Sample records for coordination sphere ligands

  1. Nuclear spin relaxation in ligands outside of the first coordination sphere in a gadolinium (III) complex: Effects of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Kruk, Danuta; Kowalewski, Jozef

    2002-07-01

    This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.

  2. Ligand-Sensitive But Not Ligand-Diagnostic: Evaluating Cr Valence-to-Core X-ray Emission Spectroscopy as a Probe of Inner-Sphere Coordination

    PubMed Central

    2015-01-01

    This paper explores the strengths and limitations of valence-to-core X-ray emission spectroscopy (V2C XES) as a probe of coordination environments. A library was assembled from spectra obtained for 12 diverse Cr complexes and used to calibrate density functional theory (DFT) calculations of V2C XES band energies. A functional dependence study was undertaken to benchmark predictive accuracy. All 7 functionals tested reproduce experimental V2C XES energies with an accuracy of 0.5 eV. Experimentally calibrated, DFT calculated V2C XES spectra of 90 Cr compounds were used to produce a quantitative spectrochemical series showing the V2C XES band energy ranges for ligands comprising 18 distinct classes. Substantial overlaps are detected in these ranges, which complicates the use of V2C XES to identify ligands in the coordination spheres of unknown Cr compounds. The ligand-dependent origins of V2C intensity are explored for a homologous series of [CrIII(NH3)5X]2+ (X = F, Cl, Br, and I) to rationalize the variable intensity contributions of these ligand classes. PMID:25496512

  3. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  4. Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets.

    PubMed

    Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop

    2017-05-01

    Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

  5. Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP.

    PubMed

    Rojo, Isabel; Teixidor, Francesc; Viñas, Clara; Kivekäs, Raikko; Sillanpää, Reijo

    2004-10-25

    The anionic chelating ligand [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- has been synthesized from [3,3'-Co(1,2-C2B9H11)2]- in very good yield in a one-pot process with an easy work-up procedure. The coordinating ability of this ligand has been studied with Group 11 metal ions (Ag, Au) and with transition-metal ions (Pd, Rh). The two dicarbollide halves of the [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- ligand can swing about one axis in a manner analogous to the constituent parts of BINAP and ferrocenyl phosphine derivatives. All these ligands function as hinges, with the most important property in relation to the coordination requirements of the metal being the PP distance. [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]-, BINAP, ferrocenyl phosphine derivatives, and other hinge ligands present a range of different PP separations, and consequently different coordination spheres and dispositions around metal cations. To account for these differences, the equation Dphi2 = D02 + 4 R2cos2(90-phi/2) has been developed. It relates the PP distance (Dphi) in a complex with the minimum PP distance (D0) that is characteristic of the hinge-type ligand.

  6. Computational study of the electronic structure and magnetic properties of the Ni-C state in [NiFe] hydrogenases including the second coordination sphere.

    PubMed

    Kampa, Mario; Lubitz, Wolfgang; van Gastel, Maurice; Neese, Frank

    2012-12-01

    [NiFe] hydrogenases catalyze the reversible formation of H(2). The [NiFe] heterobimetallic active site is rich in redox states. Here, we investigate the key catalytic state Ni-C of Desulfovibrio vulgaris Miyazaki F hydrogenase using a cluster model that includes the truncated amino acids of the entire second coordination sphere of the enzyme. The optimized geometries, computed g tensors, hyperfine coupling constants, and IR stretching frequencies all agree well with experimental values. For the hydride in the bridging position, only a single minimum on the potential energy surface is found, indicating that the hydride bridges and binds to both nickel and iron. The influence of the second coordination sphere on the electronic structure is investigated by comparing results from the large cluster models with truncated models. The largest interactions of the second coordination sphere with the active site concern the hydrogen bonds with the cyanide ligands, which modulate the bond between iron and these ligands. Secondly, the electronic structure of the active site is found to be sensitive to the protonation state of His88. This residue forms a hydrogen bond with the spin-carrying sulfur atom of Cys549, which in turn tunes the spin density at the nickel and coordinating sulfur atoms. In addition, the unequal distribution of spin density over the equatorial cysteine residues results from different orientations of the cysteine side chains, which are kept in their particular orientation by the secondary structure of the protein.

  7. Controlling Second Coordination Sphere Effects in Luminescent Ruthenium Complexes by Means of External Pressure.

    PubMed

    Pannwitz, Andrea; Poirier, Stéphanie; Bélanger-Desmarais, Nicolas; Prescimone, Alessandro; Wenger, Oliver S; Reber, Christian

    2018-06-04

    Two luminescent heteroleptic Ru II complexes with a 2,2'-biimidazole (biimH 2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH 2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH 2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introducemore » enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  9. Cation-Dependent Gold Recovery with α-Cyclodextrin Facilitated by Second-Sphere Coordination.

    PubMed

    Liu, Zhichang; Samanta, Avik; Lei, Juying; Sun, Junling; Wang, Yuping; Stoddart, J Fraser

    2016-09-14

    Herein, we report an alkali metal cation-dependent approach to gold recovery, facilitated by second-sphere coordination with eco-friendly α-cyclodextrin (α-CD). Upon mixing eight salts composed of Na(+), K(+), Rb(+), or Cs(+) cations and [AuX4](-) (X = Cl/Br) anions with α-, β-, or γ-CD in water, co-precipitates form selectively from the three (out of 24) aqueous solutions containing α-CD with KAuBr4, RbAuBr4, and CsAuBr4, from which the combination of α-CD and KAuBr4 affords the highest yield. Single-crystal X-ray analyses reveal that in 20 of the 24 adducts CD and [AuX4](-) anions form 2:1 sandwich-type second-sphere adducts driven partially by [C-H···X-Au] interactions between [AuX4](-) anions and the primary faces of two neighboring CDs. In the adduct formed between α-CD and KAuBr4, a [K(OH2)6](+) cation is encapsulated inside the cavity between the secondary faces of two α-CDs, leading to highly efficient precipitation owing to the formation of a cation/anion alternating ion wire residing inside a continuous α-CD nanotube. By contrast, in the other 19 adducts, the cations are coordinated by OH groups and glucopyranosyl ring O atoms in CDs. The strong coordination of Rb(+) and Cs(+) cations by these ligands, in conjunction with the stereoelectronically favorable binding of [AuBr4](-) anions with two α-CDs, facilitates the co-precipitation of the two adducts formed between α-CD with RbAuBr4 and CsAuBr4. In order to develop an efficient process for green gold recovery, the co-precipitation yield of α-CD and KAuBr4 has been optimized regarding both the temperature and the molar ratio of α-CD to KAuBr4.

  10. Calibrating the coordination chemistry tool chest: metrics of bi- and tridentate ligands.

    PubMed

    Aguilà, David; Escribano, Esther; Speed, Saskia; Talancón, Daniel; Yermán, Luis; Alvarez, Santiago

    2009-09-07

    Bi- and multidentate ligands form part of the tools commonly used for designing coordination and supramolecular complexes with desired stereochemistries. Parameters and concepts usually employed include the normalized bite of bidentate ligands, their cis- or trans-coordinating ability, their rigidity or flexibility, or the duality of some ligands that can act in chelating or dinucleating modes. In this contribution we present a structural database study of over one hundred bi- and tridentate ligands that allows us to parametrize their coordinating properties and discuss the relevance of such parameters for the choice of coordination polyhedron or coordination sites.

  11. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel

    Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.

  12. Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems.

    PubMed

    Cao, Wei; Gu, Yuwei; Meineck, Myriam; Li, Tianyu; Xu, Huaping

    2014-04-02

    Nanomaterials capable of achieving tunable cargo release kinetics are of significance in a fundamental sense and various biological or medical applications. We report a competitive coordination system based on a novel tellurium-containing polymer and its ligand-regulated release manners. Tellurium was introduced to water-soluble polymers for the first time as drug delivery vehicles. The coordination chemistry between platinum and tellurium was designed to enable the load of platinum-based drugs. Through the competitive coordination of biomolecules, the drugs could be released in a controlled manner. Furthermore, the release kinetics could be modulated by the competitive ligands involved due to their different coordination ability. This tellurium-containing polymer may enrich the family of delivery systems and provide a new platform for future biomedical nanotechnologies.

  13. The coordination chemistry of group 15 element ligand complexes--a developing area.

    PubMed

    Scheer, Manfred

    2008-09-07

    A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.

  14. Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

    DOEpatents

    Clifford, Harry J [Los Alamos, NM

    2011-03-22

    A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.

  15. 2-Acylpyrroles as mono-anionic O,N-chelating ligands in silicon coordination chemistry.

    PubMed

    Kämpfe, Alexander; Brendler, Erica; Kroke, Edwin; Wagler, Jörg

    2014-07-21

    Kryptopyrrole (2,4-dimethyl-3-ethylpyrrole) was acylated with, for example, benzoyl chloride to afford 2-benzoyl-3,5-dimethyl-4-ethylpyrrole (L(1)H). With SiCl4 this ligand reacts under liberation of HCl and formation of the complex L(1)2SiCl2. In related reactions with HSiCl3 or H2SiCl2, the same chlorosilicon complex is formed under liberation of HCl and H2 or liberation of H2, respectively. The chlorine atoms of L(1)2SiCl2 can be replaced by fluoride and triflate using ZnF2 and Me3Si-OTf, respectively. The use of a supporting base (triethylamine) is required for the complexation of phenyltrichlorosilane and diphenyldichlorosilane. The complexes L(1)2SiCl2, L(1)2SiF2, L(1)2Si(OTf)2, L(1)2SiPhCl, and L(1)2SiPh2 exhibit various configurations of the octahedral silicon coordination spheres (i.e. cis or trans configuration of the monodentate substituents, different orientations of the bidentate chelating ligands relative to each other). Furthermore, cationic silicon complexes L(1)3Si(+) and L(1) SiPh(+) were synthesized by chloride abstraction with GaCl3. In contrast, reaction of L(1)2SiCl2 with a third equivalent of L(1)H in the presence of excess triethylamine produced a charge-neutral hexacoordinate Si complex with a new tetradentate chelating ligand which formed by Si-templated C-C coupling of two ligands L(1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. AsteriX: a Web server to automatically extract ligand coordinates from figures in PDF articles.

    PubMed

    Lounnas, V; Vriend, G

    2012-02-27

    Coordinates describing the chemical structures of small molecules that are potential ligands for pharmaceutical targets are used at many stages of the drug design process. The coordinates of the vast majority of ligands can be obtained from either publicly accessible or commercial databases. However, interesting ligands sometimes are only available from the scientific literature, in which case their coordinates need to be reconstructed manually--a process that consists of a series of time-consuming steps. We present a Web server that helps reconstruct the three-dimensional (3D) coordinates of ligands for which a two-dimensional (2D) picture is available in a PDF file. The software, called AsteriX, analyses every picture contained in the PDF file and attempts to determine automatically whether or not it contains ligands. Areas in pictures that may contain molecular structures are processed to extract connectivity and atom type information that allow coordinates to be subsequently reconstructed. The AsteriX Web server was tested on a series of articles containing a large diversity in graphical representations. In total, 88% of 3249 ligand structures present in the test set were identified as chemical diagrams. Of these, about half were interpreted correctly as 3D structures, and a further one-third required only minor manual corrections. It is principally impossible to always correctly reconstruct 3D coordinates from pictures because there are many different protocols for drawing a 2D image of a ligand, but more importantly a wide variety of semantic annotations are possible. The AsteriX Web server therefore includes facilities that allow the users to augment partial or partially correct 3D reconstructions. All 3D reconstructions are submitted, checked, and corrected by the users domain at the server and are freely available for everybody. The coordinates of the reconstructed ligands are made available in a series of formats commonly used in drug design research. The

  17. Bending nanofibers into nanospirals: coordination chemistry as a tool for shaping hydrophobic assemblies.

    PubMed

    Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris

    2015-01-02

    In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Reactivity pathways for nitric oxide and nitrosonium with iron complexes in biologically relevant sulfur coordination spheres.

    PubMed

    Harrop, Todd C; Song, Datong; Lippard, Stephen J

    2007-11-01

    The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental

  19. Pleomorphic copper coordination by Alzheimer's disease amyloid-beta peptide.

    PubMed

    Drew, Simon C; Noble, Christopher J; Masters, Colin L; Hanson, Graeme R; Barnham, Kevin J

    2009-01-28

    Numerous conflicting models have been proposed regarding the nature of the Cu(2+) coordination environment of the amyloid beta (Abeta) peptide, the causative agent of Alzheimer's disease. This study used multifrequency CW-EPR spectroscopy to directly resolve the superhyperfine interactions between Cu(2+) and the ligand nuclei of Abeta, thereby avoiding ambiguities associated with introducing point mutations. Using a library of Abeta16 analogues with site-specific (15)N-labeling at Asp1, His6, His13, and His14, numerical simulations of the superhyperfine resonances delineated two independent 3N1O Cu(2+) coordination modes, {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H13)} (component Ia) and {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H14)} (component Ib), between pH 6-7. A third coordination mode (component II) was identified at pH 8.0, and simulation of the superhyperfine resonances indicated a 3N1O coordination sphere involving nitrogen ligation by His6, His13, and His14. No differences were observed upon (17)O-labeling of the phenolic oxygen of Tyr10, confirming it is not a key oxygen ligand in the physiological pH range. Hyperfine sublevel correlation (HYSCORE) spectroscopy, in conjunction with site-specific (15)N-labeling, provided additional support for the common role of His6 in components Ia and Ib, and for the assignment of a {O, N(epsilon)(H6), N(epsilon)(H13), N(epsilon)(H14)} coordination sphere to component II. HYSCORE studies of a peptide analogue with selective (13)C-labeling of Asp1 revealed (13)C cross-peaks characteristic of equatorial coordination by the carboxylate oxygen of Asp1 in component Ia/b coordination. The direct resolution of Cu(2+) ligand interactions, together with the key finding that component I is composed of two distinct coordination modes, provides valuable insight into a range of conflicting ligand assignments and highlights the complexity of Cu(2+)/Abeta interactions.

  20. Equatorial coordination of uranyl: Correlating ligand charge donation with the O yl-U-O yl asymmetric stretch frequency

    DOE PAGES

    Gibson, John K.; de Jong, Wibe A.; van Stipdonk, Michael J.; ...

    2017-10-14

    In uranyl coordination complexes, UO 2(L) n 2+, uranium in the formally dipositive [O=U=O] 2+ moiety is coordinated by n neutral organic electron donor ligands, L. The extent of ligand electron donation, which results in partial reduction of uranyl and weakening of the U=O bonds, is revealed by the magnitude of the red-shift of the uranyl asymmetric stretch frequency, ν 3 . This phenomenon appears in gas-phase complexes in which uranyl is coordinated by electron donor ligands: the ν 3 red-shift increases as the number of ligands and their proton affinity (PA) increases. Because PA is a measure of themore » enthalpy change associated with a proton-ligand interaction, which is much stronger and of a different nature than metal ion-ligand bonding, it is not necessarily expected that ligand PAs should reliably predict uranyl-ligand bonding and the resulting ν 3 red-shift. In this study, ν 3 was measured for uranyl coordinated by ligands with a relatively broad range of PAs, revealing a surprisingly good correlation between PA and ν 3 frequency. From computed ν 3 frequencies for bare UO 2 cations and neutrals, it is inferred that the effective charge of uranyl in UO 2(L) n 2+ complexes can be reduced to near zero upon ligation by sufficiently strong charge-donor ligands. The basis for the correlation between ν 3 and ligand PAs, as well as limitations and deviations from it, are considered. It is demonstrated that the correlation evidently extends to a ligand that exhibits polydentate metal ion coordination.« less

  1. Coordination of XeF2 to calcium and cadmium hexafluorophosphates(V).

    PubMed

    Bunic, Tina; Tavcar, Gasper; Tramsek, Melita; Zemva, Boris

    2006-02-06

    [M(XeF2)5](PF6)2 (M = Ca, Cd) complexes were prepared by the reaction of MF2 and XeF2 under pressure of gaseous PF5 in anhydrous HF as solvent. The coordination sphere of the Ca atom consists of nine fluorine atoms: three from two PF6(-) units (one bidentate and one monodentate) and one from each of six XeF2 molecules. The coordination sphere of the Cd atom consists of eight fluorine atoms: one from each of two PF6(-) units and one from each of six XeF2 molecules. Two of the XeF2 ligands about M in each compound are bridging ligands and are each linked to two M, generating infinite (-M-F-Xe-F-M-F-Xe-F-) chains along the b-axis in the Ca salt and along the c-axis in the Cd compound. The Cd2+ cation is smaller and more electronegative than the Ca2+ cation. These differences account for the higher F ligand coordination in the Ca2+ salt and for other structural features that distinguish them. The different stoichiometry of the PF6(-) salts when compared with their AsF6(-) analogues, which have the composition [M(XeF2)4](AsF6)2 (M = Ca, Cd), is in accord with the lower F ligand charge in the AsF6(-) when compared with that in the PF6(-) compound. Indeed, the AsF6(-) ligand charges appear to be similar to those in the XeF2-bridged species.

  2. Homoleptic ligands vs heteroleptic ligands on coordination polymerizations: Construction and properties of silver(I) coordination polymers containing dialkylbis(4-pyridy)silanes

    NASA Astrophysics Data System (ADS)

    Park, Minwoo; Jang, Jaeseong; Moon, So Yun; Jung, Ok-Sang

    2014-03-01

    Investigations into pure bidentate ligand vs mixed bidentate ligands on self-assembly of AgPF6 with the respective L1, L2, L3, L1/L2, L1/L3, and L2/L3 (L1 = diethylbis(4-pyridyl)silane; L2 = ethylmethylbis(4-pyridyl)silane; L3 = cyclotetramethylenebis(4-pyridyl)silane) were carried out. The self-assembly reactions of AgPF6 with the respective ligand system produce desirable homoleptic or heteroleptic silver(I) coordination polymers. [Ag(L1)2](PF6) gives rise to a tubular loop chain whereas the other five products lead to a twofold interpenetration diamonoid structure. [Ag(L1)2](PF6) shows a strong blue luminescence at 453 nm (λex = 270 nm), which is useful to recognize alcohols. All products were characterized by thermal analyses, and in particular, calcination of [Ag(L3)2](PF6)ṡCH3OH at 600 °C finally produces silver(0) microcrystalline morphology.

  3. First-row transition metal complexes of ENENES ligands: the ability of the thioether donor to impact the coordination chemistry

    DOE PAGES

    Dub, Pavel A.; Scott, Brian L.; Gordon, John C.

    2015-12-21

    We report the reactions of two variants of ENENES ligands, E(CH 2) 2NH(CH) 2SR, where E = 4-morpholinyl, R = Ph (a), Bn (b) with MCl 2 (M = Mn, Fe, Co, Ni and Cu) in coordinating solvents (MeCN, EtOH) affords isolable complexes, whose magnetic susceptibility measurements suggest paramagnetism and a high-spin formulation. X-Ray diffraction studies of available crystals show that the ligand coordinates to the metal in either a bidentate κ 2[N,N'] or tridentate κ 3[N,N',S] fashion, depending on the nature of ligand and/or identity of the metal atom. In the case of a less basic SPh moiety, amore » bidentate coordination mode was identified for harder metals (Mn, Fe), whereas a tridentate coordination mode was identified in the case of a more basic SBn moiety with softer metals (Ni, Cu). In the intermediate case of Co, ligands a and b coordinate via κ 2[N,N'] and κ 3[N,N',S] coordination modes, which can be conveniently predicted by DFT calculations. Finally, for the softest metal (Cu), ligand a coordinates in a κ 3[N,N',S] fashion.« less

  4. A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes

    PubMed Central

    Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean

    2008-01-01

    Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475

  5. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole.

    PubMed

    Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan

    2018-01-02

    The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).

  6. Photoluminescent lead(II) coordination polymers stabilised by bifunctional organoarsonate ligands

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Di; Onet, Camelia I.; Schmitt, Wolfgang

    2015-04-01

    Four lead(II) coordination polymers were isolated under hydro(solvo)thermal conditions. The applied synthetic methodology takes advantage of the coordination behaviour of a new bifunctional organoarsonate ligand, 4-(1, 2, 4-triazol-4-yl)phenylarsonic acid (H2TPAA) and involves the variation of lead(II) reactants, metal/ligand mole ratios, and solvents. The constitutional composition of the four lead(II) coordination polymers can be formulated as [Pb2(TPAA)(HTPAA)(NO3)]·6H2O (1), [Pb2(TPAA)(HTPAA)2]·DMF·0.5H2O (DMF = N, N-Dimethylformamide) (2), [Pb2Cl2(TPAA)H2O] (3), and [Pb3Cl(TPAA)(HTPAA)2H2O]Cl (4). The compounds were characterized by single-crystal and powder x-ray diffraction techniques, thermogravimetric analyses, infra-red spectroscopy, and elemental analyses. Single-crystal x-ray diffraction reveals that 1 and 2 represent two-dimensional (2D) layered structures whilst 3 and 4 form three-dimensional (3D) frameworks. The structures of 1, 2, and 4 contain one-dimensional (1D) {PbII/AsO3} substructures, while 3 is composed of 2D {PbII/AsO3} arrays. Besides their interesting topologies, 1-4 all exhibit photoluminescence properties in the solid state at room temperature.

  7. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  8. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2‧,4,4‧-tetracarboxylic acid and varied N-donor co-ligands

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-06-01

    Three new coordination polymers, namely, {[Ni(H2L)(bix)(H2O)2]·2h2O}n (1), {[Ni(HL)(Hdpa)(H2O)2]·H2O}n (2), {[Ni(L)0.5(bpp)(H2O)]·H2O}n (3) (H4L=terphenyl-2,2‧,4,4‧-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4‧-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H4L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 66-dia-type framework with H4L ligand adopts a μ2-bridging mode with two symmetry-related carboxylate groups in μ1-η1:η0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]n ribbon chains motif, in which the H4L ligand adopts a μ2-bridging mode with two carboxylate groups in μ1-η1:η1 and μ1-η1:η0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H4L ligand displays a μ4-bridging coordination mode. The H4L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1-3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented.

  9. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  10. Crystal structures of three lead(II) acetate-bridged di-amino-benzene coordination polymers.

