Sample records for coordinates ccl3-mediated neutrophil

  1. CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis

    PubMed Central

    Quick, Marsha L.; Mukherjee, Soumi; Rudick, Charles N.; Done, Joseph D.; Schaeffer, Anthony J.

    2012-01-01

    Experimental autoimmune prostatitis (EAP) is a murine model of chronic prostatitis/chronic pelvic pain syndrome (CPPS) in men, a syndrome characterized by chronic pelvic pain. We have demonstrated that chemokine ligands CCL2 and CCL3 are biomarkers that correlate with pelvic pain symptoms. We postulated that CCL2 and CCL3 play a functional role in CPPS and therefore examined their expression in EAP. Upon examination of the prostate 5 days after induction of EAP, CCL2 mRNA was elevated 2- to 3-fold, CCL8 by 15-fold, CCL12 by 12- to 13-fold, and CXCL9 by 2- to 4-fold compared with control mice. At 10 days the major chemokines were CXCL13 and CXCL2; at 20 days CCL2 (1- to 2-fold), CCL3 (2- to 3-fold) and CCL11 (2- to 3-fold); and at 30 days, CCL12 (20- to 35-fold) and smaller increases in CCL2, CCL3, and XCL1. Chemokine elevations were accompanied by increases in mast cells and B cells at 5 days, monocytes and neutrophils at day 10, CD4+ T cells at day 20, and CD4+ and CD8+ T cells at day 30. Anti-CCL2 and anti-CCL3 neutralizing antibodies administered at EAP onset attenuated pelvic pain development, but only anti-CCL2 antibodies were effective therapeutically. CCL2- and its cognate receptor CCR2-deficient mice were completely protected from development of pain symptoms but assumed susceptibility after reconstitution with wild-type bone marrow. CCL3-deficient mice showed resistance to the maintenance of pelvic pain while CCR5-deficient mice did not show any lessening of pelvic pain severity. These results suggest that the CCL2-CCR2 axis and CCL3 are important mediators of chronic pelvic pain in EAP. PMID:22814670

  2. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model.

    PubMed

    Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet-Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru; Miyajima, Atsushi

    2018-06-01

    Tribbles pseudokinase 1 ( Trib1 ) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1 -deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl 4 -induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases ( Mmp ) 8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1 . These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1 -deficient liver. Consistently, transplantation of Trib1 -deficient bone marrow cells into wild-type mice alleviated CCl 4 -induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 ( Cxcl1 ) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl 4 -induced fibrosis; infusion of wild-type neutrophils in CCl 4 -treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl 4 -induced fibrosis. Conclusion : While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. ( Hepatology Communications 2018;2:703-717).

  3. Neutrophils alleviate fibrosis in the CCl4‐induced mouse chronic liver injury model

    PubMed Central

    Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet‐Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru

    2018-01-01

    Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2‐like macrophage reduction. Because M2 macrophages are anti‐inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1‐deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4‐induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1‐deficient liver. Consistently, transplantation of Trib1‐deficient bone marrow cells into wild‐type mice alleviated CCl4‐induced fibrosis. Furthermore, expression of chemokine (C‐X‐C motif) ligand 1 (Cxcl1) by adeno‐associated viral vector in the normal liver recruited neutrophils and suppressed CCl4‐induced fibrosis; infusion of wild‐type neutrophils in CCl4‐treated mice also ameliorated fibrosis. Using recombinant adeno‐associated virus‐mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4‐induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703‐717) PMID:29881822

  4. Distinct cellular sources of hepoxilin A3 and leukotriene B4 are used to coordinate bacterial-induced neutrophil transepithelial migration.

    PubMed

    Pazos, Michael A; Pirzai, Waheed; Yonker, Lael M; Morisseau, Christophe; Gronert, Karsten; Hurley, Bryan P

    2015-02-01

    Neutrophilic infiltration is a leading contributor to pathology in a number of pulmonary disease states, including cystic fibrosis. Hepoxilin A3 (HXA3) is a chemotactic eicosanoid shown to mediate the transepithelial passage of neutrophils in response to infection in several model systems and at multiple mucosal surfaces. Another well-known eicosanoid mediating general neutrophil chemotaxis is leukotriene B4 (LTB4). We sought to distinguish the roles of each eicosanoid in the context of infection of lung epithelial monolayers by Pseudomonas aeruginosa. Using human and mouse in vitro transwell model systems, we used a combination of biosynthetic inhibitors, receptor antagonists, as well as mutant sources of neutrophils to assess the contribution of each chemoattractant in driving neutrophil transepithelial migration. We found that following chemotaxis to epithelial-derived HXA3 signals, neutrophil-derived LTB4 is required to amplify the magnitude of neutrophil migration. LTB4 signaling is not required for migration to HXA3 signals, but LTB4 generation by migrated neutrophils plays a significant role in augmenting the initial HXA3-mediated migration. We conclude that HXA3 and LTB4 serve independent roles to collectively coordinate an effective neutrophilic transepithelial migratory response. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.

    PubMed

    Yu, Changhui; Zhang, Songen; Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Thorlacius, Henrik

    2016-02-01

    Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis. © 2015 Wiley Periodicals, Inc.

  6. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist☆

    PubMed Central

    Sewell, Diane L.; Nacewicz, Brendon; Liu, Frances; Macvilay, Sinarack; Erdei, Anna; Lambris, John D.; Sandor, Matyas; Fabry, Zsuzsa

    2016-01-01

    The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3−/− or C5−/− mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3−/− mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5−/− mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury. PMID:15342196

  7. The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo.

    PubMed

    Lavender, Nicole; Yang, Jinming; Chen, Sheau-Chiann; Sai, Jiqing; Johnson, C Andrew; Owens, Philip; Ayers, Gregory D; Richmond, Ann

    2017-01-31

    The role of the chemokine CCL2 in breast cancer is controversial. While CCL2 recruits and activates pro-tumor macrophages, it is also reported to enhance neutrophil-mediated anti-tumor activity. Moreover, loss of CCL2 in early development enhances breast cancer progression. To clarify these conflicting findings, we examined the ability of CCL2 to alter naïve and tumor entrained neutrophil production of ROS, release of granzyme-B, and killing of tumor cells in multiple mouse models of breast cancer. CCL2 was delivered intranasally in mice to elevate CCL2 levels in the lung and effects on seeding and growth of breast tumor cells were evaluated. The TCGA data base was queried for relationship between CCL2 expression and relapse free survival of breast cancer patients and compared to subsets of breast cancer patients. Even though each of the tumor cell lines studied produced approximately equal amounts of CCL2, exogenous delivery of CCL2 to co-cultures of breast tumor cells and neutrophils enhanced the ability of tumor-entrained neutrophils (TEN) to kill the less aggressive 67NR variant of 4T1 breast cancer cells. However, exogenous CCL2 did not enhance naïve or TEN neutrophil killing of more aggressive 4T1 or PyMT breast tumor cells. Moreover, this anti-tumor activity was not observed in vivo. Intranasal delivery of CCL2 to BALB/c mice markedly enhanced seeding and outgrowth of 67NR cells in the lung and increased the recruitment of CD4+ T cells and CD8+ central memory T cells into lungs of tumor bearing mice. There was no significant increase in the recruitment of CD19+ B cells, or F4/80+, Ly6G+ and CD11c + myeloid cells. CCL2 had an equal effect on CD206+ and MHCII+ populations of macrophages, thus balancing the pro- and anti-tumor macrophage cell population. Analysis of the relationship between CCL2 levels and relapse free survival in humans revealed that overall survival is not significantly different between high CCL2 expressing and low CCL2 expressing

  8. Role of Eotaxin-1 (CCL11) and CC chemokine receptor 3 (CCR3) in bleomycin-induced lung injury and fibrosis.

    PubMed

    Huaux, Francois; Gharaee-Kermani, M; Liu, Tianju; Morel, Valérie; McGarry, Bridget; Ullenbruch, Matt; Kunkel, Steven L; Wang, Jun; Xing, Zhou; Phan, Sem H

    2005-12-01

    Eotaxin-1/CCL11 and its receptor CCR3 are involved in recruitment of eosinophils to diverse tissues, but their role in eosinophil recruitment in pulmonary fibrosis is unclear. The present study examined the pulmonary expression of CCL11 and CCR3 during bleomycin (blm)-induced lung injury and determined their importance in the recruitment of inflammatory cells and the development of lung fibrosis. In mice, blm induced a marked pulmonary expression of CCL11 and CCR3. Immunostaining for CCR3 revealed that this receptor was not only expressed by eosinophils but also by neutrophils. CCL11-deficient (CCL11(-/-)) mice developed significantly reduced pulmonary fibrosis. Expression of profibrotic cytokines such as transforming growth factor-beta1 was diminished in the absence of CCL11. Furthermore, increased lung expression of CCL11 significantly enhanced blm-induced lung fibrosis and production of profibrotic cytokines. These effects were also associated with an increase of eosinophil and neutrophil pulmonary infiltration. In contrast, mice treated with neutralizing CCR3 antibodies developed significantly reduced pulmonary fibrosis, eosinophilia, neutrophilia, and expression of profibrotic cytokines. Together, these data suggest that CCL11 and CCR3 are important in the pulmonary recruitment of granulocytes and play significant pathogenic roles in blm-induced lung fibrosis.

  9. Role of Eotaxin-1 (CCL11) and CC Chemokine Receptor 3 (CCR3) in Bleomycin-Induced Lung Injury and Fibrosis

    PubMed Central

    Huaux, Francois; Gharaee-Kermani, M.; Liu, Tianju; Morel, Valérie; McGarry, Bridget; Ullenbruch, Matt; Kunkel, Steven L.; Wang, Jun; Xing, Zhou; Phan, Sem H.

    2005-01-01

    Eotaxin-1/CCL11 and its receptor CCR3 are involved in recruitment of eosinophils to diverse tissues, but their role in eosinophil recruitment in pulmonary fibrosis is unclear. The present study examined the pulmonary expression of CCL11 and CCR3 during bleomycin (blm)-induced lung injury and determined their importance in the recruitment of inflammatory cells and the development of lung fibrosis. In mice, blm induced a marked pulmonary expression of CCL11 and CCR3. Immunostaining for CCR3 revealed that this receptor was not only expressed by eosinophils but also by neutrophils. CCL11-deficient (CCL11−/−) mice developed significantly reduced pulmonary fibrosis. Expression of profibrotic cytokines such as transforming growth factor-β1 was diminished in the absence of CCL11. Furthermore, increased lung expression of CCL11 significantly enhanced blm-induced lung fibrosis and production of profibrotic cytokines. These effects were also associated with an increase of eosinophil and neutrophil pulmonary infiltration. In contrast, mice treated with neutralizing CCR3 antibodies developed significantly reduced pulmonary fibrosis, eosinophilia, neutrophilia, and expression of profibrotic cytokines. Together, these data suggest that CCL11 and CCR3 are important in the pulmonary recruitment of granulocytes and play significant pathogenic roles in blm-induced lung fibrosis. PMID:16314464

  10. Buprenorphine decreases the CCL2-mediated chemotactic response of monocytes.

    PubMed

    Carvallo, Loreto; Lopez, Lillie; Che, Fa-Yun; Lim, Jihyeon; Eugenin, Eliseo A; Williams, Dionna W; Nieves, Edward; Calderon, Tina M; Madrid-Aliste, Carlos; Fiser, Andras; Weiss, Louis; Angeletti, Ruth Hogue; Berman, Joan W

    2015-04-01

    Despite successful combined antiretroviral therapy, ∼ 60% of HIV-infected people exhibit HIV-associated neurocognitive disorders (HAND). CCL2 is elevated in the CNS of infected people with HAND and mediates monocyte influx into the CNS, which is critical in neuroAIDS. Many HIV-infected opiate abusers have increased neuroinflammation that may augment HAND. Buprenorphine is used to treat opiate addiction. However, there are few studies that examine its impact on HIV neuropathogenesis. We show that buprenorphine reduces the chemotactic phenotype of monocytes. Buprenorphine decreases the formation of membrane projections in response to CCL2. It also decreases CCL2-induced chemotaxis and mediates a delay in reinsertion of the CCL2 receptor, CCR2, into the cell membrane after CCL2-mediated receptor internalization, suggesting a mechanism of action of buprenorphine. Signaling pathways in CCL2-induced migration include increased phosphorylation of p38 MAPK and of the junctional protein JAM-A. We show that buprenorphine decreases these phosphorylations in CCL2-treated monocytes. Using DAMGO, CTAP, and Nor-BNI, we demonstrate that the effect of buprenorphine on CCL2 signaling is opioid receptor mediated. To identify additional potential mechanisms by which buprenorphine inhibits CCL2-induced monocyte migration, we performed proteomic analyses to characterize additional proteins in monocytes whose phosphorylation after CCL2 treatment was inhibited by buprenorphine. Leukosialin and S100A9 were identified and had not been shown previously to be involved in monocyte migration. We propose that buprenorphine limits CCL2-mediated monocyte transmigration into the CNS, thereby reducing neuroinflammation characteristic of HAND. Our findings underscore the use of buprenorphine as a therapeutic for neuroinflammation as well as for addiction. Copyright © 2015 by The American Association of Immunologists, Inc.

  11. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing

    PubMed Central

    Garg, Abhishek D; Vandenberk, Lien; Fang, Shentong; Fasche, Tekele; Van Eygen, Sofie; Maes, Jan; Van Woensel, Matthias; Koks, Carolien; Vanthillo, Niels; Graf, Norbert; de Witte, Peter; Van Gool, Stefaan; Salven, Petri; Agostinis, Patrizia

    2017-01-01

    Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H2O2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells. PMID:28234357

  12. Evidence for chemokine synergy during neutrophil migration in ARDS

    PubMed Central

    Williams, Andrew E; José, Ricardo J; Mercer, Paul F; Brealey, David; Parekh, Dhruv; Thickett, David R; O'Kane, Cecelia; McAuley, Danny F; Chambers, Rachel C

    2017-01-01

    Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. Objectives The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. Methods CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. Results CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. Conclusion This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS. PMID:27496101

  13. Evidence for chemokine synergy during neutrophil migration in ARDS.

    PubMed

    Williams, Andrew E; José, Ricardo J; Mercer, Paul F; Brealey, David; Parekh, Dhruv; Thickett, David R; O'Kane, Cecelia; McAuley, Danny F; Chambers, Rachel C

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Inhibition of CD26/dipeptidyl peptidase IV enhances CCL11/eotaxin-mediated recruitment of eosinophils in vivo.

    PubMed

    Forssmann, Ulf; Stoetzer, Carsten; Stephan, Michael; Kruschinski, Carsten; Skripuletz, Thomas; Schade, Jutta; Schmiedl, Andreas; Pabst, Reinhard; Wagner, Leona; Hoffmann, Torsten; Kehlen, Astrid; Escher, Sylvia E; Forssmann, Wolf-Georg; Elsner, Jörn; von Hörsten, Stephan

    2008-07-15

    Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic reactions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11((3-74)). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils. Furthermore, they illustrate that inhibitors of DPPIV have the potential to interfere with chemokine-mediated effects in vivo including but not limited to allergy.

  15. Epstein-Barr virus EBNA2 directs doxorubicin resistance of B cell lymphoma through CCL3 and CCL4-mediated activation of NF-κB and Btk.

    PubMed

    Kim, Joo Hyun; Kim, Won Seog; Hong, Jung Yong; Ryu, Kung Ju; Kim, Seok Jin; Park, Chaehwa

    2017-01-17

    Epstein-Barr virus (EBV)-encoded nuclear antigen, EBNA2, expressed in EBV-infected B lymphocytes is critical for lymphoblastoid cell growth. Microarray profiling and cytokine array screening revealed that EBNA2 is associated with upregulation of the chemokines CCL3 and CCL4 in lymphoma cells. Depletion or inactivation of CCL3 or CCL4 sensitized DLBCL cells to doxorubicin. Our results indicate that EBV influences cell survival via an autocrine mechanism whereby EBNA2 increases CCL3 and CCL4, which in turn activate the Btk and NF-κB pathways, contributing to doxorubicin resistance of B lymphoma cells. Western blot data further confirmed that CCL3 and CCL4 direct activation of Btk and NF-κB. Based on these findings, we propose that a pathway involving EBNA2/Btk/NF-κB/CCL3/CCL4 plays a key role in doxorubicin resistance, and therefore, inhibition of specific components of this pathway may sensitize lymphoma cells to doxorubicin. Evaluation of the relationship between CCL3 expression and EBV infection revealed high CCL3 levels in EBV-positive patients. Our data collectively suggest that doxorubicin treatment for EBNA2-positive DLBCL cells may be effectively complemented with a NF-κB or Btk inhibitor. Moreover, evaluation of the CCL3 and CCL4 levels may be helpful for selecting DLBCL patients likely to benefit from doxorubicin treatment in combination with the velcade or ibrutinib.

  16. CCL22-specific Antibodies Reveal That Engagement of Two Distinct Binding Domains on CCL22 Is Required for CCR4-mediated Function.

    PubMed

    Santulli-Marotto, Sandra; Wheeler, John; Lacy, Eilyn R; Boakye, Ken; Luongo, Jennifer; Wu, Sheng-Jiun; Ryan, Mary

    2015-12-01

    CCL22 inactivation in vivo occurs by cleavage at the N-terminus; however, it is unclear whether this encompasses the entire site of CCR4 interaction. CCL17 also binds CCR4 and its function requires binding via two discrete binding sites. Using monoclonal antibodies (MAbs), we report that there are two separate sites on CCL22 that are required for CCR4-mediated function. The CCL22-specific antibodies bind with affinities of 632 ± 297 pM (MC2B7) and 308 ± 43 pM (MAB4391) and neither exhibited detectable binding to CCL17. Both antibodies are comparable in their ability to inhibit CCL22-mediated calcium mobilization; however, competition binding studies demonstrate that MC2B7 and MAB4391 bind to distinct epitopes on CCL22. Both antibodies inhibit function through CCR4, which is demonstrated by loss of β-arrestin recruitment in a reporter cell line. In both assays, blocking either site independently abolished CCL22 function, suggesting that concurrent engagement of both sites with CCR4 is necessary for function. This is the first demonstration that CCL22 has two distinct binding sites that are required for CCR4 function. These antibodies are valuable tools for better understanding the interaction and function of CCL22 and CCR4 and will potentially help further understanding of the differential outcomes of CCL17 and CCL22 interaction with CCR4.

  17. Loss of SMAD4 Promotes Lung Metastasis of Colorectal Cancer by Accumulation of CCR1+ Tumor-Associated Neutrophils through CCL15-CCR1 Axis.

    PubMed

    Yamamoto, Takamasa; Kawada, Kenji; Itatani, Yoshiro; Inamoto, Susumu; Okamura, Ryosuke; Iwamoto, Masayoshi; Miyamoto, Ei; Chen-Yoshikawa, Toyofumi F; Hirai, Hideyo; Hasegawa, Suguru; Date, Hiroshi; Taketo, Makoto M; Sakai, Yoshiharu

    2017-02-01

    We have reported loss of SMAD4 promotes expression of CCL15 from colorectal cancer to recruit CCR1 + myeloid cells through the CCL15-CCR1 axis, which contributes to invasion and liver metastasis. However, the molecular mechanism of lung metastasis is yet to be elucidated. Our purpose is to determine whether similar mechanism is involved in the lung metastasis of colorectal cancer. In a mouse model, we examined whether SMAD4 could affect the metastatic activity of colorectal cancer cells to the lung through the CCL15-CCR1 axis. We immunohistochemically analyzed expression of SMAD4, CCL15, and CCR1 with 107 clinical specimens of colorectal cancer lung metastases. We also characterized the CCR1 + myeloid cells using several cell-type-specific markers. In a mouse model, CCL15 secreted from SMAD4-deficient colorectal cancer cells recruited CCR1 + cells, promoting their metastatic activities to the lung. Immunohistochemical analysis of lung metastases from colorectal cancer patients revealed that CCL15 expression was significantly correlated with loss of SMAD4, and that CCL15-positive metastases recruited approximately 1.9 times more numbers of CCR1 + cells than CCL15-negative metastases. Importantly, patients with CCL15-positive metastases showed a significantly shorter relapse-free survival (RFS) than those with CCL15-negative metastases, and multivariate analysis indicated that CCL15 expression was an independent predictor of shorter RFS. Immunofluorescent staining showed that most CCR1 + cells around lung metastases were tumor-associated neutrophil, although a minor fraction was granulocytic myeloid-derived suppressor cell. CCL15-CCR1 axis may be a therapeutic target to prevent colorectal cancer lung metastasis. CCL15 can be a biomarker indicating poor prognosis of colorectal cancer patients with lung metastases. Clin Cancer Res; 23(3); 833-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Suppression of Neutrophil-Mediated Tissue Damage—A Novel Skill of Mesenchymal Stem Cells

    PubMed Central

    Jiang, Dongsheng; Muschhammer, Jana; Qi, Yu; Kügler, Andrea; De Vries, Juliane C.; Saffarzadeh, Mona; Sindrilaru, Anca; Beken, Seppe Vander; Wlaschek, Meinhard; Kluth, Mark A.; Ganss, Christoph; Frank, Natasha Y.; Frank, Markus H.; Preissner, Klaus T.; Scharffetter-Kochanek, Karin

    2017-01-01

    Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and regeneration. Though of prime interest, their potentially protective role on neutrophil-induced tissue damage, associated with high morbidity and mortality, has not been explored in sufficient detail. Here we report the therapeutic skill of MSCs to suppress unrestrained neutrophil activation and to attenuate severe tissue damage in a murine immune-complex mediated vasculitis model of unbalanced neutrophil activation. MSC-mediated neutrophil suppression was due to intercellular adhesion molecule 1-dependent engulfment of neutrophils by MSCs, decreasing overall neutrophil numbers. Similar to MSCs in their endogenous niche of murine and human vasculitis, therapeutically injected MSCs via upregulation of the extracellular superoxide dismutase (SOD3), reduced super-oxide anion concentrations and consequently prevented neutrophil death, neutrophil extracellular trap formation and spillage of matrix degrading neutrophil elastase, gelatinase and myeloperoxidase. SOD3-silenced MSCs did not exert tissue protective effects. Thus, MSCs hold substantial therapeutic promise to counteract tissue damage in conditions with unrestrained neutrophil activation. PMID:27299700

  19. TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17

    PubMed Central

    Cook, Andrew D.; Khiew, Hsu-Wei; Christensen, Anne D.; Fleetwood, Andrew J.; Lacey, Derek C.; Smith, Julia E.; Förster, Irmgard

    2018-01-01

    TNF and granulocyte macrophage-colony stimulating factor (GM-CSF) have proinflammatory activity and both contribute, for example, to rheumatoid arthritis pathogenesis. We previously identified a new GM-CSF→JMJD3 demethylase→interferon regulatory factor 4 (IRF4)→CCL17 pathway that is active in monocytes/macrophages in vitro and important for inflammatory pain, as well as for arthritic pain and disease. Here we provide evidence for a nexus between TNF and this pathway, and for TNF and GM-CSF interdependency. We report that the initiation of zymosan-induced inflammatory pain and zymosan-induced arthritic pain and disease are TNF dependent. Once arthritic pain and disease are established, blockade of GM-CSF or CCL17, but not of TNF, is still able to ameliorate them. TNF is required for GM-CSF–driven inflammatory pain and for initiation of GM-CSF–driven arthritic pain and disease, but not once they are established. TNF-driven inflammatory pain and TNF-driven arthritic pain and disease are dependent on GM-CSF and mechanistically require the same downstream pathway involving GM-CSF→CCL17 formation via JMJD3-regulated IRF4 production, indicating that GM-CSF and CCL17 can mediate some of the proinflammatory and algesic actions of TNF. Given we found that TNF appears important only early in arthritic pain and disease progression, targeting a downstream mediator, such as CCL17, which appears to act throughout the course of disease, could be effective at ameliorating chronic inflammatory conditions where TNF is implicated. PMID:29563337

  20. Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway. An in vitro model of neutrophil-mediated lung injury.

    PubMed

    Martin, W J

    1984-08-01

    Neutrophil-mediated injury to lung parenchymal cells has been proposed as an important step in the pathogenesis of many acute and chronic lung disorders. As an in vitro model of neutrophil-mediated injury, this study used activated human neutrophils as effector cells in an 18-h cytotoxicity assay with 51Cr-labeled bovine pulmonary artery endothelial cells serving as target cells. Neutrophils effectively injured pulmonary endothelial cells, expressed as cytotoxic index (CI), of 63.8 +/- 5.4, and this injury could be significantly reduced by several agents, including 1% dimethyl sulfoxide (CI, 51.3 +/- 3.7), 50 micrograms/ml ascorbic acid (CI, 40.8 +/- 4.7), and especially 1,100 U/ml catalase (CI, 14.3 +/- 4.1). As cell-free models of neutrophil-mediated endothelial cell injury, H2O2 (30 microM), O2- (generated by 0.5 mU xanthine oxidase), and the myeloperoxidase-dependent (0.32 U) hypohalite ion were each capable of injuring the target cells with CI of 6.21 +/- 2.8, 53.6 +/- 5.3, and 21.2 +/- 1.5, respectively. Catalase was effective in reducing the injurious effect of each of these oxidant-generating systems (p less than 0.01, all comparisons), confirming the important role for H2O2 in the mediation of this injury. The data indicate that neutrophils are capable of killing pulmonary endothelial cells by a pathway largely dependent on the generation of H2O2, and suggest the possibility that removal of H2O2 from the alveolar structures in subjects with these disorder might be an effective future therapeutic approach.

  1. Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West Nile Virus Infection.

    PubMed

    Bardina, Susana V; Michlmayr, Daniela; Hoffman, Kevin W; Obara, Christopher J; Sum, Janet; Charo, Israel F; Lu, Wuyuan; Pletnev, Alexander G; Lim, Jean K

    2015-11-01

    West Nile virus (WNV) is a re-emerging pathogen and the leading cause of epidemic encephalitis in the United States. Inflammatory monocytes are a critical component of the cellular infiltrate found in the CNS during WNV encephalitis, although the molecular cues involved in their migration are not fully understood. In mice, we previously showed that WNV infection induces a CCR2-dependent monocytosis that precedes monocyte migration into the CNS. Currently, the relative contribution of the CCR2 ligands, chemokines CCL2 and CCL7, in directing monocyte mobilization and leukocyte migration into the CNS is unclear. In this study, we demonstrate that, although both CCL2 and CCL7 are required for efficient monocytosis and monocyte accumulation in the CNS, only CCL7 deficiency resulted in increased viral burden in the brain and enhanced mortality. The enhanced susceptibility in the absence of CCL7 was associated with the delayed migration of neutrophils and CD8(+) T cells into the CNS compared with WT or Ccl2(-/-) mice. To determine whether CCL7 reconstitution could therapeutically alter the survival outcome of WNV infection, we administered exogenous CCL7 i.v. to WNV-infected Ccl7(-/-) mice and observed a significant increase in monocytes and neutrophils, but not CD8(+) T cells, within the CNS, as well as an enhancement in survival compared with Ccl7(-/-) mice treated with a linear CCL7 control peptide. Our experiments suggest that CCL7 is an important protective signal involved in leukocyte trafficking during WNV infection, and it may have therapeutic potential for the treatment of acute viral infections of the CNS. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Structures of Human CCL18, CCL3, and CCL4 Reveal Molecular Determinants for Quaternary Structures and Sensitivity to Insulin-Degrading Enzyme

    DOE PAGES

    Liang, Wenguang G.; Ren, Min; Zhao, Fan; ...

    2015-01-27

    CC chemokine ligands (CCL) are 8-14 kDa signaling proteins involved in diverse immune functions. While CCLs share similar tertiary structures, oligomerization produces highly diverse quaternary structures that protect chemokines from proteolytic degradation and modulate their functions. CCL18 is closely related to CCL3 and CCL4 with respect to both protein sequence and genomic location, yet CCL18 has distinct biochemical and biophysical properties. Here in this paper, we report a crystal structure of human CCL18 and its oligomerization states in solution based on crystallographic and small angle X-ray scattering (SAXS) analyses. Our data shows that CCL18 adopts an α-helical conformation at itsmore » N-terminus that weakens its dimerization, explaining CCL18’s preference for the monomeric state. Multiple contacts between monomers allow CCL18 to reversibly form a unique open-ended oligomer different from those of CCL3, CCL4, and CCL5. Furthermore, these differences hinge on proline 8, which is conserved in CCL3 and CCL4, but is replaced by lysine in human CCL18. Our structural analyses suggest that a proline 8 to alanine mutation stabilizes a type I β-turn at the N-terminus of CCL4 to prevent dimerization but prevents dimers from making key contacts with each other in CCL3. Thus, the P8A mutation induces depolymerization of CCL3 and CCL4 by distinct mechanisms. Finally, we used structural, biochemical, and functional analyses to unravel why insulin-degrading enzyme (IDE) degrades CCL3 and CCL4 but not CCL18. Lastly, our results elucidate the molecular basis for the oligomerization of three closely related CC chemokines and suggest how oligomerization shapes CCL chemokine function.« less

  3. Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme.

    PubMed

    Liang, Wenguang G; Ren, Min; Zhao, Fan; Tang, Wei-Jen

    2015-03-27

    CC chemokine ligands (CCLs) are 8- to 14-kDa signaling proteins involved in diverse immune functions. While CCLs share similar tertiary structures, oligomerization produces highly diverse quaternary structures that protect chemokines from proteolytic degradation and modulate their functions. CCL18 is closely related to CCL3 and CCL4 with respect to both protein sequence and genomic location, yet CCL18 has distinct biochemical and biophysical properties. Here, we report a crystal structure of human CCL18 and its oligomerization states in solution based on crystallographic and small-angle X-ray scattering analyses. Our data show that CCL18 adopts an α-helical conformation at its N-terminus that weakens its dimerization, explaining CCL18's preference for the monomeric state. Multiple contacts between monomers allow CCL18 to reversibly form a unique open-ended oligomer different from those of CCL3, CCL4, and CCL5. Furthermore, these differences hinge on proline 8, which is conserved in CCL3 and CCL4 but is replaced by lysine in human CCL18. Our structural analyses suggest that a mutation of proline 8 to alanine stabilizes a type 1 β-turn at the N-terminus of CCL4 to prevent dimerization but prevents dimers from making key contacts with each other in CCL3. Thus, the P8A mutation induces depolymerization of CCL3 and CCL4 by distinct mechanisms. Finally, we used structural, biochemical, and functional analyses to unravel why insulin-degrading enzyme degrades CCL3 and CCL4 but not CCL18. Our results elucidate the molecular basis for the oligomerization of three closely related CC chemokines and suggest how oligomerization shapes CCL chemokine function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. CCL11 promotes angiogenic activity by activating the PI3K/Akt pathway in HUVECs.

    PubMed

    Park, Jun Young; Kang, Yeo Wool; Choi, Byung Young; Yang, Young Chul; Cho, Byung Pil; Cho, Won Gil

    2017-08-01

    CCR3, the receptor for CCL11, is expressed on the surface of immune cells and even on non-immune cells. CCL11-CCR3 interactions can promote cell migration and proliferation. In this study, we investigated the effect of CCL11 on angiogenesis in HUVECs and also examined the molecular mechanisms of this process. We found that CCL11 induced mRNA transcription and protein expression of CCR3 in HUVECs. Moreover, the scratch wound healing assay and MTS proliferation assay both demonstrated that CCL11 promotes endothelial cell migration and induces weak proliferation. CCL11 directly induced microvessel sprouting from the rat aortic ring; these effects occurred earlier and to a greater extent than with VEGF stimulation. Furthermore, CCL11-induced phosphorylation of Akt was abolished by PI3K inhibitors. siRNA-mediated knockdown of CCR3 led to a significant reduction of PI3K phosphorylation. However, the phosphorylation levels of ERK1/2 were not changed, even after CCL11 treatment. Cumulatively, our data suggest that the CCL11-CCR3 interaction mainly activates PI3K/Akt signal transduction pathway in HUVECs.

  5. Graft-Derived CCL2 Increases Graft Injury During Antibody-Mediated Rejection of Cardiac Allografts

    PubMed Central

    Abe, Toyofumi; Su, Charles A.; Iida, Shoichi; Baldwin, William M.; Nonomura, Norio; Takahara, Shiro; Fairchild, Robert L.

    2015-01-01

    The pathogenic role of macrophages in antibody-mediated rejection (AMR) remains unclear. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic factor for monocytes and macrophages. The current studies used a murine model of AMR to investigate the role of graft-derived CCL2 in AMR and how macrophages may participate in antibody-mediated allograft injury. B6.CCR5−/−/CD8−/− recipients rejected MHC-mismatched wild type A/J allografts with high donor-reactive antibody titers and diffuse C4d deposition in the large vessels and myocardial capillaries, features consistent with AMR. In contrast, A/J.CCL2−/− allografts induced low donor-reactive antibody titers and C4d deposition at day 7 post-transplant. Decreased donor-reactive CD4 T cells producing IFN-γ were induced in response to A/J.CCL2−/− vs. wild type allografts. Consequently, A/J.CCL2−/− allograft survival was modestly but significantly longer than A/J allografts. Macrophages purified from wild type allografts expressed high levels of IL-1β and IL-12p40 and this expression and the numbers of classically activated macrophages were markedly reduced in CCL2-deficient allografts on day 7. The results indicate that allograft-derived CCL2 plays an important role in directing classically activated macrophages into allografts during AMR and that macrophages are important contributors to the inflammatory environment mediating graft tissue injury in this pathology, suggesting CCL2 as a therapeutic target for AMR. PMID:25040187

  6. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin

    PubMed Central

    Kessenbrock, Kai; Fröhlich, Leopold; Sixt, Michael; Lämmermann, Tim; Pfister, Heiko; Bateman, Andrew; Belaaouaj, Azzaq; Ring, Johannes; Ollert, Markus; Fässler, Reinhard; Jenne, Dieter E.

    2008-01-01

    Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents. PMID:18568075

  7. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis

    PubMed Central

    Xu, Xuehua; Gera, Nidhi; Li, Hongyan; Yun, Michelle; Zhang, Liyong; Wang, Youhong; Wang, Q. Jane; Jin, Tian

    2015-01-01

    Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis. PMID:25568344

  8. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma

    PubMed Central

    2013-01-01

    Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437

  9. TPL-2 restricts Ccl24-dependent immunity to Heligmosomoides polygyrus

    PubMed Central

    Kannan, Yashaswini; Entwistle, Lewis J.; Pelly, Victoria S.; Perez-Lloret, Jimena; Ley, Steven C.

    2017-01-01

    TPL-2 (COT, MAP3K8) kinase activates the MEK1/2-ERK1/2 MAPK signaling pathway in innate immune responses following TLR, TNFR1 and IL-1R stimulation. TPL-2 contributes to type-1/Th17-mediated autoimmunity and control of intracellular pathogens. We recently demonstrated TPL-2 reduces severe airway allergy to house dust mite by negatively regulating type-2 responses. In the present study, we found that TPL-2 deficiency resulted in resistance to Heligmosomoides polygyrus infection, with accelerated worm expulsion, reduced fecal egg burden and reduced worm fitness. Using co-housing experiments, we found resistance to infection in TPL-2 deficient mice (Map3k8–/–) was independent of microbiota alterations in H. polygyrus infected WT and Map3k8–/–mice. Additionally, our data demonstrated immunity to H. polygyrus infection in TPL-2 deficient mice was not due to dysregulated type-2 immune responses. Genome-wide analysis of intestinal tissue from infected TPL-2-deficient mice identified elevated expression of genes involved in chemotaxis and homing of leukocytes and cells, including Ccl24 and alternatively activated genes. Indeed, Map3k8–/–mice had a significant influx of eosinophils, neutrophils, monocytes and Il4GFP+ T cells. Conditional knockout experiments demonstrated that specific deletion of TPL-2 in CD11c+ cells, but not Villin+ epithelial cells, LysM+ myeloid cells or CD4+ T cells, led to accelerated resistance to H. polygyrus. In line with a central role of CD11c+ cells, CD11c+ CD11b+ cells isolated from TPL-2-deficient mice had elevated Ccl24. Finally, Ccl24 neutralization in TPL-2 deficient mice significantly decreased the expression of Arg1, Retnla, Chil3 and Ear11 correlating with a loss of resistance to H. polygyrus. These observations suggest that TPL-2-regulated Ccl24 in CD11c+CD11b+ cells prevents accelerated type-2 mediated immunity to H. polygyrus. Collectively, this study identifies a previously unappreciated role for TPL-2 controlling immune

  10. Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6Chigh CCR2+ inflammatory monocyte/macrophage-derived CCL11

    PubMed Central

    Waddell, Amanda; Ahrens, Richard; Steinbrecher, Kris; Donovan, Burke; Rothenberg, Marc E.; Munitz, Ariel; Hogan, Simon P.

    2011-01-01

    Recent genome-wide association studies of pediatric IBD have implicated the 17q12 loci, which contains the eosinophil specific chemokine gene CCL11, with early-onset IBD susceptibility. In the present study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that DSS treatment promotes the recruitment of F4/80+CD11b+CCR2+Ly6Chigh inflammatory monocytes into the colon. F4/80+CD11b+CCR2+Ly6Chigh monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6Chigh intestinal inflammatory MΦs revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4 and Cxcl2, and Arg1, Chi3l3, Ccl11 and IL-10, respectively. Attenuation of DSS-induced F4/80+CD11b+CCR2+Ly6Chigh monocyte recruitment to the colon in CCR2−/− mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6ChighCCR2+ inflammatory monocyte/MΦ-derived CCL11. PMID:21498668

  11. MKEY, a Peptide Inhibitor of CXCL4-CCL5 Heterodimer Formation, Protects Against Stroke in Mice.

    PubMed

    Fan, Yifang; Xiong, Xiaoxing; Zhang, Yongming; Yan, Dongmei; Jian, Zhihong; Xu, Baohui; Zhao, Heng

    2016-09-15

    MKEY, a synthetic cyclic peptide inhibitor of CXCL4-CCL5 heterodimer formation, has been shown to protect against atherosclerosis and aortic aneurysm formation by mediating inflammation, but whether it modulates neuroinflammation and brain injury has not been studied. We therefore studied the role of MKEY in stroke-induced brain injury in mice. MKEY was injected into mice after stroke with 60 minutes of middle cerebral artery occlusion. Infarct volume and neurological deficit scores were measured. Protein levels of CCL5 and its receptor CCR5 were detected by Western blot and fluorescence-activated cell sorting (FACS), respectively. Numbers of microglia-derived macrophages (MiMΦs) and monocyte-derived MΦs (MoMΦs) in the brain, and their subsets, based on the surface markers CD45, CD11b, CCR2, CX3CR1, and Ly6C, were analyzed by FACS. MΦs and neutrophil infiltration in the ischemic brain were stained with CD68 and myeloperoxidase (MPO), respectively, and assessed by immunofluorescent confocal microscopy. The results showed that expressions of CCL5 and its receptor CCR5, were increased in the ischemic brain after stroke. MKEY injection significantly reduced infarct sizes and improved neurological deficit scores measured 72 hours after stroke. In addition, MKEY injection inhibited the number of MoMΦs, but not MiMΦs, in the ischemic brain. Furthermore, MKEY inhibited protein expression levels of Ly6C,CCR2, and CX3CR1 on MoMΦs. Lastly, the confocal study also suggests that the number of CD68-positive MΦs and MPO-positive neutrophils was inhibited by MKEY injection. MKEY injection protects against stroke-induced brain injury, probably by inhibiting MoMΦ-mediated neuroinflammation. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Upregulation of CCL2 via ATF3/c-Jun interaction mediated the Bortezomib-induced peripheral neuropathy.

    PubMed

    Liu, Cuicui; Luan, Shuo; OuYang, Handong; Huang, Zhenzhen; Wu, Shaoling; Ma, Chao; Wei, Jiayou; Xin, Wenjun

    2016-03-01

    Bortezomib (BTZ) is a frequently used chemotherapeutic drug for the treatment of refractory multiple myeloma and hematological neoplasms. The mechanism by which the administration of BTZ leads to painful peripheral neuropathy remains unclear. In present study, we found that application of BTZ at 0.4 mg/kg for consecutive 5 days significantly increased the expression of CCL2 in DRG, and intrathecal administration of neutralizing antibody against CCL2 inhibited the mechanical allodynia induced by BTZ. We also found an increased expression of c-Jun in DRG, and that inhibition of c-Jun signaling prevented the CCL2 upregulation and mechanical allodynia in the rats treated with BTZ. Furthermore, the results with luciferase assay in vitro and ChIP assay in vivo showed that c-Jun might be essential for BTZ-induced CCL2 upregulation via binding directly to the specific position of the ccl2 promoter. In addition, the present results showed that an upregulated expression of ATF3 was co-expressed with c-Jun in the DRG neurons, and the enhanced interaction between c-Jun and ATF3 was observed in DRG in the rats treated with BTZ. Importantly, pretreatment with ATF3 siRNA significantly inhibited the recruitment of c-Jun to the ccl2 promoter in the rats treated with BTZ. Taken together, these findings suggested that upregulation of CCL2 resulting from the enhanced interaction between c-Jun and ATF3 in DRG contributed to BTZ-induced mechanical allodynia. Copyright © 2015. Published by Elsevier Inc.

  13. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression.

    PubMed

    Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze

    2015-08-01

    Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.

    PubMed

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-10-29

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.

  15. CCL26/eotaxin-3 is more effective to induce the migration of eosinophils of asthmatics than CCL11/eotaxin-1 and CCL24/eotaxin-2.

    PubMed

    Provost, Véronique; Larose, Marie-Chantal; Langlois, Anick; Rola-Pleszczynski, Marek; Flamand, Nicolas; Laviolette, Michel

    2013-08-01

    CCL11, CCL24, and CCL26 are chemokines involved in the recruitment of eosinophils into tissues and mainly activate CCR3. Whereas the genomic or pharmacological inhibition of CCR3 prevents the development of experimental asthma in rodents, it only impairs the recruitment of eosinophils by ∼40% in humans. As humans, but not rodents, express CCL26, we investigated the impact of CCL11, CCL24, and CCL26 on human eosinophils recruitment and evaluated the involvement of CCR3. The migration of eosinophils of healthy volunteers was similar for the three eotaxins. Eosinophils of mild asthmatics had a greater response to CCL11 and a much greater response to CCL26. Whereas all eotaxins induced the migration of eosinophil of asthmatics from 0 to 6 h, CCL26 triggered a second phase of migration between 12 and 18 h. Given that the CCR3 antagonists SB 328437 and SB 297006 inhibited the 5-oxo-eicosatetraenoate-induced migration of eosinophils and that the CCR3 antagonist UCB 35625 was not specific for CCR3, CCR3 blockade was performed with the CCR3 mAb. This antibody completely blocked the effect of all eotaxins on eosinophils of healthy subjects and the effect of CCL24 on the eosinophils of asthmatics. Interestingly, CCR3 blockade did not affect the second migration phase induced by CCL26 on eosinophils of asthmatics. In conclusion, CCL26 is a more effective chemoattractant than CCL11 and CCL24 for eosinophils of asthmatics. The mechanism of this greater efficiency is not yet defined. However, these results suggest that CCL26 may play a unique and important role in the recruitment of eosinophils in persistent asthma.

  16. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis

    PubMed Central

    2011-01-01

    Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis. PMID:21463523

  17. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis.

    PubMed

    Palchevskiy, Vyacheslav; Hashemi, Nastran; Weigt, Stephen S; Xue, Ying Ying; Derhovanessian, Ariss; Keane, Michael P; Strieter, Robert M; Fishbein, Michael C; Deng, Jane C; Lynch, Joseph P; Elashoff, Robert; Belperio, John A

    2011-04-04

    Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  18. Otitis Media and Nasopharyngeal Colonization in ccl3-/- Mice.

    PubMed

    Deniffel, Dominik; Nuyen, Brian; Pak, Kwang; Suzukawa, Keigo; Hung, Jun; Kurabi, Arwa; Wasserman, Stephen I; Ryan, Allen F

    2017-11-01

    We previously found CC chemokine ligand 3 (CCL3) to be a potent effector of inflammation during otitis media (OM): exogenous CCL3 rescues the OM phenotype of tumor necrosis factor-deficient mice and the function of macrophages deficient in several innate immune molecules. To further delineate the role of CCL3 in OM, we evaluated middle ear (ME) responses of ccl3 -/- mice to nontypeable Haemophilus influenzae (NTHi). CCL chemokine gene expression was evaluated in wild-type (WT) mice during the complete course of acute OM. OM was induced in ccl3 -/- and WT mice, and infection and inflammation were monitored for 21 days. Phagocytosis and killing of NTHi by macrophages were evaluated by an in vitro assay. The nasopharyngeal bacterial load was assessed in naive animals of both strains. Many CCL genes showed increased expression levels during acute OM, with CCL3 being the most upregulated, at levels 600-fold higher than the baseline. ccl3 -/- deletion compromised ME bacterial clearance and prolonged mucosal hyperplasia. ME recruitment of leukocytes was delayed but persisted far longer than in WT mice. These events were linked to a decrease in the macrophage capacity for NTHi phagocytosis and increased nasopharyngeal bacterial loads in ccl3 -/- mice. The generalized impairment in inflammatory cell recruitment was associated with compensatory changes in the expression profiles of CCL2, CCL7, and CCL12. CCL3 plays a significant role in the clearance of infection and resolution of inflammation and contributes to mucosal host defense of the nasopharyngeal niche, a reservoir for ME and upper respiratory infections. Therapies based on CCL3 could prove useful in treating or preventing persistent disease. Copyright © 2017 American Society for Microbiology.

  19. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing.

    PubMed

    Ruchaud-Sparagano, Marie-Hélène; Mills, Ross; Scott, Jonathan; Simpson, A John

    2014-10-01

    Monophosphoryl lipid A (MPLA) is a lipopolysaccharides (LPS) derivative associated with neutrophil-dependent anti-inflammatory outcomes in animal models of sepsis. Little is known about the effect of MPLA on neutrophil function. This study sought to test the hypothesis that MPLA would reduce release of cytotoxic mediators from neutrophils without impairing bacterial clearance. Neutrophils were isolated from whole blood of healthy volunteers. The effects of MPLA and LPS on autologous serum-opsonised Pseudomonas aeruginosa killing by neutrophils and phagocytosis of autologous serum-opsonised zymosan were examined. Neutrophil oxidative burst, chemotaxis, enzyme and cytokine release as well as Toll-like receptor 4 (TLR4) expression were assessed following exposure to LPS or MPLA. LPS, but not MPLA, induced significant release of superoxide and myeloperoxidase from neutrophils. However, MPLA did not impair neutrophil capacity to ingest microbial particles and kill P. aeruginosa efficiently. MPLA was directly chemotactic for neutrophils, involving TLR4, p38 mitogen-activated protein kinase and tyrosine and alkaline phosphatases. LPS, but not MPLA, impaired N-formyl-methionyl-leucyl phenylalanine-directed migration of neutrophils, increased surface expression of TLR4, increased interleukin-8 release and strongly activated the myeloid differentiation primary response 88 pathway. Phosphoinositide 3-kinase inhibition significantly augmented IL-8 release from MPLA-treated neutrophils. The addition of MPLA to LPS-preincubated neutrophils led to a significant reduction in LPS-mediated superoxide release and TLR4 surface expression. Collectively, these findings suggest that MPLA directs efficient chemotaxis and bacterial killing in human neutrophils without inducing extracellular release of cytotoxic mediators and suggest that MPLA warrants further attention as a potential therapeutic in human sepsis.

  20. Relevance of CCL3/CCR5 axis in oral carcinogenesis.

    PubMed

    da Silva, Janine Mayra; Moreira Dos Santos, Tálita Pollyanna; Sobral, Lays Martin; Queiroz-Junior, Celso Martins; Rachid, Milene Alvarenga; Proudfoot, Amanda E I; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; Teixeira, Mauro Martins; Leopoldino, Andréia Machado; Russo, Remo Castro; Silva, Tarcília Aparecida

    2017-08-01

    The chemokine CCL3 is a chemotactic cytokine crucial for inflammatory cell recruitment in homeostatic and pathological conditions. CCL3 might stimulate cancer progression by promoting leukocyte accumulation, angiogenesis and tumour growth. The expression of CCL3 and its receptors CCR1 and CCR5 was demonstrated in oral squamous cell carcinoma (OSCC), but their role was not defined. Here, the functions of CCL3 were assessed using a model of chemically induced tongue carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). Lineages of OSCC were used to analyse the effects of CCL3 in vitro . The 4NQO-induced lesions exhibited increased expression of CCL3, CCR1 and CCR5. CCL3 -/- and CCR5 -/- mice presented reduced incidence of tongue tumours compared to wild-type (WT) and CCR1 -/- mice. Consistently, attenuated cytomorphological atypia and reduced cell proliferation were observed in lesions of CCL3 -/- and CCR5 -/- mice. OSCC from CCL3 -/- mice exhibited lower infiltration of eosinophils and reduced expression of Egf, Fgf1, Tgf-β1, Vegfa, Vegfb, Itga-4, Vtn, Mmp-1a, Mmp-2 and Mmp-9 than WT mice. In vitro , CCL3 induced invasion and production of CCL5, IL-6, MMP -2, -8, -9. Blockage of CCL3 in vitro using α-CCL3 or Evasin-1 (a CCL3-binding protein) impaired tumour cell invasion. In conclusion, CCL3/CCR5 axis has pro-tumourigenic effects in oral carcinogenesis. The induction of inflammatory and angiogenic pathways and eosinophils recruitment appear to be the underlying mechanism explaining these effects. These data reveal potential protective effects of CCL3 blockade in oral cancer.

  1. Ly6G-mediated depletion of neutrophils is dependent on macrophages.

    PubMed

    Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad

    2016-01-01

    Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.

  2. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    PubMed

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  3. CCL21 mediates CD4+ T-cell costimulation via a DOCK2/Rac-dependent pathway.

    PubMed

    Gollmer, Kathrin; Asperti-Boursin, François; Tanaka, Yoshihiko; Okkenhaug, Klaus; Vanhaesebroeck, Bart; Peterson, Jeffrey R; Fukui, Yoshinori; Donnadieu, Emmanuel; Stein, Jens V

    2009-07-16

    CD4(+) T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)-transgenic (tg) CD4(+) T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3Kdelta(D910A/D910A) or PI3Kgamma-deficient TCR-tg CD4(+) T cells showed similar responsiveness to CCL21 costimulation as control CD4(+) T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4(+) T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca(2+) signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.

  4. Functional effects of CCL3L1 copy number

    PubMed Central

    Carpenter, Danielle; McIntosh, Richard S; Pleass, Richard J; Armour, John AL

    2012-01-01

    Copy number variation (CNV) is becoming increasingly important as a feature of human variation in disease susceptibility studies. However, the consequences of copy number variation are not so well understood. Here we present data exploring the functional consequences of copy number variation of CCL3L1 in 55 independent UK samples with no known clinical phenotypes. Copy number of CCL3L1 was determined by the paralogue ratio test (PRT), and expression levels of MIP-1α and mRNA from stimulated monocytes were measured and analysed. The data show no statistically significant association of MIP-1α protein levels with copy number. However, there was a significant correlation between copy number and CCL3L1:CCL3 mRNA ratio. The data also provide evidence that expression of CCL3 predominates in both protein and mRNA, and therefore the observed variation of CCL3 is potentially more important biologically than that of copy number variation of CCL3L1. PMID:22476153

  5. Functional effects of CCL3L1 copy number.

    PubMed

    Carpenter, D; McIntosh, R S; Pleass, R J; Armour, J A L

    2012-07-01

    Copy number variation (CNV) is becoming increasingly important as a feature of human variation in disease susceptibility studies. However, the consequences of CNV are not so well understood. Here, we present data exploring the functional consequences of CNV of CCL3L1 in 55 independent UK samples with no known clinical phenotypes. The copy number of CCL3L1 was determined by the paralogue ratio test, and expression levels of macrophage inflammatory protein-1α (MIP-1α) and mRNA from stimulated monocytes were measured and analysed. The data show no statistically significant association of MIP-1α protein levels with copy number. However, there was a significant correlation between copy number and CCL3L1:CCL3 mRNA ratio. The data also provide evidence that expression of CCL3 predominates in both protein and mRNA, and therefore the observed variation of CCL3 is potentially more important biologically than that of CNV of CCL3L1.

  6. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation.

    PubMed

    Noerager, Brett D; Xu, Xin; Davis, Virginia A; Jones, Caleb W; Okafor, Svetlana; Whitehead, Alicia; Blalock, J Edwin; Jackson, Patricia L

    2015-12-01

    Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation.

  7. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    PubMed Central

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  8. Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection

    PubMed Central

    Lima, Tatiane S.; Gov, Lanny

    2018-01-01

    ABSTRACT Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii-infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii-infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β. PMID:29440572

  9. C-Terminal Clipping of Chemokine CCL1/I-309 Enhances CCR8-Mediated Intracellular Calcium Release and Anti-Apoptotic Activity

    PubMed Central

    Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie

    2012-01-01

    Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563

  10. P-selectin mediates neutrophil adhesion to endothelial cell borders.

    PubMed

    Burns, A R; Bowden, R A; Abe, Y; Walker, D C; Simon, S I; Entman, M L; Smith, C W

    1999-03-01

    During an acute inflammatory response, endothelial P-selectin (CD62P) can mediate the initial capture of neutrophils from the free flowing bloodstream. P-selectin is stored in secretory granules (Weibel-Palade bodies) and is rapidly expressed on the endothelial surface after stimulation with histamine or thrombin. Because neutrophil transmigration occurs preferentially at endothelial borders, we wished to determine whether P-selectin-dependent neutrophil capture (adhesion) occurs at endothelial cell borders. Under static or hydrodynamic flow (2 dyn/cm2) conditions, histamine (10(-4) M) or thrombin (0.2 U/mL) treatment induced preferential (> or = 75%) neutrophil adhesion to the cell borders of endothelial monolayers. Blocking antibody studies established that neutrophil adhesion was completely P-selectin dependent. P-selectin surface expression increased significantly after histamine treatment and P-selectin immunostaining was concentrated along endothelial borders. We conclude that preferential P-selectin expression along endothelial borders may be an important mechanism for targeting neutrophil migration at endothelial borders.

  11. Anti-Neutrophil Cytoplasmic Antibodies Stimulate Release of Neutrophil Microparticles

    PubMed Central

    Eleftheriou, Despina; Hussain, Abdullah A.K.; Price-Kuehne, Fiona E.; Savage, Caroline O.; Jayne, David; Little, Mark A.; Salama, Alan D.; Klein, Nigel J.; Brogan, Paul A.

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3–ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics. PMID:22052057

  12. Analysis of the heat capacity for pure CH4 and CH4/CCl4 on graphite near the melting point and calculation of the T-X phase diagram for (CH3)CCl3 + CCl4

    NASA Astrophysics Data System (ADS)

    Yurtseven, Hamit; Yılmaz, Aygül

    2016-06-01

    We study the temperature dependence of the heat capacity Cp for the pure CH4 and the coadsorbed CH4/CCl4 on graphite near the melting point. The heat capacity peaks are analyzed using the experimental data from the literature by means of the power-law formula. The critical exponents for the heat capacity are deduced below and above the melting point for CH4 (Tm = 104.8 K) and CH4/CCl4 (Tm = 99.2 K). Our exponent values are larger as compared with the predicted values of some theoretical models exhibiting second order transition. Our analyses indicate that the pure methane shows a nearly second order (weak discontinuity in the heat capacity peak), whereas the transition in coadsorbed CH4/CCl4 is of first order (apparent discontinuity in Cp). We also study the T - X phase diagram of a two-component system of CH3CCl3+CCl4 using the Landau phenomenological model. Phase lines of the R+L (rhombohedral+liquid) and FCC+L (face-centred cubic + liquid) are calculated using the observed T - X phase diagram of this binary mixture. Our results show that the Landau mean field theory describes the observed behavior of CH3CCl3+CCl4 adequately. From the calculated T - X phase diagram, critical behavior of some thermodynamic quantities can be predicted at various temperatures and concentrations (CCl4) for a binary mixture of CH3CCl3+CCl4.

  13. Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia.

    PubMed

    Naglak, Elizabeth K; Morrison, Sandra G; Morrison, Richard P

    2017-10-01

    Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia -specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo , natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response. Copyright © 2017 Naglak et al.

  14. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling

    PubMed Central

    Shen, Hua; Yu, Xiaobo; Yang, Fengming; Zhang, Zhihua; Shen, Jianxin; Sun, Jin; Choksi, Swati; Jitkaew, Siriporn; Shu, Yongqian

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. PMID:27541266

  15. Synthesis of Human Neutrophil Extracellular Traps Contributes to Angiopoietin-Mediated In Vitro Proinflammatory and Proangiogenic Activities.

    PubMed

    Lavoie, Simon S; Dumas, Elizabeth; Vulesevic, Branka; Neagoe, Paul-Eduard; White, Michel; Sirois, Martin G

    2018-06-01

    Neutrophil extracellular traps (NETs) are composed of nuclear DNA in a web-like structure extruded from neutrophils in response to either bacterial infection or inflammation. We previously reported the expression of angiopoietin Tie2 receptor on human neutrophils and the capacity of both angiopoietins (Ang1 and Ang2) to induce proinflammatory activities, such as synthesis and release of platelet-activating factor, upregulation of β 2 integrin complex (CD11/CD18), and neutrophil chemotaxis. In contrast, only Ang1 but not Ang2 is capable of promoting translational and transcriptional activities in neutrophils. In this article, we addressed whether Ang1 and/or Ang2 could modulate the release of NETs and if they contribute to angiopoietin-mediated proinflammatory activities. We observed that Ang1 and Ang2, alone or combined (10 nM, 3 h), increase NET synthesis and release by ≈2.5-fold as compared with PBS-treated neutrophils. The release of NETs is Tie2 dependent and requires downstream intracellular participation of PI3K, p38, and p42/44 MAPK pathways; reactive oxygen species production; intracellular calcium store depletion; and protein arginine deiminase 4 activation. These isolated NETs induced neutrophil and endothelial cell activation, leading to neutrophil adhesion onto human extracellular matrix and HUVEC and in vitro formation of capillary-like tubes by endothelial cells. Our study reports the capacity of Ang1 and Ang2 to promote the release of NETs and that these NETs contribute to angiopoietin-mediated in vitro proinflammatory and proangiogenic activities. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration.

    PubMed

    Tauzin, Sebastien; Starnes, Taylor W; Becker, Francisco Barros; Lam, Pui-ying; Huttenlocher, Anna

    2014-12-08

    Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage in zebrafish and found that macrophages contact neutrophils and induce resolution via neutrophil reverse migration. We found that redox-SFK signaling through p22phox and Yes-related kinase is necessary for macrophage wound attraction and the subsequent reverse migration of neutrophils. Importantly, macrophage-specific reconstitution of p22phox revealed that macrophage redox signaling is necessary for neutrophil reverse migration. Thus, redox-SFK signaling in adjacent tissues is essential for coordinated leukocyte wound attraction and repulsion through pathways that involve contact-mediated guidance. © 2014 Tauzin et al.

  17. β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares.

    PubMed

    Goldberg, Emily L; Asher, Jennifer L; Molony, Ryan D; Shaw, Albert C; Zeiss, Caroline J; Wang, Chao; Morozova-Roche, Ludmilla A; Herzog, Raimund I; Iwasaki, Akiko; Dixit, Vishwa Deep

    2017-02-28

    Aging and lipotoxicity are two major risk factors for gout that are linked by the activation of the NLRP3 inflammasome. Neutrophil-mediated production of interleukin-1β (IL-1β) drives gouty flares that cause joint destruction, intense pain, and fever. However, metabolites that impact neutrophil inflammasome remain unknown. Here, we identified that ketogenic diet (KD) increases β-hydroxybutyrate (BHB) and alleviates urate crystal-induced gout without impairing immune defense against bacterial infection. BHB inhibited NLRP3 inflammasome in S100A9 fibril-primed and urate crystal-activated macrophages, which serve to recruit inflammatory neutrophils in joints. Consistent with reduced gouty flares in rats fed a ketogenic diet, BHB blocked IL-1β in neutrophils in a NLRP3-dependent manner in mice and humans irrespective of age. Mechanistically, BHB inhibited the NLRP3 inflammasome in neutrophils by reducing priming and assembly steps. Collectively, our studies show that BHB, a known alternate metabolic fuel, is also an anti-inflammatory molecule that may serve as a treatment for gout. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade

    PubMed Central

    Choi, Jin Young; Kim, Seong Bum; Eo, Seong Kug

    2015-01-01

    Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues. PMID:26618488

  19. Analysis of eotaxin 1/CCL11, eotaxin 2/CCL24 and eotaxin 3/CCL26 expression in lesional and non-lesional skin of patients with atopic dermatitis.

    PubMed

    Owczarek, Witold; Paplińska, Magdalena; Targowski, Tomasz; Jahnz-Rózyk, Karina; Paluchowska, Elwira; Kucharczyk, Aleksandra; Kasztalewicz, Beata

    2010-05-01

    Eotaxins are the chemokines which are highly selective chemotactic agents for eosinophils. The aim of our study was the evaluation of the gene expression level for eotaxin 1/CCL11, eotaxin 2/CCL24, and eotaxin 3/CCL26, both in skin changes and in uninvolved skin of atopic dermatitis (AD) patients. The study comprised 19 patients with AD and 10 healthy controls. The gene expression level for eotaxins in the skin biopsies was evaluated by the real-time quantitative PCR. The change of the gene expression level, calculated as log10 skin lesions/non-lesional skin, was 0.635 for CCL11, 0.172 for CCL24 and 0.291 for CCL26. The change of the gene expression level, calculated as log10 non-lesional skin of AD patients/healthy control, was 0.394 for CCL11, -0.216 for CCL24, and 0.229 for CCL26, while skin lesions of AD patients/healthy control, was: 0.788, -0.046, and 0.483, respectively. The mean gene expression level for CCL11, CCL24, CCL26 was higher in skin changes of AD patients than in uninvolved skin. The higher level of CCL26 in skin changes, indicates its role in their aetiology in AD. The gene expression level for CCL24 in AD patients was lower, both in involved and uninvolved skin vs. the healthy control. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps

    PubMed Central

    Raftery, Martin J.; Lalwani, Pritesh; Krautkrӓmer, Ellen; Peters, Thorsten; Scharffetter-Kochanek, Karin; Krüger, Renate; Hofmann, Jörg; Seeger, Karl; Krüger, Detlev H.

    2014-01-01

    Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from β2 null mice identified β2 integrin receptors as a master switch for NET induction. Further experiments suggested that β2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with β2 integrin induced strong NET formation. Collectively, β2 integrin–mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage. PMID:24889201

  1. Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases.

    PubMed

    Gela, A; Kasetty, G; Jovic, S; Ekoff, M; Nilsson, G; Mörgelin, M; Kjellström, S; Pease, J E; Schmidtchen, A; Egesten, A

    2015-02-01

    During bacterial infections of the airways, a Th1-profiled inflammation promotes the production of several host defense proteins and peptides with antibacterial activities including β-defensins, ELR-negative CXC chemokines, and the cathelicidin LL-37. These are downregulated by Th2 cytokines of the allergic response. Instead, the eosinophil-recruiting chemokines eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 are expressed. This study set out to investigate whether these chemokines could serve as innate host defense molecules during allergic inflammation. Antibacterial activities of the eotaxins were investigated using viable count assays, electron microscopy, and methods assessing bacterial permeabilization. Fragments generated by mast cell proteases were characterized, and their potential antibacterial, receptor-activating, and lipopolysaccharide-neutralizing activities were investigated. CCL11, CCL24, and CCL26 all showed potent bactericidal activity, mediated through membrane disruption, against the airway pathogens Streptococcus pneumoniae, Staphylococcus aureus, Nontypeable Haemophilus influenzae, and Pseudomonas aeruginosa. CCL26 retained bactericidal activity in the presence of salt at physiologic concentrations, and the region holding the highest bactericidal activity was the cationic and amphipathic COOH-terminus. Proteolysis of CCL26 by chymase and tryptase, respectively, released distinct fragments of the COOH- and NH2 -terminal regions. The COOH-terminal fragment retained antibacterial activity while the NH2 -terminal had potent LPS-neutralizing properties in the order of CCL26 full-length protein. An identical fragment to NH2 -terminal fragment generated by tryptase was obtained after incubation with supernatants from activated mast cells. None of the fragments activated the CCR3-receptor. Taken together, the findings show that the eotaxins can contribute to host defense against common airway pathogens and that their activities are modulated by

  2. Yersinia pestis targets neutrophils via complement receptor 3

    PubMed Central

    Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.

    2015-01-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083

  3. Galectin-9 Signaling through TIM-3 Is Involved in Neutrophil-Mediated Gram-Negative Bacterial Killing: An Effect Abrogated within the Cystic Fibrosis Lung

    PubMed Central

    Vega-Carrascal, Isabel; Bergin, David A.; McElvaney, Oliver J.; McCarthy, Cormac; Banville, Nessa; Pohl, Kerstin; Hirashima, Mitsuomi; Kuchroo, Vijay K.; Reeves, Emer P.; McElvaney, Noel G.

    2016-01-01

    The T cell Ig and mucin domain–containing molecule (TIM) family of receptors have emerged as potential therapeutic targets to correct abnormal immune function in chronic inflammatory conditions. TIM-3 serves as a functional receptor in structural cells of the airways and via the ligand galectin-9 (Gal-9) can modulate the inflammatory response. The aim of this study was to investigate TIM-3 expression and function in neutrophils, focusing on its potential role in cystic fibrosis (CF) lung disease. Results revealed that TIM-3 mRNA and protein expression values of circulating neutrophils were equal between healthy controls (n = 20) and people with CF (n = 26). TIM-3 was detected on resting neutrophil membranes by FACS analysis, and expression levels significantly increased post IL-8 or TNF-α exposure (p < 0.05). Our data suggest a novel role for TIM-3/Gal-9 signaling involving modulation of cytosolic calcium levels. Via TIM-3 interaction, Gal-9 induced neutrophil degranulation and primed the cell for enhanced NADPH oxidase activity. Killing of Pseudomonas aeruginosa was significantly increased upon bacterial opsonization with Gal-9 (p < 0.05), an effect abrogated by blockade of TIM-3 receptors. This mechanism appeared to be Gram-negative bacteria specific and mediated via Gal-9/ LPS binding. Additionally, we have demonstrated that neutrophil TIM-3/Gal-9 signaling is perturbed in the CF airways due to proteolytic degradation of the receptor. In conclusion, results suggest a novel neutrophil defect potentially contributing to the defective bacterial clearance observed in the CF airways and suggest that manipulation of the TIM-3 signaling pathway may be of therapeutic value in CF, preferably in conjunction with antiprotease treatment. PMID:24477913

  4. A flash photolysis resonance fluorescence investigation of the reaction OH + CH3CCl3 yields H2O + CH2CCl3. [in troposphere

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Anderson, P. C.; Klais, O.

    1979-01-01

    The absolute rate constant for the reaction OH + CH3CCl3 yields H2O + CH2CCl3 was determined by the flash photolysis resonance fluorescence method from 253 to 363K. The use of the Arrhenius equation with atmospheric observational data on methyl chloroform nearly doubles the predicted tropospheric OH reaction sink strength for the removal of atmospheric gases whose lifetimes are controlled by OH. The increased use of methyl chloroform instead of the restricted trichloroethylene focused attention to its role in stratospheric ozone depletion, producing modeling analyses to determine the amount of released methyl chloroform which reaches the stratosphere. Since the primary atmospheric loss of CH3CCl3 is considered by reaction with OH radicals, these data are used to compute an average tropospheric OH concentration and the strength of the 'global tropospheric OH reaction sink'.

  5. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling.

    PubMed

    Yang, Xuguang; Lin, Yuli; Shi, Yinghong; Li, Bingji; Liu, Weiren; Yin, Wei; Dang, Yongjun; Chu, Yiwei; Fan, Jia; He, Rui

    2016-07-15

    Cancer-associated fibroblasts (CAF) are components of the tumor microenvironment whose contributions to malignant progression are not fully understood. Here, we show that the fibroblast activation protein (FAP) triggers induction of a CAF subset with an inflammatory phenotype directed by STAT3 activation and inflammation-associated expression signature marked by CCL2 upregulation. Enforcing FAP expression in normal fibroblasts was sufficient to endow them with an inflammatory phenotype similar to FAP(+)CAFs. We identified FAP as a persistent activator of fibroblastic STAT3 through a uPAR-dependent FAK-Src-JAK2 signaling pathway. In a murine liver tumor model, we found that FAP(+)CAFs were a major source of CCL2 and that fibroblastic STAT3-CCL2 signaling in this setting promoted tumor growth by enhancing recruitment of myeloid-derived suppressor cells (MDSC). The CCL2 receptor CCR2 was expressed on circulating MDSCs in tumor-bearing subjects and FAP(+)CAF-mediated tumor promotion and MDSC recruitment was abrogated in Ccr2-deficient mice. Clinically, we observed a positive correlation between stromal expression of FAP, p-STAT3, and CCL2 in human intrahepatic cholangiocarcinoma, a highly aggressive liver cancer with dense desmoplastic stroma, where elevated levels of stromal FAP predicted a poor survival outcome. Taken together, our results showed how FAP-STAT3-CCL2 signaling in CAFs was sufficient to program an inflammatory component of the tumor microenvironment, which may have particular significance in desmoplasia-associated cancers. Cancer Res; 76(14); 4124-35. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Treatment with topical steroids downregulates IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 gene expression in eosinophilic esophagitis.

