfluidic solution that discriminates asthma from allergic rhinitis based on a patient's neutrophil chemotactic function. The handheld diagnostic device sorts neutrophils from whole blood within 5 min, and generates a gradient of chemoattractant in the microchannels by placing a lid with chemoattractant onto the base of the device. This technology was used in a clinical setting to assay 34 asthmatic (n = 23) and nonasthmatic, allergic rhinitis (n = 11) patients to establish domains for asthma diagnosis based on neutrophil chemotaxis. We determined that neutrophils from asthmatic patients migrate significantly more slowly toward the chemoattractant compared with nonasthmatic patients (P = 0.002). Analysis of the receiver operator characteristics of the patient data revealed that using a chemotaxis velocity of 1.55 μm/min for asthma yields a diagnostic sensitivity and specificity of 96% and 73%, respectively. This study identifies neutrophil chemotaxis velocity as a potential biomarker for asthma, and we demonstrate a microfluidic technology that was used in a clinical setting to perform these measurements. PMID:24711384

  3. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation

    PubMed Central

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  4. Neutrophil-derived resistin release induced by Aggregatibacter actinomycetemcomitans.

    PubMed

    Furugen, Reiko; Hayashida, Hideaki; Yoshii, Yumiko; Saito, Toshiyuki

    2011-08-01

    Resistin is an adipokine that induces insulin resistance in mice. In humans, resistin is not produced in adipocytes, but in various leukocytes instead, and it acts as a proinflammatory molecule. The present investigation demonstrated high levels of resistin in culture supernatants of neutrophils that are stimulated by a highly leukotoxic strain of Aggregatibacter actinomycetemcomitans. In contrast, the level of resistin was remarkably low when neutrophils were exposed to two other strains that produce minimal levels of leukotoxin and a further isogenic mutant strain incapable of producing leukotoxin. Pretreatment of neutrophils with a monoclonal antibody to CD18, β chain of lymphocyte function-associated molecule 1 (LFA-1), or an Src family tyrosine kinase inhibitor before incubation with the highly leukotoxic strain inhibited the release of resistin. These results show that A. actinomycetemcomitans-expressed leukotoxin induces extracellular release of human neutrophil-derived resistin by interacting with LFA-1 on the surface of neutrophils and, consequently, activating Src family tyrosine kinases. PMID:21658109

  5. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    SciTech Connect

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-11-15

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-..gamma.., tumor necrosis factor, or interleukin l..cap alpha.. or 1..beta... The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes.

  6. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.

    PubMed

    Wong, Siu Ling; Demers, Melanie; Martinod, Kimberly; Gallant, Maureen; Wang, Yanming; Goldfine, Allison B; Kahn, C Ronald; Wagner, Denisa D

    2015-07-01

    Wound healing is impaired in diabetes, resulting in significant morbidity and mortality. Neutrophils are the main leukocytes involved in the early phase of healing. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs, however, can also induce tissue damage. Here we show that neutrophils isolated from type 1 and type 2 diabetic humans and mice were primed to produce NETs (a process termed NETosis). Expression of peptidylarginine deiminase 4 (PAD4, encoded by Padi4 in mice), an enzyme important in chromatin decondensation, was elevated in neutrophils from individuals with diabetes. When subjected to excisional skin wounds, wild-type (WT) mice produced large quantities of NETs in wounds, but this was not observed in Padi4(-/-) mice. In diabetic mice, higher levels of citrullinated histone H3 (H3Cit, a NET marker) were found in their wounds than in normoglycemic mice and healing was delayed. Wound healing was accelerated in Padi4(-/-) mice as compared to WT mice, and it was not compromised by diabetes. DNase 1, which disrupts NETs, accelerated wound healing in diabetic and normoglycemic WT mice. Thus, NETs impair wound healing, particularly in diabetes, in which neutrophils are more susceptible to NETosis. Inhibiting NETosis or cleaving NETs may improve wound healing and reduce NET-driven chronic inflammation in diabetes. PMID:26076037

  7. CXCL5 Drives Neutrophil Recruitment in TH17-Mediated GN

    PubMed Central

    Disteldorf, Erik M.; Krebs, Christian F.; Paust, Hans-Joachim; Turner, Jan-Eric; Nouailles, Geraldine; Tittel, André; Meyer-Schwesinger, Catherine; Stege, Gesa; Brix, Silke; Velden, Joachim; Wiech, Thorsten; Helmchen, Udo; Steinmetz, Oliver M.; Peters, Anett; Bennstein, Sabrina B.; Kaffke, Anna; Llanto, Chrystel; Lira, Sergio A.; Mittrücker, Hans-Willi; Stahl, Rolf A.K.; Kurts, Christian; Kaufmann, Stefan H.E.