    PubMed

    Geiger, David K; Parsons, Dylan E; Zick, Patricia L

    2014-12-01

    Poly[tris-(acetato-κ(2) O,O')(μ2-acetato-κ(3) O,O':O)tetra-kis-(μ3-acetato-κ(4) O,O':O:O')bis-(benzene-1,2-di-amine-κN)tetra-lead(II)], [Pb4(CH3COO)8(C6H8N2)2] n , (I), poly[(acetato-κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(4-chloro-benzene-1,2-diamine-κN)lead(II)], [Pb(CH3COO)2(C6H7ClN2)] n , (II), and poly[(κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(3,4-di-amino-benzo-nitrile-κN)lead(II)], [Pb(CH3COO)2(C7H7N3)] n , (III), have polymeric structures in which monomeric units are joined by bridging acetate ligands. All of the Pb(II) ions exhibit hemidirected coordination. The repeating unit in (I) is composed of four Pb(II) ions having O6, O6N, O7 and O6N coordination spheres, respectively, where N represents a monodentate benzene-1,2-di-amine ligand and O acetate O atoms. Chains along [010] are joined by bridging acetate ligands to form planes parallel to (10-1). (II) and (III) are isotypic and have one Pb(II) ion in the asymmetric unit that has an O6N coordination sphere. Pb2O2 units result from a symmetry-imposed inversion center. Polymeric chains parallel to [100] exhibit hydrogen bonding between the amine and acetate ligands. In (III), additional hydrogen bonds between cyano groups and non-coordinating amines join the chains by forming R 2 (2)(14) rings.

  11. Coordination Chemistry of Homoleptic Actinide(IV)-Thiocyanate Complexes

    DOE PAGES

    Carter, Tyler J.; Wilson, Richard E.

    2015-09-10

    Here, the synthesis, X-ray crystal structure, vibrational and optical spectroscopy for the eight-coordinate thiocyanate compounds, [Et 4N] 4[Pu IV(NCS) 8], [Et 4N] 4[Th IV(NCS) 8], and [Et 4N] 4[Ce III(NCS) 7(H 2O)] are reported. Thiocyanate was found to rapidly reduce plutonium to Pu III in acidic solutions (pH<1) in the presence of NCS –. The optical spectrum of [Et 4N][SCN] containing Pu III solution was indistinguishable from that of aquated Pu III suggesting that inner-sphere complexation with [Et 4N][SCN] does not occur in water. However, upon concentration, the homoleptic thiocyanate complex [Et 4N] 4[Pu IV(NCS) 8] was crystallized when amore » large excess of [Et 4N][NCS] was present. This compound, along with its U IV analogue, maintains inner-sphere thiocyanate coordination in acetonitrile based on the observation of intense ligand-to-metal charge-transfer bands. Spectroscopic and crystallographic data do not support the interaction of the metal orbitals with the ligand π system, but support an enhanced An IV–NCS interaction, as the Lewis acidity of the metal ion increases from Th to Pu.« less

  12. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n}more » (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.« less

  13. Syntheses and structural characterization of mercury (II) coordination polymers with neutral bidentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Salavati, Hossein; Asadi, Amin; Gajda, Roman; Woźniak, Krzysztof

    2016-03-01

    Mercury(II) coordination compounds [Hg(μ-bbd)(μ-SCN)4]n(1) and [Hg(bpp)(SCN)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethypyrazol-1-yl)butane (bbd) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), NCS- ligand and appropriate mercury(II) salts. Compound 1 forms a polymeric network with moieties which are connected by SCN groups and the mercury ions present as HgN3S2 trigonal bipyramides. The crystal structure of 2 is build of monomers and the mercury(II) ion adopts an HgN2S2 tetrahedral geometry. In the complex 1, each bbd acts as bridging ligand connecting Hg(μ-SCN)4 ions, while in the complex 2, the bpp ligand is coordinated to an mercury(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Moreover, in the tetrahedral structure of 2, the neutral molecules form a 1D chain structure through the C-H···N hydrogen bonds, whereas in 1 no hydrogen bonds are observed. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction.

  14. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  15. Polymer complexes. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes.

    PubMed

    El-Sonbati, A Z; El-Bindary, A A; Diab, M A

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  16. Chemodynamics of aquatic metal complexes: from small ligands to colloids.

    PubMed

    Van Leeuwen, Herman P; Buffle, Jacques

    2009-10-01

    Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.

  17. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    DOE PAGES

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less

  18. Enhanced CO2 electroreduction efficiency through secondary coordination effects on a pincer iridium catalyst.

    PubMed

    Ahn, Steven T; Bielinski, Elizabeth A; Lane, Elizabeth M; Chen, Yanqiao; Bernskoetter, Wesley H; Hazari, Nilay; Palmore, G Tayhas R

    2015-04-07

    An iridium(III) trihydride complex supported by a pincer ligand with a hydrogen bond donor in the secondary coordination sphere promotes the electrocatalytic reduction of CO2 to formate in water/acetonitrile with excellent Faradaic efficiency and low overpotential. Preliminary mechanistic experiments indicate formate formation is facile while product release is a kinetically difficult step.

  19. Cytotoxicity of Cyclometalated Platinum Complexes Based on Tridentate NCN and CNN-coordinating ligands: Remarkable Coordination Dependence

    PubMed Central

    Vezzu, Dileep A. k.; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-01-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the NʌCʌN-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the CʌNʌN-coordinated platinum complex based on 6-phenyl-2,2′-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by NʌCʌN- and CʌNʌN-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the NʌCʌN-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis was studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534

  20. Anions coordinating anions: analysis of the interaction between anionic Keplerate nanocapsules and their anionic ligands.

    PubMed

    Melgar, Dolores; Bandeira, Nuno A G; Bonet Avalos, Josep; Bo, Carles

    2017-02-15

    Keplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.

  1. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  2. Diverse Cd{sup II} coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Meng; Dong, Bao-Xia, E-mail: bxdong@yzu.edu.cn; Wu, Yi-Chen

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H{sub 2}ip) have been investigated in a series of Cd{sup II}-based frameworks. Hydrothermal reactions of Cd{sup II} salts and 4-Br-H{sub 2}ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: (Cd(bix){sub 0.5}(bix){sub 0.5}(4-Br-ip)]·H{sub 2}O){sub n} (1), [Cd(bbi){sub 0.5}(bbi){sub 0.5}(4-Br-ip)]{sub n} (2), ([Cd(btx){sub 0.5}(4-Br-ip)(H{sub 2}O)]·0.5CH{sub 3}OH·H{sub 2}O){sub n} (3) and ([Cd(bbt){sub 0.5}(4-Br-ip)(H{sub 2}O)]·3·5H{sub 2}O){sub n} (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, themore » coordination mode of the 4-Br-H{sub 2}ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 6{sup 6} topology and compound 2 has a 4{sup 12} topology. Compounds 3–4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·3{sup 8}). The thermal stabilities and photoluminescence properties of them were discussed in detail. - Graphical abstract: Four 3D Cd{sup II} coordination complexes on the basis of 4-bromoisophthalic acid (4-Br-H{sub 2}ip) and two types of flexible (bbi, bbt) and semiflexible (bix, btx) N-donor ligands are prepared. They displayed diverse topology structures of 6{sup 6} (1), 4{sup 12} (2) and 4·3{sup 8} (3−4), depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H{sub 2}ip, the coordination ability and conformationally flexibility of the N-donor auxiliary ligand. - Highlights: • Four 3D Cd{sup II} coordination complexes based on 4-Br-H{sub 2}ip and flexible/semiflexible N-donor ligands have been synthesized. • They

  3. Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: remarkable coordination dependence.

    PubMed

    Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-05-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    PubMed Central

    Lancaster, Kyle M.; Zaballa, María-Eugenia; Sproules, Stephen; Sundararajan, Mahesh; DeBeer, Serena; Richards, John H.; Vila, Alejandro J.; Neese, Frank; Gray, Harry B.

    2016-01-01

    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding. PMID:22563915

  5. Coordinated Hard Sphere Mixture (CHaSM): A simplified model for oxide and silicate melts at mantle pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Wolf, Aaron S.; Asimow, Paul D.; Stevenson, David J.

    2015-08-01

    We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme temperatures and pressures, including deep mantle conditions like those in the early Earth magma ocean. The Coordinated Hard Sphere Mixture (CHaSM) is based on an extension of the hard sphere mixture model, accounting for the range of coordination states available to each cation in the liquid. By utilizing approximate analytic expressions for the hard sphere model, this method is capable of predicting complex liquid structure and thermodynamics while remaining computationally efficient, requiring only minutes of calculation time on standard desktop computers. This modeling framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide range of pressures and temperatures. We find that the typical coordination number of the Mg cation evolves continuously upward from 5.25 at 0 GPa to 8.5 at 250 GPa. The results produced by CHaSM are evaluated by comparison with predictions from published first-principles molecular dynamics calculations, indicating that CHaSM is accurately capturing the dominant physics controlling the behavior of oxide melts at high pressure. Finally, we present a simple quantitative model to explain the universality of the increasing Grüneisen parameter trend for liquids, which directly reflects their progressive evolution toward more compact solid-like structures upon compression. This general behavior is opposite that of solid materials, and produces steep adiabatic thermal profiles for silicate melts, thus playing a crucial role in magma ocean evolution.

  6. Optimizing conditions for utilization of an H 2 oxidation catalyst with outer coordination sphere functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Arnab; Ginovska, Bojana; Raugei, Simone

    2016-01-01

    Hydrogenase enzymes use abundant metals such as nickel and iron to efficiently interconvert H2 and protons. In this work, we demonstrate that a Ni-based catalyst can exceed the rates of enzymes with only slightly higher overpotentials using [Ni(PCy2Narginine2)2]7, containing an amino acid-based outer coordination sphere. Under conditions of high pressure, elevated temperature, and aqueous acidic solutions, conditions similar to those found in fuel cells, this electrocatalyst exhibits the fastest H2 oxidation reported to date for any homogeneous catalyst (TOF 1.1×106 s-1) operating at a moderate overpotential (240 mV). Control experiments demonstrate that both the appended outer coordination sphere and watermore » are important to achieve this impressive catalytic performance. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy, Office of Science, Office of Basic Energy Sciences (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JASR) located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.« less

  7. The coordination behaviour of ferrocene-based pyridylphosphine ligands towards Zn(II), Cd(II) and Hg(II).

    PubMed

    Siemeling, Ulrich; Klemann, Thorsten; Bruhn, Clemens; Schulz, Jiří; Štěpnička, Petr

    2011-05-07

    The reaction of Group 12 metal dihalides MX(2) with the P,N-ligands [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-2-py)] (1) (2-py = pyrid-2-yl), [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-CH(2)-2-py)] (2) and [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-3-py)] (3) (3-py = pyrid-3-yl) was investigated. For a 1 : 1 molar ratio of MX(2) and the respective ligand, three structure types were found in the solid state, viz. chelate, cyclic dimer and chain-like coordination polymer. The M(II) coordination environment is distorted pseudo-tetrahedral in each case. The P-M-N angle is much larger in the chelates (≥119°) than in the ligand-bridged structures (≤109°). 1 prefers the formation of chelates [MX(2)(1-κ(2)N,P)]. 3 forms coordination polymers [MX(2)(μ-3)](n). With the more flexible 2 all three structure types can occur. Dynamic coordination equilibria were observed in solution for the molecular complexes obtained with 1 and 2. NMR data indicate that the N- and P-donor sites interact most strongly with Zn(II) and Hg(II), respectively. While the formation of bis(phosphine)mercury complexes (soft-soft) was easily achieved, no bis(pyridine)zinc complex (borderline-borderline) could be obtained, which is surprising in view of the HSAB principle.

  8. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.

    PubMed

    Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng

    2010-05-03

    To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5

  10. Syntheses and structural characterization of Co(II) and Cd(II) coordination polymers with 1,4-bis(imidazolyl)butane ligand

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz

    2017-11-01

    Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.

  11. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure

  12. A spectroscopic study on the coordination and solution structures of the interaction systems between biperoxidovanadate complexes and the pyrazolylpyridine-like ligands.

    PubMed

    Yu, Xian-Yong; Deng, Lin; Zheng, Baishu; Zeng, Bi-Rong; Yi, Pinggui; Xu, Xin

    2014-01-28

    In order to understand the substitution effects of pyrazolylpyridine (pzpy) on the coordination reaction equilibria, the interactions between a series of pzpy-like ligands and biperoxidovanadate ([OV(O2)2(D2O)](-)/[OV(O2)2(HOD)](-), abbrv. bpV) have been explored using a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC), and variable temperature NMR in a 0.15 mol L(-1) NaCl D2O solution that mimics the physiological conditions. Both the direct NMR data and the equilibrium constants are reported for the first time. A series of new hepta-coordinated peroxidovanadate species [OV(O2)2L](-) (L = pzpy-like chelating ligands) are formed due to several competitive coordination interactions. According to the equilibrium constants for products between bpV and the pzpy-like ligands, the relative affinity of the ligands is found to be pzpy > 2-Ester-pzpy ≈ 2-Me-pzpy ≈ 2-Amide-pzpy > 2-Et-pzpy. In the interaction system between bpV and pzpy, a pair of isomers (Isomers A and B) are observed in aqueous solution, which are attributed to different types of coordination modes between the metal center and the ligands, while the crystal structure of NH4[OV(O2)2(pzpy)]·6H2O (CCDC 898554) has the same coordination structure as Isomer A (the main product for pzpy). For the N-substituted ligands, however, Isomer A or B type complexes can also be observed in solution but the molar ratios of the isomer are reversed (i.e., Isomer B type is the main product). These results demonstrate that when the N atom in the pyrazole ring has a substitution group, hydrogen bonding (from the H atom in the pyrazole ring), the steric effect (from alkyl) and the solvation effect (from the ester or amide group) can jointly affect the coordination reaction equilibrium.

  13. A bis(amido) ligand set that supports two-coordinate chromium in the +1, +2, and +3 oxidation states†

    PubMed Central

    Cai, Irene C.; Lipschutz, Michael I.

    2014-01-01

    The amido ligand –N(SiiPr3)DIPP (DIPP = 2,6-diisopropylphenyl) has been used to prepare two-coordinate complexes of CrI, CrII, and CrIII. The two-coordinate CrII complex has also been used to prepare a three-coordinate CrIII iodide complex, which can be used to access a stable CrIII methyl species. PMID:25222516

  14. How wet should be the reaction coordinate for ligand unbinding?

    PubMed

    Tiwary, Pratyush; Berne, B J

    2016-08-07

    We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom.

  15. How wet should be the reaction coordinate for ligand unbinding?

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; Berne, B. J.

    2016-08-01

    We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom.

  16. A Coordination Network with Ligand-Centered Redox Activity Based on facial-[CrIII (2-mercaptophenolato)3 ]3- Metalloligands.

    PubMed

    Wakizaka, Masanori; Matsumoto, Takeshi; Kobayashi, Atsushi; Kato, Masako; Chang, Ho-Chol

    2017-07-21

    The design of redox-active metal-organic frameworks and coordination networks (CNs), which exhibit metal- and/or ligand-centered redox activity, has recently received increased attention. In this study, the redox-active metalloligand (RML) [Me 4 N] 3 fac-[Cr III (mp) 3 ] (1) (mp=2-mercaptophenolato) was synthesized and characterized by single-crystal X-ray diffraction analysis, and its reversible ligand-centered one-electron oxidation was examined by cyclic voltammetry and spectroelectrochemical measurements. Since complex 1 contains O/S coordination sites in three directions, complexation with K + ions led to the formation of the two-dimensional honeycomb sheet-structured [K 3 fac-{Cr III (mp) 3 }(H 2 O) 6 ] n (2⋅6 H 2 O), which is the first example of a redox-active CN constructed from a RML with o-disubstituted benzene ligands. Herein, we unambiguously demonstrate the ligand-centered redox activity of the RML within the CN 2⋅6 H 2 O in the solid state. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance.

    PubMed

    Shao, Yuyan; Liu, Tianbiao; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark; Xiao, Jie; Lv, Dongping; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a study in understanding coordination chemistry of Mg(BH₄)₂ in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new electrolyte is developed based on Mg(BH₄)₂, diglyme and LiBH₄. The preliminary electrochemical test results show that the new electrolyte demonstrates a close to 100% coulombic efficiency, no dendrite formation, and stable cycling performance for Mg plating/stripping and Mg insertion/de-insertion in a model cathode material Mo₆S₈ Chevrel phase.

  18. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    DOE PAGES

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; ...

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH 4) 2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimizedmore » LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less

  19. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  20. The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density.

    PubMed

    Varadwaj, Pradeep R; Marques, Helder M

    2010-03-07

    Spin-unrestricted DFT-X3LYP/6-311++G(d,p) calculations have been performed on a series of complexes of the form [Co(H(2)O)(6-n)(NH(3))(n)](2+) (n = 0-6) to examine their equilibrium gas-phase structures, energetics, and electronic properties in their quartet electronic ground states. In all cases Co(2+) in the energy-minimised structures is in a pseudo-octahedral environment. The calculations overestimate the Co-O and Co-N bond lengths by 0.04 and 0.08 A, respectively, compared to the crystallographically observed mean values. There is a very small Jahn-Teller distortion in the structure of [Co(H(2)O)(6)](2+) which is in contrast to the very marked distortions observed in most (but not all) structures of this cation that have been observed experimentally. The successive replacement of ligated H(2)O by NH(3) leads to an increase in complex stability by 6 +/- 1 kcal mol(-1) per additional NH(3) ligand. Calculations using UB3LYP give stabilisation energies of the complexes about 5 kcal mol(-1) smaller and metal-ligand bond lengths about 0.005 A longer than the X3LYP values since the X3LYP level accounts for the London dispersion energy contribution to the overall stabilisation energy whilst it is largely missing at the B3LYP level. From a natural population analysis (NPA) it is shown that the formation of these complexes is accompanied by ligand-to-metal charge transfer the extent of which increases with the number of NH(3) ligands in the coordination sphere of Co(2+). From an examination of the topological properties of the electron charge density using Bader's quantum theory of atoms in molecules it is shown that the electron density rho(c) at the Co-O bond critical points is generally smaller than that at the Co-N bond critical points. Hence Co-O bonds are weaker than Co-N bonds in these complexes and the stability increases as NH(3) replaces H(2)O in the metal's coordination sphere. Several indicators, including the sign and magnitude of the Laplacian of the

  1. How wet should be the reaction coordinate for ligand unbinding?

    PubMed Central

    Tiwary, Pratyush; Berne, B. J.

    2016-01-01

    We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom. PMID:27497545

  2. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  3. X-ray emission spectroscopy to study ligand valence orbitals in Mn coordination complexes

    PubMed Central

    Smolentsev, Grigory; Soldatov, Alexander V; Messinger, Johannes; Merz, Kathrin; Weyhermüller, Thomas; Bergmann, Uwe; Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.; Glatzel, Pieter

    2009-01-01

    We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in x-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular x-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g. C, N, O...), to be distinguished . A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, [Mn(H2O)5NH2]+ and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)] and [LMn(acac)N]BPh4 where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion. PMID:19663435

  4. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin

    2016-03-01

    Three cadmium coordination polymers, [Cd(bismip)]n (1), {[Cd(bismip)(phen)]·H2O}n (2) and {[Cd2(bismip)2(4,4‧-bipy)]·2H2O}n (3) (H2bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd4(bismip)3] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·82)(42·84) Schläfli symbol in which 2D layers are interlinked by 4,4‧-bipy ligands. The diverse structures of compounds 1-3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance.

  5. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    PubMed

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  6. Near-unity thermally activated delayed fluorescence efficiency in three- and four-coordinate Au(i) complexes with diphosphine ligands.

    PubMed

    Osawa, Masahisa; Aino, Masa-Aki; Nagakura, Takaki; Hoshino, Mikio; Tanaka, Yuya; Akita, Munetaka

    2018-05-14

    The synthesis and photoluminescence properties of three-coordinate Au(i) complexes with rigid diphosphine ligands LMe {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene} are investigated. The LMe and LEt ligands afford two types of complexes: dinuclear complexes [μ-LMe(AuCl)2] (1d) and [μ-LEt(AuCl)2] (2d) with an Au(i)-Au(i) bond and mononuclear three-coordinate Au(i) complexes LMeAuCl (1) and LEtAuCl (2). On the other hand, the bulkiest ligand, LiPr, affords three-coordinate Au(i) complexes, LiPrAuCl (3) and LiPrAuI (4), but no dinuclear complexes. X-ray analysis suggests that both 3 and 4 possess a highly distorted trigonal planar geometry. Moreover, luminescence data reveal that at room temperature, 3 and 4 exhibit yellow-green thermally activated delayed fluorescence in the crystalline state with maximum emission wavelengths at 558 and 549 nm, respectively. The emission yields are close to unity. Quantum chemical calculations suggest that the emission of 4 originates from the (σ + X) → π* excited state that possesses strong intraligand charge-transfer character. The luminescent properties of four-coordinate Au(i) complex (5) possessing a tetrahedral geometry are discussed on the basis of the emission spectra and decay times measured in a temperature range of 309-77 K.

  7. One- and two-dimensional divalent copper coordination polymers based on kinked organodiimine and long flexible aliphatic dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Mallika Krishnan, Subhashree; Supkowski, Ronald M.; LaDuca, Robert L.

    2008-11-01

    Hydrothermal synthesis under acidic conditions has afforded a pair of divalent copper coordination polymers containing the kinked dipodal tethering organodiimine 4,4'-dipyridylamine (dpa) and flexible long-chain aliphatic dicarboxylate ligands. The new materials were characterized by single crystal X-ray structure determination, infrared spectroscopy, and thermogravimetric analysis. [CuCl(suberate) 0.5(dpa)] ( 1) manifests 1-D ladder-like motifs aggregated into 3-D through hydrogen bonding and copper-mediated supramolecular interactions. Extension of the aliphatic chain within the dicarboxylate ligand by one methylene unit resulted in {[Cu(azelate)(dpa)(H 2O)] · 3H 2O} ( 2), a (4,4) rhomboid grid 2-D coordination polymer encapsulating acyclic water molecule trimers.