    PubMed

    Lucendo, Alfredo J; De Rezende, Livia; Comas, Carmen; Caballero, Teresa; Bellón, Teresa

    2008-09-01

    Our aim was to evaluate the changes induced by topical steroid treatment to the esophageal epithelial inflammatory eosinophilic and T-cell infiltrate and to IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 esophageal gene expression levels in patients with eosinophilic esophagitis (EE). Esophageal biopsies were taken from eight adult patients at the moment of diagnosis and after 3-month treatment with fluticasone propionate. Eosinophils, CD8, and CD4 T cells were examined by immunohistochemistry. IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 gene expression levels were measured by real-time PCR. Eight control samples were also analyzed. A significant decrease in the eosinophil infiltrate and in CD8(+) T-cell density was observed in the esophageal epithelium from the patients upon steroid treatment. IL-5 was not detected in control samples, and expression levels were variably downregulated after treatment in six of the patients. Gene expression of eotaxin-1/CCL11 showed relevant downregulation in four cases and a modest twofold decrease in three of the patients studied. Mean CCL11 expression values upon steroid treatment were similar to control samples (19.4 +/- 28.6 vs 8.42 +/- 5, P= 0.7). Eotaxin-3/CCL26 gene expression levels were significantly increased in EE. Although they were significantly downregulated upon steroid treatment, control expression levels were not reached in any of the cases analyzed (580.9 +/- 943.9 vs 1.45 +/- 1.0, P= 0.001). Our results confirm that eotaxin-3/CCL26 is significantly increased in EE esophageal samples. However, the individual analysis of IL-5, CCL11, and CCL26 expression data suggests that several cytokines and chemokines could participate in the physiopathology of EE in humans.

  7. Expression and prognostic significance of CCL11/CCR3 in glioblastoma.

    PubMed

    Tian, Min; Chen, Lina; Ma, Li; Wang, Dandan; Shao, Bin; Wu, Jianyu; Wu, Hangyu; Jin, Yimin

    2016-05-31

    Glioblastoma (GBM) is the most lethal primary nervous system cancer, but due to its rarity and complexity, its pathogenesis is poorly understood. To identify potential tumorigenic factors in GBM, we screened antibody-based cytokine arrays and found that CCL11 was upregulated. We then demonstrated in vitro that both CCL11 and its receptor, CCR3, were overexpressed and promoted the proliferation, migration and invasion of cancer cells. To examine the clinical significance of CCL11/CCR3, 458 GBM samples were divided into a training cohort with 225 cases and a test cohort containing 233 cases. In the training set, immunohistochemical analysis showed overexpression of CCL11 and CCR3 were correlated with unfavorable overall survival (OS). We further developed a prognostic classifier combining CCL11 and CCR3 expression and Karnofsky performance status (KPS) for predicting one-year survival in GBM patients. Receiver operating characteristic (ROC) analysis demonstrated that this predictor achieved 90.7% sensitivity and 73.4% specificity. These results were validated with the test sample set. Our findings suggest that CCL11-CCR3 binding is involved in the progression of GBM and may prompt a novel therapeutic approach. In addition, CCL11 and CCR3 expression, combined with KPS, may be used as an accurate predictor of one-year survival in GBM patients.

  8. Expression and prognostic significance of CCL11/CCR3 in glioblastoma

    PubMed Central

    Tian, Min; Chen, Lina; Ma, Li; Wang, Dandan; Shao, Bin; Wu, Jianyu; Wu, Hangyu; Jin, Yimin

    2016-01-01

    Glioblastoma (GBM) is the most lethal primary nervous system cancer, but due to its rarity and complexity, its pathogenesis is poorly understood. To identify potential tumorigenic factors in GBM, we screened antibody-based cytokine arrays and found that CCL11 was upregulated. We then demonstrated in vitro that both CCL11 and its receptor, CCR3, were overexpressed and promoted the proliferation, migration and invasion of cancer cells. To examine the clinical significance of CCL11/CCR3, 458 GBM samples were divided into a training cohort with 225 cases and a test cohort containing 233 cases. In the training set, immunohistochemical analysis showed overexpression of CCL11 and CCR3 were correlated with unfavorable overall survival (OS). We further developed a prognostic classifier combining CCL11 and CCR3 expression and Karnofsky performance status (KPS) for predicting one-year survival in GBM patients. Receiver operating characteristic (ROC) analysis demonstrated that this predictor achieved 90.7% sensitivity and 73.4% specificity. These results were validated with the test sample set. Our findings suggest that CCL11-CCR3 binding is involved in the progression of GBM and may prompt a novel therapeutic approach. In addition, CCL11 and CCR3 expression, combined with KPS, may be used as an accurate predictor of one-year survival in GBM patients. PMID:27119233

  9. Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells.

    PubMed Central

    Savage, C. O.; Pottinger, B. E.; Gaskin, G.; Pusey, C. D.; Pearson, J. D.

    1992-01-01

    The ability of vasculitis-associated anti-neutrophil cytoplasm antibodies (ANCA) to activate neutrophils and mediate release of radiolabel from 111Indium-labeled cultured human umbilical vein endothelial cells (HUVEC) was determined as a measure of the potential cytotoxicity of ANCA-activated neutrophils against vascular endothelium. Priming of neutrophils with low doses of phorbol 12-myristate 13-acetate (PMA) (1 ng/ml) and ionomycin (0.1 mumol/1) was required, together with pretreatment of endothelial cells with BCNU (1,3-bis-[2-chloroethyl]-1-nitrosourea; 0.26 mmol/l). Under these conditions and using a 4-hour serum-free assay system, mouse monoclonal antibodies (MAb) to the target autoantigens proteinase-3 (Pr-3) and myeloperoxidase (MPO) mediated enhanced release of 111Indium from HUVEC compared with control MAb. Human IgG Fab2 C-ANCA (recognizing Pr-3) and P-ANCA (recognizing MPO) did likewise. Preactivation of HUVEC with TNF (50 U/ml, 4 hr) enhanced the release of 111Indium from HUVEC generated by neutrophils activated with anti-Pr-3 and anti-MPO MAb. These data support the suggestion that activation of neutrophils by ANCA within the vascular lumen may contribute to endothelial cell injury. PMID:1323218

  10. Substance P regulates macrophage inflammatory protein 3α/chemokine C-C ligand 20 (CCL20) with heme oxygenase-1 in human periodontal ligament cells

    PubMed Central

    Lee, S-K; Pi, S-H; Kim, S-H; Min, K-S; Lee, H-J; Chang, H-S; Kang, K-H; Kim, H-R; Shin, H-I; Lee, S-K; Kim, E-C

    2007-01-01

    Although substance P (SP), a potent proinflammatory peptide, is involved in inflammation and immune responses, the effect of SP on the expression of macrophage inflammatory protein 3α[MIP-3α, chemokine C-C ligand 20 (CCL20)] in periodontal ligament (PDL) cells is unknown. Equally enigmatic is the link between SP, the stress protein heme oxygenase-1 (HO-1), and CCL20 production. We investigated whether SP induces the release of chemokine CCL20 from immortalized PDL (IPDL) cells, and further clarify SP-mediated pathways. We also examined the relationship between HO-1 and CCL20 by treating PDL cells with SP. Incubating IPDL cells with SP increased expression of CCL20 mRNA and CCL20 protein in a dose–time-dependent manner. Highly selective p38 and extracellular-regulated kinase 1/2 (ERK1/2) inhibitors abrogated SP-induced expression of CCL20 in IPDL cells. SP is also responsible for initiating phosphorylation of IκB, degradation of IκB and activation of nuclear factor (NF)-κB. SP induced expression of HO-1 in both a concentration- and time-dependent manner, and CCL20 reflected similar patterns. The inductive effects of SP on HO-1 and CCL20 were enhanced by HO-1 inducer hemin and the membrane-permeable guanosine 3′,5′-monophosphate (cGMP) analogue 8-bromo-cGMP. Conversely, this pathway was inhibited by the HO-1 inhibitor zinc protoporphyrin IX (ZnPP IX) and the selective inhibitor of guanylate cyclase, 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one (ODQ). We report herein the pathway that connects SP along with other modulators of neuroimmunoregulation to the induction of HO-1 and the inflammatory mediator macrophage inflammatory protein (MIP)-3α/CCL20 in IPDL cells, which play an important role in the development of periodontitis or inflammation during orthodontic tooth movement. PMID:17924972

  11. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa

    PubMed Central

    Sil, Payel; Chassaing, Benoit; Yoo, Dae-goon; Gewirtz, Andrew T.; Goldberg, Joanna B.; McCarter, Linda L.; Rada, Balázs

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon

  12. Potential role of recombinant secretory leucoprotease inhibitor in the prevention of neutrophil mediated matrix degradation.

    PubMed

    Llewellyn-Jones, C G; Lomas, D A; Stockley, R A

    1994-06-01

    Neutrophil elastase is able to degrade connective tissue matrices and is thought to be involved in the pathogenesis of destructive lung diseases. The ability of recombinant secretory leucoprotease inhibitor (rSLPI) to inhibit neutrophil mediated degradation of fibronectin in vitro is demonstrated and its efficacy compared with native alpha-1-proteinase inhibitor (n alpha 1-PI), recombinant alpha-1-proteinase inhibitor (r alpha 1-PI), and the chemical elastase inhibitor ICI 200,355. When preincubated with neutrophils both rSLPI and r alpha 1-PI were effective inhibitors of fibronectin degradation although n alpha 1-PI and ICI 200,355 were less effective. Recombinant SLPI was the most effective inhibitor when the cells were allowed to adhere to fibronectin before the addition of the inhibitors. Preincubation of rSLPI (0.1 mumol/l) with the fibronectin plate resulted in almost total inhibition of fibronectin degradation (reduced to 3.3 (SE 0.9)% of control). Pretreating the fibronectin plate with 1 mumol/l rSLPI, r alpha 1-PI and ICI 200,355 followed by thorough washing before the addition of cells resulted in no inhibition of fibronectin degradation with r alpha 1-PI and the ICI inhibitor, but rSLPI retained its inhibitory effect. This effect could be reduced by adding rSLPI in high pH buffer or 2 mol/1 NaCl. It is postulated that rSLPI binds to fibronectin to form a protective layer which prevents its degradation by neutrophil elastase. It may prove to be the most useful therapeutic agent in the prevention of neutrophil mediated lung damage.

  13. Cocaine/levamisole-associated autoimmune syndrome: a disease of neutrophil-mediated autoimmunity.

    PubMed

    Cascio, Michael J; Jen, Kuang-Yu

    2018-01-01

    Levamisole was previously used for its immunomodulatory properties to treat rheumatoid arthritis and some cancers. However, because of serious side-effects, it was taken off the market in the United States. Recently, levamisole has reemerged as a popular cocaine adulterant. Some individuals who consume levamisole-adulterated cocaine can develop a life-threatening autoimmune syndrome. In this review, the medical consequences of levamisole exposure and postulated mechanisms by which levamisole induces these adverse effects are discussed. Although agranulocytosis and cutaneous vasculitis are the major findings in patients who develop cocaine/levamisole-associated autoimmune syndrome (CLAAS), more recent experience indicates that other organ systems can be involved as well. Current studies point to neutrophil activation and neutrophil extracellular trap formation with subsequent antineutrophil cytoplasmic antibody-mediated tissue injury as a possible mechanism of CLAAS. In the past decade, the detrimental effects of levamisole have reemerged because of its popularity as a cocaine adulterant. Although infrequent, some individuals develop a systemic autoimmune syndrome characterized by immune-mediated agranulocytosis and antineutrophil cytoplasmic antibody-mediated vasculitis. Mechanistically, neutrophil antigens appear to be a major player in inducing CLAAS. Prompt cessation of levamisole exposure is key to treatment, although relapses are frequent because of the addictive effects of cocaine and the high prevalence of levamisole within the cocaine supply.

  14. Neutrophil elastase-mediated increase in airway temperature during inflammation.

    PubMed

    Schmidt, Annika; Belaaouaj, Azzaq; Bissinger, Rosi; Koller, Garrit; Malleret, Laurette; D'Orazio, Ciro; Facchinelli, Martino; Schulte-Hubbert, Bernhard; Molinaro, Antonio; Holst, Otto; Hammermann, Jutta; Schniederjans, Monika; Meyer, Keith C; Damkiaer, Soeren; Piacentini, Giorgio; Assael, Baroukh; Bruce, Kenneth; Häußler, Susanne; LiPuma, John J; Seelig, Joachim; Worlitzsch, Dieter; Döring, Gerd

    2014-12-01

    How elevated temperature is generated during airway infections represents a hitherto unresolved physiological question. We hypothesized that innate immune defence mechanisms would increase luminal airway temperature during pulmonary infection. We determined the temperature in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Here we show a temperature of ~38°C in neutrophil-dominated mucus plugs of chronically infected CF patients and implicate neutrophil elastase:α1-proteinase inhibitor complex formation as a relevant mechanism for the local temperature rise. Gene expression of the main pathogen in CF, P. aeruginosa, under anaerobic conditions at 38°C vs 30°C revealed increased virulence traits and characteristic cell wall changes. Neutrophil elastase mediates increase in airway temperature, which may contribute to P. aeruginosa selection during the course of chronic infection in CF. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  15. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells.

    PubMed

    Bauer, David; Redmon, Natalie; Mazzio, Elizabeth; Soliman, Karam F

    2017-01-01

    Mortality associated with breast cancer is attributable to aggressive metastasis, to which TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking the release of chemotactic proteins (e.g. MCP-1/CCL2). These proteins direct inward infiltration/migration of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory cells (Tregs), T helper IL-17-producing cells (Th17s), metastasis-associated macrophages (MAMs) and cancer-associated fibroblasts (CAFs). Tumor embedded infiltrates collectively enable immune evasion, tumor growth, angiogenesis, and metastasis. In the current study, we investigate the potential of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells). The results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage colony-stimulating factor (GMCSF), IL-1α and IL-6, all suppressed by apigenin. While many aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling patterns associated with CCL2 were blocked by apigenin and mediated through suppressed mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated extracellular signal-regulated kinase 1 (ERK 1/ 2). In summary, the obtained findings suggest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines from human breast cancer cells, which can be attenuated by apigenin.

  16. Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis

    PubMed Central

    Lionakis, Michail S.; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I.; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M.

    2012-01-01

    Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ. PMID:22916017

  17. Natural IgM mediates complement-dependent uptake of Francisella tularensis by human neutrophils via CR1 and CR3 in nonimmune serum

    PubMed Central

    Schwartz, Justin T.; Barker, Jason H.; Long, Matthew E.; Kaufman, Justin; McCracken, Jenna; Allen, Lee-Ann H.

    2012-01-01

    A fundamental step in the life cycle of F. tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum, nor the receptors that mediate infection of neutrophils has been defined. Herein human neutrophil uptake of GFP-expressing F. tularensis strains LVS and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis whereas C5 was not. Second, we used purification and immuno-depletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-antigen and capsule as prominent targets of these antibodies on the bacterial surface. Finally, we demonstrate using receptor-blocking antibodies that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-antigen polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3-opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner. PMID:22888138

  18. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation.

    PubMed

    Mukaida, N

    2000-12-01

    Since the discovery 13 years ago of interleukin (IL)-8 as a potent neutrophil chemotactic factor, accumulating evidence has established it as a crucial mediator in neutrophil-dependent acute inflammation. Numerous observations have demonstrated that various types of cells can produce a large amount of IL-8, either in response to various stimuli or constitutively, after malignant transformation. Recent studies of IL-8-mediated signaling have revealed that IL-8 activates a wide range of signaling molecules in a coordinate manner. IL-8 has been proven to have diverse actions on various types of leukocytic and nonleukocytic cells besides neutrophils. The author reviews recent progress in IL-8 signal transduction and biological actions on nonneutrophilic leukocytes, including T lymphocytes, monocytes, and hematopoietic progenitor cells. Potential involvement of IL-8 in viral infections and tumor progression is also discussed.

  19. Potential role of recombinant secretory leucoprotease inhibitor in the prevention of neutrophil mediated matrix degradation.

    PubMed Central

    Llewellyn-Jones, C. G.; Lomas, D. A.; Stockley, R. A.

    1994-01-01

    BACKGROUND--Neutrophil elastase is able to degrade connective tissue matrices and is thought to be involved in the pathogenesis of destructive lung diseases. METHODS--The ability of recombinant secretory leucoprotease inhibitor (rSLPI) to inhibit neutrophil mediated degradation of fibronectin in vitro is demonstrated and its efficacy compared with native alpha-1-proteinase inhibitor (n alpha 1-PI), recombinant alpha-1-proteinase inhibitor (r alpha 1-PI), and the chemical elastase inhibitor ICI 200,355. RESULTS--When preincubated with neutrophils both rSLPI and r alpha 1-PI were effective inhibitors of fibronectin degradation although n alpha 1-PI and ICI 200,355 were less effective. Recombinant SLPI was the most effective inhibitor when the cells were allowed to adhere to fibronectin before the addition of the inhibitors. Preincubation of rSLPI (0.1 mumol/l) with the fibronectin plate resulted in almost total inhibition of fibronectin degradation (reduced to 3.3 (SE 0.9)% of control). Pretreating the fibronectin plate with 1 mumol/l rSLPI, r alpha 1-PI and ICI 200,355 followed by thorough washing before the addition of cells resulted in no inhibition of fibronectin degradation with r alpha 1-PI and the ICI inhibitor, but rSLPI retained its inhibitory effect. This effect could be reduced by adding rSLPI in high pH buffer or 2 mol/1 NaCl. CONCLUSIONS--It is postulated that rSLPI binds to fibronectin to form a protective layer which prevents its degradation by neutrophil elastase. It may prove to be the most useful therapeutic agent in the prevention of neutrophil mediated lung damage. Images PMID:7912452

  20. Intracellular signaling required for CCL25-stimulated T cell adhesion mediated by the integrin alpha4beta1.

    PubMed

    Parmo-Cabañas, Marisa; García-Bernal, David; García-Verdugo, Rosa; Kremer, Leonor; Márquez, Gabriel; Teixidó, Joaquin

    2007-08-01

    The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.

  1. Differential regulation of eotaxin-1/CCL11 and eotaxin-3/CCL26 production by the TNF-alpha and IL-4 stimulated human lung fibroblast.

    PubMed

    Rokudai, Akiko; Terui, Yasuhito; Kuniyoshi, Ryoko; Mishima, Yuji; Mishima, Yuko; Aizu-Yokota, Eriko; Sonoda, Yoshiko; Kasahara, Tadashi; Hatake, Kiyohiko

    2006-06-01

    Allergic asthma and allergic dermatitis are chronic inflammatory diseases and are characterized by an accumulation of eosinophils at sites of inflammation. Eotaxin-1/CCL11 and eotaxin-3/CCL26 are members of the CC chemokine family, which are known to be potent chemoattractants for eosinophils. We observed that a human lung fibroblast, HFL-1 produces eotaxin-1 and -3 in response to TNF-alpha plus IL-4 stimulation, accompanied with NF-kappaB and STAT6 activation. We explored which signaling pathways are operative in the production of eotaxin-1 and -3 using several inhibitors. Eotaxin-1/CCL11 production was inhibited by a p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, but not by the MEK (MAPK/ERK kinase) inhibitors, PD98059 and U0126. In contrast, eotaxin-3/CCL26 production was inhibited similarly by PD98059 as well as U0126 and SB203580. In addition, two proteasome inhibitors, N-acetyl-leucyl-leucyl-norleucinal (ALLN) and bortezomib with significant inhibitory activity on NF-kappaB activation, inhibited eotaxin-1/CCL11 production with IC50 8 microM for ALLN and IC50 16 nM for bortezomib. In contrast, eotaxin-3/CCL26 production was not inhibited significantly up to 10 microM of ALLN (IC50 16 microM) and up to 10 nM of bortezomib (IC50 11 nM), giving inhibition of eotaxin-3/CCL26 less sensitive than eotaxin-1/CCL11 production by the proteasome inhibitors. Synergistic inhibition was observed among lower doses of SB203580 and proteasome inhibitors, particularly in the eotaxin-1/CCL11 production. No such prominent synergism was found on the eotaxin-3/CCL26 production. The suppression of eotaxin family production by these inhibitors may be efficacious against allergic diseases.

  2. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver.

    PubMed

    Mikula, Michal; Majewska, Aneta; Ledwon, Joanna Karolina; Dzwonek, Artur; Ostrowski, Jerzy

    2014-12-01

    Obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD), which is characterized by the upregulated expression of two key inflammatory mediators: tumor necrosis factor (Tnfa) and monocyte chemotactic protein 1 (Mcp1; also known as Ccl2). However, the chromatin make-up at these genes in the liver in obese individuals has not been explored. In this study, to identify obesity-mediated epigenetic changes at Tnfa and Ccl2, we used a murine model of obesity induced by a high-fat diet (HFD) and hyperphagic (ob/ob) mice. Chromatin immunoprecipitation (ChIP) assay was used to determine the abundance of permissive histone marks, namely histone H3 lysine 9 and 18 acetylation (H3K9/K18Ac), H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 36 trimethylation (H3K36me3), in conjunction with polymerase 2 RNA (Pol2) and nuclear factor (Nf)-κB recruitment in the liver. Additionally, to correlate the liver tissue-derived ChIP measurements with a robust in vitro transcriptional response at the Tnfa and Ccl2 genes, we used lipopolysaccharide (LPS) treatment to induce an inflammatory response in Hepa1-6 cells, a cell line derived from murine hepatocytes. ChIP revealed increased H3K9/K18Ac at Tnfa and Ccl2 in the obese mice, although the differences were only statistically significant for Tnfa (p<0.05). Unexpectedly, the levels of H3K4me3 and H3K36me3 marks, as well as Pol2 and Nf-κB recruitment, did not correspond with the increased expression of these two genes in the obese mice. By contrast, the acute treatment of Hepa1-6 cells with LPS significantly increased the H3K9/K18Ac marks, as well as Pol2 and Nf-κB recruitment at both genes, while the levels of H3K4me3 and H3K36me3 marks remained unaltered. These results demonstrate that increased Tnfa and Ccl2 expression in fatty liver at the chromatin level corresponds to changes in the level of histone H3 acetylation.

  3. Francisella tularensis alters human neutrophil gene expression: insights into the molecular basis of delayed neutrophil apoptosis

    PubMed Central

    Schwartz, Justin T.; Bandyopadhyay, Sarmistha; Kobayashi, Scott D.; McCracken, Jenna; Whitney, Adeline R.; DeLeo, Frank R.; Allen, Lee-Ann H.

    2013-01-01

    We demonstrated recently that Francisella tularensis profoundly impairs human neutrophil apoptosis, but how this is achieved is largely unknown. Herein we used human oligonucleotide microarrays to test the hypothesis that changes in neutrophil gene expression contribute to this phenotype, and now demonstrate that F. tularensis live vaccine strain (LVS) caused significant changes in neutrophil gene expression over a 24 h time period relative to the uninfected controls. Of ~47,000 genes analyzed, 3,435 were significantly up- or down-regulated by LVS, including 365 unique genes associated with apoptosis and cell survival. Specific targets in this category included genes associated with the intrinsic and extrinsic apoptotic pathways (CFLAR, TNFAIP3, TNFRSF10D, SOD2, BCL2A1, BIRC4, PIM2, TNFSF10, TNFRSF10C, CASP2, and CASP8) and genes that act via the NF B pathway and other mechanisms to prolong cell viability (NFKB1, NFKB2, and RELA, IL1B, CAST, CDK2, GADD45B, BCL3, BIRC3, CDK2, IL1A, PBEF1, IL6, CXCL1, CCL4 and VEGF). The microarray data were confirmed by qPCR and pathway analysis. Moreover, we demonstrate that X-linked inhibitor of apoptosis (XIAP) protein remained abundant in PMNs over 48 h of LVS infection, whereas BAX mRNA and protein were progressively down-regulated. These data strongly suggest that antiapoptotic and pro-survival mechanisms collaborate to sustain the viability of F. tularensis infected neutrophils. PMID:22986450

  4. Prevention of neutrophil extravasation by α2-adrenoceptor-mediated endothelial stabilization.

    PubMed

    Herrera-García, Ada María; Domínguez-Luis, María Jesús; Arce-Franco, María; Armas-González, Estefanía; Álvarez de La Rosa, Diego; Machado, José David; Pec, Martina K; Feria, Manuel; Barreiro, Olga; Sánchez-Madrid, Francisco; Díaz-González, Federico

    2014-09-15

    Adrenergic receptors are expressed on the surface of inflammation-mediating cells, but their potential role in the regulation of the inflammatory response is still poorly understood. The objectives of this work were to study the effects of α2-adrenergic agonists on the inflammatory response in vivo and to determine their mechanism of action. In two mouse models of inflammation, zymosan air pouch and thioglycolate-induced peritonitis models, the i.m. treatment with xylazine or UK14304, two α2-adrenergic agonists, reduced neutrophil migration by 60%. The α2-adrenergic antagonist RX821002 abrogated this effect. In flow cytometry experiments, the basal surface expression of L-selectin and CD11b was modified neither in murine nor in human neutrophils upon α2-agonist treatment. Similar experiments in HUVEC showed that UK14304 prevented the activation-dependent upregulation of ICAM-1. In contrast, UK14304 augmented electrical resistance and reduced macromolecular transport through a confluent HUVEC monolayer. In flow chamber experiments, under postcapillary venule-like flow conditions, the pretreatment of HUVECs, but not neutrophils, with α2-agonists decreased transendothelial migration, without affecting neutrophil rolling. Interestingly, α2-agonists prevented the TNF-α-mediated decrease in expression of the adherens junctional molecules, VE-cadherin, β-catenin, and plakoglobin, and reduced the ICAM-1-mediated phosphorylation of VE-cadherin by immunofluorescence and confocal analysis and Western blot analysis, respectively. These findings indicate that α2-adrenoceptors trigger signals that protect the integrity of endothelial adherens junctions during the inflammatory response, thus pointing at the vascular endothelium as a therapeutic target for the management of inflammatory processes in humans. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. Cord blood neutrophils display a galectin-3 responsive phenotype accentuated by vaginal delivery

    PubMed Central

    2013-01-01

    Background Term neonates are at increased risk of infections due to undeveloped immune mechanisms, and proper neutrophil function is important for perinatal immune defence. Galectin-3, an endogenous β-galactoside-binding lectin, is emerging as an inflammatory mediator and we have previously shown that primed/activated, but not resting, adult neutrophils respond to this lectin by production of reactive oxygen species (ROS). We investigated if galectin-3 is of importance in perinatal immune defence, focusing on plasma levels and neutrophil responsiveness. Methods Neutrophils were isolated from peripheral blood of healthy adults and cord blood (CB) after elective Caesarean section (CSCB) and vaginal delivery (VDCB). ROS production was measured by chemiluminescence, L-selectin expression by flow cytometry, and interleukin-8 (IL-8) and galectin-3 concentrations by ELISA. Statistical evaluations were performed using the Mann–Whitney test. Results In response to galectin-3, CSCB neutrophils showed a small but clear ROS production not evident in adult cells, signifying that neonatal neutrophils exist in a primed state. IL-8 production was elevated in CSCB cells while L-selectin exposure was equal to adult cells. Comparing CSCB to VDCB neutrophils, the latter showed an extensive galectin-3 responsiveness, indicating that the degree of priming is dependent on mode of delivery. VDCB neutrophils were increasingly prone to shed L-selectin, while the amount of IL-8 was similar to CSCB cells. The endogenous galectin-3 levels were higher in neonatal as compared to adult plasma, unaffected by mode of delivery. Conclusions Neutrophils enter a pre-primed state already in the fetus. Upon exposure to the inflammatory stimuli that are associated with labor, the neutrophils develop a reactive phenotype with extensive priming features. PMID:23964611

  6. HIV-1 Nef Induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Shah, Ankit; Gangwani, Mohitkumar R.; Silverstein, Peter S.; Fu, Mingui; Kumar, Anil

    2014-03-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.

  7. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    PubMed Central

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  8. Marathon Race Affects Neutrophil Surface Molecules: Role of Inflammatory Mediators

    PubMed Central

    2016-01-01

    The fatigue induced by marathon races was observed in terms of inflammatory and immunological outcomes. Neutrophil survival and activation are essential for inflammation resolution and contributes directly to the pathogenesis of many infectious and inflammatory conditions. The aim of this study was to investigate the effect of marathon races on surface molecules related to neutrophil adhesion and extrinsic apoptosis pathway and its association with inflammatory markers. We evaluated 23 trained male runners at the São Paulo International Marathon 2013. The following components were measured: hematological and inflammatory mediators, muscle damage markers, and neutrophil function. The marathon race induced an increased leukocyte and neutrophil counts; creatine kinase (CK), lactate dehydrogenase (LDH), CK-MB, interleukin (IL)-6, IL-10, and IL-8 levels. C-reactive protein (CRP), IL-12, and tumor necrosis factor (TNF)-α plasma concentrations were significantly higher 24 h and 72 h after the marathon race. Hemoglobin and hematocrit levels decreased 72 h after the marathon race. We also observed an increased intercellular adhesion molecule-1 (ICAM-1) expression and decreasedTNF receptor-1 (TNFR1) expression immediately after and 24 h after the marathon race. We observed an increased DNA fragmentation and L-selectin and Fas receptor expressions in the recovery period, indicating a possible slow rolling phase and delayed neutrophil activation and apoptosis. Marathon racing affects neutrophils adhesion and survival in the course of inflammation, supporting the “open-window” post-exercise hypothesis. PMID:27911915

  9. Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development.

    PubMed

    He, Li; Fu, Yi; Deng, Jingna; Shen, Yicong; Wang, Yingbao; Yu, Fang; Xie, Nan; Chen, Zhongjiang; Hong, Tianpei; Peng, Xinjian; Li, Qingqing; Zhou, Jing; Han, Jingyan; Wang, Ying; Xi, Jianzhong; Kong, Wei

    2018-07-01

    Chemokine-mediated neutrophil recruitment contributes to the pathogenesis of abdominal aortic aneurysm (AAA) and may serve as a promising therapeutic target. FAM3D (family with sequence similarity 3, member D) is a recently identified novel chemokine. Here, we aimed to explore the role of FAM3D in neutrophil recruitment and AAA development. FAM3D was markedly upregulated in human AAA tissues, as well as both elastase- and CaPO 4 -induced mouse aneurysmal aortas. FAM3D deficiency significantly attenuated the development of AAA in both mouse models. Flow cytometry analysis indicated that FAM3D -/- mice exhibited decreased neutrophil infiltration in the aorta during the early stage of AAA formation compared with their wild-type littermates. Moreover, application of FAM3D-neutralizing antibody 6D7 through intraperitoneal injection markedly ameliorated elastase-induced AAA formation and neutrophil infiltration. Further, in vitro coculture experiments with FAM3D-neutralizing antibody 6D7 and in vivo intravital microscopic analysis indicated that endothelial cell-derived FAM3D induced neutrophil recruitment. Mechanistically, FAM3D upregulated and activated Mac-1 (macrophage-1 antigen) in neutrophils, whereas inhibition of FPR1 (formyl peptide receptor 1) or FPR2 significantly blocked FAM3D-induced Mac-1 activation, indicating that the effect of FAM3D was dependent on both FPRs. Moreover, specific inhibitors of FPR signaling related to Gi protein or β-arrestin inhibited FAM3D-activated Mac-1 in vitro, whereas FAM3D deficiency decreased the activation of both FPR-Gi protein and β-arrestin signaling in neutrophils in vivo. FAM3D, as a dual agonist of FPR1 and FPR2, induced Mac-1-mediated neutrophil recruitment and aggravated AAA development through FPR-related Gi protein and β-arrestin signaling. © 2018 American Heart Association, Inc.

  10. Mechanisms Regulating the Secretion of the Promalignancy Chemokine CCL5 by Breast Tumor Cells: CCL5's 40s Loop and Intracellular Glycosaminoglycans12

    PubMed Central

    Soria, Gali; Lebel-Haziv, Yaeli; Ehrlich, Marcelo; Meshel, Tsipi; Suez, Adva; Avezov, Edward; Rozenberg, Perri; Ben-Baruch, Adit

    2012-01-01

    The chemokine CCL5 (RANTES) plays active promalignancy roles in breast malignancy. The secretion of CCL5 by breast tumor cells is an important step in its tumor-promoting activities; therefore, inhibition of CCL5 secretion may have antitumorigenic effects. We demonstrate that, in breast tumor cells, CCL5 secretion necessitated the trafficking of CCL5-containing vesicles on microtubules from the endoplasmic reticulum (ER) to the post-Golgi stage, and CCL5 release was regulated by the rigidity of the actin cytoskeleton. Focusing on the 40s loop of CCL5, we found that the 43TRKN46 sequence of CCL5 was indispensable for its inclusion in motile vesicles, and for its secretion. The TRKN-mutated chemokine reached the Golgi, but trafficked along the ER-to-post-Golgi route differently than the wild-type (WT) chemokine. Based on the studies showing that the 40s loop of CCL5 mediates its binding to glycosaminoglycans (GAG), we analyzed the roles of GAG in regulating CCL5 secretion. TRKN-mutated CCL5 had lower propensity for colocalization with GAG in the Golgi compared to the WT chemokine. Secretion of WT CCL5 was significantly reduced in CHO mutant cells deficient in GAG synthesis, and the WT chemokine acquired an ER-like distribution in these cells, similar to that of TRKN-mutated CCL5 in GAG-expressing cells. The release of WT CCL5 was also reduced after inhibition of GAG presence/synthesis by intracellular expression of heparanase, inhibition of GAG sulfation, and sulfate deprivation. The need for a 43TRKN46 motif and for a GAG-mediated process in CCL5 secretion may enable the future design of modalities that prevent CCL5 release by breast tumor cells. PMID:22355269

  11. Frontline Science: Buprenorphine decreases CCL2-mediated migration of CD14+ CD16+ monocytes.

    PubMed

    Jaureguiberry-Bravo, Matias; Lopez, Lillie; Berman, Joan W

    2018-05-23

    HIV infection of the CNS causes neuroinflammation and damage that contributes to the development of HIV-associated neurocognitive disorders (HAND) in greater than 50% of HIV-infected individuals, despite antiretroviral therapy (ART). Opioid abuse is a major risk factor for HIV infection. It has been shown that opioids can contribute to increased HIV CNS pathogenesis, in part, by modulating the function of immune cells. HIV enters the CNS within two weeks after peripheral infection by transmigration of infected monocytes across the blood brain barrier (BBB). CD14 + CD16 + monocytes are a mature subpopulation that is increased in number in the peripheral blood of HIV-infected people. Mature monocytes can be productively infected with HIV, and they transmigrate preferentially across the BBB in response to CCL2, a chemokine elevated in the CNS and CSF of HIV-infected people even with ART. Buprenorphine, an opioid derivate, is an opioid replacement therapy for heroin addiction. It is a partial agonist of μ-opioid receptor and full antagonist of κ-opioid receptor. The effects of buprenorphine on CCL2-mediated CD14 + CD16 + monocytes transmigration across the BBB, a critical mechanism that promotes neuroinflammation and HAND, have not been characterized. We showed for the first time that buprenorphine decreases several steps of CCL2-mediated human mature monocyte transmigration. We propose that buprenorphine treatment in the context of HIV infection could serve a dual purpose, to treat opioid addiction and also to reduce neuroinflammation. Additionally, buprenorphine may be used as a treatment for HAND not only in the context of opioid abuse. ©2018 Society for Leukocyte Biology.

  12. Chemerin15 inhibits neutrophil-mediated vascular inflammation and myocardial ischemia-reperfusion injury through ChemR23

    PubMed Central

    Cash, Jenna L; Bena, Stefania; Headland, Sarah E; McArthur, Simon; Brancaleone, Vincenzo; Perretti, Mauro

    2013-01-01

    Neutrophil activation and adhesion must be tightly controlled to prevent complications associated with excessive inflammatory responses. The role of the anti-inflammatory peptide chemerin15 (C15) and the receptor ChemR23 in neutrophil physiology is unknown. Here, we report that ChemR23 is expressed in neutrophil granules and rapidly upregulated upon neutrophil activation. C15 inhibits integrin activation and clustering, reducing neutrophil adhesion and chemotaxis in vitro. In the inflamed microvasculature, C15 rapidly modulates neutrophil physiology inducing adherent cell detachment from the inflamed endothelium, while reducing neutrophil recruitment and heart damage in a murine myocardial infarction model. These effects are mediated through ChemR23. We identify the C15/ChemR23 pathway as a new regulator and thus therapeutic target in neutrophil-driven pathologies. PMID:23999103

  13. Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1α/CCL3.

    PubMed

    Wang, Y; Gao, A; Zhao, H; Lu, P; Cheng, H; Dong, F; Gong, Y; Ma, S; Zheng, Y; Zhang, H; Zhang, Y; Xu, J; Zhu, X; Yuan, W; Zhang, X; Hao, S; Cheng, T

    2016-09-01

    Leukemia often results in severe anemia, which may significantly contribute to patient mortality and morbidity. However, the mechanisms underlying defective erythropoiesis in leukemia have not been fully elucidated. In this study, we demonstrated that insufficient erythropoiesis in an immunocompetent acute myeloid leukemia (AML) murine model was due to reduced proliferation of megakaryocyte erythroid progenitors and increased apoptosis of erythroblasts. Colony-forming cell assays indicated that the leukemic bone marrow (BM) plasma inhibited erythroid colony formation, whereas they had no inhibitory effect on other types of colonies. Cytokine array analysis demonstrated that the chemokine CCL3 was elevated in the plasma of AML mice and patients. CCL3 inhibited erythroid differentiation of hematopoietic stem cells, common myeloid progenitors and especially megakaryocytic-erythroid progenitors. Administration of the CCR1 antagonist partially recovered the yield of erythroid colonies in the presence of CCL3 or leukemic BM plasma. Mechanistically, we observed an increase of p38 phosphorylation and subsequent downregulation of GATA1 after CCL3 treatment. Furthermore, knockdown of CCL3 attenuated leukemic progression and alleviated anemia. Therefore, our results demonstrate that elevated CCL3 in the leukemic environment suppresses erythropoiesis via CCR1-p38 activation, suggesting a novel mechanism for the erythroid defects observed in leukemia.

  14. Human Neutrophil Peptides Mediate Endothelial-Monocyte Interaction, Foam Cell Formation, and Platelet Activation

    PubMed Central

    Quinn, Kieran L.; Henriques, Melanie; Tabuchi, Arata; Han, Bing; Yang, Hong; Cheng, Wei-Erh; Tole, Soumitra; Yu, Hanpo; Luo, Alice; Charbonney, Emmanuel; Tullis, Elizabeth; Lazarus, Alan; Robinson, Lisa A.; Ni, Heyu; Peterson, Blake R.; Kuebler, Wolfgang M.; Slutsky, Arthur S.; Zhang, Haibo

    2016-01-01

    Objective Neutrophils are involved in the inflammatory responses during atherosclerosis. Human neutrophil peptides (HNPs) released from activated neutrophils exert immune modulating properties. We hypothesized that HNPs play an important role in neutrophil-mediated inflammatory cardiovascular responses in atherosclerosis. Methods and Results We examined the role of HNPs in endothelial-leukocyte interaction, platelet activation, and foam cell formation in vitro and in vivo. We demonstrated that stimulation of human coronary artery endothelial cells with clinically relevant concentrations of HNPs resulted in monocyte adhesion and transmigration; induction of oxidative stress in human macrophages, which accelerates foam cell formation; and activation and aggregation of human platelets. The administration of superoxide dismutase or anti-CD36 antibody reduced foam cell formation and cholesterol efflux. Mice deficient in double genes of low-density lipoprotein receptor and low-density lipoprotein receptor–related protein (LRP), and mice deficient in a single gene of LRP8, the only LRP phenotype expressed in platelets, showed reduced leukocyte rolling and decreased platelet aggregation and thrombus formation in response to HNP stimulation. Conclusion HNPs exert proatherosclerotic properties that appear to be mediated through LRP8 signaling pathways, suggesting an important role for HNPs in the development of inflammatory cardiovascular diseases. PMID:21817096

  15. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment.

    PubMed

    Tull, Samantha P; Yates, Clara M; Maskrey, Benjamin H; O'Donnell, Valerie B; Madden, Jackie; Grimble, Robert F; Calder, Philip C; Nash, Gerard B; Rainger, G Ed

    2009-08-01

    Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-alpha, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D(2) (PGD(2)) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD(3). This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD(2) receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD(2) signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only

  16. The Correlation of Serums CCL11, CCL17, CCL26, and CCL27 and Disease Severity in Patients with Urticaria.

    PubMed

    Lu, Tao; Jiao, Xiaoyang; Si, Mengya; He, Ping; Zou, Jinbo; Zhang, Shuping; Zeng, Kang

    2016-01-01

    Chemokines may be involved in the pathogenesis of urticaria, but their correlation with disease severity as well as eruption type is unclear. The aim of this study was to explore the expression of chemokines in patients with urticaria. The association between disease severity and levels of chemokines was analysed. Serums CCL11, CCL17, CCL26, and CCL27, D-dimer, C-reactive protein, and total IgE were measured in 51 patients with urticaria and in 25 healthy control subjects. Serums CCL11, CCL17, CCL26, and CCL27 were significantly higher in patients with urticaria than in the healthy controls (P < 0.05). Serum CCL27 strongly correlated with urticarial disease severity. Serums CCL17, CCL26, and CCL27 significantly correlated with D-dimer, while innercorrelations were noted among the chemokines. Our findings reveal that chemokines participate in the pathogenesis of urticaria. Further study in larger cohort is needed to testify whether they could be the biomarkers for predicting the severity of urticaria.

  17. Cellular and 3D Optical Coherence Tomography Assessment During the Initiation and Progression of Retinal Degeneration in the Ccl2/Cx3cr1-deficient Mouse

    PubMed Central

    Zhou, Yongdong; Sheets, Kristopher G.; Knott, Eric J.; Regan, Cornelius E.; Tuo, Jingsheng; Chan, Chi-Chao; Gordon, William C.; Bazan, Nicolas G.

    2011-01-01

    Retinal pathologies common to human eye diseases, including abnormal retinal pigment epithelial (RPE) cells, drusen-like accumulation, photoreceptor atrophy, and choroidal neovascularization, have been reported in the Ccl2/Cx3cr1-deficient mouse. The Ccl2 gene encodes the pro-inflammatory chemokine CCL2 (MCP-1), which is responsible for chemotactic recruitment of monocyte-derived macrophages to sites of inflammation. The Cx3cr1 gene encodes the fractalkine receptor, CX3CR1, and is required for accumulation of monocytes and microglia recruited via CCL2. Chemokine-mediated inflammation is implicated in retinal degenerative diseases such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and uveoretinitis, and proper chemokine signaling from the RPE, Müller glia, and astrocytes is necessary to regulate leukocyte trafficking. Therefore, this mouse, possessing aberrant chemokine signaling coupled with retinal degenerative pathologies, presents an ideal opportunity to investigate the effect of altered signaling on retinal homeostasis and photoreceptor degeneration. Since this mouse is a recent development, more data covering the onset, location, and progression rate of pathologies is needed. In the present study we establish these parameters and show two photoreceptor cell death processes. Our observations of decreased glutamine synthetase and increased glial fibrillary acidic protein suggest that Müller cells respond very early within regions where lesions are forming. Finally, we demonstrate that retinal angiomatous proliferation contributes to pathological angiogenesis in this Ccl2/Cx3cr1-deficient mouse. PMID:21854772

  18. Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant-Pathogenic Fusarium Species.

    PubMed

    Studt, Lena; Janevska, Slavica; Arndt, Birgit; Boedi, Stefan; Sulyok, Michael; Humpf, Hans-Ulrich; Tudzynski, Bettina; Strauss, Joseph

    2016-01-01

    In the two fungal pathogens Fusarium fujikuroi and Fusarium graminearum , secondary metabolites (SMs) are fitness and virulence factors and there is compelling evidence that the coordination of SM gene expression is under epigenetic control. Here, we characterized Ccl1, a subunit of the COMPASS complex responsible for methylating lysine 4 of histone H3 (H3K4me). We show that Ccl1 is not essential for viability but a regulator of genome-wide trimethylation of H3K4 (H3K4me3). Although, recent work in Fusarium and Aspergillus spp. detected only sporadic H3K4 methylation at the majority of the SM gene clusters, we show here that SM profiles in CCL1 deletion mutants are strongly deviating from the wild type. Cross-complementation experiments indicate high functional conservation of Ccl1 as phenotypes of the respective △ ccl1 were rescued in both fungi. Strikingly, biosynthesis of the species-specific virulence factors gibberellic acid and deoxynivalenol produced by F. fujikuroi and F. graminearum , respectively, was reduced in axenic cultures but virulence was not attenuated in these mutants, a phenotype which goes in line with restored virulence factor production levels in planta. This suggests that yet unknown plant-derived signals are able to compensate for Ccl1 function during pathogenesis.

  19. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    PubMed

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation.

    PubMed

    Li, Wenjing; Liu, Ting; Xiong, Yingluo; Lv, Jiaoyan; Cui, Xinyi; He, Rui

    2018-06-05

    BLT1, the primary functional receptor of Leukotriene B4 (LTB4), is involved in tissue inflammation by mediating leukocyte recruitment, and recently LTB4-dependent inflammation was reported to promote lung tumor growth. Exposure to diesel exhaust particle (DEP), the major component of particulate matter 2.5 (PM 2.5 ), can elicit lung inflammation, which may increase the risk of lung cancer. However, it remains unknown about the critical factors mediating DEP-induced lung inflammation and the subsequent effect on tumor metastasis. In this study, we found that DEP exposure led to acute lung inflammation, characterized by abundant infiltration of neutrophils and elevated lung levels in LTB4, as well as several pro-inflammatory cytokines and chemokines, including IL-1β, IL-6, TNF-α, CXCL1/2. Furthermore, DEP exposure promoted lung metastasis of 3LL and 4T1 cells. BLT1 blockade by its specific antagonist U75302 significantly inhibited neutrophilic lung inflammation following DEP exposure. Importantly, BLT1 blockade before the onset of inflammation significantly reduced DEP-enhanced lung metastasis, which was associated with greatly decreased infiltrating neutrophils in lungs. Interestingly, BLT1 blockade after the occurrence of lung metastases had no effect on the magnitude of lung metastasis, suggesting that inhibition of BLT1-mediated lung inflammation was insufficient to suppress established metastatic tumor. Administration of BLT2 inhibitor LY255283 fails to inhibit DEP-induced lung inflammation and tumor metastasis. Collectively, our results demonstrate that DEP exposure causes BLT1-mediated lung neutrophilic inflammation, which is critical for tumor lung metastasis, and suggest that interruption of the LTB4-BLT1 axis could be useful for preventing PM 2.5 -induced inflammation and subsequent susceptible to lung metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Restraint stress alters neutrophil and macrophage phenotypes during wound healing

    PubMed Central

    Tymen, Stéphanie D.; Rojas, Isolde G.; Zhou, Xiaofeng; Fang, Zong Juan; Zhao, Yan; Marucha, Phillip T.

    2013-01-01

    Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting. PMID:22884902

  2. CCL3L1 copy number and susceptibility to malaria

    PubMed Central

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A.L.; Shaw, Marie-Anne

    2012-01-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n = 922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. PMID:22484763

  3. CCL3L1 copy number and susceptibility to malaria.

    PubMed

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A L; Shaw, Marie-Anne

    2012-07-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n=922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells.

    PubMed

    Tsai, Chung-Che; Kuo, Ting-Yu; Hong, Zhi-Wei; Yeh, Ying-Chieh; Shih, Kuo-Shun; Du, Shin-Yi; Fu, Hua-Wen

    2015-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) activates several innate leukocytes including neutrophils, monocytes, and mast cells. It has been reported that HP-NAP induces degranulation and interleukin-6 (IL-6) secretion of rat peritoneal mast cells. However, the molecular mechanism is not very clear. Here, we show that HP-NAP activates human mast cell line-1 (HMC-1) cells to secrete histamine and IL-6. The secretion depends on pertussis toxin (PTX)-sensitive heterotrimeric G proteins but not on Toll-like receptor 2. Moreover, HP-NAP induces PTX-sensitive G protein-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38 MAPK), and Akt in HMC-1 cells. Inhibition of ERK1/2, p38 MAPK, or phosphatidylinositol 3-kinase (PI3K) suppresses HP-NAP-induced release of histamine and IL-6 from HMC-1 cells. Thus, the activation of HMC-1 cells by HP-NAP is through Gi-linked G protein-coupled receptor-mediated MAPKs and PI3K/Akt pathways.

  5. Pneumolysin mediates heterotypic aggregation of neutrophils and platelets in vitro.

    PubMed

    Nel, Jan G; Durandt, Chrisna; Theron, Annette J; Tintinger, Gregory R; Pool, Roger; Richards, Guy A; Mitchell, Timothy J; Feldman, Charles; Anderson, Ronald

    2017-06-01

    Platelets orchestrate the inflammatory activities of neutrophils, possibly contributing to pulmonary and myocardial damage during severe pneumococcal infection. This study tested the hypothesis that the pneumococcal toxin, pneumolysin (Ply), activates production of platelet-activating factor (PAF) and thromboxane A 2 (TxA 2 ) by neutrophils, these bioactive lipids being potential mediators of neutrophil:platelet (NP) networking. The effects of recombinant Ply (10-80 ng mL -1 ) on the production of PAF and TxA 2 by isolated neutrophils were measured using ELISA procedures, and NP aggregation by flow cytometry. Exposure of neutrophils to Ply induced production of PAF and, to a lesser extent, TxA 2 , achieving statistical significance at ≥20 ng mL -1 of the toxin. In the case of NP interactions, Ply promoted heterotypic aggregation which was dependent on upregulation of P-selectin (CD62P) and activation of protease-activated receptor 1 (PAR1), attaining statistical significance at ≥10 ng mL -1 of the toxin, but did not involve either PAF or TxA 2 . Ply induces synthesis of PAF and TxA 2, by human neutrophils, neither of which appears to contribute to the formation of NP heterotypic aggregates in vitro, a process which is seemingly dependent on CD62P and PAR1. These pro-inflammatory activities of Ply may contribute to the pathogenesis of pulmonary and myocardial injury during severe pneumococcal infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. IFN-γ protects from apoptotic neutrophil-mediated tissue injury during acute Listeria monocytogenes infection.

    PubMed

    Wang, Guan; Lin, Ang; Han, Qiuju; Zhao, Huajun; Tian, Zhigang; Zhang, Jian

    2018-06-23

    Listeria monocytogenes (LM) is a foodborne Gram-positive intracellular pathogen that can cause listeriosis in humans and animals. Although phagocytes are known to be involved in the response to this infection, the role of neutrophils is not entirely clear. Here, we have demonstrated that soon after LM infection, a large number of IFN-γ-producing neutrophils quickly accumulated in the spleen, blood, and peritoneal cavity. Both in vivo and in vitro experiments demonstrated that neutrophils were an important source of IFN-γ. IFN-γ played a critical protective role against acute LM infection, as demonstrated by the poor survival of Ifng -/- mice. Moreover, IFN-γ promoted bacterial clearance by the neutrophils, thereby inhibiting LM-induced neutrophil apoptosis and spleen damage. In addition to this, IFN-γ could effectively drive macrophage-mediated phagocytosis of apoptotic neutrophils, which was accompanied with TGF-β secretion and was involved in protection against tissue injury. Importantly, by phagocytizing apoptotic neutrophils, macrophages obtained myeloperoxidase, an important bactericidal molecule only produced by neutrophils, which further promoted the antibacterial activity of macrophages. These findings demonstrate that neutrophils are an important source of IFN-γ at the early stage of LM infection, which is characterized by both LM elimination and tissue-protective effects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. An ω-3-enriched diet alone does not attenuate CCl4-induced hepatic fibrosis.

    PubMed

    Harris, Todd R; Kodani, Sean; Yang, Jun; Imai, Denise M; Hammock, Bruce D

    2016-12-01

    Exposure to the halogenated hydrocarbon carbon tetrachloride (CCl 4 ) leads to hepatic lipid peroxidation, inflammation and fibrosis. Dietary supplementation of ω-3 fatty acids has been increasingly advocated as being generally anti-inflammatory, though its effect in models of liver fibrosis is mixed. This raises the question of whether diets high in ω-3 fatty acids will result in a greater sensitivity or resistance to liver fibrosis as a result of environmental toxicants like CCl 4 . In this study, we fed CCl 4 -treated mice a high ω-3 diet (using a mix of docosahexaenoic acid and eicosapentaenoic acid ethyl esters). We also co-administered an inhibitor of soluble epoxide hydrolase, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which has been shown to boost anti-inflammatory epoxy fatty acids that are produced from both ω-3 and ω-6 dietary lipids. We showed that soluble epoxide inhibitors reduced CCl 4 -induced liver fibrosis. Three major results were obtained. First, the ω-3-enriched diet did not attenuate CCl 4 -induced liver fibrosis as judged by collagen deposition and collagen mRNA expression. Second, the ω-3-enriched diet raised hepatic tissue levels of several inflammatory lipoxygenase metabolites and prostaglandins, including PGE2. Third, treatment with TPPU in drinking water in conjunction with the ω-3-enriched diet resulted in a reduction in liver fibrosis compared to all other groups. Taken together, these results indicate that dietary ω-3 supplementation alone did not attenuate CCl 4 -induced liver fibrosis. Additionally, oxylipin signaling molecules may play role in the CCl 4 -induced liver fibrosis in the high ω-3 diet groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. An ω-3 enriched diet alone does not attenuate CCl4-induced hepatic fibrosis

    PubMed Central

    Harris, Todd R.; Kodani, Sean; Yang, Jun; Imai, Denise M.; Hammock, Bruce D.

    2016-01-01

    Exposure to the halogenated hydrocarbon carbon tetrachloride (CCl4) leads to hepatic lipid peroxidation, inflammation, and fibrosis. Dietary supplementation of ω-3 fatty acids has been increasingly advocated as being generally anti-inflammatory, though its effect in models of liver fibrosis is mixed. This raises the question of whether diets high in ω-3 fatty acids will result in a greater sensitivity or resistance to liver fibrosis as a result of environmental toxicants like CCl4. In this study we fed CCl4-treated mice a high ω-3 diet (using a mix of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) ethyl esters). We also co-administered an inhibitor of soluble epoxide hydrolase, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which has been shown to boost anti-inflammatory epoxy fatty acids that are produced from both ω-3 and ω-6 dietary lipids. In this study, we showed that soluble epoxide inhibitors reduced CCl4-induced liver fibrosis. Three major results were obtained. First, the ω-3 enriched diet did not attenuate CCl4-induced liver fibrosis as judged by collagen deposition and collagen mRNA expression. Second, the ω-3 enriched diet raised hepatic tissue levels of several inflammatory lipoxygenase metabolites and prostaglandins, including PGE2. Third, treatment with TPPU in drinking water in conjunction with the ω-3 enriched diet resulted in a reduction in liver fibrosis compared to all other groups. Taken together, these results indicate that dietary ω-3 supplementation alone did not attenuate CCl4-induced liver fibrosis. Additionally, oxylipin signaling molecules may play role in the CCl4-induced liver fibrosis in the high ω-3 diet groups. PMID:27732914

  9. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa.

    PubMed

    Altmeier, Simon; Toska, Albulena; Sparber, Florian; Teijeira, Alvaro; Halin, Cornelia; LeibundGut-Landmann, Salomé

    2016-09-01

    Mucosal infections with Candida albicans belong to the most frequent forms of fungal diseases. Host protection is conferred by cellular immunity; however, the induction of antifungal immunity is not well understood. Using a mouse model of oropharyngeal candidiasis (OPC) we show that interleukin-1 receptor (IL-1R) signaling is critical for fungal control at the onset of infection through its impact on neutrophils at two levels. We demonstrate that both the recruitment of circulating neutrophils to the site of infection and the mobilization of newly generated neutrophils from the bone marrow depended on IL-1R. Consistently, IL-1R-deficient mice displayed impaired chemokine production at the site of infection and defective secretion of granulocyte colony-stimulating factor (G-CSF) in the circulation in response to C. albicans. Strikingly, endothelial cells were identified as the primary cellular source of G-CSF during OPC, which responded to IL-1α that was released from keratinocytes in the infected tissue. The IL-1-dependent crosstalk between two different cellular subsets of the nonhematopoietic compartment was confirmed in vitro using a novel murine tongue-derived keratinocyte cell line and an established endothelial cell line. These data establish a new link between IL-1 and granulopoiesis in the context of fungal infection. Together, we identified two complementary mechanisms coordinating the neutrophil response in the oral mucosa, which is critical for preventing fungal growth and dissemination, and thus protects the host from disease.

  10. HETEROTYPIC INTERACTIONS ENABLED BY POLARIZED NEUTROPHIL MICRODOMAINS MEDIATE THROMBO-INFLAMMATORY INJURY

    PubMed Central

    Hidalgo, Andrés; Chang, Jungshan; Jang, Jung-Eun; Peired, Anna J.; Chiang, Elaine Y.; Frenette, Paul S.

    2009-01-01

    Selectins and their ligands mediate leukocyte rolling allowing interactions with chemokines that lead to integrin activation and arrest. Here, we demonstrate that E-selectin is critical to induce a secondary wave of activating signals transduced specifically by E-selectin ligand-1, that induces polarized, activated αMβ2 integrin clusters at the leading edge of crawling neutrophils, allowing the capture of circulating erythrocytes or platelets. In a humanized model of sickle cell disease (SCD), the capture of erythrocytes by αMβ2 microdomains leads to acute lethal vascular occlusions. In a model of transfusion-related acute lung injury, polarized neutrophils capture circulating platelets, resulting in the generation of oxidative species that produces vascular damage and lung injury. Inactivation of E-selectin or αMβ2 prevented tissue injury in both inflammatory models, suggesting broad implications of this paradigm in thrombo-inflammatory diseases. These results indicate that endothelial selectins can influence neutrophil behavior beyond its canonical rolling step through delayed, organ-damaging, polarized activation. PMID:19305412

  11. Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort.

    PubMed

    Vega, Jorge A; Villegas-Ospina, Simón; Aguilar-Jiménez, Wbeimar; Rugeles, María T; Bedoya, Gabriel; Zapata, Wildeman

    2017-06-01

    Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p' value ;0.05 after Bonferroni correction was considered significant. Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. The haplotypes C-C and T-T in CCL3 were associated with susceptibility (p'=0.016) and resistance (p';0.0001) to HIV-1 infection, respectively. Finally, in multilocus analysis, the haplotype combinations formed by HHC in CCR5-CCR2, T-T in CCL3 and G-C in CCL5 were associated with resistance (p'=0.006). Our results suggest that specific combinations of variants in genes from the same signaling pathway can define an HIV-1 resistant phenotype. Despite our small sample size, our statistically significant associations suggest strong effects; however, these results should be further validated in larger cohorts.

  12. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    PubMed

    Javid, Ashkan; Zlotnikov, Nataliya; Pětrošová, Helena; Tang, Tian Tian; Zhang, Yang; Bansal, Anil K; Ebady, Rhodaba; Parikh, Maitry; Ahmed, Mijhgan; Sun, Chunxiang; Newbigging, Susan; Kim, Yae Ram; Santana Sosa, Marianna; Glogauer, Michael; Moriarty, Tara J

    2016-01-01

    Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  13. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth.

    PubMed

    Swe, Pearl M; Fischer, Katja

    2014-06-01

    Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus. Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable

  14. Attenuation of CXCR4 responses by CCL18 in acute lymphocytic leukemia B cells.

    PubMed

    Catusse, J; Wollner, S; Leick, M; Schröttner, P; Schraufstätter, I; Burger, M

    2010-11-01

    CCL18 and CXCL12 are homeostatic chemokines with high constitutive concentrations in serum. Elevated levels of CCL18 have been described in various diseases including childhood acute lymphocytic leukemia (ALL) but its functions remain poorly characterized. Its receptor has not been identified, but functional cellular responses like lymphocyte chemotaxis have been described. CXCL12 is a pivotal chemokine for hematopoiesis and B cell homing processes. We demonstrate that CCL18 interferes with CXCL12-mediated pre-B ALL cell activation. CXCL12-induced calcium mobilization, chemotaxis, pseudo-emperipolesis and cellular proliferation could be significantly reduced by CCL18 in pre-B ALL cell lines. The results could be observed in primary cells from patients suffering from pre-B ALL, but not in cells from patients suffering from common ALL. Direct effects of CCL18 on the receptor for CXCL12, CXCR4, could be excluded. Moreover, we found that CCL18 modulations of CXCL12-induced responses are mediated through the chemokine-like receptor GPR30. CCL18 bound to GPR30 expressing cells, and antibodies against GPR30 abolished this binding as well as CCL18-mediated functional effects. We also observed that, CCL18 interferes with the activation of GPR30 by previously identified ligands (17β-estradiol and chemical agonists). We therefore suggest that CCL18 is an important modulator of CXCR4-dependent responses in pre-B ALL cells via interactions with GPR30. © 2010 Wiley-Liss, Inc.

  15. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia.

    PubMed

    Parajuli, Bijay; Horiuchi, Hiroshi; Mizuno, Tetsuya; Takeuchi, Hideyuki; Suzumura, Akio

    2015-12-01

    The chemokine CCL11 (also known as eotaxin-1) is a potent eosinophil chemoattractant that mediates allergic diseases such as asthma, atopic dermatitis, and inflammatory bowel diseases. Previous studies demonstrated that concentrations of CCL11 are elevated in the sera and cerebrospinal fluids (CSF) of patients with neuroinflammatory disorders, including multiple sclerosis. Moreover, the levels of CCL11 in plasma and CSF increase with age, and CCL11 suppresses adult neurogenesis in the central nervous system (CNS), resulting in memory impairment. However, the precise source and function of CCL11 in the CNS are not fully understood. In this study, we found that activated astrocytes release CCL11, whereas microglia predominantly express the CCL11 receptor. CCL11 significantly promoted the migration of microglia, and induced microglial production of reactive oxygen species by upregulating nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), thereby promoting excitotoxic neuronal death. These effects were reversed by inhibition of NOX1. Our findings suggest that CCL11 released from activated astrocytes triggers oxidative stress via microglial NOX1 activation and potentiates glutamate-mediated neurotoxicity, which may be involved in the pathogenesis of various neurological disorders. © 2015 Wiley Periodicals, Inc.

  16. Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCγ2 signaling axis in mice

    PubMed Central

    Graham, Daniel B.; Robertson, Charles M.; Bautista, Jhoanne; Mascarenhas, Francesca; Diacovo, M. Julia; Montgrain, Vivianne; Lam, Siu Kit; Cremasco, Viviana; Dunne, W. Michael; Faccio, Roberta; Coopersmith, Craig M.; Swat, Wojciech

    2007-01-01

    Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C–γ2 (PLC-γ2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-γ2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav. PMID:17932569

  17. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome.

    PubMed

    Blanchet, X; Cesarek, K; Brandt, J; Herwald, H; Teupser, D; Küchenhoff, H; Karshovska, E; Mause, S F; Siess, W; Wasmuth, H; Soehnlein, O; Koenen, R R; Weber, C; von Hundelshausen, P

    2014-12-01

    Activated platelets and neutrophils exacerbate atherosclerosis. Platelets release the chemokines CXCL4, CXCL4L1 and CCL5, whereas myeloperoxidase (MPO) and azurocidin are neutrophil-derived. We investigated whether plasma levels of these platelet and neutrophil mediators are affected by the acute coronary syndrome (ACS), its medical treatment, concomitant clinical or laboratory parameters, and predictive for the progression of coronary artery disease (CAD). In an observational study, the association of various factors with plasma concentrations of platelet chemokines and neutrophil mediators in 204 patients, either upon admission with ACS and 6 hours later or without ACS or CAD, was determined by multiple linear regression. Mediator release was further analysed after activation of blood with ACS-associated triggers such as plaque material. CXCL4, CXCL4L1, CCL5, MPO and azurocidin levels were elevated in ACS. CXCL4 and CCL5 but not CXCL4L1 or MPO were associated with platelet counts and CRP. CXCL4 (in association with heparin treatment) and MPO declined over 6 hours during ACS. Elevated CCL5 was associated with a progression of CAD. Incubating blood with plaque material, PAR1 and PAR4 activation induced a marked release of CXCL4 and CCL5, whereas CXCL4L1 and MPO were hardly or not altered. Platelet chemokines and neutrophil products are concomitantly elevated in ACS and differentially modulated by heparin treatment. CCL5 levels during ACS predict a progression of preexisting CAD. Platelet-derived products appear to dominate the inflammatory response during ACS, adding to the emerging evidence that ACS per se may promote vascular inflammation.

  18. Protein Deiminase 4 and CR3 Regulate Aspergillus fumigatus and β-Glucan-Induced Neutrophil Extracellular Trap Formation, but Hyphal Killing Is Dependent Only on CR3.

    PubMed

    Clark, Heather L; Abbondante, Serena; Minns, Martin S; Greenberg, Elyse N; Sun, Yan; Pearlman, Eric

    2018-01-01

    Neutrophil extracellular trap (NET) formation requires chromatin decondensation before nuclear swelling and eventual extracellular release of DNA, which occurs together with nuclear and cytoplasmic antimicrobial proteins. A key mediator of chromatin decondensation is protein deiminase 4 (PAD4), which catalyzes histone citrullination. In the current study, we examined the role of PAD4 and NETosis following activation of neutrophils by A. fumigatus hyphal extract or cell wall β-glucan (curdlan) and found that both induced NET release by human and murine neutrophils. Also, using blocking antibodies to CR3 and Dectin-1 together with CR3-deficient CD18 -/- and Dectin-1 -/- murine neutrophils, we found that the β-glucan receptor CR3, but not Dectin-1, was required for NET formation. NETosis was also dependent on NADPH oxidase production of reactive oxygen species (ROS). Using an antibody to citrullinated histone 3 (H3Cit) as an indicator of PAD4 activity, we show that β-glucan stimulated NETosis occurs in neutrophils from C57BL/6, but not PAD4 -/- mice. Similarly, a small molecule PAD4 inhibitor (GSK484) blocked NET formation by human neutrophils. Despite these observations, the ability of PAD4 -/- neutrophils to release calprotectin and kill A. fumigatus hyphae was not significantly different from C57BL/6 neutrophils, whereas CD18 -/- neutrophils exhibited an impaired ability to perform both functions. We also detected H3Cit in A. fumigatus infected C57BL/6, but not PAD4 -/- corneas; however, we found no difference between C57BL/6 and PAD4 -/- mice in either corneal disease or hyphal killing. Taken together, these findings lead us to conclude that although PAD4 together with CR3-mediated ROS production is required for NET formation in response to A. fumigatus , PAD4-dependent NETosis is not required for A. fumigatus killing either in vitro or during infection.

  19. Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR

    PubMed Central

    Young, Robert L.; Malcolm, Kenneth C.; Kret, Jennifer E.; Caceres, Silvia M.; Poch, Katie R.; Nichols, David P.; Taylor-Cousar, Jennifer L.; Saavedra, Milene T.; Randell, Scott H.; Vasil, Michael L.; Burns, Jane L.; Moskowitz, Samuel M.; Nick, Jerry A.

    2011-01-01

    The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by

  20. Increased Neutrophil Secretion Induced by NLRP3 Mutation Links the Inflammasome to Azurophilic Granule Exocytosis

    PubMed Central

    Johnson, Jennifer L.; Ramadass, Mahalakshmi; Haimovich, Ariela; McGeough, Matthew D.; Zhang, Jinzhong; Hoffman, Hal M.; Catz, Sergio D.

    2017-01-01

    Heterozygous mutations in the NLRP3 gene in patients with cryopyrin associated periodic syndrome (CAPS) lead to hyper-responsive inflammasome function. CAPS is a systemic auto-inflammatory syndrome characterized by the activation of the innate immune system induced by elevated pro-inflammatory cytokines, but the involvement of selective innate immune cells in this process is not fully understood. Neutrophil secretion and the toxic components of their granules are mediators of inflammation associated with several human diseases and inflammatory conditions. Here, using the Nlrp3A350V inducible mouse model (MWS CreT) that recapitulates human patients with the A352V mutation in NLRP3 observed in the Muckle-Wells sub-phenotype of CAPS, we studied the relationship between hyper-activation of the inflammasome and neutrophil exocytosis. Using a flow cytometry approach, we show that Nlrp3A350V (MWS) neutrophils express normal basal levels of CD11b at the plasma membrane and that the upregulation of CD11b from secretory vesicles in response to several plasma membrane or endocytic agonist including the bacterial-derived mimetic peptide formyl-Leu-Met-Phe (fMLF) and the unmethylated oligonucleotide CpG is normal in MWS neutrophils. Significant but modest CD11b upregulation in MWS neutrophils compared to wild type was only observed in response to GM-CSF and CpG. The same pattern was observed for the secretion of matrix metalloproteinase-9 (MMP-9) from gelatinase granules in that MMP-9 secretion in MWS neutrophils was not different from that observed in wild-type neutrophils except when stimulated with GM-CSF and CpG. In contrast, azurophilic granule secretion, whose cargoes constitute the most toxic secretory and pro-inflammatory factors of the neutrophil, was markedly dysregulated in MWS neutrophils under both basal and stimulated conditions. This could not be attributed to paracrine effects of secretory cytokines because IL-1β secretion by neutrophils was undetectable under

  1. Neutrophil proteinase 3 (PR3) acts on protease-activated receptor-2 (PAR-2) to enhance vascular endothelial cell barrier function

    PubMed Central

    Kuckleburg, Christopher J.; Newman, Peter J.

    2013-01-01

    The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369

  2. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    PubMed

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  3. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets.

    PubMed

    Etulain, Julia; Negrotto, Soledad; Carestia, Agostina; Pozner, Roberto Gabriel; Romaniuk, María Albertina; D'Atri, Lina Paola; Klement, Giannoula Lakka; Schattner, Mirta

    2012-01-01

    Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbβ3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.

  4. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the pro-apoptotic BH3-only protein Noxa.