    2015-01-01

    Neutrophil trafficking to sites of inflammation is essential for the defense against bacterial and fungal infections, but also contributes to tissue damage in TH17-mediated autoimmunity. This process is regulated by chemokines, which often show an overlapping expression pattern and function in pathogen- and autoimmune-induced inflammatory reactions. Using a murine model of crescentic GN, we show that the pathogenic TH17/IL-17 immune response induces chemokine (C-X-C motif) ligand 5 (CXCL5) expression in kidney tubular cells, which recruits destructive neutrophils that contribute to renal tissue injury. By contrast, CXCL5 was dispensable for neutrophil recruitment and effective bacterial clearance in a murine model of acute bacterial pyelonephritis. In line with these findings, CXCL5 expression was highly upregulated in the kidneys of patients with ANCA-associated crescentic GN as opposed to patients with acute bacterial pyelonephritis. Our data therefore identify CXCL5 as a potential therapeutic target for the restriction of pathogenic neutrophil infiltration in TH17-mediated autoimmune diseases while leaving intact the neutrophil function in protective immunity against invading pathogens. PMID:24904089

  8. [Discovery of the neutrophil extracellular traps begins a new stage in the study of neutrophil morphogenesis and function].

    PubMed

    Perova, M D; Shubich, M G

    2011-01-01

    The purpose of the present review was to analyze the accumulating evidence regarding recently discovered novel defense mechanism of neutrophils - capacity to form neutrophil extracellular traps (NETs). Contact with pathogenic microbes and/or exposure to proinflammatory cytokines trigger the respiratory burst in the neutrophils with a subsequent initiation of a cell death (NETosis) which differs from apoptosis and necrosis. NETs are formed by the fibrils of decondensed chromatin (DNA/ histones), released from the neutrophil, which is closely associated with the antimicrobial proteins of cytoplasmic granules. Due to its three-dimensional structure, NETs are capable of retaining the microorganisms (bacteria, fungi and protozoa), while high local concentration of the antimicrobial substances provides their killing. The review presents the evidence of a potential defensive role of NETs in infectious diseases, traumas and surgical operations, as well as during the early stage of a repair process. Considering the role played by neutrophils in the immune response orientation via pentraxin-3 (PTX3), including the switching to adaptive immunity, it is necessary to study the subsequent interaction of DNA/histone exrtacellular structures with the tissue microenvironment. PMID:21954717

  9. Explicitly computing geodetic coordinates from Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  10. An Elucidation of Neutrophil Functions against Mycobacterium tuberculosis Infection

    PubMed Central

    Morris, Devin; Nguyen, Thien; Kim, John; Kassissa, Christine; Khurasany, Melissa; Luong, Jennifer; Kasko, Sarah; Pandya, Shalin; Chu, Michael; Chi, Po-Ting; Lagman, Minette; Venketaraman, Vishwanath

    2013-01-01

    We characterized the functions of neutrophils in response to Mycobacterium tuberculosis (M. tb) infection, with particular reference to glutathione (GSH). We examined the effects of GSH in improving the ability of neutrophils to control intracellular M. tb infection. Our findings indicate that increasing the intracellular levels of GSH with a liposomal formulation of GSH (L-GSH) resulted in reduction in the levels of free radicals and increased acidification of M. tb containing phagosomes leading to the inhibition in the growth of M. tb. This inhibitory mechanism is dependent on the presence of TNF-α and IL-6. Our studies demonstrate a novel regulatory mechanism adapted by the neutrophils to control M. tb infection. PMID:24312131