  8. The coordination chemistry of the neutral tris-2-pyridyl silicon ligand [PhSi(6-Me-2-py)3].

    PubMed

    Plajer, Alex J; Colebatch, Annie L; Enders, Markus; García-Romero, Álvaro; Bond, Andrew D; García-Rodríguez, Raúl; Wright, Dominic S

    2018-05-22

    Difficulties in the preparation of neutral ligands of the type [RSi(2-py)3] (where 2-py is an unfunctionalised 2-pyridyl ring unit) have thwarted efforts to expand the coordination chemistry of ligands of this type. However, simply switching the pyridyl substituents to 6-methyl-pyridyl groups (6-Me-2-py) in the current paper has allowed smooth, high-yielding access to the [PhSi(6-Me-2-py)3] ligand (1), and the first exploration of its coordination chemistry with transition metals. The synthesis, single-crystal X-ray structures and solution dynamics of the new complexes [{PhSi(6-Me-2-py)3}CuCH3CN][PF6], [{PhSi(6-Me-2-py)3}CuCH3CN][CuCl2], [{PhSi(6-Me-2-py)3}FeCl2], [{PhSi(6-Me-2-py)3}Mo(CO)3] and [{PhSi(6-Me-2-py)3}CoCl2] are reported. The paramagnetic Fe2+ and Co2+ complexes show strongly shifted NMR resonances for the coordinated pyridyl units due to large Fermi-contact shifts. However, magnetic anisotropy also leads to considerable pseudo-contact shifts so that both contributions have to be included in the paramagnetic NMR analysis.

  9. Zinc coordination polymers containing substituted isophthalate ligands and fragments from in situ hydrolysis of 4-pyridylisonicotinamide

    NASA Astrophysics Data System (ADS)

    O'Donovan, Megan E.; LaDuca, Robert L.

    2015-03-01

    Hydrothermal treatment of zinc nitrate, a 5-substituted isophthalic acid, and 4-pyridylisonicotinamide (4-pina) resulted in crystalline coordination polymers that incorporated different fragments formed by in situ hydrolysis of the 4-pina precursor. These materials were characterized by single crystal X-ray diffraction. In the case of {[4-ampyrH]2[Zn(hip)2]·H2O}n (1, 4-ampyrH = 4-aminopyridinium, hip = 5-hydroxyisophthalate), anionic [Zn(hip)2]n2n- (4,4) grid layers co-crystallize with protonated 4-ampyr cations. Using 5-nitroisophthalic acid (H2nip), [Zn7(isonic)4(OH)6(nip)2]n (2, isonic = isonicotinate) was formed. This material manifests [Zn7(OH)6]n cationic inorganic chain motifs linked by isonic and nip ligands into a non-interpenetrated 3-D coordination polymer network with pcu topology. Luminescent behavior is attributed to intra-ligand molecular orbital transitions.

  10. Synthesis and characterization of a cadmium(II)-organic supramolecular coordination compound based on the multifunctional 2-amino-5-sulfobenzoic acid ligand.

    PubMed

    Yuan, Gan Yin; Zhang, Lei; Wang, Meng Jie; Zhang, Kou Lin

    2016-12-01

    Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5-sulfosalicylic acid (H 3 SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino-substituted sulfobenzoate ligand 2-amino-5-sulfobenzoic acid (H 2 asba). We expected that H 2 asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H 2 asba in the presence of the auxiliary flexible dipyridylamide ligand N,N'-bis[(pyridin-4-yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed-ligand coordination compound, namely bis(3-amino-4-carboxybenzenesulfonato-κO 1 )diaquabis{N,N'-bis[(pyridin-4-yl)methyl]oxamide-κN}cadmium(II)-N,N'-bis[(pyridin-4-yl)methyl]oxamide-water (1/1/4), [Cd(C 7 H 6 NO 5 S) 2 (C 14 H 14 N 4 O 2 ) 2 (H 2 O) 2 ]·C 14 H 14 N 4 O 2 ·4H 2 O, (1), which was characterized by single-crystal and powder X-ray diffraction analysis (PXRD), FT-IR spectroscopy, thermogravimetric analysis (TG), and UV-Vis and photoluminescence spectroscopic analyses in the solid state. The central Cd II atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4-amino-3-carboxybenzenesulfonate (Hasba - ) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero-dimensional and 2D is two-dimensional) interpenetrated supramolecular two-dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two-dimensional layers into a three-dimensional network. The optical properties of complex (1

  11. Cadmium-1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2'-bipyridines: syntheses, crystal structures and photoluminescence studies.

    PubMed

    Rosales-Vázquez, Luis D; Sánchez-Mendieta, Víctor; Dorazco-González, Alejandro; Martínez-Otero, Diego; García-Orozco, Iván; Morales-Luckie, Raúl A; Jaramillo-Garcia, Jonathan; Téllez-López, Antonio

    2017-09-26

    Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H 2 O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H 2 O} n (1); [Cd 2 (H 2 O) 2 (e,a-cis-1,4-chdc) 2 (4,4'-dmb) 2 ] n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H 2 O·CH 3 OH} n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH 3 OH} n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd 2 O 2 ) as nodes to generate larger cycles made up of four dinuclear units, a Cd 4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λ em = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of

  12. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses ofmore » functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.« less

  13. Adjustable coordination of a hybrid phosphine-phosphine oxide ligand in luminescent Cu, Ag and Au complexes.

    PubMed

    Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O

    2016-09-28

    A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength.

  14. Two novel mixed-ligand complexes containing organosulfonate ligands.

    PubMed

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  15. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  16. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  17. Cu(II) coordination polymers constructed by tetrafluoroterephthalic acid and varied imidazole-containing ligands: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Sun, Yayong; Deng, Liming; Cao, Fan; Han, Jishu; Wang, Lei

    2018-02-01

    Six new copper(II) coordination polymers combining 2,3,5,6-tetrafluoroterephthalatic acid (H2tfBDC) and diverse imidazole-containing ligands, {[Cu(tfBDC)(1,2-bix)2]·2(H2O)}n (1), {Cu(tfBDC)(Im)2}n (2), {[Cu(1,4-bmimb)2(H2O)]·(tfBDC)·2(H2O)}n (3), {Cu(1,4-bimb)2(H2O)2·(tfBDC)}n (4), {[Cu(1,3-bix)2(H2O)2]·(tfBDC)·6(H2O)}n (5) and {[Cu(1,4-bix)2(H2O)2]·(tfBDC)·(1,4-bix)·4(H2O)}n (6) (1,2-bix = 1,2-bis(imidazole-1-ylmethyl)-benzene, Im = imidazole, 1,4-bmimb = 1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,4-bimb = 1,4-bis(imidazol-1-yl)-butane, 1,3-bix = 1,3-bis(imidazole-1-ylmethyl)-benzene, 1,4-bix = 1,4-bis(imidazole-1-ylmethyl)-benzene), have been obtained and structurally verified by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD), elemental analyses and infrared spectroscopy (IR). Single crystal X-ray diffraction analysis revealed that 1 is 2D 4-connected sql topology (point symbol: {44·62}) based on a single metal ion node. Compound 2 is characterized as an infinite 1D chain structure, which is further extended into a 2D layer through N-H···O hydrogen bonds and then a 3D supramolecular architecture via π···π stacking interactions. Note that 2 was prepared through an in situ ligand reaction in which N,N'-carbonyldiimidazole (cdi) broke up into imidazole ligand. Compound 3 possesses a 3D 4-fold interpenetrated architecture with 4-connected dia topology (Schläfli symbol: {66}) in which tfBDC2- is stabilized in the channel by hydrogen bonds. Compounds 4-6 are all linear 1D coordination polymers. In 4, the free tfBDC2- ligand acts as a μ4-bridge to link four coordinated water molecules from the chain to construct a 2D structure via hydrogen bonds. While in 5 and 6, the uncoordinated tfBDC2- ligands and multimeric water clusters is responsible for the conversion of these 1D coordination polymers into 3D supramolecular assemblies through O-H⋯O hydrogen bonding interactions. Moreover

  18. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less

  19. Unusual mode of protein binding by a cytotoxic π-arene ruthenium(ii) piano-stool compound containing an O,S-chelating ligand.

    PubMed

    Hildebrandt, Jana; Görls, Helmar; Häfner, Norman; Ferraro, Giarita; Dürst, Matthias; Runnebaum, Ingo B; Weigand, Wolfgang; Merlino, Antonello

    2016-08-02

    A new pseudo-octahedral π-arene ruthenium(ii) piano-stool compound, containing an O,S-bidentate ligand (compound 1) and showing significant cytotoxic activity in vitro, was synthesized and characterized. In solution stability and interaction with the model protein bovine pancreatic ribonuclease (RNase A) were investigated by using UV-Vis absorption spectroscopy. Its crystal structure and that of the adduct formed upon reaction with RNase A were obtained by X-ray crystallography. The comparison between the structure of purified compound 1 and that of the fragment bound to RNase A reveals an unusual mode of protein binding that includes ligand exchange and alteration of coordination sphere geometry.

  20. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  1. 1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio

    NASA Astrophysics Data System (ADS)

    Notash, Behrouz

    2018-03-01

    Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.

  2. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines.

    PubMed

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik

    2012-04-01

    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  3. Systematic design and research on a series of cadmium coordination polymers assembled due to tetracarboxylate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Lei; Mu, Bao; Li, Chang-Xia

    A series of metal-organic frameworks (MOFs) have been prepared by tetracarboxylate ligands and Cd(II) ions under the hydrothermal or solvothermal conditions with the formulas of {[Cd_2(L_1)(H_2O)_4]·H_2O}{sub n} (1), {[(CH_3)_2NH_2]_2[Cd(L_1)]}{sub n} (2), [Cd(L{sub 2}){sub 0.5}(H{sub 2}O)]{sub n} (3), {[(CH_3)_2NH_2]_2 [Cd(L_2)]·2DMF}{sub n} (4), [Cd(L{sub 3}){sub 0.5}(H{sub 2}O)]{sub n} (5), {[Cd(L_3)_0_._5(H_2O)]·CH_3OH}{sub n} (6), {[(CH_3)_2NH_2]_2[Cd_3(L_4)_2]}{sub n} (7) (H{sub 4}L{sub 1}=[1,1′:4′,1″-terphenyl]-2,2″,5,5″-tetracarboxylic acid; H{sub 4}L{sub 2}=[1,1′:4′,1″-terphenyl]-2′,4,4″,5′-tetracarboxylic acid; H{sub 4}L{sub 3}=[1,1′:3′,1″-terphenyl]-2′,3,3″,5′-tetracarboxylic acid; H{sub 4}L{sub 4}=[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid), which are characterized by single-crystal X-ray diffraction, elemental analyses, IR, TGA and PXRD. Complex 1 exhibits a three-dimensional (3D) supramolecular framework based on two-dimensional (2D) coordination networks. Complexes 2 and 4more » possess 3D framework based on the 1D right-handed helix channels. Complexes 3 and 7 are a 3D architecture containing two different channels. Isostructural complexes 5 and 6 display 3D framework. The different synthetic methods and coordination modes of the tetracarboxylates ligands have effect on formation of various MOFs. Moreover, the luminescent properties and N{sub 2} adsorption behaviors have been reported. - Graphical abstract: A series of cadmium(II) high-dimensional coordination polymers constructed from four different kinds of tetracarboxylate ligands have been successfully prepared under hydrothermal or solvothermal conditions. The effect of solvents, the coordination modes of the tetracarboxylates and positions of carboxylate groups on the architectures of complexes 1–7 have been investigated in detail. The luminescent properties of the part of complexes, N{sub 2} adsorption behaviors of complexes 2, 4

  4. Second-sphere coordination in anion binding: Synthesis, characterization and X-ray structures of bis(diethylenetriamine)cobalt(III) complexes containing benzoates

    NASA Astrophysics Data System (ADS)

    Bala, Ritu; Kaur, Amrinder; Kashyap, Monika; Janzen, Daron E.

    2014-04-01

    New complexes of composition s-fac-[Co(dien)2]Cl2(Bz)·H2O (1), s-fac-[Co(dien)2]Cl(p-CBz)2·4.5H2O (2) and mer-[Co(dien)2](p-NBz)3·3H2O (3) were obtained by reacting aqueous solutions of bis(diethylenetriamine)cobalt(III) chloride and sodium salts of benzoates ((Bz = benzoate, CBz = p-chlorobenzoate, NBz = p-nitrobenzoate)) in 1:3 molar ratio. These complexes were characterized by TG analysis and spectroscopic studies (IR, NMR and UV-vis). IR and NMR studies were used for the isomeric identification of [Co(dien)2]3+ in new complexes. This cation, contains ligand diethylenetriamine (dien) bearing H-bond donors, capable of forming hydrogen bonds and its binding properties with benzoates have been studied using standard UV-vis spectroscopic titrations in aqueous medium (log k for Bz = 2.11, p-CBz = 3.64 and p-NBz = 3.66). Single crystal X-ray study of complex 2 and 3 reveals that both the structures are dominantly stabilized by second-sphere coordination through H-bonding interactions of type-NH (dien)⋯O (benzoates) and H (water)⋯O (benzoates) in addition to the electrostatic forces of attractions. Further, the NH (dien)⋯Cl- (counter ion) and NH (dien)⋯O (water) types of interactions are also playing a dominant role to stabilize the crystal lattice in complex 2 and 3 respectively.

  5. Synthesis and structures of ligand-dominated one-dimensional silver(I)–bis(pyridylmethyl)amine coordination chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hung-Jui; Liu, Yu-Chiao; Tseng, Yu-Jui

    2016-10-15

    Reactants slow diffusion of Ag(I) salts with 3,4′-bis(pyridylmethyl)amine (3,4′-bpma), an unsymmetric bis-pyridyl ligand equipped with a non-innocent amine backbone, afforded polymeric coordination adducts 1–5 having a general formula ([Ag(3,4′-bpma)(solv)]X){sub n} (solv = H{sub 2}O, CH{sub 3}OH, and none; X= CF{sub 3}CO{sub 2}{sup –}, BF{sub 4}{sup –}, ClO{sub 4}{sup –}, CF{sub 3}SO{sub 3}{sup –}, and SbF{sub 6}{sup –}). Single-crystal X-ray diffraction (SCXRD) analyses reveal that colorless crystals of Ag(I) coordination polymers (CPs) 1–5 have very similar one-dimensional (1D) non-flat chain structures, which are preferentially depicted as a “zipper-like” rather than a ladder-like or a double-stranded chain topologies. The 3,4′-bpma ligand inmore » these Ag(I) CPs displays a μ{sub 3}-bridging mode with a gauche–trans (1,4, and 5) and a trans–trans (2 and 3) conformations. Noteworthy, anions do not show strong influence on structural modulation of Ag(I) CPs in the solid state, but really affect CP conformations and packing fashions, indicative of a ligand-dominated assembly process for such a Ag(I)–3,4′-bpma system. Thermal stabilities and solid-state photoluminescence properties of crystalline materials 1–5 were investigated. - Graphical abstract: This work has addressed five ligand-dominated Ag(I)–3,4′-bpma polymeric adducts, which show similar one-dimensional non-flat chain structures depicting a “zipper-like” topology rather than a ladder-like or a double-stranded chain structures.« less

  6. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  7. Variations of structures and solid-state conductivity of isomeric silver(I) coordination polymers having linear and V-shaped thiophene-centered ditriazole ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bin; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063; Geng, Jiao

    2014-07-01

    A pair of new linear and V-shaped acceptor–donor–acceptor (A−D−A) thiophene-centered ditriazole structural isomers, i.e., 2,5-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 1}) and 3,4-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 2}), has been synthesized and characterized. They are used as μ{sub 2}-bridging ligands to prepare a pair of silver(I) coordination polymers formulated as [Ag(L{sup 1})(NO{sub 3})]{sub n} (1) and [Ag(L{sup 2})(NO{sub 3})]{sub n} (2), which are also structural isomers at the supramolecular level. X-ray single-crystal diffraction analyses for 1 and 2 reveal that they exhibit the same one-dimensional (1D) coordination polymers but different structural architectures because of the distinguishable shape and configuration of isomeric ligands (L{sup 1} and L{sup 2})more » and the alterations of the coordination numbers. More interestingly, compared with the free ligands, 1D silver(I) polymeric isomers 1 and 2 show significant enhancement of solid-state conductivity to different extents (1.42×10{sup 4} and 2.17×10{sup 3} times), where 6.96 times' enhancement of solid-state conductivity from 1 to 2 has been observed. The formation of Ag–N coordinative bonds and the configurational discrepancy of L{sup 1} and L{sup 2} are believed to play important roles in facilitating the electron transport between molecules, which can also be supported by Density Function Theory calculations of their band gaps. - Graphical abstract: A pair of linear and V-shaped isomeric thiophene-centered ditriazole ligands (L{sup 1}) and L{sup 2} are used to prepare a pair of silver(I) polymeric isomers (1 and 2), where significant enhancement of solid-state conductivity to different extents are observed originating from the distinguishable shape and configuration of isomeric ligands. - Highlights: • A pair of linear and V-shaped thiophene-centered ditriazole structural isomers is prepared. • They are used as µ{sub 2}-bridging ligands to prepare a pair of silver

  8. NMR Mapping of Protein Conformational Landscapes using Coordinated Behavior of Chemical Shifts upon Ligand Binding

    PubMed Central

    Cembran, Alessandro; Kim, Jonggul; Gao, Jiali; Veglia, Gianluigi

    2014-01-01

    Proteins exist as an ensemble of conformers that are distributed on free energy landscapes resembling folding funnels. While the most stable conformers populate low energy basins, protein function is often carried out through low-populated conformational states that occupy high energy basins. Ligand binding shifts the populations of these states, changing the distribution of these conformers. Understanding how the equilibrium among the states is altered upon ligand binding, interaction with other binding partners, and/or mutations and post-translational modifications is of critical importance for explaining allosteric signaling in proteins. Here, we propose a statistical analysis of the chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for the interpretation of protein conformational equilibria following linear trajectories of NMR chemical shifts. CONCISE enables one to quantitatively measure the population shifts associated with ligand titrations and estimate the degree of collectiveness of the protein residues’ response to ligand binding, giving a concise view of the structural transitions. The combination of CONCISE with thermocalorimetric and kinetic data allows one to depict a protein’s approximate conformational energy landscape. We tested this method with the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nucleotide and pseudo-substrate binding. When complemented with chemical shift covariance analysis (CHESCA), this new method offers both collective response and residue-specific correlations for ligand binding to proteins. PMID:24604024

  9. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces

    USGS Publications Warehouse

    Arai, Yuji; Fuller, C.C.

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.

  10. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.

    PubMed

    Arai, Yuji; Fuller, C C

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite-water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55-7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    PubMed

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  12. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    PubMed

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-07

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  13. Coordinated HArd Sphere Model (CHASM): A Simplified Model for Silicate and Oxide Liquids at Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2013-12-01

    Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic

  14. Effective transport properties of composites of spheres

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    1994-06-01

    The effective linear transport properties of composites of spheres may be studied by the methods of statistical physics. The analysis leads to an exact cluster expansion. The resulting expression for the transport coefficients may be evaluated approximately as the sum of a mean field contribution and correction terms, given by cluster integrals over two-sphere and three-sphere correlation functions. Calculations of this nature have been performed for the effective dielectric constant, as well as the effective elastic constants of composites of spheres. Accurate numerical data for the effective properties may be obtained by computer simulation. An efficient formulation uses multiple expansion in Cartesian coordinates and periodic boundary conditions. Extensive numerical results have been obtained for the effective dielectric constant of a suspension of randomly distributed spheres.

  15. CO 2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    DOE PAGES

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; ...

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ bymore » these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.« less

  16. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.

    PubMed

    Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand

    2016-08-24

    Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.

  17. Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin.

    PubMed

    Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C; Botros, Youssry Y; Farha, Omar K; Hupp, Joseph T; Mirkin, Chad A; Fraser Stoddart, J

    2013-01-01

    Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH₂)₆][AuBr₄](α-cyclodextrin)₂}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr₄ in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr₄ and KAuCl₄, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr₄](-) leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr₄](-) and [K(OH₂)₆](+) and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host-guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin-an inexpensive and environmentally benign carbohydrate.

  18. Diorganotin-based coordination polymers derived from sulfonate/phosphonate/phosphonocarboxylate ligands.

    PubMed

    Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Molloy, Kieran C

    2011-02-21

    The reactions of diorganotin precursors [R(2)Sn(OR(1))(OSO(2)R(1))](n) [R = R(1) = Me (1); R = Me, R(1) = Et (2)] with an equimolar amount of t-butylphosphonic acid (RT, 8-10 h) in methanol result in the formation of identical products, of composition [(Me(2)Sn)(3)(O(3)PBu(t))(2)(O(2)P(OH)Bu(t))(2)](n) (3). On the other hand, a similar reaction of 2, when carried out in dichloromethane, affords [(Me(2)Sn)(3)(O(3)PBu(t))(2)(OSO(2)Et)(2)·MeOH](n) (4). A plausible mechanism implicating the role of solvent in the formation of these compounds has been put forward. In addition, the synthesis of [(Me(2)Sn)(3)(O(3)PCH(2)CH(2)COOMe)(2)(OSO(2)Me)(2)](n) (5) and [R(2)Sn(O(2)P(OH)CH(2)CH(2)COOMe)(OSO(2)R(1))](n) [R = Et, R(1) = Me (6); R = (n)Bu, R(1) = Et (7)] has been achieved by reacting 1 and related diorganotin(alkoxy)alkanesulfonates with 3-phosphonopropionic acid in methanol. The formation of a methylpropionate functionality on the phosphorus center in these structural frameworks results from in situ esterification of the carboxylic group. X-ray crystallographic studies of 1-7 are presented. The structures of 1 and 2 represent one-dimensional (1D) coordination polymers composed of alternate [Sn-O](2) and [Sn-O-S-O](2) cyclic rings formed by μ(2)-alkoxo and sulfonate ligands, respectively. For 3-5 and 7, variable bonding modes of phosphonate and/or sulfonate ligands afford the construction of two- and three-dimensional self-assemblies that are comprised of trinuclear tin entities with an Sn(3)P(2)O(6) core as well as [Sn-O-P-O](2) and/or [Sn-O-S-O](2) rings. The formation of a 1D coordination polymer in 6 is unique in terms of repeating eight-membered cyclic rings containing Sn, O, P, and S heteroatoms. The contribution from hydrogen-bonding interactions is also found to be significant in these structures.

  19. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  20. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin; Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn; Yang, Gao-Shan

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, andmore » contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.« less

  1. Ambient‐Temperature Synthesis of 2‐Phosphathioethynolate, PCS–, and the Ligand Properties of ECX– (E = N, P; X = O, S)

    PubMed Central

    Jupp, Andrew R.; Geeson, Michael B.; McGrady, John E.