    PubMed

    Kirschnek, S; Vier, J; Gautam, S; Frankenberg, T; Rangelova, S; Eitz-Ferrer, P; Grespi, F; Ottina, E; Villunger, A; Häcker, H; Häcker, G

    2011-11-01

    Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.

  5. Indoleamine 2,3-dioxygenase 1 deficiency attenuates CCl4-induced fibrosis through Th17 cells down-regulation and tryptophan 2,3-dioxygenase compensation

    PubMed Central

    Zhou, Zhenting; Lin, Haiyan; Chen, Chun; Huang, Peng; Huang, Weiliang; Zhou, Chuying; Huang, Shaohui; Nie, Linghui; Liu, Ye; Chen, Youming; Zhou, Daqiao; Lv, Zhiping

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular rate-limiting enzyme in the metabolism of tryptophan along the kynurenine pathway, subsequently mediating the immune response; however, the role of IDO1 in liver fibrosis and cirrhosis is still unclear. In this study, we investigated the role of IDO1 in the development of hepatic fibrosis and cirrhosis. Patients with hepatitis B virus-induced cirrhosis and healthy volunteers were enrolled. For animals, carbon tetrachloride (CCl4) was used to establish liver fibrosis in wild-type and IDO1 knockout mice. Additionally, an IDO1 inhibitor (1-methyl-D-tryptophan) was administered to WT fibrosis mice. Liver lesions were positively correlated with serum IDO1 levels in both the clinical subjects and hepatic fibrosis mice. A positive correlation between serum IDO1 levels and liver stiffness values was found in the cirrhosis patients. Notably, IDO1 knockout mice were protected from CCl4-induced liver fibrosis, as reflected by unchanged serum alanine transaminase and aspartate transaminase levels and lower collagen deposition, α-smooth muscle actin expression and apoptotic cell death rates. On the other hand, tryptophan 2,3-dioxygenase (TDO), another systemic tryptophan metabolism enzyme, exhibited a compensatory increase as a result of IDO1 deficiency. Moreover, hepatic interleukin-17a, a characteristic cytokine of T helper 17 (Th17) cells, and downstream cytokines’ mRNA levels showed lower expression in the IDO1–/– model mice. IDO1 appears to be a potential hallmark of liver lesions, and its deficiency protects mice from CCl4-induced fibrosis mediated by Th17 cells down-regulation and TDO compensation. PMID:28465467

  6. The molecular mechanisms of glucocorticoids-mediated neutrophil survival.

    PubMed

    Saffar, Arash S; Ashdown, Heather; Gounni, Abdelilah S

    2011-04-01

    Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In light of such cases, novel targeted medications must be developed that could control neutrophilic inflammation while still maintaining their antibacterial/anti-fungal properties, thus allowing individuals to maintain effective innate immune responses to invading pathogens. The aim of this review is to describe the molecular mechanisms of neutrophil apoptosis and how these pathways are modulated by glucocorticoids. These new findings are of potential clinical value and provide further insight into treatment of neutrophilic inflammation in lung disease.

  7. Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling

    PubMed Central

    Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.

    2012-01-01

    Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings

  8. Impairment of neutrophil Fc gamma receptor mediated transmembrane signalling in active rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Guyre, P M

    1992-01-01

    Neutrophil Fc gamma receptor (Fc gamma R) signalling responses were compared in healthy subjects, patients with definite rheumatoid arthritis (RA), ankylosing spondylitis, and osteoarthritis. The patients with A were subdivided into those with active synovitis and those with quiescent disease. Basal intracellular calcium ion concentrations in patients with inactive RA were significantly higher than in control subjects, which in turn were greater than in patients with active RA. Transient cytosolic calcium ion fluxes were observed after binding Fc gamma RII or Fc gamma RIII with specific monoclonal antibodies and cross linking with the F(ab')2 fragment of antimouse IgG. Response times were significantly faster for Fc gamma RII than for Fc gamma RIII. Peak concentrations of intracellular calcium ions after neutrophil stimulation were comparable for Fc gamma RII and RIII in healthy subjects. Neutrophils in patients with ankylosing spondylitis and osteoarthritis responded to Fc gamma R triggering, but in the group with active RA fluxes of calcium ions were severely depressed. Neutrophils isolated from patients with RA with quiescent disease showed exaggerated responses when compared with controls. Expression of all three Fc gamma R types on neutrophils from patients with active RA, as measured by monoclonal antibody binding, was comparable with control cells. Impairment of neutrophil Fc gamma R cytosolic signalling in active RA could reflect a receptor signalling defect with potential effects on Fc mediated functions, or a fundamental defect in calcium ion homeostasis within these cells. PMID:1535494

  9. Shielding of a lipooligosaccharide IgM epitope allows evasion of neutrophil-mediated killing of an invasive strain of nontypeable Haemophilus influenzae.

    PubMed

    Langereis, Jeroen D; Weiser, Jeffrey N

    2014-07-22

    Nontypeable Haemophilus influenzae is a frequent cause of noninvasive mucosal inflammatory diseases but may also cause invasive diseases, such as sepsis and meningitis, especially in children and the elderly. Infection by nontypeable Haemophilus influenzae is characterized by recruitment of neutrophilic granulocytes. Despite the presence of a large number of neutrophils, infections with nontypeable Haemophilus influenzae are often not cleared effectively by the antimicrobial activity of these immune cells. Herein, we examined how nontypeable Haemophilus influenzae evades neutrophil-mediated killing. Transposon sequencing (Tn-seq) was used on an isolate resistant to neutrophil-mediated killing to identify genes required for its survival in the presence of human neutrophils and serum, which provided a source of complement and antibodies. Results show that nontypeable Haemophilus influenzae prevents complement-dependent neutrophil-mediated killing by expression of surface galactose-containing oligosaccharide structures. These outer-core structures block recognition of an inner-core lipooligosaccharide epitope containing glucose attached to heptose HepIII-β1,2-Glc by replacement with galactose attached to HepIII or through shielding HepIII-β1,2-Glc by phase-variable attachment of oligosaccharide chain extensions. When the HepIII-β1,2-Glc-containing epitope is expressed and exposed, nontypeable Haemophilus influenzae is opsonized by naturally acquired IgM generally present in human serum and subsequently phagocytosed and killed by human neutrophils. Clinical nontypeable Haemophilus influenzae isolates containing galactose attached to HepIII that are not recognized by this IgM are more often found to cause invasive infections. Importance: Neutrophils are white blood cells that specialize in killing pathogens and are recruited to sites of inflammation. However, despite the presence of large numbers of neutrophils in the middle ear cavity and lungs of patients with

  10. Distinct CCL2, CCL5, CCL11, CCL27, IL-17, IL-6, BDNF serum profiles correlate to different job-stress outcomes.

    PubMed

    Polacchini, Alessio; Girardi, Damiano; Falco, Alessandra; Zanotta, Nunzia; Comar, Manola; De Carlo, Nicola Alberto; Tongiorgi, Enrico

    2018-02-01

    Chronic psychosocial stress at workplace is an important factor in the development of physical and mental illness. Objective biological measures of chronic stress are still lacking, but inflammatory response and growth factors are increasingly considered as potential stress biomarkers. Therefore, we investigated the relationship between psychophysical strain and serum levels of 48 chemokines, cytokines and growth factors measured using a multiplex immunoassay, and serum brain-derived neurotrophic factor (BDNF) measured by ELISA. Severity of psychophysical strain was scored in 115 healthy hospital workers using specific scales for anxiety, depression-like emotion, gastrointestinal or cardiac disturbances, and ergonomic dysfunction. Multivariate analysis revealed that higher anxiety scale scores were correlated with lower serum chemokine C-C motif ligand-2 (CCL2/MCP-1), chemokine C-C motif ligand-5 (CCL5/RANTES), chemokine C-C motif ligand-27 (CCL27/CTACK), chemokine C-C motif ligand-11 (CCL11/Eotaxin) and interleukin-6 (IL-6); gastrointestinal disturbances correlated with increased levels of interleukin-17 (IL-17) and reduced CCL11/Eotaxin, CCL27/CTACK and CCL2/MCP-1; while cardiac dysfunctions associate only to reduced CCL27/CTACK, and ergonomic dysfunction correlated with increased BDNF and reduced CCL11/Eotaxin and CCL5/RANTES. Thus, these 7 serum factors may provide a distinct signature for each different stress-related psychophysical outcome giving indications on individual vulnerabilities.

  11. Neutrophils in critical illness.

    PubMed

    McDonald, Braedon

    2018-03-01

    During critical illness, dramatic alterations in neutrophil biology are observed including abnormalities of granulopoeisis and lifespan, cell trafficking and antimicrobial effector functions. As a result, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. In this article, the role of neutrophils in the pathogenesis of critical illness (sepsis, trauma, burns and others) will be explored, including pathological changes to neutrophil function during critical illness and the utility of monitoring aspects of the neutrophil phenotype as biomarkers for diagnosis and prognostication. Lastly, we review findings from clinical trials of therapies that target the harmful effects of neutrophils, providing a bench-to-bedside perspective on neutrophils in critical illness.

  12. CCl 4 chemistry on the reduced selvedge of a α-Fe 2O 3(0 0 0 1) surface: a scanning tunneling microscopy study

    NASA Astrophysics Data System (ADS)

    Rim, Kwang Taeg; Fitts, Jeffrey P.; Müller, Thomas; Adib, Kaveh; Camillone, Nicholas; Osgood, Richard M.; Joyce, S. A.; Flynn, George W.

    2003-09-01

    Scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) were used to study the degradation of CCl 4 on the reduced selvedge of a natural single crystal α-Fe 2O 3(0 0 0 1) surface in ultrahigh vacuum. Before exposure to CCl 4, STM images indicate that approximately 85% of the reduced surface exhibits a Fe 3O 4(1 1 1) 2 × 2 termination, while the remaining 15% is terminated by 1 × 1 and superstructure phases. Images obtained after room temperature dosing with CCl 4 and subsequent flashing to 600 K reveal that chlorine atoms are adsorbed only on surface regions with the Fe 3O 4(1 1 1) 2 × 2 termination, not on 1 × 1 and superstructure regions. Chlorine atoms from dissociative adsorption of CCl 4 are observed to occupy two distinct positions located atop lattice protrusions and in threefold oxygen vacancy sites. However, in companion chemical labeling experiments, chlorine atoms provided by room temperature, dissociative Cl 2 adsorption on this surface are found to occupy sites atop lattice protrusions exclusively. The clear dissimilarity in STM feature shape and brightness at the two distinct chlorine adsorption sites arising from CCl 4 dissociation as well as the results of the Cl 2 chemical labeling experiments are best explained via reactions on a Fe 3O 4(1 1 1) 2 × 2 selvedge terminated by a 1/4 monolayer of tetrahedrally coordinated iron atoms. On this surface, adsorption atop an iron atom occurs for both the CCl 4 and Cl 2 dissociative reactions. A second adsorption site, assigned as binding to second layer iron atoms left exposed following surface oxygen atom abstraction resulting in the formation of phosgene (COCl 2), only appears in the case of reaction with CCl 4. The reaction mechanism and active site requirements for CCl 4 degradation on iron oxide surfaces are discussed in light of this evidence and in the context of our previously reported results from Auger electron spectroscopy (AES), LEED, temperature-programmed desorption

  13. Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis.

    PubMed

    Schlager, Stefanie; Goeritzer, Madeleine; Jandl, Katharina; Frei, Robert; Vujic, Nemanja; Kolb, Dagmar; Strohmaier, Heimo; Dorow, Juliane; Eichmann, Thomas O; Rosenberger, Angelika; Wölfler, Albert; Lass, Achim; Kershaw, Erin E; Ceglarek, Uta; Dichlberger, Andrea; Heinemann, Akos; Kratky, Dagmar

    2015-11-01

    In humans, mutations in ATGL lead to TG accumulation in LDs of most tissues and cells, including peripheral blood leukocytes. This pathologic condition is called Jordans' anomaly, in which functional consequences have not been investigated. In the present study, we tested the hypothesis that ATGL plays a role in leukocyte LD metabolism and immune cell function. Similar to humans with loss-of-function mutations in ATGL, we found that global and myeloid-specific Atgl(-/-) mice exhibit Jordans' anomaly with increased abundance of intracellular TG-rich LDs in neutrophil granulocytes. In a model of inflammatory peritonitis, lipid accumulation was also observed in monocytes and macrophages but not in eosinophils or lymphocytes. Neutrophils from Atgl(-/-) mice showed enhanced immune responses in vitro, which were more prominent in cells from global compared with myeloid-specific Atgl(-/-) mice. Mechanistically, ATGL(-/-) as well as pharmacological inhibition of ATGL led to an impaired release of lipid mediators from neutrophils. These findings demonstrate that the release of lipid mediators is dependent on the liberation of precursor molecules from the TG-rich pool of LDs by ATGL. Our data provide mechanistic insights into Jordans' anomaly in neutrophils and suggest that ATGL is a potent regulator of immune cell function and inflammatory diseases. © The Author(s).

  14. Analysis of monocyte infiltration in MPTP mice reveals that microglial CX3CR1 protects against neurotoxic over-induction of monocyte-attracting CCL2 by astrocytes.

    PubMed

    Parillaud, Vincent R; Lornet, Guillaume; Monnet, Yann; Privat, Anne-Laure; Haddad, Andrei T; Brochard, Vanessa; Bekaert, Amaury; de Chanville, Camille Baudesson; Hirsch, Etienne C; Combadière, Christophe; Hunot, Stéphane; Lobsiger, Christian S

    2017-03-21

    CCR2 + monocytes infiltrate the affected CNS, but at the level observed in acute MPTP mice, this does not contribute to DA neuronal loss. In contrast, the underlying astrocytic CCL2 induction seemed to be tightly controled, as already moderate CCL2 over-induction led to increased neurotoxicity in MPTP mice, likely due to the increased CCR2 + monocyte infiltration. Importantly, we found evidence suggesting that during DA neurodegeneration, this control was mediated by microglial CX3CR1 signaling, which protects against such neurotoxic CCL2 over-induction by astrocytes, thus hinting at an endogenous mechanism to limit neurotoxic effects of the CCL2-CCR2 axis.

  15. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel - induced cytotoxicity

    PubMed Central

    Qian, David Z.; Rademacher, Brooks L.S.; Pittsenbarger, Janet; Huang, Chung-Ying; Myrthue, Anne; Higano, Celestia S.; Garzotto, Mark; Nelson, Peter S.; Beer, Tomasz M.

    2010-01-01

    Background Metastatic prostate cancer is either inherently resistant to chemotherapy or rapidly acquires this phenotype after chemotherapy exposure. In this study, we identified a docetaxel-induced resistance mechanism centered on CCL2. Methods we compared the gene expression profiles in individual human prostate cancer specimens before and after exposure to chemotherapy collected from previously untreated patients who participated in a clinical trial of preoperative chemotherapy. Subsequently, we used the gain- and loss- of function approach in vitro to identify a potential mechanism underlying chemotherapy resistance. Results Among the molecular signatures associated with treatment, several genes that regulate the inflammatory response and chemokine activity were upregulated including a significant increase in transcripts encoding the CC chemokine CCL2. Docetaxel increased CCL2 expression in prostate cancer cell lines in vitro. CCL2 specific siRNA inhibited LNCaP and LAPC4 cell proliferation and enhanced the growth inhibitory effect of low-dose docetaxel. In contrast, overexpression of CCL2 or recombinant CCL2 protein stimulated prostate cancer cell proliferation and rescued cells from docetaxel-induced cytotoxicity. This protective effect of CCL2 was associated with activation of the ERK/MAP kinase and PI3K/AKT, inhibition of docetaxel-induced Bcl2 phosphorylation at serine 70, phosphorylation of Bad, and activation of caspase-3. The addition of a PI3K/AKT inhibitor Ly294002 reversed the CCL2 protection, and was additive to docetaxel induced toxicity. Conclusion These results support a mechanism of chemotherapy resistance mediated by cellular stress responses involving the induction of CCL2 expression, and suggest that inhibiting CCL2 activity could enhance therapeutic responses to taxane-based therapy. PMID:19866475

  16. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells

    PubMed Central

    Maxwell, Pamela J.; Neisen, Jessica; Messenger, Johanna; Waugh, David J.J.

    2014-01-01

    Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the

  17. IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer.

    PubMed

    Wang, Xin; Yang, Xiaodong; Tsai, Ying; Yang, Li; Chuang, Kuang-Hsiang; Keng, Peter C; Lee, Soo Ok; Chen, Yuhchyau

    2017-01-01

    Radiotherapy is effective in reducing primary tumors, however, it may enhance macrophage infiltration to tumor sites, accelerating tumor progression in several ways. We investigated whether radiation can increase macrophage infiltration into non-small cell lung carcinoma (NSCLC) cells. Analysis of in vitro macrophage (differentiated THP-1 cells) migration to either nonirradiated or irradiated tumor cells showed increased migration to the irradiated tumor cells. Because the IL-6 levels in A549 and H157 cells were significantly increased after irradiation, we then investigated whether this increased IL-6 level contributes to radiation-induced macrophage migration. Radiation-induced macrophage infiltration was reduced when IL-6 was knocked down in tumor cells, indicating a positive IL-6 role in this process. To validate this in vitro result, an orthotopic mouse model was developed using a luciferase-tagged H157siIL-6/scramble control (sc) cell set. After tumors developed, the lungs were irradiated, and infiltration of endogenous macrophages and tail-vein injected fluorescent macrophages to tumor sites was investigated. In both groups, increased macrophage infiltration was observed in H157sc cell-derived xenografts compared to H157siIL-6 cell-derived xenografts, confirming the positive IL-6 role in the radiation-induced macrophage infiltration process. In mechanistic dissection studies, radiation-induced up-regulation of CCL2 and CCL5 by IL-6 was detected, and blocking the action of CCL2/CCL5 molecules significantly reduced the number of migrated macrophages to tumor cells after irradiation. These results demonstrate that targeting the IL-6 signaling or CCL2/CCL5 molecules in combination with conventional radiotherapy potentially blocks undesired radiation-induced macrophage infiltration.

  18. Both MC1 and MC3 Receptors Provide Protection from Cerebral Ischemia Reperfusion Induced Neutrophil Recruitment

    PubMed Central

    Holloway, Paul M.; Durrenberger, Pascal F.; Trutschl, Marjan; Cvek, Urska; Cooper, Dianne; Orr, A. Wayne; Perretti, Mauro; Getting, Stephen J.; Gavins, Felicity N. E.

    2015-01-01

    Objective Neutrophil recruitment is a key process in the pathogenesis of stroke, and may provide a valuable therapeutic target. Targeting the melanocortin receptors (MC) has previously shown to inhibit leukocyte recruitment in peripheral inflammation, however it is not known whether treatments are effective in the unique cerebral microvascular environment. Here, we provide novel research highlighting the effects of the melanocortin peptides on cerebral neutrophil recruitment, demonstrating important yet discrete roles for both MC1 and MC3. Approach and Results Using intravital microscopy, in two distinct murine models of cerebral ischemia-reperfusion (I/R) injury we have investigated melanocortin control over neutrophil recruitment. Following global I/R, pharmacological treatments suppressed pathological neutrophil recruitment. MC1 selective treatment rapidly inhibited neutrophil recruitment while a non-selective MC agonist provided protection even when co-administered with an MC3/4 antagonist, suggesting the importance of early MC1 signaling. However by 2h reperfusion, MC1 mediated effects were reduced, and MC3 anti-inflammatory circuits predominated. Mice bearing a non-functional MC1 displayed a transient exacerbation of neutrophil recruitment following global I/R, which diminished by 2h. However importantly, enhanced inflammatory responses in both MC1 mutant and MC3-/- mice resulted in increased infarct size and poor functional outcome following focal I/R. Furthermore we utilized an in vitro model of leukocyte recruitment to demonstrate these anti-inflammatory actions are also effective in human cells. Conclusions These studies reveal for the first time melanocortin control over neutrophil recruitment in the unique pathophysiological context of cerebral I/R, whilst also demonstrating the potential therapeutic value of targeting multiple MCs in developing effective therapeutics. PMID:26112010

  19. Both MC1 and MC3 Receptors Provide Protection From Cerebral Ischemia-Reperfusion-Induced Neutrophil Recruitment.

    PubMed

    Holloway, Paul M; Durrenberger, Pascal F; Trutschl, Marjan; Cvek, Urska; Cooper, Dianne; Orr, A Wayne; Perretti, Mauro; Getting, Stephen J; Gavins, Felicity N E

    2015-09-01

    Neutrophil recruitment is a key process in the pathogenesis of stroke, and may provide a valuable therapeutic target. Targeting the melanocortin (MC) receptors has previously shown to inhibit leukocyte recruitment in peripheral inflammation, however, it is not known whether treatments are effective in the unique cerebral microvascular environment. Here, we provide novel research highlighting the effects of the MC peptides on cerebral neutrophil recruitment, demonstrating important yet discrete roles for both MC1 and MC3. Using intravital microscopy, in 2 distinct murine models of cerebral ischemia-reperfusion (I/R) injury, we have investigated MC control for neutrophil recruitment. After global I/R, pharmacological treatments suppressed pathological neutrophil recruitment. MC1 selective treatment rapidly inhibited neutrophil recruitment while a nonselective MC agonist provided protection even when coadministered with an MC3/4 antagonist, suggesting the importance of early MC1 signaling. However, by 2-hour reperfusion, MC1-mediated effects were reduced, and MC3 anti-inflammatory circuits predominated. Mice bearing a nonfunctional MC1 displayed a transient exacerbation of neutrophil recruitment after global I/R, which diminished by 2 hours. However importantly, enhanced inflammatory responses in both MC1 mutant and MC3 (-/-) mice resulted in increased infarct size and poor functional outcome after focal I/R. Furthermore, we used an in vitro model of leukocyte recruitment to demonstrate these anti-inflammatory actions are also effective in human cells. These studies reveal for the first time MC control for neutrophil recruitment in the unique pathophysiological context of cerebral I/R, while also demonstrating the potential therapeutic value of targeting multiple MCs in developing effective therapeutics. © 2015 American Heart Association, Inc.

  20. Systemic hypoxia enhances exercise-mediated bactericidal and subsequent apoptotic responses in human neutrophils.

    PubMed

    Wang, Jong-Shyan; Chiu, Ya-Ting

    2009-10-01

    Phagocytosis and oxidative burst are critical host defense mechanisms in which neutrophils clear invading pathogens. Clearing phagocytic neutrophils by triggering apoptosis is an essential process for controlling inflammation. This study elucidates how various exercise bouts with/without hypoxia affected neutrophil bactericidal activity and subsequent apoptosis in humans. Fifteen sedentary males performed six distinct experimental tests in an air-conditioned normobaric hypoxia chamber: two normoxic exercises [strenuous exercise (SE; up to maximal O2 consumption) and moderate exercise (ME; 50% maximal O2 consumption for 30 min) while exposed to 21% O2], two hypoxic exercises (ME for 30 min while exposed to 12% and 15% O2), and two hypoxic exposures (resting for 30 min while exposed to 12% and 15% O2). The results showed that 1) plasma complement-C3a desArg/C4a desArg/C5a concentrations were increased, 2) expressions of L-selectin/lymphocyte functin-associated antigen-1/Mac-1/C5aR on neutrophils were enhanced, 3) phagocytosis of neutrophils to Esherichia coli and release of neutrophil oxidant products by E. coli were elevated, and 4) E. coli-induced phosphotidylserine exposure or caspase-3 activation of neutrophils were promoted immediately and 2 h after both 12% O2 exposure at rest and with ME as well as normoxic SE. Although neither normoxic ME nor breathing 15% O2 at rest influenced these complement- and neutrophil-related immune responses, ME at both 12% and 15% O2 resulted in enhanced complement activation in the blood, expressions of opsonic/complement receptors on neutrophils, or the bactericidal activity and apoptosis of neutrophils. Moreover, the increased neutrophil oxidant production and apoptosis by normoxic SE and hypoxic ME were ameliorated by treating neutrophils with diphenylene iodonium (a NADPH oxidase inhibitor). Therefore, we conclude that ME at 12-15% O2 enhances bactericidal capacity and facilitates the subsequent apoptosis of neutrophils.

  1. Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection

    PubMed Central

    Carr, Karen D.; Sieve, Amy N.; Indramohan, Mohanalaxmi; Break, Timothy J.; Lee, Suhueng; Berg, Rance E.

    2012-01-01

    Summary Previous studies have suggested that neutrophils are required for resistance during infection with multiple pathogenic microorganisms. However, the depleting antibody used in those studies binds to both Ly6G and Ly6C (anti-Gr-1; clone RB6-8C5). This antibody has been shown to not only deplete neutrophils, but also monocytes, and a subset of CD8 T cells. Recently, an antibody against Ly6G has been characterized which specifically depletes neutrophils. In the present study, neutrophils are depleted using the antibody against Ly6G during infection with the intracellular bacterium, Listeria monocytogenes (LM). Our data show that neutrophil depleted mice are much less susceptible to infection than mice depleted with anti-Gr-1. Although neutrophils are required for clearance of LM, their importance is more pronounced in the liver and during a high-dose bacterial challenge. Furthermore, we demonstrate that protection mediated by neutrophils is due to production of TNF-α, but not IFN-γ. Additionally, neutrophils are not required for the recruitment of monocytes or the generation of adaptive T cell responses during LM infection. These studies highlight the importance of neutrophils during LM infection, and also indicate that depletion of neutrophils is less detrimental to the host than depletion of all Gr-1 expressing cell populations. PMID:21660934

  2. Aberrant methylation of PSD disturbs Rac1-mediated immune responses governing neutrophil chemotaxis and apoptosis in ulcerative colitis-associated carcinogenesis.

    PubMed

    Kato, Takaharu; Suzuki, Koichi; Okada, Shinichiro; Kamiyama, Hidenori; Maeda, Takafumi; Saito, Masaaki; Koizumi, Kei; Miyaki, Yuichiro; Konishi, Fumio

    2012-04-01

    We previously reported that the Pleckstrin and Sec7 domain-containing (PSD) gene is preferentially methylated in patients with ulcerative colitis (UC) who developed colorectal cancer (CRC), and is implicated in UC-associated carcinogenesis through its inhibition of apoptosis. This study aimed to determine the potential effect of PSD methylation on its downstream molecule, Ras-related C3 botulinum toxin substrate 1 (Rac1), which governs neutrophil chemotaxis and apoptosis signaling. PSD was knocked down in a normal human fibroblast cell line (HNDF) and a neutrophil-like cell line (HL-60). Both NHDF and HL-60 cells exhibited numerous filamentous-actin (F-actin) rich membrane extensions, resulting in the activation of Rac1; this activation was hampered by PSD silencing. Lipopolysaccharide, a reactive oxygen species (ROS) inducer, stimulated NHDF cells to release ROS and activated caspase‑3/7 in the presence of neutrophils, which was inhibited by PSD knockdown. Migration assays demonstrated that chemotaxis of HL-60 cells was affected by PSD silencing in NHDF cells. Tissue sections from 6 UC patients with CRC and 15 UC patients without CRC were examined. To verify Rac1-mediated chemotaxis in tissue sections, we evaluated the grade of neutrophil infiltration by histological assessment and assessed F-actin and PSD expression by immunohistochemistry. Neutrophil infiltration, F-actin and PSD expression were significantly decreased in specimens from UC patients with PSD methylation compared with those without. Decreased levels of F-actin expression were observed in colorectal mucosa, as well as in infiltrating cells with PSD methylation. PSD expression was preferentially inhibited in colorectal mucosa by PSD methylation, whereas PSD expression was rarely observed in infiltrating cells, regardless of PSD methylation status. These data indicate that aberrant methylation of PSD occurs in UC-associated colorectal mucosa, enabling circumvention of Rac1-mediated immune responses

  3. CCL2 binding is CCR2 independent in primary adult human astrocytes.

    PubMed

    Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N

    2012-02-09

    Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation.

    PubMed

    Ge, Yan; Yoshiie, Kiyotaka; Kuribayashi, Futoshi; Lin, Mingqun; Rikihisa, Yasuko

    2005-01-01

    The inhibition of neutrophil apoptosis plays a central role in human granulocytic anaplasmosis. Intracellular signalling pathways through which the obligatory intracellular bacterium Anaplasma phagocytophilum inhibits the spontaneous apoptosis of human peripheral blood neutrophils were investigated. bfl-1 mRNA levels in uninfected neutrophils after 12 h in culture were reduced to approximately 5-25% of 0 h levels, but remained high in infected neutrophils. The eukaryotic RNA synthesis inhibitor, actinomycin D, prevented the maintenance of bfl-1 mRNA levels by A. phagocytophilum. Differences in mcl-1, bax, bcl-w, bad or bak mRNA levels in infected versus uninfected neutrophils were not remarkable. By using mitochondrial fluorescent dyes, Mitotracker Red and JC-1, it was found that most uninfected neutrophils lost mitochondrial membrane potential after 10-12 h incubation, whereas A. phagocytophilum-infected neutrophils maintained high membrane potential. Caspase 3 activity and the degree of apoptosis were lower in dose-dependent manner in A. phagocytophilum-infected neutrophils at 16 h post infection, as compared to uninfected neutrophils. Anti-active caspase 3 antibody labelling showed less positively stained population in infected neutrophils compared to those in uninfected neutrophils after 12 h incubation. These results suggest that A. phagocytophilum inhibits human neutrophil apoptosis via transcriptional upregulation of bfl-1 and inhibition of mitochondria-mediated activation of caspase 3.

  5. Enhancement of CCL15 expression and monocyte adhesion to endothelial cells (ECs) after hypoxia/reoxygenation and induction of ICAM-1 expression by CCL15 via the JAK2/STAT3 pathway in ECs.

    PubMed

    Park, Keun Hyung; Lee, Tae Hoon; Kim, Chan Woo; Kim, Jiyoung

    2013-06-15

    CCL15, a member of the CC chemokine family, is a potent chemoattractant for leukocytes and endothelial cells (ECs). Given that chemokines play key roles in vascular inflammation, we investigated the effects of hypoxia/reoxygenation (H/R) on expression of human CCL15 and a role of CCL15 in upregulating ICAM-1 in ECs. We found that exposure of ECs to H/R increased expression of CCL15 and ICAM-1, which resulted in an increase in monocyte adhesivity to the ECs. Further studies revealed that knockdown of CCL15 or CCR1 attenuated expression of ICAM-1 in ECs after H/R, suggesting that expression of ICAM-1 is upregulated by CCL15. Stimulation of ECs with CCL15 significantly increased expression of ICAM-1 predominantly via the CCR1 receptor. We observed that phosphorylation of JAK2 and STAT3 was stimulated by CCL15 treatment of ECs. Results from reporter and chromatin immunoprecipitation assays revealed that CCL15 activates transcription from the IFN-γ activation site promoter and stimulates binding of STAT3 to the ICAM-1 promoter. Our data also showed that CCL15 increased cell adhesion of human monocytes to ECs under static and shear-stress conditions. Pretreatment of these cells with inhibitors for JAK, PI3K, and AKT prevented the CCL15-induced expression of ICAM-1 and monocyte adhesion to ECs, suggesting the involvement of those signaling molecules in ICAM-1 gene activation by CCL15. The results suggest that CCR1 and its ligands may be a potential target for treating inflammatory diseases involving upregulation of cell adhesion molecules.

  6. Blocking neutrophil integrin activation prevents ischemia-reperfusion injury.

    PubMed

    Yago, Tadayuki; Petrich, Brian G; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H; McEver, Rodger P

    2015-07-27

    Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia-reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin's capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia-reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin-mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin-mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia-reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. © 2015 Yago et al.

  7. Blocking neutrophil integrin activation prevents ischemia–reperfusion injury

    PubMed Central

    Yago, Tadayuki; Petrich, Brian G.; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H.

    2015-01-01

    Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia–reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin’s capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia–reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin–mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin–mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia–reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. PMID:26169939

  8. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    PubMed

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  9. Rapid Transport of CCL11 across the Blood-Brain Barrier: Regional Variation and Importance of Blood Cells

    PubMed Central

    Erickson, Michelle A.; Morofuji, Yoichi; Owen, Joshua B.

    2014-01-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine. PMID:24706984

  10. Dendritic cell modification of neutrophil responses to infection after burn injury.

    PubMed

    Bohannon, Julia; Cui, Weihua; Sherwood, Edward; Toliver-Kinsky, Tracy

    2010-09-01

    Burn patients are highly susceptible to infections due to increased exposure through wounds and impairments in a number of immune functions. Dendritic cells (DCs) are important in activation of numerous immune responses that are essential for the clearance of infections. We have found that prophylactic treatment of burn-injured mice with the DC growth factor FLT3 ligand (FL) significantly increases resistance to burn wound infections in a DC-dependent manner that is correlated closely with enhanced bacterial clearance. However, as DCs are not typically microbicidal, the mechanisms by which DC modulation enhances bacterial clearance are not known. Due to the rapid response of neutrophils to cutaneous wounds, and the reported interactions between DCs and neutrophils, we investigated the role of neutrophils in FL-mediated resistance to burn wound infection. This was examined both in vivo and in vitro through neutrophil depletion, supplementation of neutrophils, and assessment of neutrophil chemotaxis following FL treatment. To test the involvement of DCs, CD11c-diphtheria toxin receptor transgenic mice were used to deplete DCs during FL treatment. Studies revealed that neutrophils do play a critical role in FL-mediated resistance to a burn wound infection. Additionally, treatment with FL after a burn injury enhances neutrophil-mediated control of bacterial spread, neutrophil migratory capacity, and myeloperoxidase production in a DC-dependent manner. The results of this study provide new insight into immunological mechanisms that can offer protection against infection after burn injury.

  11. The Deficiency of Indoleamine 2,3-Dioxygenase Aggravates the CCl4-Induced Liver Fibrosis in Mice

    PubMed Central

    Ogiso, Hideyuki; Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Kanbe, Ayumu; Ando, Kazuki; Ishikawa, Tetsuya; Saito, Kuniaki; Hara, Akira; Moriwaki, Hisataka; Shimizu, Masahito; Seishima, Mitsuru

    2016-01-01

    In the present study, we examined the role of indoleamine 2,3-dioxygenase (IDO) in the development of CCl4-induced hepatic fibrosis. The liver fibrosis induced by repetitive administration with CCl4 was aggravated in IDO-KO mice compared to WT mice. In IDO-KO mice treated with CCl4, the number of several inflammatory cells and the expression of pro-inflammatory cytokines increased in the liver. In the results, activated hepatic stellate cells (HSCs) and fibrogenic factors on HSCs increased after repetitive CCl4 administration in IDO-KO mice compared to WT mice. Moreover, the treatment with l-tryptophan aggravated the CCl4-induced hepatic fibrosis in WT mice. Our findings demonstrated that the IDO deficiency enhanced the inflammation in the liver and aggravated liver fibrosis in repetitive CCl4-treated mice. PMID:27598994

  12. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; hide

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  13. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin.

    PubMed

    Konstantopoulos, K; Neelamegham, S; Burns, A R; Hentzen, E; Kansas, G S; Snapp, K R; Berg, E L; Hellums, J D; Smith, C W; McIntire, L V; Simon, S I

    1998-09-01

    After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  14. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains.

    PubMed

    Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-07-01

    Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O(2)(-) release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains. © Society for Leukocyte Biology.

  15. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains

    PubMed Central

    Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-01-01

    Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O2− release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains. PMID:25908735

  16. CXCR1-mediated Neutrophil Degranulation and Fungal Killing Promotes Candida Clearance and Host Survival

    PubMed Central

    Swamydas, Muthulekha; Gao, Ji-Liang; Break, Timothy J.; Johnson, Melissa D.; Jaeger, Martin; Rodriguez, Carlos A.; Lim, Jean K.; Green, Nathaniel M.; Collar, Amanda L.; Fischer, Brett G.; Lee, Chyi-Chia Richard; Perfect, John R.; Alexander, Barbara D.; Kullberg, Bart-Jan; Netea, Mihai G.; Murphy, Philip M.; Lionakis, Michail S.

    2016-01-01

    Systemic Candida albicans infection causes high morbidity and mortality and is now the leading cause of nosocomial bloodstream infection in the US. Neutropenia is a major risk factor for poor outcome in infected patients; however, the molecular factors that mediate neutrophil trafficking and effector function during infection are poorly defined. Here, using a mouse model of systemic candidiasis, we found that the neutrophil-selective CXC chemokine receptor Cxcr1 and its ligand, Cxcl5, are highly induced in the Candida-infected kidney, the target organ in the model. To investigate the role of Cxcr1 in antifungal host defense in vivo, we generated Cxcr1−/− mice and analyzed their immune response to Candida. Mice lacking Cxcr1 exhibited decreased survival with enhanced Candida growth in the kidney and renal failure. Surprisingly, increased susceptibility of Cxcr1−/− mice to systemic candidiasis was not due to impaired neutrophil trafficking from the blood into the infected kidney but was the result of defective killing of the fungus by neutrophils that exhibited a cell-intrinsic decrease in degranulation. In humans, the mutant CXCR1 allele CXCR1-T276 results in impaired neutrophil degranulation and fungal killing and was associated with increased risk of disseminated candidiasis in infected patients. Together, our data demonstrate a biological function for mouse Cxcr1 in vivo and indicate that CXCR1-dependent neutrophil effector function is a critical innate protective mechanism of fungal clearance and host survival in systemic candidiasis. PMID:26791948

  17. CCL17 and CCL22/CCR4 signaling is a strong candidate for novel targeted therapy against nasal natural killer/T-cell lymphoma

    PubMed Central

    Kumai, Takumi; Kobayashi, Hiroya; Komabayashi, Yuki; Ueda, Seigo; Kishibe, Kan; Ohkuri, Takayuki; Takahara, Miki; Celis, Esteban; Harabuchi, Yasuaki

    2015-01-01

    Nasal natural killer/T-cell lymphoma (NNKTL) is associated with Epstein–Barr virus and has a poor prognosis because of local invasion and/or multiple dissemination. Various chemokines play a role in tumor proliferation and invasion, and chemokine receptors including the C-C chemokine receptor 4 (CCR4) are recognized as potential targets for treating hematologic malignancies. The aim of the present study was to determine whether specific chemokines are produced by NNKTL. We compared chemokine expression patterns in culture supernatants of NNKTL cell lines with those of other lymphoma or leukemia cell lines using chemokine protein array and ELISA. Chemokine (C-C motif) ligand (CCL) 17 and CCL22 were highly produced by NNKTL cell lines as compared to the other cell lines. In addition, CCL17 and CCL22 were readily observed in the sera of NNKTL patients. The levels of these chemokines were significantly higher in patients than in healthy controls. Furthermore, we detected the expression of CCR4 (the receptor for CCL17 and CCL22) on the surface of NNKTL cell lines and in tissues of NNKTL patients. Anti-CCR4 monoclonal antibody (mAb) efficiently induced antibody-dependent cellular cytotoxicity mediated by natural killer cells against NNKTL cell lines. Our results suggest that CCL17 and CCL22 may be important factors in the development of NNKTL and open up the possibility of immunotherapy of this lymphoma using anti-CCR4 mAb. PMID:25754123

  18. Neutrophilic dermatitis and immune-mediated haematological disorders in a dog: suspected adverse reaction to carprofen.

    PubMed

    Mellor, P J; Roulois, A J A; Day, M J; Blacklaws, B A; Knivett, S J; Herrtage, M E

    2005-05-01

    This report describes the clinical and pathological findings of a suspected idiosyncratic adverse drug reaction in a young dog. The patient presented with sudden onset, severe skin lesions together with episodes of collapse. Investigations revealed a neutrophilic dermatitis with vasculitis, immune-mediated haemolytic anaemia and thrombocytopenia. Similar pathology has been described in human cases of Sweet's syndrome. The chronology of events suggested an adverse drug reaction to carprofen, although two antibiotics had been prescribed within the dog's recent history. Lymphocyte transformation tests were performed and tended to exclude both antibiotics as the cause of the reaction. To the authors' knowledge, lymphocyte transformation tests have not previously been described with regard to drug hypersensitivity assessment in the veterinary literature, and this is the first peer-reviewed case report of neutrophilic dermatitis and vasculitis with immune-mediated haemolytic anaemia and thrombocytopenia occurring as a suspected adverse drug reaction to carprofen in the dog.

  19. Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2

    NASA Astrophysics Data System (ADS)

    Saheb, Vahid; Maleki, Samira

    2018-03-01

    The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2 d,2 p) basis set and MP2 method along with 6-311+G( d, p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2 d,2 p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2 d,2 p) and MP2/6-311+G( d, p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.

  20. CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

    PubMed Central

    Allen, Frederick; Rauhe, Peter; Askew, David; Tong, Alexander A.; Nthale, Joseph; Eid, Saada; Myers, Jay T.; Tong, Caryn; Huang, Alex Y.

    2017-01-01

    Lymph node (LN) plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2). Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC) encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5). In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs) of a CCL3-secreting CT26 colon tumor (L3TU) as compared to wild-type tumor (WTTU) during the priming phase of an antitumor response (≤10 days). In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3) secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs), and CD49b+ natural killer (NK) cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ)-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN. PMID:29109732

  1. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways.

    PubMed

    Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C

    2014-01-01

    Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  2. Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

    PubMed Central

    Perez, Geovanny F.; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M.; Pillai, Dinesh K.; Rose, Mary C.

    2014-01-01

    Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations. PMID:25546419

  3. Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways.

    PubMed

    Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus; Zarbock, Alexander

    2010-04-15

    Selectins mediate leukocyte rolling, trigger beta(2)-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) gamma2- and phosphoinositide 3-kinase (PI3K) gamma-dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP(3)), and inducing E-selectin-mediated slow rolling. Inhibition of this signal-transduction pathway diminished Galpha(i)-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Galpha(i)-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk(-/-) and Plcg2(-/-) mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement.

  4. Complement-mediated neutrophil activation in sepsis- and trauma-related adult respiratory distress syndrome. Clarification with radioaerosol lung scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.

    Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, hadmore » elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.« less

  5. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Inhibitory effect of gallic acid on CCl4-mediated liver fibrosis in mice.

    PubMed

    Wang, Jing; Tang, Long; White, James; Fang, Jing

    2014-05-01

    The aim of this study was to investigate the effect of gallic acid (GA) on liver fibrosis induced by carbon tetrachloride (CCl4). Male BALB/c mice were randomly divided into four groups: normal control group (group A), CCl4-induced liver injury control group (group B), and CCl4 induction with GA of low dose (5 mg/kg) and high dose (15 mg/kg) treatment group (group C and group D). GA was intra-gastric given for mice once a day after 2 weeks of CCl4 induction. Animals were killed at the eighth week. Degrees of fibrosis and collagen percentage were measured. Hyaluronic acid (HA), type IV collagen (cIV), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (γ-GT) were determined. Expression of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) mRNA levels were examined by RT-PCR. Western blotting was carried out to evaluate the changes of MMP-2 protein. HE and VG stainings showed GA in a dose-dependent manner improved significantly the fibrosis condition in CCl4-injured mice (P < 0.05 or P < 0.01). Also, the concentrations of HA, cIV, and MDA, as well as the serum levels of ALT, AST, and γ-GT were markedly reduced by GA (P < 0.05 or P < 0.01), and decreases in MMP-2, TIMP-1 mRNA, and MMP-2 protein were observed as well (P < 0.05 or P < 0.01). GA could exert protective effect on liver injury and reduce liver fibrosis induced by CCl4 in mice, which might be through the inhibition of hepatic stellate cell activity.

  7. Cell Intrinsic Galectin-3 Attenuates Neutrophil ROS-Dependent Killing of Candida by Modulating CR3 Downstream Syk Activation

    PubMed Central

    Wu, Sheng-Yang; Huang, Juin-Hua; Chen, Wen-Yu; Chan, Yi-Chen; Lin, Chun-Hung; Chen, Yee-Chun; Liu, Fu-Tong; Wu-Hsieh, Betty A.

    2017-01-01

    Invasive candidiasis is a leading cause of nosocomial bloodstream infection. Neutrophils are the important effector cells in host resistance to candidiasis. To investigate the modulation of neutrophil fungicidal function will advance our knowledge on the control of candidiasis. While recombinant galectin-3 enhances neutrophil phagocytosis of Candida, we found that intracellular galectin-3 downregulates neutrophil fungicidal functions. Co-immunoprecipitation and immunofluorescence staining reveal that cytosolic gal3 physically interacts with Syk in neutrophils after Candida stimulation. Gal3−/− neutrophils have higher level of Syk activation as well as greater abilities to generate reactive oxygen species (ROS) and kill Candida than gal3+/+ cells. While galectin-3 deficiency modulates neutrophil and macrophage activation and the recruitment of monocytes and dendritic cells, the deficiency does not affect the numbers of infiltrating neutrophils or macrophages. Galectin-3 deficiency ameliorates systemic candidiasis by reducing fungal burden, renal pathology, and mortality. Adoptive transfer experiments demonstrate that cell intrinsic galectin-3 negatively regulates neutrophil effector functions against candidiasis. Reducing galectin-3 expression or activity by siRNA or gal3 inhibitor TD139 enhances human neutrophil ROS production. Mice treated with TD139 have enhanced ability to clear the fungus. Our work unravels the mechanism by which galectin-3 regulates Syk-dependent neutrophil fungicidal functions and raises the possibility that blocking gal3 in neutrophils may be a promising therapeutic strategy for treating systemic candidiasis. PMID:28217127

  8. Chemokine CCL28 induces apoptosis of decidual stromal cells via binding CCR3/CCR10 in human spontaneous abortion.

    PubMed

    Sun, Chan; Zhang, Yuan-Yuan; Tang, Chuan-Ling; Wang, Song-Cun; Piao, Hai-Lan; Tao, Yu; Zhu, Rui; Du, Mei-Rong; Li, Da-Jin

    2013-10-01

    Spontaneous abortion is the most common complication of pregnancy. Immune activation and the subsequent inflammation-induced tissue injury are often observed at the maternal-fetal interface as the final pathological assault in recurrent spontaneous abortion. However, the precise mechanisms responsible for spontaneous abortion involving inflammation are not fully understood. Chemokine CCL28 and its receptors CCR3 and CCR10 are important regulators in inflammatory process. Here, we examined the expression of CCL28 and its receptors in decidual stromal cells (DSCs) by immunochemistry and flow cytometry (FCM), and compared their expression level in DSCs from normal pregnancy versus spontaneous abortion, and their relationship to inflammatory cytokines production by DSCs. We further analyzed regulation of the pro-inflammatory cytokines on CCL28 expression in DSCs by real-time polymerase chain reaction, In-cell Western and FCM. The effects of CCL28-CCR3/CCR10 interaction on DSC apoptosis was investigated by Annexin V staining and FCM analysis or DAPI staining and nuclear morphology. Higher levels of the inflammatory cytokines interleukin (IL)-1β, IL-17A and tumor necrosis factor-α, and increased CCR3/CCR10 expression were observed in DSCs from spontaneous abortion compared with normal pregnancy. Treatment with inflammatory cytokines differently affected CCL28 and CCR3/CCR10 expression in DSCs. Human recombinant CCL28 promoted DSC apoptosis, which was eliminated by pretreatment with neutralizing antibodies against CCR3/CCR10 and CCL28. However, CCL28 did not affect DSC growth. These results suggest that the inflammation-promoted up-regulation of CCL28 and its receptors interaction in DSCs is involved in human spontaneous abortion via inducing DSC apoptosis.

  9. The C-C motif chemokine ligands CCL5, CCL11, and CCL24 induce the migration of circulating fibrocytes from patients with severe asthma.

    PubMed

    Isgrò, M; Bianchetti, L; Marini, M A; Bellini, A; Schmidt, M; Mattoli, S

    2013-07-01

    The C-C motif chemokine ligand 5 (CCL5), CCL11, and CCL24 are involved in the pathogenesis of asthma, and their function is mainly associated with the airway recruitment of eosinophils. This study tested their ability to induce the migration of circulating fibrocytes, which may contribute to the development of irreversible airflow obstruction in severe asthma. The sputum fluid phase (SFP) from patients with severe/treatment-refractory asthma (PwSA) contained elevated concentrations of CCL5, CCL11, and CCL24 in comparison with the SFP from patients with non-severe/treatment-responsive asthma (PwNSA). The circulating fibrocytes from PwSA expressed the receptors for these chemokines at increased levels and migrated in response to recombinant CCL5, CCL11, and CCL24. The SFP from PwSA induced the migration of autologous fibrocytes, and its activity was significantly attenuated by neutralization of endogenous CCL5, CCL11, and CCL24. These findings suggest that CCL5, CCL11, and CCL24 may contribute to the airway recruitment of fibrocytes in severe asthma.

  10. TNF-α potentiates uric acid-induced interleukin-1β (IL-1β) secretion in human neutrophils.

    PubMed

    Yokose, Kohei; Sato, Shuzo; Asano, Tomoyuki; Yashiro, Makiko; Kobayashi, Hiroko; Watanabe, Hiroshi; Suzuki, Eiji; Sato, Chikako; Kozuru, Hideko; Yatsuhashi, Hiroshi; Migita, Kiyoshi

    2018-05-01

    Monosodium urate (MSU) has been shown to promote interleukin-1β (IL-1β) secretion in human monocytes, but the priming signals for NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway remains elusive. In this study, we investigated the role of Tumor necrosis factor-alpha (TNF-α) on MSU-mediated IL-1β induction in human neutrophils. Human neutrophils were stimulated with MSU, in the presence or absence of TNF-α priming. The cellular supernatants were analyzed for IL-1β, IL-18, and caspase-1 by enzyme-linked immunosorbent assay (ELISA) methods. Pro-IL-1β mRNA expressions in human neutrophils were analyzed by real-time PCR method. TNF-α stimulation induced pro-IL-1β mRNA expression; however, MSU stimulation did not induce pro-IL-1β mRNA expression in human neutrophils. TNF-α alone or MSU stimulation did not result in efficient IL-1β secretion in human neutrophils, whereas in TNF-α-primed neutrophils, MSU stimulation resulted in a marked IL-1β and IL-18 secretion. TNF-α-primed neutrophils secreted cleaved caspase-1 (p20), in response to MSU stimulation. Our data demonstrate that priming of human neutrophils with TNF-α promotes uric acid-mediated IL-1β secretion in the absence of microbial stimulation. These findings provide insights into the neutrophils-mediated inflammatory processes in gouty arthritis.

  11. Photodynamic Therapy Using Intra-Articular Photofrin for Murine MRSA Arthritis: Biphasic Light Dose Response for Neutrophil-Mediated Antibacterial Effect

    PubMed Central

    Tanaka, Masamitsu; Kinoshita, Manabu; Yoshihara, Yasuo; Shinomiya, Nariyoshi; Seki, Shuhji; Nemoto, Koichi; Hamblin, Michael R.; Morimoto, Yuji

    2011-01-01

    Background and Objective Bacterial arthritis does not respond well to antibiotics and moreover multidrug resistance is spreading. We previously tested photodynamic therapy (PDT) mediated by systemic Photofrin® in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) arthritis, but found that neutrophils were killed by PDT and therefore the infection was potentiated. Study Design/Materials and Methods The present study used an intra-articular injection of Photofrin® and optimized the light dosimetry in order to maximize bacterial killing and minimize killing of host neutrophils. MRSA (5 × 107 CFU) was injected into the mouse knee followed 3 days later by 1 μg of Photofrin® and 635-nm diode laser illumination with a range of fluences within 5 minutes. Synovial fluid was sampled 6 hours or 1–3, 5, and 7 days after PDT to determine MRSA colony-forming units (CFU), neutrophil numbers, and levels of cytokines. Results A biphasic light dose response was observed with the greatest reduction of MRSA CFU seen with a fluence of 20 J cm−2, whereas lower antibacterial efficacy was observed with fluences that were either lower or higher. Consistent with these results, a significantly higher concentration of macrophage inflammatory protein-2, a CXC chemokine, and greater accumulation of neutrophils were seen in the infected knee joint after PDT with a fluence of 20 J cm−2 compared to fluences of 5 or 70 J cm−2. Conclusion PDT for murine MRSA arthritis requires appropriate light dosimetry to simultaneously maximize bacterial killing and neutrophil accumulation into the infected site, while too little light does not kill sufficient bacteria and too much light kills neutrophils and damages host tissue as well as bacteria and allows bacteria to grow unimpeded by host defense. PMID:21412806

  12. G6PC3 mutations are associated with a major defect of glycosylation: a novel mechanism for neutrophil dysfunction

    PubMed Central

    Hayee, Bu'Hussain; Antonopoulos, Aristotelis; Murphy, Emma J; Rahman, Farooq Z; Sewell, Gavin; Smith, Bradley N; McCartney, Sara; Furman, Mark; Hall, Georgina; Bloom, Stuart L; Haslam, Stuart M; Morris, Howard R; Boztug, Kaan; Klein, Christoph; Winchester, Bryan; Pick, Edgar; Linch, David C; Gale, Rosemary E; Smith, Andrew M; Dell, Anne; Segal, Anthony W

    2011-01-01

    Glucose-6-phosphatase, an enzyme localized in the endoplasmic reticulum (ER), catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate. In humans, there are three differentially expressed glucose-6-phosphatase catabolic genes (G6PC1–3). Recently, it has been shown that mutations in the G6PC3 gene result in a syndrome associating congenital neutropenia and various organ malformations. The enzymatic function of G6PC3 is dependent on G6P transport into the ER, mediated by G6P translocase (G6PT). Mutations in the gene encoding G6PT result in glycogen storage disease type-1b (GSD-1b). Interestingly, GSD-1b patients exhibit a similar neutrophil dysfunction to that observed in G6PC3-deficient patients. To better understand the causes of neutrophil dysfunction in both diseases, we have studied the neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase of patients with G6PC3 and G6PT syndromes. Unexpectedly, sodium dodecyl sulfate–polyacrylamide gel electrophoresis experiments indicated hypo-glycosylation of gp91phox, the electron-transporting component of the NADPH oxidase, in all of these patients. Rigorous mass spectrometric glycomic profiling showed that most of the complex-type antennae which characterize the neutrophil N-glycome of healthy individuals were severely truncated in the patients' neutrophils. A comparable truncation of the core 2 antenna of the O-glycans was also observed. This aberrant neutrophil glycosylation is predicted to have profound effects on the neutrophil function and merit designation of both syndromes as a new class of congenital disorders of glycosylation. PMID:21385794

  13. Sex Hormones Coordinate Neutrophil Immunity in the Vagina by Controlling Chemokine Gradients.

    PubMed

    Lasarte, Sandra; Samaniego, Rafael; Salinas-Muñoz, Laura; Guia-Gonzalez, Mauriel A; Weiss, Linnea A; Mercader, Enrique; Ceballos-García, Elena; Navarro-González, Teresa; Moreno-Ochoa, Laura; Perez-Millan, Federico; Pion, Marjorie; Sanchez-Mateos, Paloma; Hidalgo, Andres; Muñoz-Fernandez, Maria A; Relloso, Miguel

    2016-02-01

    Estradiol-based contraceptives and hormonal replacement therapy predispose women to Candida albicans infections. Moreover, during the ovulatory phase (high estradiol), neutrophil numbers decrease in the vaginal lumen and increase during the luteal phase (high progesterone). Vaginal secretions contain chemokines that drive neutrophil migration into the lumen. However, their expression during the ovarian cycle or in response to hormonal treatments are controversial and their role in vaginal defense remains unknown.To investigate the transepithelial migration of neutrophils, we used adoptive transfer of Cxcr2(-/-) neutrophils and chemokine immunofluorescence quantitative analysis in response to C. albicans vaginal infection in the presence of hormones.Our data show that the Cxcl1/Cxcr2 axis drives neutrophil transepithelial migration into the vagina. Progesterone promotes the Cxcl1 gradient to favor neutrophil migration. Estradiol disrupts the Cxcl1 gradient and favors neutrophil arrest in the vaginal stroma; as a result, the vagina becomes more vulnerable to pathogens. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. Human neutrophils in auto-immunity.

    PubMed

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Nicotinamide treatment ameliorates the course of experimental colitis mediated by enhanced neutrophil-specific antibacterial clearance.

    PubMed

    Bettenworth, Dominik; Nowacki, Tobias M; Ross, Matthias; Kyme, Pierre; Schwammbach, Daniela; Kerstiens, Linda; Thoennissen, Gabriela B; Bokemeyer, Carsten; Hengst, Karin; Berdel, Wolfgang E; Heidemann, Jan; Thoennissen, Nils H

    2014-07-01

    In previous studies, we could show that the B vitamin nicotinamide (NAM) enhanced antimicrobial activity of neutrophils. Here, we assessed the effects of NAM in two models of experimental colitis. Colitis was induced in C57BL/6 mice either by oral infection with Citrobacter rodentium or by DSS (dextran sodium sulphate) administration, and animals were systemically treated with NAM. Ex vivo bacterial clearance was assessed in murine and human whole blood, as well as isolated human neutrophils. In C. rodentium-induced colitis, NAM treatment resulted in markedly decreased systemic bacterial invasion, histological damage and increased fecal clearance of C. rodentium by up to 600-fold. In contrast, NAM had no effect when administered to neutrophil-depleted mice. Ex vivo stimulation of isolated human neutrophils, as well as murine and human whole blood with NAM led to increased clearance of C. rodentium and enhanced expression of antimicrobial peptides in neutrophils. Moreover, NAM treatment significantly ameliorated the course of DSS colitis, as assessed by body weight, histological damage and myeloperoxidase activity. Pharmacological application of NAM mediates beneficial effects in bacterial and chemically induced colitis. Future studies are needed to explore the clinical potential of NAM in the context of intestinal bacterial infections and human inflammatory bowel disease (IBD). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice.

    PubMed

    Wang, Yu; Tang, Changyun; Zhang, Hao

    2015-06-01

    Safflower (Carthamus tinctorius L.) is a traditional medicinal and edible herb with a long history of use in China. In this study, a model of hepatotoxicity induced by carbon tetrachloride (CCl 4 ) in mice was used to investigate the hepatoprotective effects of kaempferol 3-O-rutinoside (K-3-R) and kaempferol 3-O-glucoside (K-3-G), two kaempferol glycosides isolated from C. tinctorius L. K-3-R and K-3-G, at doses of 200 mg/kg and 400 mg/kg, were given orally to male mice once/d for 7 days before they received CCl 4 intraperitoneally. Our results showed that K-3-R and K-3-G treatment increased the level of total protein (TP) and prevented the CCl 4 -induced increases in serum aspartate aminotransferase (AST), serum alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA) levels. Additionally, mice treated with K-3-R and K-3-G had significantly restored glutathione (GSH) levels and showed normal catalase (CAT) and superoxide dismutase (SOD) activities, compared to CCl 4 -treated mice. K-3-R and K-3-G also mitigated the CCl 4 -induced liver histological alteration, as indicated by histopathological evaluation. These findings demonstrate that K-3-R and K-3-G have protective effects against acute CCl 4 -induced oxidative liver damage. Copyright © 2014. Published by Elsevier B.V.

  17. Gβ1 is required for neutrophil migration in zebrafish.

    PubMed

    Ke, Wenfan; Ye, Ding; Mersch, Kacey; Xu, Hui; Chen, Songhai; Lin, Fang

    2017-08-01

    Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment.

    PubMed

    Wang, Shih-Wei; Liu, Shih-Chia; Sun, Hui-Lung; Huang, Te-Yang; Chan, Chia-Han; Yang, Chen-Yu; Yeh, Hung-I; Huang, Yuan-Li; Chou, Wen-Yi; Lin, Yu-Min; Tang, Chih-Hsin

    2015-01-01

    Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Control of extravillous trophoblast function by the eotaxins CCL11, CCL24 and CCL26.

    PubMed

    Chau, Simon E; Murthi, Padma; Wong, May H; Whitley, Guy StJ; Brennecke, Shaun P; Keogh, Rosemary J

    2013-06-01

    What are the effects of the eotaxin group of chemokines (CCL11, CCL24 and CCL26) on extravillous trophoblast (EVT) functions important during uterine decidual vessel remodelling? CCL11, CCL24 and CCL26 can regulate EVT migration, invasion and adhesion, highlighting a potential regulatory role for these chemokines during uterine decidual spiral arteriole remodelling in the first trimester of human pregnancy. A successful human pregnancy depends on adequate remodelling of the uterine decidual spiral arterioles, a process carried out by EVT which invade from the placenta. The invasion by EVT into the maternal uterine decidual vessels is regulated by the interaction of many factors including members of the chemokine subfamily of cytokines. This study used the HTR8/SVneo cell line as a model for invasive EVT. All experiments were repeated on at least three separate occasions. The effect of recombinant human CCL11, CCL24 and CCL26 on EVT migration and invasive potential was measured using the xCELLigence real-time system, wound-healing and Matrigel invasion assays, zymography to measure MMP activity and reverse zymography to measure TIMP activity. A commercially available adhesion assay was used to assess EVT adhesion to extracellular matrix proteins. All the three eotaxins were found to significantly stimulate migration of the EVT-derived cell line HTR8/SVneo (P < 0.05) with no significant changes in cell number following treatment with each chemokine (P > 0.05). All the three eotaxins significantly increased HTR8/SVneo invasion (P < 0.05) and MMP2 activity (P < 0.05) without any effects on TIMP2 activity (P > 0.05). All the three eotaxins significantly increased HTR8/SVneo cell binding to collagen IV (P < 0.05) and fibronectin (P < 0.05). This work has been conducted in vitro with a commonly used cell line model of EVT, HTR8/SVneo. This study is the first to comprehensively examine the effects of the eotaxin group of chemokines on EVT functions and demonstrates that

  20. Electronic Properties and Dissociative Photoionization of Thiocyanates, Part III. The Effect of the Group's Electronegativity in the Valence and Shallow-Core (Sulfur and Chlorine 2p) Regions of CCl3SCN and CCl2FSCN.

    PubMed

    Rodríguez Pirani, Lucas S; Della Védova, Carlos O; Geronés, Mariana; Romano, Rosana M; Cavasso-Filho, Reinaldo; Ge, Maofa; Ma, Chunping; Erben, Mauricio F

    2017-12-07

    Both photoelectron spectroscopy (PES) data and PhotoElectron-PhotoIon-Coincidence (PEPICO) spectra obtained from a synchrotron facility have been used to examine the electronic structure and the dissociative ionization of halomethyl thiocyantes in the valence and shallow-core S 2p and Cl 2p regions. Two simple and closely related molecules, namely, CCl 3 SCN and CCl 2 FSCN, have been analyzed to assess the role of halogen substitution in the electronic properties of thiocyanates. The assignment of the He(I) photoelectron spectra has been achieved with the help of quantum chemical calculations at the outer-valence Green's function (OVGF) level of approximation. The first ionization energies observed at 10.55 and 10.78 eV for CCl 3 SCN and CCl 2 FSCN, respectively, are assigned to ionization processes from the sulfur lone pair orbital [n(S)]. When these molecules are compared with CX 3 SCN (X = H, Cl, F) species, a linear relationship between the vertical first ionization energy and electronegativity of CX 3 group is observed. Irradiation of CCl 3 SCN and CCl 2 FSCN with photons in the valence energy regions leads to the formation of CCl 2 X + and CClXSCN + ions (X = Cl or F). Additionally, the achievement of the fragmentation patterns and the total ion yield spectra obtained from the PEPICO data in the S 2p and Cl 2p regions and several dissociation channels can be inferred for the core-excited species by using the triple coincidence PEPIPICO (PhotoElectron-PhotoIon-PhotoIon-Coincidence) spectra.

  1. CCL19 with CCL21-tail displays enhanced glycosaminoglycan binding with retained chemotactic potency in dendritic cells.

    PubMed

    Jørgensen, Astrid S; Adogamhe, Pontian E; Laufer, Julia M; Legler, Daniel F; Veldkamp, Christopher T; Rosenkilde, Mette M; Hjortø, Gertrud M

    2018-05-16

    CCL19 is more potent than CCL21 in inducing chemotaxis of human dendritic cells (DC). This difference is attributed to 1) a stronger interaction of the basic C-terminal tail of CCL21 with acidic glycosaminoglycans (GAGs) in the environment and 2) an autoinhibitory function of this C-terminal tail. Moreover, different receptor docking modes and tissue expression patterns of CCL19 and CCL21 contribute to fine-tuned control of CCR7 signaling. Here, we investigate the effect of the tail of CCL21 on chemokine binding to GAGs and on CCR7 activation. We show that transfer of CCL21-tail to CCL19 (CCL19 CCL21-tail ) markedly increases binding of CCL19 to human dendritic cell surfaces, without impairing CCL19-induced intracellular calcium release or DC chemotaxis, although it causes reduced CCR7 internalization. The more potent chemotaxis induced by CCL19 and CCL19 CCL21-tail compared to CCL21 is not transferred to CCL21 by replacing its N-terminus with that of CCL19 (CCL21 CCL19-N-term ). Measurements of cAMP production in CHO cells uncover that CCL21-tail transfer (CCL19 CCL21-tail ) negatively affects CCL19 potency, whereas removal of CCL21-tail (CCL21 tailless ) increases signaling compared to full-length CCL21, indicating that the tail negatively affects signaling via cAMP. Similar to chemokine-driven calcium mobilization and chemotaxis, the potency of CCL21 in cAMP is not improved by transfer of the CCL19 N-terminus to CCL21 (CCL21 CCL19-N-term ). Together these results indicate that ligands containing CCL21 core and C-terminal tail (CCL21 and CCL21 CCL19-N-term ) are most restricted in their cAMP signaling; a phenotype attributed to a stronger GAG binding of CCL21 and defined structural differences between CCL19 and CCL21. ©2018 Society for Leukocyte Biology.

  2. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    PubMed

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Listeria monocytogenes Alters Mast Cell Phenotype, Mediator and Osteopontin Secretion in a Listeriolysin-Dependent Manner

    PubMed Central

    Jobbings, Catherine E.; Sandig, Hilary; Whittingham-Dowd, Jayde K.; Roberts, Ian S.; Bulfone-Paus, Silvia

    2013-01-01

    Whilst mast cells participate in the immune defence against the intracellular bacterium Listeria monocytogenes, there is conflicting evidence regarding the ability of L. monocytogenes to infect mast cells. It is known that the pore-forming toxin listeriolysin (LLO) is important for mast cell activation, degranulation and the release of pro-inflammatory cytokines. Mast cells, however, are a potential source of a wide range of cytokines, chemokines and other mediators including osteopontin, which contributes to the clearing of L. monocytogenes infections in vivo, although its source is unknown. We therefore aimed to resolve the controversy of mast cell infection by L. monocytogenes and investigated the extent of mediator release in response to the bacterium. In this paper we show that the infection of bone marrow-derived mast cells by L. monocytogenes is inefficient and LLO-independent. LLO, however, is required for calcium-independent mast cell degranulation as well as for the transient and selective downregulation of cell surface CD117 (c-kit) on mast cells. We demonstrate that in addition to the key pro-inflammatory cytokines TNF-α and IL-6, mast cells release a wide range of other mediators in response to L. monocytogenes. Osteopontin, IL-2, IL-4, IL-13 and granulocyte macrophage colony-stimulating factor (GM-CSF), and chemokines including CCL2, CCL3, CCL4 and CCL5 are released in a MyD88-dependent manner. The wide range of mediators released by mast cells in response to L. monocytogenes may play an important role in the recruitment and activation of a variety of immune cells in vivo. The cocktail of mediators, however, is unlikely to skew the immune response to a particular effector response. We propose that mast cells provide a hitherto unreported source of osteopontin, and may provide an important role in co-ordinating the immune response during Listeria infection. PMID:23460827

  4. Improved ACE-FTS observations of carbon tetrachloride (CCl4)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy; Chipperfield, Martyn; Boone, Chris; Bernath, Peter

    2016-04-01

    The Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), on board the SCISAT satellite, has been recording solar occultation spectra through the Earth's atmosphere since 2004 and continues to take measurements with only minor loss in performance. ACE-FTS time series are available for a range of chlorine 'source' gases, including CCl3F (CFC-11), CCl2F2 (CFC-12), CHF2Cl (HCFC-22), CH3Cl and CCl4. Recently there has been much community interest in carbon tetrachloride (CCl4), a substance regulated by the Montreal Protocol because it leads to the catalytic destruction of stratospheric ozone. Estimated sources and sinks of CCl4 remain inconsistent with observations of its abundance. Satellite observations of CCl4 in the stratosphere are particularly useful in validating stratospheric loss (photolysis) rates; in fact the atmospheric loss of CCl4 is essentially all due to photolysis in the stratosphere. However, the latest ACE-FTS v3.5 CCl4 retrieval is biased high by ˜ 20-30%. A new ACE-FTS retrieval scheme utilising new laboratory spectroscopic measurements of CCl4 and improved microwindow selection has recently been developed. This improves upon the v3.5 retrieval and resolves the issue of the high bias; this new scheme will form the basis for the upcoming v4 processing version of ACE-FTS data. This presentation will outline the improvements made in the retrieval, and a subset of data will be compared with modelled CCl4 distributions from SLIMCAT, a state-of-the-art three-dimensional chemical transport model. The use of ACE-FTS data to evaluate the modelled stratospheric loss rate of CCl4 will also be discussed. The evaluated model, which also includes a treatment of surface soil and ocean sinks, will then be used to quantify current uncertainties in the global budget of CCl4.

  5. Neutrophil ageing is regulated by the microbiome

    PubMed Central

    Zhang, Dachuan; Chen, Grace; Manwani, Deepa; Mortha, Arthur; Xu, Chunliang; Faith, Jeremiah J.; Burk, Robert D.; Kunisaki, Yuya; Jang, Jung-Eun; Scheiermann, Christoph; Merad, Miriam; Frenette, Paul S.