    2015-01-01

    Abstract A synthesis of the 2‐phosphathioethynolate anion, PCS–, under ambient conditions is reported. The coordination chemistry of PCO–, PCS– and their nitrogen‐containing congeners is also explored. Photolysis of a solution of W(CO)6 in the presence of PCO– [or a simple ligand displacement reaction using W(CO)5(MeCN)] affords [W(CO)5(PCO)]– (1). The cyanate and thiocyanate analogues, [W(CO)5(NCO)]– (2) and [W(CO)5(NCS)]– (3), are also synthesised using a similar methodology, allowing for an in‐depth study of the bonding properties of this family of related ligands. Our studies reveal that, in the coordination sphere of tungsten(0), the PCO– anion preferentially binds through the phosphorus atom in a strongly bent fashion, while NCO– and NCS– coordinate linearly through the nitrogen atom. Reactions between PCS– and W(CO)5(MeCN) similarly afford [W(CO)5(PCS)]–; however, due to the ambidentate nature of the anion, a mixture of both the phosphorus‐ and sulfur‐bonded complexes (4a and 4b, respectively) is obtained. It was possible to establish that, as with PCO–, the PCS– ion also coordinates to the metal centre in a bent fashion. PMID:27134553

  2. Hydrothermal syntheses, crystal structures, and photophysical properties of two coordination polymers with mixed ligands

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Chun-Ling

    2017-10-01

    Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.

  3. Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation

    DOE PAGES

    Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro; ...

    2015-11-09

    Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO 2 to formate in aqueous solution. Interestingly, these new complexes promote CO 2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h –1 for the bisimidazoline complex compared to that of 20 h –1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h –1 for the bisimidazoline complex is comparable to that of a dinuclear complexmore » (70 h –1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.« less

  4. Synthesis and Characterization of a Series of Structurally and Electronically Diverse Fe(II) Complexes Featuring a Family of Triphenylamido-Amine Ligands

    PubMed Central

    Paraskevopoulou, Patrina; Ai, Lin; Wang, Qiuwen; Pinnapareddy, Devender; Acharyya, Rama; Dinda, Rupam; Das, Purak; Çelenligil-Çetin, Remle; Floros, Georgios; Sanakis, Yiannis; Choudhury, Amitava; Rath, Nigam P.; Stavropoulos, Pericles

    2009-01-01

    A family of triphenylamido-amine ligands of the general stoichiometry LxH3 = [R-NH-(2-C6H4)]3N (R = 4-t-BuPh (L1H3), 3,5-t-Bu2Ph (L2H3), 3,5-(CF3)2Ph (L3H3), CO-t-Bu (L4H3) 3,5-Cl2Ph (L5H3), COPh (L6H3), CO-i-Pr (L7H3), COCF3 (L8H3), i-Pr (L9H3)) has been synthesized and characterized, featuring a rigid triphenylamido-amine scaffold and an array of stereoelectronically diverse aryl, acyl and alkyl substituents (R). These ligands are deprotonated by potassium hydride in THF or DMA and reacted with anhydrous FeCl2 to afford a series of ferrous complexes, exhibiting stoichiometric variation and structural complexity. The prevalent [(Lx)Fe(II)–solv]− structures (Lx = L1, L2, L3, L5, solv = THF; Lx = L8, solv = DMA; Lx = L6, L8, solv = MeCN), reveal a distorted trigonal bipyramidal geometry, featuring ligand-derived [N3,amidoNamine] coordination and solvent attachment trans to the Namine atom. Specifically for [(L8)Fe(II)–DMA]−, an Namido residue is coordinated as the corresponding Nimino moiety (Fe–N(Ar)=C(CF3)–O−). In contrast, compounds [(L4)Fe(II)] −, [(L6)2Fe(II)2]2−, [K(L7)2Fe(II)2]22− and [K(L9)Fe]2 are all solvent-free in their coordination sphere and exhibit four-coordinate geometries of significant diversity. In particular, [(L4)Fe(II)]− demonstrates coordination of one amidato residue via the O-atom end (Fe–O–C(t-Bu)=N(Ar)). Furthermore, [(L6)2Fe(II)2]2− and [K(L7)2Fe(II)2]22− are similar structures exhibiting bridging amidato residues (Fe–N(Ar)–C(R)=O–Fe) in dimeric structural units. Finally the structure of [K(L9)Fe]2 is the only example featuring a minimal [N3,amidoNamine] coordination sphere around each Fe(II) site. All compounds have been characterized by a variety of physicochemical techniques, including Mössbauer spectroscopy and electrochemistry, to reveal electronic attributes that are responsible for a range of Fe(II)/Fe(III) redox potentials exceeding 1.0 V. PMID:19950956

  5. Radical anionic versus neutral 2,2'-bipyridyl coordination in uranium complexes supported by amide and ketimide ligands.

    PubMed

    Diaconescu, Paula L; Cummins, Christopher C

    2015-02-14

    The synthesis and characterization of (bipy)(2)U(N[t-Bu]Ar)(2) (1-(bipy)(2), bipy = 2,2'-bipyridyl, Ar = 3,5-C(6)H(3)Me(2)), (bipy)U(N[(1)Ad]Ar)(3) (2-bipy), (bipy)(2)U(NC[t-Bu]Mes)(3) (3-(bipy)(2), Mes = 2,4,6-C(6)H(2)Me(3)), and IU(bipy)(NC[t-Bu]Mes)(3) (3-I-bipy) are reported. X-ray crystallography studies indicate that bipy coordinates as a radical anion in 1-(bipy)(2) and 2-bipy, and as a neutral ligand in 3-I-bipy. In 3-(bipy)(2), one of the bipy ligands is best viewed as a radical anion, the other as a neutral ligand. The electronic structure assignments are supported by NMR spectroscopy studies of exchange experiments with 4,4'-dimethyl-2,2'-bipyridyl and also by optical spectroscopy. In all complexes, uranium was assigned a +4 formal oxidation state.

  6. Nona-coordinated chiral Eu(III) complexes with stereoselective ligand-ligand noncovalent interactions for enhanced circularly polarized luminescence.

    PubMed

    Harada, Takashi; Tsumatori, Hiroyuki; Nishiyama, Katsura; Yuasa, Junpei; Hasegawa, Yasuchika; Kawai, Tsuyoshi

    2012-06-18

    Circularly polarized luminescence (CPL) of chiral Eu(III) complexes with nona- and octa-coordinated structures, [Eu(R/S-iPr-Pybox)(D-facam)(3)] (1-R/1-S; R/S-iPr-Pybox, 2,6-bis(4R/4S-isopropyl-2-oxazolin-2-yl)pyridine; D-facam, 3-trifluoroacetyl-d-camphor), [Eu(S,S-Me-Ph-Pybox)(D-facam)(3)] (2-SS; S,S-Me-Ph-Pybox, 2,6-bis(4S-methyl-5S-phenyl-2-oxazolin-2-yl)pyridine), and [Eu(Phen)(D-facam)(3)] (3; Phen, 1,10-phenanthroline) are reported, and their structural features are discussed on the basis of X-ray crystallographic analyses. These chiral Eu(III) complexes showed relatively intense photoluminescence due to their (5)D(0) → (7)F(1) (magnetic-dipole) and (5)D(0) → (7)F(2) (electric-dipole) transition. The dissymmetry factors of CPL (g(CPL)) at the former band of 1-R and 1-S were as large as -1.0 and -0.8, respectively, while the g(CPL) of 3 at the (5)D(0) → (7)F(1) transition was relatively small (g(CPL) = -0.46). X-ray crystallographic data indicated specific ligand-ligand hydrogen bonding in these compounds which was expected to stabilize their chiral structures even in solution phase. CPL properties of 1-R and 1-S were discussed in terms of transition nature of lanthanide luminescence.

  7. A 3D porous indium(III) coordination polymer involving in-situ ligand synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Zhengbo, E-mail: ceshzb@lnu.edu.c; Song Yongjuan; Ji Jianwei

    2009-11-15

    The hydrothermal reaction of In{sup 3+} and 1,2,4-benzenetricarboxylic acid with the presence of piperazine leads to the generation of a novel 3D porous coordination polymer, [H{sub 3}O][In{sub 2}(btc)(bdc)(OH){sub 2}].5.5H{sub 2}O (1), (btc=1,2,4-benzenetricarboxylate, bdc=1,4-benzenedicarboxylate). Compound 1 crystallizes in orthorhombic space group Pbca with a=16.216(7) A, b=13.437(6) A, c=31.277(14) A, and Z=8. It is interesting to find that the in-situ decarboxylation reaction of 1,2,4-benzenetricarboxylate (btc) partially transformed into 1,4-benzenedicarboxylate (bdc) occurs. The 16 indium(III) centers were linked by four btc, four bdc and two mu{sub 2}-OH ligands to form a box-girder. The adjacent box-girders are further connected by the bdc and btcmore » ligands to generate a novel porous metal-organic framework containing nanotubular open channel with a cross-section of approximately 11.5x11.3 A{sup 2}. The micropores are occupied by lattice water molecules, and the solvent-accessible volume of the unit cell was estimated to be 3658.6 A{sup 3}, which is approximately 53.7% of the unit-cell volume (6815.4 A{sup 3}). - Graphical Abstract: The hydrothermal reaction of In{sup 3+} and 1,2,4-benzenetricarboxylic acid with the presence of piperazine leads to the generation of a novel 3D porous coordination polymer, [H{sub 3}O][In{sub 2}(btc)(bdc)(OH){sub 2}].5.5H{sub 2}O, (btc=1,2,4-benzenetricarboxylate, bdc=1,4-benzenedicarboxylate).« less

  8. Coordination-based gold nanoparticle layers.

    PubMed

    Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel

    2005-06-29

    Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.

  9. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Junsheng; Department of Applied Chemistry, Jilin Institute of Chemical Technology, Jilin 132022; Du Dongying

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studiedmore » in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.« less

  10. Two-dimensional correlation spectroscopic studies on coordination between organic ligands and Ni2 + ions

    NASA Astrophysics Data System (ADS)

    Bao, Ya-nan; Zeng, Yi-wei; Guo, Ran; Ablikim, Mesude; Shi, Hai-fang; Yang, Li-min; Yang, Zhan-lan; Xu, Yi-zhuang; Noda, Isao; Wu, Jin-guang

    2018-05-01

    3A2g → 3T1g(P) transition band of Ni2 + is used to probe the coordination of Ni2 +. Two-dimensional asynchronous spectra (2DCOS) are generated using the Double Asynchronous Orthogonal Sample Design (DAOSD), Asynchronous Spectrum with Auxiliary Peaks (ASAP) and Two-Trace Two-Dimensional (2T2D) approaches. Cross peaks relevant to the 3A2g → 3T1g(P) transition band of Ni2 + are utilized to probe coordination between Ni2 + and various ligands. We studied the spectral behavior of the 3A2g → 3T1g(P) transition band when Ni2 + is coordinated with ethylenediaminetetraacetic acid disodium salt (EDTA). The pattern of cross peaks in 2D asynchronous spectrum demonstrates that coordination brings about significant blue shift of the band. In addition, the absorptivity of the band increases remarkably. The interaction between Ni2 + and galactitol is also investigated. Although no clearly observable change is found on the 3A2g → 3T1g(P) transition band when galactitol is introduced, the appearance of cross peak in 2D asynchronous spectrum demonstrates that coordination indeed occurs between Ni2 + and galactitol. Furthermore, the pattern of cross peak indicates that peak position, bandwidth and absorptivity of the 3A2g → 3T1g(P) transition band of Ni(galactitol)x2 + is considerably different from those of Ni(H2O)62 +. Thus, 2DCOS is helpful to reveal subtle spectral variation, which might be helpful in shedding light on the physical-chemical nature of coordination.

  11. Outer-Sphere Direction in Iridium C-H Borylation

    PubMed Central

    Roosen, Philipp C.; Kallepalli, Venkata A.; Chattopadhyay, Buddhadeb; Singleton, Daniel A.; Maleczka, Robert E.; Smith, Milton R.

    2013-01-01

    The NHBoc group affords ortho selective C–H borylations in arenes and alkenes. Experimental and computational studies support an outer sphere mechanism where the N–H proton hydrogen bonds to a boryl ligand oxygen. The regioselectivities are unique and complement those of directed ortho metalations. PMID:22703452

  12. Direct and Quantitative Characterization of Dynamic Ligand Exchange between Coordination-Driven Self-Assembled Supramolecular Polygons

    PubMed Central

    Zheng, Yao-Rong; Stang, Peter J.

    2009-01-01

    The direct observation of dynamic ligand exchange beween Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable isotope labeling (1H/2D) of the pyridyl donors and electrospray ionization mass spectrometry (ESI-MS) together with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established based on quantitative mass spectral results. Further investigation showed that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counter anions. PMID:19243144

  13. Direct and quantitative characterization of dynamic ligand exchange between coordination-driven self-assembled supramolecular polygons.

    PubMed

    Zheng, Yao-Rong; Stang, Peter J

    2009-03-18

    The direct observation of dynamic ligand exchange between Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable (1)H/(2)D isotope labeling of the pyridyl donors and electrospray ionization mass spectrometry combined with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established on the basis of quantitative mass spectral results. Further investigation has shown that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counteranions.

  14. Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin

    PubMed Central

    Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J.; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C.; Botros, Youssry Y.; Farha, Omar K.; Hupp, Joseph T.; Mirkin, Chad A.; Fraser Stoddart, J.

    2013-01-01

    Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH2)6][AuBr4](α-cyclodextrin)2}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr4 in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr4 and KAuCl4, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr4]− leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr4]− and [K(OH2)6]+ and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host–guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin—an inexpensive and environmentally benign carbohydrate. PMID:23673640

  15. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  16. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  17. The lanthanide contraction beyond coordination chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  18. The lanthanide contraction beyond coordination chemistry

    DOE PAGES

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.; ...

    2016-04-06

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  19. Colloidal alloys with preassembled clusters and spheres.

    PubMed

    Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J

    2017-06-01

    Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.

  20. Two novel zinc(II) coordination polymers constructed from in situ amidation ligands

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Yang; Fu, Yao; Fu, Jian-Tao; Xu, Jia-Ning; Luo, Ya-Nan; Yang, Yan-Yan; Qu, Xiao-Shu; Zhang, Jing; Lu, Shu-Lai

    2018-04-01

    Two novel coordination compounds, [Zn(Hbimh) (H2O)]·H2O (1) and [Zn(Hbimh)]·(4,4ʹ-bpy)0.5 (2) (H3bimh = benzimidazole-5,6-hydrazide, 4,4ʹ-bpy = 4,4ʹ-bipyridine), have been prepared from the hydrothermal in situ amidation cyclization reactions of H3bimdc (H3bimdc = benzimidazole-5,6-dicarboxylic acid) and hydrazine hydrate (N2H4·H2O). Compound 1 exhibits a one-dimensional (1D) hexagon channel structure. Compound 2 is a three-dimensional (3D) framework structure, with 4,4ʹ-bpy fill the channels. We also obtained the ligand H3bimh. The compounds were characterized by IR, PXRD, TGA and elemental analysis. The fluorescence properties in the solid state at room temperature were also investigated.

  1. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated.more » - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds

  2. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.

    PubMed

    Shaw, Wendy J; Helm, Monte L; DuBois, Daniel L

    2013-01-01

    This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier

  3. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  4. 2-and 1-D coordination polymers of Dy(III) and Ho(III) with near infrared and visible luminescence by efficient charge-transfer antenna ligand

    NASA Astrophysics Data System (ADS)

    Oylumluoglu, Gorkem; Coban, Mustafa Burak; Kocak, Cagdas; Aygun, Muhittin; Kara, Hulya

    2017-10-01

    Two new lanthanide-based coordination complexes, [Dy(2-stp).2(H2O)]n (1) and {[Ho(2-stp).3(H2O)]·(H2O)}n (2) [2-stp = 2-sulfoterephthalic acid] were synthesized by hydrothermal reaction and characterized by elemental analysis, UV, IR, single crystal X-ray diffraction and solid state photoluminescence. DyIII and HoIII atoms are eight-coordinated and adopt a distorted square-antiprismatic geometry in complexes 1 and 2, respectively. In compound 1, Dy atoms are coordinated by four bridging 2-stp ligands forming two-dimensional (2D) layer, while Ho atoms by three bridging 2-stp ligands creating one dimensional (1D) double chains in 2. In addition, complexes 1 and 2 display in the solid state and at room temperature an intense yellow emission, respectively; this photoluminescence is achieved by an indirect process (antenna effect). The excellent luminescent performances make these complexes very good candidates for potential luminescence materials.

  5. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){submore » 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup

  6. Acid-switched Eu(III) coordination inside reverse aggregates: Insights into a synergistic liquid-liquid extraction system

    DOE PAGES

    Ellis, Ross J.

    2016-08-09

    Determining the structure of complex solutions bearing metal ions is challenging, but crucial for developing important technologies such as liquid-liquid extraction for metal refining and separation purposes. Herein, the structure of an organic Eu(III) solution consisting a binary mixture of lipophilic ligands di-2-ethylhexyl phosphoric acid (HDEHP) and tetraoctyl diglycolamide (TODGA) in dodecane is studied using synchrotron small angle X-ray scattering (SAXS) and X-ray absorption fine structure spectroscopy (EXAFS). This system is of technological importance in f-element separation for nuclear fuel cycle applications, where extraction is controlled by varying nitric acid concentration. Extraction is promoted at low and high concentration, butmore » is retarded at intermediate concentration, leading to a U-shaped function; the structural origins of which we investigate. At the nanoscale, the solution is apparently comprised of reverse micelles with polar cores of approximately 1 nm in size, and these remain virtually unchanged as acid concentration is varied. Inside the polar cores, the coordination environment of Eu(III) switches from a 9-coordinate [Eu(TODGA) 3] 3+ motif at high acid, to a 6-coordinate HDEHP-dominated complex resembling Eu(HDEHP·DEHP) 3 at low acid. The results show that extraction is controlled within the coordination sphere, where it is promoted under conditions that favor coordination of either one of the two organic ligands, but is retarded under conditions that encourage mixed complexes. Lastly, our results link solution structure with ion transport properties in a technologically-important liquid-liquid ion extraction system.« less

  7. Phosphorus-supported ligands for the assembly of multimetal architectures.

    PubMed

    Chandrasekhar, Vadapalli; Murugesapandian, Balasubramanian

    2009-08-18

    Modeled after boron-based scorpionate ligands, acyclic and cyclic phosphorus-containing compounds possessing reactive groups can serve as excellent precursors for the assembly of novel phosphorus-supported ligands that can coordinate multiple sites. In such ligands, the phosphorus atom does not have any role in coordination but is used as a structural support to assemble one or more coordination platforms. In this Account, we describe the utility of inorganic heterocyclic rings such as cyclophosphazenes and carbophosphazenes as well as acyclic phosphorus-containing compounds such as (S)PCl(3), RP(O)Cl(2), and R(2)P(O)Cl for building such multisite coordination platforms. We can modulate the number and orientation of such coordination platforms through the choice of the phosphorus-containing precursor. This methodology is quite general and modular and allows the creation of well-defined libraries of multisite coordination ligands. Phosphorus-supported pyrazolyl ligands are quite useful for building multimetallic architectures. Some of these ligands are prone to P-N bond hydrolysis upon metalation, but we have exploited the P-N bond sensitivity to generate hydrolyzed ligands in situ, which are useful to build multimetal assemblies. In addition, the intimate relationship between small molecule cyclophosphazenes and the corresponding pendant cyclophosphazene-containing polymer systems facilitated our design of polymer-supported catalysts for phosphate ester hydrolysis, plasmid DNA modification, and C-C bond formation reactions. Phosphorus hydrazides containing reactive amine groups are ideal precursors for integration into more complex ligand systems. The ligand (S)P[N(Me)N=CH-C(6)H(4)-2-OH](3) (LH(3)) contains six coordination sites, and its coordination response depends upon the oxidation state of the metal ion employed. LH(3) reacts with divalent transition metal ions to afford neutral trimetallic derivatives L(2)M(3), where the three metal ions are arranged in a

  8. A diketiminate-bound diiron complex with a bridging carbonate ligand

    PubMed Central

    Sadique, Azwana R.; Brennessel, William W.; Holland, Patrick L.

    2009-01-01

    Reduction of carbon dioxide by a diiron(I) complex gives μ-carbonato-κ3 O:O′,O′′-bis­{[2,2,6,6-tetra­methyl-3,5-bis­(2,4,6-triisopropyl­phenyl)heptane-2,5-diiminate(1−)-κ2 N,N′]iron(II)} toluene disolvate, [Fe2(C41H65N)2(CO3)]·2C7H8, a diiron(II) species with a bridging carbonate ligand. The asymmetric unit contains one diiron complex and two cocrystallized toluene solvent mol­ecules that are distributed over three sites, one with atoms in general positions and two in crystallographic sites. Both FeII atoms are η2-coordinated to diketiminate ligands, but η1- and η2-coordinated to the bridging carbonate ligand. Thus, one FeII center is three-coordinate and the other is four-coordinate. The bridging carbonate ligand is nearly perpendicular to the iron–diketiminate plane of the four-coordinate FeII center and parallel to the plane of the three-coordinate FeII center. PMID:19407402

  9. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  10. Addendum to "An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates" [Phys. Lett. A 379 (26-27) (2015) 1589-1593

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2016-02-01

    The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.

  11. Understanding the complexation of Eu3 + with potential ligands used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle: A luminescence investigation

    NASA Astrophysics Data System (ADS)

    Sengupta, Arijit; Kadam, R. M.

    2017-02-01

    A systematic photoluminescence based investigation was carried out to understand the complexation of Eu3 + with different ligands (TBP: tri-n-butyl phosphate, DHOA: di-n-hexyl octanamide, Cyanex 923: tri-n-alkyl phosphine oxide and Cyanex 272: Bis (2,4,4 trimethyl) pentyl phosphinic acid) used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle. In case of TBP and DHOA complexes, 3 ligand molecules coordinated in monodentate fashion and 3 nitrate ion in bidentate fashion to Eu3 + to satisfy the 9 coordination of Eu. In case of Cyanex 923 and Cyanex 272 complexes, 3 ligand molecules, 3 nitrate ion and 3 water molecules coordinated to Eu3 + in monodentate fashion. The Eu complexes of TBP and DHOA were found to have D3h local symmetry while that for Cyanex 923 and Cyanex 272 were C3h. Judd-Ofelt analysis of these systems revealed that the covalency of Eusbnd O bond followed the trend DHOA > TBP > Cyanex 272 > Cyanex 923. Different photophysical properties like radiative and non-radiative life time, branching ratio for different transitions, magnetic and electric dipole moment transition probabilities and quantum efficiency were also evaluated and compared for these systems. The magnetic dipole transition probability was found to be almost independent of ligand field perturbation while electric dipole transition probability for 5D0-7F2 transition was found to be hypersensitive with ligand field with a trend DHOA > TBP > Cyanex 272 > Cyanex 923. Supplementary Table 2: Determination of inner sphere water molecules from the different empirical formulae reported in the literature.

  12. A new 1D manganese(II) coordination polymer with end-to-end azide bridge and isonicotinoylhydrazone Schiff base ligand: Crystal structure, Hirshfeld surface, NBO and thermal analyses

    NASA Astrophysics Data System (ADS)

    Khani, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2018-02-01

    A new manganese (II) coordination polymer, [MnL2 (μ-1,3-N3)2]n, with co-ligands including azide anion and Schiff base based on isonicotinoylhydrazone has been synthesized and characterized. The crystal structure determination shows that the azide ligand acts as end-to-end (EE) bridging ligand and generates a one-dimensional coordination polymer. In this compound, each manganes (II) metal center is hexa-coordinated by four azide nitrogens and two pyridinic nitrogens for the formation of octahedral geometry. The analysis of crystal packing indicates that the 1D chain of [MnL2 (μ-1,3-N3)2]n, is stabilized as a 3D supramolecular network by intra- and inter-chain intermolecular interactions of X-H···Y (X = N and C, Y = O and N). Hirshfeld surface analysis and 2D fingerprint plots have been used for a more detailed investigation of intermolecular interactions. Also, natural bond orbital (NBO) analysis was performed to get information about atomic charge distributions, hybridizations and the strength of interactions. Finally, thermal analysis of compound showed its complete decomposition during three thermal steps.

  13. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.

    PubMed

    Szunyogh, Dániel; Gyurcsik, Béla; Larsen, Flemming H; Stachura, Monika; Thulstrup, Peter W; Hemmingsen, Lars; Jancsó, Attila

    2015-07-28

    Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications.

  14. Generalized spherical and simplicial coordinates

    NASA Astrophysics Data System (ADS)

    Richter, Wolf-Dieter

    2007-12-01

    Elementary trigonometric quantities are defined in l2,p analogously to that in l2,2, the sine and cosine functions are generalized for each p>0 as functions sinp and cosp such that they satisfy the basic equation cosp([phi])p+sinp([phi])p=1. The p-generalized radius coordinate of a point [xi][set membership, variant]Rn is defined for each p>0 as . On combining these quantities, ln,p-spherical coordinates are defined. It is shown that these coordinates are nearly related to ln,p-simplicial coordinates. The Jacobians of these generalized coordinate transformations are derived. Applications and interpretations from analysis deal especially with the definition of a generalized surface content on ln,p-spheres which is nearly related to a modified co-area formula and an extension of Cavalieri's and Torricelli's indivisibeln method, and with differential equations. Applications from probability theory deal especially with a geometric interpretation of the uniform probability distribution on the ln,p-sphere and with the derivation of certain generalized statistical distributions.

  15. Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    NASA Astrophysics Data System (ADS)

    Tang, Meng; Dong, Bao-Xia; Wu, Yi-Chen; Yang, Fang; Liu, Wen-Long; Teng, Yun-Lei

    2016-12-01

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H2ip) have been investigated in a series of CdII-based frameworks. Hydrothermal reactions of CdII salts and 4-Br-H2ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: {Cd(bix)0.5(bix)0.5(4-Br-ip)]·H2O}n (1), [Cd(bbi)0.5(bbi)0.5(4-Br-ip)]n (2), {[Cd(btx)0.5(4-Br-ip)(H2O)]·0.5CH3OH·H2O}n (3) and {[Cd(bbt)0.5(4-Br-ip)(H2O)]·3·5H2O}n (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H2ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 66 topology and compound 2 has a 412 topology. Compounds 3-4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·38). The thermal stabilities and photoluminescence properties of them were discussed in detail.

  16. Synthesis of axially chiral oxazoline-carbene ligands with an N-naphthyl framework and a study of their coordination with AuCl·SMe(2).

    PubMed

    Wang, Feijun; Li, Shengke; Qu, Mingliang; Zhao, Mei-Xin; Liu, Lian-Jun; Shi, Min

    2012-01-01

    Axially chiral oxazoline-carbene ligands with an N-naphthyl framework were successfully prepared, and their coordination behavior with AuCl·SMe(2) was also investigated, affording the corresponding Au(I) complexes in moderate to high yields.

  17. Spin state switching in iron coordination compounds

    PubMed Central

    Gaspar, Ana B; Garcia, Yann

    2013-01-01

    Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535

  18. Drawing Mononuclear Octahedral Coordination Compounds Containing Tridentate Chelating Ligands

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Ple, Karen; Haudrechy, Arnaud

    2011-01-01

    Complexes with tridentate ligands of the type [M(A-B-C)2], where A [not equal to] B [not equal to] C and with an imposed bonding sequence A-B-C, require special attention to draw all possible stereoisomers. Depending on the nature of the central donor atom B of the tridentate ligand, an easy drawing method is presented that shows seven chiral…

  19. Unusual saccharin-N,O (carbonyl) coordination in mixed-ligand copper(II) complexes: Synthesis, X-ray crystallography and biological activity

    NASA Astrophysics Data System (ADS)

    Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed

    2017-07-01

    Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.

  20. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xun; Liu, Lang; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this casemore » results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.« less

  1. Conversion of the. mu. ketene ligand in (PPN)(Os/sub 3/(CO)/sub 10/(. mu. -I)(. mu. -CH/sub 2/CO)) into enolate, acyl, and vinyl ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassner, S.L.; Morrison, E.D.; Geoffroy, G.L.

    1986-08-20

    Free ketene is a valuable organic synthetic reagent, but its utility is somewhat limited by its high reactivity and tendency to dimerize to yield diketene. The ketene ligand is obviously stabilized by metal coordination in a variety of bonding modes, but it is not yet known how coordination influences the chemistry of this important molecule. The authors have studied the reactivity of the coordinated ketene ligand of type II found in the anionic cluster compound (PPN)(Os/sub 3/(CO)/sub 10/(..mu..-I)(..mu..-CH/sub 2/CO)) (1) (PPN/sup +/ = (Ph/sub 3/P)/sub 2/N/sup +/) and herein show that this ligand is readily converted into eta-enolate ligands uponmore » reaction with simple nucleophiles and into vinyl and acetyl ligands upon reaction with electrophiles.« less

  2. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination

  3. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    PubMed

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  4. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    PubMed Central

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  5. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning

    PubMed Central

    Azarov, Ivan; Wang, Ling; Rose, Jason J.; Xu, Qinzi; Huang, Xueyin N.; Belanger, Andrea; Wang, Ying; Guo, Lanping; Liu, Chen; Ucer, Kamil B.; McTiernan, Charles F.; O’Donnell, Christopher P.; Shiva, Sruti; Tejero, Jesús; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2016-01-01

    Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxy-hemoglobin to 0.11 and 0.41 minutes, respectively, from a value that is ≥ 200 minutes when the hemoglobin or cells are only exposed to air. Infusions of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and were followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity such as our mutant five-coordinate Ngb are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO. PMID:27928027

  6. Inner and Outer Coordination Shells of Mg(2+) in CorA Selectivity Filter from Molecular Dynamics Simulations.

    PubMed

    Kitjaruwankul, Sunan; Wapeesittipan, Pattama; Boonamnaj, Panisak; Sompornpisut, Pornthep

    2016-01-28

    Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.

  7. Electronic structure and reactivity of three-coordinate iron complexes.

    PubMed

    Holland, Patrick L

    2008-08-01

    [Reaction: see text]. The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (beta-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states. Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for pi interactions with ligands. Trends in sigma-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic sigma-bonding and the availability of pi-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong pi-backbonding to transfer charge from iron into coordinated alkynes and N 2, whereas iron(III) accepts charge from a pi-donating imido ligand. Though the imidoiron(III) complex is stabilized by pi-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the pi-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate

  8. Zn(II)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(II) ions

    PubMed Central

    Yuan, Zhao; Simmons, J. Tyler; Sreenath, Kesavapillai

    2014-01-01

    Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research. PMID:25071933

  9. What a difference a 5f element makes: trivalent and tetravalent uranium halide complexes supported by one and two bis[2-(diisopropylphosphino)-4-methylphenyl]amido (PNP) ligands.

    PubMed

    Cantat, Thibault; Scott, Brian L; Morris, David E; Kiplinger, Jaqueline L

    2009-03-02

    The coordination behavior of the bis[2-(diisopropylphosphino)-4-methylphenyl]amido ligand (PNP) toward UI3(THF)4 and UCl4 has been investigated to access new uranium(III) and uranium(IV) halide complexes supported by one and two PNP ligands. The reaction between (PNP)K (6) and 1 equiv of UI3(THF)4 afforded the trivalent halide complex (PNP)UI2(4-tBu-pyridine)2 (7) in the presence of 4-tert-butylpyridine. The same reaction carried out with UCl4 and no donor ligand gave [(PNP)UCl3]2 (8), in which the uranium coordination sphere in the (PNP)UCl3 unit is completed by a bridging chloride ligand. When UCl4 is reacted with 1 equiv (PNP)K (6) in the presence of THF, trimethylphosphine oxide (TMPO), or triphenylphosphineoxide (TPPO), the tetravalent halide complexes (PNP)UCl3(THF) (9), (PNP)UCl3(TMPO)2 (10), and (PNP)UCl3(TPPO) (11), respectively, are formed in excellent yields. The bis(PNP) complexes of uranium(III), (PNP)2UI (12), and uranium(IV), (PNP)2UCl2 (13), were easily isolated from the analogous reactions between 2 equiv of 6 and UI3(THF)4 or UCl4, respectively. Complexes 12 and 13 represent the first examples of complexes featuring two PNP ligands coordinated to a single metal center. Complexes 7-13 have been characterized by single-crystal X-ray diffraction and 1H and 31P NMR spectroscopy. The X-ray structures demonstrate the ability of the PNP ligand to adopt new coordination modes upon coordination to uranium. The PNP ligand can adopt both pseudo-meridional and pseudo-facial geometries when it is kappa3-(P,N,P) coordinated, depending on the steric demand at the uranium metal center. Additionally, its hemilabile character was demonstrated with an unusual kappa2-(P,N) coordination mode that is maintained in both the solid-state and in solution. Comparison of the structures of the mono(PNP) and bis(PNP) complexes 7, 9, 11-13 with their respective C5Me5 analogues 1-4 undoubtedly show that a more sterically congested environment is provided by the PNP ligand. The

  10. Controlled coordination in vanadium(V) dimethylhydrazido compounds.

    PubMed

    Sakuramoto, Takashi; Moriuchi, Toshiyuki; Hirao, Toshikazu

    2016-11-01

    The vanadium(V) dimethylhydrazido compounds were structurally characterized to elucidate the effect of the alkoxide ligands in the coordination environment of vanadium(V) hydrazido center. The single-crystal X-ray structure determination of the vanadium(V) dimethylhydrazido compound with isopropoxide ligands revealed a dimeric structure with the V(1)-N(1) distance of 1.680(5)Å, in which each vanadium atom is coordinated in a distorted trigonal-bipyramidal geometry (τ 5 =0.81) with the hydrazido and bridging isopropoxide ligands in the apical positions. On the contrary, nearly tetrahedral arrangement around the vanadium metal center (τ 4 =0.06) with the V(1)-N(1) distance of 1.660(2)Å was observed in the vanadium(V) dimethylhydrazido compound with tert-butoxide ligands. The introduction of the 2,2',2″-nitrilotriethoxide ligand led to a pseudo-trigonal-bipyramidal geometry (τ 5 =0.92) at the vanadium center with the V(1)-N(1) distance of 1.691(5)Å, wherein vanadium atom is pulled out of the plane formed by the nitrilotriethoxide oxygen atoms in the direction of the hydrazido nitrogen. The coordination from the apical ligand in the vanadium(V) dimethylhydrazido compound was found to result in the longer V(1)-N(1) distance. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. PDBToSDF: Create ligand structure files from PDB file.

    PubMed

    Muppalaneni, Naresh Babu; Rao, Allam Appa

    2011-01-01

    Protein Data Bank (PDB) file contains atomic data for protein and ligand in protein-ligand complexes. Structure data file (SDF) contains data for atoms, bonds, connectivity and coordinates of molecule for ligands. We describe PDBToSDF as a tool to separate the ligand data from pdb file for the calculation of ligand properties like molecular weight, number of hydrogen bond acceptors, hydrogen bond receptors easily.

  12. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  13. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands.

    PubMed

    Khadka, Chhatra B; Najafabadi, Bahareh Khalili; Hesari, Mahdi; Workentin, Mark S; Corrigan, John F

    2013-06-17

    The redox-active diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been used to stabilize the copper(I) chalcogenide clusters [Cu12(μ4-S)6(μ-dppf)4] (1), [Cu8(μ4-Se)4(μ-dppf)3] (2), [Cu4(μ4-Te)(μ4-η(2)-Te2)(μ-dppf)2] (3), and [Cu12(μ5-Te)4(μ8-η(2)-Te2)2(μ-dppf)4] (4), prepared by the reaction of the copper(I) acetate coordination complex (dppf)CuOAc (5) with 0.5 equiv of E(SiMe3)2 (E = S, Se, Te). Single-crystal X-ray analyses of complexes 1-4 confirm the presence of {Cu(2x)E(x)} cores stabilized by dppf ligands on their surfaces, where the bidentate ligands adopt bridging coordination modes. The redox chemistry of cluster 1 was examined using cyclic voltammetry and compared to the electrochemistry of the free ligand dppf and the corresponding copper(I) acetate coordination complex 5. Cluster 1 shows the expected consecutive oxidations of the ferrocene moieties, Cu(I) centers, and phosphine of the dppf ligand.

  14. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.

    2015-06-01

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  15. Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts

    DOE PAGES

    Matheu, Roc; Ertem, Mehmed Z.; Gimbert-Surinach, Carolina; ...

    2017-08-15

    In this paper, we describe the synthesis, structural characterization, and redox properties of two new Ru complexes containing the dianionic potentially pentadentate [2,2':6',2"-terpyridine]-6,6"-dicarboxylate (tda 2–) ligand that coordinates Ru at the equatorial plane and with additional pyridine or dmso acting as monondentate ligand in the axial positions: [Ru II(tda-κ-N 3O)(py)(dmso)], 1 II and [Ru III(tda-κ-N 3O 2)(py)(H 2O) ax] +, 2 III(H 2O) +. Complex 1 II has been characterized by single-crystal XRD in the solid state and in solution by NMR spectroscopy. The redox properties of 1 II and 2 III(H 2O) + have been thoroughly investigated by meansmore » of cyclic voltammetry and differential pulse voltammetry. Complex 2 II(H 2O) displays poor catalytic activity with regard to the oxidation of water to dioxygen, and its properties have been analyzed on the basis of foot of the wave analysis and catalytic Tafel plots. The activity of 2 II(H 2O) has been compared with related water oxidation catalysts (WOCs) previously described in the literature. Despite its moderate activity, 2 II(H 2O) constitutes the cornerstone that has triggered the rationalization of the different factors that govern overpotentials as well as efficiencies in molecular WOCs. The present work uncovers the interplay between different parameters, namely, coordination number, number of anionic groups bonded to the first-coordination sphere of the metal center, water oxidation catalysis overpotential, p K a and hydrogen bonding, and the performance of a given WOC. It thus establishes the basic principles for the design of efficient WOCs operating at low overpotentials.« less

  16. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail

    Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusivelymore » through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.« less

  17. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Rong; Song Huihua, E-mail: songhuihua@mail.hebtu.edu.c; Wei Zhen

    2010-09-15

    Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (1), [Co(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (2), [Ni(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (3), and [Co(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (4), where tsgluO{sup 2-}=(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2{sub 1}, forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co{submore » 2}O{sub 6}N{sub 2}]{sub n}{sup 4-} units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through {pi}-{pi} stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.« less

  18. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  19. Cobalt(II) and Cobalt(III) Coordination Compounds.

    ERIC Educational Resources Information Center

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  20. Two fac-tricarbonylrhenium(I) azadipyrromethene (ADPM) complexes: ligand-substitution effect on crystal structure.

    PubMed

    Cibian, Mihaela; Bessette, André; O'Connor, Andrew; Ferreira, Janaina G; Hanan, Garry S

    2015-02-01

    The crystal structures of fac-(acetonitrile-κN)(2-{[3,5-bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN(1)]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN(1))tricarbonylrhenium(I)-hexane-acetonitrile (2/1/2), [Re(C36H30N3O4)(CH3CN)(CO)3]·0.5C6H14·CH3CN, (2), and fac-(2-{[3,5-bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN(1)]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN(1))tricarbonyl(dimethyl sulfoxide-κO)rhenium(I), [Re(C36H30N3O4)(C2H6OS)(CO)3], (3), at 150 K are reported. Both complexes display a distorted octahedral geometry, with a fac-Re(CO)3 arrangement and one azadipyrromethene (ADPM) chelating ligand in the equatorial position. One solvent molecule completes the coordination sphere of the Re(I) centre in the remaining axial position. The ADPM ligand shows high flexibility upon coordination, while retaining its π-delocalized nature. Bond length and angle analyses indicate that the differences in the geometry around the Re(I) centre in (2) and (3), and those found in three reported fac-Re(CO)3-ADPM complexes, are dictated mainly by steric factors and crystal packing. Both structures display intramolecular C-H...N hydrogen bonding. Intermolecular interactions of the Csp(2)-H...π and Csp(2)-H...O(carbonyl) types link the discrete monomers into extended chains.

  1. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  2. Strategies, linkers and coordination polymers for high-performance sorbents

    DOEpatents

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  3. Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination.

    PubMed

    Abdelhamid, Rehab F; Obara, Yuji; Kohzuma, Takamitsu

    2008-01-01

    Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH approximately 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH>11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu-S(Cys) stretching frequency was shifted to higher frequency region at pH approximately 11. The higher frequency shift of Cu-S(Cys) bond is implied the stronger Cu-S(Cys) bond at alkaline transition pH approximately 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH>11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH>11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine -SCH3 part and coordinated histidine imidazole moiety. The introduction of pi-pi interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.

  4. An Unusual Ligand Coordination Gives Rise to a New Family of Rhodium Metalloinsertors with Improved Selectivity and Potency

    PubMed Central

    2015-01-01

    Rhodium metalloinsertors are octahedral complexes that bind DNA mismatches with high affinity and specificity and exhibit unique cell-selective cytotoxicity, targeting mismatch repair (MMR)-deficient cells over MMR-proficient cells. Here we describe a new generation of metalloinsertors with enhanced biological potency and selectivity, in which the complexes show Rh–O coordination. In particular, it has been found that both Δ- and Λ-[Rh(chrysi)(phen)(DPE)]2+ (where chrysi =5,6 chrysenequinone diimmine, phen =1,10-phenanthroline, and DPE = 1,1-di(pyridine-2-yl)ethan-1-ol) bind to DNA containing a single CC mismatch with similar affinities and without racemization. This is in direct contrast with previous metalloinsertors and suggests a possible different binding disposition for these complexes in the mismatch site. We ascribe this difference to the higher pKa of the coordinated immine of the chrysi ligand in these complexes, so that the complexes must insert into the DNA helix with the inserting ligand in a buckled orientation; spectroscopic studies in the presence and absence of DNA along with the crystal structure of the complex without DNA support this assignment. Remarkably, all members of this new family of compounds have significantly increased potency in a range of cellular assays; indeed, all are more potent than cisplatin and N-methyl-N′-nitro-nitrosoguanidine (MNNG, a common DNA-alkylating chemotherapeutic agent). Moreover, the activities of the new metalloinsertors are coupled with high levels of selective cytotoxicity for MMR-deficient versus proficient colorectal cancer cells. PMID:25254630

  5. Brownian self-propelled particles on a sphere

    NASA Astrophysics Data System (ADS)

    Apaza-Pilco, Leonardo Felix; Sandoval, Mario

    We present the dynamics of a Brownian self-propelled particle at low Reynolds number moving on the surface of a sphere. The effects of curvature and self-propulsion on the diffusion of the particle are elucidated by determining (numerically) the mean-square displacement of the particle's angular (azimuthal and polar) coordinates. The results show that the long time behavior of its angular mean-square displacement is linear in time. We also see that the slope of the angular MSD is proportional to the propulsion velocity and inverse to the curvature of the sphere. The angular probability distribution function (PDF) of the particle is also obtained by numerically solving its respective Smoluchowski equation.

  6. Shuttling of nickel oxidation states in N4S2 coordination geometry versus donor strength of tridentate N2S donor ligands.

    PubMed

    Chatterjee, Sudip K; Roy, Suprakash; Barman, Suman Kumar; Maji, Ram Chandra; Olmstead, Marilyn M; Patra, Apurba K

    2012-07-16

    Seven bis-Ni(II) complexes of a N(2)S donor set ligand have been synthesized and examined for their ability to stabilize Ni(0), Ni(I), Ni(II) and Ni(III) oxidation states. Compounds 1-5 consist of modifications of the pyridine ring of the tridentate Schiff base ligand, 2-pyridyl-N-(2'-methylthiophenyl)methyleneimine ((X)L1), where X = 6-H, 6-Me, 6-p-ClPh, 6-Br, 5-Br; compound 6 is the reduced amine form (L2); compound 7 is the amide analog (L3). The compounds are perchlorate salts except for 7, which is neutral. Complexes 1 and 3-7 have been structurally characterized. Their coordination geometry is distorted octahedral. In the case of 6, the tridentate ligand coordinates in a facial manner, whereas the remaining complexes display meridional coordination. Due to substitution of the pyridine ring of (X)L1, the Ni-N(py) distances for 1~5 < 3 < 4 increase and UV-vis λ(max) values corresponding to the (3)A(2g)(F)→(3)T(2g)(F) transition show an increasing trend 1~5 < 2 < 3 < 4. Cyclic voltammetry of 1-5 reveals two quasi-reversible reduction waves that correspond to Ni(II)→Ni(I) and Ni(I)→Ni(0) reduction. The E(1/2) for the Ni(II)/Ni(I) couple decreases as 1 > 2 > 3 > 4. Replacement of the central imine N donor in 1 by amine 6 or amide 7 N donors reveals that complex 6 in CH(3)CN exhibits an irreversible reductive response at E(pc) = -1.28 V, E(pa) = +0.25 V vs saturated calomel electrode (SCE). In contrast, complex 7 shows a reversible oxidation wave at E(1/2) = +0.84 V (ΔE(p) = 60 mV) that corresponds to Ni(II)→Ni(III). The electrochemically generated Ni(III) species, [(L3)(2)Ni(III)](+) is stable, showing a new UV-vis band at 470 nm. EPR measurements have also been carried out.