    2015-01-01

    Blood polymorphonuclear neutrophils provide immune protection against pathogens but also may promote tissue injury in inflammatory diseases1,2. Although neutrophils are generally considered as a relatively homogeneous population, evidence for heterogeneity is emerging3,4. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and the replenishment by newly released neutrophils from the bone marrow5. Aged neutrophils up-regulate CXCR4, a receptor allowing their clearance in the bone marrow6,7, with feedback inhibition of neutrophil production via the IL17/G-CSF axis8, and rhythmic modulation of the haematopoietic stem cell niche5. The aged subset also expresses low levels of L-selectin (CD62L)5,9. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties6,10. Here, we show using in vivo ageing analyses that the neutrophil pro-inflammatory activity correlates positively with their ageing in the circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin (Mac-1) activation and neutrophil extracellular trap (NET) formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptors (TLRs)- and myeloid differentiation factor 88 (Myd88)-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle cell disease or endotoxin-induced septic shock. These results thus identify an unprecedented role for the microbiota in regulating a disease-promoting neutrophil subset. PMID:26374999

  6. A role for 12/15-lipoxygenase-derived proresolving mediators in postoperative ileus: protectin DX-regulated neutrophil extravasation.

    PubMed

    Stein, Kathy; Stoffels, Melissa; Lysson, Mariola; Schneiker, Bianca; Dewald, Oliver; Krönke, Gerhard; Kalff, Jörg C; Wehner, Sven

    2016-02-01

    Resolution of inflammation is an active counter-regulatory mechanism involving polyunsaturated fatty acid-derived proresolving lipid mediators. Postoperative intestinal motility disturbances, clinically known as postoperative ileus, occur frequently after abdominal surgery and are mediated by a complex inflammation of the intestinal muscularis externa. Herein, we tested the hypothesis that proresolving lipid mediators are involved in the resolution of postoperative ileus. In a standardized experimental model of postoperative ileus, we detected strong expression of 12/15-lipoxygenase within the postoperative muscularis externa of C57BL/6 mice, predominately located within CX3CR1(+)/Ly6C(+) infiltrating monocytes rather than Ly6G(+) neutrophils. Mass spectrometry analyses demonstrated that a 12/15-lipoxygenase increase was accompanied by production of docosahexaenoic acid-derived lipid mediators, particularly protectin DX and resolvin D2, and their common precursor 17-hydroxy docosahexaenoic acid. Perioperative administration of protectin DX, but not resolvin D2 diminished blood-derived leukocyte infiltration into the surgically manipulated muscularis externa and improved the gastrointestinal motility. Flow cytometry analyses showed impaired Ly6G(+)/Ly6C(+) neutrophil extravasation after protectin DX treatment, whereas Ly6G(-)/Ly6C(+) monocyte numbers were not affected. 12/15-lipoxygenase-deficient mice, lacking endogenous protectin DX synthesis, demonstrated increased postoperative leukocyte levels. Preoperative intravenous administration of a docosahexaenoic acid-rich lipid emulsion reduced postoperative leukocyte infiltration in wild-type mice but failed in 12/15-lipoxygenase-deficient mice mice. Protectin DX application reduced leukocyte influx and rescued 12/15-lipoxygenase-deficient mice mice from postoperative ileus. In conclusion, our results show that 12/15-lipoxygenase mediates postoperative ileus resolution via production of proresolving docosahexaenoic

  7. Neutrophils differentially attenuate immune response to Aspergillus infection through complement receptor 3 and induction of myeloperoxidase.

    PubMed

    Goh, Jessamine G; Ravikumar, Sharada; Win, Mar Soe; Cao, Qiong; Tan, Ai Ling; Lim, Joan H J; Leong, Winnie; Herbrecht, Raoul; Troke, Peter F; Kullberg, Bart Jan; Netea, Mihai G; Chng, Wee Joo; Dan, Yock Young; Chai, Louis Y A

    2018-03-01

    Invasive aspergillosis (IA) remains a major cause of morbidity in immunocompromised hosts. This is due to the inability of the host immunity to respond appropriately to Aspergillus. An established risk factor for IA is neutropenia that is encountered by patients undergoing chemotherapy. Herein, we investigate the role of neutrophils in modulating host response to Aspergillus. We found that neutrophils had the propensity to suppress proinflammatory cytokine production but through different mechanisms for specific cytokines. Cellular contact was requisite for the modulation of interleukin-1 beta production by Aspergillus with the involvement of complement receptor 3. On the other hand, inhibition of tumour necrosis factor-alpha production (TNF-α) was cell contact-independent and mediated by secreted myeloperoxidase. Specifically, the inhibition of TNF-α by myeloperoxidase was through the TLR4 pathway and involved interference with the mRNA transcription of TNF receptor-associated factor 6/interferon regulatory factor 5. Our study illustrates the extended immune modulatory role of neutrophils beyond its primary phagocytic function. The absence of neutrophils and loss of its inhibitory effect on cytokine production explains the hypercytokinemia seen in neutropenic patients when infected with Aspergillus. © 2017 John Wiley & Sons Ltd.

  8. Anti-Inflammatory benefits of antibiotic-induced neutrophil apoptosis: tulathromycin induces caspase-3-dependent neutrophil programmed cell death and inhibits NF-kappaB signaling and CXCL8 transcription.

    PubMed

    Fischer, Carrie D; Beatty, Jennifer K; Zvaigzne, Cheryl G; Morck, Douglas W; Lucas, Merlyn J; Buret, A G

    2011-01-01

    Clearance of apoptotic neutrophils is a central feature of the resolution of inflammation. Findings indicate that immuno-modulation and induction of neutrophil apoptosis by macrolide antibiotics generate anti-inflammatory benefits via mechanisms that remain obscure. Tulathromycin (TUL), a new antimicrobial agent for bovine respiratory disease, offers superior clinical efficacy for reasons not fully understood. The aim of this study was to identify the immuno-modulating effects of tulathromycin and, in this process, to establish tulathromycin as a new model for characterizing the novel anti-inflammatory properties of antibiotics. Bronchoalveolar lavage specimens were collected from Holstein calves 3 and 24 h postinfection, challenged intratracheally with live Mannheimia haemolytica (2 × 10(7) CFU), and treated with vehicle or tulathromycin (2.5 mg/kg body weight). Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and enzyme-linked immunosorbent assay (ELISA) revealed that tulathromycin treatment significantly increased leukocyte apoptosis and reduced levels of proinflammatory leukotriene B(4) in M. haemolytica-challenged calves. In vitro, tulathromycin concentration dependently induced apoptosis in freshly isolated bovine neutrophils from healthy steers in a capase-3-dependent manner but failed to induce apoptosis in bovine fibroblasts, epithelial cells, and endothelial cells, as well as freshly isolated bovine blood monocytes and monocyte-derived macrophages. The proapoptotic effects of TUL were also, in part, drug specific; equimolar concentrations of penicillin G, oxytetracycline, and ceftiofur failed to cause apoptosis in bovine neutrophils. In addition, tulathromycin significantly reduced levels of phosphorylated IκBα, nuclear translocation of NF-κB p65, and mRNA levels of proinflammatory interleukin-8 in lipopolysaccharide (LPS)-stimulated bovine neutrophils. The findings illustrate novel mechanisms through which

  9. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis.

    PubMed

    Matlung, Hanke L; Babes, Liane; Zhao, Xi Wen; van Houdt, Michel; Treffers, Louise W; van Rees, Dieke J; Franke, Katka; Schornagel, Karin; Verkuijlen, Paul; Janssen, Hans; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick L; Leusen, Jeanette H W; Boelens, Jaap J; Kuhnle, Ingrid; van der Werff Ten Bosch, Jutte; Seeger, Karl; Rutella, Sergio; Pagliara, Daria; Matozaki, Takashi; Suzuki, Eiji; Menke-van der Houven van Oordt, Catharina Willemien; van Bruggen, Robin; Roos, Dirk; van Lier, Rene A W; Kuijpers, Taco W; Kubes, Paul; van den Berg, Timo K

    2018-06-26

    Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  10. Blockade of CCN4 attenuates CCl4-induced liver fibrosis.

    PubMed

    Li, Xiaofei; Chen, Yongxin; Ye, Weiwei; Tao, Xingfei; Zhu, Jinhong; Wu, Shuang; Lou, Lianqing

    2015-06-19

    CCN4, also termed WNT-inducible signaling pathway protein-1 (WISP-1), has important roles in inflammation and tissue injury. This study aimed to investigate the effect of CCN4 inhibition using monoclonal anti-CCN4 antibody (CCN4mAb) on the liver injury and fibrosis in a mouse model of liver fibrosis. The mouse liver fibrosis model was induced by carbon tetrachloride (CCl4). Mice received vehicle (saline/olive oil) by subcutaneous injection, CCl4 by subcutaneous injection or CCl4 (subcutaneous) plus CCN4mAb by subcutaneous injection. The pro-inflammatory and pro-fibrotic factors were determined by Western blot. The biochemistry and histopathology, collagen deposition and nuclear factor (NF)-κB activity were also assessed. Chronic CCl4 treatment caused liver injury and collagen accumulation. The expression levels of CCN4, pro-inflammatory and pro-fibrotic mediators as well as the activity of NF-κB were markedly increased. Treatment with CCN4mAb significantly inhibited CCl4-induced CCN4 expression, leading to attenuated CCl4-induced liver injury and the inflammatory response. CCN4 blockade also significantly reduced the formation of collagen in the liver and the expression of α-smooth muscle actin and transforming growth factor β1. CCN4 inhibition by CCN4mAb in vivo significantly attenuated the CCl4-induced liver injury and the progression of liver fibrosis. CCN4 may represent a novel therapeutic target for liver injury and fibrosis.

  11. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle; Summer, Ross

    2014-01-01

    Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5'-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI.

  12. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury

    PubMed Central

    Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle

    2013-01-01

    Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5′-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI. PMID:24285266

  13. PI3K, ERK, p38 MAPK and integrins regulate CCR3-mediated secretion of mouse and human eosinophil-associated RNases

    PubMed Central

    Shamri, Revital; Young, Kristen M.; Weller, Peter F.

    2013-01-01

    Background Eosinophils have the capacity to secrete varied cytotoxic proteins. Among the proteins are the eosinophil-associated RNases (EARs): the human eosinophil-derived neurotoxin and eosinophilic cationic protein and their murine ortholog EARs, which have been shown to be involved in host defense, tissue remodeling and immunity regulation. However, the signal transduction that regulates EARs secretion in response to physiological stimuli, such as chemokines, has been little studied in human and scarcely in mouse eosinophils, the foremost animal model for eosinophil-associated human diseases. Objective In this study we aimed to understand the signal transduction involved in the secretion of enzymatically active EARs following chemokine stimulation. Methods Fresh mouse and human eosinophils were stimulated with CCL11 and CCL24 and the secretion of enzymatically active EARs was detected using an RNase activity assay. The involvement of signaling factors or integrins was probed using specific inhibitors and blocking antibodies. Adhesion was evaluated by microscopy. Results We found that secretion of mouse EARs in response to CCL11 and CCL24 was Gαi-dependent. Both mouse and human eosinophils required the activation of PI3K, ERK and p38 MAPK. In addition, the adhesion molecules β1 and β2 integrins were found to be crucial for EAR secretion, and we suggest a mechanism in which spreading is obligatory for EAR secretion. Conclusions Collectively, these data suggest a common CCR3-mediated signaling pathway that leads to EAR secretion in both mouse and human eosinophils. These findings are applicable for eosinophil-mediated host defense and eosinophil-associated diseases. PMID:23742707

  14. Phytomedicinal Role of Pithecellobium dulce against CCl4-mediated Hepatic Oxidative Impairments and Necrotic Cell Death

    PubMed Central

    Manna, Prasenjit; Bhattacharyya, Sudip; Das, Joydeep; Ghosh, Jyotirmoy; Sil, Parames C.

    2011-01-01

    Present study investigates the beneficial role of the aqueous extract of the fruits of Pithecellobium dulce (AEPD) against carbon tetrachloride (CCl4)-induced hepatic injury using a murine model. AEPD has been found to possess free radical (DPPH, hydroxyl and superoxide) scavenging activity in cell-free system. CCl4 exposure increased the activities of various serum maker enzymes and intracellular reactive oxygen species (ROS) production. In line with these findings, we also observed that CCl4 intoxication increased the lipid peroxidation and protein carbonylation accompanied by decreased intracellular antioxidant defense, activity of cytochrome P450 and CYP2E1 expression. DNA fragmentation and flow cytometric analyses revealed that CCl4 exposure caused hepatic cell death mainly via the necrotic pathway. Treatment with AEPD both pre- and post-toxin exposure protected the organ from CCl4-induced hepatic damage. Histological findings also support our results. A well-known antioxidant vitamin C was included in this study to compare the antioxidant potency of AEPD. Combining all, results suggest that AEPD protects murine liver against CCl4-induced oxidative impairments probably via its antioxidative property. PMID:21869899

  15. Up-regulation of CCL17, CCL22 and CCR4 in drug-induced maculopapular exanthema.

    PubMed

    Tapia, B; Morel, E; Martín-Díaz, M-A; Díaz, R; Alves-Ferreira, J; Rubio, P; Padial, A; Bellón, T

    2007-05-01

    Maculopapular exanthema has been reported to be the most frequently drug-induced cutaneous reaction. Although T lymphocytes are involved in the pathomechanism of this disease, little is know about the recruitment of these cells to the skin. The aim of this work is to study the role of the chemokines TARC/CCL17 and MDC/CCL22 in the lymphocyte trafficking to affected skin in drug-induced exanthemas. Real-time PCR was performed to quantify gene expression levels of CCL17, CCL22 and their receptor CCR4 in lesional skin biopsies and in peripheral blood mononuclear cells from patients. CCL27 and CCL22 proteins were detected in the skin by immunochemistry. Protein expression of CCR4 was determined by flow cytometry in peripheral blood lymphocytes. Functional migration assays to CCL17 and CCL22 were assessed to compare the migratory responses of peripheral blood lymphocytes from patients and healthy subjects. CCL17 and CCL22 were up-regulated in maculopapular exanthema-affected skin. CCR4 mRNA levels and protein expression were increased in peripheral blood mononuclear cells during the acute phase of the disease. The increased expression of the receptor was consistent with a higher response of peripheral blood lymphocytes to CCL17 and CCL22 compared with the migratory response in healthy donors. TARC/CCL17 and MDC/CCL22 might cooperate in attracting T lymphocytes to skin in drug-induced maculopapular exanthemas.

  16. Distinct Fcγ receptors mediate the effect of Serum Amyloid P on neutrophil adhesion and fibrocyte differentiation

    PubMed Central

    Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H.

    2014-01-01

    The plasma protein Serum Amyloid P (SAP) reduces neutrophil adhesion, inhibits the differentiation of monocytes into fibroblast-like cells called fibrocytes, and promotes phagocytosis of cell debris by macrophages. Together, these effects of SAP reduce key aspects of inflammation and fibrosis, and SAP injections improve lung function in pulmonary fibrosis patients. SAP functions are mediated in part by Fcγ receptors, but the contribution of each Fcγ receptor is not fully understood. We found that amino acids Q55 and E126 in human SAP affect human fibrocyte differentiation and SAP binding to FcγRI. E126, K130 and Q128 affect neutrophil adhesion and SAP affinity for FcγRIIa. Q128 also affects phagocytosis by macrophages and SAP affinity for FcγRI. All the identified functionally significant amino acids in SAP form a binding site that is distinct from the previously described SAP-FcγRIIa binding site. Blocking FcγRI with an IgG blocking antibody reduces the SAP effect on fibrocyte differentiation, and ligating FcγRIIa with antibodies reduces neutrophil adhesion. Together, these results suggest that SAP binds to FcγRI on monocytes to inhibit fibrocyte differentiation, and binds to FcγRIIa on neutrophils to reduce neutrophil adhesion. PMID:25024390

  17. Eotaxin/CCL11 in idiopathic retroperitoneal fibrosis.

    PubMed

    Mangieri, Domenica; Corradi, Domenico; Martorana, Davide; Malerba, Giovanni; Palmisano, Alessandra; Libri, Irene; Bartoli, Veronica; Carnevali, Maria L; Goldoni, Matteo; Govoni, Paolo; Alinovi, Rossella; Buzio, Carlo; Vaglio, Augusto

    2012-10-01

    Idiopathic retroperitoneal fibrosis (IRF) is a rare fibro-inflammatory disorder characterized by a periaortic tissue which often encases the ureters causing acute renal failure. IRF histology shows fibrosis and a chronic inflammatory infiltrate with frequent tissue eosinophilia. We assessed a panel of molecules promoting eosinophilia and fibrosis in IRF patients and performed an immunogenetic study. Serum levels of eotaxin/CCL11, regulated and normal T-cell expressed and secreted (RANTES), granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-5, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) were measured using a multiplex assay in 24 newly diagnosed, untreated IRF patients and 14 healthy controls. Retroperitoneal biopsies (available in 8/24 patients) were histologically evaluated to assess eosinophil infiltration, whereas mast cells (MCs) were identified by immunohistochemical analysis for human tryptase. Immunohistochemistry for eotaxin/CCL11 and its receptor CCR3 was also performed. Six single nucleotide polymorphisms (SNPs) within the CCL11 gene (rs6505403, rs1860184, rs4795896, rs17735961, rs16969415 and rs17809012) were investigated in 142 IRF patients and 214 healthy controls. Serum levels of eotaxin/CCL11 were higher in IRF patients than in controls (P = 0.009). Eotaxin/CCL11 drives tissue infiltration of eosinophils and MCs, which can promote fibrosis. Eosinophilic infiltration was prominent (>5 cells/hpf) in five (62.5%) cases, and abundant tryptase-positive MCs were found in all cases; notably, MCs were in a degranulating state. Immunohistochemistry showed that CCL11 was highly produced by infiltrating mononuclear cells and that its receptor CCR3 was expressed by infiltrating eosinophils, MCs, lymphocytes and fibroblasts. None of the tested CCL11 SNPs showed disease association, but the TTCCAT haplotype was significantly associated with IRF (P = 0.0005). These findings suggest that the eotaxin/CCL11-CCR3 axis is active

  18. Prevention of carbon tetrachloride (CCl4)-induced toxicity in testes of rats treated with Physalis peruviana L. fruit.

    PubMed

    Abdel Moneim, Ahmed E

    2016-06-01

    Treatment of rats with carbon tetrachloride (CCl4; 2 ml/kg body weight) once a week for 12 weeks caused a significant decrease in serum levels of testosterone, luteinizing hormone, and follicle-stimulating hormone. These decreases in sex hormones were reduced with Physalis peruviana L. (Cape gooseberry) juice supplementation. In addition, testicular activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase suppressed with CCl4 were elevated after P. peruviana juice supplements. P. peruviana juice supplementation significantly increased the testicular glutathione and significantly decreased the level of lipid peroxidation and the nitric oxide production compared with the CCl4 group. In addition, the decline in the activity of antioxidant enzymes after CCl4 was ameliorated by P. peruviana Moreover, degeneration of germ and Leydig cells along with deformities in spermatogenesis induced after CCl4 injections were prevented with the supplementation of P. peruviana juice. Furthermore, P. peruviana juice attenuated CCl4-induced apoptosis in testes tissue by inhibition of caspase-3 activity. The results clearly demonstrate that P. peruviana juice augments the antioxidants defense mechanism against CCl4-induced reproductive toxicity and provides evidence that the juice may have a therapeutic role in free radical-mediated diseases and infertility. © The Author(s) 2014.

  19. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1–infected individuals

    PubMed Central

    Ahuja, Sunil K; Kulkarni, Hemant; Catano, Gabriel; Agan, Brian K; Camargo, Jose F; He, Weijing; O'Connell, Robert J; Marconi, Vincent C; Delmar, Judith; Eron, Joseph; Clark, Robert A; Frost, Simon; Martin, Jeffrey; Ahuja, Seema S; Deeks, Steven G; Little, Susan; Richman, Douglas; Hecht, Frederick M; Dolan, Matthew J

    2008-01-01

    The basis for the extensive variability seen in the reconstitution of CD4+ T cell counts in HIV-infected individuals receiving highly active antiretroviral therapy (HAART) is not fully known. Here, we show that variations in CCL3L1 gene dose and CCR5 genotype, but not major histocompatibility complex HLA alleles, influence immune reconstitution, especially when HAART is initiated at <350 CD4+ T cells/mm3. The CCL3L1-CCR5 genotypes favoring CD4+ T cell recovery are similar to those that blunted CD4+ T cell depletion during the time before HAART became available (pre-HAART era), suggesting that a common CCL3L1-CCR5 genetic pathway regulates the balance between pathogenic and reparative processes from early in the disease course. Hence, CCL3L1-CCR5 variations influence HIV pathogenesis even in the presence of HAART and, therefore, may prospectively identify subjects in whom earlier initiation of therapy is more likely to mitigate immunologic failure despite viral suppression by HAART. Furthermore, as reconstitution of CD4+ cells during HAART is more sensitive to CCL3L1 dose than to CCR5 genotypes, CCL3L1 analogs might be efficacious in supporting immunological reconstitution. PMID:18376407

  20. Neutrophil-derived chemokines on the road to immunity.

    PubMed

    Tecchio, Cristina; Cassatella, Marco A

    2016-04-01

    During recent years, it has become clear that polymorphonuclear neutrophils are remarkably versatile cells, whose functions go far beyond phagocytosis and killing. In fact, besides being involved in primary defense against infections-mainly through phagocytosis, generation of toxic molecules, release of toxic enzymes and formation of extracellular traps-neutrophils have been shown to play a role in finely regulating the development and the evolution of inflammatory and immune responses. These latter neutrophil-mediated functions occur by a variety of mechanisms, including the production of newly manufactured cytokines. Herein, we provide a general overview of the chemotactic cytokines/chemokines that neutrophils can potentially produce, either under inflammatory/immune reactions or during their activation in more prolonged processes, such as in tumors. We highlight recent observations generated from studying human or rodent neutrophils in vitro and in vivo models. We also discuss the biological significance of neutrophil-derived chemokines in the context of infectious, neoplastic and immune-mediated diseases. The picture that is emerging is that, given their capacity to produce and release chemokines, neutrophils exert essential functions in recruiting, activating and modulating the activities of different leukocyte populations. Copyright © 2016. Published by Elsevier Ltd.

  1. CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer.

    PubMed

    Svensson, Susanne; Abrahamsson, Annelie; Rodriguez, Gabriela Vazquez; Olsson, Anna-Karin; Jensen, Lasse; Cao, Yihai; Dabrosin, Charlotta

    2015-08-15

    Novel therapeutic targets of estrogen receptor (ER)-positive breast cancers are urgently needed because current antiestrogen therapy causes severe adverse effects, nearly 50% of patients are intrinsically resistant, and the majority of recurrences have maintained ER expression. We investigated the role of estrogen-dependent chemokine expression and subsequent cancer growth in human tissues and experimental breast cancer models. For in vivo sampling of human chemokines, microdialysis was used in breast cancers of women or normal human breast tissue before and after tamoxifen therapy. Estrogen exposure and targeted therapies were assessed in immune competent PyMT murine breast cancer, orthotopic human breast cancers in nude mice, cell culture of cancer cells, and freshly isolated human macrophages. Cancer cell dissemination was investigated using zebrafish. ER(+) cancers in women produced high levels of extracellular CCL2 and CCL5 in vivo, which was associated with infiltration of tumor-associated macrophages. In experimental breast cancer, estradiol enhanced macrophage influx and angiogenesis through increased release of CCL2, CCL5, and vascular endothelial growth factor. These effects were inhibited by anti-CCL2 or anti-CCL5 therapy, which resulted in potent inhibition of cancer growth. In addition, estradiol induced a protumorigenic activation of the macrophages. In a zebrafish model, macrophages increased cancer cell dissemination via CCL2 and CCL5 in the presence of estradiol, which was inhibited with anti-CCL2 and anti-CCL5 treatment. Our findings shed new light on the mechanisms underlying the progression of ER(+) breast cancer and indicate the potential of novel therapies targeting CCL2 and CCL5 pathways. ©2015 American Association for Cancer Research.

  2. Growth Coordination During Drosophila melanogaster Imaginal Disc Regeneration Is Mediated by Signaling Through the Relaxin Receptor Lgr3 in the Prothoracic Gland.

    PubMed

    Jaszczak, Jacob S; Wolpe, Jacob B; Bhandari, Rajan; Jaszczak, Rebecca G; Halme, Adrian

    2016-10-01

    Damage to Drosophila melanogaster imaginal discs activates a regeneration checkpoint that (1) extends larval development and (2) coordinates the regeneration of the damaged disc with the growth of undamaged discs. These two systemic responses to damage are both mediated by Dilp8, a member of the insulin/insulin-like growth factor/relaxin family of peptide hormones, which is released by regenerating imaginal discs. Growth coordination between regenerating and undamaged imaginal discs is dependent on Dilp8 activation of nitric oxide synthase (NOS) in the prothoracic gland (PG), which slows the growth of undamaged discs by limiting ecdysone synthesis. Here we demonstrate that the Drosophila relaxin receptor homolog Lgr3, a leucine-rich repeat-containing G-protein-coupled receptor, is required for Dilp8-dependent growth coordination and developmental delay during the regeneration checkpoint. Lgr3 regulates these responses to damage via distinct mechanisms in different tissues. Using tissue-specific RNA-interference disruption of Lgr3 expression, we show that Lgr3 functions in the PG upstream of NOS, and is necessary for NOS activation and growth coordination during the regeneration checkpoint. When Lgr3 is depleted from neurons, imaginal disc damage no longer produces either developmental delay or growth inhibition. To reconcile these discrete tissue requirements for Lgr3 during regenerative growth coordination, we demonstrate that Lgr3 activity in both the CNS and PG is necessary for NOS activation in the PG following damage. Together, these results identify new roles for a relaxin receptor in mediating damage signaling to regulate growth and developmental timing. Copyright © 2016 by the Genetics Society of America.

  3. Modulation of Neutrophil Motility by Curcumin: Implications for Inflammatory Bowel Disease

    PubMed Central

    Larmonier, C.B.; Midura-Kiela, M.T.; Ramalingam, R.; Laubitz, D.; Janikashvili, N.; Larmonier, N.; Ghishan, F.K.; Kiela, P.R.

    2010-01-01

    Background Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in Inflammatory Bowel Disease (IBD), transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration. Methods We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo. Results Curcumin attenuated LPS-stimulated expression and secretion of MIP-2, IL-1β, KC and MIP-1α in colonic epithelial cells (CEC) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP-2, KC or against conditioned media from LPS-treated macrophages or CEC, a well as the IL-8-mediated chemotaxis of human neutrophils. At non-toxic concentrations, curcumin inhibited random neutrophil migration suggesting a direct effect on neutrophil chemokinesis. Curcumin-mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation and F-actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis. Conclusion Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis. PMID:20629184

  4. Blood expression levels of chemokine receptor CCR3 and chemokine CCL11 in age-related macular degeneration: a case-control study.

    PubMed

    Falk, Mads Krüger; Singh, Amardeep; Faber, Carsten; Nissen, Mogens Holst; Hviid, Thomas; Sørensen, Torben Lykke

    2014-02-27

    Dysregulation of the CCR3/CCL11 pathway has been implicated in the pathogenesis of choroidal neovascularisation, a common feature of late age-related macular degeneration (AMD). The aim of this study was to investigate the expression of CCR3 and its ligand CCL11 in peripheral blood in patients with neovascular AMD. Patients with neovascular AMD and healthy controls were included. Blood samples were obtained and prepared for flow cytometry to investigate the expression of CCR3. Levels of CCL11 were measured in plasma using Cytometric Bead Array. Differences between the groups were tested using Kruskal-Wallis test and Mann-Whitney U test. Patients (n = 83) with neovascular AMD and healthy control persons (n = 114) were included in the study. No significant difference in the expression of CCR3 was found on CD9+ granulocytes when comparing patients suffering from neovascular AMD with any of the control groups. We did not find any alteration in CCL11 levels in patients among the age matched groups. There was no correlation between expression of CCR3/CCL11 and clinical response to treatment with anti-vascular endothelial growth factor (VEGF). Our results do not suggest a systemic alteration of the CCR3/CCL11 receptor/ligand complex in patients with neovascular AMD.

  5. Targeting chemokine (C-C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic.

    PubMed

    Zhang, Jian; Patel, Lalit; Pienta, Kenneth J

    2010-01-01

    Chemokines are a family of small and secreted proteins that play pleiotropic roles in inflammation-related pathological diseases, including cancer. Among the identified 50 human chemokines, chemokine (C-C motif) ligand 2 (CCL2) is of particular importance in cancer development since it serves as one of the key mediators of interactions between tumor and host cells. CCL2 is produced by cancer cells and multiple different host cells within the tumor microenvironment. CCL2 mediates tumorigenesis in many different cancer types. For example, CCL2 has been reported to promote prostate cancer cell proliferation, migration, invasion, and survival, via binding to its functional receptor CCR2. Furthermore, CCL2 induces the recruitment of macrophages and induces angiogenesis and matrix remodeling. Targeting CCL2 has been demonstrated as an effective therapeutic approach in preclinical prostate cancer models, and currently, neutralizing monoclonal antibody against CCL2 has entered into clinical trials in prostate cancer. In this chapter, targeting CCL2 in prostate cancer will be used as an example to show translation of laboratory findings from cancer molecular biology to the clinic. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    PubMed

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil

  7. Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-β (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation.

    PubMed

    Gautam, S; Kirschnek, S; Gentle, I E; Kopiniok, C; Henneke, P; Häcker, H; Malleret, L; Belaaouaj, A; Häcker, G

    2013-08-01

    Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3(-/-) mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3(-/-) progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3(-/-) cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3(-/-) cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation

  8. Secretion of the Phosphorylated Form of S100A9 from Neutrophils Is Essential for the Proinflammatory Functions of Extracellular S100A8/A9.

    PubMed

    Schenten, Véronique; Plançon, Sébastien; Jung, Nicolas; Hann, Justine; Bueb, Jean-Luc; Bréchard, Sabrina; Tschirhart, Eric J; Tolle, Fabrice

    2018-01-01

    S100A8 and S100A9 are members of the S100 family of cytoplasmic EF-hand Ca 2+ -binding proteins and are abundantly expressed in the cytosol of neutrophils. In addition to their intracellular roles, S100A8/A9 can be secreted in the extracellular environment and are considered as alarmins able to amplify the inflammatory response. The intracellular activity of S100A8/A9 was shown to be regulated by S100A9 phosphorylation, but the importance of this phosphorylation on the extracellular activity of S100A8/A9 has not yet been extensively studied. Our work focuses on the impact of the phosphorylation state of secreted S100A9 on the proinflammatory function of neutrophils. In a first step, we characterized the secretion of S100A8/A9 in different stimulatory conditions and investigated the phosphorylation state of secreted S100A9. Our results on neutrophil-like differentiated HL-60 (dHL-60) cells and purified human neutrophils showed a time-dependent secretion of S100A8/A9 when induced by phorbol 12-myristoyl 13-acetate and this secreted S100A9 was found in a phosphorylated form. Second, we evaluated the impact of this phosphorylation on proinflammatory cytokine expression and secretion in dHL-60 cells. Time course experiments with purified unphosphorylated or phosphorylated S100A8/A9 were performed and the expression and secretion levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor alpha, CCL2, CCL3, CCL4, and CXCL8 were measured by real-time PCR and cytometry bead array, respectively. Our results demonstrate that only the phosphorylated form of the complex induces proinflammatory cytokine expression and secretion. For the first time, we provide evidence that S100A8/PhosphoS100A9 is inducing cytokine secretion through toll-like receptor 4 signaling.

  9. Secretion of the Phosphorylated Form of S100A9 from Neutrophils Is Essential for the Proinflammatory Functions of Extracellular S100A8/A9

    PubMed Central

    Schenten, Véronique; Plançon, Sébastien; Jung, Nicolas; Hann, Justine; Bueb, Jean-Luc; Bréchard, Sabrina; Tschirhart, Eric J.; Tolle, Fabrice

    2018-01-01

    S100A8 and S100A9 are members of the S100 family of cytoplasmic EF-hand Ca2+-binding proteins and are abundantly expressed in the cytosol of neutrophils. In addition to their intracellular roles, S100A8/A9 can be secreted in the extracellular environment and are considered as alarmins able to amplify the inflammatory response. The intracellular activity of S100A8/A9 was shown to be regulated by S100A9 phosphorylation, but the importance of this phosphorylation on the extracellular activity of S100A8/A9 has not yet been extensively studied. Our work focuses on the impact of the phosphorylation state of secreted S100A9 on the proinflammatory function of neutrophils. In a first step, we characterized the secretion of S100A8/A9 in different stimulatory conditions and investigated the phosphorylation state of secreted S100A9. Our results on neutrophil-like differentiated HL-60 (dHL-60) cells and purified human neutrophils showed a time-dependent secretion of S100A8/A9 when induced by phorbol 12-myristoyl 13-acetate and this secreted S100A9 was found in a phosphorylated form. Second, we evaluated the impact of this phosphorylation on proinflammatory cytokine expression and secretion in dHL-60 cells. Time course experiments with purified unphosphorylated or phosphorylated S100A8/A9 were performed and the expression and secretion levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor alpha, CCL2, CCL3, CCL4, and CXCL8 were measured by real-time PCR and cytometry bead array, respectively. Our results demonstrate that only the phosphorylated form of the complex induces proinflammatory cytokine expression and secretion. For the first time, we provide evidence that S100A8/PhosphoS100A9 is inducing cytokine secretion through toll-like receptor 4 signaling. PMID:29593718

  10. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence

    NASA Astrophysics Data System (ADS)

    Xue, Jingwei; Zhao, Zekai; Zhang, Lei; Xue, Lingjing; Shen, Shiyang; Wen, Yajing; Wei, Zhuoyuan; Wang, Lu; Kong, Lingyi; Sun, Hongbin; Ping, Qineng; Mo, Ran; Zhang, Can

    2017-07-01

    Cell-mediated drug-delivery systems have received considerable attention for their enhanced therapeutic specificity and efficacy in cancer treatment. Neutrophils (NEs), the most abundant type of immune cells, are known to penetrate inflamed brain tumours. Here we show that NEs carrying liposomes that contain paclitaxel (PTX) can penetrate the brain and suppress the recurrence of glioma in mice whose tumour has been resected surgically. Inflammatory factors released after tumour resection guide the movement of the NEs into the inflamed brain. The highly concentrated inflammatory signals in the brain trigger the release of liposomal PTX from the NEs, which allows delivery of PTX into the remaining invading tumour cells. We show that this NE-mediated delivery of drugs efficiently slows the recurrent growth of tumours, with significantly improved survival rates, but does not completely inhibit the regrowth of tumours.

  11. A chemical biology approach demonstrates G protein βγ subunits are sufficient to mediate directional neutrophil chemotaxis.

    PubMed

    Surve, Chinmay R; Lehmann, David; Smrcka, Alan V

    2014-06-20

    Our laboratory has identified a number of small molecules that bind to G protein βγ subunits (Gβγ) by competing for peptide binding to the Gβγ "hot spot." M119/Gallein were identified as inhibitors of Gβγ subunit signaling. Here we examine the activity of another molecule identified in this screen, 12155, which we show that in contrast to M119/Gallein had no effect on Gβγ-mediated phospholipase C or phosphoinositide 3-kinase (PI3K) γ activation in vitro. Also in direct contrast to M119/Gallein, 12155 caused receptor-independent Ca(2+) release, and activated other downstream targets of Gβγ including extracellular signal regulated kinase (ERK), protein kinase B (Akt) in HL60 cells differentiated to neutrophils. We show that 12155 releases Gβγ in vitro from Gαi1β1γ2 heterotrimers by causing its dissociation from GαGDP without inducing nucleotide exchange in the Gα subunit. We used this novel probe to examine the hypothesis that Gβγ release is sufficient to direct chemotaxis of neutrophils in the absence of receptor or G protein α subunit activation. 12155 directed chemotaxis of HL60 cells and primary neutrophils in a transwell migration assay with responses similar to those seen for the natural chemotactic peptide n-formyl-Met-Leu-Phe. These data indicate that release of free Gβγ is sufficient to drive directional chemotaxis in a G protein-coupled receptor signaling-independent manner. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity

    PubMed Central

    Trivedi, Palak J.; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M.; Weston, Chris J.; Adams, David H.

    2016-01-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4+) and 30% (CD8+) of tissue-infiltrating T-cells in colitis were identified as CCR9+ effector lymphocytes, compared to <10% of T-cells being CCR9+ in normal colon. Sorted CCR9+ lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9– counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver. PMID:26873648

  13. Blood expression levels of chemokine receptor CCR3 and chemokine CCL11 in age-related macular degeneration: a case–control study

    PubMed Central

    2014-01-01

    Background Dysregulation of the CCR3/CCL11 pathway has been implicated in the pathogenesis of choroidal neovascularisation, a common feature of late age-related macular degeneration (AMD). The aim of this study was to investigate the expression of CCR3 and its ligand CCL11 in peripheral blood in patients with neovascular AMD. Methods Patients with neovascular AMD and healthy controls were included. Blood samples were obtained and prepared for flow cytometry to investigate the expression of CCR3. Levels of CCL11 were measured in plasma using Cytometric Bead Array. Differences between the groups were tested using Kruskal-Wallis test and Mann–Whitney U test. Results Patients (n = 83) with neovascular AMD and healthy control persons (n = 114) were included in the study. No significant difference in the expression of CCR3 was found on CD9+ granulocytes when comparing patients suffering from neovascular AMD with any of the control groups. We did not find any alteration in CCL11 levels in patients among the age matched groups. There was no correlation between expression of CCR3/CCL11 and clinical response to treatment with anti-vascular endothelial growth factor (VEGF). Conclusion Our results do not suggest a systemic alteration of the CCR3/CCL11 receptor/ligand complex in patients with neovascular AMD. PMID:24575855

  14. The CCL3L1-CCR5 genotype influences the development of AIDS, but not HIV susceptibility or the response to HAART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Tanmoy; Stanton, Jennifer; Kim, Eun - Young

    2008-01-01

    A selective advantage against infectious diseases such as HIV/AIDS is associated with differences in the genes relevant to immunity and virus replication. The CC chemokine receptor 5 (CCR5), the principal coreceptor for HIV, and its chemokine ligands, including CCL3L1, influences the CD4+ target cells susceptibility to infection. The CCL3L1 gene is in a region of segmental duplication on the q-arm of human chromosome 17. Increased numbers of CCL3L1 gene copies that affect the gene expression phenotype might have substantial protective effects. Here we show that the population-specific CCL3L1 gene copy number and the CCR5 {Delta}32 protein-inactivating deletion that categorizes themore » CCL3L1-CCR5 genotype do not influence HIV/AIDS susceptibility or the robustness of immune recovery after the initiation of highly active antiretroviral therapy (HAART).« less

  15. Up-regulation of CCL11 and CCL26 is associated with activated eosinophils in bullous pemphigoid

    PubMed Central

    Günther, C; Wozel, G; Meurer, M; Pfeiffer, C

    2011-01-01

    Eosinophils contribute to the pathogenesis of bullous pemphigoid (BP) by secretion of proinflammatory cytokines and proteases. Trafficking of eosinophils into tissue in animal models and asthma depends on interleukin-5 and a family of chemokines named eotaxins, comprising CCL11, CCL24 and CCL26. Up-regulation of CCL11 has been described in BP, but the expression of the other two members of the eotaxin-family, CCL24 and CCL26, has not been investigated. In addition to these chemokines, expression of adhesion molecules associated with eosinophil migration to the skin should be analysed. We demonstrate that similar to CCL11, the concentration of CCL26 was up-regulated in serum and blister fluid of BP patients. In contrast, the concentration of CCL24 was not elevated in sera and blister fluid of the same BP patients. In lesional skin, CCL11 and CCL26 were detected in epidermis and dermis by immunohistochemistry. In contrast to CCL11, CCL26 was expressed strongly by endothelial cells. In line with these findings, eosinophils represented the dominating cell population in BP lesional skin outnumbering other leucocytes. The percentage of eosinophils expressing very late antigen (VLA): VLA-4 (CD49d) and CD11c correlated with their quantity in tissue. Macrophage antigen (MAC)-1 (CD11b/CD18) was expressed constitutively by tissue eosinophils. In conclusion, these data link the up-regulation of the eosinophil chemotactic factor CCL26 in BP to the lesional accumulation of activated eosinophils in the skin. Thereby they broaden the understanding of BP pathogenesis and might indicate new options for therapeutic intervention. PMID:21985360

  16. The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps

    PubMed Central

    Lee, Mark J.; Liu, Hong; Barker, Bridget M.; Snarr, Brendan D.; Gravelat, Fabrice N.; Al Abdallah, Qusai; Gavino, Christina; Baistrocchi, Shane R.; Ostapska, Hanna; Xiao, Tianli; Ralph, Benjamin; Solis, Norma V.; Lehoux, Mélanie; Baptista, Stefanie D.; Thammahong, Arsa; Cerone, Robert P.; Kaminskyj, Susan G. W.; Guiot, Marie-Christine; Latgé, Jean-Paul; Fontaine, Thierry; Vinh, Donald C.; Filler, Scott G.; Sheppard, Donald C.

    2015-01-01

    Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs. PMID:26492565

  17. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  18. Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia.

    PubMed

    Csomós, Krisztián; Német, István; Fésüs, László; Balajthy, Zoltán

    2010-11-11

    Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation-related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference-mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome.

  19. Parenteral medium-chain triglyceride-induced neutrophil activation is not mediated by a Pertussis Toxin sensitive receptor.

    PubMed

    Versleijen, Michelle W J; van Esterik, Joantine C J; Roelofs, Hennie M J; van Emst-de Vries, Sjenet E; Willems, Peter H G M; Wanten, Geert J A

    2009-02-01

    Lipid-induced immune modulation might contribute to the increased infection rate that is observed in patients using parenteral nutrition. We previously showed that emulsions containing medium-chain triglycerides (LCT/MCTs or pure MCTs), but not pure long-chain triglycerides (LCTs), impair neutrophil functions, modulate cell-signaling and induce neutrophil activation in vitro. It has recently been shown that medium-chain fatty acids are ligands for GPR84, a pertussis toxin (PT)-sensitive G-protein-coupled receptor (GPCR). This finding urged us to investigate whether MCT-induced neutrophil activation is mediated by PT-sensitive GPCRs. Neutrophils isolated from blood of healthy volunteers were pre-incubated with PT (0.5-1 microg/mL, 1.5 h) and analyzed for the effect of this pre-incubation on LCT/MCT (2.5 mmol/L)-dependent modulation of serum-treated zymosan (STZ)-induced intracellular Ca(2+) mobilization and on LCT/MCT (5 mmol/L)-induced expression of cell surface adhesion (CD11b) and degranulation (CD66b) markers and oxygen radical (ROS) production. PT did not inhibit the effects of LCT/MCT on the STZ-induced increase in cytosolic free Ca(2+) concentration. LCT/MCT increased ROS production to 146% of unstimulated cells. However, pre-incubation with PT did not inhibit the LCT/MCT-induced ROS production. Furthermore, the LCT/MCT-induced increase in CD11b and CD66b expression (196% and 235% of unstimulated cells, respectively) was not inhibited by pre-incubation with PT. LCT/MCT-induced neutrophil activation does not involve the action of a PT-sensitive G-protein-coupled receptor.

  20. Leukotactin-1/CCL15 induces cell migration and differentiation of human eosinophilic leukemia EoL-1 cells through PKCdelta activation.

    PubMed

    Lee, Ji-Sook; Kim, In Sik

    2010-06-01

    Leukotactin-1 (Lkn-1)/CCL15 is a CC chemokine that binds to the CCR1 and CCR3. Lkn-1 functions as an essential factor in the migration of monocytes, lymphocytes, and neutrophils. Although eosinophils express both receptors, the role of Lkn-1 in immature eosinophils remains to be elucidated. In this present study, we investigated the contribution of the CCR1-binding chemokines to chemotactic activity and in the differentiation in the human eosinophilic leukemia cell line EoL-1. Lkn-1 induced the stronger migration of EoL-1 cells than other CCR1-binding chemokines such as RANTES/CCL5, MIP-1alpha/CCL3 and HCC-4/CCL16. Lkn-1-induced chemotaxis was inhibited by pertussis toxin, an inhibitor of G(i)/G(o) protein; U73122, an inhibitor of phospholipase C and rottlerin, an inhibitor of protein kinase C delta (PKCdelta). Lkn-1 increased PKCdelta activity, which was partially blocked by the pertussis toxin and U73122. Lkn-1 enhanced the butyric acid-induced differentiation via PKCdelta after binding to the increased CCR1 because Lkn-1 caused EoL-1 cells to change morphologically into mature eosinophil-like cells. Likewise, Lkn-1 increased the expression of both eosinophil peroxidase (EPO) and the major basic protein (MBP). PKCdelta activation due to Lkn-1 is involved in migration, as well as the butyric acid-induced differentiation. This finding contributes to an understanding of CC chemokines in eosinophil biology and to the development of novel therapies for the treatment of eosinophilic disorders. This study suggests the pivotal roles of Lkn-1 in the regulation of the movement and development of eosinophils.

  1. The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCL3, CH3CCl3, and CHCl3

    NASA Technical Reports Server (NTRS)

    Kindler, T. P.; Chameides, W. L.; Wine, P. H.; Cunnold, D. M.; Alyea, F. N.; Franklin, J. A.

    1995-01-01

    A study of the tropospheric and stratospheric cycles of phosgene is carried out to determine its fate and ultimate role in controlling the ozone depletion potentials of its parent compounds. Tropospheric phosgene is produced from the OH-initiated oxidation of C2Cl4, CH3CCl3, CHCl3, and C2HCl3. Simulations using a two-dimensional model indicate that these processes produce about 90 pptv/yr of tropospheric phosgene with an average concentration of about 18 pptv, in reasonable agreement with observations. We estimate a residence time of about 70 days for tropospheric phosgene, with the vast majority being removed by hydrolysis in cloudwater. Only about 0.4% of the phosgene produced in the troposphere avoids wet removal and is transported to the stratosphere, where its chlorine can be released to participate in the catalytic destruction of ozone. Stratospheric phosgene is produced from the photochemical degradation of CCl4, C2Cl4, CHCl3, and CH3CCl3 and is removed by photolysis and downward transport to the troposphere. Model calculations, in good agreement with observations, indicate that these processes produce a peak stratospheric concentration of about 25-30 pptv at an altitude of about 25 km. In contrast to tropospheric phosgene, stratospheric phosgene is found to have a lifetime against photochemical removal of the order of years. As a result, a significant portion of the phosgene that is produced in the stratosphere is ultimately returned to the troposphere, where it is rapidly removed by clouds. This phenomenon effectively decreases the amount of reactive chlorine injected into the stratosphere and available for ozone depletion from phosgene's parent compounds. A similar phenomenon due to the downward transport of stratospheric COFCl produced from CFC-11 is estimated to cause a 7% decrease in the amount of reactive chlorine injected into the stratosphere from this compound. Our results are potentially sensitive to a variety of parameters, most notably the rate

  2. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death.

    PubMed

    Kambara, Hiroto; Liu, Fei; Zhang, Xiaoyu; Liu, Peng; Bajrami, Besnik; Teng, Yan; Zhao, Li; Zhou, Shiyi; Yu, Hongbo; Zhou, Weidong; Silberstein, Leslie E; Cheng, Tao; Han, Mingzhe; Xu, Yuanfu; Luo, Hongbo R

    2018-03-13

    Gasdermin D (GSDMD) is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT) to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE), released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT) that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Dynamics of neutrophil migration in lymph nodes during infection.

    PubMed

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A

    2008-09-19

    Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We found that neutrophils formed both small, transient and large, persistent swarms via a coordinated migration pattern. We provided evidence that cooperative action of neutrophils and parasite egress from host cells could trigger swarm formation. Neutrophil swarm formation coincided in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses.

  4. Dynamics of neutrophil migration in lymph nodes during infection

    PubMed Central

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G.; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A.

    2008-01-01

    Summary While the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes, or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning laser microscopy (TPSLM) to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We find that neutrophils form both small, transient or large, persistent swarms via a strikingly coordinated migration pattern. We provide evidence that cooperative action of neutrophils and parasite egress from host cells can trigger swarm formation. Neutrophil swarm formation coincides in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses. PMID:18718768

  5. Disentangling the effects of tocilizumab on neutrophil survival and function.

    PubMed

    Gaber, Timo; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Dörffel, Yvonne; Feist, Eugen; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2016-06-01

    The synovial tissue in rheumatoid arthritis (RA) represents a hypoxic environment with up-regulated pro-inflammatory cytokines and cellular infiltrates including neutrophils. Although inhibition of the interleukin (IL)6 receptor pathway by tocilizumab is a potent treatment option for RA, it may also cause adverse effects such as an occasionally high-grade neutropenia. We analysed the impact of tocilizumab on survival, mediator secretion, oxidative burst, phagocytosis and energy availability of high-dose toll-like receptor (TLR)2/4-stimulated neutrophils (to mimic an arthritis flare) under normoxic versus hypoxic conditions. Human neutrophils were purified, pre-treated with varying doses of tocilizumab, dexamethasone or human IgG1 and high-dose-stimulated with lipopolysaccharide (LPS) alone-triggering TLR2/4-, LPS plus IL6, or left unstimulated. Cells were then incubated under normoxic (18 % O2) or hypoxic (1 % O2) conditions and subsequently analysed. Neutrophil survival and energy availability were significantly decreased by tocilizumab in a dose-dependent manner in high-dose TLR2/4-stimulated cells, but to a greater extent under normoxia as compared to hypoxia. We also found high-dose LPS-stimulated oxidative burst and phagocytosis of neutrophils to be higher under hypoxic versus normoxic conditions, but this difference was reduced by tocilizumab. Finally, we observed that tocilizumab affected neutrophil mediator secretion as a function of oxygen availability. Tocilizumab is known for both beneficial effects and a higher incidence of neutropenia when treating RA patients. Our results suggest that both effects can at least in part be explained by a reduction in neutrophil survival, a dose-dependent inhibition of hypoxia-induced NADPH oxidase-mediated oxidative burst and phagocytosis of infiltrating hypoxic neutrophils and an alteration of mediator secretion.

  6. Molecular and functional characterization of FcγRIIIb receptor-ligand interaction: implications for neutrophil mediated immune mechanisms in malaria.

    PubMed

    Simtong, Piyapong; Romphruk, Amornrat V; Traum, Annalena; Burg-Roderfeld, Monika; Bein, Gregor; Jakubowski, Konstantin; Dominik, Andreas; Theisen, Michael; Kana, Ikhlaq Hussain; Sachs, Ulrich J; Santoso, Sentot

    2018-05-21

    The Fcγ receptor IIIb (FcγRIIIb) is a low-affinity receptor of IgG and is essential in neutrophil mediated effector functions. Different allelic forms of FcγRIIIb carrying human neutrophil antigen (HNA-1a, -1b, -1c and -1d) have been identified. Here, we have generated stable transfected HEK293 cell lines expressing HNA-1aa, -1bb, and -1bc. Of these, cells expressing HNA-1bc interacted significantly stronger (2.277 versus 0.743) with human IgG than cells expressing the HNA-1aa or -1bb alloforms. The higher affinity of IgG towards the HNA-1c alloform was confirmed using neutrophils derived from German blood donors. Neutrophils from HNA-1abc phenotyped individuals bound IgG significantly stronger (1.825 versus 0.903) than neutrophils from HNA-1ab typed individuals. These findings were confirmed by the SPR analysis demonstrating that recombinant HNA-1bc had a higher affinity (KD 7.24 x 10 -6 M) than recombinant HNA-1bb (KD 1.15 x 10 -5 M) against normal IgG. Finally, we demonstrated that Plasmodium falciparum merozoites opsonized with human IgG affinity purified against P. falciparum Glutamate rich protein (GLURP) enhanced stronger ROS emission in neutrophils obtained from HNA-1abc donors compared to neutrophils from HNA-1ab donors. Collectively, these results indicate that the amino acid substitution Ala 78 Asp resulting in the HNA-1c allotype leads to higher affinity towards human IgG, enhancement of neutrophil activation and possibly effective clearance of malaria by intracellular ROS. Copyright © 2018 American Society for Microbiology.

  7. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders.

    PubMed

    Carpenter, Danielle; Walker, Susan; Prescott, Natalie; Schalkwijk, Joost; Armour, John Al

    2011-08-18

    Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.

  8. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders

    PubMed Central

    2011-01-01

    Background Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. Results We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Conclusions Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion. PMID:21851606

  9. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge

    PubMed Central

    He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei

    2011-01-01

    Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423

  10. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice.

    PubMed

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A; Jia, Jidong; Zhuang, Hui

    2017-08-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation.

  11. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice

    PubMed Central

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A.; Jia, Jidong; Zhuang, Hui

    2017-01-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28–30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation. PMID:28627620

  12. Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae.

    PubMed

    Boyle, Keith B; Gyori, David; Sindrilaru, Anca; Scharffetter-Kochanek, Karin; Taylor, Philip R; Mócsai, Attila; Stephens, Len R; Hawkins, Phillip T

    2011-03-01

    An effective immune response to the ubiquitous fungus Aspergillus fumigatus is dependent upon production of reactive oxygen species (ROS) by the NADPH oxidase. This is evidenced by the acute sensitivity of oxidase-deficient humans and mice to invasive aspergillosis. Neutrophils are recruited to the lungs shortly postinfection and respond by phagocytosing conidia and mediating extracellular killing of germinated hyphae in a ROS-dependent manner. However, the signaling mechanisms regulating the generation of ROS in response to hyphae are poorly understood. PI3Ks are important regulators of numerous cellular processes, with much recent work describing unique roles for the different class I PI3K isoforms. We showed by live-cell imaging that the lipid products of class I PI3Ks accumulated at the hyphal-bound neutrophil plasma membrane. Further, we used pharmacological and genetic approaches to demonstrate essential, but overlapping, roles for PI3Kβ and PI3Kδ in the ROS and spreading responses of murine neutrophils to Aspergillus hyphae. Hyphal-induced ROS responses were substantially inhibited by deletion of the common β2-integrin subunit CD18, with only a minor, redundant role for Dectin-1. However, addition of soluble algal glucans plus the genetic deletion of CD18 were required to significantly inhibit activation of the PI3K-effector protein kinase B. Hyphal ROS responses were also totally dependent on the presence of Syk, but not its ITAM-containing adaptor proteins FcRγ or DAP12, and the Vav family of Rac-guanine nucleotide exchange factors. These results start to define the signaling network controlling neutrophil ROS responses to A. fumigatus hyphae.

  13. Structure and Electronic Properties of Nano-complex CCl4…Cr(AcacCl)3 on Evidence Derived from Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Slabzhennikov, S. N.; Kuarton, L. A.; Ryabchenko, O. B.

    In order to specify influence of intermolecular interaction on IR spectrum of interacting species, an investigation of a process CCl4 + Cr(AcacCl)3CCl4…Cr(AcacCl)3 has been performed by means of Hartree-Fock-Roothaan method in MIDI basis set with p- and d- polarization functions. An estimation of intermolecular interaction in geometrical parameters, electron density function both between interacting particles and inside themselves, frequencies and intensities of normal modes has been carried out. Chemical bonds with the most significant shifts of characteristics under formation of nano-complex CCl4…Cr(AcacCl)3 have been noted.

  14. Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation.

    PubMed

    Matsuo, Y; Kihara, T; Ikeda, M; Ninomiya, M; Onodera, H; Kogure, K

    1995-11-01

    A growing body of experimental data indicate that oxygen radicals may mediate the brain injury during ischemia-reperfusion. One potential source of oxygen radicals is activated neutrophils. To study the role of neutrophils in radical production during cerebral ischemia-reperfusion, we evaluated the effects of depletion of circulating neutrophils by administration of an anti-neutrophil monoclonal antibody (RP3) on radical formation in rats with 1-h middle cerebral artery (MCA) occlusion. In the present study, we employed a new electron spin resonance method coupled with brain microdialysis. The method uses the endogenous ascorbyl radical (AR) concentration as a marker of oxygen radicals and requires no spin-trapping agents. In the vehicle controls, extracellular AR decreased during MCA occlusion. After reperfusion, AR significantly increased at 30 min and 1 h, returned to near basal level until 2 h, and increased again at 24 h after reperfusion. In the rats treated with RP3, AR decreased during MCA occlusion to the same extent as in the vehicle control. However, RP3 treatment completely inhibited the increase in extracellular AR after reperfusion. RP3 treatment exerted no effect on the changes in extracellular ascorbate or tissue PO2 throughout the experimental period. In conclusion, neutrophils are a major source of oxygen radicals during reperfusion after focal cerebral ischemia.

  15. Localizing the lipid products of PI3Kγ in neutrophils.

    PubMed

    Norton, Laura; Lindsay, Yvonne; Deladeriere, Arnaud; Chessa, Tamara; Guillou, Hervé; Suire, Sabine; Lucocq, John; Walker, Simon; Andrews, Simon; Segonds-Pichon, Anne; Rausch, Oliver; Finan, Peter; Sasaki, Takehiko; Du, Cheng-Jin; Bretschneider, Till; Ferguson, G John; Hawkins, Phillip T; Stephens, Len

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Protective Effect of Procyanidin B2 against CCl4-Induced Acute Liver Injury in Mice.

    PubMed

    Yang, Bing-Ya; Zhang, Xiang-Yu; Guan, Sheng-Wen; Hua, Zi-Chun

    2015-07-03

    Procyanidin B2 has demonstrated several health benefits and medical properties. However, its protective effects against CCl4-induced hepatotoxicity have not been clarified. The present study aimed to investigate the hepatoprotective effects of procyanidin B2 in CCl4-treated mice. Our data showed that procyanidin B2 significantly decreased the CCl4-induced elevation of serum alanine aminotransferase activities, as well as improved hepatic histopathological abnormalities. Procyanidin B2 also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD, CAT and GSH-Px. Further research demonstrated that procyanidin B2 decreased the expression of TNF-α, IL-1β, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibited the translocation of nuclear factor-kappa B (NF-κB) p65 from the cytosol to the nuclear fraction in mouse liver. Moreover, CCl4-induced apoptosis in mouse liver was measured by (terminal-deoxynucleotidyl transferase mediated nick end labeling) TUNEL assay and the cleaved caspase-3. Meanwhile, the expression of apoptosis-related proteins Bax and Bcl-xL was analyzed by Western blot. Results showed that procyanidin B2 significantly inhibited CCl4-induced hepatocyte apoptosis, markedly suppressed the upregulation of Bax expression and restored the downregulation of Bcl-xL expression. Overall, the findings indicated that procyanidin B2 exhibited a protective effect on CCl4-induced hepatic injury by elevating the antioxidative defense potential and consequently suppressing the inflammatory response and apoptosis of liver tissues.

  17. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF-β1/Smad3 and NF-ĸB/IĸB Pathways.

    PubMed

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF-β1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF-β1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF-β1/Smad3 and NF-ĸB)/IĸB signaling pathways. © 2015 S. Karger AG, Basel.

  18. Commensal microbiota stimulate systemic neutrophil migration through induction of Serum amyloid A

    PubMed Central

    Kanther, Michelle; Tomkovich, Sarah; Sun, Xiaolun; Grosser, Melinda R.; Koo, Jaseol; Flynn, Edward J.; Jobin, Christian; Rawls, John F.

    2015-01-01

    Summary Neutrophils serve critical roles in inflammatory responses to infection and injury, and mechanisms governing their activity represent attractive targets for controlling inflammation. The commensal microbiota is known to regulate the activity of neutrophils and other leucocytes in the intestine, but the systemic impact of the microbiota on neutrophils remains unknown. Here we utilized in vivo imaging in gnotobiotic zebrafish to reveal diverse effects of microbiota colonization on systemic neutrophil development and function. The presence of a microbiota resulted in increased neutrophil number and myeloperoxidase expression, and altered neutrophil localization and migratory behaviours. These effects of the microbiota on neutrophil homeostasis were accompanied by an increased recruitment of neutrophils to injury. Genetic analysis identified the microbiota-induced acute phase protein serum amyloid A (Saa) as a host factor mediating microbial stimulation of tissue-specific neutrophil migratory behaviours. In vitro studies revealed that zebrafish cells respond to Saa exposure by activating NF-κB, and that Saa-dependent neutrophil migration requires NF-κB-dependent gene expression. These results implicate the commensal microbiota as an important environmental factor regulating diverse aspects of systemic neutrophil development and function, and reveal a critical role for a Saa-NF-κB signalling axis in mediating neutrophil migratory responses. PMID:24373309

  19. The Intricate Expression of CC Chemokines in Glial Tumors: Evidence for Involvement of CCL2 and CCL5 but Not CCL11.

    PubMed

    Moogooei, Mozhgan; Shamaei, Masoud; Khorramdelazad, Hossein; Fattahpour, Shirin; Seyedmehdi, Seyed Mohammad; Moogooei, Maryam; Hassanshahi, Gholamhossein; Kalantari Khandani, Behjat

    2015-12-01

    Chemokines are biologically active peptides involved in the pathogenesis of various pathologies including brain malignancies. They are amongst primitive regulators of the development of immune responses against malignant glial tumors. The present study aimed to examine the expression of CC chemokines in anaplastic astrocytoma and glioblastoma multiform patients at both mRNA and protein levels. Blood specimens in parallel with stereotactic biopsy specimens were obtained from 123 patients suffering from glial tumors and 100 healthy participants as a control. The serum levels of CCL2, CCL5, and CCL11 were measured by ELISA and stereotactic samples subjected to western and northern blotting methods for protein and mRNA, respectively. Demographic characteristics were also collected by a researcher-designed questionnaire. Results of the present study indicated that, however,CCL2 and CCL5 are elevated in serum and tumor tissues of patients suffering from a glial tumor at both mRNA and protein levels, the CCL11 was almost undetectable. According to the findings of the present investigation, it could presumably be reasonable to conclude that chemokines are good predictive molecules for expecting disease severity, metastasis, and response to treatment.

  20. CC chemokine ligand 2 and CXC chemokine ligand 8 as neutrophil chemoattractant factors in canine idiopathic polyarthritis.

    PubMed

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-12-01

    Canine idiopathic polyarthritis (IPA) is characterized by increased numbers of polymorphonuclear leukocytes (PMNs) in the synovial fluid (SF). In humans, CC chemokine ligand 2 (CCL2) and CXC chemokine ligand 8 (CXCL8) recruit monocytes and neutrophils, respectively, and are involved in various inflammatory disorders. The aim of this study was to assess the roles of these chemokines in driving PMNs infiltration into the joints of dogs with IPA. SF samples were collected from dogs with IPA (n=19) and healthy controls (n=8), and the concentrations of SF CCL2 and CXCL8 were determined by ELISA. Dogs with IPA had significantly higher concentrations of CCL2 (3316±2452pg/ml, mean±SD) and CXCL8 (3668±3879pg/ml) compared with the healthy controls (235±45pg/ml and <15.6pg/ml, respectively). Then, an in vitro chemotaxis assay was performed using a modified Boyden chamber (pore size: 3μm). SF from IPA dogs had a chemoattractant activity for PMNs that purified from the peripheral blood of a healthy dog. We subsequently found that combination treatment with MK-0812 (an antagonist of CCL2 receptor) and repertaxin (an antagonist of CXCL8 receptors) significantly inhibited the migration of PMNs to SF from IPA dogs. Thus, expression of the CCL2 receptor (chemokine (CC motif) receptor 2 (CCR2)) was examined using polymerase chain reaction and immunocytochemistry. Canine peripheral blood PMNs exhibited significantly higher CCR2 mRNA expression levels than those in monocytes. In addition, we observed strong CCR2 expression on PMNs obtained from healthy controls and IPA dogs, although mononuclear cells did not express CCR2. Taken together, the data suggest that CCL2 acts as a canine PMNs chemotactic factor as well as CXCL8 and both CCL2 and CXCL8 facilitate the infiltration of PMNs into the joints of dogs with IPA. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer.

    PubMed

    Zohny, Samir F; Fayed, Salah T

    2010-12-01

    Ovarian cancer remains a highly lethal disease. The aim of the present study was to evaluate the usefulness of measuring serum matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) in comparison with serum cancer antigen 125 (CA 125) for diagnosis of epithelial ovarian cancer (EOC). This study included 51 patients with EOC, 27 patients with benign ovarian lesions and 29 healthy volunteers. Serum CA 125 was determined by microparticle enzyme immunoassay, while serum MMP-7, CCL18 and CCL11 were measured using enzyme-linked immunosorbent assay. The sensitivity and specificity were 86.3% and 92.9% for CA 125, 80.4% and 87.5% for MMP-7, 84.3% and 91.1% for CCL18 and, 68.6% and 62.5% for CCL11. Combination of CA 125, MMP-7, CCL18 and CCL11 gave a promising sensitivity of 100%, but specificity was decreased to 60.7%. The combined use of serum CA 125, MMP-7, CCL18 and CCL11 effectively detected early stages EOC with high sensitivity of 94.4%. Our data indicate that serum MMP-7, CCL18 and CCL11, in combination with CA 125 could be useful in diagnosis of EOC.

  2. Inactivation of a subpopulation of human neutrophils by exposure to ultrahigh-molecular-weight polyethylene wear debris.

    PubMed

    Bernard, Louis; Vaudaux, Pierre; Huggler, Elzbieta; Stern, Richard; Fréhel, Claude; Francois, Patrice; Lew, Daniel; Hoffmeyer, Pierre

    2007-04-01

    Polymorphonuclear neutrophils, a first line of defence against invading microbial pathogens, may be attracted by inflammatory mediators triggered by ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles released from orthopaedic prostheses. Phagocytosis of UHMWPE particles by neutrophils may indirectly compromise their phagocytic-bactericidal mechanisms, thus enhancing host susceptibility to microbial infections. In an in vitro assay, pre-exposure of purified human neutrophils to UHMWPE micrometre- and submicrometre-sized wear particles interfered with subsequent Staphylococcos aureus uptake in a heterogeneous way, as assessed by a dual label fluorescence microscopic assay that discriminated intracellular rhodamine-labelled UHMWPE particles from fluorescein isothiocyanate-labelled S. aureus. Indeed, a higher percentage (44%) of neutrophils having engulfed UHMWPE particles lost the ability to phagocytize S. aureus, compared with UHMWPE-free neutrophils (<3%). Pre-exposure of neutrophils to UHMWPE wear particles did not impair but rather stimulated their oxidative burst response in a chemoluminescence assay. The presence of UHMWPE wear particles did not lead to significant overall consumption of complement-mediated opsonic factors nor decreased surface membrane display of neutrophil complement receptors. In conclusion, engulfment of UHMWPE wear particles led to inactivation of S. aureus uptake in nearly half of the neutrophil population, which may potentially impair host clearance mechanisms against pyogenic infections.

  3. Direct Macromolecular Drug Delivery to Cerebral Ischemia Area using Neutrophil-Mediated Nanoparticles

    PubMed Central

    Zhang, Chun; Ling, Cheng-li; Pang, Liang; Wang, Qi; Liu, Jing-xin; Wang, Bing-shan; Liang, Jian-ming; Guo, Yi-zhen; Qin, Jing; Wang, Jian-xin

    2017-01-01

    Delivery of macromolecular drugs to the brain is impeded by the blood brain barrier. The recruitment of leukocytes to lesions in the brain, a typical feature of neuroinflammation response which occurs in cerebral ischemia, offers a unique opportunity to deliver drugs to inflammation sites in the brain. In the present study, cross-linked dendrigraft poly-L-lysine (DGL) nanoparticles containing cis-aconitic anhydride-modified catalase and modified with PGP, an endogenous tripeptide that acts as a ligand with high affinity to neutrophils, were developed to form the cl PGP-PEG-DGL/CAT-Aco system. Significant binding efficiency to neutrophils, efficient protection of catalase enzymatic activity from degradation and effective transport to receiver cells were revealed in the delivery system. Delivery of catalase to ischemic subregions and cerebral neurocytes in MCAO mice was significantly enhanced, which obviously reducing infarct volume in MCAO mice. Thus, the therapeutic outcome of cerebral ischemia was greatly improved. The underlying mechanism was found to be related to the inhibition of ROS-mediated apoptosis. Considering that neuroinflammation occurs in many neurological disorders, the strategy developed here is not only promising for treatment of cerebral ischemia but also an effective approach for various CNS diseases related to inflammation. PMID:28900508

  4. Age-associated change of C/EBP family proteins causes severe liver injury and acceleration of liver proliferation after CCl4 treatments.

    PubMed

    Hong, Il-Hwa; Lewis, Kyle; Iakova, Polina; Jin, Jingling; Sullivan, Emily; Jawanmardi, Nicole; Timchenko, Lubov; Timchenko, Nikolai

    2014-01-10

    The aged liver is more sensitive to the drug treatments and has a high probability of developing liver disorders such as fibrosis, cirrhosis, and cancer. Here we present mechanisms underlying age-associated severe liver injury and acceleration of liver proliferation after CCl4 treatments. We have examined liver response to CCl4 treatments using old WT mice and young C/EBPα-S193D knockin mice, which express an aged-like isoform of C/EBPα. Both animal models have altered chromatin structure as well as increased liver injury and proliferation after acute CCl4 treatments. We found that these age-related changes are associated with the repression of key regulators of liver biology: C/EBPα, Farnesoid X Receptor (FXR) and telomere reverse transcriptase (TERT). In quiescent livers of old WT and young S193D mice, the inhibition of TERT is mediated by HDAC1-C/EBPα complexes. After CCl4 treatments, TERT, C/EBPα and FXR are repressed by different mechanisms. These mechanisms include the increase of a dominant negative isoform, C/EBPβ-LIP, and subsequent repression of C/EBPα, FXR, and TERT promoters. C/EBPβ-LIP also disrupts Rb-E2F1 complexes in C/EBPα-S193D mice after CCl4 treatments. To examine if these alterations are involved in drug-mediated liver diseases, we performed chronic treatments of mice with CCl4. We found that C/EBPα-S193D mice developed fibrosis much more rapidly than WT mice. Thus, our data show that the age-associated alterations of C/EBP proteins create favorable conditions for the increased liver proliferation after CCl4 treatments and for development of drug-mediated liver diseases.