  7. Synthesis and investigation of Pd(I) carbonyl complexes with heteroorganic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberov, A.A.; Polovnyak, V.K.; Akhmetov, N.S.

    1987-09-10

    Pd(I) carbonyl complexes are attracting attention because they have been shown to have catalytic properties in a series of organic syntheses. The stability and catalytic properties of these compounds are determined by the nature of the phosphine ligand and the bridge coordination of the carbonylgroup. Through the partial replacement of carbonyl and acido ligands by heteroorganic ligands in carbonyl halogenide and carbonyl acetate Pd(I) complexes, new stable Pd(I) complexes were obtained: (PdLX)/sub 2/CO, where L = PPh/sub 3/, X = OAc; L = AsPh/sub 3/, X = Cl, Br, OAc; L = SbPh/sub 3/, X = Cl Br, OAc; Lmore » = Ph/sub 2/PCH/sub 2/PPh/sub 2/, Ph/sub 2/AsCH/sub 2/AsPh/sub 2/, X = OAc. Atoms of the heteroorganic and acido ligands are equivalently coordinated to the palladium atoms. The carbonyl group in the complexes has bridge coordination to palladium atoms in the Pd(CO)Pd fragment; in complexes with bidentate heteroorganic ligands the covalent bond between palladium atoms is absent.« less

  8. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  9. Ligand placement based on prior structures: the guided ligand-replacement method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klei, Herbert E.; Bristol-Myers Squibb, Princeton, NJ 08543-4000; Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods formore » modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications

  10. An intersecting chord method for minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan

    2015-11-01

    As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.

  11. Exploration of a Variety of Copper Molybdate Coordination Hybrids Based on a Flexible Bis(1,2,4-triazole) Ligand: A Look through the Composition-Space Diagram.

    PubMed

    Senchyk, Ganna A; Lysenko, Andrey B; Domasevitch, Konstantin V; Erhart, Oliver; Henfling, Stefan; Krautscheid, Harald; Rusanov, Eduard B; Krämer, Karl W; Decurtins, Silvio; Liu, Shi-Xia

    2017-11-06

    We investigated the coordination ability of the bis(1,2,4-triazolyl) module, tr 2 pr = 1,3-bis(1,2,4-triazol-4-yl)propane, toward the engineering of solid-state structures of copper polyoxomolybdates utilizing a composition space diagram approach. Different binding modes of the ligand including [N-N]-bridging and N-terminal coordination and the existence of favorable conformation forms (anti/anti, gauche/anti, and gauche/gauche) resulted in varieties of mixed metal Cu I /Mo VI and Cu II /Mo VI coordination polymers prepared under hydrothermal conditions. The composition space analysis employed was aimed at both the development of new coordination solids and their crystallization fields through systematic changes of the reagent ratios [copper(II) and molybdenum(VI) oxide precursors and the tr 2 pr ligand]. Nine coordination compounds were synthesized and structurally characterized. The diverse coordination architectures of the compounds are composed of cationic fragments such as [Cu II 3 (μ 2 -OH) 2 (μ 2 -tr) 2 ] 4+ , [Cu II 3 (μ 2 -tr) 6 ] 6+ , [Cu II 2 (μ 2 -tr) 3 ] 4+ , etc., connected to polymeric arrays by anionic species (molybdate MoO 4 2- , isomeric α-, δ-, and β-octamolybdates {Mo 8 O 26 } 4- or {Mo 8 O 28 H 2 } 6- ). The inorganic copper(I,II)/molybdenum(VI) oxide matrix itself forms discrete or low-dimensional subtopological motifs (0D, 1D, or 2D), while the organic spacers interconnect them into higher-dimensional networks. The 3D coordination hybrids show moderate thermal stability up to 230-250 °C, while for the 2D compounds, the stability of the framework is distinctly lower (∼190 °C). The magnetic properties of the most representative samples were investigated. The magnetic interactions were rationalized in terms of analyzing the planes of the magnetic orbitals.

  12. Coordination modes of multidentate ligands in fac-[Re(CO)(3)(polyaminocarboxylate)] analogues of (99m)Tc radiopharmaceuticals. dependence on aqueous solution reaction conditions.

    PubMed

    Lipowska, Malgorzata; He, Haiyang; Xu, Xiaolong; Taylor, Andrew T; Marzilli, Patricia A; Marzilli, Luigi G

    2010-04-05

    We study Re analogues of (99m)Tc renal agents to interpret previous results at the (99m)Tc tracer level. The relative propensities of amine donors versus carboxylate oxygen donors of four L = polyaminocarboxylate ligands to coordinate in fac-[Re(I)(CO)(3)L](n) complexes were assessed by examining the reaction of fac-[Re(I)(CO)(3)(H(2)O)(3)](+) under conditions differing in acidity and temperature. All four L [N,N-bis-(2-aminoethyl)glycine (DTGH), N,N-ethylenediaminediacetic acid, diethylenetriamine-N-malonic acid, and diethylenetriamine-N-acetic acid] can coordinate as tridentate ligands while creating a dangling chain terminated in a carboxyl group. Dangling carboxyl groups facilitate renal clearance in fac-[(99m)Tc(I)(CO)(3)L](n) agents. Under neutral conditions, the four ligands each gave two fac-[Re(I)(CO)(3)L](n) products with HPLC traces correlating well with known traces of the fac-[(99m)Tc(I)(CO)(3)L](n) mixtures. Such mixtures are common in renal agents because the needed dangling carboxyl group can compete for a coordination site. However, the HPLC separations needed to assess the biodistribution of a single tracer are impractical in a clinical setting. One goal in investigating this Re chemistry is to identify conditions for avoiding this problem of mixtures in preparations of fac-[(99m)Tc(I)(CO)(3)L](n) renal tracers. After separation and isolation of the fac-[Re(I)(CO)(3)L](n) products, NMR analysis of all products and single crystal X-ray crystallographic analysis of both DTGH products, as well as one product each from the other L, allowed us to establish coordination mode unambiguously. The product favored in acidic conditions has a dangling amine chain and more bound oxygen. The product favored in basic conditions has a dangling carboxyl chain and more bound nitrogen. At the elevated temperatures used for simulating tracer preparation, equilibration was facile (ca. 1 h or less), allowing selective formation of one product by utilizing acidic or

  13. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  14. Photochemically stable fluorescent heteroditopic ligands for zinc ion.

    PubMed

    Zhang, Lu; Zhu, Lei

    2008-11-07

    Photochemically stable fluorescent heteroditopic ligands (9 and 10) for zinc ion were prepared and studied. Two independent metal coordination-driven photophysical processes, chelation-enhanced fluorescence (CHEF) and internal (or intramolecular) charge transfer (ICT), were designed into our heteroditopic ligand framework. This strategy successfully relates three coordination states of a ligand, non-, mono-, and dicoordinated, to three fluorescence states, fluorescence OFF, ON at one wavelength, and ON at another wavelength. This ligand platform has provided chemical foundation for applications such as the quantification of zinc concentration over broad ranges (Zhang, L.; Clark, R. J.; Zhu, L. Chem.-Eur. J. 2008, 14, 2894-2903) and molecular logic functions (Zhang, L.; Whitfield, W. A.; Zhu, L. Chem. Commun. 2008, 1880-1882). The binding stoichiometries of dipicolylamino and 2,2'-bipyridyl, the two binding sites featured in heteroditopic ligands 7-10, were studied in acetonitrile using both Job's method of continuous variation and isothermal titration calorimetry (ITC). The fluorescence enhancement of 7-10 upon the formation of monozinc complexes (defined as the fluorescence quantum yield ratio of monozinc complex and free ligand) is qualitatively related to the highest occupied molecular orbital (HOMO) energy levels of their fluorophores. This is consistent with our hypothesis on the thermodynamics of the coordination-driven photophysical processes embodied in the designed heteroditopic system, which was supported by cyclic voltammetry studies. In conclusion, compounds 9 and 10 not only possess better photochemical stability but also display a higher degree of fluorescence turn-on upon formation of monozinc complexes than their vinyl counterparts 7 and 8.

  15. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir; Nozarian, Kimia; Babadi, Susan Soleymani

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, themore » adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination

  16. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less

  17. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  18. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides.

    PubMed

    Tye, Jesse W; Weng, Zhiqiang; Johns, Adam M; Incarvito, Christopher D; Hartwig, John F

    2008-07-30

    Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L 2Cu (+) cation and a CuX 2 (-) anion. A tetraalkylammonium salt of the CuX 2 (-) anion in which X = phthalimidate was also isolated. Conductivity measurements and (1)H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C-N coupling, but the ammonium salt of [Cu(phth) 2] (-) did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen) 2Cu][Cu(pyrr) 2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free

  19. Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers.

    PubMed

    Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William

    2013-05-06

    In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.

  20. Synthesis, selected coordination chemistry and extraction behavior of a (phosphinoylmethyl)pyridyl N-oxide-functionalized ligand based upon a 1,4-diazepane platform

    DOE PAGES

    Ouizem, Sabrina; Rosario Amorin, Daniel; Dickie, Diane A.; ...

    2015-05-09

    For syntheses of new multidentate chelating ligands ((6,6'4(1,4-diazepane-1,4-diyl)bis(methylene))bis(pyridine-6,2-diyl))bis(methylene))bis(diphenylphosphine oxide) (2) and 6,6'-((1,4-diazepane1,4-diyl)bis(methylene))bis(2-((diphenylphosphoryl)methyl)pyridine 1-oxide) (3), based upon a 1,4-diazepane platform functionalized with 2-(diphenylphosphinoylmethyl)pyridine P-oxide and 2-(diphenylphosphinoylmethyl)pyridine NP-dioxide fragments, respectively, the results are reported. Our results from studies of the coordination chemistry of the ligands with selected lanthanide nitrates and Cu(BF 4)(2) are outlined, and crystal structures for two complexes, [Cu(2)](BF 4) 2 and [Cu(3)](BF 4) 2, are described along with survey Eu(III) and Am(III) solvent extraction analysis, for 3.

  1. The coordination structure of the extracted copper(II) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi

    2017-09-01

    In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing

  2. Spectroscopic and computational investigation of actinium coordination chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrier, Maryline Ghislaine; Batista, Enrique Ricardo; Berg, John M.

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, Ac III reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–O H2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively.more » The X-ray absorption spectroscopy comparisons between Ac III and Am III in HCl solutions indicate Ac III coordinates more inner-sphere Cl 1– ligands (3.2±1.1) than Am III (0.8±0.3). Finally, these results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique Ac III chemical behaviour.« less

  3. Spectroscopic and computational investigation of actinium coordination chemistry

    DOE PAGES

    Ferrier, Maryline Ghislaine; Batista, Enrique Ricardo; Berg, John M.; ...

    2016-08-17

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, Ac III reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–O H2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively.more » The X-ray absorption spectroscopy comparisons between Ac III and Am III in HCl solutions indicate Ac III coordinates more inner-sphere Cl 1– ligands (3.2±1.1) than Am III (0.8±0.3). Finally, these results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique Ac III chemical behaviour.« less

  4. Visible and NIR photoluminescence properties of a series of novel lanthanide-organic coordination polymers based on hydroxyquinoline-carboxylate ligands.

    PubMed

    Gai, Yan-Li; Xiong, Ke-Cai; Chen, Lian; Bu, Yang; Li, Xing-Jun; Jiang, Fei-Long; Hong, Mao-Chun

    2012-12-17

    A series of novel two-dimensional (2D) lanthanide coordination polymers with 4-hydroxyquinoline-2-carboxylate (H(2)hqc) ligands, [Ln(Hhqc)(3)(H(2)O)](n)·3nH(2)O (Ln = Eu (1), Tb (2), Sm (3), Nd (4), and Gd (5)) and [Ln(Hhqc)(ox)(H(2)O)(2)](n) (Ln = Eu (6), Tb (7), Sm (8), Tm (9), Dy (10), Nd (11), Yb (12), and Gd (13); H(2)ox = oxalic acid), have been synthesized under hydrothermal conditions. Complexes 1-5 are isomorphous, which can be described as a two-dimensional (2D) hxl/Shubnikov network based on Ln(2)(CO(2))(4) paddle-wheel units, and the isomorphous complexes 6-13 feature a 2D decker layer architecture constructed by Ln-ox infinite chains cross-linked alternatively by bridging Hhqc(-) ligands. The room-temperature photoluminescence spectra of complexes Eu(III) (1 and 6), Tb(III) (2 and 7), and Sm(III) (3 and 8) exhibit strong characteristic emissions in the visible region, whereas Nd(III) (4 and 11) and Yb(III) (12) complexes display NIR luminescence upon irradiation at the ligand band. Moreover, the triplet state of H(2)hqc matches well with the emission level of Eu(III), Tb(III), and Sm(III) ions, which allows the preparation of new optical materials with enhanced luminescence properties.

  5. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Chen; Liu, Liu; Guo, Xu

    2016-01-15

    Two novel coordination polymers, namely, [Ca(NCP){sub 2}]{sub ∞} (I) and [Sr(NCP){sub 2}]{sub ∞} (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP{sup −}){sub 4} (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π–π interactions between the pyridine rings belonging to phenanthroline of NCP{sup −} which stabilize themore » frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability. - Graphical abstract: One-dimensional nanotubular channels with the cross dimension of 37.1959(20)×23.6141(11)Å{sup 2} in the three-dimensional honeycomb-shaped coordination network of II are observed. The topological analysis of II indicates that there exists a typical diamond framework possessing large adamantanoid cages, which containing four cyclohexane-shaped patterns in chair conformations. - Highlights: • Two isomorphous and isostructural coordination polymers based on flexible ligand and two alkaline-earth metal salts have been synthesized and characterized. • Structural analysis indicates that I and II are assembled into 3D porous honeycomb-shaped metal-organic frameworks. • Both I and II display stronger fluorescence emissions and higher thermal stability.« less

  6. Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand.

    PubMed

    Gai, Yan-Li; Jiang, Fei-Long; Chen, Lian; Bu, Yang; Su, Kong-Zhao; Al-Thabaiti, Shaeel A; Hong, Mao-Chun

    2013-07-01

    Reaction of europium sulfate octahydrate with p-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4ptptc) in a mixed solvent system has afforded three new coordination polymers formulated as {[Eu(ptptc)0.75(H2O)2]·0.5DMF·1.5H2O}n (1), {[Me2H2N]2 [Eu2(ptptc)2(H2O)(DMF)]·1.5DMF·7H2O}n (2), and {[Eu(Hptptc)(H2O)4]·0.5DMF·H2O}n (3). Complex 1 exhibits a three-dimensional (3D) metal-organic framework based on {Eu2(μ2-COO)2(COO)4}n chains, complex 2 shows a 3D metal-organic framework constructed by [Eu2(μ2-COO)2(COO)6](2-) dimetallic subunits, and complex 3 features a 2D layer architecture assembling to 3D framework through π···π interactions. All complexes exhibit the characteristic red luminescence of Eu(III) ion. The triplet state of ligand H4ptptc matches well with the emission level of Eu(III) ion, which allows the preparation of new optical materials with enhanced luminescence properties. The luminescence properties of these complexes are further studied in terms of their emission quantum yields, emission lifetimes, and the radiative/nonradiative rates.

  7. Syntheses, structures, photoluminescence of four dicarboxylate-controlled Zn(II) coordination complexes incorporating flexible 1-(4-pyridylmethyl)-benzimidazole ligand

    NASA Astrophysics Data System (ADS)

    Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun

    2013-09-01

    Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.

  8. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  9. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2018-03-01

    The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.

  10. Ligand diffusion in proteins via enhanced sampling in molecular dynamics.

    PubMed

    Rydzewski, J; Nowak, W

    2017-12-01

    Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Flipping of the coordinated triazine moiety in Cu(I)-L2 and the small electronic factor, κel, for direct outer-sphere cross reactions: syntheses, crystal structures and redox behaviour of copper(II)/(I)-L2 complexes (L = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine).

    PubMed

    Yamada, Atsutoshi; Mabe, Takuya; Yamane, Ryohei; Noda, Kyoko; Wasada, Yuko; Inamo, Masahiko; Ishihara, Koji; Suzuki, Takayoshi; Takagi, Hideo D

    2015-08-21

    Six-coordinate [Cu(pdt)2(H2O)2](2+) and four-coordinate [Cu(pdt)2](+) complexes were synthesized and the cross redox reactions were studied in acetonitrile (pdt = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine). Single crystal analyses revealed that [Cu(pdt)2(H2O)2](BF4)2 was of pseudo-D2h symmetry with two axial water molecules and two symmetrically coordinated equatorial pdt ligands, while the coordination structure of [Cu(pdt)2]BF4 was a squashed tetrahedron (dihedral angle = 54.87°) with an asymmetric coordination by two pdt ligands: one pdt ligand was coordinated to Cu(i) through pyridine-N and triazine-N2 while another pdt ligand was coordinated through pyridine-N and triazine-N4, and a stacking interaction between the phenyl ring on one pdt ligand and the triazine ring on another pdt ligand caused the squashed structure and non-equivalent Cu-N bond lengths. The cyclic voltammograms for [Cu(pdt)2(H2O)2](2+) and [Cu(pdt)2](+) in acetonitrile were identical to each other and quasi-reversible. The reduction of [Cu(pdt)2(H2O)2](2+) by decamethylferrocene and the oxidation of [Cu(pdt)2](+) by [Co(2,2'-bipyridine)3](3+) in acetonitrile revealed that both cross reactions were sluggish through a gated process (the structural change took place prior to the electron transfer) accompanied by slow direct electron transfer processes. It was found that the triazine ring of the coordinated pdt ligand rotates around the C-C bond between the triazine and pyridine rings with the kinetic parameters k = 51 ± 5 s(-1) (297.8 K), ΔH(‡) = 6.2 ± 1.1 kJ mol(-1) and ΔS(‡) = -192 ± 4 J mol(-1) K(-1). The electron self-exchange process was directly measured using the line-broadening method: kex = (9.9 ± 0.5) × 10(4) kg mol(-1) s(-1) (297.8 K) with ΔH(‡) = 44 ± 7 kJ mol(-1) and ΔS(‡) = 0.2 ± 2.6 J mol(-1) K(-1). By comparing this rate constant with the self-exchange rate constants estimated from the cross reactions using the Marcus cross relation, the non

  12. Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective.

    PubMed

    Pardo, Emilio; Ruiz-García, Rafael; Cano, Joan; Ottenwaelder, Xavier; Lescouëzec, Rodrigue; Journaux, Yves; Lloret, Francesc; Julve, Miguel

    2008-06-07

    The aim and scope of this review is to show the general validity of the 'complex-as-ligand' approach for the rational design of metallosupramolecular assemblies of increasing structural and magnetic complexity. This is illustrated herein on the basis of our recent studies on oxamato complexes with transition metal ions looking for the limits of the research avenue opened by Kahn's pioneering research twenty years ago. The use as building blocks of mono-, di- and trinuclear metal complexes with a novel family of aromatic polyoxamato ligands allowed us to move further in the coordination chemistry-based approach to high-nuclearity coordination compounds and high-dimensionality coordination polymers. In order to do so, we have taken advantage of the new developments of metallosupramolecular chemistry and in particular, of the molecular-programmed self-assembly methods that exploit the coordination preferences of metal ions and specifically tailored ligands. The judicious choice of the oxamato metal building block (substitution pattern and steric requirements of the bridging ligand, as well as the electronic configuration and magnetic anisotropy of the metal ion) allowed us to control the overall structure and magnetic properties of the final multidimensional nD products (n = 0-3). These species exhibit interesting magnetic properties which are brand-new targets in the field of molecular magnetism, such as single-molecule or single-chain magnets, and the well-known class of molecule-based magnets. This unique family of molecule-based magnetic materials expands on the reported examples of nD species with cyanide and related oxalato and dithiooxalato analogues. Moreover, the development of new oxamato metal building blocks with potential photo or redox activity at the aromatic ligand counterpart will provide us with addressable, multifunctional molecular materials for future applications in molecular electronics and nanotechnology.

  13. Silver(I) coordination polymers assembled from flexible cyclotriphosphazene ligand: structures, topologies and investigation of the counteranion effects.

    PubMed

    Davarcı, Derya; Gür, Rüştü; Beşli, Serap; Şenkuytu, Elif; Zorlu, Yunus

    2016-06-01

    The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX; X = NO3(-), PF6(-), ClO4(-), CH3PhSO3(-), BF4(-) and CF3SO3(-)) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n (1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n (2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n (3), [Ag3(HPCP)(CH3PhSO3)3]n (4), [Ag2(HPCP)(CH3CN)(BF4)2]n (5) and {[Ag(HPCP)]·(CF3SO3)}n (6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions of M/L ratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)-(6), the ligand HPCP shows different coordination modes with Ag(I) ions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.6(2)}2{4(2).6(10).8(3)}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.2(6)}2{4(8).6(6).8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connected sql/Shubnikov tetragonal plane net with {4(4).6(2)} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {6(3).8(6).12}{6(3)}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connected fsh net with the point symbol (4(3).6(3))2.(4(6).6(6).8(3)). The effect of the counteranions on the formation of coordination polymers is discussed in this study.

  14. Design and reactivity of Ni-complexes using pentadentate neutral-polypyridyl ligands: Possible mimics of NiSOD.

    PubMed

    Snider, Victoria G; Farquhar, Erik R; Allen, Mark; Abu-Spetani, Ayah; Mukherjee, Anusree

    2017-10-01

    Superoxide plays a key role in cell signaling, but can be cytotoxic within cells unless well regulated by enzymes known as superoxide dismutases (SOD). Nickel superoxide dismutase (NiSOD) catalyzes the disproportion of the harmful superoxide radical into hydrogen peroxide and dioxygen. NiSOD has a unique active site structure that plays an important role in tuning the potential of the nickel center to function as an effective catalyst for superoxide dismutation with diffusion controlled rates. The synthesis of structural and functional analogues of NiSOD provides a route to better understand the role of the nickel active site in superoxide dismutation. In this work, the synthesis of a series of nickel complexes supported by nitrogen rich pentadentate ligands is reported. The complexes have been characterized through absorption spectroscopy, mass spectrometry, and elemental analysis. X-ray absorption spectroscopy was employed to establish the oxidation state and the coordination geometry around the metal center. The reactivity of these complexes toward KO 2 was evaluated to elucidate the role of the coordination sphere in controlling superoxide dismutation reactivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Guocheng; Chen Yongqiang; Wang Xiuli

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compoundmore » 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.« less

  16. Rational Ligand Design for U(VI) and Pu(IV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szigethy, Geza

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interactionmore » of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO 2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation

  17. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    PubMed

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. 2010 Wiley Periodicals, Inc.

  18. Formation of Foam-like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligand-Assisted Foaming Process.

    PubMed

    Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu

    2015-09-14

    Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    PubMed

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  20. Synthesis and crystal structure of a novel Mn(II) coordination polymer with 3-(4-(1H-benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W., E-mail: s-shuwen@163.com

    3-(4-(1H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one (L{sup 1}, 1) and its Mn(II) complex, [Mn(L{sup 1}){sub 2}(SCN){sub 2}]{sub ∞} (2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L{sup 1} ligands, two SCN-ligands, and two oxygen atoms of other two L{sup 1} ligands to form a distorted octahedral geometry. Therefore, each L{sup 1} links Mn ions through the O and N atoms to generate 2D sheet structure.

  1. Crystal structure of tetra­aqua­bis­(pyrimidin-1-ium-4,6-diolato-κO 4)manganese(II)

    PubMed Central

    Shennara, Khaled A.

    2017-01-01

    The MnII ion in the structure of the mononuclear title compound, [Mn(C4H3N2O2)2(H2O)4], is situated on an inversion center and is coordinated by two O atoms from two deprotonated 4,6-di­hydroxy­pyrimidine ligands and by four O atoms from water mol­ecules giving rise to a slightly distorted octa­hedral coordination sphere. The complex includes an intra­molecular hydrogen bond between an aqua ligand and the non-protonated N ring atom. The extended structure is stabilized by inter­molecular hydrogen bonds between aqua ligands, by hydrogen bonds between N and O atoms of the ligands of adjacent mol­ecules, and by hydrogen bonds between aqua ligands and the non-coordinating O atom of an adjacent mol­ecule. PMID:28435734

  2. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylprophyrin complexes with nitrogenous bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, S.L.; Song, X.Z.; Ma, J.G.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance

  3. Ligand effects on the hydrogenation of biomass-inspired substrates with bifunctional Ru, Ir, and Rh complexes.

    PubMed

    Jansen, Eveline; Jongbloed, Linda S; Tromp, Dorette S; Lutz, Martin; de Bruin, Bas; Elsevier, Cornelis J

    2013-09-01

    We herein report on the application and structural investigation of a new set of complexes that contain bidentate N-heterocyclic carbenes (NHCs) and primary amine moieties of the type [M(arene)Cl(L)] [M=Ru, Ir, or Rh; arene=p-cymene or pentamethylcyclopentadienyl; L=1-(2-aminophenyl)-3-(n-alkyl)imidazol-2-ylidine]. These complexes were tested and compared in the hydrogenation of acetophenone with hydrogen. Structural variations in the chelate ring size of the heteroditopic ligand revealed that smaller chelate ring sizes in combination with ring conjugation in the ligand are beneficial for the activity of this type of catalyst, favoring an inner-sphere coordination pathway. Additionally, increasing the steric bulk of the alkyl substituent on the NHC aided the reaction, showing almost no induction period and formation of a more active catalyst for the n-butyl complex relative to complexes with smaller Me and Et substituents. As is common in hydrogenation reactions, the activity of the complexes decreases in the order Ru>Ir>Rh. The application of [Ru(p-cym)Cl(L)]PF6 , which outperforms its reported analogues, has been successfully extended to the hydrogenation of more challenging biomass-inspired substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Contrasting coordination behavior of Group 12 perchlorate salts with an acyclic N3O2 donor ligand by X-ray crystallography and (1)H NMR.

    PubMed

    Tice, Daniel B; Pike, Robert D; Bebout, Deborah C

    2016-08-09

    An unbranched N3O2 ligand 2,6-bis[((2-pyridinylmethyl)oxy)methyl]pyridine (L1) was used to prepare new mononuclear heteroleptic Group 12 perchlorate complexes characterized by IR, (1)H NMR and X-ray crystallography. Racemic complexes with pentadentate L1 and one to four oxygens from either water or perchlorate bound to a metal ion were structurally characterized. Octahedral [Zn(L1)(OH2)](ClO4)2 (1) and pentagonal bipyramidal [Cd(L1)(OH2)(OClO3)]ClO4 (2) structures were found with lighter congeners. The polymorphic forms of [Hg(L1)(ClO4)2] characterized (3 in P1[combining macron] and 4 in P21/c) had a mix of monodentate, anisobidentate and bidentate perchlorates, providing the first examples of a tricapped trigonal prismatic Hg(ii) coordination geometry, as well as additional examples of a rare square antiprismatic Hg(ii) coordination geometry. Solution state (1)H NMR characterization of the Group 12 complexes in CD3CN indicated intramolecular reorganization remained rapid under conditions where intermolecular M-L1 exchange was slow on the chemical shift time scale for Zn(ii) and on the J(M(1)H) time scale for Cd(ii) and Hg(ii). Solution studies with more than one equivalent of ligand also suggested that a complex with a 1 : 2 ratio of M : L1 contributed significantly to solution equilibria with Hg(ii) but not the other metal ions. The behavior of related linear pentadentate ligands with Group 12 perchlorate salts is discussed.

  5. The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites

    PubMed Central

    2013-01-01

    Background Many Protein Data Bank (PDB) users assume that the deposited structural models are of high quality but forget that these models are derived from the interpretation of experimental data. The accuracy of atom coordinates is not homogeneous between models or throughout the same model. To avoid basing a research project on a flawed model, we present a tool for assessing the quality of ligands and binding sites in crystallographic models from the PDB. Results The Validation HElper for LIgands and Binding Sites (VHELIBS) is software that aims to ease the validation of binding site and ligand coordinates for non-crystallographers (i.e., users with little or no crystallography knowledge). Using a convenient graphical user interface, it allows one to check how ligand and binding site coordinates fit to the electron density map. VHELIBS can use models from either the PDB or the PDB_REDO databank of re-refined and re-built crystallographic models. The user can specify threshold values for a series of properties related to the fit of coordinates to electron density (Real Space R, Real Space Correlation Coefficient and average occupancy are used by default). VHELIBS will automatically classify residues and ligands as Good, Dubious or Bad based on the specified limits. The user is also able to visually check the quality of the fit of residues and ligands to the electron density map and reclassify them if needed. Conclusions VHELIBS allows inexperienced users to examine the binding site and the ligand coordinates in relation to the experimental data. This is an important step to evaluate models for their fitness for drug discovery purposes such as structure-based pharmacophore development and protein-ligand docking experiments. PMID:23895374

  6. Controlled Expansion of a Strong-Field Iron Nitride Cluster: Multi-Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity.

    PubMed

    Drance, Myles J; Mokhtarzadeh, Charles C; Melaimi, Mohand; Agnew, Douglas W; Moore, Curtis E; Rheingold, Arnold L; Figueroa, Joshua S

    2018-05-02

    Multimetallic clusters have long been investigated as molecular surrogates for reactive sites on metal surfaces. In the case of the μ 4 -nitrido cluster [Fe 4 (μ 4 -N)(CO) 12 ] - , this analogy is limited owing to the electron-withdrawing effect of carbonyl ligands on the iron nitride core. Described here is the synthesis and reactivity of [Fe 4 (μ 4 -N)(CO) 8 (CNAr Mes2 ) 4 ] - , an electron-rich analogue of [Fe 4 (μ 4 -N)(CO) 12 ] - , where the interstitial nitride displays significant nucleophilicity. This characteristic enables rational expansion with main-group and transition-metal centers to yield unsaturated sites. The resulting clusters display surface-like reactivity through coordination-sphere-dependent atom rearrangement and metal-metal cooperativity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg{sup 2+}, Ca{sup 2+} and Ba{sup 2+}) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO){sub 4}, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4{sup 4}·6{sup 2}){sub 3}(4{sup 9}·6{sup 6}){sub 2}. The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3Dmore » framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural

  8. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand

    NASA Astrophysics Data System (ADS)

    Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad

    2015-08-01

    A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.

  9. Coordination responsive tellurium-containing multilayer film for controlled delivery.

    PubMed

    Cao, Wei; Wang, Lu; Xu, Huaping

    2015-03-28

    A coordination-responsive tellurium containing film was fabricated for controlled release. The coordination chemistry between telluride molecules and cisplatin was utilized for the loading of cisplatin, while competitive ligands were used for triggered release. This work could enrich the coordination responsive system and further tune the release kinetics of cisplatin.

  10. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    PubMed

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  11. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    PubMed Central

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753

  12. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less

  13. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling, E-mail: qinling@hfut.edu.cn; Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymersmore » have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.« less

  14. Calculation of Latitude and Longitude for Points on Perimeter of a Circle on a Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Heidi E.

    2015-08-14

    This document describes the calculation of the Earth-Centered Earth Fixed (ECEF) coordinates for points lying on the perimeter of a circle. Here, the perimeter of the circle lies on the surface of the sphere and the center of the planar circle is below the surface. These coordinates are converted to latitude and longitude for mapping fields on the surface of the earth.

  15. Copper-based metal coordination complexes with Voriconazole ligand: Syntheses, structures and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Ming; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2018-03-01

    Three new chiral metal coordination complexes, namely, [Cu(FZ)2(CH3COO)2(H2O)]·2H2O (1), [Cu(FZ)2(NO3)2] (2), and [Cu2(FZ)2 (H2O)8](SO4)2·4H2O (3) [FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) (Voriconazole)] have been obtained by the reaction of Cu(II) salts and the free ligand FZ at room temperature. Complexes 1-3 were structurally characterized by X-ray single-crystal diffraction, IR, UV-vis, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Complex 1 crystallizes in the chiral space group C2, which exhibits a mono-nuclear structure. Both complexes 2 and 3 display a one-dimensional (1D) tape structure, which crystallize in chiral space group P21212 and P212121, respectively. Among these complexes, there exist a variety of hydrogen bonds and stacking interactions, through which a three-dimensional supramolecular architecture will be generated. Compared with the standard (Voriconazole), these Cu-based complexes show the more potent inhibiting efficiency against the species of Candida and Aspergillus. Moreover, among these complexes, complex 1 shows the most excellent efficiency.

  16. Reactivity of molecular dioxygen towards a series of isostructural dichloroiron(III) complexes with tripodal tetraamine ligands: general access to mu-oxodiiron(III) complexes and effect of alpha-fluorination on the reaction kinetics.

    PubMed

    Thallaj, Nasser K; Rotthaus, Olaf; Benhamou, Leila; Humbert, Nicolas; Elhabiri, Mourad; Lachkar, Mohammed; Welter, Richard; Albrecht-Gary, Anne-Marie; Mandon, Dominique

    2008-01-01

    We have synthesized the mono, di-, and tri-alpha-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F(2)TPA and F(3)TPA, respectively. Fluorination at the alpha-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45-70 mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F(2)TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl(2). All spectroscopic data indicate that the geometry is retained in solution. These three isostructural complexes all react with molecular dioxygen to yield stable mu-oxodiiron(III) complexes. Crystal structure analyses are reported for each of these three mu-oxo compounds. With TPA, a symmetrical structure is obtained for a dicationic compound with the tripod coordinated in the kappa(4)N coordination mode. With FTPA, the compound is a neutral mu-oxodiiron(III) complex with a kappa(3)N coordination mode of the ligand. Oxygenation of the F(2)TPA complex gave a neutral unsymmetrical compound, the structure of which is reminiscent of that already found with the trifluorinated ligand. On reduction, all mu-oxodiiron(III) complexes revert to the starting iron(II) species. The oxygenation reaction parallels the well-known formation of mu-oxo derivatives from dioxygen in the chemistry of porphyrins reported almost three decades ago. The striking feature of the series of iron(II) precursors is the effect of the ligand on the kinetics of oxygenation of the complexes. Whereas the parent complex undergoes 90 % conversion over 40 h, the monofluorinated ligand provides a complex that has fully reacted after 30 h, whereas the reaction time for the complex with the difluorinated ligand is only 10 h. Analysis of the spectroscopic data reveals that formation of the mu-oxo complexes proceeds in two distinct reversible kinetic steps with k(1) approximately 10 k(2). For TPAFeCl(2) and

  17. Synthesis, Structure, and Physical Properties for a Series of Monomeric Iron(III) Hydroxo Complexes with Varying Hydrogen-Bond Networks

    PubMed Central

    Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.

    2013-01-01

    Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155

  18. Alternative mechanistic explanation for ligand-dependent selectivities in copper-catalyzed N- and O-arylation reactions.

    PubMed

    Yu, Hai-Zhu; Jiang, Yuan-Ye; Fu, Yao; Liu, Lei

    2010-12-29

    The ligand-dependent selectivities in Ullmann-type reactions of amino alcohols with iodobenzene by β-diketone- and 1,10-phenanthroline-ligated Cu(I) complexes were recently explained by the single-electron transfer and iodine atom transfer mechanisms (Jones, G. O., Liu, P., Houk, K. N., and Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.). The present study shows that an alternative, oxidative addition/reductive elimination mechanism may also explain the selectivities. Calculations indicate that a Cu(I) complex with a negatively charged β-diketone ligand is electronically neutral, so that oxidative addition of ArI to a β-diketone-ligated Cu(I) prefers to occur (and occur readily) in the absence of the amino alcohol. Thus, coordination of the amino alcohol in its neutral form can only occur at the Cu(III) stage where N-coordination is favored over O-coordination. The coordination step is the rate-limiting step and the outcome is that N-arylation is favored with the β-diketone ligand. On the other hand, a Cu(I) complex with a neutral 1,10-phenanthroline ligand is positively charged, so that oxidative addition of ArI to a 1,10-phenanthroline-ligated Cu(I) has to get assistance from a deprotonated amino alcohol substrate. This causes oxidative addition to become the rate-limiting step in the 1,10-phenanthroline-mediated reaction. The immediate product of the oxidative addition step is found to undergo facile reductive elimination to provide the arylation product. Because O-coordination of a deprotonated amino alcohol is favored over N-coordination in the oxidative addition transition state, O-arylation is favored with the 1,10-phenanthroline ligand.

  19. Characterization of the organic ligand shell of semiconductor quantum dots by fluorescence quenching experiments.

    PubMed

    Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst

    2011-10-25

    We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.

  20. Second-Sphere Effects in Dinuclear FeIIIZnII Hydrolase Biomimetics: Tuning Binding and Reactivity Properties.

    PubMed

    Camargo, Tiago Pacheco; Neves, Ademir; Peralta, Rosely A; Chaves, Cláudia; Maia, Elene C P; Lizarazo-Jaimes, Edgar H; Gomes, Dawidson A; Bortolotto, Tiago; Norberto, Douglas R; Terenzi, Hernán; Tierney, David L; Schenk, Gerhard

    2018-01-02

    Herein, we report the synthesis and characterization of two dinuclear Fe III Zn II complexes [Fe III Zn II LP1] (1) and [Fe III Zn II LP2] (2), in which LP1 and LP2 are conjugated systems containing one and two pyrene groups, respectively, connected via the diamine -HN(CH 2 ) 4 NH- spacer to the well-known N 5 O 2 -donor H 2 L ligand (H 2 L = 2-bis{[(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl}-4-methylphenol). The complex [Fe III Zn II L1] (3), in which H 2 L was modified to H 2 L1, with a carbonyl group attached to the terminal phenol group, was included in this study for comparison purposes. 1 Both complexes 1 and 2 were satisfactorily characterized in the solid state and in solution. Extended X-ray absorption fine structure data for 1 and 3 in an acetonitrile solution show that the multiply bridged structure seen in the solid state of 3 is retained in solution. Potentiometric and UV-vis titration of 1 and 2 show that electrostatic interaction between the protonated amino groups and coordinated water molecules significantly decreases the pK a of the iron(III)-bound water compared to those of 3. On the other hand, catalytic activity studies using 1 and 2 in the hydrolysis of the activated substrate bis(2,4-dinitrophenyl)phosphate (BDNPP) resulted in a significant increase in the association of the substrate (K ass ≅ 1/K M ) compared to that of 3 because of electrostatic and hydrophobic interactions between BDNPP and the side-chain diaminopyrene of the ligands H 2 LP1 and H 2 LP2. In addition, the introduction of the pyrene motifs in 1 and 2 enhanced their activity toward DNA and as effective antitumor drugs, although the biochemical mechanism of the latter effect is currently under investigation. These complexes represent interesting examples of how to promote an increase in the activity of traditional artificial metal nucleases by introducing second-coordination-sphere effects.

  1. Coordination polymer gels with important environmental and biological applications.

    PubMed

    Jung, Jong Hwa; Lee, Ji Ha; Silverman, Julian R; John, George

    2013-02-07

    Coordination Polymer Gels (CPGs) constitute a subset of solid-like metal ion and bridging organic ligand structures (similar to metal-organic frameworks) that form multi-dimensional networks through a trapped solvent as a result of non-covalent interactions. While physical properties of these gels are similar to conventional high molecular weight organic polymer gels, coordination polymer gel systems are often fully reversible and can be assembled and disassembled in the presence of additional energy (heat, sonication, shaking) to give a solution of solvated gelators. Compared to gels resulting from purely organic self-assembled low molecular weight gelators, metal ions incorporated into the fibrilar networks spanning the bulk solvent can impart CPGs with added functionalities. The solid/liquid nature of the gels allows for species to migrate through the gel system and interact with metals, ligands, and the solvent. Chemosensing, catalysis, fluorescence, and drug-delivery applications are some of the many potential uses for these dynamic systems, taking advantage of the metal ion's coordination, the organic polydentate ligand's orientation and functionality, or a combination of these properties. By fine tuning these systems through metal ion and ligand selection and by directing self-assembly with external stimuli the rational synthesis of practical systems can be envisaged.

  2. Synthesis, structures and fluorescent properties of two novel lanthanide [Ln = Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylate and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ni, Liang; yao, Jia

    2012-09-01

    Two structurally diverse coordination polymers [Ce2(m-BDC)2(m-HBDC)2(MOPIP)2·3/2H2O]n (1) and [Pr2(m-BDC)3(MOPIP)2·H2O]n(2) have been synthesized by hydrothermal reaction of lanthanide chloride with mixed ligands benzene-1,3-dicarboxylic acid and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (MOPIP). The crystal structures of the complexes are zipper-like chains of octacoordinate Ln3+ ions, in which Ln3+ ions are bridged in different coordination modes by m-BDC2+ and decorated by MOPIP ligands. These chains are further assembled into three-dimensional supramolecular framework by π⋯π stacking and hydrogen bonding interactions. The fluorescent property and thermal stability were also investigated. Additionally, Natural bond orbital (NBO) analysis of complex 2 shows a weak covalent interaction between the coordinated atoms and Pr3+ ions.

  3. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations.

    PubMed

    Liu, Qian; Wu, Kangkang; Tang, Fei; Yao, Lihua; Yang, Fei; Nie, Zhou; Yao, Shouzhuo

    2009-09-28

    Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.

  4. Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands.

    PubMed

    Sinha, Narayan; Hahn, F Ekkehardt

    2017-09-19

    Over the past two decades, self-assembly of supramolecular architectures has become a field of intensive research due to the wide range of applications for the resulting assemblies in various fields such as molecular encapsulation, supramolecular catalysis, drug delivery, metallopharmaceuticals, chemical and photochemical sensing, and light-emitting materials. For these purposes, a large number of coordination-driven metallacycles and metallacages featuring different sizes and shapes have been prepared and investigated. Almost all of these are Werner-type coordination compounds where metal centers are coordinated by nitrogen and/or oxygen donors of polydentate ligands. With the evolving interest in the coordination chemistry of N-heterocyclic carbenes (NHCs), discrete supramolecular complexes held together by M-C NHC bonds have recently become of interest. The construction of such metallosupramolecular assemblies requires the synthesis of suitable poly-NHC ligands where the NHC donors form labile bonds with metal centers thus enabling the formation of the thermodynamically most stable reaction product. In organometallic chemistry, these conditions are uniquely met by the combination of poly-NHCs and silver(I) ions where the resulting assemblies also offer the possibility to generate new structures by transmetalation of the poly-NHC ligands to additional metal centers forming more stable C NHC -M bonds. Stable metallosupramolecular assemblies obtained from poly-NHC ligands feature special properties such as good solubility in many less polar organic solvents and the presence of the often catalyticlly active {M(NHC) n } moiety as building block. In this Account, we review recent developments in organometallic supramolecular architectures derived from poly-NHC ligands. We describe dinuclear (M = Ag I , Au I , Cu I ) tetracarbene complexes obtained from bis-NHC ligands with an internal olefin or two external coumarin pendants and their postsynthetic modification via a

  5. Methods and considerations to determine sphere center from terrestrial laser scanner point cloud data

    NASA Astrophysics Data System (ADS)

    Rachakonda, Prem; Muralikrishnan, Bala; Cournoyer, Luc; Cheok, Geraldine; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel

    2017-10-01

    The Dimensional Metrology Group at the National Institute of Standards and Technology is performing research to support the development of documentary standards within the ASTM E57 committee. This committee is addressing the point-to-point performance evaluation of a subclass of 3D imaging systems called terrestrial laser scanners (TLSs), which are laser-based and use a spherical coordinate system. This paper discusses the usage of sphere targets for this effort, and methods to minimize the errors due to the determination of their centers. The key contributions of this paper include methods to segment sphere data from a TLS point cloud, and the study of some of the factors that influence the determination of sphere centers.

  6. 2D polymeric cadmium(II) complexes containing 1,3-imidazolidine-2-thione (Imt) ligand, [Cd(Imt)(H2O)2(SO4)]n and [Cd(Imt)2(N3)2]n

    NASA Astrophysics Data System (ADS)

    Mahmood, Rashid; Ahmad, Saeed; Fettouhi, Mohammed; Roisnel, Thierry; Gilani, Mazhar Amjad; Mehmood, Kashif; Murtaza, Ghulam; Isab, Anvarhusein A.

    2018-03-01

    The present study aims at preparing and carrying out the structural investigation of two polymeric cadmium(II) complexes of imidazolidine-2-thione (Imt) based on sulfate or azide ions, [Cd(Imt)(H2O)2(SO4)]n (1) and [Cd(Imt)2(N3)2]n (2). The structures of the complexes were determined by single crystal X-ray analysis. Both compounds, 1 and 2 crystallize in the form of 2D coordination polymers and the cadmium(II) ion is six-coordinate having a distorted octahedral geometry in each compound. In 1, the metal ion is bonded to one sulfur atom of Imt and five oxygen atoms with two from water and three of bridging sulfate ions. In 2, the cadmium coordination sphere is completed by two Imt molecules binding through the sulfur atoms and four nitrogen atoms of bridging azide ions. The crystal structures are stabilized by intra and intermolecular hydrogen bonding interactions. The complexes were also characterized by IR and NMR spectroscopy and the spectroscopic data is consistent with the binding of the ligands.