  5. Capsule Influences the Deposition of Critical Complement C3 Levels Required for the Killing of Burkholderia pseudomallei via NADPH-Oxidase Induction by Human Neutrophils

    PubMed Central

    Woodman, Michael E.; Worth, Randall G.; Wooten, R. Mark

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis and is a major mediator of sepsis in its endemic areas. Because of the low LD50 via aerosols and resistance to multiple antibiotics, it is considered a Tier 1 select agent by the CDC and APHIS. B. pseudomallei is an encapsulated bacterium that can infect, multiply, and persist within a variety of host cell types. In vivo studies suggest that macrophages and neutrophils are important for controlling B. pseudomallei infections, however few details are known regarding how neutrophils respond to these bacteria. Our goal is to describe the capacity of human neutrophils to control highly virulent B. pseudomallei compared to the relatively avirulent, acapsular B. thailandensis using in vitro analyses. B. thailandensis was more readily phagocytosed than B. pseudomallei, but both displayed similar rates of persistence within neutrophils, indicating they possess similar inherent abilities to escape neutrophil clearance. Serum opsonization studies showed that both were resistant to direct killing by complement, although B. thailandensis acquired significantly more C3 on its surface than B. pseudomallei, whose polysaccharide capsule significantly decreased the levels of complement deposition on the bacterial surface. Both Burkholderia species showed significantly enhanced uptake and killing by neutrophils after critical levels of C3 were deposited. Serum-opsonized Burkholderia induced a significant respiratory burst by neutrophils compared to unopsonized bacteria, and neutrophil killing was prevented by inhibiting NADPH-oxidase. In summary, neutrophils can efficiently kill B. pseudomallei and B. thailandensis that possess a critical threshold of complement deposition, and the relative differences in their ability to resist surface opsonization may contribute to the distinct virulence phenotypes observed in vivo. PMID:23251706

  6. The chemokine CCL2 protects against methylmercury neurotoxicity.

    PubMed

    Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William

    2012-01-01

    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

  7. Modeling the Reaction of Fe Atoms with CCl4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camaioni, Donald M.; Ginovska, Bojana; Dupuis, Michel

    2009-01-05

    The reaction of zero-valent iron with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. Temperature programmed desorption experiments over a range of Fe and CCl4 coverages on a FeO(111) surface, demonstrate a rich surface chemistry with several reaction products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, FeCl3) observed. The reactivity of Fe and CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe with two CCl4 molecules and two Fe with one CCl4, modeling the environment of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed productsmore » and suggest that novel Fe-C-Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity with the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nano-particles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2-) or carbon oxides in water and soil. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  8. Platelet–neutrophil interactions under thromboinflammatory conditions

    PubMed Central

    Li, Jing; Kim, Kyungho; Barazia, Andrew; Tseng, Alan

    2015-01-01

    Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet–neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet–neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet– neutrophil interactions in thromboinflammatory disease. PMID:25650236

  9. Reduced PU.1 expression underlies aberrant neutrophil maturation and function in β-thalassemia mice and patients.

    PubMed

    Siwaponanan, Panjaree; Siegers, Jurre Ynze; Ghazali, Razi; Ng, Thian; McColl, Bradley; Ng, Garrett Zhen-Wei; Sutton, Philip; Wang, Nancy; Ooi, Isabelle; Thiengtavor, Chayada; Fucharoen, Suthat; Chaichompoo, Pornthip; Svasti, Saovaros; Wijburg, Odilia; Vadolas, Jim

    2017-06-08

    β-Thalassemia is associated with several abnormalities of the innate immune system. Neutrophils in particular are defective, predisposing patients to life-threatening bacterial infections. The molecular and cellular mechanisms involved in impaired neutrophil function remain incompletely defined. We used the Hbb th3/+ β-thalassemia mouse and hemoglobin E (HbE)/β-thalassemia patients to investigate dysregulated neutrophil activity. Mature neutrophils from Hbb th3/+ mice displayed a significant reduction in chemotaxis, opsonophagocytosis, and production of reactive oxygen species, closely mimicking the defective immune functions observed in β-thalassemia patients. In Hbb th3/+ mice, the expression of neutrophil CXCR2, CD11b, and reduced NAD phosphate oxidase components (p22phox, p67phox, and gp91phox) were significantly reduced. Morphological analysis of Hbb th3/+ neutrophils showed that a large percentage of mature phenotype neutrophils (Ly6G hi Ly6C low ) appeared as band form cells, and a striking expansion of immature (Ly6G low Ly6C low ) hyposegmented neutrophils, consisting mainly of myelocytes and metamyelocytes, was noted. Intriguingly, expression of an essential mediator of neutrophil terminal differentiation, the ets transcription factor PU.1, was significantly decreased in Hbb th3/+ neutrophils. In addition, in vivo infection with Streptococcus pneumoniae failed to induce PU.1 expression or upregulate neutrophil effector functions in Hbb th3/+ mice. Similar changes to neutrophil morphology and PU.1 expression were observed in splenectomized and nonsplenectomized HbE/β-thalassemia patients. This study provides a mechanistic insight into defective neutrophil maturation in β-thalassemia patients, which contributes to deficiencies in neutrophil effector functions. © 2017 by The American Society of Hematology.

  10. CCL19/CCR7 contributes to the pathogenesis of endometriosis via PI3K/Akt pathway by regulating the proliferation and invasion of ESCs.

    PubMed

    Diao, Ruiying; Wei, Weixia; Zhao, Jinghui; Tian, Fuying; Cai, Xueyong; Duan, Yong-Gang

    2017-11-01

    The level of CCL19 increased in the peritoneal fluid of women with endometriosis, but the precise mechanism of CCL19/CCR7 in the pathogenesis of endometriosis remains unknown. ELISA and immunohistochemistry were performed to analyze CCL19/CCR7 expressions in peritoneal fluid and endometrium from women with endometriosis (n = 38) and controls (n = 32). Cell proliferation and transwell invasion assays were applied to detect proliferation and invasion of human endometrial stromal cells (ESCs). Expressions of Bcl2, MMP2, MMP9, and p-AKT/AKT were analyzed by Western blot. Peritoneal fluid concentration of CCL19 in patients with endometriosis was higher than that in controls. Those patients with moderate/severe endometriosis had significantly higher peritoneal fluid concentrations of CCL19 compared to those with minimal/mild endometriosis. Higher CCL19 and CCR7 were found in the endometrium with endometriosis compared to control. CCL19 significantly enhanced ESC proliferation and invasion through CCR7 via activating PI3K/Akt signal pathways. CCL19/CCR7 interaction significantly enhanced phosphorylation of Akt, Bcl2, MMP2, and MMP9 in ESCs. These data indicate CCL19/CCR7 contributes to proliferation and invasion of ESCs, which are conducive to the pathogenesis of endometriosis through activating PI3K/Akt pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Biréfringence électrique et polarisabilités moléculaires de CF2Cl-CCl3

    NASA Astrophysics Data System (ADS)

    Benoit-Denis, Anne-Marie

    Nous nous proposons de déterminer les valeurs des polarisabilités moléculaires relatives aux trois radiations principales de l'arc au mercure, ainsi que la direction des axes de l'ellipsoïde de polarisabilité optique de CF2Cl-CCl3, à partir des résultats de mesures d'effet Kerr de ce composé à l'état liquide. La biréfringence électrique de CF2Cl-CCl3 change de signe à la température T0=295 K. Ainsi nous obtenons une relation supplémentaire très utile entre les valeurs principales du tenseur de polarisabilité. Nous utilisons pour l'expression de la constante de Kerr la formule de Langevin-Born et faisons appel à la théorie des polarisabilités de liaisons pour calculer la valeur de la polarisabilité principale normale au plan de symétrie de CF2Cl-CCl3.

  12. Intestinal CCL11 and eosinophilic inflammation is regulated by myeloid cell-specific RelA/p65 in mice.

    PubMed

    Waddell, Amanda; Ahrens, Richard; Tsai, Yi-Ting; Sherrill, Joseph D; Denson, Lee A; Steinbrecher, Kris A; Hogan, Simon P

    2013-05-01

    In inflammatory bowel diseases (IBDs), particularly ulcerative colitis, intestinal macrophages (MΦs), eosinophils, and the eosinophil-selective chemokine CCL11, have been associated with disease pathogenesis. MΦs, a source of CCL11, have been reported to be of a mixed classical (NF-κB-mediated) and alternatively activated (STAT-6-mediated) phenotype. The importance of NF-κB and STAT-6 pathways to the intestinal MΦ/CCL11 response and eosinophilic inflammation in the histopathology of experimental colitis is not yet understood. Our gene array analyses demonstrated elevated STAT-6- and NF-κB-dependent genes in pediatric ulcerative colitis colonic biopsies. Dextran sodium sulfate (DSS) exposure induced STAT-6 and NF-κB activation in mouse intestinal F4/80(+)CD11b(+)Ly6C(hi) (inflammatory) MΦs. DSS-induced CCL11 expression, eosinophilic inflammation, and histopathology were attenuated in RelA/p65(Δmye) mice, but not in the absence of STAT-6. Deletion of p65 in myeloid cells did not affect inflammatory MΦ recruitment or alter apoptosis, but did attenuate LPS-induced cytokine production (IL-6) and Ccl11 expression in purified F4/80(+)CD11b(+)Ly6C(hi) inflammatory MΦs. Molecular and cellular analyses revealed a link between expression of calprotectin (S100a8/S100a9), Ccl11 expression, and eosinophil numbers in the DSS-treated colon. In vitro studies of bone marrow-derived MΦs showed calprotectin-induced CCL11 production via a p65-dependent mechanism. Our results indicate that myeloid cell-specific NF-κB-dependent pathways play an unexpected role in CCL11 expression and maintenance of eosinophilic inflammation in experimental colitis. These data indicate that targeting myeloid cells and NF-κB-dependent pathways may be of therapeutic benefit for the treatment of eosinophilic inflammation and histopathology in IBD.

  13. Intestinal CCL11 and eosinophilic inflammation is regulated by myeloid cell-specific RelA/p65 in mice

    PubMed Central

    Waddell, Amanda; Ahrens, Richard; Tsai, Yi Ting; Sherrill, Joseph D.; Denson, Lee A.; Steinbrecher, Kris A.; Hogan, Simon P.

    2014-01-01

    In inflammatory bowel diseases (IBD), particularly ulcerative colitis (UC), intestinal macrophages (MΦs), eosinophils and the eosinophil-selective chemokine CCL11 have been associated with disease pathogenesis. MΦs, a source of CCL11, have been reported to be of a mixed classical (NF-κB-mediated) and alternatively activated (STAT-6-mediated) phenotype. The importance of NF-κB and STAT-6 pathways to the intestinal MΦ/CCL11 response and eosinophilic inflammation in the histopathology of experimental colitis is not yet understood. Our gene array analyses demonstrated elevated STAT-6- and NF-κB-dependent genes in pediatric UC colonic biopsies. Dextran sodium sulphate (DSS) exposure induced STAT-6 and NF-κB activation in mouse intestinal F4/80+CD11b+Ly6Chi (inflammatory) MΦs. DSS-induced CCL11 expression, eosinophilic inflammation and histopathology were attenuated in RelA/p65Δmye mice but not in the absence of STAT-6. Deletion of p65 in myeloid cells did not affect inflammatory MΦ recruitment or alter apoptosis, but did attenuate lipopolysaccharide-induced cytokine production (IL-6) and Ccl11 expression in purified F4/80+CD11b+Ly6Chi inflammatory MΦs. Molecular and cellular analyses revealed a link between expression of calprotectin (S100a8/S100a9), Ccl11 expression and eosinophil numbers in the DSS-treated colon. In vitro studies of bone marrow-derived MΦs showed calprotectin-induced CCL11 production via a p65-dependent mechanism. Our results indicate that myeloid cell-specific NF-κB-dependent pathways play an unexpected role in CCL11 expression and maintenance of eosinophilic inflammation in experimental colitis. These data indicate that targeting myeloid cells and NF-κB-dependent pathways may be of therapeutic benefit for the treatment of eosinophilic inflammation and histopathology in IBD. PMID:23562811

  14. IL-4 Modulates CCL11 and CCL20 Productions from IL-1β-Stimulated Human Periodontal Ligament Cells.

    PubMed

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2016-01-01

    IL-4 is a multifunctional cytokine that is related with the pathological conditions of periodontal disease. However, it is uncertain whether IL-4 could control T cells migration in periodontal lesions. The aim of this study was to examine the effects of IL-4 on CCL11, which is a Th2-type chemokine, and CCL20, which is related with Th17 cells migration, productions from human periodontal ligament cells (HPDLCs). CCL20 and CCL11 productions from HPDLCs were monitored by ELISA. Western blot analysis was performed to detect phosphorylations of signal transduction molecules in HPDLCs. IL-1β could induce both CCL11 and CCL20 productions in HPDLCs. IL-4 enhanced CCL11 productions from IL-1β-stimulated HPDLCs, though IL-4 inhibited CCL20 production. Western blot analysis showed that protein kinase B (Akt) and signal transducer and activator of transcription (STAT)6 pathways were highly activated in IL-4/IL-1β-stimulated HPDLCs. Akt and STAT6 inhibitors decreased CCL11 production, but enhanced CCL20 production in HPDLCs stimulated with IL-4 and IL-1β. These results mean that IL-4 enhanced Th2 cells migration in periodontal lesion to induce CCL11 production from HPDLCs. On the other hand, IL-4 inhibits Th17 cells accumulation in periodontally diseased tissues to inhibit CCL20 production. Therefore, IL-4 is positively related with the pathogenesis of periodontal disease to control chemokine productions in periodontal lesions. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Methyl helicterate protects against CCl4-induced liver injury in rats by inhibiting oxidative stress, NF-κB activation, Fas/FasL pathway and cytochrome P4502E1 level.

    PubMed

    Lin, Xing; Huang, Renbin; Zhang, Shijun; Zheng, Li; Wei, Ling; He, Min; Zhou, Yan; Zhuo, Lang; Huang, Quanfang

    2012-10-01

    This study was designed to investigate the protective effects of the methyl helicterate (MH) isolated from Helicteres angustifolia L. against CCl4-induced hepatotoxicities in rats. Liver injury was induced in rats by the administration of CCl4 twice a week for 8 weeks. Compared with the CCl4 group, MH significantly decreased the activities of ALT, AST and ALP in the serum and increased the activities of SOD, GSH-Px and GSH-Rd in the liver. Moreover, the content of hepatic MDA was reduced. Histological findings also confirmed the anti-hepatotoxic characterisation. In addition, MH significantly inhibited the proinflammatory mediators, such as PGE2, iNOS, COX-2, IL-6, TNF-α and myeloperoxidase (MPO). Further investigation showed that the inhibitory effect of MH on the proinflammatory cytokines was associated with the downregulation of NF-κB. Besides, MH also markedly decreased the levels of Fas/FasL protein expression and the activities of caspase-3/8, as well as the activity of cytochrome P4502E1 (CYP2E1). In brief, the protective effect of MH against CCl4-induced hepatic injury may rely on its ability to reduce oxidative stress, suppress inflammatory responses, protect against Fas/FasL-mediated apoptosis and block CYP2El-mediated CCl4 bioactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Thalidomide enhances both primary and secondary host resistances to Listeria monocytogenes infection by a neutrophil-related mechanism in female B6C3F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Tai L.; Chi, Rui P.; Karrow, Niel A.

    2005-12-15

    Previously, we have reported that thalidomide can modulate the immune responses in female B6C3F1 mice. Furthermore, thalidomide immunomodulation increased primary host resistance to intravenously infected Listeria monocytogenes. The present study was intended to evaluate the mechanisms underlying the enhanced host resistance to L. monocytogenes by focusing on the neutrophils. Female B6C3F1 mice were treated intraperitoneally with thalidomide (100 mg/kg) for 15 days. Exposure to thalidomide increased the numbers of neutrophils in the spleens and livers of L. monocytogenes-infected mice when compared to the L. monocytogenes-infected control mice. Additionally, the percentage of neutrophils was also significantly increased after Thd treatment inmore » L. monocytogenes-infected mice. Further studies using antibodies to deplete corresponding cells indicated that thalidomide-mediated increase in primary host resistance (both the moribundity and colony counts in the liver and spleen) to L. monocytogenes infection was due to its effect on neutrophils but not CD8{sup +} T cells or NK cells. Finally, Thd exposure also increased host resistance to secondary host resistance to L. monocytogenes infection, and depletion of neutrophils abolished the protective effect. In conclusion, thalidomide enhanced host resistance to both primary and secondary L. monocytogenes infections by a neutrophil-related mechanism in female B6C3F1 mice.« less

  17. The IκB family member Bcl-3 coordinates the pulmonary defense against Klebsiella pneumoniae infection.

    PubMed

    Pène, Frédéric; Paun, Andrea; Sønder, Søren Ulrik; Rikhi, Nimisha; Wang, Hongshan; Claudio, Estefania; Siebenlist, Ulrich

    2011-02-15

    Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.

  18. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  19. Tumor-Associated Neutrophils in Human Lung Cancer

    DTIC Science & Technology

    2017-10-01

    tumor inflammation, anti-tumor neutrophils, anti-tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction...Ottonello, 1992; van Egmond and Bakema, 2013) and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system...dependent cell -mediated cytotoxicity (ADCC) [16], (iii) produce factors to recruit and activate cells of the innate and adaptive immune systems [17], and

  20. Observational Study of the Genetic Architecture of Neutrophil-Mediated Inflammatory Skin Diseases

    ClinicalTrials.gov

    2016-09-26

    Other Specified Inflammatory Disorders of Skin or Subcutaneous Tissue; Pyoderma Gangrenosum; Erosive Pustular Dermatosis of the Scalp; Sweet's Syndrome; Behcet's Disease; Bowel-associated Dermatosis-arthritis Syndrome; Pustular Psoriasis; Acute Generalized Exanthematous Pustulosis; Keratoderma Blenorrhagicum; Sneddon-Wilkinson Disease; IgA Pemphigus; Amicrobial Pustulosis of the Folds; Infantile Acropustulosis; Transient Neonatal Pustulosis; Neutrophilic Eccrine Hidradenitis; Rheumatoid Neutrophilic Dermatitis; Neutrophilic Urticaria; Still's Disease; Erythema Marginatum; Unclassified Periodic Fever Syndromes / Autoinflammatory Syndromes; Dermatitis Herpetiformis; Linear IgA Bullous Dermatosis; Bullous Systemic Lupus Erythematosus; Inflammatory Epidermolysis Bullosa Aquisita; Neutrophilic Dermatosis of the Dorsal Hands (Pustular Vasculitis); Small Vessel Vasculitis Including Urticarial Vasculitis; Erythema Elevatum Diutinum; Medium Vessel Vasculitis

  1. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.

    PubMed

    Wang, Li-Hong; Lin, Chih-Yang; Liu, Shih-Chia; Liu, Guan-Ting; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-06-14

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.

  2. LTB(4)-induced nasal gland serous cell secretion mediated by neutrophil elastase.

    PubMed

    Cardell, L O; Agustí, C; Takeyama, K; Stjärne, P; Nadel, J A

    1999-08-01

    Local allergen challenge causes nasal hypersecretion and also causes local leukotriene (LT) release, including LTB(4). Because LTB(4) causes leukocyte recruitment, and because neutrophil elastase is a potent secretagogue, we examined the hypothesis that LTB(4) causes nasal hypersecretion via neutrophil elastase. We developed a method for isolating and superfusing a nasal segment in dogs. Instillation of LTB(4) into the nasal segment caused a time-dependent increase in the volume of airway fluid, in lysozyme secretion, and in the recruitment of neutrophils. ICI 200,355, a selective inhibitor of neutrophil elastase, prevented LTB(4)-induced nasal secretion and lysozyme secretion, but it had no effect on neutrophil recruitment. We conclude that LTB(4) causes potent nasal secretion via release of elastase, and therefore LTB(4) may play a major role in allergic nasal hypersecretion.

  3. Age-associated Change of C/EBP Family Proteins Causes Severe Liver Injury and Acceleration of Liver Proliferation after CCl4 Treatments*

    PubMed Central

    Hong, Il-Hwa; Lewis, Kyle; Iakova, Polina; Jin, Jingling; Sullivan, Emily; Jawanmardi, Nicole; Timchenko, Lubov; Timchenko, Nikolai

    2014-01-01

    The aged liver is more sensitive to the drug treatments and has a high probability of developing liver disorders such as fibrosis, cirrhosis, and cancer. Here we present mechanisms underlying age-associated severe liver injury and acceleration of liver proliferation after CCl4 treatments. We have examined liver response to CCl4 treatments using old WT mice and young C/EBPα-S193D knockin mice, which express an aged-like isoform of C/EBPα. Both animal models have altered chromatin structure as well as increased liver injury and proliferation after acute CCl4 treatments. We found that these age-related changes are associated with the repression of key regulators of liver biology: C/EBPα, Farnesoid X Receptor (FXR) and telomere reverse transcriptase (TERT). In quiescent livers of old WT and young S193D mice, the inhibition of TERT is mediated by HDAC1-C/EBPα complexes. After CCl4 treatments, TERT, C/EBPα and FXR are repressed by different mechanisms. These mechanisms include the increase of a dominant negative isoform, C/EBPβ-LIP, and subsequent repression of C/EBPα, FXR, and TERT promoters. C/EBPβ-LIP also disrupts Rb-E2F1 complexes in C/EBPα-S193D mice after CCl4 treatments. To examine if these alterations are involved in drug-mediated liver diseases, we performed chronic treatments of mice with CCl4. We found that C/EBPα-S193D mice developed fibrosis much more rapidly than WT mice. Thus, our data show that the age-associated alterations of C/EBP proteins create favorable conditions for the increased liver proliferation after CCl4 treatments and for development of drug-mediated liver diseases. PMID:24273171

  4. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+

    PubMed Central

    DeSouza-Vieira, Thiago; Guimarães-Costa, Anderson; Rochael, Natalia C.; Lira, Maria N.; Nascimento, Michelle T.; Lima-Gomez, Phillipe de Souza; Mariante, Rafael M.; Persechini, Pedro M.; Saraiva, Elvira M.

    2016-01-01

    Upon in vitro stimulation, neutrophils undergo a cell death named netosis. This process is characterized by extracellular release of chromatin scaffold associated with granular and cytoplasmic proteins, which together, ensnare and kill microbes. We have previously described that interaction of Leishmania amazonensis with human neutrophils leads to the release of neutrophil extracellular traps, which trap and kill the parasite. However, the signaling leading to Leishmania induced netosis is still unknown. Thus, we sought to evaluate signaling events that drive L. amazonensis induced neutrophil extracellular trap release from human neutrophils. Here, we found that PI3K, independently of protein kinase B, has a role in parasite-induced netosis. We also described that the main isoforms involved are PI3Kγ and PI3Kδ, which work in reactive oxygen species-dependent and -independent ways, respectively. We demonstrated that activation of ERK downstream of PI3Kγ is important to trigger reactive oxygen species-dependent, parasite-induced netosis. Pharmacological inhibition of protein kinase C also significantly decreased parasite-induced neutrophil extracellular trap release. Intracellular calcium, regulated by PI3Kδ, represents an alternative reactive oxygen species-independent pathway of netosis stimulated by L. amazonensis. Finally, intracellular calcium mobilization and reactive oxygen species generation are the major regulators of parasite-induced netosis. Our results contribute to a better understanding of the signaling behind netosis induced by interactions between Leishmania and neutrophils. PMID:27154356

  5. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion.

    PubMed

    Pineau, Isabelle; Sun, Libo; Bastien, Dominic; Lacroix, Steve

    2010-05-01

    CNS injury stimulates the expression of several proinflammatory cytokines and chemokines, some of which including MCP-1 (also known as CCL2), KC (CXCL1), and MIP-2 (CXCL2) act to recruit Gr-1(+) leukocytes at lesion sites. While earlier studies have reported that neutrophils and monocytes/macrophages contribute to secondary tissue loss after spinal cord injury (SCI), recent work has shown that depletion of Gr-1(+) leukocytes compromised tissue healing and worsened functional recovery. Here, we demonstrate that astrocytes distributed throughout the spinal cord initially contribute to early neuroinflammation by rapidly synthesizing MCP-1, KC, and MIP-2, from 3 up to 12h post-SCI. Chemokine expression by astrocytes was followed by the infiltration of blood-derived immune cells, such as type I "inflammatory" monocytes and neutrophils, into the lesion site and nearby damaged areas. Interestingly, astrocytes from mice deficient in MyD88 signaling produced significantly less MCP-1 and MIP-2 and were unable to synthesize KC. Analysis of the contribution of MyD88-dependent receptors revealed that the astrocytic expression of MCP-1, KC, and MIP-2 was mediated by the IL-1 receptor (IL-1R1), and not by TLR2 or TLR4. Flow cytometry analysis of cells recovered from the spinal cord of MyD88- and IL-1R1-knockout mice confirmed the presence of significantly fewer type I "inflammatory" monocytes and the almost complete absence of neutrophils at 12h and 4days post-SCI. Together, these results indicate that MyD88/IL-1R1 signals regulate the entry of neutrophils and, to a lesser extent, type I "inflammatory" monocytes at sites of SCI. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Neutrophil mediated IFN activation in the bone marrow alters B cell development in human and murine SLE1

    PubMed Central

    Palanichamy, Arumugam; Bauer, Jason W; Yalavarthi, Srilakshmi; Meednu, Nida; Barnard, Jennifer; Owen, Teresa; Cistrone, Christopher; Bird, Anna; Rabinovich, Alfred; Nevarez, Sarah; Knight, Jason S.; Dedrick, Russell; Rosenberg, Alexander; Wei, Chungwen; Rangel-Moreno, Javier; Liesveld, Jane; Sanz, Inaki; Baechler, Emily; Kaplan, Mariana J.; Anolik, Jennifer H

    2014-01-01

    Inappropriate activation of type I interferon (IFN) plays a key role in the pathogenesis of autoimmune disease, including systemic lupus erythematosus (SLE). Here we report the presence of IFN activation in SLE bone marrow (BM), as measured by an IFN gene signature, increased IFN regulated chemokines, and direct production of IFN by BM resident cells, associated with profound changes in B cell development. The majority of SLE patients had an IFN signature in the BM that was more pronounced than the paired peripheral blood (PB) and correlated with both higher autoantibodies and disease activity. Pronounced alterations in B cell development were noted in SLE in the presence of an IFN signature with a reduction in the fraction of pro/pre B cells suggesting an inhibition in early B cell development and an expansion of B cells at the transitional (T2) stage. These B cell changes strongly correlated with an increase in BAFF and APRIL expression in the IFN high BM. Furthermore, we found that BM neutrophils in SLE were prime producers of IFN-α and B cell factors. In NZM lupus-prone mice similar changes in B cell development were observed and mediated by IFN, given abrogation in NZM mice lacking type I IFN receptor. BM neutrophils were abundant, responsive to and producers of IFN, in close proximity to B cells. These results indicate that the BM is an important but previously unrecognized target organ in SLE with neutrophil mediated IFN activation and alterations in B cell ontogeny and selection. PMID:24379124

  7. Neutrophil-derived cytokines involved in physiological and pathological angiogenesis.

    PubMed

    Tecchio, Cristina; Cassatella, Marco Antonio

    2014-01-01

    Increasing data from the literature point to a neutrophil-mediated role via cytokine production in several aspects of mammalian biology, including angiogenesis. In such regard, neutrophils have been shown to synthetize and release a number of molecules able to promote, directly or indirectly, the growth and migration of endothelial cells, in turn inducing the formation of new blood vessels from preexisting ones. Interestingly, neutrophil-derived cytokines can be involved either in physiological or in pathological angiogenesis, depending on either the functioning or dysregulation of sophisticated interplays among different cell types, extracellular matrix and soluble mediators within the microenvironment. Our review resumes the most interesting studies elucidating the role of neutrophil-derived cytokines in human physiological and pathological angiogenesis. When appropriate, supporting observations generated in animal models will be also mentioned. Particular emphasis will be given to VEGF and PK2/Bv8, rather than CXCL8/IL-8 and OSM. We will also discuss the potential role of neutrophil-derived cytokines such as FGF2, Ang1 and IL-17, whose roles in angiogenesis - albeit anticipated - remain to be elucidated. Copyright © 2014 S. Karger AG, Basel.

  8. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells.

    PubMed

    Chihara, Kazuyasu; Kato, Yuji; Yoshiki, Hatsumi; Takeuchi, Kenji; Fujieda, Shigeharu; Sada, Kiyonao

    2017-09-13

    The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.

  9. Rebamipide retards CCl4-induced hepatic fibrosis in rats: Possible role for PGE2.

    PubMed

    Zakaria, Sherin; El-Sisi, Alaa

    2016-07-01

    Prostaglandin E2 (PGE2) is a potent physiological suppressor of liver fibrosis. Because the anti-ulcer drug rebamipide can induce the formation of endogenous PGE2, this study investigated the potential effects of rebamipide on development of a hepatic fibrosis that was inducible by carbon tetrachloride (CCl4). Groups of Wistar rats received intraperitoneal (IP) injections of CCl4 (0.45 ml/kg [0.72 g CCl4/kg]) over the course of for 4 weeks. Sub-sets of CCl4-treated rats were also treated concurrently with rebamipide at 60 or 100 mg/kg. At 24 h after the final treatments, liver function and oxidative stress were indirectly assessed. The extent of hepatic fibrosis was evaluated using two fibrotic markers, hyaluronic acid (HA) and pro-collagen-III (Procol-III); isolated liver tissues underwent histology and were evaluated for interleukin (IL)-10 and PGE2 content. The results indicated that treatment with rebamipide significantly inhibited CCl4-induced increases in serum ALT and AST and also reduced oxidative stress induced by CCl4. Fibrotic marker assays revealed that either dose of rebamipide decreased the host levels of Procol-III and HA that had become elevated due to the CCl4. At the higher dose tested, rebamipide appeared to be able to permit the hosts to have a normal liver histology and to minimize any CCl4-induced collagen precipitation in the liver. Lastly, the use of rebamipide was seen to be associated with significant increases in liver levels of both PGE2 and the anti-inflammatory cytokine IL-10. Based on these findings, it is concluded that rebamipide can retard hepatic fibrosis induced by CCl4 and that this effect may, in part, be mediated by an induction of PGE2 and IL-10 in the liver itself.

  10. Polymorphisms of CCL3L1/CCR5 genes and recurrence of hepatitis B in liver transplant recipients.

    PubMed

    Li, Hong; Xie, Hai-Yang; Zhou, Lin; Wang, Wei-Lin; Liang, Ting-Bo; Zhang, Min; Zheng, Shu-Sen

    2011-12-01

    The genetic diversity of chemokines and chemokine receptors has been associated with the outcome of hepatitis B virus infection. The aim of this study was to evaluate whether the copy number variation in the CCL3L1 gene and the polymorphisms of CCR5Δ32 and CCR5-2459A→G (rs1799987) are associated with recurrent hepatitis B in liver transplantation for hepatitis B virus infection-related end-stage liver disease. A total of 185 transplant recipients were enrolled in this study. The genomic DNA was extracted from whole blood, the copy number of the CCL3L1 gene was determined by a quantitative real-time PCR based assay, CCR5Δ32 was detected by a sizing PCR method, and a single-nucleotide polymorphism in CCR5-2459 was detected by restriction fragment length polymorphism PCR. No CCR5Δ32 mutation was detected in any of the individuals from China. Neither copy number variation nor polymorphism in CCR5-2459 was associated with post-transplant re-infection with hepatitis B virus. However, patients with fewer copies (<4) of the CCL3L1 gene compared with the population median in combination with the CCR5G allele had a significantly higher risk for recurrent hepatitis B (odds ratio=1.93, 95% CI: 1.00-3.69; P=0.047). Patients possessing the compound decreased functional genotype of both CCL3L1 and CCR5 genes might be more likely to have recurrence of hepatitis B after transplantation.

  11. CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-infected individuals.

    PubMed

    Kulkarni, Hemant; Agan, Brian K; Marconi, Vincent C; O'Connell, Robert J; Camargo, Jose F; He, Weijing; Delmar, Judith; Phelps, Kenneth R; Crawford, George; Clark, Robert A; Dolan, Matthew J; Ahuja, Sunil K

    2008-09-08

    Whether vexing clinical decision-making dilemmas can be partly addressed by recent advances in genomics is unclear. For example, when to initiate highly active antiretroviral therapy (HAART) during HIV-1 infection remains a clinical dilemma. This decision relies heavily on assessing AIDS risk based on the CD4+ T cell count and plasma viral load. However, the trajectories of these two laboratory markers are influenced, in part, by polymorphisms in CCR5, the major HIV coreceptor, and the gene copy number of CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine. Therefore, we determined whether accounting for both genetic and laboratory markers provided an improved means of assessing AIDS risk. In a prospective, single-site, ethnically-mixed cohort of 1,132 HIV-positive subjects, we determined the AIDS risk conveyed by the laboratory and genetic markers separately and in combination. Subjects were assigned to a low, moderate or high genetic risk group (GRG) based on variations in CCL3L1 and CCR5. The predictive value of the CCL3L1-CCR5 GRGs, as estimated by likelihood ratios, was equivalent to that of the laboratory markers. GRG status also predicted AIDS development when the laboratory markers conveyed a contrary risk. Additionally, in two separate and large groups of HIV+ subjects from a natural history cohort, the results from additive risk-scoring systems and classification and regression tree (CART) analysis revealed that the laboratory and CCL3L1-CCR5 genetic markers together provided more prognostic information than either marker alone. Furthermore, GRGs independently predicted the time interval from seroconversion to CD4+ cell count thresholds used to guide HAART initiation. The combination of the laboratory and genetic markers captures a broader spectrum of AIDS risk than either marker alone. By tracking a unique aspect of AIDS risk distinct from that captured by the laboratory parameters, CCL3L1-CCR5 genotypes may have utility in HIV clinical management

  12. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1

    PubMed Central

    El Rayes, Tina; Catena, Raúl; Lee, Sharrell; Stawowczyk, Marcin; Joshi, Natasha; Fischbach, Claudia; Powell, Charles A.; Dannenberg, Andrew J.; Altorki, Nasser K.; Gao, Dingcheng; Mittal, Vivek

    2015-01-01

    Inflammation is inextricably associated with primary tumor progression. However, the contribution of inflammation to tumor outgrowth in metastatic organs has remained underexplored. Here, we show that extrinsic inflammation in the lungs leads to the recruitment of bone marrow-derived neutrophils, which degranulate azurophilic granules to release the Ser proteases, elastase and cathepsin G, resulting in the proteolytic destruction of the antitumorigenic factor thrombospondin-1 (Tsp-1). Genetic ablation of these neutrophil proteases protected Tsp-1 from degradation and suppressed lung metastasis. These results provide mechanistic insights into the contribution of inflammatory neutrophils to metastasis and highlight the unique neutrophil protease–Tsp-1 axis as a potential antimetastatic therapeutic target. PMID:26668367

  13. Sexy again: the renaissance of neutrophils in psoriasis.

    PubMed

    Schön, Michael P; Broekaert, Sigrid M C; Erpenbeck, Luise

    2017-04-01

    Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short-lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL-17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The Seasonal and Interannual Variability of the Budgets of N2O and CCl3F

    NASA Technical Reports Server (NTRS)

    Wong, Sun; Prather, Michael J.; Rind, David H.

    1999-01-01

    The 6-year wind archives from the Goddard Institute for Space Studies/Global Climate-Middle Atmosphere Model (GISS/GCMAM) were in- put to the GISS/Harvard/Irvine Chemical Transport Model (G/H/I CTM) to study the seasonal and interannual variability of the budgets and distributions of nitrous oxide (N2O) and trichlorofluoromethane (CCl3F), with the corresponding chemical loss frequencies recycled and boundary conditions kept unchanged from year to year. The effects of ozone feedback and quasi-biennial oscillation (QBO) were not included. However, the role of circulation variation in driving the lifetime variability is investigated. It was found that the global loss rates of these tracers are related to the extratropical planetary wave activity, which drives the tropical upward mass flux. For N2O, a semiannual signal in the loss rate variation is associated with the interhemispheric asymmetry in the upper stratospheric wave activity. For CCl3F, the semiannual signal is weaker, associated with the comparatively uniform wave episodes in the lower stratosphere. The loss rates lag behind the wave activity by about 1-2 months. The interannual variation of the GCM generated winds drives the interannual variation of the annually averaged lifetime. The year-to-year variations of the annually averaged lifetimes can be about 3% for N2O and 4% for CCl3F.

  15. Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury.

    PubMed

    Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu; Hecquet, Claudie M; Soni, Dheeraj; Rehman, Jalees; Tiruppathi, Chinnaswamy; Malik, Asrar B

    2017-10-13

    TRPM2 (transient receptor potential melastatin-2) expressed in endothelial cells (ECs) is a cation channel mediating Ca 2+ entry in response to intracellular generation of adenosine diphosphoribose-the TRPM2 ligand. Because polymorphonuclear neutrophils (PMN) interaction with ECs generates reactive oxygen species, we addressed the possible role of TRPM2 expressed in ECs in the mechanism of transendothelial migration of PMNs. We observed defective PMN transmigration in response to lipopolysaccharide challenge in adult mice in which the EC expressed TRPM2 is conditionally deleted ( Trpm2 iΔEC ). PMN interaction with ECs induced the entry of Ca 2+ in ECs via the EC-expressed TRPM2. Prevention of generation of adenosine diphosphoribose in ECs significantly reduced Ca 2+ entry in response to PMN activation of TRPM2 in ECs. PMNs isolated from gp91phox -/- mice significantly reduced Ca 2+ entry in ECs via TRPM2 as compared with wild-type PMNs and failed to induce PMN transmigration. Overexpression of the adenosine diphosphoribose insensitive TRPM2 mutant channel (C1008→A) in ECs suppressed the Ca 2+ entry response. Further, the forced expression of TRPM2 mutant channel (C1008→A) or silencing of poly ADP-ribose polymerase in ECs of mice prevented PMN transmigration. Thus, endotoxin-induced transmigration of PMNs was secondary to TRPM2-activated Ca 2+ signaling and VE-cadherin phosphorylation resulting in the disassembly of adherens junctions and opening of the paracellular pathways. These results suggest blocking TRPM2 activation in ECs is a potentially important means of therapeutically modifying PMN-mediated vascular inflammation. © 2017 American Heart Association, Inc.

  16. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    PubMed

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin. © Society for Leukocyte Biology.

  17. Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases

    PubMed Central

    Horwitz, Marshall S.; Jenne, Dieter E.; Gauthier, Francis

    2010-01-01

    Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies. PMID:21079042

  18. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Debbie L.; Gerriets, Joan E.; Schelegle, Edward S.

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage,more » eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: Black-Right-Pointing-Pointer Ozone can modulate the localization of eosinophils in infant allergic airways. Black-Right-Pointing-Pointer Expression of eotaxins within the lung is affected by ozone and allergen exposure. Black-Right-Pointing-Pointer CCL24

  19. Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung

    PubMed Central

    Roy, René M.; Wüthrich, Marcel; Klein, Bruce S.

    2012-01-01

    Chitin exposure in the lung induces eosinophilia and alternative activation of macrophages, and is correlated with allergic airway disease. However, the mechanism underlying chitin-induced polarization of macrophages is poorly understood. Here, we show that chitin induces alternative activation of macrophages in vivo, but does not do so directly in vitro. We further show that airway epithelial cells bind chitin in vitro and produce CCL2 in response to chitin both in vitro and in vivo. Supernatants of chitin exposed epithelial cells promoted alternative activation of macrophages in vitro, whereas antibody neutralization of CCL2 in the supernate abolished the alternative activation of macrophages. CCL2 acted redundantly in vivo, but mice lacking the CCL2 receptor, CCR2, showed impaired alternative activation of macrophages in response to chitin, as measured by arginase I, CCL17 and CCL22 expression. Furthermore, CCR2KO mice exposed to chitin had diminished ROS products in the lung, blunted eosinophil and monocyte recruitment, and impaired eosinophil functions as measured by expression of CCL5, IL13 and CCL11. Thus, airway epithelial cells secrete CCL2 in response to chitin and CCR2 signaling mediates chitin-induced alternative activation of macrophages and allergic inflammation in vivo. PMID:22851704

  20. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Liu, Shih-Chia; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-01-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma. PMID:27166194

  1. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations.

    PubMed

    Chang, Hun Soo; Lee, Tae-Hyeong; Jun, Ji Ae; Baek, Ae Rin; Park, Jong-Sook; Koo, So-My; Kim, Yang-Ki; Lee, Ho Sung; Park, Choon-Sik

    2017-01-01

    Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.

  2. Ceramide does not mediate the effect of tumour necrosis factor alpha on superoxide generation in human neutrophils.

    PubMed Central

    Yanaga, F; Watson, S P

    1994-01-01

    The effect of tumour necrosis factor alpha (TNF alpha) on superoxide generation in human neutrophils was investigated using the Nitro Blue Tetrazolium reduction assay. TNF alpha stimulated superoxide generation in a time- and concentration-dependent fashion. The maximally effective concentration of TNF alpha for superoxide generation was 10 nM and maximal response was obtained after 15-20 min. The monoclonal antibody (mAb), utr-1, which was raised against the 75 kDa receptor and behaves as an antagonist, had no effect on superoxide generation, but partially inhibited the response to TNF alpha. mAb htr-9, which was raised against the 55 kDa receptor and behaves as an agonist, mimicked the effect of TNF alpha, but with a lower maximal response. As it has been reported that ceramide might act as a second messenger to mediate many of the effects of TNF alpha, the effects of exogenous sphingomyelinase and the cell-permeable ceramide analogue, C2- ceramide, on production of superoxide anions, induction of priming in response to formylmethionyl-leucyl-phenylalanine, and cell-shape change were examined. Neither sphingomyelinase nor C2-ceramide mimicked the effect of TNF alpha. Ceramide is converted into ceramide 1-phosphate by ceramide kinase and we have measured levels of this metabolite to clarify the effect of TNF alpha on sphingomyelinase activity in neutrophils. Although exogenous sphingomyelinase increased the amount of ceramide 1-phosphate in a time-dependent manner, and C2-ceramide was rapidly converted into C2-ceramide phosphate, TNF alpha had no effect on the level of ceramide 1-phosphate. These results suggest that TNF alpha stimulates superoxide generation through both the 55 kDa and 75 kDa receptors, but that ceramide does not act as an intracellular mediator for TNF alpha in human neutrophils. Images Figure 4 PMID:8141790

  3. Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro.

    PubMed

    De Laere, Maxime; Sousa, Carmelita; Meena, Megha; Buckinx, Roeland; Timmermans, Jean-Pierre; Berneman, Zwi; Cools, Nathalie

    2017-01-01

    Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.

  4. Serum from the Human Fracture Hematoma Contains a Potent Inducer of Neutrophil Chemotaxis.

    PubMed

    Bastian, Okan W; Mrozek, Mikolaj H; Raaben, Marco; Leenen, Luke P H; Koenderman, Leo; Blokhuis, Taco J

    2018-06-01

    A controlled local inflammatory response is essential for adequate fracture healing. However, the current literature suggests that local and systemic hyper-inflammatory conditions after major trauma induce increased influx of neutrophils into the fracture hematoma (FH) and impair bone regeneration. Inhibiting neutrophil chemotaxis towards the FH without compromising the hosts' defense may therefore be a target of future therapies that prevent impairment of fracture healing after major trauma. We investigated whether chemotaxis of neutrophils towards the FH could be studied in vitro. Moreover, we determined whether chemotaxis of neutrophils towards the FH was mediated by the CXCR1, CXCR2, FPR, and C5aR receptors. Human FHs were isolated during an open reduction internal fixation (ORIF) procedure within 3 days after trauma and spun down to obtain the fracture hematoma serum. Neutrophil migration towards the FH was studied using Ibidi™ Chemotaxis 3D μ-Slides and image analysis of individual neutrophil tracks was performed. Our study showed that the human FH induces significant neutrophil chemotaxis, which was not affected by blocking CXCR1 and CXCR2. In contrast, neutrophil chemotaxis towards the FH was significantly inhibited by chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS), which blocks FPR and C5aR. Blocking only C5aR with CHIPSΔ1F also significantly inhibited neutrophil chemotaxis towards the FH. Our finding that neutrophil chemotaxis towards the human FH can be blocked in vitro using CHIPS may aid the development of therapies that prevent impairment of fracture healing after major trauma.

  5. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis

    PubMed Central

    Boff, Daiane; Crijns, Helena; Teixeira, Mauro M.

    2018-01-01

    Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis. PMID:29401737

  6. Intra- and intermolecular H-bond mediated tautomerization and dimerization of 3-methyl-1,2-cyclopentanedione: Infrared spectroscopy in argon matrix and CCl 4 solution

    NASA Astrophysics Data System (ADS)

    Samanta, Amit K.; Pandey, Prasenjit; Bandyopadhyay, Biman; Mukhopadhyay, Anamika; Chakraborty, Tapas

    2011-05-01

    Mid-infrared spectra of 3-methyl-1,2-cyclopentanedione (3-MeCPD) have been recorded by isolating the molecule in a cold argon matrix (8 K) and also in CCl 4 solution at room temperature. The spectral features reveal that in both media, the molecule exists exclusively in an enol tautomeric form, which is stabilized by an intramolecular O sbnd H⋯O hydrogen bond. NBO analysis shows that the preferred conformer is further stabilized because of hyperconjugation interaction between the methyl and vinyl group of the enol tautomer. In CCl 4 solution, the molecule undergoes extensive self association and generates a doubly hydrogen bonded centrosymmetric dimer. The dimerization constant ( K d) is estimated to have a value of ˜9 L mol -1 at room temperature (25 °C) and the thermodynamic parameters, Δ H°, Δ S° and Δ G°, of dimerization are estimated by measuring K d at several temperatures within the range 22-60 °C. The same dimer is also produced when the matrix is annealed at a higher temperature. In addition, a non-centrosymmetric singly hydrogen bonded dimer is also identified in the argon matrix. A comparison between the spectral features of the two dimers indicates that the dimerization effect on doubly H-bonded case is influenced by cooperative interaction between the two H-bonds.

  7. Chemokine CCL2–CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus

    PubMed Central

    Tian, Dai-Shi; Feng, Li-Jie; Liu, Jun-Li

    2017-01-01

    Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2–CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2–CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2–CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy. SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2–CCR2 signaling is

  8. Astrocyte- and endothelial-targeted CCL2 conditional knockout mice: critical tools for studying the pathogenesis of neuroinflammation.

    PubMed

    Ge, Shujun; Murugesan, Nivetha; Pachter, Joel S

    2009-09-01

    While the expression of the C-C chemokine ligand 2 (CCL2) in the central nervous system (CNS) is associated with numerous neuroinflammatory conditions, the critical cellular sources of this chemokine, which is responsible for disease processes-as well as associated pathogenic mechanisms, remain unresolved. As the potential for anti-CCL2 therapeutics in treating neuroinflammatory disease is likely to be contingent upon effective drug delivery to the source(s) and/or target(s) of CCL2 action in the CNS, tools to highlight the course of CCL2 action during neuroinflammation are imperative. In response to this need, we used the Cre/loxP and FLP-FRT recombination system to develop the first two, cell-conditional CCL2 knockout mice-separately targeting CCL2 gene elimination to astrocytes and endothelial cells, both of which have been considered to play crucial though undefined roles in neuroinflammatory disease. Specifically, mice containing a floxed CCL2 allele were intercrossed with GFAP-Cre or Tie2-Cre transgenic mice to generate mice with CCL2-deficient astrocytes (astrocyte KO) or endothelial cells (endothelial KO), respectively. Polymerase chain reaction, reverse transcription polymerase chain reaction/quantitative reverse transcriptase polymerase chain reaction, and enzyme-linked immunosorbent assay of CCL2 gene, RNA, and protein, respectively, from cultured astrocytes and brain microvascular endothelial cells (BMEC) established the efficiency and specificity of the CCL2 gene deletions and a CCL2 null phenotype in these CNS cells. Effective cell-conditional knockout of CCL2 was also confirmed in an in vivo setting, wherein astrocytes and BMEC were retrieved by immune-guided laser capture microdissection from their in situ positions in the brains of mice experiencing acute, lipopolysaccharide-mediated endotoxemia to induce CCL2 gene expression. In vivo analysis further revealed apparent cross-talk between BMEC and astrocytes regarding the regulation of astrocyte CCL

  9. Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection.

    PubMed

    Garcia-Crespo, Katia E; Chan, Calvin C; Gabryszewski, Stanislaw J; Percopo, Caroline M; Rigaux, Peter; Dyer, Kimberly D; Domachowske, Joseph B; Rosenberg, Helene F

    2013-03-01

    We showed previously that wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus species were fully (100%) protected against the lethal sequelae of infection with the virulent pathogen, pneumonia virus of mice (PVM), a response that is associated with diminished expression of proinflammatory cytokines and diminished virus recovery. We show here that 40% of the mice primed with live Lactobacillus survived when PVM challenge was delayed for 5months. This robust and sustained resistance to PVM infection resulting from prior interaction with an otherwise unrelated microbe is a profound example of heterologous immunity. We undertook the present study in order to understand the nature and unique features of this response. We found that intranasal inoculation with L. reuteri elicited rapid, transient neutrophil recruitment in association with proinflammatory mediators (CXCL1, CCL3, CCL2, CXCL10, TNF-alpha and IL-17A) but not Th1 cytokines. IFNγ does not contribute to survival promoted by Lactobacillus-priming. Live L. reuteri detected in lung tissue underwent rapid clearance, and was undetectable at 24h after inoculation. In contrast, L. reuteri peptidoglycan (PGN) and L. reuteri genomic DNA (gDNA) were detected at 24 and 48h after inoculation, respectively. In contrast to live bacteria, intranasal inoculation with isolated L. reuteri gDNA elicited no neutrophil recruitment, had minimal impact on virus recovery and virus-associated production of CCL3, and provided no protection against the negative sequelae of virus infection. Isolated PGN elicited neutrophil recruitment and proinflammatory cytokines but did not promote sustained survival in response to subsequent PVM infection. Overall, further evaluation of the responses leading to Lactobacillus-mediated heterologous immunity may provide insight into novel antiviral preventive modalities. Published by Elsevier B.V.

  10. Lactobacillus priming of the respiratory tract: heterologous immunity and protection against lethal pneumovirus infection

    PubMed Central

    Garcia-Crespo, Katia E.; Chan, Calvin C.; Gabryszewski, Stanislaw J.; Percopo, Caroline M.; Rigaux, Peter; Dyer, Kimberly D.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2013-01-01

    We showed previously that wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus species were fully (100%) protected against the lethal sequelae of infection with the virulent pathogen, pneumonia virus of mice (PVM), a response that is associated with diminished expression of proinflammatory cytokines and diminished virus recovery. We show here that 40% of the mice primed with live Lactobacillus survived when PVM challenge was delayed for 5 months. This robust and sustained resistance to PVM infection resulting from prior interaction with an otherwise unrelated microbe is a profound example of heterologous immunity. We undertook the present study in order to understand the nature and unique features of this response. We found that intranasal inoculation with L. reuteri elicited rapid, transient neutrophil recruitment in association with proinflammatory mediators (CXCL1, CCL3, CCL2, CXCL10, TNF-alpha and IL-17A) but not Th1 cytokines. IFNγ does not contribute to survival promoted by Lactobacillus-priming. Live L. reuteri detected in lung tissue underwent rapid clearance, and was undetectable at 24 hrs after inoculation. In contrast, L. reuteri peptidoglycan (PGN) and L. reuteri genomic DNA (gDNA) were detected at 24 and 48 hours after inoculation, respectively. In contrast to live bacteria, intranasal inoculation with isolated L. reuteri gDNA elicited no neutrophil recruitment, had minimal impact on virus recovery and virus-associated production of CCL3, and provided no protection against the negative sequelae of virus infection. Isolated PGN elicited neutrophil recruitment and proinflammatory cytokines but did not promote sustained survival in response to subsequent PVM infection. Overall, further evaluation of the responses leading to Lactobacillus-mediated heterologous immunity may provide insight into novel antiviral preventive modalities. PMID:23274789

  11. Intrapulmonary Human Cytomegalovirus Replication in Lung Transplant Recipients Is Associated With a Rise of CCL-18 and CCL-20 Chemokine Levels.

    PubMed

    Weseslindtner, Lukas; Görzer, Irene; Roedl, Kevin; Küng, Erik; Jaksch, Peter; Klepetko, Walter; Puchhammer-Stöckl, Elisabeth

    2017-01-01

    In lung transplant recipients (LTRs), human cytomegalovirus (HCMV) DNA detection in the bronchoalveolar lavage fluid (BALF) indicates HCMV replication in the pulmonary compartment. Such local HCMV replication episodes may remain asymptomatic or may lead to symptomatic HCMV disease. Here, we investigated LTRs with intrapulmonary HCMV replication for the chemokines CCL-18 and CCL-20. In particular, we analyzed whether these chemokines rise in the allograft and/or the blood and are associated with HCMV disease. CCL-18 and CCL-20 levels were quantitated by ELISA in BALF and serum samples from 60 LTRs. During the posttransplant follow-up, these LTRs displayed HCMV DNA detection in the BALF by PCR, whereas other infectious agents were undetectable. Furthermore, we investigated samples from 10 controls who did not display any HCMV replication episode during the follow-up. HCMV replication in the allograft was associated with a significant increase of CCL-18 and CCL-20 BALF levels (P < 0.001, Wilcoxon signed-rank test) and a significant rise of CCL-20 (P < 0.0001, Wilcoxon signed-rank test) but not of CCL-18 in the blood. In controls, no such chemokine increase was observed. Furthermore, CCL-18 BALF levels were significantly higher in 8 LTRs who additionally developed HCMV disease, as compared with the other 52 patients in whom HCMV replication remained asymptomatic (P < 0.001, Mann-Whitney U test). HCMV replication in the allograft causes an intrapulmonary increase of CCL-18 and CCL-20 and a systemic rise of CCL-20 serum levels. Strong intrapulmonary CCL-18 responses are associated with symptomatic HCMV disease, proposing that CCL-18 BALF levels could serve as a marker.

  12. Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses.

    PubMed

    Sadiku, Pranvera; Willson, Joseph A; Dickinson, Rebecca S; Murphy, Fiona; Harris, Alison J; Lewis, Amy; Sammut, David; Mirchandani, Ananda S; Ryan, Eilise; Watts, Emily R; Thompson, A A Roger; Marriott, Helen M; Dockrell, David H; Taylor, Cormac T; Schneider, Martin; Maxwell, Patrick H; Chilvers, Edwin R; Mazzone, Massimilliano; Moral, Veronica; Pugh, Chris W; Ratcliffe, Peter J; Schofield, Christopher J; Ghesquiere, Bart; Carmeliet, Peter; Whyte, Moira Kb; Walmsley, Sarah R

    2017-09-01

    Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.

  13. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency.

    PubMed

    Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina

    2018-03-20

    The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

  14. Functional and molecular alterations in T Cells induced by CCL5.

    PubMed

    Cridge, T J; Horowitz, K M; Marinucci, M N; Rose, K M; Wells, M; Werner, M T; Kurt, Robert A

    2006-01-01

    To delineate whether, and the extent to which, CCL5 could impact T cell function we examined cytokine production and proliferative ability following CCL5 treatment in vitro. We report a decreased ability of splenic T cells to produce IFN-? and TNF-a as well as proliferate in response to crosslinking with antibody to CD3 after 72, but not 24 hours of CCL5 exposure. To identify a mechanism by which CCL5 modulated T cell function, we examined T cell receptor translocation and lipid raft clustering. After exposure to CCL5, T cells were less efficient at translocating the TCR and clustering lipid rafts. Since TCR translocation and lipid raft clustering are required for creation of an immunological synapse, these data suggest that extended exposure to CCL5 may impact T cell effector function by modulating the ability to create a functional immunological synapse.

  15. CCL2 is critical for immunosuppression to promote cancer metastasis.

    PubMed

    Kudo-Saito, Chie; Shirako, Hiromi; Ohike, Misa; Tsukamoto, Nobuo; Kawakami, Yutaka

    2013-04-01

    We previously found that cancer metastasis is accelerated by immunosuppression during Snail-induced epithelial-to-mesenchymal transition (EMT). However, the molecular mechanism still remained unclear. Here, we demonstrate that CCL2 is a critical determinant for both tumor metastasis and immunosuppression induced by Snail(+) tumor cells. CCL2 is significantly upregulated in various human tumor cells accompanied by Snail expression induced by snail transduction or TGFβ treatment. The Snail(+) tumor-derived CCL2 amplifies EMT events in other cells including Snail(-) tumor cells and epithelial cells within tumor microenvironment. CCL2 secondarily induces Lipocalin 2 (LCN2) in the Snail(+) tumor cells in an autocrine manner. CCL2 and LCN2 cooperatively generate immunoregulatory dendritic cells (DCreg) having suppressive activity accompanied by lowered expression of costimulatory molecules such as HLA-DR but increased expression of immunosuppressive molecules such as PD-L1 in human PBMCs. The CCL2/LCN2-induced DCreg cells subsequently induce immunosuppressive CD4(+)FOXP3(+) Treg cells, and finally impair tumor-specific CTL induction. In murine established tumor model, however, CCL2 blockade utilizing the specific siRNA or neutralizing mAb significantly inhibits Snail(+) tumor growth and metastasis following systemic induction of anti-tumor immune responses in host. These results suggest that CCL2 is more than a chemoattractant factor that is the significant effector molecule responsible for immune evasion of Snail(+) tumor cells. CCL2 would be an attractive target for treatment to eliminate cancer cells via amelioration of tumor metastasis and immunosuppression.

  16. Adenosine Triphosphate Promotes Allergen-Induced Airway Inflammation and Th17 Cell Polarization in Neutrophilic Asthma.

    PubMed

    Zhang, Fang; Su, Xin; Huang, Gang; Xin, Xiao-Feng; Cao, E-Hong; Shi, Yi; Song, Yong

    2017-01-01

    Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist suramin before challenge, neutrophilic airway inflammation, airway hyperresponsiveness, and Th17-type responses were reduced significantly. Also, neutrophilic inflammation was abrogated when airway ATP levels were locally neutralized using apyrase. Furthermore, ATP promoted the Th17 polarization of splenic CD4 + T cells from DO11.10 mice in vitro. In addition, ovalbumin (OVA) challenge induced neutrophilic inflammation and Th17 polarization in DO11.10 mice, whereas administration of suramin before challenge alleviated these parameters. Thus, ATP may serve as a marker of neutrophilic asthma, and local blockade of ATP signaling might provide an alternative method to prevent Th17-mediated airway inflammation in neutrophilic asthma.

  17. The effect of the Z mutation on the ability of alpha 1-antitrypsin to prevent neutrophil mediated tissue damage.

    PubMed

    Llewellyn-Jones, C G; Lomas, D A; Carrell, R W; Stockley, R A

    1994-11-29

    Recent studies have shown that alpha 1-antitrypsin (alpha 1-AT) from Z antitrypsin deficiency subjects has a slightly lower association rate constant with neutrophil elastase (NE) than alpha 1-AT from normal subjects, although it is unknown whether this is of clinical importance. We have purified alpha 1-AT from a normal (M alpha 1-AT) and from a deficient (Z alpha 1-AT) subject and have confirmed that the association rate constants for NE are different (5.28; S.E. 0.06.10(7) M-1 s-1 and 1.2; S.E. 0.2.10(7) M-1 s-1, respectively). We have assessed the ability of both of these proteins to inhibit neutrophil mediated fibronectin (FN) degradation in vitro. Both proteins inhibited FN degradation in a dose dependant manner although Z alpha 1-AT was less effective than M alpha 1-AT at equivalent concentrations of active inhibitor (P < 0.05). Inhibition by M alpha 1-AT was 28.5% S.E. 3.9 at 0.01 microM; 35.5% S.E. 7.3 at 0.1 microM and 37% S.E. 8.4 at 0.5 microM, whereas inhibition by Z alpha 1-AT was 9.25% S.E. 3.9; 19.25% S.E. 7.7 and 21.2% S.E. 9.7, respectively. When the time course of inhibition of FN degradation was studied the difference (although less at 1.0 microM) became greater over the 3 h period of the assay. These results suggest that Z alpha 1-AT is less able than the M phenotype to inhibit connective tissue degradation by neutrophils at equivalent concentrations. This is probably due to the lower association rate constant although the reduced stability of the Z molecule may play a role. The differences, together with the reduced plasma concentration, may accentuate the susceptibility of deficient subjects to the development of emphysema.

  18. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain

    PubMed Central

    Semple, Bridgette D; Trivedi, Alpa; Gimlin, Kayleen; Noble-Haeusslein, Linda J

    2014-01-01

    While neutrophil elastase (NE), released by activated neutrophils, is a key mediator of secondary pathogenesis in adult models of brain ischemia and spinal cord injury, no studies to date have examined this protease in the context of the injured immature brain, where there is notable vulnerability resulting from inadequate antioxidant reserves and prolonged exposure to infiltrating neutrophils. We thus reasoned that NE may be a key determinant of secondary pathogenesis, and as such, adversely influence long-term neurological recovery. To address this hypothesis, wild-type (WT) and NE knockout (KO) mice were subjected to a controlled cortical impact at post-natal day 21, approximating a toddler-aged child. To determine if NE is required for neutrophil infiltration into the injured brain, and whether this protease contributes to vasogenic edema, we quantified neutrophil numbers and measured water content in the brains of each of these genotypes. While leukocyte trafficking was indistinguishable between genotypes, vasogenic edema was markedly attenuated in the NE KO. To determine if early pathogenesis is dependent on NE, indices of cell death (TUNEL and activated caspase-3) were quantified across genotypes. NE KO mice showed a reduction in these markers of cell death in the injured hippocampus, which corresponded to greater preservation of neuronal integrity as well as reduced expression of heme oxygenase-1, a marker of oxidative stress. WT mice, treated with a competitive inhibitor of NE at 2, 6 and 12 h post-injury, likewise showed a reduction in cell death and oxidative stress compared to vehicle-treated controls. We next examined the long-term behavioral and structural consequences of NE deficiency. NE KO mice showed an improvement in long-term spatial memory retention and amelioration of injury-induced hyperactivity. However, volumetric and stereological analyses found comparable tissue loss in the injured cortex and hippocampus independent of genotype. Further

  19. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain.

    PubMed

    Semple, Bridgette D; Trivedi, Alpa; Gimlin, Kayleen; Noble-Haeusslein, Linda J

    2015-02-01

    While neutrophil elastase (NE), released by activated neutrophils, is a key mediator of secondary pathogenesis in adult models of brain ischemia and spinal cord injury, no studies to date have examined this protease in the context of the injured immature brain, where there is notable vulnerability resulting from inadequate antioxidant reserves and prolonged exposure to infiltrating neutrophils. We thus reasoned that NE may be a key determinant of secondary pathogenesis, and as such, adversely influence long-term neurological recovery. To address this hypothesis, wild-type (WT) and NE knockout (KO) mice were subjected to a controlled cortical impact at post-natal day 21, approximating a toddler-aged child. To determine if NE is required for neutrophil infiltration into the injured brain, and whether this protease contributes to vasogenic edema, we quantified neutrophil numbers and measured water content in the brains of each of these genotypes. While leukocyte trafficking was indistinguishable between genotypes, vasogenic edema was markedly attenuated in the NE KO. To determine if early pathogenesis is dependent on NE, indices of cell death (TUNEL and activated caspase-3) were quantified across genotypes. NE KO mice showed a reduction in these markers of cell death in the injured hippocampus, which corresponded to greater preservation of neuronal integrity as well as reduced expression of heme oxygenase-1, a marker of oxidative stress. WT mice, treated with a competitive inhibitor of NE at 2, 6 and 12h post-injury, likewise showed a reduction in cell death and oxidative stress compared to vehicle-treated controls. We next examined the long-term behavioral and structural consequences of NE deficiency. NE KO mice showed an improvement in long-term spatial memory retention and amelioration of injury-induced hyperactivity. However, volumetric and stereological analyses found comparable tissue loss in the injured cortex and hippocampus independent of genotype. Further

  20. Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice.

    PubMed

    McDermott, Andrew J; Falkowski, Nicole R; McDonald, Roderick A; Pandit, Chinmay R; Young, Vincent B; Huffnagle, Gary B

    2016-01-01

    Our objective was to determine the role of the inflammatory cytokine interleukin-23 (IL-23) in promoting neutrophil recruitment, inflammatory cytokine expression and intestinal histopathology in response to Clostridium difficile infection. Wild-type (WT) and p19(-/-) (IL-23KO) mice were pre-treated with cefoperazone in their drinking water for 5 days, and after a 2-day recovery period were challenged with spores from C. difficile strain VPI 10463. Interleukin-23 deficiency was associated with significant defects in both the recruitment of CD11b(High) Ly6G(H) (igh) neutrophils to the colon and the expression of neutrophil chemoattractants and stabilization factors including Cxcl1, Cxcl2, Ccl3 and Csf3 within the colonic mucosa as compared with WT animals. Furthermore, the expression of inflammatory cytokines including Il33, Tnf and Il6 was significantly reduced in IL-23-deficient animals. There was also a trend towards less severe colonic histopathology in the absence of IL-23. The induction of Il17a and Il22 was also significantly abrogated in IL-23KO mice. Inflammatory cytokine expression and neutrophilic inflammation were not reduced in IL-17a-deficient mice or in mice treated with anti-IL-22 depleting monoclonal antibody. However, induction of RegIIIg was significantly reduced in animals treated with anti-IL-22 antibody. Taken together, these data indicate that IL-23, but not IL-17a or IL-22, promotes neutrophil recruitment and inflammatory cytokine and chemokine expression in the colon in response to C. difficile infection. © 2015 John Wiley & Sons Ltd.

  1. Binding of Soluble Yeast β-Glucan to Human Neutrophils and Monocytes is Complement-Dependent

    PubMed Central

    Bose, Nandita; Chan, Anissa S. H.; Guerrero, Faimola; Maristany, Carolyn M.; Qiu, Xiaohong; Walsh, Richard M.; Ertelt, Kathleen E.; Jonas, Adria Bykowski; Gorden, Keith B.; Dudney, Christine M.; Wurst, Lindsay R.; Danielson, Michael E.; Elmasry, Natalie; Magee, Andrew S.; Patchen, Myra L.; Vasilakos, John P.

    2013-01-01

    The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical-grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding. PMID:23964276

  2. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    NASA Astrophysics Data System (ADS)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  3. Neutrophil elastase and proteinase 3 trafficking routes in myelomonocytic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaellquist, Linda; Rosen, Hanna; Nordenfelt, Pontus

    2010-11-15

    Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 withmore » clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating 'pro{sub C}'-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.« less

  4. Neutrophils Regulate Tissue Neutrophilia in Inflammation via the Oxidant-modified Lipid Lysophosphatidylserine*

    PubMed Central

    Frasch, S. Courtney; Fernandez-Boyanapalli, Ruby F.; Berry, Karin A. Zemski; Murphy, Robert C.; Leslie, Christina C.; Nick, Jerry A.; Henson, Peter M.; Bratton, Donna L.

    2013-01-01

    Resolution of neutrophilia characteristic of acute inflammation requires cessation of neutrophil recruitment and removal of tissue neutrophils. Based on in vitro studies, a role in these events was hypothesized for oxidant-generated lysophosphatidylserine (lyso-PS) on recruited neutrophils signaling via the G2A receptor on macrophages. Peritoneal exudate neutrophils harvested from wild type (WT) mice had 5-fold more lyso-PS (lyso-PShigh) than those of gp91phox−/− (lyso-PSlow) mice. Ex vivo engulfment of lyso-PShigh neutrophils (95% viable) by WT peritoneal macrophages was quantitatively similar to UV-irradiated apoptotic blood neutrophils, although the signaling pathway for the former was uniquely dependent on macrophage G2A. In contrast, lyso-PSlow neutrophils were poorly engulfed unless presented with exogenous lyso-PS. Enhanced clearance of lyso-PShigh neutrophils was also seen in vivo following their adoptive transfer into inflamed peritonea of WT but not G2A−/− mice, further supporting a requirement for signaling via G2A. To investigate downstream effects of lyso-PS/G2A signaling, antibody blockade of G2A in WT mice reduced macrophage CD206 expression and efferocytosis during peritonitis. Conversely, adoptive transfer of lyso-PShigh neutrophils early in inflammation in gp91phox−/− mice led to accelerated development of efferocytichigh and CD206high macrophages. This macrophage reprogramming was associated with suppressed production of pro-inflammatory mediators and reduced neutrophilia. These effects were not seen if G2A was blocked or lyso-PSlow neutrophils were transferred. Taken together, the results demonstrate that oxidant-generated lyso-PS made by viable tissue neutrophils is an endogenous anti-inflammatory mediator working in vivo to orchestrate the “early” and rapid clearance of recruited neutrophils as well as the reprogramming of “resolving” macrophages. PMID:23293064

  5. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22.

    PubMed

    Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.

  6. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis.

    PubMed

    Pittaluga, Anna

    2017-01-01

    The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.

  7. Exposure to Leishmania braziliensis triggers neutrophil activation and apoptosis.

    PubMed

    Falcão, Sarah A C; Weinkopff, Tiffany; Hurrell, Benjamin P; Celes, Fabiana S; Curvelo, Rebecca P; Prates, Deboraci B; Barral, Aldina; Borges, Valeria M; Tacchini-Cottier, Fabienne; de Oliveira, Camila I

    2015-03-01

    Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.

  8. Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival

    PubMed Central

    Pan, Yuan; Smithson, Laura J.; Ma, Yu; Hambardzumyan, Dolores; Gutmann, David H.

    2017-01-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults, with a median survival of 15 months. These poor clinical outcomes have prompted the development of drugs that block neoplastic cancer cell growth; however, non-neoplastic cell-derived signals (chemokines and cytokines) in the tumor microenvironment may also represent viable treatment targets. One such chemokine, Ccl5, produced by low-grade tumor-associated microglia, is responsible for maintaining neurofibromatosis type 1 (NF1) mouse optic glioma growth in vivo. Since malignant gliomas may achieve partial independence from growth regulatory factors produced by non-neoplastic cells in the tumor microenvironment by producing the same cytokines secreted by the stromal cells in their low-grade counterparts, we tested the hypothesis that CCL5/CCL5-receptor signaling in glioblastoma creates an autocrine circuit important for high-grade glioma growth. Herein, we demonstrate that increased CCL5 expression was restricted to both human and mouse mesenchymal GBM (M-GBM), a molecular subtype characterized by NF1 loss. We further show that the NF1 protein, neurofibromin, negatively regulates Ccl5 expression through suppression of AKT/mTOR signaling. Consistent with its role as a glioblastoma growth regulator, Ccl5 knockdown in M-GBM cells reduces M-GBM cell survival in vitro, and increases mouse glioblastoma survival in vivo. Finally, we demonstrate that Ccl5 operates through an unconventional CCL5 receptor, CD44, to inhibit M-GBM apoptosis. Collectively, these findings reveal an NF1-dependent CCL5-mediated pathway that regulates M-GBM cell survival, and support the concept that paracrine factors important for low-grade glioma growth can be usurped by high-grade tumors to create autocrine regulatory circuits that maintain malignant glioma survival. PMID:28380429

  9. Cannabis use is associated with increased CCL11 plasma levels in young healthy volunteers.

    PubMed

    Fernandez-Egea, Emilio; Scoriels, Linda; Theegala, Swathi; Giro, Maria; Ozanne, Susan E; Burling, Keith; Jones, Peter B

    2013-10-01

    Cannabis is a widely used recreational drug. Its effect on human health and psychosis remains controversial. In this study, we aimed to explore the possibility that cannabis use influenced CCL11 plasma levels. Increased CCL11 chemokine has been reported in schizophrenia and cannabis is a known trigger of schizophrenia. Additionally, plasma levels of the chemokine CCL11 have recently been shown to increase with age and with cognitive deficits and hippocampal neurogenesis. For this study, a total of 87 healthy volunteers (68% men, age range 18-35 years) completed the Cannabis Experience Questionnaire that included information on sociodemographic and morphometric data and provided a blood sample for CCL11 measurement. 'Current users' of cannabis (n=18) had significantly higher CCL11 plasma levels compared to 'past users' (n=33) and 'never users' (n=36) [F(3,84)=3.649; p=0.030]. The latter two groups had similar CCL11 levels. Higher CCL11 plasma levels could not be attributed to gender, age, body mass index, physical activity or use of other legal/illegal drugs. These results suggest that cannabis use increases CCL11 plasma levels and the effects are reversible when cannabis use ceases. © 2013.

  10. TREATMENT STUDIES OF CCL CONTAMINANTS

    EPA Science Inventory

    Bench-scale screening-level treatment data are presented for compounds listed in the Contaminant Candidate List (CCL). All of the CCl compounds are predicted to be economically removed by either activated carbon or air stripping technologies. To complete the screening-level treat...

  11. Neutrophil phagocytosis following inoculation of Salmonella choleraesuis into swine.

    PubMed

    Stabel, T J; Fedorka-Cray, P J; Gray, J T

    2002-02-01

    Neutrophils are an important mediator of host defence, especially in early stages of infection. A major function of neutrophils is the uptake and killing of invading microbes. Little is known about the effect of neutrophil activity on the pathogenesis and development of the carrier state in swine following infection with Salmonella choleraesuis. A human whole-blood microassay using flow cytometry was modified to measure the effect of S. choleraesuis infection in vivo on the rate of ingestion, or rate of uptake, of homologous bacteria by porcine neutrophils. Pigs were inoculated intranasally with 5-8 x 10(8) CFU S. choleraesuis and blood was collected in heparinized tubes at -5, 0, 1, 2, 3 and 4 days post inoculation (PI). Heat-killed S. choleraesuis were labelled with fluorescein isothiocyanate and incubated for various times with diluted whole blood. Red blood cells were lysed, external non-phagocytized bacteria were quenched with a commercially available lysing solution, and fluorescence from internalized bacteria labelled with fluorescein isothiocyanate was detected by flow cytometry. The rate of uptake by neutrophils did not increase until 2 days PI and then remained elevated to 4 days PI. The minimal uptake of S. choleraesuis early after exposure to these organisms may provide an opportunity for the pathogen to colonize and/or replicate to levels that facilitate establishment of a carrier state or clinical infection in swine.

  12. Effects of vitamin E supplementation on cellular α-tocopherol concentrations of neutrophils in Holstein calves

    PubMed Central

    Higuchi, Hidetoshi; Ito, Erina; Iwano, Hidetoma; Oikawa, Shin; Nagahata, Hajime

    2013-01-01

    The effects of vitamin E supplementation on cellular α-tocopherol concentrations of neutrophils from Holstein calves and the mechanism of scavenger receptor class B type I (SR-BI)-mediated uptake of α-tocopherol were examined. Cellular α-tocopherol concentrations in vitamin E-treated calves increased from 3.5 ± 0.38 to 7.2 ± 0.84 μg/107 cells, respectively, within 14 d after vitamin E supplementation; these concentrations were significantly higher than those of control calves (P < 0.01). The expression indices of SR-BI [a major receptor that recognizes high-density lipoprotein (HDL)] mRNA in neutrophils were two to five times higher (P < 0.01) in neutrophils obtained from vitamin E-supplemented calves compared with those from control calves, and anti-SR-B1 antibody, ranging from 0.1 to 1.0 μg/mL, significantly (P < 0.01) decreased cellular α-tocopherol concentrations of neutrophils. Cytochalasin D and latrunculin B, major inhibitors of actin polymerization of neutrophils, significantly decreased cellular α-tocopherol concentrations of neutrophils (P < 0.01). Our results demonstrated that in vitamin E-supplemented calves: 1) α-tocopherol is mainly distributed with HDL, 2) α-tocopherol within HDL is recognized by SR-BI on the surface of neutrophils, and 3) rearrangement of the actin cytoskeleton is a crucial step for the uptake of α-tocopherol by neutrophils. PMID:24082403

  13. Dissociative adsorption of CCl 4 on the Fe 3O 4(1 1 1)-(2×2) selvedge of α-Fe 2O 3(0 0 0 1)

    NASA Astrophysics Data System (ADS)

    Adib, K.; Mullins, D. R.; Totir, G.; Camillone, N.; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Osgood, R. M.

    2003-02-01

    The surface reactions of CCl 4 with the Fe 3O 4(1 1 1)-(2×2) selvedge of naturally occurring α-Fe 2O 3(0 0 0 1) single-crystals have been investigated using synchrotron X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). CCl 4 was found to dissociate on the Fe 3O 4 surface at 100 K producing chemisorbed Cl and adsorbed CCl 2. TPD shows that the large majority of the dissociatively adsorbed CCl 2 fragments extract lattice oxygen and desorb as phosgene at >275 K. However, the XPS spectra show no evidence for the formation of surface-bound phosgene, at 100 K, indicating that its formation involves two steps. The first step, dissociation, is spontaneous at 100 K, whereas the second, oxygen atom abstraction to form phosgene, requires thermal excitation. Cl chemisorption yielded two separate species, the mono- and dichloride terminations of surface iron sites. The identification of these two surface terminations is based on the coverage dependence and the surface temperature history of their Cl 2p 3/2 peak intensity. For example, heating to >450 K allows the monochloride to transform into iron dichloride, indicating Cl adatom mobility at these temperatures.

  14. CCL11 promotes migration and proliferation of mouse neural progenitor cells.

    PubMed

    Wang, Feifei; Baba, Nobuyasu; Shen, Yuan; Yamashita, Tatsuyuki; Tsuru, Emi; Tsuda, Masayuki; Maeda, Nagamasa; Sagara, Yusuke

    2017-02-07

    Neonatal hypoxia-ischemia induces massive brain damage during the perinatal period, resulting in long-term consequences to central nervous system structural and functional maturation. Although neural progenitor cells (NPCs) migrate through the parenchyma and home in to injury sites in the rodent brain, the molecular mechanisms are unknown. We examined the role of chemokines in mediating NPC migration after neonatal hypoxic-ischemic brain injury. Nine-day-old mice were exposed to a 120-minute hypoxia following unilateral carotid occlusion. Chemokine levels were quantified in mouse brain extract. Migration and proliferation assays were performed using embryonic and infant mouse NPCs. The neonatal hypoxic-ischemic brain injury resulted in an ipsilateral lesion, which was extended to the cortical and striatal areas. NPCs migrated toward an injured area, where a marked increase of CC chemokines was detected. In vitro studies showed that incubation of NPCs with recombinant mouse CCL11 promoted migration and proliferation. These effects were partly inhibited by a CCR3 antagonist, SB297006. Our data implicate an important effect of CCL11 for mouse NPCs. The effective activation of NPCs may offer a promising strategy for neuroregeneration in neonatal hypoxic-ischemic brain injury.

  15. Hepatoprotective effects of the polysaccharide isolated from Tarphochlamys affinis (Acanthaceae) against CCl4-induced hepatic injury.

    PubMed

    Lin, Xing; Liu, Xi; Huang, Quanfang; Zhang, Shijun; Zheng, Li; Wei, Ling; He, Min; Jiao, Yang; Huang, Jianchun; Fu, Shujie; Chen, Zhaoni; Li, Yongwen; Zhuo, Lang; Huang, Renbin

    2012-01-01

    This study was designed to investigate the protective effects of the polysaccharide isolated from Tarphochlamys affinis (PTA) against CCl4-induced hepatotoxicity in rats. Liver injury was induced in rats by the administration of CCl4 twice a week for 2 weeks. During the experiment, the model group received CCl4 only; the treatment groups received various drugs plus CCl4, whereas the normal control group received an equal volume of saline. Compared with the CCl4 group, PTA significantly decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in the serum and increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) in the liver. Moreover, the content of hepatic malondialdehyde (MDA) was reduced. Histological findings also confirmed the anti-hepatotoxic characterisation. In addition, PTA significantly inhibited the proinflammatory mediators, such as prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and myeloperoxidase (MPO). Further investigation showed that the inhibitory effect of PTA on the pro-inflammatory cytokines was associated with the down-regulation of nuclear factor-kappa B (NF-κB). In brief, our results show that the protective effect of PTA against CCl4-induced hepatic injury may rely on its ability to reduce oxidative stress and suppress inflammatory responses.

  16. Relationship between age-dependent changes of bovine neutrophil functions and their intracellular Ca2+ concentrations.

    PubMed

    Higuchi, H; Nagahata, H; Hiroki, M; Noda, H

    1997-04-01

    Neutrophil functions and intracellular Ca2+ concentrations ([Ca2+]i) were evaluated in 15 Holstein cattle divided into the following 3 groups: 5 neonatal calves less than 1 week old (group 1), 5 young calves 2 to 4 weeks old (group 2) and 5 cows 2 to 3 years old (group 3). The ability of neutrophils to phagocytose Candida albicans (C. albicans) was significantly higher (p < 0.05) in neonatal and young calves than in cows, whereas the phagocytosis by neutrophils of bovine IgG-coated yeasts (IgG-yeasts) was significantly lower (p < 0.05) in neonatal and young calves than that in cows. The killing activity by neutrophils of C. albicans in neonatal and young calves was significantly lower (p < 0.05) than that in cows. Luminol dependent chemiluminescent (LDCL) responses stimulated with opsonized zymosan (OPZ), heat-aggregated IgG (H-agg.IgG) and phorbol myristate acetate (PMA) were apparently lower in neonatal and young calves than in cows. No clearly different expressions of complement receptor type 3 (CR3) on neutrophils were observed among the 3 groups of cattle, although the values due to the binding of FITC-anti-bovine IgG to neutrophils in neonatal and young calves were lower than those in group 3. The OPZ-induced [Ca2+]i of neutrophils in neonatal and young calves were significantly higher (p < 0.05) than those in cows, but they were lower in neonatal and young calves when stimulated with H-agg.IgG. These results indicate that CR3- and FcR-mediated phagocytic and killing activities of neutrophils in neonatal and young calves are different from those in cows. These phenomena may be associated with age-dependent changes in [Ca2+]i.

  17. Radil controls neutrophil adhesion and motility through β2-integrin activation.

    PubMed

    Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M; Rodgers, Griffin P; Angers, Stephane; Parent, Carole A

    2012-12-01

    Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP-dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation.

  18. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses.

    PubMed

    Davison, Glen; Jones, Arwel Wyn

    2015-03-01

    Neutrophil numbers and function (oxidative burst) were assessed in peripheral blood and oral samples before and after prolonged exercise. Blood neutrophil count increased (∼3.5-fold, P < 0.001) and function decreased (30% ± 19% decrease, P = 0.005) postexercise. Oral neutrophil count (P = 0.392) and function (P = 0.334) were unchanged. Agreement between oral and blood neutrophil function responses to exercise was poor. These findings highlight the importance of studying neutrophils within various compartments/sample types.

  19. CCl 4 chemistry on the magnetite selvedge of single-crystal hematite: competitive surface reactions

    NASA Astrophysics Data System (ADS)

    Adib, K.; Camillone, N., III; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M., Jr.

    2002-01-01

    Temperature programmed reaction/desorption (TPR/D) studies were undertaken to characterize the surface chemistry which occurs between CCl 4 and the Fe 3O 4 (1 1 1) selvedge of single crystal α-Fe 2O 3 (0 0 0 1). Six separate desorption events are clearly observed and four desorbing species are identified: CCl 4, OCCl 2, C 2Cl 4 and FeCl 2. It is proposed that OCCl 2, CCl 4 and C 2Cl 4 are produced in reactions involving the same precursor, CCl 2. Three reaction paths compete for the CCl 2 precursor: oxygen atom abstraction (for OCCl 2), molecular recombinative desorption (for CCl 4) and associative desorption (for C 2Cl 4). During the TPR/D temperature ramp, the branching ratio is observed to depend upon temperature and the availability of reactive sites. The data are consistent with a rich site-dependent chemistry.

  20. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2 mediated PGE2 production

    PubMed Central

    Ranganathan, Punithavathi Vilapakkam; Jayakumar, Calpurnia; Mohamed, Riyaz; Dong, Zheng; Ramesh, Ganesan

    2012-01-01

    Netrin-1 regulates inflammation but the mechanism by which this occurs is unknown. Here we explore the role of netrin-1 in regulating the production of the prostanoid metabolite PGE2 from neutrophils in in vitro and in vivo disease models. Ischemia reperfusion in wild-type and RAG-1 knockout mice induced severe kidney injury that was associated with a large increase in neutrophil infiltration and COX-2 expression in the infiltrating leukocytes. Administration of netrin-1 suppressed COX-2 expression, PGE2 and thromboxane production, and neutrophil infiltration into the kidney. This was associated with reduced apoptosis, inflammatory cytokine and chemokine expression, and improved kidney function. Treatment with the PGE2 receptor EP4 agonist enhanced neutrophil infiltration and renal injury which was not inhibited by netrin-1. Consistent with in vivo data, both LPS and IFNγ-induced inflammatory cytokine production in macrophages and IL-17-induced IFNγ production in neutrophils were suppressed by netrin-1 in vitro by suppression of COX-2 expression. Moreover, netrin-1 regulates COX-2 expression at the transcriptional level through the regulation of NFκB activation. Thus, netrin-1 regulates the inflammatory response of neutrophils and macrophages through suppression of COX-2 mediated PGE2 production. This could be a potential drug for treating many inflammatory immune disorders. PMID:23447066

  1. Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing

    PubMed Central

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-01-01

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  2. Neutrophil protein kinase Cδ as a mediator of stroke-reperfusion injury

    PubMed Central

    Chou, Wen-Hai; Choi, Doo-Sup; Zhang, Hong; Mu, Dezhi; McMahon, Tom; Kharazia, Viktor N.; Lowell, Clifford A.; Ferriero, Donna M.; Messing, Robert O.

    2004-01-01

    Thrombolysis is widely used to intervene in acute ischemic stroke, but reestablishment of circulation may paradoxically initiate a reperfusion injury. Here we describe studies with mice lacking protein kinase Cδ (PKCδ) showing that absence of this enzyme markedly reduces reperfusion injury following transient ischemia. This was associated with reduced infiltration of peripheral blood neutrophils into infarcted tissue and with impaired neutrophil adhesion, migration, respiratory burst, and degranulation in vitro. Total body irradiation followed by transplantation with bone marrow from PKCδ-null mice donors reduced infarct size and improved neurological outcome in WT mice, whereas marrow transplantation from WT donors increased infarction and worsened neurological scores in PKCδ-null mice. These results indicate an important role for neutrophil PKCδ in reperfusion injury and strongly suggest that PKCδ inhibitors could prove useful in the treatment of stroke. PMID:15232611

  3. Effects of ghrelin on the apoptosis of human neutrophils in vitro

    PubMed Central

    Li, Bin; Zeng, Mian; Zheng, Haichong; Huang, Chunrong; He, Wanmei; Lu, Guifang; Li, Xia; Chen, Yanzhu; Xie, Ruijie

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and the diffuse infiltration of neutrophils into the alveolar space. Neutrophils are abundant, short-lived leukocytes that play a key role in immune defense against microbial infections. These cells die via apoptosis following the activation and uptake of microbes, and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter pathogens. Apoptosis is essential for the removal of neutrophils from inflamed tissues and for the timely resolution of neutrophilic inflammation. Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue receptor, produced and secreted mainly from the stomach. Previous studies have reported that ghrelin exerts anti-inflammatory effects in lung injury through the regulation of the apoptosis of different cell types; however, the ability of ghrelin to regulate alveolar neutrophil apoptosis remains largely undefined. We hypothesized that ghrelin may have the ability to modulate neutrophil apoptosis. In this study, to examine this hypothesis, we investigated the effects of ghrelin on freshly isolated neutrophils in vitro. Our findings demonstrated a decrease in the apoptotic ratio (as shown by flow cytometry), as well as in the percentage of cells with decreased mitochondrial membrane potential (ΔΨm) and in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling-positive rate, accompanied by an increased B-cell lymphoma 2/Bax ratio and the downregulation of cleaved caspase-3 in neutrophils following exposure to lipopolysaccharide (100 ng/ml). However, pre-treatment with ghrelin at a physiological level (100 nM) did not have a notable influence on the neutrophils in all the aforementioned tests. Our findings suggest that ghrelin may not possess the ability to modulate the neutrophil lifespan in vitro. PMID:27431014

  4. Widespread promoter-mediated coordination of transcription and mRNA degradation

    PubMed Central

    2012-01-01

    Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation. PMID:23237624

  5. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia

    PubMed Central

    Hillgruber, Carina; Pöppelmann, Birgit; Weishaupt, Carsten; Steingräber, Annika Kathrin; Wessel, Florian; Berdel, Wolfgang E.; Gessner, J. Engelbert; Ho-Tin-Noé, Benoît

    2015-01-01

    Spontaneous organ hemorrhage is the major complication in thrombocytopenia with a potential fatal outcome. However, the exact mechanisms regulating vascular integrity are still unknown. Here, we demonstrate that neutrophils recruited to inflammatory sites are the cellular culprits inducing thrombocytopenic tissue hemorrhage. Exposure of thrombocytopenic mice to UVB light provokes cutaneous petechial bleeding. This phenomenon is also observed in immune-thrombocytopenic patients when tested for UVB tolerance. Mechanistically, we show, analyzing several inflammatory models, that it is neutrophil diapedesis through the endothelial barrier that is responsible for the bleeding defect. First, bleeding is triggered by neutrophil-mediated mechanisms, which act downstream of capturing, adhesion, and crawling on the blood vessel wall and require Gαi signaling in neutrophils. Second, mutating Y731 in the cytoplasmic tail of VE-cadherin, known to selectively affect leukocyte diapedesis, but not the induction of vascular permeability, attenuates bleeding. Third, and in line with this, simply destabilizing endothelial junctions by histamine did not trigger bleeding. We conclude that specifically targeting neutrophil diapedesis through the endothelial barrier may represent a new therapeutic avenue to prevent fatal bleeding in immune-thrombocytopenic patients. PMID:26169941

  6. Constitutive and Stress-induced Expression of CCL5 Machinery in Rodent Retina

    PubMed Central

    Duncan, D'Anne S.; McLaughlin, William M.; Vasilakes, Noah; Echevarria, Franklin D.; Formichella, Cathryn R.; Sappington, Rebecca M.

    2017-01-01

    Signaling by inflammatory cytokines and chemokines is associated with neurodegeneration in disease and injury. Here we examined expression of the β-chemokine CCL5 and its receptors in the mouse retina and evaluated its relevance in glaucoma, a common optic neuropathy associated with sensitivity to intraocular pressure (IOP). Using quantitative PCR, fluorescent in situ hybridization, immunohistochemistry and quantitative image analysis, we found CCL5 mRNA and protein was constitutively expressed in the inner retina and synaptic layers. CCL5 appeared to associate with Müller cells and RGCs as well as synaptic connections between horizontal cells and bipolar cells in the OPL and amacrine cells, bipolar cells and RGCs in the IPL. Although all three high-affinity receptors (CCR5, CCR3, CCR1) for CCL5 were expressed constitutively, CCR5 expression was significantly higher than CCR3, which was also markedly greater than CCR1. Localization patterns for constitutive CCR5, CCR3 and CCR1 expression differed, particularly with respect to expression in inner retinal neurons. Stress-related expression of CCL5 was primarily altered in aged DBA/2 mice with elevated IOP. In contrast, changes in expression and localization of both CCR3 and CCR5 were evident not only in aged DBA/2 mice, but also in age-matched control mice and young DBA/2 mice. These groups do not exhibit elevated IOP, but possess either the aging stress (control mice) or the genetic predisposition to glaucoma (DBA/2 mice). Together, these data indicate that CCL5 and its high-affinity receptors are constitutively expressed in murine retina and differentially induced by stressors associated with glaucomatous optic neuropathy. Localization patterns further indicate that CCL5 signaling may be relevant for modulation of synapses in both health and disease, particularly in the inner plexiform layer. PMID:28936366

  7. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluatemore » CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell

  8. Infiltration of myeloid cells in the pregnant uterus is affected by heme oxygenase-1.

    PubMed

    Zhao, Hui; Kalish, Flora; Wong, Ronald J; Stevenson, David K

    2017-01-01

    Infiltrating myeloid cells in pregnant uteri play critical roles in the establishment of the placenta and maintenance of normal pregnancies. Their recruitment and proliferation are primarily mediated by the interactions of cytokines and chemokines secreted locally with their corresponding receptors. Heme oxygenase-1 (HO-1) has various physiologic properties that contribute to placental vascular development, with deficiencies in HO-1 associated with pregnancy disorders. Here, we investigated the effect of HO-1 on myeloid cell infiltration into pregnant uteri using a partial HO-1-deficient (Het, HO-1 +/- ) mouse model. With the use of flow cytometry, HO-1 was found predominantly expressed in circulating and uterine myeloid cells, specifically neutrophils and monocytes/macrophages. In pregnant Het uteri, the numbers of neutrophils and monocytes/macrophages were significantly reduced compared with pregnant wild-type (WT; HO-1 +/+ ) uteri. With the use of BrdU in vivo assays, HO-1 deficiency did not affect cell proliferation or blood cell populations. With the use of PCR arrays, gene expression of cytokines (Csf1, Csf3), chemokines (Ccl1, Ccl2, Ccl6, Ccl8, Ccl11, Ccl12, Cxcl4, Cxcl9, Cxcl12), and their receptors (Ccr1, Ccr2, Ccr3, Ccr5) were also reduced significantly in Het compared with pregnant WT uteri. Moreover, with the use of flow cytometry, myeloid CSF1R and CCR2 expression in blood and uteri from both pregnant and nonpregnant mice was characterized, and a deficiency in HO-1 significantly reduced CCR2 expression in infiltrating uterine monocytes/macrophages and dendritic cells (DCs). These data reveal that HO-1 regulates not only cytokine/chemokine production in pregnant uteri but also myeloid cell receptor numbers, suggesting a role of HO-1 in the recruitment and maintenance of myeloid cells in pregnant uteri and subsequent effects on placental vascular formation. © Society for Leukocyte Biology.

  9. Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway.

    PubMed

    Qian, Xuesong; Zhang, Jidong; Liu, Jianguo

    2011-01-21

    One of the major characteristics of tumors is their ability to evade immunosurveillance through altering the properties and functions of host stromal and/or immune cells. CCL5 has been shown to play important roles in T cell proliferation, IFN-γ, and IL-2 production, which promotes the differentiation and proliferation of Th1 cells important for immune defense against intracellular infection. In this study we found that tumor-bearing mice were more susceptible to bacterial infection and showed reduced CCL5 levels in serum during endotoxic shock. Our data further demonstrated that the soluble factors secreted by mammary gland tumor cells but not normal mammary gland epithelial cells inhibited CCL5 expression in macrophages in response to LPS, but not to TNF-α stimulation. The inhibitory effect of tumor-secreted molecules on LPS-induced CCL5 expression was regulated at the post-transcriptional level. Blocking PGE(2) synthesis by NS398 or through the use of PGE(2) receptor antagonists AH-6809 (EP2 antagonist) and AH-23848 (EP4 antagonist) completely reversed the inhibitory effect of tumor-conditioned medium (TCM) on LPS-induced CCL5 expression. Moreover, PGE(2) and the cAMP analog forskolin could mimic tumor-mediated CCL5 inhibition, and the inhibitory effects of TCM, PGE(2), and cAMP analog on LPS-induced CCL5 expression could be completely reversed by the PKA inhibitor H89. Furthermore, blocking PGE(2) synthesis in vivo led to partial recovery of CCL5 production during endotoxic shock. Taken together, our data indicate that PGE(2) secreted from breast cancer cells suppresses CCL5 secretion in LPS-activated macrophages through a cAMP/PKA signaling pathway, which may result in suppression of host immune responses against subsequent bacterial infection.

  10. Propagation of thrombosis by neutrophils and extracellular nucleosome networks

    PubMed Central

    Pfeiler, Susanne; Stark, Konstantin; Massberg, Steffen; Engelmann, Bernd

    2017-01-01

    Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis. PMID:27927771

  11. Expression of Ccl11 Associates with Immune Response Modulation and Protection against Neuroinflammation in Rats

    PubMed Central

    Zeitelhofer, Manuel; Hochmeister, Sonja; Beyeen, Amennai Daniel; Paulson, Atul; Gillett, Alan; Hedreul, Melanie Thessen; Covacu, Ruxandra; Lassmann, Hans; Olsson, Tomas; Jagodic, Maja

    2012-01-01

    Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin+ blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation. PMID:22815714

  12. Role of oncogene 24p3 neutrophil gelatinase-associated lipocalin (NGAL) in digestive system cancers.

    PubMed

    Michalak, Łukasz; Bulska, Magdalena; Kudłacz, Katarzyna; Szcześniak, Piotr

    2016-01-04

    Neutrophil gelatinase-associated lipocalin, known also as 24p3 lipocalin, lipocalin-2 or uterocalin (in mouse), is a small secretory protein binding small molecular weight ligands which takes part in numerous processes including apoptosis induction in leukocytes, iron transport, smell, and prostaglandins and retinol transport [19]. It was discovered in activated neutrophils as a covalent peptide associated with human gelatinase neutrophils [7]. Neutrophil lipocalin is secreted physiologically in the digestive system, respiratory tract, renal tubular cells, liver or immunity system. Systematic (circulated in plasma) neutrophil gelatinase come from multiple sources; it may be synthesized in the liver, secreted from activated neutrophils or macrophages, or derive from atherosclerosis or inflammatory endothelial cells [17]. NGAL is stored secondarily in granulates with lactoferrin, calprotectin or MAC-1, which take part in neutrophils' action and migration [13,19]. NGAL participates in acute and chronic inflammation (production of NGAL is indicated by factors conducive to cancer progression) [13,21]. NGAL levels increase in inflammatory or endothelial damage. NGAL level is measured in blood or urine. It is known as a kidney failure factor [7,20]. NGAL is therefore one of the most promising new generation biomarkers in clinical nephrology [6]. The role of NGAL in digestive system neoplasms has not been explored in detail. However, overexpression of this marker was proved in neoplasms such as esophageal carcinoma, stomach cancer, pancreatic cancer or colon cancer, which may indicate an association between concentration and neoplasm [3].

  13. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion.

    PubMed

    Liu, Lunhua; Das, Satarupa; Losert, Wolfgang; Parent, Carole A

    2010-12-14

    We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA-signaling axis, independently of actin reorganization during neutrophil chemotaxis. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils

    PubMed Central

    Gao, Kun; Tang, Wenwen; Li, Yuan; Zhang, Pingzhao; Wang, Dejie; Yu, Long; Wang, Chenji; Wu, Dianqing

    2015-01-01

    ABSTRACT A hallmark of neutrophil polarization is the back localization of active RHOA and phosphorylated myosin light chain (pMLC, also known as MYL2). However, the mechanism for the polarization is not entirely clear. Here, we show that FAM65B, a newly identified RHOA inhibitor, is important for the polarization. When FAM65B is phosphorylated, it binds to 14-3-3 family proteins and becomes more stable. In neutrophils, chemoattractants stimulate FAM65B phosphorylation largely depending on the signals from the front of the cells that include those mediated by phospholipase Cβ (PLCβ) and phosphoinositide 3-kinase γ (PI3Kγ), leading to FAM65B accumulation at the leading edge. Concordantly, FAM65B deficiency in neutrophils resulted in an increase in RHOA activity and localization of pMLC to the front of cells, as well as defects in chemotaxis directionality and adhesion to endothelial cells under flow. These data together elucidate a mechanism for RHOA and pMLC polarization in stimulated neutrophils through direct inhibition of RHOA by FAM65B at the leading edge. PMID:25588844

  15. CCL11 as a potential diagnostic marker for asthma?

    PubMed

    Wu, Dandan; Zhou, Ji; Bi, Hui; Li, Lingling; Gao, Wei; Huang, Mao; Adcock, Ian M; Barnes, Peter J; Yao, Xin

    2014-10-01

    Asthma is an inflammatory airway disease characterized by airway eosinophilia, in which CCL11 (eotaxin) plays a crucial role. The aim of study is to determine the elevation of CCL11 levels in bronchoalveolar lavage fluid (BALF), blood, exhaled breath condensate (EBC) and sputum in asthma patients and to identify which medium yields the most significant change in CCL11 level. The databases of PubMed, Embase and Cochrane Centre Register of Controlled Trials were systematically searched from inception to September 2013. Controlled clinical trials that focused on CCL11 concentrations in asthma patients and controls, and their correlations with other asthma indicators were obtained. Data were analysed using Stata 12.0. Thirty studies were included in this investigation. CCL11 levels in blood, EBC and sputum were significantly higher in asthma patients than in healthy subjects. Sputum CCL11 concentrations were significantly elevated in unstable asthma patients versus stable asthma patients and in uncontrolled asthma patients versus partially controlled asthma patients. CCL11 levels in sputum and blood were negatively correlated with the lung function as measured by FEV1% predicted, and were positively correlated with BALF, EBC and sputum eosinophil counts. Similarly, CCL11 concentrations were positively correlated with eosinophil cationic protein in EBC, blood and sputum as well as with interleukin-5 in sputum and fractional exhaled nitric oxide in EBC. Steroid treatment had no significant effect on CCL11 levels. CCL11 is a potentially useful biomarker for the diagnosis and assessment of asthma severity and control, especially in sputum. CCL11 is crucial in eosinophil chemoattraction and activation in asthma pathogenesis. Further studies using anti-CCL11 approaches are needed to confirm a role for CCL11 in asthma pathogenesis particularly in patients with more severe disease.

  16. Nitric oxide-dependent neutrophil recruitment: role in nasal secretion.

    PubMed

    Cardell, L O; Agustí, C; Nadel, J A

    2000-12-01

    Leukotriene B4 (LTB4), an inflammatory mediator, is a potent chemoattractant for neutrophils that plays an important role in nasal secretion via release of elastase. Nitric oxide (NO) is an important modulator of leucocyte-endothelial cell interactions, endogenously produced in large quantities in the paranasal sinuses. To examine the role of NO in LTB4-stimulated nasal secretion. A newly-developed method for isolating and superfusing a nasal segment in dogs was used. Instillation of LTB4 into the nasal segment caused a time-dependent increase in the volume of airway fluid and in the recruitment of neutrophils. N(G)-nitro-L-arginine-methylester (L-NAME), an inhibitor of NO synthase, prevented LTB4-induced neutrophil recruitment and nasal secretion. These studies show that NO modulates LTB4-induced neutrophil recruitment and subsequent fluid secretion in the nose, and they suggest a therapeutic role for NO inhibitors in modulating neutrophil-dependent nasal secretion.

  17. Neutrophil-mediated inflammation in the pathogenesis of Clostridium difficile infections

    PubMed Central

    Jose, Shinsmon; Madan, Rajat

    2016-01-01

    Clostridium difficile is the most important cause of nosocomial infectious diarrhea in the western world. C. difficile infections are a major healthcare burden with approximately 500,000 new cases every year and an estimated annual cost of nearly $1 billion in the U.S. Furthermore, the infections are no longer restricted to health care facilities, and recent studies indicate spread of C. difficile infection to the community as well. The clinical spectrum of C. difficile infection ranges from asymptomatic colonization to severe diarrhea, fulminant colitis and death. This spectrum results from a complex interplay between bacterial virulence factors, the colonic microbiome and the host inflammatory response. The overall vigor of host inflammatory response is believed to be an important determinant of C. difficile disease severity, and a more robust immune response is associated with worse outcomes. Neutrophils are the primary cells that respond to C. difficile invasion and neutrophilic inflammation is the hallmark of C. difficile-associated disease. In this review, we will focus on the role of neutrophils (infiltration to infected tissue, pathogen clearance and resolution of inflammation) in the immuno-pathogenesis of C. difficile-associated disease (CDAD). PMID:27063896

  18. The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.

    PubMed

    Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville

    2006-01-01

    Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.

  19. Citrus peel polymethoxyflavones nobiletin and tangeretin suppress LPS- and IgE-mediated activation of human intestinal mast cells.

    PubMed

    Hagenlocher, Yvonne; Feilhauer, Katharina; Schäffer, Michael; Bischoff, Stephan C; Lorentz, Axel

    2017-06-01

    Allergic diseases with mast cells (MC) as main effector cells show an increased prevalence. MC also play an essential role in other inflammatory conditions. Therapeutical use of anti-inflammatory nutraceuticals directly targeting MC activation could be of interest for afflicted patients. Nobiletin and tangeretin are citrus peel polymethoxyflavones, a group of citrus flavonoids, possessing anticancer, antimetastatic, and anti-inflammatory activities. Here, we analyzed the effects of nobiletin/tangeretin on LPS- and IgE-mediated stimulation of human intestinal mast cells (hiMC). MC isolated from human intestinal tissue were treated with different concentrations of nobiletin or tangeretin prior to stimulation via LPS/sCD14 or IgE-dependently. Degranulation, pro-inflammatory cytokine expression and phosphorylation of ERK1/2 were examined. Expression of CXCL8, CCL3, CCL4 and IL-1β in response to LPS-mediated stimulation was inhibited by nobiletin/tangeretin. hiMC activated IgE-dependently showed a reduced release of β-hexosaminidase and cysteinyl LTC 4 in response to nobiletin, but not in response to tangeretin. Expression of CXCL8, CCL2, CCL3, CCL4 and TNF in IgE-dependently activated hiMC was decreased in a dose-dependent manner following treatment with nobiletin/tangeretin. IL-1β expression was only reduced by tangeretin. Compared to treatment with NF-κB inhibitor BMS345541 or MEK-inhibitor PD98059, nobiletin and tangeretin showed similar effects on mediator production. Phosphorylation of ERK1/2 upon IgE-mediated antigen stimulation was significantly suppressed by nobiletin and tangeretin. Nobiletin and, to a lesser extent, tangeretin could be considered as anti-inflammatory nutraceuticals by reducing release and production of proinflammatory mediators in MC.

  20. Radil controls neutrophil adhesion and motility through β2-integrin activation

    PubMed Central

    Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M.; Rodgers, Griffin P.; Angers, Stephane; Parent, Carole A.

    2012-01-01

    Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP–dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation. PMID:23097489

  1. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma.

    PubMed

    Kim, Richard Y; Pinkerton, James W; Essilfie, Ama T; Robertson, Avril A B; Baines, Katherine J; Brown, Alexandra C; Mayall, Jemma R; Ali, M Khadem; Starkey, Malcolm R; Hansbro, Nicole G; Hirota, Jeremy A; Wood, Lisa G; Simpson, Jodie L; Knight, Darryl A; Wark, Peter A; Gibson, Peter G; O'Neill, Luke A J; Cooper, Matthew A; Horvat, Jay C; Hansbro, Philip M

    2017-08-01

    Severe, steroid-resistant asthma is the major unmet need in asthma therapy. Disease heterogeneity and poor understanding of pathogenic mechanisms hampers the identification of therapeutic targets. Excessive nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome and concomitant IL-1β responses occur in chronic obstructive pulmonary disease, respiratory infections, and neutrophilic asthma. However, the direct contributions to pathogenesis, mechanisms involved, and potential for therapeutic targeting remain poorly understood, and are unknown in severe, steroid-resistant asthma. To investigate the roles and therapeutic targeting of the NLRP3 inflammasome and IL-1β in severe, steroid-resistant asthma. We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-induced severe, steroid-resistant allergic airway disease. These models share the hallmark features of human disease, including elevated airway neutrophils, and NLRP3 inflammasome and IL-1β responses. The roles and potential for targeting of NLRP3 inflammasome, caspase-1, and IL-1β responses in experimental severe, steroid-resistant asthma were examined using a highly selective NLRP3 inhibitor, MCC950; the specific caspase-1 inhibitor Ac-YVAD-cho; and neutralizing anti-IL-1β antibody. Roles for IL-1β-induced neutrophilic inflammation were examined using IL-1β and anti-Ly6G. Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1β responses that drive steroid-resistant neutrophilic inflammation and airway hyperresponsiveness. Neutrophilic airway inflammation, disease severity, and steroid resistance in human asthma correlate with NLRP3 and IL-1β expression. Treatment with anti-IL-1β, Ac-YVAD-cho, and MCC950 suppressed IL-1β responses and the important steroid-resistant features of disease in mice, whereas IL-1β administration recapitulated these features. Neutrophil depletion suppressed IL-1

  2. CCL11-induced eosinophils inhibit the formation of blood vessels and cause tumor necrosis.

    PubMed

    Xing, Yanjiang; Tian, Yijun; Kurosawa, Takamasa; Matsui, Sayaka; Touma, Maki; Yanai, Takanori; Wu, Qiong; Sugimoto, Kenkichi

    2016-06-01

    We previously demonstrated that IL-18 and CCL11 were highly expressed in an NFSA tumor cell line that showed limited angiogenesis and severe necrosis. However, IL-18 was not responsible for the immune cell accumulation and necrosis. Here, we attempted to clarify the relevance of CCL11 in angiogenesis and tumor formation. We established CCL11-overexpressing MS-K cell clones (MS-K-CCL11) to assess the role of CCL11 in immune cell accumulation and angiogenesis. The MS-K-CCL11 cells did not form tumors in mice. MS-K-CCL11-conditioned medium (CM) and recombinant CCL11 induced macrophage and eosinophil differentiation from bone marrow cells. The MS-K-CCL11-CM effectively recruited the differentiated eosinophils. Furthermore, the eosinophils damaged the MS-K, NFSA and endothelial cells in a dose-dependent manner. Administration of an antagonist of CCR3, a CCL11 receptor, to NFSA tumor-bearing mice restored the blood vessel formation and blocked the eosinophil infiltration into the NFSA tumors. Furthermore, other CCL11-overexpressing LM8 clones were established, and their tumor formation ability was reduced compared to the parental LM8 cells, accompanied by increased eosinophil infiltration, blockade of angiogenesis and necrosis. These results indicate that CCL11 was responsible for the limited angiogenesis and necrosis by inducing and attracting eosinophils in the tumors. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  3. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.

    1987-05-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of /sup 51/Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cellsmore » (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of /sup 51/Cr release from radiolabeled monolayers.« less

  4. Inhibition by sulfonamides of the candidacidal activity of human neutrophils.

    PubMed

    Lehrer, R I

    1971-12-01

    Sulfonamides reduced substantially the ability of normal human neutrophils to kill strains of Candida albicans and Candida tropicalis, and impaired to a lesser extent their activity against Staphylococcus aureus 502A and Serratia marcescens. Sulfonamides also inhibited (a) iodination of Candida cells by normal neutrophils; (b) candidacidal activity in cell-free systems containing purified human myeloperoxidase, hydrogen peroxide, and potassium iodide; and (c) accumulation of molecular iodine in analogously constructed cell-free systems. In contrast to these effects on reactions catalyzed by myeloperoxidase, sulfonamides exerted relatively little effect on the levels of microbicidal activity manifested by human neutrophils that lacked myeloperoxidase. Sulfonamides appear to influence the function of human neutrophils predominantly by interfering with myeloperoxidase-mediated pathways. Certain basic and clinical implications of these data are discussed.

  5. Effects of venom immunotherapy on serum level of CCL5/RANTES in patients with Hymenoptera venom allergy.

    PubMed

    Gawlik, Radoslaw; Glück, Joanna; Jawor, Barbara; Rogala, Barbara

    2015-01-01

    Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Venom immunotherapy is a recommended treatment of insect allergy with still the mechanism not being completely understood. We decided to assess the serum CCL5/RANTES level in patients who experienced severe anaphylactic reaction to Hymenoptera venom and to find out changes in the course of immunotherapy. Twenty patients (9 men, 11 women, mean age: 31.91 ± 7.63 years) with history of anaphylactic reaction after insect sting were included into the study. Diagnosis was made according to sIgE and skin tests. All of them were enrolled into rush venom immunotherapy with bee or wasp venom extracts (Pharmalgen, ALK-Abello, Horsholm, Denmark). Serum levels of CCL5/RANTES were measured using a commercially available ELISA kit (R&D Systems, Minneapolis, MN). CCL5/RANTES serum concentration are higher in insect venom allergic patients than in healthy controls (887.5 ± 322.77 versus 387.27 ± 85.11 pg/ml). Serum concentration of CCL5/RANTES in insect venom allergic patient was significantly reduced in the course of allergen immunotherapy already after 6 days of vaccination (887.5 ± 322.77 versus 567.32 ± 92.16 pg/ml). CCL5/RANTES serum doesn't correlate with specific IgE. Chemokine CCL5/RANTES participates in allergic inflammation induced by Hymenoptera venom allergens. Specific immunotherapy reduces chemokine CCL5/RANTES serum level already after initial days of venom immunotherapy.

  6. UP-REGULATION OF IL-6, IL-8 AND CCL2 GENE EXPRESSION AFTER ACUTE INFLAMMATION: CORRELATION TO CLINICAL PAIN

    PubMed Central

    Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.

    2012-01-01

    Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564

  7. The CC chemokine ligand (CCL) 1, upregulated by the viral transactivator Tax, can be downregulated by minocycline: possible implications for long-term treatment of HTLV-1-associated myelopathy/tropical spastic paraparesis.

    PubMed

    Saito, Mineki; Sejima, Hiroe; Naito, Tadasuke; Ushirogawa, Hiroshi; Matsuzaki, Toshio; Matsuura, Eiji; Tanaka, Yuetsu; Nakamura, Tatsufumi; Takashima, Hiroshi

    2017-12-04

    Chemokine (C-C motif) ligand 1 (CCL1) is produced by activated monocytes/ macrophages and T-lymphocytes, and acts as a potent attractant for Th2 cells and a subset of T-regulatory (Treg) cells. Previous reports have indicated that CCL1 is overexpressed in adult T-cell leukemia cells, mediating an autocrine anti-apoptotic loop. Because CCL1 is also known as a potent chemoattractant that plays a major role in inflammatory processes, we investigated the role of CCL1 in the pathogenesis of human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The results showed that: (1) CCL1 was preferentially expressed in HAM/TSP-derived HTLV-1-infected T-cell lines, (2) CCL1 expression was induced along with Tax expression in the Tax-inducible T-cell line JPX9, (3) transient Tax expression in an HTLV-1-negative T-cell line activated the CCL1 gene promoter, (4) plasma levels of CCL1 were significantly higher in patients with HAM/TSP than in HTLV-1-seronegative patients with multiple sclerosis and HTLV-1-infected asymptomatic healthy carriers, and (5) minocycline inhibited the production of CCL1 in HTLV-1-infected T-cell lines. The present results suggest that elevated CCL1 levels may be associated with the pathogenesis of HAM/TSP. Although further studies are required to determine the in vivo significance, minocycline may be considered as a potential candidate for the long-term treatment of HAM/TSP via its anti-inflammatory effects, which includes the inhibition of CCL1 expression.

  8. The calcium-activated potassium channel KCa3.1 plays a central role in the chemotactic response of mammalian neutrophils.

    PubMed

    Henríquez, C; Riquelme, T T; Vera, D; Julio-Kalajzić, F; Ehrenfeld, P; Melvin, J E; Figueroa, C D; Sarmiento, J; Flores, C A

    2016-01-01

    Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1(-/-) mice are significantly less effective at recruiting neutrophils into the site of inflammation. These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. The calcium-activated potassium channel KCa3.1 plays a central role in the chemotactic response of mammalian neutrophils

    PubMed Central

    Henríquez, C.; Riquelme, T. T.; Vera, D.; Julio-Kalajzić, F.; Ehrenfeld, P.; Melvin, J. E.; Figueroa, C. D.; Sarmiento, J.; Flores, C. A.

    2017-01-01

    Aim Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. Methods Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. Results We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1−/− mice are significantly less effective at recruiting neutrophils into the site of inflammation. Conclusions These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions. PMID:26138196

  10. Fcγ receptor-mediated influx of S100A8/A9-producing neutrophils as inducer of bone erosion during antigen-induced arthritis.

    PubMed

    Di Ceglie, Irene; Ascone, Giuliana; Cremers, Niels A J; Sloetjes, Annet W; Walgreen, Birgitte; Vogl, Thomas; Roth, Johannes; Verbeek, J Sjef; van de Loo, Fons A J; Koenders, Marije I; van der Kraan, Peter M; Blom, Arjen B; van den Bosch, Martijn H J; van Lent, Peter L E M

    2018-05-02

    Osteoclast-mediated bone erosion is a central feature of rheumatoid arthritis (RA). Immune complexes, present in a large percentage of patients, bind to Fcγ receptors (FcγRs), thereby modulating the activity of immune cells. In this study, we investigated the contribution of FcγRs, and FcγRIV in particular, during antigen-induced arthritis (AIA). AIA was induced in knee joints of wild-type (WT), FcγRI,II,III -/- , and FcγRI,II,III,IV -/- mice. Bone destruction, numbers of tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclasts, and inflammation were evaluated using histology; expression of the macrophage marker F4/80, neutrophil marker NIMPR14, and alarmin S100A8 was evaluated using immunohistochemistry. The percentage of osteoclast precursors in the bone marrow was determined using flow cytometry. In vitro osteoclastogenesis was evaluated with TRAP staining, and gene expression was assessed using real-time PCR. FcγRI,II,III,IV -/- mice showed decreased bone erosion compared with WT mice during AIA, whereas both the humoral and cellular immune responses against methylated bovine serum albumin were not impaired in FcγRI,II,III,IV -/- mice. The percentage of osteoclast precursors in the bone marrow of arthritic mice and their ability to differentiate into osteoclasts in vitro were comparable between FcγRI,II,III,IV -/- and WT mice. In line with these observations, numbers of TRAP + osteoclasts on the bone surface during AIA were comparable between the two groups. Inflammation, a process that strongly activates osteoclast activity, was reduced in FcγRI,II,III,IV -/- mice, and of note, mainly decreased numbers of neutrophils were present in the joint. In contrast to FcγRI,II,III,IV -/- mice, AIA induction in knee joints of FcγRI,II,III -/- mice resulted in increased bone erosion, inflammation, and numbers of neutrophils, suggesting a crucial role for FcγRIV in the joint pathology by the recruitment of neutrophils. Finally, significant

  11. 6-shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells.

    PubMed

    Hsu, Ya-Ling; Hung, Jen-Yu; Tsai, Ying-Ming; Tsai, Eing-Mei; Huang, Ming-Shyan; Hou, Ming-Feng; Kuo, Po-Lin

    2015-02-18

    This study has two novel findings: it is not only the first to demonstrate that tumor-associated dendritic cells (TADCs) facilitate lung and breast cancer metastasis in vitro and in vivo by secreting inflammatory mediator CC-chemokine ligand 2 (CCL2), but it is also the first to reveal that 6-shogaol can decrease cancer development and progression by inhibiting the production of TADC-derived CCL2. Human lung cancer A549 and breast cancer MDA-MB-231 cells increase TADCs to express high levels of CCL2, which increase cancer stem cell features, migration, and invasion, as well as immunosuppressive tumor-associated macrophage infiltration. 6-Shogaol decreases cancer-induced up-regulation of CCL2 in TADCs, preventing the enhancing effects of TADCs on tumorigenesis and metastatic properties in A549 and MDA-MB-231 cells. A549 and MDA-MB-231 cells enhance CCL2 expression by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and the activation of STAT3 induced by A549 and MDA-MB-231 is completely inhibited by 6-shogaol. 6-Shogaol also decreases the metastasis of lung and breast cancers in mice. 6-Shogaol exerts significant anticancer effects on lung and breast cells in vitro and in vivo by targeting the CCL2 secreted by TADCs. Thus, 6-shogaol may have the potential of being an efficacious immunotherapeutic agent for cancers.

  12. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli.

    PubMed

    Bennewitz, Margaret F; Jimenez, Maritza A; Vats, Ravi; Tutuncuoglu, Egemen; Jonassaint, Jude; Kato, Gregory J; Gladwin, Mark T; Sundd, Prithu

    2017-01-12

    In patients with sickle cell disease (SCD), the polymerization of intraerythrocytic hemoglobin S promotes downstream vaso-occlusive events in the microvasculature. While vaso-occlusion is known to occur in the lung, often in the context of systemic vaso-occlusive crisis and the acute chest syndrome, the pathophysiological mechanisms that incite lung injury are unknown. We used intravital microscopy of the lung in transgenic humanized SCD mice to monitor acute vaso-occlusive events following an acute dose of systemic lipopolysaccharide sufficient to trigger events in SCD but not control mice. We observed cellular microembolism of precapillary pulmonary arteriolar bottlenecks by neutrophil-platelet aggregates. Blood from SCD patients was next studied under flow in an in vitro microfluidic system. Similar to the pulmonary circulation, circulating platelets nucleated around arrested neutrophils, translating to a greater number and duration of neutrophil-platelet interactions compared with normal human blood. Inhibition of platelet P-selectin with function-blocking antibody attenuated the neutrophil-platelet interactions in SCD patient blood in vitro and resolved pulmonary arteriole microembolism in SCD mice in vivo. These results establish the relevance of neutrophil-platelet aggregate formation in lung arterioles in promoting lung vaso-occlusion in SCD and highlight the therapeutic potential of targeting platelet adhesion molecules to prevent acute chest syndrome.

  13. Neutrophil dysregulation during sepsis: an overview and update.

    PubMed

    Shen, Xiao-Fei; Cao, Ke; Jiang, Jin-Peng; Guan, Wen-Xian; Du, Jun-Feng

    2017-09-01

    Sepsis remains a leading cause of death worldwide, despite advances in critical care, and understanding of the pathophysiology and treatment strategies. No specific therapy or drugs are available for sepsis. Neutrophils play a critical role in controlling infection under normal conditions, and it is suggested that their migration and antimicrobial activity are impaired during sepsis which contribute to the dysregulation of immune responses. Recent studies further demonstrated that interruption or reversal of the impaired migration and antimicrobial function of neutrophils improves the outcome of sepsis in animal models. In this review, we provide an overview of the associated mediators and signal pathways involved which govern the survival, migration and antimicrobial function of neutrophils in sepsis, and discuss the potential of neutrophils as a target to specifically diagnose and/or predict the outcome of sepsis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. L-selectin mechanochemistry restricts neutrophil priming in vivo.

    PubMed

    Liu, Zhenghui; Yago, Tadayuki; Zhang, Nan; Panicker, Sumith R; Wang, Ying; Yao, Longbiao; Mehta-D'souza, Padmaja; Xia, Lijun; Zhu, Cheng; McEver, Rodger P

    2017-05-12

    Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo.

  15. L-selectin mechanochemistry restricts neutrophil priming in vivo

    PubMed Central

    Liu, Zhenghui; Yago, Tadayuki; Zhang, Nan; Panicker, Sumith R.; Wang, Ying; Yao, Longbiao; Mehta-D'souza, Padmaja; Xia, Lijun; Zhu, Cheng; McEver, Rodger P.

    2017-01-01

    Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo. PMID:28497779

  16. Neutrophil-mediated inflammation in the pathogenesis of Clostridium difficile infections.

    PubMed

    Jose, Shinsmon; Madan, Rajat

    2016-10-01

    Clostridium difficile is the most important cause of nosocomial infectious diarrhea in the western world. C. difficile infections are a major healthcare burden with approximately 500,000 new cases every year and an estimated annual cost of nearly $1 billion in the U.S. Furthermore, the infections are no longer restricted to health care facilities, and recent studies indicate spread of C. difficile infection to the community as well. The clinical spectrum of C. difficile infection ranges from asymptomatic colonization to severe diarrhea, fulminant colitis and death. This spectrum results from a complex interplay between bacterial virulence factors, the colonic microbiome and the host inflammatory response. The overall vigor of host inflammatory response is believed to be an important determinant of C. difficile disease severity, and a more robust immune response is associated with worse outcomes. Neutrophils are the primary cells that respond to C. difficile invasion and neutrophilic inflammation is the hallmark of C. difficile-associated disease. In this review, we will focus on the role of neutrophils (infiltration to infected tissue, pathogen clearance and resolution of inflammation) in the immuno-pathogenesis of C. difficile-associated disease (CDAD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence

    PubMed Central

    Allen, Robert C.

    2015-01-01

    Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2) facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (1O2 *) is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism. PMID:26783542

  18. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury

    PubMed Central

    Block, Helena; Herter, Jan M.; Rossaint, Jan; Stadtmann, Anika; Kliche, Stefanie; Lowell, Clifford A.

    2012-01-01

    Neutrophils trigger inflammation-induced acute kidney injury (AKI), a frequent and potentially lethal occurrence in humans. Molecular mechanisms underlying neutrophil recruitment to sites of inflammation have proved elusive. In this study, we demonstrate that SLP-76 (SH2 domain–containing leukocyte phosphoprotein of 76 kD) and ADAP (adhesion and degranulation promoting adaptor protein) are involved in E-selectin–mediated integrin activation and slow leukocyte rolling, which promotes ischemia-reperfusion–induced AKI in mice. By using genetically engineered mice and transduced Slp76−/− primary leukocytes, we demonstrate that ADAP as well as two N-terminal–located tyrosines and the SH2 domain of SLP-76 are required for downstream signaling and slow leukocyte rolling. The Tec family kinase Bruton tyrosine kinase is downstream of SLP-76 and, together with ADAP, regulates PI3Kγ (phosphoinositide 3-kinase–γ)- and PLCγ2 (phospholipase Cγ2)-dependent pathways. Blocking both pathways completely abolishes integrin affinity and avidity regulation. Thus, SLP-76 and ADAP are involved in E-selectin–mediated integrin activation and neutrophil recruitment to inflamed kidneys, which may underlie the development of life-threatening ischemia-reperfusion–induced AKI in humans. PMID:22291096

  19. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury.

    PubMed

    Block, Helena; Herter, Jan M; Rossaint, Jan; Stadtmann, Anika; Kliche, Stefanie; Lowell, Clifford A; Zarbock, Alexander

    2012-02-13

    Neutrophils trigger inflammation-induced acute kidney injury (AKI), a frequent and potentially lethal occurrence in humans. Molecular mechanisms underlying neutrophil recruitment to sites of inflammation have proved elusive. In this study, we demonstrate that SLP-76 (SH2 domain-containing leukocyte phosphoprotein of 76 kD) and ADAP (adhesion and degranulation promoting adaptor protein) are involved in E-selectin-mediated integrin activation and slow leukocyte rolling, which promotes ischemia-reperfusion-induced AKI in mice. By using genetically engineered mice and transduced Slp76(-/-) primary leukocytes, we demonstrate that ADAP as well as two N-terminal-located tyrosines and the SH2 domain of SLP-76 are required for downstream signaling and slow leukocyte rolling. The Tec family kinase Bruton tyrosine kinase is downstream of SLP-76 and, together with ADAP, regulates PI3Kγ (phosphoinositide 3-kinase-γ)- and PLCγ2 (phospholipase Cγ2)-dependent pathways. Blocking both pathways completely abolishes integrin affinity and avidity regulation. Thus, SLP-76 and ADAP are involved in E-selectin-mediated integrin activation and neutrophil recruitment to inflamed kidneys, which may underlie the development of life-threatening ischemia-reperfusion-induced AKI in humans.

  20. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    PubMed

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  1. Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, HFCs, CH3CCl3, and their degradation products against dissolution and/or degradation in seawater and cloudwater

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Chameides, W. L.

    1990-01-01

    For a wide variety of atmospheric species including CO2, HNO3, and SO2, dissolution in seawater or cloudwater followed by hydrolysis or chemical reaction represents a primary pathway for removal from the atmosphere. In order to determine if this mechanism can also remove significant amounts of atmospheric chlorofluorocarbons (HCFC's), fluorocarbons (HFC's), and their degradation products, an investigation was undertaken as part of the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS). In this investigation, the rates at which CHCl2CF3 (HCFC-123), CCl2FCH3 (HCFC-141b), CClF2CH3 (HCFC-142b), CHClF2 (HCFC-22), CHClFCF3 (HCFC-124) CH2FCF3 (HFC-134a) CHF2CH3 (HFC-152a), CHF2CF3 (HFC-125), and CH3CCl3 can be dissolved in the oceans and in cloudwater were estimated from the species' thermodynamic and chemical properties using simple mathematical formulations to simulate the transfer of gases from the atmosphere to the ocean or cloudwater. The ability of cloudwater and rainwater to remove gas phase degradation products of these compounds was also considered as was the aqueous phase chemistry of the degradation products. The results of this investigation are described.

  2. 3,4,5-Tricaffeoylquinic acid inhibits tumor necrosis factor-α-stimulated production of inflammatory mediators in keratinocytes via suppression of Akt- and NF-κB-pathways.

    PubMed

    Lee, Chung Soo; Lee, Seon Ae; Kim, Yun Jeong; Seo, Seong Jun; Lee, Min Won

    2011-11-01

    Keratinocytes may play an important role in the pathogenesis of skin disease in atopic dermatitis. Caffeoyl derivatives are demonstrated to have anti-inflammatory and anti-oxidant effects. However, the effect of 3,4,5-tricaffeoylquinic acid prepared from Aconium koreanum on the pro-inflammatory cytokine-stimulated keratinocyte responses remains uncertain. In human keratinocytes, we investigated the effect of 3,4,5-tricaffeoylquinic acid on the tumor necrosis factor (TNF)-α-stimulated production of inflammatory mediators in relation to the nuclear factor (NF)-κB and cell signaling Akt, which regulates the transcription genes involved in immune and inflammatory responses. 3,4,5-Tricaffeoylquinic acid inhibited the TNF-α-stimulated production of cytokines (IL-1β and IL-8) and chemokine (CCL17 and CCL27) in keratinocytes. Bay 11-7085 (an inhibitor of NF-κB activation) and Akt inhibitor attenuated the TNF-α-induced formation of inflammatory mediators. 3,4,5-Tricaffeoylquinic acid, Bay 11-7085, Akt inhibitor and N-acetylcysteine inhibited the TNF-α-induced activation of NF-κB, activation of Akt, and formation of reactive oxygen and nitrogen species. The results show that 3,4,5-tricaffeoylquinic acid seems to attenuate the TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of Akt and NF-κB pathways which may be mediated by reactive oxygen species. The findings suggest that 3,4,5-tricaffeoylquinic acid may exert an inhibitory effect against the pro-inflammatory mediator-induced skin disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. d(-) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression.

    PubMed

    Alarcón, Pablo; Manosalva, Carolina; Conejeros, Ivan; Carretta, María D; Muñoz-Caro, Tamara; Silva, Liliana M R; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(-) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(-) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(-) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(-) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H 4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(-) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(-) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(-) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(-) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  4. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient

    PubMed Central

    Liu, Xiaowen; Yang, Tao; Suzuki, Koya; Tsukita, Sachiko; Ishii, Masaru; Zhou, Shuping; Wang, Gang; Cao, Luyang; Qian, Feng; Taylor, Shalina; Oh, Myung-Jin; Levitan, Irena; Ye, Richard D.; Carnegie, Graeme K.; Malik, Asrar B.

    2015-01-01

    Neutrophils respond to invading bacteria by adopting a polarized morphology, migrating in the correct direction, and engulfing the bacteria. How neutrophils establish and precisely orient this polarity toward pathogens remains unclear. Here we report that in resting neutrophils, the ERM (ezrin, radixin, and moesin) protein moesin in its active form (phosphorylated and membrane bound) prevented cell polarization by inhibiting the small GTPases Rac, Rho, and Cdc42. Attractant-induced activation of myosin phosphatase deactivated moesin at the prospective leading edge to break symmetry and establish polarity. Subsequent translocation of moesin to the trailing edge confined the formation of a prominent pseudopod directed toward pathogens and prevented secondary pseudopod formation in other directions. Therefore, both moesin-mediated inhibition and its localized deactivation by myosin phosphatase are essential for neutrophil polarization and effective neutrophil tracking of pathogens. PMID:25601651

  5. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury.

    PubMed

    Wang, Yuping; Mukhopadhyay, Partha; Cao, Zongxian; Wang, Hua; Feng, Dechun; Haskó, György; Mechoulam, Raphael; Gao, Bin; Pacher, Pal

    2017-09-21

    Cannabidiol (CBD) is a non-psychoactive component of marijuana, which has anti-inflammatory effects. It has also been approved by FDA for various orphan diseases for exploratory trials. Herein, we investigated the effects of CBD on liver injury induced by chronic plus binge alcohol feeding in mice. CBD or vehicle was administered daily throughout the alcohol feeding study. At the conclusion of the feeding protocol, serums samples, livers or isolated neutrophils were utilized for molecular biology, biochemistry and pathology analysis. CBD significantly attenuated the alcohol feeding-induced serum transaminase elevations, hepatic inflammation (mRNA expressions of TNFα, MCP1, IL1β, MIP2 and E-Selectin, and neutrophil accumulation), oxidative/nitrative stress (lipid peroxidation, 3-nitrotyrosine formation, and expression of reactive oxygen species generating enzyme NOX2). CBD treatment also attenuated the respiratory burst of neutrophils isolated from chronic plus binge alcohol fed mice or from human blood, and decreased the alcohol-induced increased liver triglyceride and fat droplet accumulation. Furthermore, CBD improved alcohol-induced hepatic metabolic dysregulation and steatosis by restoring changes in hepatic mRNA or protein expression of ACC-1, FASN, PPARα, MCAD, ADIPOR-1, and mCPT-1. Thus, CBD may have therapeutic potential in the treatment of alcoholic liver diseases associated with inflammation, oxidative stress and steatosis, which deserves exploration in human trials.

  6. Stromal Fibroblasts Induce CCL20 through IL6/C/EBPβ to Support the Recruitment of Th17 Cells during Cervical Cancer Progression.

    PubMed

    Walch-Rückheim, Barbara; Mavrova, Russalina; Henning, Melanie; Vicinus, Benjamin; Kim, Yoo-Jin; Bohle, Rainer Maria; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Smola, Sigrun

    2015-12-15

    Cervical cancer is a consequence of persistent infection with human papillomaviruses (HPV). Progression to malignancy is linked to an inflammatory microenvironment comprising T-helper-17 (Th17) cells, a T-cell subset with protumorigenic properties. Neoplastic cells express only low endogenous levels of the Th17 chemoattractant CCL20, and therefore, it is unclear how Th17 cells are recruited to the cervical cancer tissue. In this study, we demonstrate that CCL20 was predominantly expressed in the stroma of cervical squamous cell carcinomas in situ. This correlated with stromal infiltration of CD4(+)/IL17(+) cells and with advancing International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, we show that cervical cancer cells instructed primary cervical fibroblasts to produce high levels of CCL20 and to attract CD4/IL17/CCR6-positive cells, generated in vitro, in a CCL20/CCR6-dependent manner. Further mechanistic investigations identified cervical cancer cell-derived IL6 as an important mediator of paracrine CCL20 induction at the promoter, mRNA, and protein level in fibroblasts. CCL20 was upregulated through the recently described CCAAT/enhancer-binding protein β (C/EBPβ) pathway as shown with a dominant-negative version of C/EBPβ and through siRNA-mediated knockdown. In summary, our study defines a novel molecular mechanism by which cervical neoplastic cells shape their local microenvironment by instructing fibroblasts to support Th17 cell infiltration in a paracrine IL6/C/EBPβ-dependent manner. Th17 cells may in turn maintain chronic inflammation within high-grade cervical lesions to further promote cancer progression. ©2015 American Association for Cancer Research.

  7. Both Influenza-Induced Neutrophil Dysfunction and Neutrophil-Independent Mechanisms Contribute to Increased Susceptibility to a Secondary Streptococcus pneumoniae Infection▿

    PubMed Central

    McNamee, Lynnelle A.; Harmsen, Allen G.

    2006-01-01

    Since secondary Streptococcus pneumoniae infections greatly increase the mortality of influenza infections, we determined the relative roles of neutrophil-dependent and -independent mechanisms in increased susceptibility to S. pneumoniae during influenza infection. Mice infected with influenza for 6 days, but not 3 days, showed a significant increase in susceptibility to S. pneumoniae infection compared to mice not infected with influenza. There was significant neutrophil accumulation in the lungs of S. pneumoniae-infected mice regardless of whether or not they were infected with influenza for 3 or 6 days. Depletion of neutrophils in these mice resulted in increased susceptibility to S. pneumoniae in both the non-influenza-infected mice and mice infected with influenza for 3 days but not in the mice infected with influenza for 6 days, indicating that a prior influenza infection of 6 days may compromise neutrophil function, resulting in increased susceptibility to a S. pneumoniae infection. Neutrophils from the lungs of mice infected with influenza for 3 or 6 days exhibited functional impairment in the form of decreased phagocytosis and intracellular reactive oxygen species generation in response to S. pneumoniae. In addition, neutrophil-depleted mice infected with influenza for 6 days were more susceptible to S. pneumoniae than neutrophil-depleted mice not infected with influenza, indicating that neutrophil-independent mechanisms also contribute to influenza-induced increased susceptibility to S. pneumoniae. Pulmonary interleukin-10 levels were increased in coinfected mice infected with influenza for 6 days but not 3 days. Thus, an influenza infection of 6 days increases susceptibility to S. pneumoniae by both suppression of neutrophil function and by neutrophil-independent mechanisms such as enhanced cytokine production. PMID:16982840

  8. Total chemical synthesis and biological activities of glycosylated and non-glycosylated forms of the chemokines CCL1 and Ser-CCL1.

    PubMed

    Okamoto, Ryo; Mandal, Kalyaneswar; Ling, Morris; Luster, Andrew D; Kajihara, Yasuhiro; Kent, Stephen B H

    2014-05-12

    CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T-cells and acts as a chemoattractant for monocytes. Originally, CCL1 was identified as a 73 amino acid protein having one N-glycosylation site, and a variant 74 residue non-glycosylated form, Ser-CCL1, has also been described. There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser-CCL1. Here we report the total chemical syntheses of both N-glycosylated and non-glycosylated forms of (Ser-)CCL1, by convergent native chemical ligation. We used an N-glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide-(α) thioester building block. Chemotaxis assays of these glycoproteins and the corresponding non-glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser-)CCL1 using homogeneous N-glycosylated protein molecules of defined covalent structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils.

    PubMed

    Gao, Kun; Tang, Wenwen; Li, Yuan; Zhang, Pingzhao; Wang, Dejie; Yu, Long; Wang, Chenji; Wu, Dianqing

    2015-03-01

    A hallmark of neutrophil polarization is the back localization of active RHOA and phosphorylated myosin light chain (pMLC, also known as MYL2). However, the mechanism for the polarization is not entirely clear. Here, we show that FAM65B, a newly identified RHOA inhibitor, is important for the polarization. When FAM65B is phosphorylated, it binds to 14-3-3 family proteins and becomes more stable. In neutrophils, chemoattractants stimulate FAM65B phosphorylation largely depending on the signals from the front of the cells that include those mediated by phospholipase Cβ (PLCβ) and phosphoinositide 3-kinase γ (PI3Kγ), leading to FAM65B accumulation at the leading edge. Concordantly, FAM65B deficiency in neutrophils resulted in an increase in RHOA activity and localization of pMLC to the front of cells, as well as defects in chemotaxis directionality and adhesion to endothelial cells under flow. These data together elucidate a mechanism for RHOA and pMLC polarization in stimulated neutrophils through direct inhibition of RHOA by FAM65B at the leading edge. © 2015. Published by The Company of Biologists Ltd.

  10. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    PubMed

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  11. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide

    PubMed Central

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream. PMID:28222125

  12. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    PubMed

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  13. Rapid and transient upregulation of CCL11 (eotaxin-1) in mouse ovary during terminal stages of follicular development.

    PubMed

    Kuwabara, Yoshimitsu; Katayama, Akira; Igarashi, Tsutomu; Tomiyama, Ryoko; Piao, Hua; Kaneko, Reika; Abe, Takashi; Mine, Katsuya; Akira, Shigeo; Orimo, Hideo; Takeshita, Toshiyuki

    2012-05-01

    This study aimed to investigate the regulation of expression, localization and physiological role of the CCL11/CCR3 axis in mouse ovary during the periovulatory period. CCL11/CCR3 expression in the mouse ovary after treatment with pregnant mare serum gonadotropin (PMSG) followed by human chorionic gonadotropin (hCG) 48 hr later was assessed in vivo and in 3-dimensional cultures in vitro. Real-time RT-PCR analyses revealed transient CCL11 mRNA upregulation 6 hr after hCG treatment. Immunohistochemical staining of serial ovarian sections demonstrated overlapping expression of CCL11, CCR3 and CD31 endothelial cell marker in the theca-interstitial layer at 10 hr after hCG treatment. In vitro 3-dimensional cultures of periovulatory ovarian tissues demonstrated that treatment with anti-CCL11 neutralizing antibody significantly decreased CD31 transcript. Gonadotropin surge leads to transient CCL11/CCR3 axis upregulation in the ovarian theca-interstitial layer, suggesting that it is involved in periovulatory physiological processes by affecting follicular vessels. © 2012 John Wiley & Sons A/S.

  14. Cefoperazone Prevents the Inactivation of α1-Antitrypsin by Activated Neutrophils

    PubMed Central

    Dallegri, Franco; Dapino, Patrizia; Arduino, Nicoletta; Bertolotto, Maria; Ottonello, Luciano

    1999-01-01

    At sites of neutrophilic inflammation, tissue injury by neutrophil elastase is favored by phagocyte-induced hypochlorous acid-dependent inactivation of the natural elastase inhibitor α1-antitrypsin. In the present study, cefoperazone prevented α1-antitrypsin inactivation by neutrophils and reduced the recovery of hypochlorous acid from these cells. Moreover, the antibiotic reduced the free elastase activity in a neutrophil suspension supplemented with α1-antitrypsin without affecting the cells’ ability to release elastase. These data suggest that the drug inactivates hypochlorous acid before its reaction with α1-antitrypsin, thereby permitting the antiprotease-mediated blockade of released elastase. In conclusion, cefoperazone appears to have the potential for limiting elastase-antielastase imbalances, attenuating the related tissue injury at sites of inflammation. PMID:10471586

  15. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells

    PubMed Central

    Spiegel, Asaf; Brooks, Mary W.; Houshyar, Samin; Reinhardt, Ferenc; Ardolino, Michele; Fessler, Evelyn; Chen, Michelle B.; Krall, Jordan A.; DeCock, Jasmine; Zervantonakis, Ioannis K.; Iannello, Alexandre; Iwamoto, Yoshiko; Cortez-Retamozo, Virna; Kamm, Roger D.; Pittet, Mikael J.; Raulet, David H.; Weinberg, Robert A.

    2016-01-01

    Immune cells promote the initial metastatic dissemination of carcinoma cells from primary tumors. In contrast to their well-studied functions in the initial stages of metastasis, the specific roles of immunocytes in facilitating progression through the critical later steps of the invasion-metastasis cascade remain poorly understood. Here we define novel functions of neutrophils in promoting intraluminal survival and extravasation at sites of metastatic dissemination. We show that CD11b+/Ly6G+ neutrophils enhance metastasis formation via two distinct mechanisms. First, neutrophils inhibit natural killer cell function, which leads to a significant increase in the intraluminal survival time of tumor cells. Thereafter, neutrophils operate to facilitate extravasation of tumor cells through the secretion of IL-1β and matrix metalloproteinases. These results identify neutrophils as key regulators of intraluminal survival and extravasation through their crosstalk with host cells and disseminating carcinoma cells. PMID:27072748

  16. Multiple alterations of canalicular membrane transport activities in rats with CCl(4)-induced hepatic injury.

    PubMed

    Song, Im-Sook; Lee, Young-Mi; Chung, Suk-Jae; Shim, Chang-Koo

    2003-04-01

    The influence of CCl(4)-induced experimental hepatic injury (CCl(4)-EHI) on the expression and transport activities of primary active transporters on the canalicular membrane, including P-glycoprotein (P-gp), a bile salt export pump (Bsep) and a multidrug resistance associated protein2 (Mrp2), was assessed. CCl(4)-EHI was induced by an intraperitoneal injection of CCl(4) to rats at a dose of 1 ml/kg 24 h prior to the preparation of canalicular liver plasma membrane (cLPM) vesicles and pharmacokinetic studies. The expression of each transporter was measured for the vesicles via Western blot analysis at 6, 12, 24, 36, and 48 h after the injection of CCl(4). The in vivo canalicular excretion clearance (CL(exc)) of [(3)H]daunomycin, [(3)H]taurocholate and [(3)H]17beta-estradiol-17beta-D-glucuronide (E(2)17betaG), representative substrates of P-gp, Bsep, and Mrp2, respectively, was determined following an i.v. infusion to rats. The uptake of each substrate into cLPM vesicles in the presence of ATP was also measured by a rapid filtration technique. As the result of the CCl(4)-EHI, the protein level of transporters was altered as a function of time in multiple manners; it was increased by 3.6-fold for P-gp, unchanged for Bsep, and decreased by 73% for Mrp2 at 24 h. The in vivo CL(exc) and the intrinsic uptake clearance into cLPM vesicles (CL(int)) at 24 h after the CCl(4) injection (CCl(4)-EHI(24 h)) were also influenced by the EHI in a similar manner; they were increased by 1.8- and 1.9-fold for daunomycin, unchanged for taurocholate, and decreased by 41 and 39% for E(2)17betaG, respectively, consistent with multiple alterations in the expression of the relevant transporters.

  17. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils.

    PubMed

    Philips, M R; Pillinger, M H; Staud, R; Volker, C; Rosenfeld, M G; Weissmann, G; Stock, J B

    1993-02-12

    In human neutrophils, as in other cell types, Ras-related guanosine triphosphate-binding proteins are directed toward their regulatory targets in membranes by a series of posttranslational modifications that include methyl esterification of a carboxyl-terminal prenylcysteine residue. In intact cells and in a reconstituted in vitro system, the amount of carboxyl methylation of Ras-related proteins increased in response to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (FMLP). Activation of Ras-related proteins by guanosine-5'-O-(3-thiotriphosphate) had a similar effect and induced translocation of p22rac2 from cytosol to plasma membrane. Inhibitors of prenylcysteine carboxyl methylation effectively blocked neutrophil responses to FMLP. These findings suggest a direct link between receptor-mediated signal transduction and the carboxyl methylation of Ras-related proteins.

  18. d(−) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    PubMed Central

    Alarcón, Pablo; Manosalva, Carolina; Conejeros, Ivan; Carretta, María D.; Muñoz-Caro, Tamara; Silva, Liliana M. R.; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A.; Burgos, Rafael A.

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(−) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(−) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(−) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(−) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(−) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(−) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(−) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis. PMID:28861083

  19. Chemistry of CCl 4 on Fe 3O 4(1 1 1)-(2 × 2) surfaces in the presence of adsorbed D 2O studied by temperature programmed desorption

    NASA Astrophysics Data System (ADS)

    Adib, K.; Totir, G. G.; Fitts, J. P.; Rim, K. T.; Mueller, T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M.

    2003-07-01

    Temperature programmed desorption (TPD) was used to study surface reactions of Fe 3O 4(1 1 1)-(2 × 2) sequentially exposed, at ˜100 K, to vapor-phase D 2O and CCl 4. Previous TPD and XPS results have indicated that in the absence of D 2O, CCl 4 dissociatively adsorbs on Fe 3O 4(1 1 1) producing chemisorbed Cl and CCl 2. Subsequent heating of the surface results in abstraction of lattice iron and oxygen atoms and causes them to desorb as FeCl 2 and OCCl 2, respectively. This study shows that when this Fe 3O 4 surface is exposed only to D 2O, TPD measures a rich surface chemistry with multiple desorption events extending as high as ˜800 K, indicating dissociative adsorption of D 2O on the Fe 3O 4(1 1 1) surface. After sequential exposure to D 2O and then CCl 4, the production of FeCl 2 and OCCl 2 from adsorbed CCl 4 is suppressed, indicating that D 2O fragments block the surface reactive sites.

  20. Waist circumference as a mediator of biological maturation effect on the motor coordination in children.

    PubMed

    Luz, Leonardo G O; Seabra, André; Padez, Cristina; Duarte, João P; Rebelo-Gonçalves, Ricardo; Valente-Dos-Santos, João; Luz, Tatiana D D; Carmo, Bruno C M; Coelho-E-Silva, Manuel

    2016-09-01

    The present study aimed to: 1) examine the association of biological maturation effect on children's performance at a motor coordination battery and 2) to assess whether the association between biological maturation and scores obtained in motor coordination tests is mediated by some anthropometric measurement. The convenience sample consisted of 73 male children aged 8 years old. Anthropometric data considered the height, body mass, sitting height, waist circumference, body mass index, fat mass and fat-free mass estimates. Biological maturation was assessed by the percentage of the predicted mature stature. Motor coordination was tested by the Körperkoordinationstest für Kinder. A partial correlation between anthropometric measurements, z-score of maturation and the motor coordination tests were performed, controlling for chronological age. Finally, causal mediation analysis was performed. Height, body mass, waist circumference and fat mass showed a slight to moderate inverse correlation with motor coordination. Biological maturation was significantly associated with the balance test with backward walking (r=-0.34). Total mediation of the waist circumference was identified in the association between biological maturation and balance test with backward walking (77%). We identified an association between biological maturation and KTK test performance in male children and also verified that there is mediation of waist circumference. It is recommended that studies be carried out with female individuals and at other age ranges. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis.

    PubMed

    Carpenter, Danielle; Taype, Carmen; Goulding, Jon; Levin, Mike; Eley, Brian; Anderson, Suzanne; Shaw, Marie-Anne; Armour, John A L

    2014-01-09

    Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0-6 copies per diploid genome (pdg) in Peru, between 0-12 pdg in !Xhosa samples and between 0-10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). The case-control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.

  2. Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1-(13)C]pyruvate.

    PubMed

    Josan, Sonal; Billingsley, Kelvin; Orduna, Juan; Park, Jae Mo; Luong, Richard; Yu, Liqing; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2015-12-01

    To facilitate diagnosis and staging of liver disease, sensitive and non-invasive methods for the measurement of liver metabolism are needed. This study used hyperpolarized (13)C-pyruvate to assess metabolic parameters in a CCl4 model of liver damage in rats. Dynamic 3D (13)C chemical shift imaging data from a volume covering kidney and liver were acquired from 8 control and 10 CCl4-treated rats. At 12 time points at 5 s temporal resolution, we quantified the signal intensities and established time courses for pyruvate, alanine, and lactate. These measurements were compared with standard liver histology and an alanine transaminase (ALT) enzyme assay using liver tissue from the same animals. All CCl4-treated but none of the control animals showed histological liver damage and elevated ALT enzyme levels. In agreement with these results, metabolic imaging revealed an increased alanine/pyruvate ratio in liver of CCl4-treated rats, which is indicative of elevated ALT activity. Similarly, lactate/pyruvate ratios were higher in CCl4-treated compared with control animals, demonstrating the presence of inflammation. No significant differences in metabolite ratios were observed in kidney or vasculature. Thus this work shows that metabolic imaging using (13)C-pyruvate can be a successful tool to non-invasively assess liver damage in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  3. CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy.

    PubMed

    Miotla Zarebska, J; Chanalaris, A; Driscoll, C; Burleigh, A; Miller, R E; Malfait, A M; Stott, B; Vincent, T L

    2017-03-01

    The role of inflammation in structural and symptomatic osteoarthritis (OA) remains unclear. One key mediator of inflammation is the chemokine CCL2, primarily responsible for attracting monocytes to sites of injury. We investigated the role of CCL2 and its receptor CCR2 in experimental OA. OA was induced in 10 weeks old male wild type (WT), Ccl2 -/- and Ccr2 -/- mice, by destabilisation of the medial meniscus (DMM). RNA was extracted from whole joints at 6 h and 7 days post-surgery and examined by reverse transcription polymerase chain reaction (RT-PCR). Gene expression changes between naïve and DMM-operated mice were compared. Chondropathy scores, from mice at 8, 12, 16 and 20 weeks post DMM were calculated using modified Osteoarthritis Research Society International (OARSI) grading systems. Changes in hind paw weight distribution, as a measure of pain, were assessed by Linton incapacitance. Absence of CCL2 strongly suppressed (>90%) selective inflammatory response genes in the joint 6 h post DMM, including arginase 1, prostaglandin synthase 2, nitric oxide synthase 2 and inhibin A. IL6, MMP3 and tissue inhibitor of metalloproteinase 1 were also significantly suppressed. Similar trends were also observed in the absence of CCR2. A lower average chondropathy score was observed in both Ccl2 -/- and Ccr2 -/- mice at 12, 16 and 20 weeks post DMM compared with WT mice, but this was only statistically significant at 20 weeks in Ccr2 -/- mice. Pain-related behaviour in Ccl2 -/- and Ccr2 -/- mice post DMM was delayed in onset. The CCL2/CCR2 axis plays an important role in the development of pain in murine OA, but contributes little to cartilage damage. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity.

    PubMed

    Huang, Zhe; Zhong, Ling; Lee, Jimmy Tsz Hang; Zhang, Jialiang; Wu, Donghai; Geng, Leiluo; Wang, Yu; Wong, Chi-Ming; Xu, Aimin

    2017-09-05

    Type 2 cytokines are important signals triggering biogenesis of thermogenic beige adipocytes in white adipose tissue (WAT) during cold acclimation. However, how cold activates type 2 immunity in WAT remains obscure. Here we show that cold-induced type 2 immune responses and beiging in subcutaneous WAT (scWAT) are abrogated in mice with adipose-selective ablation of FGF21 or its co-receptor β-Klotho, whereas such impairments are reversed by replenishment with chemokine CCL11. Mechanistically, FGF21 acts on adipocytes in an autocrine manner to promote the expression and secretion of CCL11 via activation of ERK1/2, which drives recruitment of eosinophils into scWAT, leading to increases in accumulation of M2 macrophages, and proliferation and commitment of adipocyte precursors into beige adipocytes. These FGF21-elicited type 2 immune responses and beiging are blocked by CCL11 neutralization. Thus, the adipose-derived FGF21-CCL11 axis triggers cold-induced beiging and thermogenesis by coupling sympathetic nervous system to activation of type 2 immunity in scWAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Clinical, biochemical, and hematological characteristics, disease prevalence, and prognosis of dogs presenting with neutrophil cytoplasmic toxicity.

    PubMed

    Aroch, Itamar; Klement, Eyal; Segev, Gilad

    2005-01-01

    Neutrophil cytoplasmic toxicity is manifested as an abnormality in cell size or the cytoplasmic content upon examination of Romanowsky-stained blood smears, and is traditionally associated with infection and inflammation. The purpose of this retrospective study was to investigate the association of such changes with clinical and clinicopathologic characteristics, diseases, and prognoses in dogs. Dogs with neutrophil toxicity (n = 248) were compared with negative controls (n = 248). Statistical analyses included chi-square tests, independent t-tests, nonparametric Mann-Whitney tests, the chi-square trend test, and survival analysis. Dogs with neutrophil toxicity had a significantly higher prevalence of pale mucous membranes, tachycardia, fever, abdominal organomegaly, icterus, melena, and hematuria. Most mean hematologic variables were significantly different between groups. Dogs with neutrophil toxicity had a significantly (P < .05) higher prevalence of leukocytosis, leukopenia, neutrophilia, neutropenia, anemia, hyponatremia, hypokalemia, hypoproteinemia, hypoalbuminemia, and hypocalcemia. The prevalence of pyometra, parvovirus infection, acute renal failure, peritonitis, immune-mediated hemolytic anemia, disseminated intravascular coagulation, pancreatitis, septicemia, and neoplastic disorders was significantly higher among these dogs. Case fatality, hospitalization length, and treatment cost were significantly (P < .001) higher in dogs with neutrophil toxicity. Neutrophil toxicity severity was significantly (P < .0035) and positively associated with neutropenia, and negatively associated with leukocytosis and neutrophilia. A significant trend (P = .05) toward increasing case fatality with an increase of neutrophil toxicity was observed. In the neutrophil toxicity group, dogs with leukopenia (<5.0 X 10(3)/mm3) had a significantly (P < .0001) higher case fatality compared to dogs with normal or high leukocyte counts. We conclude that evaluation of blood smears for

  6. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis.

    PubMed

    McDermott, David H; De Ravin, Suk See; Jun, Hyun Sik; Liu, Qian; Priel, Debra A Long; Noel, Pierre; Takemoto, Clifford M; Ojode, Teresa; Paul, Scott M; Dunsmore, Kimberly P; Hilligoss, Dianne; Marquesen, Martha; Ulrick, Jean; Kuhns, Douglas B; Chou, Janice Y; Malech, Harry L; Murphy, Philip M

    2010-10-14

    Mutations in more than 15 genes are now known to cause severe congenital neutropenia (SCN); however, the pathologic mechanisms of most genetic defects are not fully defined. Deficiency of G6PC3, a glucose-6-phosphatase, causes a rare multisystem syndrome with SCN first described in 2009. We identified a family with 2 children with homozygous G6PC3 G260R mutations, a loss of enzymatic function, and typical syndrome features with the exception that their bone marrow biopsy pathology revealed abundant neutrophils consistent with myelokathexis. This pathologic finding is a hallmark of another type of SCN, WHIM syndrome, which is caused by gain-of-function mutations in CXCR4, a chemokine receptor and known neutrophil bone marrow retention factor. We found markedly increased CXCR4 expression on neutrophils from both our G6PC3-deficient patients and G6pc3(-/-) mice. In both patients, granulocyte colony-stimulating factor treatment normalized CXCR4 expression and neutrophil counts. In G6pc3(-/-) mice, the specific CXCR4 antagonist AMD3100 rapidly reversed neutropenia. Thus, myelokathexis associated with abnormally high neutrophil CXCR4 expression may contribute to neutropenia in G6PC3 deficiency and responds well to granulocyte colony-stimulating factor.

  7. CH3Cl, CH2Cl2, CHCl3, and CCl4: Infrared spectra, radiative efficiencies, and global warming potentials

    NASA Astrophysics Data System (ADS)

    Wallington, Timothy J.; Pivesso, Bruno Pasquini; Lira, Alane Moura; Anderson, James E.; Nielsen, Claus Jørgen; Andersen, Niels Højmark; Hodnebrog, Øivind

    2016-05-01

    Infrared spectra for the title compounds were measured experimentally in 700 Torr of air at 295 K and systematically modeled in B3LYP, M06-2X and MP2 calculations employing various basis sets. Calibrated infrared spectra over the wavenumber range 600-3500 cm-1 are reported and combined with literature data to provide spectra for use in experimental studies and radiative transfer calculations. Integrated absorption cross sections are (units of cm-1 molecule-1): CH3Cl, 660-780 cm-1, (3.89±0.19)×10-18; CH2Cl2, 650-800 cm-1, (2.16±0.11)×10-17; CHCl3, 720-810 cm-1, (4.08±0.20)×10-17; and CCl4, 730-825 cm-1, (6.30±0.31)×10-17. CH3Cl, CH2Cl2, CHCl3, and CCl4 have radiative efficiencies of 0.004, 0.028, 0.070, and 0.174 W m-2 ppb-1 and global warming potentials (100 year horizon) of 5, 8, 15, and 1775, respectively. Quantum chemistry calculations generally predict larger band intensities than the experimental values. The best agreement with experiments is obtained in MP2(Full) calculations employing basis sets of at least triple-zeta quality augmented by diffuse functions. The B3LYP functional is found ill-suited for calculating vibrational frequencies and infrared intensities of halocarbons.

  8. Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses.

    PubMed

    Menetski, J; Mistry, S; Lu, M; Mudgett, J S; Ransohoff, R M; Demartino, J A; Macintyre, D E; Abbadie, C

    2007-11-09

    Recent findings demonstrate that chemokines, and more specifically CC chemokine ligand 2 (CCL2 or monocyte chemoattractant protein-1), play a major role in pain processing. In the present study, we assess nociceptive responses of mice that overexpressed CCL2 under control of glial fibrillary acidic protein promoter (CCL2 tg). In models of acute nociception CCL2 tg mice demonstrated significantly enhanced nociceptive behavior relative to wild-type controls in responses to both thermal (hot plate) and chemical (formalin test) stimulus modalities. There were no differences in mechanical allodynia in the partial sciatic nerve ligation model, in terms of either magnitude or duration of the allodynic response; however, both groups responded to the maximal extent measurable. In a model of inflammatory pain, elicited by intraplantar administration of complete Freund's adjuvant (CFA), CCL2 tg mice displayed both greater edema and thermal hyperalgesia compared with control mice. In control mice, edema and hyperalgesia returned to baseline values 5-7 days post CFA. However, in CCL2 tg mice, thermal hyperalgesia was significantly different from baseline up to 3 weeks post CFA. Parallel to these enhanced behavioral responses CCL2 serum levels were significantly greater in CCL2 overexpressing mice and remained elevated 7 days post CFA. Consequently, proinflammatory cytokine mRNA expression (IL-1beta, IL-6, and TNFalpha) levels were greater in skin, dorsal root ganglia (DRG), and spinal cord, whereas the anti-inflammatory cytokine (IL-10) level was lower in skin and DRG in CCL2 overexpressing mice than in control mice. Taken together with data from CCR2-deficient mice, these present data confirm a key role of CCL2/CCR2 axis in pain pathways and suggest that inhibiting this axis may result in novel pain therapies.

  9. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis.

    PubMed

    Dong, Shu; Chen, Qi-Long; Song, Ya-Nan; Sun, Yang; Wei, Bin; Li, Xiao-Yan; Hu, Yi-Yang; Liu, Ping; Su, Shi-Bing

    2016-01-01

    The classic toxicity of carbon tetrachloride (CCl4) is to induce liver lesion and liver fibrosis. Liver fibrosis is a consequence of chronic liver lesion, which can progress into liver cirrhosis even hepatocarcinoma. However, the toxicological mechanisms of CCl4-induced liver fibrosis remain not fully understood. We combined transcriptomic and proteomic analysis and biological network technology, predicted toxicological targets and regulatory networks of CCl4 in liver fibrosis. Wistar rats were treated with CCl4 for 9 weeks. Histopathological changes, hydroxyproline (Hyp) contents, serum ALT and AST in the CCl4-treated group were significantly higher than that of CCl4-untreated group. CCl4-treated and -untreated liver tissues were examined by microarray and iTRAQ. The results showed that 3535 genes (fold change ≥ 1.5, P < 0.05) and 1412 proteins (fold change ≥ 1.2, P < 0.05) were differentially expressed. Moreover, the integrative analysis of transcriptomics and proteomics data showed 523 overlapped proteins, enriched in 182 GO terms including oxidation reduction, response to oxidative stress, inflammatory response, extracellular matrix organization, etc. Furthermore, KEGG pathway analysis showed that 36 pathways including retinol metabolism, PPAR signaling pathway, glycolysis/gluconeogenesis, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450 and drug metabolism. Network of protein-protein interaction (PPI) and key function with their related targets were performed and the degree of network was calculated with Cytoscape. The expression of key targets such as CYP4A3, ALDH2 and ALDH7A1 decreased after CCl4 treatment. Therefore, the toxicological mechanisms of CCl4-induced liver fibrosis may be related with multi biological process, pathway and targets which may provide potential protection reaction mechanism for CCl4 detoxication in the liver.

  10. Trauma-associated Human Neutrophil Alterations Revealed by Comparative Proteomics Profiling

    PubMed Central

    Zhou, Jian-Ying; Krovvidi, Ravi K.; Gao, Yuqian; Gao, Hong; Petritis, Brianne O.; De, Asit; Miller-Graziano, Carol; Bankey, Paul E.; Petyuk, Vladislav A.; Nicora, Carrie D.; Clauss, Therese R; Moore, Ronald J.; Shi, Tujin; Brown, Joseph N.; Kaushal, Amit; Xiao, Wenzhong; Davis, Ronald W.; Maier, Ronald V.; Tompkins, Ronald G.; Qian, Wei-Jun; Camp, David G.; Smith, Richard D.

    2013-01-01

    PURPOSE Polymorphonuclear neutrophils (PMNs) play an important role in mediating the innate immune response after severe traumatic injury; however, the cellular proteome response to traumatic condition is still largely unknown. EXPERIMENTAL DESIGN We applied 2D-LC-MS/MS based shotgun proteomics to perform comparative proteome profiling of human PMNs from severe trauma patients and healthy controls. RESULTS A total of 197 out of ~2500 proteins (being identified with at least two peptides) were observed with significant abundance changes following the injury. The proteomics data were further compared with transcriptomics data for the same genes obtained from an independent patient cohort. The comparison showed that the protein abundance changes for the majority of proteins were consistent with the mRNA abundance changes in terms of directions of changes. Moreover, increased protein secretion was suggested as one of the mechanisms contributing to the observed discrepancy between protein and mRNA abundance changes. Functional analyses of the altered proteins showed that many of these proteins were involved in immune response, protein biosynthesis, protein transport, NRF2-mediated oxidative stress response, the ubiquitin-proteasome system, and apoptosis pathways. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest increased neutrophil activation and inhibited neutrophil apoptosis in response to trauma. The study not only reveals an overall picture of functional neutrophil response to trauma at the proteome level, but also provides a rich proteomics data resource of trauma-associated changes in the neutrophil that will be valuable for further studies of the functions of individual proteins in PMNs. PMID:23589343

  11. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases.

    PubMed

    Vij, Neeraj; Min, Taehong; Bodas, Manish; Gorde, Aakruti; Roy, Indrajit

    2016-11-01

    The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection.

    PubMed

    Hu, Shengfeng; He, Wenting; Du, Xialin; Yang, Jiahui; Wen, Qian; Zhong, Xiao-Ping; Ma, Li

    2017-09-01

    To our knowledge, no studies have examined the role of IL-17 production by neutrophils in immune defense against Mycobacterium tuberculosis (MTB) infection and the pathogenesis of rheumatoid arthritis (RA) caused by MTB infection. Here, we determined that neutrophils express IL-17 in an autocrine IL-6- and IL-23-dependent manner during MTB infection. MTB H37Rv-induced IL-6 production was dependent on the NF-κB, p38, and JNK signaling pathways; however, IL-23 production was dependent on NF-κB and EKR in neutrophils. Furthermore, we found that Toll-like receptor 2 (TLR2) and TLR4 mediated the activation of the kinases NF-κB, p38, ERK, and JNK and the production of IL-6, IL-23, and IL-17 in neutrophils infected with MTB H37Rv. Autocrine IL-17 produced by neutrophils played a vital role in inhibiting MTB H37Rv growth by mediating reactive oxygen species production and the migration of neutrophils in the early stages of infection. However, IL-17 production by neutrophils contributed to collagen-induced arthritis development during MTB infection. Our findings identify a protective mechanism against mycobacteria and the pathogenic role of MTB in arthritis development. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    PubMed

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45 + cells after single injection. Acute CCl 4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45 + leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl 4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  14. Nitric oxide-donating atorvastatin attenuates neutrophil recruitment during vascular inflammation independent of changes in plasma cholesterol.

    PubMed

    Baetta, Roberta; Granata, Agnese; Miglietta, Daniela; Oliva, Francesca; Arnaboldi, Lorenzo; Bonomo, Alessandra; Ferri, Nicola; Ongini, Ennio; Bellosta, Stefano; Corsini, Alberto

    2013-06-01

    Polymorphonuclear neutrophils, the first leukocytes to infiltrate the inflamed tissue, can make important contributions to vascular inflammatory processes driving the development of atherosclerosis. We herein investigated the effects of atorvastatin and NCX 6560 (a nitric oxide (NO)-donating atorvastatin derivative that has completed a successful phase 1b study) on neutrophilic inflammation in carotid arteries of normocholesterolemic rabbits subjected to perivascular collar placement. Atorvastatin or NCX 6560 were administered orally (5 mg/kg/day or equimolar dose) to New Zealand White rabbits for 6 days, followed by collar implantation 1 h after the last dose. Twenty-four hours later carotids were harvested for neutrophil quantification by immunostaining. Treatment with NCX 6560 was associated with a lower neutrophil infiltration (-39.5 %), while atorvastatin did not affect neutrophil content. The result was independent of effects on plasma cholesterol or differences in atorvastatin bioavailability, which suggests an important role of NO-related mechanisms in mediating this effect. Consistent with these in vivo findings, in vitro studies showed that NCX 6560, as compared to atorvastatin, had greater inhibitory activity on processes involved in neutrophil recruitment, such as migration in response to IL-8 and IL-8 release by endothelial cells and by neutrophils themselves. Pretreatment with NCX 6560, but not with atorvastatin, reduced the ability of neutrophil supernatants to promote monocyte chemotaxis, a well-known pro-inflammatory activity of neutrophils. Experimental data suggest a potential role of NO-releasing statins in the control of the vascular inflammatory process mediated by polymorphonuclear neutrophils.

  15. The Carbon Tetrachloride (CCl4) Budget: Mystery or Not

    NASA Technical Reports Server (NTRS)

    Liang, Qing; Newman, Paul A.; Daniel, John S.; Reimann, Stefan; Hall, Bradley; Dutton, Geoff; Kuijpers, Lambert J. M.

    2014-01-01

    Carbon tetrachloride (CCl4) is a major anthropogenic ozone-depleting substance and greenhouse gas and has been regulated under the Montreal Protocol. However, atmospheric observations show a very slow decline in CCl4 concentrations, inconsistent with the nearly zero emissions estimate based on the UNEP reported production and feedstock usage in recent years. It is now apparent that there are either unidentified industrial leakages, an unknown production source of CCl4, or large legacy emissions from CCl4 contaminated sites. In this paper we use a global chemistry climate model to assess the budget mystery of atmospheric CCl4. We explore various factors that affect the global trend and the gradient between the Northern and Southern hemispheres or interhemispheric gradient (IHG): emissions, emission hemispheric partitioning, and lifetime variations. We find a present-day emission of 30-50 Gg per yr and a total lifetime 25 - 36 years are necessary to reconcile both the observed CCl4 global trend and IHG.

  16. CD14+CD33+ myeloid cell-CCL11-eosinophil signature in ulcerative colitis.

    PubMed

    Lampinen, Maria; Waddell, Amanda; Ahrens, Richard; Carlson, Marie; Hogan, Simon P

    2013-11-01

    This study tested the hypothesis that eotaxins (CCL11, CCL24, and CCL26) and IL-5 contribute to eosinophil recruitment to the intestine in UC and that intestinal macrophages are important producers of CCL11 in this disease. Peripheral blood and rectal biopsy samples were obtained from patients with active (n=18) and quiescent UC (n=9), and control patients (n=7). Eosinophil and macrophage levels and activation were analyzed by flow cytometry. Rectal mRNA levels of CCL11, CCL24, CCL26, and IL-5 were determined by qRT-PCR. The cellular source of CCL11 was visualized by immunofluorescence analyses. Eosinophil numbers were elevated in the blood and rectum of active and quiescent UC patients compared with controls. Levels of activated eosinophils (CD66b(high)) correlated with disease severity. Rectal CCL11, CCL24, and CCL26 mRNA levels were increased in active UC, whereas only CCL11 was elevated in quiescent UC. Levels of CCL11, but not CCL24 and CCL26, positively correlated with eosinophil numbers. Numbers of CD14(+)CD33(+) cells correlated with CCL11 and eosinophil levels. Immunofluorescence analyses revealed the presence of CD14(+)CCL11(+) mononuclear cells in colonic biopsies in UC. These results support the hypothesis that CCL11 contributes to eosinophil recruitment in UC and that intestinal myeloid cells are a source of CCL11. Interestingly, rectal levels of CCL24, CCL26, and IL-5 only increase during active UC, coinciding with further elevation of eosinophil numbers and with the activation of rectal eosinophils. In conclusion, there is a link among CD14(+)CD33(+) myeloid cells, CCL11, and eosinophils in adult UC.

  17. CD14+CD33+ myeloid cell-CCL11-eosinophil signature in ulcerative colitis

    PubMed Central

    Lampinen, Maria; Waddell, Amanda; Ahrens, Richard; Carlson, Marie; Hogan, Simon P.

    2013-01-01

    This study tested the hypothesis that eotaxins (CCL11, CCL24, and CCL26) and IL-5 contribute to eosinophil recruitment to the intestine in UC and that intestinal macrophages are important producers of CCL11 in this disease. Peripheral blood and rectal biopsy samples were obtained from patients with active (n=18) and quiescent UC (n=9), and control patients (n=7). Eosinophil and macrophage levels and activation were analyzed by flow cytometry. Rectal mRNA levels of CCL11, CCL24, CCL26, and IL-5 were determined by qRT-PCR. The cellular source of CCL11 was visualized by immunofluorescence analyses. Eosinophil numbers were elevated in the blood and rectum of active and quiescent UC patients compared with controls. Levels of activated eosinophils (CD66bhigh) correlated with disease severity. Rectal CCL11, CCL24, and CCL26 mRNA levels were increased in active UC, whereas only CCL11 was elevated in quiescent UC. Levels of CCL11, but not CCL24 and CCL26, positively correlated with eosinophil numbers. Numbers of CD14+CD33+ cells correlated with CCL11 and eosinophil levels. Immunofluorescence analyses revealed the presence of CD14+CCL11+ mononuclear cells in colonic biopsies in UC. These results support the hypothesis that CCL11 contributes to eosinophil recruitment in UC and that intestinal myeloid cells are a source of CCL11. Interestingly, rectal levels of CCL24, CCL26, and IL-5 only increase during active UC, coinciding with further elevation of eosinophil numbers and with the activation of rectal eosinophils. In conclusion, there is a link among CD14+CD33+ myeloid cells, CCL11, and eosinophils in adult UC. PMID:23904440

  18. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection.

    PubMed

    Chu, Dafeng; Gao, Jin; Wang, Zhenjia

    2015-12-22

    Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute lung inflammation, we demonstrated that intravenously (iv) infused NPs made from denatured bovine serum albumin (BSA) were specifically internalized by activated neutrophils, and subsequently, the neutrophils containing NPs migrated across blood vessels into inflammatory tissues. When neutrophils were depleted using anti-Gr-1 in a mouse, the transport of albumin NPs across blood vessel walls was robustly abolished. Furthermore, it was found that albumin nanoparticle internalization did not affect neutrophil mobility and functions. Administration of drug-loaded albumin NPs markedly mitigated the lung inflammation induced by LPS (lipopolysaccharide) or infection by Pseudomonas aeruginosa. These results demonstrate the use of an albumin nanoparticle platform for in situ targeting of activated neutrophils for delivery of therapeutics across the blood vessel barriers into diseased sites. This study demonstrates our ability to hijack neutrophils to deliver nanoparticles to targeted diseased sites.

  19. OXIDATION SCREENING STUDIES FOR CCL ORGANIC CHEMICALS

    EPA Science Inventory

    The understanding of the oxidation reactions associated with the Agency's Contaminant Candidate List (CCL)chemicals is important from several perspectives. Chemicals are added to the CCL because of their potential to negatively impact human health. The removal/control of that che...

  20. Neutrophils Promote Mycobacterial Trehalose Dimycolate-Induced Lung Inflammation via the Mincle Pathway

    PubMed Central

    Lee, Wook-Bin; Kang, Ji-Seon; Yan, Ji-Jing; Lee, Myeong Sup; Jeon, Bo-Young; Cho, Sang-Nae; Kim, Young-Joon

    2012-01-01

    Trehalose 6,6′-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFα production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincle−/− mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti

  1. Inactivation of Human Neutrophil Elastase by 1, 2, 5 – Thiadiazolidin-3-one 1, 1 Dioxide-based Sulfonamides

    PubMed Central

    Li, Yi; Yang, Qingliang; Dou, Dengfeng; Alliston, Kevin R.; Groutas, William C.

    2008-01-01

    The interaction of a series of 1, 2, 5 –thiadiazolidin-3-one 1, 1 dioxide-based sulfonamides with neutrophil-derived serine proteases was investigated. The nature of the amino acid component, believed to be oriented toward the S′ subsites, had a profound effect on enzyme selectivity. This series of compounds were found to be potent, time-dependent inhibitors of human neutrophil elastase (HNE) and was devoid of any inhibitory activity toward neutrophil proteinase 3 (PR 3) and cathepsin G (Cat G). The results of these studies demonstrate that exploitation of differences in the S′ subsites of HNE and PR 3 can lead to highly selective inhibitors of HNE. PMID:17976994

  2. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal

    PubMed Central

    Cadieux, Jean-Sébastien; Leclerc, Patrick; St-Onge, Mireille; Dussault, Andrée-Anne; Laflamme, Cynthia; Picard, Serge; Ledent, Catherine; Borgeat, Pierre; Pouliot, Marc

    2010-01-01

    Summary Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B4 from the 5-lipoxygenase pathway and prostaglandin E2 through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B4 while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A2A receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A2A receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A2A receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine’s effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E2 on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A2A receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine. PMID:15769843

  3. Studying Neutrophil Migration In Vivo Using Adoptive Cell Transfer.

    PubMed

    Miyabe, Yoshishige; Kim, Nancy D; Miyabe, Chie; Luster, Andrew D

    2016-01-01

    Adoptive cell transfer experiments can be used to study the roles of cell trafficking molecules on the migratory behavior of specific immune cell populations in vivo. Chemoattractants and their G protein-coupled seven-transmembrane-spanning receptors regulate migration of cells in vivo, and dysregulated expression of chemoattractants and their receptors is implicated in autoimmune and inflammatory diseases. Inflammatory arthritides, such as rheumatoid arthritis (RA), are characterized by the recruitment of inflammatory cells into joints. The K/BxN serum transfer mouse model of inflammatory arthritis shares many similar features with RA. In this autoantibody-induced model of arthritis, neutrophils are the critical immune cells necessary for the development of joint inflammation and damage. We have used adoptive neutrophil transfer to define the contributions of chemoattractant receptors, cytokines, and activation receptors expressed on neutrophils that critically regulate their entry into the inflamed joint. In this review, we describe the procedure of neutrophil adoptive transfer to study the influence of neutrophil-specific receptors or mediators upon the their recruitment into the joint using the K/BxN model of inflammatory arthritis as a model of how adoptive cell transfer studies can be used to study immune cell migration in vivo.

  4. Heat tolerance of CCl4-treated animals and its modification by some agents

    NASA Astrophysics Data System (ADS)

    Ahujarai, P. L.; Bhatia, B.

    1984-06-01

    The rate of rise of body temperature and the survival time on exposure to a temperature of 40°C was recorded in normal Wistar rats and those given ip injection of 1 ml/kg BW of CCl4 24 h earlier with and without administration of (a) garlic oil (0.006 ml in arachis oil) 3 days earlier, (b) Dl-α-tocopherol (450 mg/kg BW) 48 h before CCl4 (c) glucose (300 mg in 2 ml saline) 30 min before exposure to heat stress. Significant protection against the reduction in heat tolerance by CCl4 was provided by glucose and garlic but not by vitamin E. The reduction in heat tolerance by CCl4 was attributed to the hypoglycemia caused by it, followed by breakdown of the thermoregulatory centres in the hypothalamus. The protective effect of glucose was attributed to the restoration of blood glucose levels and that of the garlic oil to its protective effect on hepatocytes against CCl4 toxicity.

  5. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH(2)-terminal kinase pathway in human neutrophils.

    PubMed

    Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott

    2002-10-25

    Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

  6. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  7. Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice

    PubMed Central

    Niu, Liman; Cui, Xueling; Qi, Yan; Xie, Dongxue; Wu, Qian; Chen, Xinxin; Ge, Jingyan; Liu, Zhonghui

    2016-01-01

    Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF

  8. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice.

    PubMed

    Cooper, Philip R; Mesaros, A Clementina; Zhang, Jie; Christmas, Peter; Stark, Christopher M; Douaidy, Karim; Mittelman, Michael A; Soberman, Roy J; Blair, Ian A; Panettieri, Reynold A

    2010-04-20

    Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways. Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 microm thickness) containing an intrapulmonary airway ( approximately 0.01 mm(2) lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC(50) and E(max) values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment. These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone

  9. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    PubMed

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  10. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    PubMed Central

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  11. A Potential Mechanism for ADC-Induced Neutropenia: Role of Neutrophils in Their Own Demise.

    PubMed

    Zhao, Hui; Gulesserian, Sara; Malinao, Maria Christina; Ganesan, Sathish Kumar; Song, James; Chang, Mi Sook; Williams, Melissa M; Zeng, Zhilan; Mattie, Michael; Mendelsohn, Brian A; Stover, David R; Doñate, Fernando

    2017-09-01

    Neutropenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC) and we aimed to elucidate the potential mechanism of this toxicity. To investigate whether ADCs affect neutrophil production from bone marrow, an in vitro assay was developed in which hematopoietic stem cells (HSC) were differentiated to neutrophils. Several antibodies against targets absent in HSCs and neutrophils were conjugated to MMAE via a cleavable valine-citrulline linker (vcMMAE-ADC) or MMAF via a noncleavable maleimidocaproyl linker (mcMMAF-ADC), and their cytotoxicity was tested in the neutrophil differentiation assay. Results showed that HSCs had similar sensitivity to vcMMAE-ADCs and mcMMAF-ADCs; however, vcMMAE-ADCs were more cytotoxic to differentiating neutrophils than the same antibody conjugated to mcMMAF. This inhibitory effect was not mediated by internalization of ADC either by macropinocytosis or FcγRs. Our results suggested that extracellular proteolysis of the cleavable valine-citrulline linker is responsible for the cytotoxicity to differentiating neutrophils. Mass spectrometry analyses indicated that free MMAE was released from vcMMAE-ADCs in the extracellular compartment when they were incubated with differentiating neutrophils or neutrophil conditioned medium, but not with HSC-conditioned medium. Using different protease inhibitors, our data suggested that serine, but not cysteine proteases, were responsible for the cleavage. In vitro experiments demonstrated that the purified serine protease, elastase, was capable of releasing free MMAE from a vcMMAE-ADC. Here we propose that ADCs containing protease cleavable linkers can contribute to neutropenia via extracellular cleavage mediated by serine proteases secreted by differentiating neutrophils in bone marrow. Mol Cancer Ther; 16(9); 1866-76. ©2017 AACR See related article by Zhao et al., p. 1877 . ©2017 American Association for Cancer Research.

  12. Resolvin D1 attenuates CCl4-induced acute liver injury involving up-regulation of HO-1 in mice.

    PubMed

    Chen, Xiahong; Gong, Xia; Jiang, Rong; Wang, Bin; Kuang, Ge; Li, Ke; Wan, Jingyuan

    2016-01-01

    Acute hepatic failure involves in excessive oxidative stress and inflammatory responses, leading to a high mortality due to lacking effective therapy. Resolvin D1 (RvD1), an endogenous lipid mediator derived from polyunsaturated fatty acids, has been shown anti-inflammatory and anti-oxidative actions, however, whether RvD1 has protective effects on hepatic failure remains elusive. In this study, the roles and molecular mechanisms of RvD1 were explored in carbon tetrachloride (CCl4)-induced acute liver injury. Our results showed that RvD1 protected mice against CCl4-induced hepatic damage, as evaluated by reduced aminotransferase activities and malondialdehyde content, elevated glutathione and superoxide dismutase activities, and alleviated hepatic pathological damage. Moreover, RvD1 significantly attenuated serum tumor necrosis factor-α and interleukin-6 levels as well as hepatic myeloperoxidase activity, whereas enhanced serum IL-10 level in CCl4-administered mice. Further, RvD1 markedly up-regulated the expression and activity of heme oxygenase-1 (HO-1). However, inhibition of HO-1 activity reversed the protective effects of RvD1 on CCl4-induced liver injury. These results suggest that RvD1 could effectively prevent CCl4-induced liver injury by inhibition of oxidative stress and inflammation, and the underlying mechanism may be related to up-regulation of HO-1.

  13. Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions.

    PubMed

    Bain, Barbara J; Ahmad, Shahzaib

    2015-11-01

    Many cases reported as 'chronic neutrophilic leukaemia' have had an associated plasma cell neoplasm. Recent evidence suggests that the great majority of such cases represent a neutrophilic leukaemoid reaction to the underlying multiple myeloma or monoclonal gammopathy of undetermined significance. We have analysed all accessible reported cases to clarify the likely diagnosis and to ascertain whether toxic granulation, Döhle bodies and an increased neutrophil alkaline phosphatase score were useful in making a distinction between chronic neutrophilic leukaemia and a neutrophilic leukaemoid reaction. We established that all these changes occur in both conditions. Toxic granulation and Döhle bodies are more consistently present in leukaemoid reactions but also occur quite frequently in chronic neutrophilic leukaemia. The neutrophil alkaline phosphatase score is increased in both conditions and is of no value in making a distinction. © 2015 John Wiley & Sons Ltd.

  14. Rating of CCl(4)-induced rat liver fibrosis by blood serum glycomics.

    PubMed

    Desmyter, Liesbeth; Fan, Ye-Dong; Praet, Marleen; Jaworski, Tomasz; Vervecken, Wouter; De Hemptinne, Bernard; Contreras, Roland; Chen, Cuiying

    2007-07-01

    Non-invasive staging of human liver fibrosis is a desirable objective that remains under extensive evaluation. Animal model systems are often used for studying human liver disease and screening antifibrotic compounds. The aim of the present study was to investigate the potential use of serum N-glycan profiles to evaluate liver fibrosis in a rat model. Liver fibrosis and cirrhosis were induced in rats by oral administration of CCl(4). Liver injury was assessed biochemically (alanine aminotransferase [ALT] activity, aspartate aminotransferase [AST] activity and total bilirubin) and histologically. The N-glycan profile (GlycoTest) was performed using DNA sequencer-assisted-fluorophore-assisted carbohydrate electrophoresis technology. In parallel, the effect of cotreatment with antifibrotic interferon-gamma (IFN-gamma) was studied. The biopsy scoring system showed that CCl(4) induced early fibrosis (F < 1-2) in rats after 3 weeks of treatment, and cirrhosis (F4) after 12 weeks. Significant increases in ALT activity, AST activity and total bilirubin levels were detected only after 12 weeks of CCl(4) treatment. GlycoTest showed three glycans were significantly altered in the CCl(4)-goup. Peak 3 started at week 6, at an early stage in fibrosis development (F < 1-2), whereas peaks 4 and 5 occurred at week 9, at which time mild liver fibrosis (F = 1-2) had developed. The changes in the CCl(4)-IFN-gamma group were intermediate between the CCl(4)- and the control groups. The GlycoTest is much more sensitive than biochemical tests for evaluating liver fibrosis/cirrhosis in the rat model. The test can also be used as a non-invasive marker for screening and monitoring the antifibrotic activity of potential therapeutic compounds.

  15. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis

    PubMed Central

    2014-01-01

    Background Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Methods and results Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0–6 copies per diploid genome (pdg) in Peru, between 0–12 pdg in !Xhosa samples and between 0–10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). Conclusions The case–control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations. PMID:24405814

  16. Neutrophil hyper-responsiveness in periodontitis.

    PubMed

    Matthews, J B; Wright, H J; Roberts, A; Ling-Mountford, N; Cooper, P R; Chapple, I L C

    2007-08-01

    Peripheral neutrophil hyper-responsiveness in chronic periodontitis leads to excessive reactive oxygen species (ROS) production. We aimed to determine whether neutrophil hyper-responsiveness was constitutive or reactive, and to discover the effect of non-surgical therapy. Peripheral blood neutrophils from patients (n = 19), before and 3 months after therapy, and matched control individuals were Fc gamma-receptor-stimulated with/without priming with P. gingivalis and F. nucleatum. Total and extracellular ROS were determined by luminol/isoluminol chemiluminescence. The high total ROS generation of patients' neutrophils compared with that of control individuals (P = 0.016) continued at a reduced level post-therapy (P = 0.059). Reduced activity post-therapy was also seen with priming. Unstimulated total ROS levels did not differ between patients and control individuals before or after therapy. However, the high unstimulated, extracellular ROS production by patients' neutrophils compared with control individuals (P < 0.05) continued post-therapy and was unaffected by priming. Therapy reduced Fc gamma-receptor-stimulated total ROS production, but not unstimulated extracellular radical release, suggesting that constitutive and reactive mechanisms underlie neutrophil hyper-responsiveness.

  17. NF-κB activation and proinflammatory cytokines mediated protective effect of Indigofera caerulea Roxb. on CCl4 induced liver damage in rats.

    PubMed

    Ponmari, Guruvaiah; Annamalai, Arunachalam; Gopalakrishnan, Velliyur Kanniappan; Lakshmi, P T V; Guruvayoorappan, C

    2014-12-01

    Indigofera caerulea Roxb. is a well known shrub among native medical practitioners in folk medicine used for the treatment of jaundice, epilepsy, night blindness and snake bites. It is also reported to have antioxidant and antimicrobial properties. However its actual efficacy and hepatoprotective mechanism in particular is uncertain. Thus the present study investigates the hepatoprotective effect of the methanolic extract of I. caerulea Roxb. leaves (MIL) and elucidation of its mode of action against carbon tetrachloride (CCl4) induced liver injury in rats. HPLC analysis of MIL when carried out showed peaks close to standard ferulic acid and quercetin. Intragastric administration of MIL up to 2000 mg/kg bw, didn't show any toxicity and mortality in acute toxicity studies. During "in-vivo" study, hepatic injury was established by intraperitoneal administration of CCl4 3 ml/kg bw (30% CCl4 in olive oil; v/v) twice a week for 4 weeks in Sprague-Dawley rats. Further, hepatoprotective activity of MIL assessed using two different doses (100 and 200mg/kg bw) showed that intra-gastric administration of MIL (200mg/kg bw) significantly attenuates liver injury. Investigation of the underlying mechanism revealed that MIL treatment was capable of reducing inflammation by an antioxidant defense mechanism that blocks the activation of NF-κB as well as inhibits the release of proinflammatory cytokine TNF-α and IL-1β. The results suggest that MIL has a significant hepatoprotective activity which might be due to the presence of phytochemicals namely analogues of ferulic acid and other phytochemicals which together may suppress the inflammatory signaling pathways and promote hepatoprotective activity against CCl4 intoxicated liver damage. Copyright © 2014. Published by Elsevier B.V.

  18. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.

    PubMed

    Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y

    2018-05-01

    Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key

  19. Continued increase of CFC-113a (CCl3CF3) mixing ratios in the global atmosphere: emissions, occurrence and potential sources

    NASA Astrophysics Data System (ADS)

    Adcock, Karina E.; Reeves, Claire E.; Gooch, Lauren J.; Leedham Elvidge, Emma C.; Ashfold, Matthew J.; Brenninkmeijer, Carl A. M.; Chou, Charles; Fraser, Paul J.; Langenfelds, Ray L.; Hanif, Norfazrin Mohd; O'Doherty, Simon; Oram, David E.; Ou-Yang, Chang-Feng; Moi Phang, Siew; Abu Samah, Azizan; Röckmann, Thomas; Sturges, William T.; Laube, Johannes C.

    2018-04-01

    Atmospheric measurements of the ozone-depleting substance CFC-113a (CCl3CF3) are reported from ground-based stations in Australia, Taiwan, Malaysia and the United Kingdom, together with aircraft-based data for the upper troposphere and lower stratosphere. Building on previous work, we find that, since the gas first appeared in the atmosphere in the 1960s, global CFC-113a mixing ratios have been increasing monotonically to the present day. Mixing ratios of CFC-113a have increased by 40 % from 0.50 to 0.70 ppt in the Southern Hemisphere between the end of the previously published record in December 2012 and February 2017. We derive updated global emissions of 1.7 Gg yr-1 on average between 2012 and 2016 using a two-dimensional model. We compare the long-term trends and emissions of CFC-113a to those of its structural isomer, CFC-113 (CClF2CCl2F), which still has much higher mixing ratios than CFC-113a, despite its mixing ratios and emissions decreasing since the 1990s. The continued presence of northern hemispheric emissions of CFC-113a is confirmed by our measurements of a persistent interhemispheric gradient in its mixing ratios, with higher mixing ratios in the Northern Hemisphere. The sources of CFC-113a are still unclear, but we present evidence that indicates large emissions in East Asia, most likely due to its use as a chemical involved in the production of hydrofluorocarbons. Our aircraft data confirm the interhemispheric gradient as well as showing mixing ratios consistent with ground-based observations and the relatively long atmospheric lifetime of CFC-113a. CFC-113a is the only known CFC for which abundances are still increasing substantially in the atmosphere.

  20. The Effects of Extracellular Matrix Proteins on Neutrophil-Endothelial Interaction ― A Roadway To Multiple Therapeutic Opportunities

    PubMed Central

    Padmanabhan, Jagannath; Gonzalez, Anjelica L.

    2012-01-01

    Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized. PMID:22737047

  1. Heterogeneity of neutrophil antibodies in patients with primary Sjögren's syndrome.

    PubMed

    Lamour, A; Le Corre, R; Pennec, Y L; Cartron, J; Youinou, P

    1995-11-01

    Our aims were to determine the prevalence of neutrophil antibodies in patients with primary Sjögren's syndrome (pSS), identify their target antigen(s), and evaluate their functional significance. Neutrophil antibodies were detected using an indirect immunofluorescence (IIIF) test and an enzyme-linked immunosorbent assay (ELISA), using recombinant human Fc-gamma receptor (Fc gamma RIIIb) as a capture agent. Luminol-dependent chemiluminescence was then measured by an established technique. Antibodies to neutrophils were detected in 30 of 66 patients (45%) and categorized on the basis of positivity for the two assays: IIF+/ELISA+ (group A: five patients), IIF+/ELISA- (group B: five patients), and IFF-/ELISA+ (group C: 20 patients). All positive sera contained antibodies directed to the neutrophil specific Fc gamma RIIIb, and none of them bound to NAnull neutrophils. The titer of neutrophil-reactive antibodies (groups A and B) showed no correlation with the neutrophil count, but these autoantibodies did reduce the cell ability to generate a respiratory burst. Thus, neutrophil antibodies are common in patients with pSS. Their main target appears to be Fc gamma RIII, and this may partly account for the dysfunction in Fc gamma R-mediated clearance by the reticuloendothelial system reported in these patients.

  2. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats

    PubMed Central

    Kasote, D. M.; Badhe, Y. S.; Zanwar, A. A.; Hegde, M. V.; Deshmukh, K. K.

    2012-01-01

    Objective: to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats. Materials and Methods: Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl4 in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. Results: EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl4 intoxication. Hepatic lipid peroxidation elevated by CCl4 intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl4 -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl4 -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). Conclusion: EPC-BF possesses the significant hepatoprotective activity against CCl4 induced liver damage, which could be mediated through increase in antioxidant defenses. PMID:22923966

  3. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats.

    PubMed

    Kasote, D M; Badhe, Y S; Zanwar, A A; Hegde, M V; Deshmukh, K K

    2012-07-01

    to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats. Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl(4) in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl(4) intoxication. Hepatic lipid peroxidation elevated by CCl(4) intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl(4) -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl(4) -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). EPC-BF possesses the significant hepatoprotective activity against CCl(4) induced liver damage, which could be mediated through increase in antioxidant defenses.

  4. Lack of activity of 15-epi-lipoxin A₄ on FPR2/ALX and CysLT1 receptors in interleukin-8-driven human neutrophil function.

    PubMed

    Planagumà, A; Domenech, T; Jover, I; Ramos, I; Sentellas, S; Malhotra, R; Miralpeix, M

    2013-08-01

    Neutrophil recruitment and survival are important control points in the development and resolution of inflammatory processes. 15-epi-lipoxin (LX)A interaction with formyl peptide receptor 2 (FPR2)/ALX receptor is suggested to enhance anti-inflammatory neutrophil functions and mediate resolution of airway inflammation. However, it has been reported that 15-epi-LXA₄ analogues can also bind to cysteinyl leukotriene receptor 1 (CysLT1) and that the CysLT1 antagonist MK-571 binds to FPR2/ALX, so cross-reactivity between FPR2/ALX and CysLT1 ligands cannot be discarded. It is not well established whether the resolution properties reported for 15-epi-LXA4 are mediated through FPR2/ALX, or if other receptors such as CysLT1 may also be involved. Evaluation of specific FPR2/ALX ligands and CysLT1 antagonists in functional biochemical and cellular assays were performed to establish a role for both receptors in 15-epi-LXA₄-mediated signalling and function. In our study, a FPR2/ALX synthetic peptide (WKYMVm) and a small molecule FPR2/ALX agonist (compound 43) induced FPR2/ALX-mediated signalling, enhancing guanosine triphosphate-gamma (GTPγ) binding and decreasing cyclic adenosine monophosphate (cAMP) levels, whereas 15-epi-LXA₄ was inactive. Furthermore, 15-epi-LXA4 showed neither binding affinity nor signalling towards CysLT1. In neutrophils, 15-epi-LXA₄ showed a moderate reduction of interleukin (IL)-8-mediated neutrophil chemotaxis but no effect on neutrophil survival was observed. In addition, CysLT1 antagonists were inactive in FPR2/ALX signalling or neutrophil assays. In conclusion, 15-epi-LXA₄ is not a functional agonist or an antagonist of FPR2/ALX or CysLT1, shows no effect on IL-8-induced neutrophil survival and produces only moderate inhibition in IL-8-mediated neutrophil migration. Our data do not support an anti-inflammatory role of 15-epi-LXA₄- FPR2/ALX interaction in IL-8-induced neutrophil inflammation. © 2013 British Society for Immunology.

  5. Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils.

    PubMed

    Zhou, Yebin; Wu, Jianming; Kucik, Dennis F; White, Nathan B; Redden, David T; Szalai, Alexander J; Bullard, Daniel C; Edberg, Jeffrey C

    2013-11-01

    Multiple studies have demonstrated that single-nucleotide polymorphisms (SNPs) in the ITGAM locus (including the nonsynonymous SNPs rs1143679, rs1143678, and rs1143683) are associated with systemic lupus erythematosus (SLE). ITGAM encodes the protein CD11b, a subunit of the β2 integrin Mac-1. The purpose of this study was to determine the effects of ITGAM genetic variation on the biologic functions of neutrophil Mac-1. Neutrophils from ITGAM-genotyped and -sequenced healthy donors were isolated for functional studies. The phagocytic capacity of neutrophil ITGAM variants was probed with complement-coated erythrocytes, serum-treated zymosan, heat-treated zymosan, and IgG-coated erythrocytes. The adhesion capacity of ITGAM variants, in adhering to either purified intercellular adhesion molecule 1 or tumor necrosis factor α-stimulated endothelial cells, was assessed in a flow chamber. Expression levels of total CD11b and activation of CD11b were assessed by flow cytometry. Mac-1-mediated neutrophil phagocytosis, determined in cultures with 2 different complement-coated particles, was significantly reduced in individuals with nonsynonymous variant alleles of ITGAM. This reduction in phagocytosis was related to variation at either rs1143679 (in the β-propeller region) or rs1143678/rs1143683 (highly linked SNPs in the cytoplasmic/calf-1 regions). Phagocytosis mediated by Fcγ receptors was also significantly reduced in donors with variant ITGAM alleles. Similarly, firm adhesion of neutrophils was significantly reduced in individuals with variant ITGAM alleles. These functional alterations were not attributable to differences in total receptor expression or activation. The nonsynonymous ITGAM variants rs1143679 and rs1143678/rs113683 contribute to altered Mac-1 function on neutrophils. These results underscore the need to consider multiple nonsynonymous SNPs when assessing the functional consequences of ITGAM variation on immune cell processes and the risk of SLE

  6. Ginger Extract Modulates the Expression of Chemokines CCL20 and CCL22 and Their Receptors (CCR6 and CCR4) in the Central Nervous System of Mice with Experimental Autoimmune Encephalomyelitis.

    PubMed

    Jafarzadeh, Abdollah; Arabi, Zahra; Ahangar-Parvin, Rayhaneh; Mohammadi-Kordkhayli, Marziyeh; Nemati, Maryam

    2017-11-01

    Background Chemokines facilitate the leukocytes infiltration into the central nervous system (CNS) which is an essential step in the pathogenesis of multiple sclerosis. Ginger has also a broad anti-inflammatory properties. The aim was to evaluate the effects of ginger extract on the expression of CCL20 and CCL22 and their receptors (CCR6 and CCR4, respectively) in experimental autoimmune encephalomyelitis (EAE). Material and Methods Female C57BL/6 mice used for EAE induction by immunization with myelin oligodendroglial glycoprotein. Then, the EAE mice were treated with PBS or ginger extract, from day +3 to +30. At day 31, mice were scarified and the expression of CCL20 and CCL22 and their receptors in the spinal cord measured using real time-PCR. Results The expression of CCL20, CCL22 and CCR4 in the spinal cord of PBS-administrated EAE mice was significantly higher than healthy group (P<0.04, P<0.05 and P<0.02, respectively). In 200- and 300 mg/kg ginger extract-treated EAE mice, the expression of CCL20, CCL22 and CCR4 were significantly reduced as compared with PBS-administrated EAE group (P<0.04, P<0.01 and P<0.002 for 200 mg/kg ginger extract and P<0.01, P<0.005 and P<0.004 for 300 mg/kg ginger extract, respectively). The CCR6 expression in EAE mice treated with 200- or 300 mg/kg ginger extracts was lower than PBS-administrated EAE mice (P<0.01 and P=0.07, respectively). Conclusion Treatment of EAE mice with ginger extract down-regulate the expression of CCL20 and CCL22 and their receptors in EAE mice. The possible therapeutic potential of ginger for treatment of MS can be considered in future investigations. © Georg Thieme Verlag KG Stuttgart · New York.

  7. CCL19 as a Chemokine Risk Factor for Posttreatment Lyme Disease Syndrome: a Prospective Clinical Cohort Study

    PubMed Central

    Soloski, Mark J.; Rebman, Alison W.; Crowder, Lauren A.; Wagner, Catriona A.; Robinson, William H.; Bechtold, Kathleen T.

    2016-01-01

    Approximately 10% to 20% of patients optimally treated for early Lyme disease develop persistent symptoms of unknown pathophysiology termed posttreatment Lyme disease syndrome (PTLDS). The objective of this study was to investigate associations between PTLDS and immune mediator levels during acute illness and at several time points following treatment. Seventy-six participants with physician-documented erythema migrans and 26 healthy controls with no history of Lyme disease were enrolled. Sixty-four cytokines, chemokines, and inflammatory markers were measured at each visit for a total of 6 visits over 1 year. An operationalized definition of PTLDS incorporating symptoms and functional impact was applied at 6 months and 1 year following treatment completion, and clinical outcome groups were defined as the return-to-health, symptoms-only, and PTLDS groups. Significance analysis of microarrays identified 7 of the 64 immune mediators to be differentially regulated by group. Generalized logit regressions controlling for potential confounders identified posttreatment levels of the T-cell chemokine CCL19 to be independently associated with clinical outcome group. Receiver operating characteristic analysis identified a CCL19 cutoff of >111.67 pg/ml at 1 month following treatment completion to be 82% sensitive and 83% specific for later PTLDS. We speculate that persistently elevated CCL19 levels among participants with PTLDS may reflect ongoing, immune-driven reactions at sites distal to secondary lymphoid tissue. Our findings suggest the relevance of CCL19 both during acute infection and as an immunologic risk factor for PTLDS during the posttreatment phase. Identification of a potential biomarker predictor for PTLDS provides the opportunity to better understand its pathophysiology and to develop early interventions in the context of appropriate and specific clinical information. PMID:27358211

  8. CCL20 and β-defensin-2 induce arrest of human Th17 cells on inflamed endothelium in vitro under flow conditions.

    PubMed

    Ghannam, Soufiane; Dejou, Cécile; Pedretti, Nathalie; Giot, Jean-Philipe; Dorgham, Karim; Boukhaddaoui, Hassan; Deleuze, Virginie; Bernard, François-Xavier; Jorgensen, Christian; Yssel, Hans; Pène, Jérôme

    2011-02-01

    CCR6 is a chemokine receptor that is expressed at the cell surface of Th17 cells, an IL-17- and IL-22-secreting population of CD4(+) T cells with antipathogenic, as well as inflammatory, properties. In the current study, we have determined the involvement of CCR6 in human Th17 lymphocyte migration toward inflamed tissue by analyzing the capacity of its ligands to induce arrest of these cells onto inflamed endothelium in vitro under flow conditions. We show that polarized, in situ-differentiated, skin-derived Th17 clones activated via the TCR-CD3 complex produce CCL20 in addition to IL-17 and IL-22. The latter cytokines induce, in a synergic fashion, the production of human β-defensin (hBD)-2, but neither hBD-1 nor hBD-3, by epidermal keratinocytes. Both CCL20 and hBD-2 are capable of inducing the arrest of Th17 cells, but not Th1 or Th2 cells, on HUVEC in an CD54-dependent manner that is CCR6 specific and independent from the expression of CXCR4, reported to be an alternative receptor for hBD-2. In addition, Ag-specific activation induces a transient loss of CCR6 expression, both at the transcriptional and protein level, which occurs with slow kinetics and is not due to endogenous CCL20-mediated internalization of CCR6. Together, these results indicate that Ag-specific activation will initially contribute to CCR6-mediated Th17 cell trafficking toward and sequestration in inflamed tissue, but that it eventually results in a transitory state of nonresponsiveness to further stimulation of these cells with CCR6 ligands, thus permitting their subsequent migration out of the inflamed site.

  9. Bromelain treatment decreases neutrophil migration to sites of inflammation.

    PubMed

    Fitzhugh, David J; Shan, Siqing; Dewhirst, Mark W; Hale, Laura P

    2008-07-01

    Bromelain, a mixture of proteases derived from pineapple stem, has been reported to have therapeutic benefits in a variety of inflammatory diseases, including murine inflammatory bowel disease. The purpose of this work was to understand potential mechanisms for this anti-inflammatory activity. Exposure to bromelain in vitro has been shown to remove a number of cell surface molecules that are vital to leukocyte trafficking, including CD128a/CXCR1 and CD128b/CXCR2 that serve as receptors for the neutrophil chemoattractant IL-8 and its murine homologues. We hypothesized that specific proteolytic removal of CD128 molecules by bromelain would inhibit neutrophil migration to IL-8 and thus decrease acute responses to inflammatory stimuli. Using an in vitro chemotaxis assay, we demonstrated a 40% reduction in migration of bromelain- vs. sham-treated human neutrophils in response to rhIL-8. Migration to the bacterial peptide analog fMLP was unaffected, indicating that bromelain does not induce a global defect in leukocyte migration. In vivo bromelain treatment generated a 50-85% reduction in neutrophil migration in 3 different murine models of leukocyte migration into the inflamed peritoneal cavity. Intravital microscopy demonstrated that although in vivo bromelain treatment transiently decreased leukocyte rolling, its primary long-term effect was abrogation of firm adhesion of leukocytes to blood vessels at the site of inflammation. These changes in adhesion were correlated with rapid re-expression of the bromelain-sensitive CD62L/L-selectin molecules that mediate rolling following in vivo bromelain treatment and minimal re-expression of CD128 over the time period studied. Taken together, these studies demonstrate that bromelain can effectively decrease neutrophil migration to sites of acute inflammation and support the specific removal of the CD128 chemokine receptor as a potential mechanism of action.

  10. Bromelain Treatment Decreases Neutrophil Migration to Sites of Inflammation

    PubMed Central

    Fitzhugh, David J.; Shan, Siqing; Dewhirst, Mark W.; Hale, Laura P.

    2008-01-01

    Bromelain, a mixture of proteases derived from pineapple stem, has been reported to have therapeutic benefits in a variety of inflammatory diseases, including murine inflammatory bowel disease. The purpose of this work was to understand potential mechanisms for this anti-inflammatory activity. Exposure to bromelain in vitro has been shown to remove a number of cell surface molecules that are vital to leukocyte trafficking, including CD128a/CXCR1 and CD128b/CXCR2 that serve as receptors for the neutrophil chemoattractant IL-8 and its murine homologues. We hypothesized that specific proteolytic removal of CD128 molecules by bromelain would inhibit neutrophil migration to IL-8 and thus decrease acute responses to inflammatory stimuli. Using an in vitro chemotaxis assay, we demonstrated a 40% reduction in migration of bromelain- vs. sham-treated human neutrophils in response to rhIL-8. Migration to the bacterial peptide analog fMLP was unaffected, indicating that bromelain does not induce a global defect in leukocyte migration. In vivo bromelain treatment generated a 50 – 85% reduction in neutrophil migration in 3 different murine models of leukocyte migration into the inflamed peritoneal cavity. Intravital microscopy demonstrated that although in vivo bromelain treatment transiently decreased leukocyte rolling, its primary long-term effect was abrogation of firm adhesion of leukocytes to blood vessels at the site of inflammation. These changes in adhesion were correlated with rapid re-expression of the bromelain-sensitive CD62L/L-selectin molecules that mediate rolling following in vivo bromelain treatment and minimal re-expression of CD128 over the time period studied. Taken together, these studies demonstrate that bromelain can effectively decrease neutrophil migration to sites of acute inflammation and support the specific removal of the CD128 chemokine receptor as a potential mechanism of action. PMID:18482869

  11. Lidocaine reduces neutrophil recruitment by abolishing chemokine-induced arrest and transendothelial migration in septic patients.

    PubMed

    Berger, Christian; Rossaint, Jan; Van Aken, Hugo; Westphal, Martin; Hahnenkamp, Klaus; Zarbock, Alexander

    2014-01-01

    The inappropriate activation, positioning, and recruitment of leukocytes are implicated in the pathogenesis of multiple organ failure in sepsis. Although the local anesthetic lidocaine modulates inflammatory processes, the effects of lidocaine in sepsis are still unknown. This double-blinded, prospective, randomized clinical trial was conducted to investigate the effect of lidocaine on leukocyte recruitment in septic patients. Fourteen septic patients were randomized to receive either a placebo (n = 7) or a lidocaine (n = 7) bolus (1.5 mg/kg), followed by continuous infusion (100 mg/h for patients >70 kg or 70 mg/h for patients <70 kg) over a period of 48 h. Selectin-mediated slow rolling, chemokine-induced arrest, and transmigration were investigated by using flow chamber and transmigration assays. Lidocaine treatment abrogated chemokine-induced neutrophil arrest and significantly impaired neutrophil transmigration through endothelial cells by inhibition of the protein kinase C-θ while not affecting the selectin-mediated slow leukocyte rolling. The observed results were not attributable to changes in surface expression of adhesion molecules or selectin-mediated capturing capacity, indicating a direct effect of lidocaine on signal transduction in neutrophils. These data suggest that lidocaine selectively inhibits chemokine-induced arrest and transmigration of neutrophils by inhibition of protein kinase C-θ while not affecting selectin-mediated slow rolling. These findings may implicate a possible therapeutic role for lidocaine in decreasing the inappropriate activation, positioning, and recruitment of leukocytes during sepsis.

  12. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones

    PubMed Central

    Saffarzadeh, Mona; Juenemann, Christiane; Queisser, Markus A.; Lochnit, Guenter; Barreto, Guillermo; Galuska, Sebastian P.; Lohmeyer, Juergen; Preissner, Klaus T.

    2012-01-01

    Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction. PMID:22389696

  13. Rate constant for the reaction of OH with CH3CCl2F (HCFC-141b) determined by relative rate measurements with CH4 and CH3CCl3

    NASA Technical Reports Server (NTRS)

    Huder, Karin; Demore, William B.

    1993-01-01

    Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.

  14. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis

    PubMed Central

    Zhang, Chao; Yi, Weiwei; Li, Fei; Du, Xufei; Wang, Hu; Wu, Ping; Peng, Chao; Luo, Man; Hua, Wen; Wong, Catherine CL; Lee, James J; Li, Wen; Chen, Zhihua; Ying, Songmin; Ju, Zhenyu; Shen, Huahao

    2018-01-01

    Eosinophils (Eos) have been long considered as end-stage effector cells in the hierarchical hematopoietic system. Numerous lines of evidence have suggested that Eos are multifunctional leukocytes with respect to the initiation, propagation and regulation of various inflammatory or immune reactions, especially in allergic diseases. Recent studies have shown that Eos are also required for maintenance of bone marrow plasma cells and differentiation of B cells. However, it remains unclear whether Eos contributes to regulation of hematopoietic stem cell (HSC) homeostasis. Here, we demonstrate that Eos disrupt HSC homeostasis by impairing HSC quiescence and reconstitution ability in wild-type mice following ovalbumin (OVA) challenge and even by causing bone marrow HSC failure and exhaustion in Cd3δ-Il-5 transgenic mice. The impaired maintenance and function of HSCs were associated with Eos-induced redox imbalance (increased oxidative phosphorylation and decreased anti-oxidants levels). More importantly, using mass spectrometry, we determined that CCL-6 is expressed at a high level under eosinophilia. We demonstrate that CCL-6 is Eos-derived and responsible for the impaired HSC homeostasis. Interestingly, blockage of CCL-6 with a specific neutralizing antibody, restored the reconstitution ability of HSCs while exacerbating eosinophilia airway inflammation in OVA-challenged mice. Thus, our study reveals an unexpected function of Eos/CCL-6 in HSC homeostasis. PMID:29327730

  15. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis.

    PubMed

    Zhang, Chao; Yi, Weiwei; Li, Fei; Du, Xufei; Wang, Hu; Wu, Ping; Peng, Chao; Luo, Man; Hua, Wen; Wong, Catherine Cl; Lee, James J; Li, Wen; Chen, Zhihua; Ying, Songmin; Ju, Zhenyu; Shen, Huahao

    2018-03-01

    Eosinophils (Eos) have been long considered as end-stage effector cells in the hierarchical hematopoietic system. Numerous lines of evidence have suggested that Eos are multifunctional leukocytes with respect to the initiation, propagation and regulation of various inflammatory or immune reactions, especially in allergic diseases. Recent studies have shown that Eos are also required for maintenance of bone marrow plasma cells and differentiation of B cells. However, it remains unclear whether Eos contributes to regulation of hematopoietic stem cell (HSC) homeostasis. Here, we demonstrate that Eos disrupt HSC homeostasis by impairing HSC quiescence and reconstitution ability in wild-type mice following ovalbumin (OVA) challenge and even by causing bone marrow HSC failure and exhaustion in Cd3δ-Il-5 transgenic mice. The impaired maintenance and function of HSCs were associated with Eos-induced redox imbalance (increased oxidative phosphorylation and decreased anti-oxidants levels). More importantly, using mass spectrometry, we determined that CCL-6 is expressed at a high level under eosinophilia. We demonstrate that CCL-6 is Eos-derived and responsible for the impaired HSC homeostasis. Interestingly, blockage of CCL-6 with a specific neutralizing antibody, restored the reconstitution ability of HSCs while exacerbating eosinophilia airway inflammation in OVA-challenged mice. Thus, our study reveals an unexpected function of Eos/CCL-6 in HSC homeostasis.

  16. The Mediator complex: a master coordinator of transcription and cell lineage development.

    PubMed

    Yin, Jing-wen; Wang, Gang

    2014-03-01

    Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.

  17. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition

    PubMed Central

    Juss, Jatinder K.; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M. L.; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M.; Condliffe, Alison

    2016-01-01

    Rationale: Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease’s complex pathophysiology, yet these cells have been little studied. Objectives: To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Methods: Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase–dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of

  18. Transient expression of CCL21as recombinant protein in tomato.

    PubMed

    Beihaghi, Maria; Marashi, Hasan; Bagheri, Abdolreza; Sankian, Mojtaba

    2018-03-01

    The main goal of this study was to investigate the possibility of expressing recombinant protein of C-C chemokine ligand 21 (CCL21) in Solanum lycopersicum via agroinfiltration. CCL21 is a chemokine can be used for anti-metastatic of cancer cell lines. To examine the expression of CCL21 protein in S. lycopersicum , the construct of ccl21 was synthesized. This construct was cloned into pBI121 and the resulting CCL21 plasmid was agro-infiltrated into S. lycopersicum leaves. Within three days after infiltration, Expression of the foreign gene was confirmed by quantitative Real-time PCR. A recombinant CCL21 protein was immunogenically detected by western blot, dot blot and ELISA assay. And results showed that the foreign gene was expressed in the transformed leaves in high level. Also scratch assay was used to investigate the role of this protein in anti-metastatic function. The results demonstrated anti-metastatic of cancer cells in the presence of this protein.

  19. Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells.

    PubMed

    Hiramoto, Takafumi; Ebihara, Yasuhiro; Mizoguchi, Yoko; Nakamura, Kazuhiro; Yamaguchi, Kiyoshi; Ueno, Kazuko; Nariai, Naoki; Mochizuki, Shinji; Yamamoto, Shohei; Nagasaki, Masao; Furukawa, Yoichi; Tani, Kenzaburo; Nakauchi, Hiromitsu; Kobayashi, Masao; Tsuji, Kohichiro

    2013-02-19

    The derivation of induced pluripotent stem (iPS) cells from individuals of genetic disorders offers new opportunities for basic research into these diseases and the development of therapeutic compounds. Severe congenital neutropenia (SCN) is a serious disorder characterized by severe neutropenia at birth. SCN is associated with heterozygous mutations in the neutrophil elastase [elastase, neutrophil-expressed (ELANE)] gene, but the mechanisms that disrupt neutrophil development have not yet been clarified because of the current lack of an appropriate disease model. Here, we generated iPS cells from an individual with SCN (SCN-iPS cells). Granulopoiesis from SCN-iPS cells revealed neutrophil maturation arrest and little sensitivity to granulocyte-colony stimulating factor, reflecting a disease status of SCN. Molecular analysis of the granulopoiesis from the SCN-iPS cells vs. control iPS cells showed reduced expression of genes related to the wingless-type mmtv integration site family, member 3a (Wnt3a)/β-catenin pathway [e.g., lymphoid enhancer-binding factor 1], whereas Wnt3a administration induced elevation lymphoid enhancer-binding factor 1-expression and the maturation of SCN-iPS cell-derived neutrophils. These results indicate that SCN-iPS cells provide a useful disease model for SCN, and the activation of the Wnt3a/β-catenin pathway may offer a novel therapy for SCN with ELANE mutation.

  20. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.

    PubMed

    Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan

    2014-01-01

    Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Parallel Effects of Methamphetamine on Anxiety and CCL3 in Humans and a Genetic Mouse Model of High Methamphetamine Intake

    PubMed Central

    Huckans, Marilyn; Wilhelm, Clare J.; Phillips, Tamara J.; Huang, Elaine T.; Hudson, Rebekah; Loftis, Jennifer M.

    2018-01-01

    Background Methamphetamine (MA) abuse causes immune dysfunction and neuropsychiatric impairment. The mechanisms underlying these deficits remain unidentified. Methods The effects of MA on anxiety-like behavior and immune function were investigated in mice selectively bred to voluntarily consume high amounts of MA [i.e., MA high drinking (MAHDR) mice]. MA (or saline) was administered to mice using a chronic (14-day), binge-like model. Performance in the elevated zero maze (EZM) was determined 5 days after the last MA dose to examine anxiety-like behavior. Cytokine and chemokine expressions were measured in the hippocampus using quantitative polymerase chain reaction (qPCR). Human studies were also conducted to evaluate symptoms of anxiety using the General Anxiety Disorder-7 Scale in adults with and without a history of MA dependence. Plasma samples collected from human research participants were used for confirmatory analysis of murine qPCR results using an enzyme-linked immunosorbent assay. Results During early remission from MA, MAHDR mice exhibited increased anxiety-like behavior on the EZM and reduced expression of chemokine (C-C motif) ligand 3 (ccl3) in the hippocampus relative to saline-treated mice. Human adults actively dependent on MA and those in early remission had elevated symptoms of anxiety as well as reductions in plasma levels of CCL3, relative to adults with no history of MA abuse. Conclusions The results highlight the complex effects of MA on immune and behavioral function and suggest that alterations in CCL3 signaling may contribute to the mood impairments observed during remission from MA addiction. PMID:29402784

  2. The group VIA calcium-independent phospholipase A2 and NFATc4 pathway mediates IL-1β-induced expression of chemokines CCL2 and CXCL10 in rat fibroblasts.

    PubMed

    Kuwata, Hiroshi; Yuzurihara, Chihiro; Kinoshita, Natsumi; Taki, Yuki; Ikegami, Yuki; Washio, Sana; Hirakawa, Yushi; Yoda, Emiko; Aiuchi, Toshihiro; Itabe, Hiroyuki; Nakatani, Yoshihito; Hara, Shuntaro

    2018-06-01

    Chemokines are secreted proteins that regulate cell migration and are involved in inflammatory and immune responses. Here, we sought to define the functional crosstalk between the lipid signaling and chemokine signaling. We obtained evidence that the induction of some chemokines is regulated by group VIA calcium-independent phospholipase A 2 β (iPLA 2 β) in IL-1β-stimulated rat fibroblastic 3Y1 cells. Treatment of 3Y1 cells with IL-1β elicited an increased release of chemotactic factor(s) for monocytic THP-1 cells into culture medium in a time-dependent manner. Inhibitor studies revealed that an intracellular PLA 2 inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF 3 ), but not the cyclooxygenase inhibitor indomethacin, attenuated the release of chemotactic factor(s). The chemotactic activity was inactivated by treatment with either heat or proteinase K, suggesting this chemotactic factor(s) is a proteinaceous factor(s). We purified the chemotactic factor(s) from the conditioned medium of IL-1β-stimulated 3Y1 cells using a heparin column and identified several chemokines, including CCL2 and CXCL10. The inducible expressions of CCL2 and CXCL10 were significantly attenuated by pretreatment with AACOCF 3 . Gene silencing using siRNA revealed that the inductions of CCL2 and CXCL10 were attenuated by iPLA 2 β knockdown. Additionally, the transcriptional activation of nuclear factor of activated T-cell proteins (NFATs), but not nuclear factor-κB, by IL-1β stimulation was markedly attenuated by the iPLA 2 inhibitor bromoenol lactone, and NFATc4 knockdown markedly attenuated the IL-1β-induced expression of both CCL2 and CXCL10. Collectively, these results indicated that iPLA 2 β plays roles in IL-1β-induced chemokine expression, in part via NFATc4 signaling. © 2018 Federation of European Biochemical Societies.

  3. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. © 2016 by The American Society of Hematology.

  4. Effects of neferine on CCL5 and CCR5 expression in SCG of type 2 diabetic rats.

    PubMed

    Li, Guilin; Xu, Hong; Zhu, Shuanghua; Xu, Wenyuan; Qin, Shulan; Liu, Shuangmei; Tu, Guihua; Peng, Haiying; Qiu, Shuyi; Yu, Shicheng; Zhu, Qicheng; Fan, Bo; Zheng, Chaoran; Li, Guodong; Liang, Shangdong

    2013-01-01

    Chemokines and their receptors have the key role in inflammatory responses. The phenomenon of low grade inflammation is associated with the development of type 2 diabetes. Postprandial hyperglycemia increases the systemic inflammatory responses, which promotes the development of type 2 diabetic associating autonomic nervous injuries or cardiovascular disease. Neferine is a bisbenzylisoquinline alkaloid isolated from a Chinese medicinal herb. The objectives of this study will examine the CCL5 and CCR5 expression in the superior cervical ganglion (SCG) of type 2 diabetic rats. The effects of neferine on the expression of CCL5 and CCR5 mRNA and protein in the superior cervical ganglion (SCG) of type 2 diabetic rats will also be observed. The studies showed that in type 2 diabetic rats, body weight, blood pressure, heart rates, fasting blood glucose, insulin, total cholesterol and triglyceride were enhanced and high density lipoprotein was decreased, and CCL5 and CCR5 expression levels in the SCG of type 2 diabetic rats were up-regulated. In type 2 diabetic rats treated with neferine, body weight, blood pressure, fasting blood glucose, insulin, total cholesterol and triglyceride were decreased and high density lipoprotein was increased. The elevated expressions of CCL5 and CCR5 in SCG were decreased after type 2 diabetic rats treated with neferine. The motor nerve conduction velocity (MNCV) in diabetic rats treated with neferine group showed a significantly increment in comparison with that in type 2 diabetic group. Neferine can decrease the expression of CCL5 and CCR5 in the SCG and reduce the SCG neuronal signaling mediated by CCL5 and CCR5 in regulating diabetic cardiovascular autonomic complications. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. CCL3 and CXCL12 production in vitro by dental pulp fibroblasts from permanent and deciduous teeth stimulated by Porphyromonas gingivalis LPS

    PubMed Central

    SIPERT, Carla Renata; MORANDINI, Ana Carolina de Faria; MODENA, Karin Cristina da Silva; DIONÍSIO, Thiago José; MACHADO, Maria Aparecida Andrade Moreira; de OLIVEIRA, Sandra Helena Penha; CAMPANELLI, Ana Paula; SANTOS, Carlos Ferreira

    2013-01-01

    Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation. PMID:23739851

  6. Localization and Functionality of the Inflammasome in Neutrophils*

    PubMed Central

    Bakele, Martina; Joos, Melanie; Burdi, Sofia; Allgaier, Nicolas; Pöschel, Simone; Fehrenbacher, Birgit; Schaller, Martin; Marcos, Veronica; Kümmerle-Deschner, Jasmin; Rieber, Nikolaus; Borregaard, Niels; Yazdi, Amir; Hector, Andreas; Hartl, Dominik

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis. PMID:24398679

  7. TNF-α expression in neutrophils and its regulation by glycogen synthase kinase-3: a potentiating role for lithium.

    PubMed

    Giambelluca, Miriam S; Bertheau-Mailhot, Geneviève; Laflamme, Cynthia; Rollet-Labelle, Emmanuelle; Servant, Marc J; Pouliot, Marc

    2014-08-01

    Glycogen synthase kinase 3 (GSK-3) is associated with several cellular systems, including immune response. Lithium, a widely used pharmacological treatment for bipolar disorder, is a GSK-3 inhibitor. GSK-3α is the predominant isoform in human neutrophils. In this study, we examined the effect of GSK-3 inhibition on the production of TNF-α by neutrophils. In the murine air pouch model of inflammation, lithium chloride (LiCl) amplified TNF-α release. In lipopolysaccharide-stimulated human neutrophils, GSK-3 inhibitors mimicked the effect of LiCl, each potentiating TNF-α release after 4 h, in a concentration-dependent fashion, by up to a 3-fold increase (ED50 of 1 mM for lithium). LiCl had no significant effect on cell viability. A positive association was revealed between GSK-3 inhibition and prolonged activation of the p38/MNK1/eIF4E pathway of mRNA translation. Using lysine and arginine labeled with stable heavy isotopes followed by quantitative mass spectrometry, we determined that GSK-3 inhibition markedly increases (by more than 3-fold) de novo TNF-α protein synthesis. Our findings shed light on a novel mechanism of control of TNF-α expression in neutrophils with GSK-3 regulating mRNA translation and raise the possibility that lithium could be having a hitherto unforeseen effect on inflammatory diseases. © FASEB.

  8. Myeloid IKKβ Promotes Antitumor Immunity by Modulating CCL11 and the Innate Immune Response

    PubMed Central

    Yang, Jinming; Hawkins, Oriana E.; Barham, Whitney; Gilchuk, Pavlo; Boothby, Mark; Ayers, Gregory D.; Joyce, Sebastian; Karin, Michael; Yull, Fiona E.; Richmond, Ann

    2015-01-01

    Myeloid cells are capable of promoting or eradicating tumor cells and the nodal functions that contribute to their different roles are still obscure. Here, we show that mice with myeloid-specific genetic loss of the NF-κB pathway regulatory kinase IKKβ exhibit more rapid growth of cutaneous and lung melanoma tumors. In a BRAFV600E/PTEN−/− allograft model, IKKβ loss in macrophages reduced recruitment of myeloid cells into the tumor, lowered expression of MHC class II molecules, and enhanced production of the chemokine CCL11, thereby negatively regulating dendritic-cell maturation. Elevated serum and tissue levels of CCL11 mediated suppression of dendritic-cell differentiation/maturation within the tumor microenvironment, skewing it toward a Th2 immune response and impairing CD8+ T cell–mediated tumor cell lysis. Depleting macrophages or CD8+ T cells in mice with wild-type IKKβ myeloid cells enhanced tumor growth, where the myeloid cell response was used to mediate antitumor immunity against melanoma tumors (with less dependency on a CD8+ T-cell response). In contrast, myeloid cells deficient in IKKβ were compromised in tumor cell lysis, based on their reduced ability to phagocytize and digest tumor cells. Thus, mice with continuous IKKβ signaling in myeloid-lineage cells (IKKβCA) exhibited enhanced antitumor immunity and reduced melanoma outgrowth. Collectively, our results illuminate new mechanisms through which NF-κB signaling in myeloid cells promotes innate tumor surveillance. PMID:25336190

  9. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  10. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  11. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  12. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT.

    PubMed

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-16

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  13. Neutrophil trails guide influenza-specific CD8+ T cells in the airways

    PubMed Central

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J.; Kim, Minsoo

    2016-01-01

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells is unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8+ T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditional knock-out mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8+ T cell recruitment and effector functions. Collectively, these results suggest neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8+ T cell migration and localization in influenza-infected tissues. PMID:26339033

  14. Inhibiting PSMα-induced neutrophil necroptosis protects mice with MRSA pneumonia by blocking the agr system.

    PubMed

    Zhou, Ying; Niu, Chao; Ma, Bo; Xue, Xiaoyan; Li, Zhi; Chen, Zhou; Li, Fen; Zhou, Shan; Luo, Xiaoxing; Hou, Zheng

    2018-03-02

    Given its high resistance, enhanced virulence, and high transmissibility, community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) pneumonia is highly associated with high morbidity and mortality. Anti-virulence therapy is a promising strategy that bypasses the evolutionary pressure on the bacterium to develop resistance. RNAIII-inhibiting peptide (RIP), as an accessory gene regulator (agr)-specific inhibitor, significantly restricts the virulence of S. aureus and protects infected mice from death by blocking the agr quorum sensing system. The protective effects of RIP on the neutropenic mice completely disappeared in a neutrophil-deleted mouse infection model, but not in the macrophage-deleted mice. This result confirmed that the in vivo antibacterial activity of RIP is highly associated with neutrophil function. Phenol-soluble modulins (PSMs), as major leukocyte lysis toxins of CA-MRSA, are directly regulated by the agr system. In this experiment, PSMα1, 2, and 3 significantly induced neutrophil necroptosis by activating mixed lineage kinase-like protein (MLKL) phosphorylation and increasing lactate dehydrogenase release. The S. aureus supernatants harvested from the agr or psmα mutant strains both decreased the phosphorylation level of MLKL and cell lysis. PSMα1-mediated neutrophil lysis was significantly inhibited by necrosulfonamide, necrostatin-1, TNFα antibody, and WRW4. These results showed PSMα1 induced necroptosis depends on formylpeptide receptor 2 (FPR2)-mediated autocrine TNFα. Moreover, the neutrophil necroptosis induced by S. aureus was significantly suppressed and pneumonia was effectively prevented by the blockage of agrA and psmα expression levels. These findings indicate that PSMα-induced necroptosis is a major cause of lung pathology in S. aureus pneumonia and suggest that interfering with the agr quorum sensing signaling pathway is a potential therapeutic strategy.

  15. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    PubMed

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  16. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    PubMed

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  17. Evaluation of Mediators Associated with the Inflammatory Response in Prostate Cancer Patients Undergoing Radiotherapy.

    PubMed

    Bedini, Nice; Cicchetti, Alessandro; Palorini, Federica; Magnani, Tiziana; Zuco, Valentina; Pennati, Marzia; Campi, Elisa; Allavena, Paola; Pesce, Samantha; Villa, Sergio; Avuzzi, Barbara; Morlino, Sara; Visentin, Maria Emanuela; Zaffaroni, Nadia; Rancati, Tiziana; Valdagni, Riccardo

    2018-01-01

    A recent "hot topic" in prostate cancer radiotherapy is the observed association between acute/late rectal toxicity and the presence of abdominal surgery before radiotherapy. The exact mechanism is unclear. Our working hypothesis was that a previous surgery may influence plasma level of inflammatory molecules and this might result in enhanced radiosensitivity. We here present results on the feasibility of monitoring the expression of inflammatory molecules during radiotherapy. Plasma levels of a panel of soluble mediators associated with the inflammatory response were measured in prostate cancer patients undergoing radical radiotherapy. We measured 3 cytokines (IL-1b, IL-6, and TNF alpha), 2 chemokines (CCL2 and CXCL8), and the long pentraxin PTX3. 20 patients were enrolled in this feasibility evaluation. All patients were treated with IMRT at 78 Gy. 3/20 patients reported grade 2 acute rectal toxicity, while 4/20 were scored as grade 2 late toxicity. CCL2 was the most interesting marker showing significant increase during and after radiotherapy. CCL2 levels at radiotherapy end could be modelled using linear regression including basal CCL2, age, surgery, hypertension, and use of anticoagulants. The 4 patients with late toxicity had CCL2 values at radiotherapy end above the median value. This trial is registered with ISRCTN64979094.

  18. Antimicrobial peptides and nitric oxide production by neutrophils from periodontitis subjects

    PubMed Central

    Mariano, F.S.; Campanelli, A.P.; Nociti, F.H.; Mattos-Graner, R.O.; Gonçalves, R.B.

    2012-01-01

    Neutrophils play an important role in periodontitis by producing nitric oxide (NO) and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP) 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS)-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and Escherichia coli-LPS (Ec-LPS). qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens. PMID:22850872

  19. Neutrophil Depletion during Toxoplasma gondii Infection Leads to Impaired Immunity and Lethal Systemic Pathology

    PubMed Central

    Bliss, Susan K.; Gavrilescu, L. Cristina; Alcaraz, Ana; Denkers, Eric Y.

    2001-01-01

    The immunomodulatory role of neutrophils during infection with Toxoplasma gondii was investigated. Monoclonal antibody-mediated depletion revealed that neutrophils are essential for survival during the first few days of infection. Moreover, neutrophil depletion was associated with a weaker type 1 immune response as measured by decreased levels of gamma interferon, interleukin-12 (IL-12) and tumor necrosis factor alpha. IL-10 was also decreased in depleted animals. Additionally, splenic populations of CD4+ T cells, CD8+ T cells, and NK1.1+ cells were decreased in depleted mice. Neutrophil-depleted mice exhibited lesions of greater severity in tissues examined and a greater parasite burden as determined by histopathology and reverse transcription-PCR. We conclude that neutrophils are critical near the time of infection because they influence the character of the immune response and control tachyzoite replication. PMID:11447166

  20. Smac mimetic enables the anticancer action of BCG-stimulated neutrophils through TNF-α but not through TRAIL and FasL.

    PubMed

    Jinesh G, Goodwin; Chunduru, Srinivas; Kamat, Ashish M

    2012-07-01

    BCG, the current gold standard immunotherapy for bladder cancer, exerts its activity via recruitment of neutrophils to the tumor microenvironment. Many patients do not respond to BCG therapy, indicating the need to understand the mechanism of action of BCG-stimulated neutrophils and to identify ways to overcome resistance to BCG therapy. Using isolated human neutrophils stimulated with BCG, we found that TNF-α is the key mediator secreted by BCG-stimulated neutrophils. RT4v6 human bladder cancer cells, which express TNFR1, CD95/Fas, CD95 ligand/FasL, DR4, and DR5, were resistant to BCG-stimulated neutrophil conditioned medium but effectively killed by the combination of conditioned medium and Smac mimetic. rhTNF-α and rhFasL, but not rhTRAIL, in combination with Smac mimetic, generated signature molecular events similar to those produced by BCG-stimulated neutrophils in combination with Smac mimetic. However, experiments using neutralizing antibodies to these death ligands showed that TNF-α secreted from BCG-stimulated neutrophils was the key mediator of anticancer action. These findings explain the mechanism of action of BCG and identified Smac mimetics as potential combination therapeutic agents for bladder cancer.

  1. Effect of ginseng extract on the TGF-β1 signaling pathway in CCl4-induced liver fibrosis in rats.

    PubMed

    Hafez, Mohamed M; Hamed, Sherifa S; El-Khadragy, Manal F; Hassan, Zeinab K; Al Rejaie, Salim S; Sayed-Ahmed, Mohamed M; Al-Harbi, Naif O; Al-Hosaini, Khalid A; Al-Harbi, Mohamed M; Alhoshani, Ali R; Al-Shabanah, Othman A; Alsharari, Shakir Dekhal

    2017-01-13

    Liver diseases are major global health problems. Ginseng extract has antioxidant, immune-modulatory and anti-inflammatory activities. This study investigated the effect of ginseng extract on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Male Wistar rats were divided into four groups: control group, ginseng group, CCl 4 group and CCl 4  + ginseng group. Liver injury was induced by the intraperitoneal (I.P) injection of 3 ml/kg CCl 4 (30% in olive oil) weekly for 8 weeks. The control group was I.P injected with olive oil. The expression of genes encoding transforming growth factor beta (TGF-β), type I TGF-β receptor (TβR-1), type II TGF-β receptor (TβR-II), mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad4, matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), Collagen 1a2 (Col1a2), Collagen 3a1 (Col3a1), interleukin-8 (IL-8) and interleukin -10 (IL-10) were measured by real-time PCR. Treatment with ginseng extract decreased hepatic fat deposition and lowered hepatic reticular fiber accumulation compared with the CCl 4 group. The CCl 4 group showed a significant increase in hepatotoxicity biomarkers and up-regulation of the expression of genes encoding TGF-β, TβR-I, TβR-II, MMP2, MMP9, Smad-2,-3, -4, and IL-8 compared with the control group. However, CCl 4 administration resulted in the significant down-regulation of IL-10 mRNA expression compared with the control group. Interestingly, ginseng extract supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl 4 . ginseng extract had an anti-fibrosis effect via the regulation of the TGF-β1/Smad signaling pathway in the CCl 4 -induced liver fibrosis model. The major target was the inhibition of the expression of TGF-β1, Smad2, and Smad3.

  2. Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R)

    PubMed Central

    Chernova, Irene; Lai, Jian-Ping; Li, Haiying; Schwartz, Lynnae; Tuluc, Florin; Korchak, Helen M.; Douglas, Steven D.; Kilpatrick, Laurie E.

    2009-01-01

    Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain. PMID:18835883

  3. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    PubMed

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  4. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis

    PubMed Central

    Ong, Catherine W. M.; Elkington, Paul T.; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T.; Tezera, Liku B.; Pabisiak, Przemyslaw J.; Moores, Rachel C.; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H.; Porter, Joanna C.; Friedland, Jon S.

    2015-01-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  5. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    PubMed Central

    Öztürk Akcora, Büsra; Storm, Gert; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis. PMID:28291245

  6. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  7. Calcitonin gene-related peptide (CGRP) activates human neutrophils--inhibition by chemotactic peptide antagonist BOC-MLP.

    PubMed Central

    Richter, J; Andersson, R; Edvinsson, L; Gullberg, U

    1992-01-01

    The effect of the neuropeptides substance P, neurokinin A and alpha-calcitonin gene-related peptide (CGRP) on human neutrophil granulocytes was investigated. Substance P induced secondary granule secretion at a concentration of 100 microM. CGRP induced a significant secretory response at 10 microM and thus appeared to be about 10 times more potent than substance P. Calcitonin and a fragment of CGRP, CGRP(8-37), had no effect on neutrophil degranulation. The chemotactic peptide antagonist BOC-MLP (100 microM) inhibited lactoferrin secretion mediated both by CGRP and chemotactic peptide FMLP almost completely, while secretion in response to tumour necrosis factor (TNF) was unaffected. Results from receptor binding studies showed that CGRP and N-formyl-methionyl-leucyl-phenylalanine (FMLP) do not compete for binding. This indicates that CGRP does not exert its effects by binding to the chemotactic peptide receptor. CGRP induced a rapid increase in the cytosolic-free calcium concentration and this increase was not, unlike that induced by FMLP, abolished by preincubation of the cells with pertussis toxin (1000 ng/ml). Therefore CGRP signal transduction in neutrophils appears to involve rapid changes in the cytosolic-free calcium concentration but not a pertussis toxin-sensitive G-protein. In summary, this is the first report to show that CGRP can directly activate neutrophil granulocytes, and this probably occurs via a cell surface receptor which is distinct from that of FMLP although both the CGRP and FMLP-mediated effects can be blocked by BOC-MLP. Images Figure 3 PMID:1282494

  8. The novel role of β-aescin in attenuating CCl4-induced hepatotoxicity in rats.

    PubMed

    Singh, Harsimran; Sidhu, Shabir; Chopra, Kanwaljit; Khan, M U

    2017-12-01

    β-Aescin has anti-inflammatory, anti-oxidant and antiedematous properties. The present study investigated the hepatoprotective effect and underlying mechanisms of β-aescin in CCl 4 -induced liver damage. Thirty-five Wistar rats were divided into six groups: normal control, CCl 4 control, silymarin (50 mg/kg, p.o) and β-aescin (0.9, 1.8 and 3.6 mg/kg, i.p.) treatment for 14 d. CCl 4 (1 mL/kg, i.p. for 3 d) was administered to produce hepatic damage. Ponderal changes and liver marker enzymes were estimated. Hepatic oxidative and nitrosative stress was estimated by levels of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and nitrite/nitrate. Serum TGF-β1 and TNF-α were estimated by ELISA technique. Hepatic collagen and histopathological studies were carried out. β-Aescin (3.6 mg/kg) markedly decreased CCl 4 -induced increased levels of ALT, AST, ALP (71.77 versus 206.7, 71.39 versus 171.82, 121.20 versus 259 IU/L, respectively), total bilirubin (0.41 versus 1.35 mg/dL), TBARS (2.0 versus 8.83 nmol MDA/mg protein), nitrite/nitrate (352.50 versus 745.15 μg/mL) and increased CCl 4 -induced decreased GSH levels (0.095 versus 0.048 μmol/mg protein). β-Aescin (3.6 mg/kg) induced focal regenerative changes in liver and markedly decreased TBARS (2.0 versus 8.83 nmol MDA/mg protein), nitrite/nitrate (352.50 versus 745.15 μg/mL), TGF-β1 (92.28 versus 152.1 pg/mL), collagen content (110.75 versus 301.74 μmol/100 mg tissue) and TNF-α (92.82 versus 170.56 pg/mL) when compared with CCl 4 control. The findings suggest that β-aescin has a protective effect on CCl 4 -induced liver injury, exhibited via its anti-inflammatory, antioxidative, antinitrosative and antifibrotic properties inducing repair regeneration of liver. Hence, it can be used as a promising hepatoprotective agent.

  9. Current sources of carbon tetrachloride (CCl4) in our atmosphere

    NASA Astrophysics Data System (ADS)

    Sherry, David; McCulloch, Archie; Liang, Qing; Reimann, Stefan; Newman, Paul A.

    2018-02-01

    Carbon tetrachloride (CCl4 or CTC) is an ozone-depleting substance whose emissive uses are controlled and practically banned by the Montreal Protocol (MP). Nevertheless, previous work estimated ongoing emissions of 35 Gg year-1 of CCl4 into the atmosphere from observation-based methods, in stark contrast to emissions estimates of 3 (0-8) Gg year-1 from reported numbers to UNEP under the MP. Here we combine information on sources from industrial production processes and legacy emissions from contaminated sites to provide an updated bottom-up estimate on current CTC global emissions of 15-25 Gg year-1. We now propose 13 Gg year-1 of global emissions from unreported non-feedstock emissions from chloromethane and perchloroethylene plants as the most significant CCl4 source. Additionally, 2 Gg year-1 are estimated as fugitive emissions from the usage of CTC as feedstock and possibly up to 10 Gg year-1 from legacy emissions and chlor-alkali plants.

  10. Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency.

    PubMed

    Ayala, Alfred; Chung, Chun-Shiang; Lomas, Joanne L; Song, Grace Y; Doughty, Lesley A; Gregory, Stephen H; Cioffi, William G; LeBlanc, Brian W; Reichner, Jonathan; Simms, H Hank; Grutkoski, Patricia S

    2002-12-01

    Acute lung injury (ALI) leading to respiratory distress is a common sequela of shock/trauma, however, modeling this process in mice with a single shock or septic event is inconsistent. One explanation is that hemorrhage is often just a "priming insult," thus, secondary stimuli may be required to "trigger" ALI. To test this we carried out studies in which we assessed the capacity of hemorrhage alone or hemorrhage followed by septic challenge (CLP) to induce ALI. Lung edema, bronchoalveolar lavage interleukin (IL)-6, alveolar congestion, as well as lung IL-6, macrophage inflammatory protein (MIP)-2, and myeloperoxidase (MPO) activity were all increased in mice subjected to CLP at 24 but not 72 hours following hemorrhage. This was associated with a marked increase in the susceptibility of these mice to septic mortality. Peripheral blood neutrophils derived from 24 hours post-hemorrhage, but not Sham animals, exhibited an ex vivo decrease in apoptotic frequency and an increase in respiratory burst capacity, consistent with in vivo "priming." Subsequently, we observed that adoptive transfer of neutrophils from hemorrhaged but not sham-hemorrhage animals to neutropenic recipients reproduce ALI when subsequently septically challenged, implying that this priming was mediated by neutrophils. We also found marked general increases in lung IL-6, MIP-2, and MPO in mice deficient for toll-like receptor (TLR-4) or the combined lack of TLR-4/FasL. However, the TLR-4 defect markedly attenuated neutrophil influx into the lung while not altering the change in local cytokine/chemokine expression. Alternatively, the combined loss of FasL and TLR-4 did not inhibit the increase in MPO and exacerbated lung IL-6/MIP-2 levels even further.

  11. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat

    PubMed Central

    Mak, I. T.; Kramer, J. H.; Chmielinska, J. J.; Khalid, M. H.; Landgraf, K. M.; Weglicki, W. B.

    2013-01-01

    Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (~50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days ± NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s. c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal ·O2- generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21 % (p <0.025) and 7 % (NS). MgD+PR significantly reduced neutrophil NEP activity by 48 % (p <0.02); PR or MgD alone only reduced this activity 26 % and 15 %, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil ·O2- production and may promote other inflammatory activities during MgD. PMID:18607539

  12. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat.

    PubMed

    Mak, I T; Kramer, J H; Chmielinska, J J; Khalid, M H; Landgraf, K M; Weglicki, W B

    2008-07-01

    Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (approximately 50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days +/- NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s.c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal .O(2-) generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21% (p <0.025) and 7% (NS). MgD+PR significantly reduced neutrophil NEP activity by 48% (p <0.02); PR or MgD alone only reduced this activity 26% and 15%, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil .O(2-) production and may promote other inflammatory activities during MgD.

  13. Activation of normal neutrophils by anti-neutrophil cytoplasm antibodies.

    PubMed Central

    Keogan, M T; Esnault, V L; Green, A J; Lockwood, C M; Brown, D L

    1992-01-01

    Anti-neutrophil cytoplasm antibodies (ANCA) are markers of systemic vasculitis for which a pathogenetic role has been postulated. We have examined the effect of these autoantibodies on the function of normal human neutrophils in vitro. In the presence of ANCA positive sera luminol-amplified chemiluminescence was significantly increased compared to the values seen in the presence of normal or anti-double stranded DNA positive sera (P < 0.01). Five of six ANCA positive F(ab)2 preparations also produced significant neutrophil activation as demonstrated by the chemiluminescence response. This response was totally abrogated by the addition of neutrophil cytoplasm extract, containing the ANCA antigen. Addition of inhibitors to the chemiluminescence system demonstrated that the chemiluminescence response was inhibited by azide and salicylhydroxamic acid and reduced by histidine, suggesting that the chemiluminescence response was due to activation of myeloperoxidase, with generation of singlet oxygen. The chemotactic response to f-Met-Leu-Phe, a bacterial chemotactic peptide, was significantly augmented in the presence of ANCA. Chemotaxis to zymosan-activated serum and chemokinesis was not affected. Phagocytosis was also unaffected. We propose that neutrophil activation and modulation of neutrophil migration by ANCA may be of pathogenetic significance in systemic vasculitis. PMID:1424279

  14. Dissociative electron attachment and vibrational excitation of CF{sub 3}Cl: Effect of two vibrational modes revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarana, Michal; JILA, University of Colorado and NIST, Boulder, Colorado 80309-0440; Houfek, Karel

    We present a study of dissociative electron attachment and vibrational excitation processes in electron collisions with the CF{sub 3}Cl molecule. The calculations are based on the two-dimensional nuclear dynamics including the C-Cl symmetric stretch coordinate and the CF{sub 3} symmetric deformation (umbrella) coordinate. The complex potential energy surfaces are calculated using the ab initio R-matrix method. The results for dissociative attachment and vibrational excitation of the umbrella mode agree quite well with experiment whereas the cross section for excitation of the C-Cl symmetric stretch vibrations is about a factor-of-three too low in comparison with experimental data.

  15. Parboiled Germinated Brown Rice Protects Against CCl4-Induced Oxidative Stress and Liver Injury in Rats.

    PubMed

    Wunjuntuk, Kansuda; Kettawan, Aikkarach; Charoenkiatkul, Somsri; Rungruang, Thanaporn

    2016-01-01

    Parboiled germinated brown rice (PGBR) of Khao Dawk Mali 105 variety was produced by steaming germinated paddy rice, which is well-known for its nutrients and bioactive compounds. In this study we determined the in vivo antioxidant and hepatoprotective effects of PGBR in carbon tetrachloride (CCl(4))-induced oxidative stress in rats. Male Sprague-Dawley rats, (weight 200-250 g) were randomly divided into (1) control, (2) CCl(4), (3) white rice (WR)+CCl(4), (4) brown rice (BR)+CCl(4), and (5) PGBR+CCl(4) groups. PGBR, BR, and WR diets were produced by replacing corn starch in the AIN76A diet with cooked PGBR, BR, and WR powders, respectively. All rats except the control group were gavaged with 50% CCl4 in olive oil (v/v, 1 mL/kg) twice a week for 8 weeks. CCl(4)-treated rats exhibited significant liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as obvious changes to liver histopathology compared to control. In addition, CCl(4) treatment decreased the activities of CYP2E1 and antioxidant enzymes: glutathione S-transferase, glutathione peroxidase, superoxide dismutase and catalase, and glutathione (GSH) content. However, the PGBR+CCl(4) group exhibited less liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as better antioxidant enzyme activities and GSH content. Furthermore, PGBR inhibited degradation of CYP2E1 in CCl(4)-induced decrease of CYP2E1 activity. These data suggest that PGBR may prevent CCl(4)-induced liver oxidative stress and injury through enhancement of the antioxidant capacities, which may be due to complex actions of various bioactive compounds, including phenolic acids, γ-oryzanol, tocotrienol, and GABA.

  16. Neutrophilic NLRP3 inflammasome-dependent IL-1β secretion regulates the γδT17 cell response in respiratory bacterial infections.

    PubMed

    Hassane, M; Demon, D; Soulard, D; Fontaine, J; Keller, L E; Patin, E C; Porte, R; Prinz, I; Ryffel, B; Kadioglu, A; Veening, J-W; Sirard, J-C; Faveeuw, C; Lamkanfi, M; Trottein, F; Paget, C

    2017-07-01

    Traditionally regarded as simple foot soldiers of the innate immune response limited to the eradication of pathogens, neutrophils recently emerged as more complex cells endowed with a set of immunoregulatory functions. Using a model of invasive pneumococcal disease, we highlighted an unexpected key role for neutrophils as accessory cells in innate interleukin (IL)-17A production by lung resident Vγ6Vδ1 + T cells via nucleotide-binding oligomerization domain receptor, pyrin-containing 3 (NLRP3) inflammasome-dependent IL-1β secretion. In vivo activation of the NLRP3 inflammasome in neutrophils required both host-derived and bacterial-derived signals. Elaborately, it relies on (i) alveolar macrophage-secreted TNF-α for priming and (ii) subsequent exposure to bacterial pneumolysin for activation. Interestingly, this mechanism can be translated to human neutrophils. Our work revealed the cellular and molecular dynamic events leading to γδT17 cell activation, and highlighted for the first time the existence of a fully functional NLRP3 inflammasome in lung neutrophils. This immune axis thus regulates the development of a protective host response to respiratory bacterial infections.

  17. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binet, Francois; Chiasson, Sonia; Girard, Denis, E-mail: denis.girard@iaf.inrs.ca

    2010-01-01

    Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenicmore » trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2{alpha} are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.« less

  18. Age-Specific Association of CCL5 Gene Polymorphism with Pulmonary Tuberculosis: A Case-Control Study.

    PubMed

    Varzari, Alexander; Tudor, Elena; Bodrug, Nina; Corloteanu, Andrei; Axentii, Ecaterina; Deyneko, Igor V

    2018-05-01

    Chemokines play a key role in immune regulation and response, and have been implicated in the pathogenesis of tuberculosis (TB). In this study, we investigated whether functional polymorphisms of the chemokines CCL5, CCL2, and CXCL8 are associated with pulmonary TB in a Moldavian population. A total of 250 patients with TB and 184 healthy controls were screened for CCL5 -403G/A (rs2107538), CCL5 In1.1T/C (rs2280789), CCL2 -2518A/G (rs1024611), and CXCL8 -251A/T (rs4073) polymorphisms using standard polymerase chain reaction techniques. None of the analyzed variants were found to be significantly associated with overall pulmonary TB susceptibility. However, the CCL5 In1.1T/C polymorphism was significantly associated with early-onset TB in patients younger than 30 (dominant model, odds ratio [OR] = 3.01, p = 0.0046) or younger than 40 years (dominant model, OR = 2.17, p = 0.0099), and the conducted case-only analysis demonstrated that CCL5 In1.1T/C C-allele carriers exhibited an earlier TB onset than TT homozygotes (36.14 years vs. 40.13 years, p = 0.0065). In addition, nominal significance was observed for an association between TB incidence and both the eight paired genotypes in the overall patient cohort (0.017 < p < 0.05) and the CCL2 -2518A/G polymorphism among males (dominant model, OR = 0.55, p = 0.041; log-additive model, OR = 0.57, p = 0.018). The CCL5 In1.1T/C polymorphism may modulate pulmonary early-onset TB risk.

  19. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    NASA Astrophysics Data System (ADS)

    Luo, Qianqian; Han, Ying; Lin, Hechun; Zhang, Yuanyuan; Duan, Chungang; Peng, Hui

    2017-03-01

    One dimensional coordination polymer Gd[(SO4)(NO3)(C2H6SO)2] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO42- ions to generate a 1-D chain, and all oxygen atoms in SO42- groups are connected to three nearest Gd atoms in μ3:η1:η1:η2 fashion. Gd, S and N from SO42- and NO3- are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with -ΔSm=28.8 J Kg-1 K-1 for ΔH=7 T.

  20. CCL2 Serum Levels and Adiposity Are Associated with the Polymorphic Phenotypes -2518A on CCL2 and 64ILE on CCR2 in a Mexican Population with Insulin Resistance.

    PubMed

    Guzmán-Ornelas, Milton-Omar; Petri, Marcelo Heron; Vázquez-Del Mercado, Mónica; Chavarría-Ávila, Efraín; Corona-Meraz, Fernanda-Isadora; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Sandoval-García, Flavio; Navarro-Hernández, Rosa-Elena

    2016-01-01

    Genetic susceptibility has been described in insulin resistance (IR). Chemokine (C-C motif) ligand-2 (CCL2) is overexpressed in white adipose tissue and is the ligand of C-C motif receptor-2 (CCR2). The CCL2 G-2518A polymorphism is known to regulate gene expression, whereas the physiological effects of the CCR2Val64Ile polymorphism are unknown. The aim of the study is to investigate the relationship between these polymorphisms with soluble CCL2 levels (sCCL2), metabolic markers, and adiposity. In a cross-sectional study we included 380 Mexican-Mestizo individuals, classified with IR according to Stern criteria. Polymorphism was identified using PCR-RFLP/sequence-specific primers. Anthropometrics and metabolic markers were measured by routine methods and adipokines and sCCL2 by ELISA. The CCL2 polymorphism was associated with IR (polymorphic A+ phenotype frequencies were 70.9%, 82.6%, in individuals with and without IR, resp.). Phenotype carriers CCL2 (A+) displayed lower body mass and fat indexes, insulin and HOMA-IR, and higher adiponectin levels. Individuals with IR presented higher sCCL2 compared to individuals without IR and was associated with CCR2 (Ile+) phenotype. The double-polymorphic phenotype carriers (A+/Ile+) exhibited higher sCCL2 than double-wild-type phenotype carriers (A-/Ile-). The present findings suggest that sCCL2 production possibly will be associated with the adiposity and polymorphic phenotypes of CCL2 and CCR2, in Mexican-Mestizos with IR.

  1. Sex differences in the expression of lung inflammatory mediators in response to ozone

    PubMed Central

    Cabello, Noe; Mishra, Vikas; Sinha, Utkarshna; DiAngelo, Susan L.; Chroneos, Zissis C.; Ekpa, Ndifreke A.; Cooper, Timothy K.; Caruso, Carla R.

    2015-01-01

    Sex differences in the incidence of respiratory diseases have been reported. Women are more susceptible to inflammatory lung disease induced by air pollution and show worse adverse pulmonary health outcomes than men. However, the mechanisms underlying these differences remain unknown. In the present study, we hypothesized that sex differences in the expression of lung inflammatory mediators affect sex-specific immune responses to environmental toxicants. We focused on the effects of ground-level ozone, a major air pollutant, in the expression and regulation of lung immunity genes. We exposed adult male and female mice to 2 ppm of ozone or filtered air (control) for 3 h. We compared mRNA levels of 84 inflammatory genes in lungs harvested 4 h postexposure using a PCR array. We also evaluated changes in lung histology and bronchoalveolar lavage fluid cell counts and protein content at 24 and 72 h postexposure. Our results revealed sex differences in lung inflammation triggered by ozone exposure and in the expression of genes involved in acute phase and inflammatory responses. Major sex differences were found in the expression of neutrophil-attracting chemokines (Ccl20, Cxcl5, and Cxcl2), the proinflammatory cytokine interleukin-6, and oxidative stress-related enzymes (Ptgs2, Nos2). In addition, the phosphorylation of STAT3, known to mediate IL-6-related immune responses, was significantly higher in ozone-exposed mice. Together, our observations suggest that a differential regulation of the lung immune response could be implicated in the observed increased susceptibility to adverse health effects from ozone observed in women vs. men. PMID:26342085

  2. CXCR3/CXCL10 Axis Regulates Neutrophil-NK Cell Cross-Talk Determining the Severity of Experimental Osteoarthritis.

    PubMed

    Benigni, Giorgia; Dimitrova, Petya; Antonangeli, Fabrizio; Sanseviero, Emilio; Milanova, Viktoriya; Blom, Arjen; van Lent, Peter; Morrone, Stefania; Santoni, Angela; Bernardini, Giovanni

    2017-03-01

    Several immune cell populations are involved in cartilage damage, bone erosion, and resorption processes during osteoarthritis. The purpose of this study was to investigate the role of NK cells in the pathogenesis of experimental osteoarthritis and whether and how neutrophils can regulate their synovial localization in the disease. Experimental osteoarthritis was elicited by intra-articular injection of collagenase in wild type and Cxcr3 -/- 8-wk old mice. To follow osteoarthritis progression, cartilage damage, synovial thickening, and osteophyte formation were measured histologically. To characterize the inflammatory cells involved in osteoarthritis, synovial fluid was collected early after disease induction, and the cellular and cytokine content were quantified by flow cytometry and ELISA, respectively. We found that NK cells and neutrophils are among the first cells that accumulate in the synovium during osteoarthritis, both exerting a pathogenic role. Moreover, we uncovered a crucial role of the CXCL10/CXCR3 axis, with CXCL10 increasing in synovial fluids after injury and Cxcr3 -/- mice being protected from disease development. Finally, in vivo depletion experiments showed that neutrophils are involved in an NK cell increase in the synovium, possibly by expressing CXCL10 in inflamed joints. Thus, neutrophils and NK cells act as important disease-promoting immune cells in experimental osteoarthritis and their functional interaction is promoted by the CXCL10/CXCR3 axis. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. MHC Class II Activation and Interferon-γ Mediate the Inhibition of Neutrophils and Eosinophils by Staphylococcal Enterotoxin Type A (SEA).

    PubMed

    Ferreira-Duarte, Ana P; Pinheiro-Torres, Anelize S; Anhê, Gabriel F; Condino-Neto, Antônio; Antunes, Edson; DeSouza, Ivani A

    2017-01-01

    Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3-30 ng/ml; 1-4 h), after which chemotaxis and adhesion were evaluated. Incubation with SEA significantly reduced the chemotactic and adhesive responses in BM neutrophils activated with IL-8 (200 ng/ml). Likewise, SEA significantly reduced the chemotactic and adhesive responses of BM eosinophils activated with eotaxin (300 ng/ml). The inhibitory effects of SEA on cell chemotaxis and adhesion were fully prevented by prior incubation with an anti-MHC class II blocking antibody (2 μg/ml). SEA also significantly reduced the intracellular Ca 2+ levels in IL-8- and eotaxin-activated BM cells. No alterations of MAC-1, VLA4, and LFA-1α expressions were observed after SEA incubation. In addition, SEA elevated by 3.5-fold ( P < 0.05) the INF-γ levels in BM cells. Incubation of BM leukocytes with IFN-γ (10 ng/ml, 2 h) reduced both neutrophil and eosinophil chemotaxis and adhesion, which were prevented by prior incubation with anti-MHC class II antibody (2 μg/ml). In conclusion, SEA inhibits neutrophil and eosinophil by MHC class II-dependent mechanism, which may be modulated by concomitant release of IFN-γ.

  4. Cytokine profiling reveals decreased serum levels of CCL2 in active ocular toxoplasmosis.

    PubMed

    Rey, Amanda; Molins, Blanca; Llorenç, Victor; Pelegrín, Laura; Mesquida, Marina; Adán, Alfredo

    2013-10-01

    Toxoplasma gondii infection is an important cause of ocular disease. Although parasite-mediated host cell lysis is probably the principal cause of tissue destruction in immunodeficiency states, hypersensitivity and inflammatory responses may underlie severe disease in otherwise immunocompetent individuals. The purpose of the current investigation was to study the cytokine profiles in serum from patients with ocular toxoplasmosis and to compare them with those obtained from healthy control subjects. Using a multiplex assay, we determined the serum concentration of granulocyte colony-stimulating factor (GCSF), interferon γ (IFNγ), interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, chemokine (C-C motif) ligand 2 (CCL2) and tumour necrosis factor α (TNFα) in patients with inactive ocular toxoplasmosis (n=48), active ocular toxoplasmosis (n=21), and an age-matched and sex-matched healthy control group (n=25). In a subgroup of 17 patients with active disease, a second serum sample was obtained when the disease was inactive. Cytokine profiles were correlated with disease activity, severity and visual outcome. Levels of CCL2 were significantly reduced in patients with active ocular toxoplasmosis compared to the control group (564 ± 42 pg/mL vs 455 ± 35 pg/mL, p<0.05). Moreover, CCL2 levels were significantly lower during active ocular toxoplasmosis compared to inactive disease (569 ± 32 pg/mL vs 433 ± 32 pg/mL, p<0.01). GCSF and TNFα were elevated in patients with toxoplasmosis with poor visual outcome. No significant correlations were found with specific cytokine profiles and disease severity. Decreased serum levels of CCL2 may be associated with active ocular toxoplasmosis and could therefore serve as a marker of disease activity.

  5. Inflammatory Ly6Chigh Monocytes Protect against Candidiasis through IL-15-Driven NK Cell/Neutrophil Activation.

    PubMed

    Domínguez-Andrés, Jorge; Feo-Lucas, Lidia; Minguito de la Escalera, María; González, Leticia; López-Bravo, María; Ardavín, Carlos

    2017-06-20

    Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6C high monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans. We found that efficient anti-Candida immunity required a collaborative response between the spleen and kidney, which relied on type I interferon-dependent IL-15 production by spleen inflammatory Ly6C high monocytes to drive efficient activation and GM-CSF release by spleen NK cells; this in turn was necessary to boost the Candida killing potential of kidney neutrophils. Our findings unveil a role for IL-15 as a critical mediator in defense against systemic candidiasis and hold promise for the design of IL-15-based antifungal immunotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    PubMed Central

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  7. [Neutrophilic dermatosis associated with anti-neutrophilic cytoplasmic antibodies (ANCA) after benzylthiouracil therapy].

    PubMed

    Frigui, M; Masmoudi, A; Kaddour, N; Jlidi, R; Turki, H; Bahloul, Z

    2009-05-01

    We report the case of a female patient who developed polymorphic expressions of neutrophilic dermatosis associated with p-ANCA while receiving benzylthiouracil for hyperthyroidism. A 41-year-old-woman was treated with benzylthiouracil for Basedow's disease. After 21 months of therapy, she developed fever with different expressions of neutrophilic dermatosis: pyoderma gangrenosum of feet, Sweet's syndrome of the forearms and the face. Biopsies confirmed the diagnosis of neutrophilic dermatosis. The histological examination of a skin specimen taken from the developing border of a foot lesion showed polynuclear neutrophilic infiltration with leucocytoclastic vasculitis and the presence of anti-myeloperoxydase p-ANCA. Abdominal ultrasound showed multiple splenic microabscesses. The myelogram, gastroscopy and colonoscopy findings were normal. Benzylthiouracil was stopped and systemic corticosteroid therapy resulted in regression of the skin lesions and splenic microabscesses. Different types of neutrophilic dermatosis were described in our case, confirming the notion of neutrophilic dermatosis continuum. The occurrence of neutrophilic dermatosis and p-ANCA after benzylthiouracil therapy suggests the involvement of polynuclear neutrophils in a common pathogenic mechanism. However, to date there have been no other reports analogous to ours, and inclusion of neutrophilic dermatosis as a benzylthiouracil-induced adverse effect would require confirmation by other instances of such associations.

  8. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin.

    PubMed

    Lomas, D A; Stone, S R; Llewellyn-Jones, C; Keogan, M T; Wang, Z M; Rubin, H; Carrell, R W; Stockley, R A

    1995-10-06

    Neutrophil chemotaxis plays an important role in the inflammatory response and when excessive or persistent may augment tissue damage. The effects of inhibitors indicated the involvement of one or more serine proteinases in human neutrophil migration and shape change in response to a chemoattractant. Monospecific antibodies, chloromethylketone inhibitors, and reactive-site mutants of alpha 1-antitrypsin and alpha 1-antichymotrypsin were used to probe the specificity of the proteinases involved in chemotaxis. Antibodies specific for cathepsin G inhibited chemotaxis. Moreover, rapid inhibitors of cathepsin G and alpha-chymotrypsin suppressed neutrophil chemotaxis to the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and zymosan-activated serum in multiple blind well assays and to fMLP in migration assays under agarose. The concentrations of antichymotrypsin mutants that reduced chemotaxis by 50% would inactivate free cathepsin G with a half-life of 1.5-3 s, whereas the concentrations of chloromethylketones required to produce a similar inhibition of chemotaxis would inactivate cathepsin G with a half-life of 345 s. These data suggest different modes of action for these two classes of inhibitors. Indeed the chloromethylketone inhibitors of cathepsin G (Z-Gly-Leu-Phe-CMK) and to a lesser extent of chymotrypsin (Cbz-Gly-Gly-Phe-CMK) mediated their effect by preventing a shape change in the purified neutrophils exposed to fMLP. Antichymotrypsin did not affect shape change in response to fMLP even at concentrations that were able to reduce neutrophil chemotaxis by 50%. These results support the involvement of cell surface proteinases in the control of cell migration and show that antichymotrypsin and chloromethylketones have differing modes of action. This opens the possibility for the rational design of anti-inflammatory agents targeted at neutrophil membrane enzymes.

  9. Distinct Defensin Profiles in Neisseria gonorrhoeae and Chlamydia trachomatis Urethritis Reveal Novel Epithelial Cell-Neutrophil Interactions

    PubMed Central

    Porter, Edith; Yang, Huixia; Yavagal, Sujata; Preza, Gloria C.; Murillo, Omar; Lima, Heriberto; Greene, Sheila; Mahoozi, Laily; Klein-Patel, Marcia; Diamond, Gill; Gulati, Sunita; Ganz, Tomas; Rice, Peter A.; Quayle, Alison J.

    2005-01-01

    Defensins are key participants in mucosal innate defense. The varied antimicrobial activity and differential distribution of defensins at mucosal sites indicate that peptide repertoires are tailored to site-specific innate defense requirements. Nonetheless, few studies have investigated changes in peptide profiles and function after in vivo pathogen challenge. Here, we determined defensin profiles in urethral secretions of healthy men and men with Chlamydia trachomatis- and Neisseria gonorrhoeae-mediated urethritis by immunoblotting for the epithelial defensins HBD1, HBD2, and HD5 and the neutrophil defensins HNP1 to -3 (HNP1-3). HBD1 was not detectable in secretions, and HBD2 was only induced in a small proportion of the urethritis patients; however, HD5 and HNP1-3 were increased in C. trachomatis infection and significantly elevated in N. gonorrhoeae infection. When HNP1-3 levels were low, HD5 appeared mostly as the propeptide; however, when HNP1-3 levels were >10 μg/ml, HD5 was proteolytically processed, suggesting neutrophil proteases might contribute to HD5 processing. HD5 and HNP1-3 were bactericidal against C. trachomatis and N. gonorrhoeae, but HD5 activity was dependent upon N-terminal processing of the peptide. In vitro proteolysis of proHD5 by neutrophil proteases and analysis of urethral secretions by surface-enhanced laser desorption ionization substantiated that neutrophils contribute the key convertases for proHD5 in the urethra during these infections. This contrasts with the small intestine, where Paneth cells secrete both proHD5 and its processing enzyme, trypsin. In conclusion, we describe a unique defensin expression repertoire in response to inflammatory sexually transmitted infections and a novel host defense mechanism wherein epithelial cells collaborate with neutrophils to establish an antimicrobial barrier during infection. PMID:16040996

  10. Bromelain decreases neutrophil interactions with P-selectin, but not E-selectin, in vitro by proteolytic cleavage of P-selectin glycoprotein ligand-1.

    PubMed

    Banks, Jessica M; Herman, Christine T; Bailey, Ryan C

    2013-01-01

    Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment.

  11. Bromelain Decreases Neutrophil Interactions with P-Selectin, but Not E-Selectin, In Vitro by Proteolytic Cleavage of P-Selectin Glycoprotein Ligand-1

    PubMed Central

    Bailey, Ryan C.

    2013-01-01

    Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment. PMID:24244398

  12. Neutral endopeptidase modulates substance P-induced activation of human neutrophils.

    PubMed

    Iwamoto, I; Kimura, A; Yamazaki, H; Nakagawa, N; Tomioka, H; Yoshida, S

    1990-01-01

    Neutral endopeptidase (NEP; EC 3.4.24.11) is well recognized as a regulatory peptidase for substance P (SP)-induced responses in various tissues. To determine whether NEP regulates SP-induced activation of human neutrophils, we examined the effect of the NEP inhibitor phosphoramidon on SP-induced superoxide generation and chemotaxis in human blood neutrophils. SP (10(-6)-10(-4) M) induced superoxide generation and chemotaxis in the neutrophils dose dependently. The NEP inhibitor enhanced the SP-induced responses. Thus, phosphoramidon (10(-6) M) shifted the dose-response curves of SP-induced superoxide generation and chemotaxis of the neutrophils to the left by 0.5-0.6 log. Phosphoramidon prevented the hydrolysis of SP by the neutrophils, the NEP activity of the neutrophils being assessed as 125 +/- 13 pmol of SP/min/10(6) cells. The N-terminal peptide SP (up to 3 x 10(-4) M), which was a major degrading product by NEP of the neutrophils, did not activate the neutrophils. We conclude that NEP modulates SP-induced activation of human neutrophils.

  13. Elevated expression of the chemokine CCL18 in chronic rhinosinusitis with nasal polyps

    PubMed Central

    Peterson, Sarah; Poposki, Julie A.; Nagarkar, Deepti R.; Chustz, Regina T.; Peters, Anju T.; Suh, Lydia A.; Carter, Roderick; Norton, James; Harris, Kathleen E.; Grammer, Leslie C.; Tan, Bruce K.; Chandra, Rakesh K.; Conley, David B.; Kern, Robert C.; Schleimer, Robert P.; Kato, Atsushi

    2011-01-01

    Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with Th2-dominant inflammation including eosinophilia, in contrast to non-polypoid CRS (CRSsNP). Chemokine CCL18/PARC (pulmonary and activation regulated chemokine) is known to recruit naïve T cells, B cells, and immature dendritic cells, as well as activate fibroblasts. CCL18is thought to be involved in Th2-related inflammatory diseases including asthma and atopic dermatitis. Objectives The objective of this study was to investigate the expression of CCL18 in patients with CRS. Methods Using nasal polyp tissue (NP) and uncinate tissue (UT) from controls and patients with CRS, we examined the expression of CCL18 mRNA by real-time PCR and measured CCL18 protein by ELISA, western blot and immunofluorescence. Results Compared to UT tissue in control subjects, CCL18 mRNA was significantly increased in NP (p<0.001) and UT (p<0.05) from patients with CRSwNP but not in UT from patients with CRSsNP. Similarly, CCL18 protein was elevated in NP and UT from CRSwNP and levels were even higher in Samter’s triad patients. Immunohistochemical analysis revealed CCL18 expression in inflammatory cells and CCL18+ cells were significantly increased in NP. Immunofluorescence data showed co-localization of CCL18 in CD68+/CD163+/macrophage mannose receptor+ M2 macrophages and tryptase+ mast cells in NP. Levels of CCL18 correlated with markers of M2 macrophages but not with tryptase, suggesting that M2 macrophages are a major CCL18-producing cells in NP. Conclusion Overproduction of CCL18 might contribute to the pathogenesis of CRSwNP through its known activities, which include recruitment of lymphocytes and dendritic cells, activation of fibroblasts, and initiation of local inflammation. PMID:21943944

  14. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  15. Reversal of Sepsis-Like Features of Neutrophils by Interleukin-1 Blockade in Patients With Systemic-Onset Juvenile Idiopathic Arthritis.

    PubMed

    Ter Haar, Nienke M; Tak, Tamar; Mokry, Michal; Scholman, Rianne C; Meerding, Jenny M; de Jager, Wilco; Verwoerd, Anouk; Foell, Dirk; Vogl, Thomas; Roth, Johannes; Leliefeld, Pieter H C; van Loosdregt, Jorg; Koenderman, Leo; Vastert, Sebastiaan J; de Roock, Sytze

    2018-06-01

    Neutrophils are the most abundant innate immune cells in the blood, but little is known about their role in (acquired) chronic autoinflammatory diseases. This study was undertaken to investigate the role of neutrophils in systemic-onset juvenile idiopathic arthritis (JIA), a prototypical multifactorial autoinflammatory disease that is characterized by arthritis and severe systemic inflammation. Fifty patients with systemic-onset JIA who were receiving treatment with recombinant interleukin-1 receptor antagonist (rIL-1Ra; anakinra) were analyzed at disease onset and during remission. RNA sequencing was performed on fluorescence-activated cell-sorted neutrophils from 3 patients with active systemic-onset JIA and 3 healthy controls. Expression of activation markers, apoptosis, production of reactive oxygen species (ROS), and degranulation of secretory vesicles from neutrophils were assessed by flow cytometry in serum samples from 17 patients with systemic-onset JIA and 15 healthy controls. Neutrophil counts were markedly increased at disease onset, and this correlated with the levels of inflammatory mediators. The neutrophil counts normalized within days after the initiation of rIL-1Ra therapy. RNA-sequencing analysis revealed a substantial up-regulation of inflammatory processes in neutrophils from patients with active systemic-onset JIA, significantly overlapping with the transcriptome of sepsis. Correspondingly, neutrophils from patients with active systemic-onset JIA displayed a primed phenotype that was characterized by increased ROS production, CD62L shedding, and secretory vesicle degranulation, which was reversed by rIL-1Ra treatment in patients who had achieved clinical remission. Patients with a short disease duration had high neutrophil counts, more immature neutrophils, and a complete response to rIL-1Ra, whereas patients with symptoms for >1 month had normal neutrophil counts and an unsatisfactory response to rIL-1Ra. In vitro, rIL-1Ra antagonized the

  16. Neutrophils Express Distinct RNA Receptors in a Non-canonical Way*

    PubMed Central

    Berger, Michael; Hsieh, Chin-Yuan; Bakele, Martina; Marcos, Veronica; Rieber, Nikolaus; Kormann, Michael; Mays, Lauren; Hofer, Laura; Neth, Olaf; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; von Schweinitz, Dietrich; Kappler, Roland; Hector, Andreas; Weber, Alexander; Hartl, Dominik

    2012-01-01

    RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics. PMID:22532562

  17. Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl4)-induced steatosis and liver injury in rats via CYP2E1 regulation.

    PubMed

    Dai, Ning; Zou, Yuan; Zhu, Lei; Wang, Hui-Fang; Dai, Mu-Gen

    2014-06-01

    Liver steatosis is characterized by lipid dysregulation and fat accumulation in the liver and can lead to oxidative stress in liver. Since proanthocyanidins are present in plant-based foods and have powerful antioxidant properties, we investigated whether proanthocyanidins can prevent oxidative stress and subsequent liver injury. Carbon tetrachloride (CCl4) treatment can cause steatosis in rats that models both alcoholic and non-alcoholic fatty liver disease in humans. We pre-treated rats by oral administration of proanthocyanidins extracted from grape seeds 7 days prior to intragastrically administering CCl4. Proanthocyanidin treatment continued for an additional 2 weeks, after which time liver and serum were harvested, and mediators of liver injury, oxidative stress, and histological features were evaluated. CCl4-treated rats exhibited significant increases in the following parameters as compared to non-treated rats: fat droplets in the liver, liver injury (ALT, AST), and DNA damage (8-OHdG). Additionally, CCl4 treatment decreased antioxidant enzymes SOD, GSH, GPX, and CAT in the liver due to their rapid depletion after battling against oxidative stress. Compared to CCl4-treated rats, treatment with proanthocyanidins effectively suppressed lipid accumulation, liver injury, DNA damage, as well as restored antioxidant enzyme levels. Further investigation revealed that proanthocyanidins treatment also inhibited expression of CYP2E1 in liver, which prevented the initial step of generating free radicals from CCl4. The data presented here show that treatment with orally administered proanthocyanidins prevented liver injury in the CCl4-induced steatosis model, likely through exerting antioxidant actions to suppress oxidative stress and inhibiting the free radical-generating CYP2E1 enzyme.

  18. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    PubMed

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis

    PubMed Central

    Bonne-Année, Sandra; Kerepesi, Laura A.; Hess, Jessica A.; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B.; Nolan, Thomas J.; Abraham, David

    2014-01-01

    Neutrophils are multifaceted cells that are often the immune system’s first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. PMID:24642003

  20. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.