  7. Chemistry of Marine Ligands and Siderophores

    PubMed Central

    Vraspir, Julia M.; Butler, Alison

    2011-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cadmium, thus defining the speciation of these metal ions in the ocean. In the case of iron, siderophores have been identified and structurally characterized. Siderophores are low molecular weight iron-binding ligands produced by marine bacteria. Although progress has been made toward the identity of in situ iron-binding ligands, few compounds have been identified that coordinate the other trace metals. Deciphering the chemical structures and production stimuli of naturally produced organic ligands and the organisms they come from is fundamental to understanding metal speciation and bioavailability. The current evidence for marine ligands, with an emphasis on siderophores, and discussion of the importance and implications of metal-binding ligands in controlling metal speciation and cycling within the world’s oceans are presented. PMID:21141029

  8. SPHERES HALO

    NASA Image and Video Library

    2017-06-23

    iss052e006482 (6/23/2017) --- Astronaut Peggy Whitson is photographed during a test session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Halo investigation in the Kibo module. The SPHERES Halo investigation studies the possibility of launching several separate components and then attaching them once they are in space. The investigation upgrades the International Space Station’s fleet of SPHERES to enable each SPHERE to communicate with six external objects at the same time, testing new control and remote assembly methods.

  9. Stereochemistry of complexes with double and triple metal-ligand bonds: a continuous shape measures analysis.

    PubMed

    Alvarez, Santiago; Menjón, Babil; Falceto, Andrés; Casanova, David; Alemany, Pere

    2014-11-17

    To each coordination polyhedron we can associate a normalized coordination polyhedron that retains the angular orientation of the central atom-ligand bonds but has all the vertices at the same distance from the center. The use of shape measures of these normalized coordination polyhedra provides a simple and efficient way of discriminating angular and bond distance distortions from an ideal polyhedron. In this paper we explore the applications of such an approach to analyses of several stereochemical problems. Among others, we discuss how to discern the off-center displacement of the metal from metal-ligand bond shortening distortions in families of square planar biscarbene and octahedral dioxo complexes. The normalized polyhedron approach is also shown to be very useful to understand stereochemical trends with the help of shape maps, minimal distortion pathways, and ligand association/dissociation pathways, illustrated by the Berry and anti Berry distortions of triple-bonded [X≡ML4] complexes, the square pyramidal geometries of Mo coordination polyhedra in oxido-reductases, the coordination geometries of actinyl complexes, and the tetrahedricity of heavy atom-substituted carbon centers.

  10. The Coulomb problem on a 3-sphere and Heun polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellucci, Stefano; Yeghikyan, Vahagn; Yerevan State University, Alex-Manoogian st. 1, 00025 Yerevan

    2013-08-15

    The paper studies the quantum mechanical Coulomb problem on a 3-sphere. We present a special parametrization of the ellipto-spheroidal coordinate system suitable for the separation of variables. After quantization we get the explicit form of the spectrum and present an algebraic equation for the eigenvalues of the Runge-Lentz vector. We also present the wave functions expressed via Heun polynomials.

  11. 73Ge, 119Sn and 207Pb: general cooperative effects of single atom ligands on the NMR signals observed in tetrahedral [MXnY4-n] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds of heavier XIV group elements.

    PubMed

    Benedetti, M; De Castro, F; Fanizzi, F P

    2017-02-28

    An inverse linear relationship between 73 Ge, 119 Sn and 207 Pb NMR chemical shifts and the overall sum of ionic radii of coordinated halido ligands has been discovered in tetrahedral [MX n Y 4-n ] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds. This finding is consistent with a previously reported correlation found in octahedral, pentacoordinate and square planar platinum complexes. The effect of the coordinated halido ligands acting on the metal as shielding conducting rings is therefore confirmed also by 73 Ge, 119 Sn and 207 Pb NMR spectroscopy.

  12. Syntheses, structures and luminescence of three copper(I) cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene ligand

    NASA Astrophysics Data System (ADS)

    Shao, Min; Li, Ming-Xing; Lu, Li-Ruo; Zhang, Heng-Hua

    2016-09-01

    Three Cu(I)-cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene (tib) ligand, namely [Cu3(CN)3(tib)]n (1), [Cu4(CN)4(tib)]n (2), and [Cu2(CN)2(tib)]n (3), have been prepared and characterized by elemental analysis, IR, PXRD, thermogravimetry and single-crystal X-ray diffraction analysis. Complex 1 displays a 3D metal-organic framework with nanosized pores. Complex 2 is a 3D coordination polymer assembled by three μ2-cyanides and a μ3-cyanide with a very short Cu(I)···Cu(I) metal bond(2.5206 Å). Complex 3 is a 2D coordination polymer constructing from 1D Cu(I)-cyanide zigzag chain and bidentate tib spacer. Three Cu(I) complexes are thermally stable up to 250-350 °C. Complexes 1-3 show similar orange emission band at 602 nm originating from LMCT mechanism.

  13. Influence of ionic liquids on the syntheses and structures of Mn(II) coordination polymers based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands.

    PubMed

    Qin, Jian-Hua; Wang, Hua-Rui; Pan, Qi; Zang, Shuang-Quan; Hou, Hongwei; Fan, Yaoting

    2015-10-28

    Seven Mn(ii) coordination polymers, namely {[Mn2(ptptp)Cl2(H2O)3]·H2O}n (1), {[Mn(μ-ptptp)3]2[Mn3(μ3-Cl)]2}·2Cl·16H2O (2), {[Mn2(ptptp)(ip)2(H2O)3]·H2O}n (3), {[Mn2(ptptp)(5-CH3-ip)2(H2O)3]·H2O}n (4), {[Mn4(ptptp)(5-Br-ip)3(H2O)3]·4H2O}n (5), {[Mn2(ptptp)(Hbtc)(H2O)2]·2H2O}n (6) and {[Mn2(ptptp)(tdc)(H2O)2]·1.5H2O}n (7), have been prepared based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands (H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine; R-isophthalic acids, H2ip-R: R = -H (3), -CH3 (4), -Br (5); H3btc = trimesic acid (6); H2tdc = thiophene-2,5-dicarboxylic acid (7)), in order to further probe the multiple roles of [RMI]Br ionic liquids in the hydro/solvothermal synthesis (RMI = 1-alkyl-3-methylimidazolium, R = ethyl, or propyl, or butyl). The successful syntheses of complexes 2-6 suggest that in hydro/solvothermal synthesis the addition of a small amount of [RMI]Br plays a crucial role. Complex 1 exhibits single right-handed helices constructed by ptptp ligands and Mn(ii) ions. Complex 2 possesses octanuclear helicate structures in which two propeller-shaped [Mn(μ-ptptp)3](4-) units embrace two [Mn3(μ3-Cl)](5+) cluster cores inside. Complexes 3 and 4 are isostructural and display a 1D double chain formed by two kinds of pseudo meso-helices: (Mn-ptptp)n and (Mn-5-R-ip)n. Complex 5 has a 2D structure containing 1D Mn(ii) ion chains formed through carboxylates and [ptptp](2-)-N,N bridges. Complex 6 shows a 2D structure formed by a meso-helix (Mn-ptptp)n and the partly deprotonated Hbtc ligands. Complex 7 features a heterochiral [2 + 2] coaxially nested double-helical column formed by using the outer double-helices (Mn-ptptp)n as a template to encapsulate the inner double-helices (Mn-tdc)n with opposite orientation. All complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography and powder X

  14. A novel one-dimensional manganese(II) coordination polymer containing both dicyanamide and pyrazinamide ligands: Synthesis, spectroscopic investigations, X-ray studies and evaluation of biological activities

    NASA Astrophysics Data System (ADS)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-03-01

    A novel 1D coordination polymer {[Mn(μ1,5-dca)2(PZA)2](PZA)2}n, 1, has been synthesized and characterized by single crystal X-ray crystallography. The coordination mode of dicyanamide (dca) and pyrazinamide (PZA) ligands was inferred by IR spectroscopy. The compound 1 was evaluated for in vitro antimycobacterial and antitumor activities. It demonstrated better in vitro activity against Mycobacterium tuberculosis than pyrazinamide and its MIC value was determined. Complex 1 was also screened for its in vitro antitumor activity towards LM3 and LP07 murine cancer cell lines. In addition, the antibacterial activity of complex 1 has been tested against Gram(+) and Gram(-) bacteria and it has shown promising broad range anti-bacterial activity.

  15. Densest local sphere-packing diversity. II. Application to three dimensions

    NASA Astrophysics Data System (ADS)

    Hopkins, Adam B.; Stillinger, Frank H.; Torquato, Salvatore

    2011-01-01

    The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius Rmin(N) of a fixed central sphere of the same size are obtained for selected values of N up to N=1054. In the predecessor to this paper [A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.81.041305 81, 041305 (2010)], we described our method for finding the putative densest packings of N spheres in d-dimensional Euclidean space Rd and presented those packings in R2 for values of N up to N=348. Here we analyze the properties and characteristics of the densest local packings in R3 and employ knowledge of the Rmin(N), using methods applicable in any d, to construct both a realizability condition for pair correlation functions of sphere packings and an upper bound on the maximal density of infinite sphere packings. In R3, we find wide variability in the densest local packings, including a multitude of packing symmetries such as perfect tetrahedral and imperfect icosahedral symmetry. We compare the densest local packings of N spheres near a central sphere to minimal-energy configurations of N+1 points interacting with short-range repulsive and long-range attractive pair potentials, e.g., 12-6 Lennard-Jones, and find that they are in general completely different, a result that has possible implications for nucleation theory. We also compare the densest local packings to finite subsets of stacking variants of the densest infinite packings in R3 (the Barlow packings) and find that the densest local packings are almost always most similar as measured by a similarity metric, to the subsets of Barlow packings with the smallest number of coordination shells measured about a single central sphere, e.g., a subset of the fcc Barlow packing. Additionally, we observe that the densest local packings are dominated by the dense arrangement of spheres with centers at distance Rmin(N). In particular, we find two “maracas” packings at N=77 and

  16. Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.

    PubMed

    Danger, Brook R; Bedient, Krysta; Maiti, Manisankar; Burgess, Ian J; Steer, Ronald P

    2010-10-21

    The effects of complexation--by bidentate nitrogen-containing ligands such as pyrazine and 4,4'-bipyridine commonly used for porphyrin self-assembly--on the photophysics of the model metalloporphyrin, ZnTPP, are reported. Ligation to form the 5-coordinate species introduces an intramolecular charge transfer (ITC) state that, depending on the oxidation and reduction potentials of the electron donor and acceptor, can become involved in the excited state relaxation processes. For ZnTPP, ligation with pyridine has little effect on excited state relaxation following either Q-band or Soret band excitation. However, coordination of ZnTPP with pyrazine and bipyridine causes the S(2) (Soret) state of the ligated species to decay almost exclusively via an S(2)-ICT-S(1) pathway, while affecting the S(1) decay route only slightly. In these 5-coordinate species the S(2)-ICT-S(1) decay route is ultrafast and nearly quantitative. Literature redox data for other bidentate ligands such as DABCO and multidentate ligands commonly used for pophyrin assembly suggest that the ITC states introduced by them could also modify the excited state relaxation dynamics of a wide variety of multiporphyrin arrays.

  17. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  18. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  19. Inner-sphere oxidation of ternary iminodiacetatochromium(III) complexes involving DL-valine and L-arginine as secondary ligands. Isokinetic relationship for the oxidation of ternary iminodiacetato-chromium(III) complexes by periodate.

    PubMed

    Ewais, Hassan A; Dahman, Faris D; Abdel-Khalek, Ahmed A

    2009-02-04

    In this paper, the kinetics of oxidation of [CrIII(HIDA)(Val)(H2O)2]+ and [CrIII(HIDA)(Arg)(H2O)2]+ (HIDA = iminodiacetic acid, Val = DL-valine and Arg = L-arginine) were studied. The choice of ternary complexes was attributed to two considerations. Firstly, in order to study the effect of the secondary ligands DL-valine and L-arginine on the stability of binary complex [CrIII(HIDA)(IDA)(H2O)] towards oxidation. Secondly, transition metal ternary complexes have received particular focus and have been employed in mapping protein surfaces as probes for biological redox centers and in protein capture for both purification and study. The results have shown that the reaction is first order with respect to both [IO4(-)] and the complex concentration, and the rate increases over the pH range 2.62 - 3.68 in both cases. The experimental rate law is consistent with a mechanism in which both the deprotonated forms of the complexes [CrIII(IDA)(Val)(H2O)2] and [CrIII(IDA)(Arg)(H2O)2] are significantly more reactive than the conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of [CrIII(HIDA)(Arg)(H2O)2]+, k3 (1.82 x 10(-3) s(-1)), is greater than the value of k1 (1.22 x 10(-3) s(-1)) for the oxidation of [CrIII(HIDA)(Val)(H2O)2]+ at 45.0 degrees C and I = 0.20 mol dm(-3). It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO4(-) to chromium(III). The oxidation of [CrIII(HIDA)(Val)(H2O)2]+ and [CrIII(HIDA)(Arg)(H2O)2]+ by periodate may proceed through an inner-sphere mechanism via two electron transfer giving chromium(VI). The value of the intramolecular electron transfer rate constant for the oxidation of [CrIII(HIDA)(Arg)(H2O)2]+, k3, is greater than the value of k1 for the oxidation of [CrIII(HIDA)(Val)(H2O)2]+. A common mechanism for the oxidation of ternary iminodiacetatochromium(III) complexes by periodate is proposed, and this is supported by an excellent isokinetic

  20. Inner-sphere oxidation of ternary iminodiacetatochromium(III) complexes involving DL-valine and L-arginine as secondary ligands. Isokinetic relationship for the oxidation of ternary iminodiacetato-chromium(III) complexes by periodate

    PubMed Central

    Ewais, Hassan A; Dahman, Faris D; Abdel-Khalek, Ahmed A

    2009-01-01

    Background In this paper, the kinetics of oxidation of [CrIII(HIDA)(Val)(H2O)2]+ and [CrIII(HIDA)(Arg)(H2O)2]+ (HIDA = iminodiacetic acid, Val = DL-valine and Arg = L-arginine) were studied. The choice of ternary complexes was attributed to two considerations. Firstly, in order to study the effect of the secondary ligands DL-valine and L-arginine on the stability of binary complex [CrIII(HIDA)(IDA)(H2O)] towards oxidation. Secondly, transition metal ternary complexes have received particular focus and have been employed in mapping protein surfaces as probes for biological redox centers and in protein capture for both purification and study. Results The results have shown that the reaction is first order with respect to both [IO4-] and the complex concentration, and the rate increases over the pH range 2.62 – 3.68 in both cases. The experimental rate law is consistent with a mechanism in which both the deprotonated forms of the complexes [CrIII(IDA)(Val)(H2O)2] and [CrIII(IDA)(Arg)(H2O)2] are significantly more reactive than the conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of [CrIII(HIDA)(Arg)(H2O)2]+, k3 (1.82 × 10-3 s-1), is greater than the value of k1 (1.22 × 10-3 s-1) for the oxidation of [CrIII(HIDA)(Val)(H2O)2]+ at 45.0°C and I = 0.20 mol dm-3. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO4- to chromium(III). Conclusion The oxidation of [CrIII(HIDA)(Val)(H2O)2]+ and [CrIII(HIDA)(Arg)(H2O)2]+ by periodate may proceed through an inner-sphere mechanism via two electron transfer giving chromium(VI). The value of the intramolecular electron transfer rate constant for the oxidation of [CrIII(HIDA)(Arg)(H2O)2]+, k3, is greater than the value of k1 for the oxidation of [CrIII(HIDA)(Val)(H2O)2]+. A common mechanism for the oxidation of ternary iminodiacetatochromium(III) complexes by periodate is proposed, and this is supported by an excellent

  1. Deconvolution of Raman spectroscopic signals for electrostatic, H-bonding, and inner-sphere interactions between ions and dimethyl phosphate in solution

    PubMed Central

    Christian, Eric L; Anderson, Vernon E.; Harris, Michael E

    2011-01-01

    Quantitative analysis of metal ion-phosphodiester interactions is a significant experimental challenge due to the complexities introduced by inner-sphere, outer-sphere (H-bonding with coordinated water), and electrostatic interactions that are difficult to isolate in solution studies. Here, we provide evidence that inner-sphere, H-bonding and electrostatic interactions between ions and dimethyl phosphate can be deconvoluted through peak fitting in the region of the Raman spectrum for the symmetric stretch of non-bridging phosphate oxygens (νsPO 2-). An approximation of the change in vibrational spectra due to different interaction modes is achieved using ions capable of all or a subset of the three forms of metal ion interaction. Contribution of electrostatic interactions to ion-induced changes to the Raman νsPO2- signal could be modeled by monitoring attenuation of νsPO2- in the presence of tetramethylammonium, while contribution of H-bonding and inner-sphere coordination could be approximated from the intensities of altered νsPO2- vibrational modes created by an interaction with ammonia, monovalent or divalent ions. A model is proposed in which discrete spectroscopic signals for inner-sphere, H-bonding, and electrostatic interactions are sufficient to account for the total observed change in νsPO2- signal due to interaction with a specific ion capable of all three modes of interaction. Importantly, the quantitative results are consistent with relative levels of coordination predicted from absolute electronegativity and absolute hardness of alkali and alkaline earth metals. PMID:21334281

  2. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.

    PubMed

    Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-05-01

    The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one

  3. Comprehensive Fe-ligand vibration identification in {FeNO} 6 Hemes

    DOE PAGES

    Li, Jianfeng; Peng, Qian; Oliver, Allen G.; ...

    2014-12-09

    Oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS) has been used to obtain all iron vibrations in two {FeNO} 6 porphyrinate complexes, five-coordinate [Fe(OEP)(NO)]ClO 4 and six-coordinate [Fe(OEP)(2-MeHIm)(NO)]ClO 4. A new crystal structure was required for measurements of [Fe(OEP)(2-MeHIm)(NO)]ClO 4, and the new structure is reported herein. Single crystals of both complexes were oriented to be either parallel or perpendicular to the porphyrin plane and/or axial imidazole ligand plane. Thus, the FeNO bending and stretching modes can now be unambiguously assigned; the pattern of shifts in frequency as a function of coordination number can also be determined. The pattern is quitemore » distinct from those found for CO or {FeNO} 7 heme species. This is the result of unchanging Fe–N NO bonding interactions in the {FeNO} 6 species, in distinct contrast to the other diatomic ligand species. DFT calculations were also used to obtain detailed predictions of vibrational modes. Predictions were consistent with the intensity and character found in the experimental spectra. The NRVS data allow the assignment and observation of the challenging to obtain Fe–Im stretch in six-coordinate heme derivatives. Furthermore, NRVS data for this and related six-coordinate hemes with the diatomic ligands CO, NO, and O 2 reveal a strong correlation between the Fe–Im stretch and Fe–N Im bond distance that is detailed for the first time.« less

  4. New coordination compounds of Cr(III) used in leather tanning

    NASA Astrophysics Data System (ADS)

    Crudu, Marian; Sibiescu, Doina; Rosca, Ioan; Sutiman, Daniel; Vizitiu, Mihaela; Apostolescu, Gabriela

    2009-01-01

    Some new coordination compounds of Cr(III) using as ligand N-hydroxy - succinimide, were obtained and studied. The combination ratio, central atom: ligand were 1:1; 1:2 and 1:3. The new complex compounds were studied using UV-Vis spectroscopy, conductance and pH measurements. The studies of obtaining and of stability of the new compounds were accomplished in aqueous solutions using methods characteristic for coordination compounds: conductance and pH measurements. The combination ratios and the stability constants were determined with methods characteristic for studies in solutions.

  5. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.

    PubMed

    Kantardjiev, Alexander A

    2012-07-01

    Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html.

  6. Syntheses, X-ray structures, solid state high-field electron paramagnetic resonance, and density-functional theory investigations on chloro and aqua Mn(II) mononuclear complexes with amino-pyridine pentadentate ligands.

    PubMed

    Hureau, Christelle; Groni, Sihem; Guillot, Régis; Blondin, Geneviève; Duboc, Carole; Anxolabéhère-Mallart, Elodie

    2008-10-20

    The two pentadentate amino-pyridine ligands L5(2) and L5(3) (L5(2) and L5(3) stand for the N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine and the N-methyl-N,N',N'-tris(2-pyridylmethyl)propane-1,3-diamine, respectively) were used to synthesize four mononuclear Mn(II) complexes, namely [(L5(2))MnCl](PF6) (1(PF6)), [(L5(3))MnCl](PF6) (2(PF6)), [(L5(2))Mn(OH2)](BPh4)2 (3(BPh4)2), and [(L5(3))Mn(OH2)](BPh4)2 (4(BPh4)2). The X-ray diffraction studies revealed different configurations for the ligand L5(n) (n = 2, 3) depending on the sixth exogenous ligand and/or the counterion. Solid state high-field electron paramagnetic resonance spectra were recorded on complexes 1-4 as on previously described mononuclear Mn(II) systems with tetra- or hexadentate amino-pyridine ligands. Positive and negative axial zero-field splitting (ZFS) parameters D were determined whose absolute values ranged from 0.090 to 0.180 cm(-1). Density-functional theory calculations were performed unraveling that, in contrast with chloro systems, the spin-spin and spin-orbit coupling contributions to the D-parameter are comparable for mixed N,O-coordination sphere complexes.

  7. Light-Controlled Interconversion between a Self-Assembled Triangle and a Rhombicuboctahedral Sphere.

    PubMed

    Han, Muxin; Luo, Yuansu; Damaschke, Bernd; Gómez, Laura; Ribas, Xavi; Jose, Anex; Peretzki, Patrick; Seibt, Michael; Clever, Guido H

    2016-01-04

    Stimuli-responsive structural reorganizations play an important role in biological processes, often in combination with kinetic control scenarios. In supramolecular mimics of such systems, light has been established as the perfect external trigger. Here, we report on the light-driven structural rearrangement of a small, self-assembled Pd3L6 ring based on photochromic dithienylethene (DTE) ligands into a rhombicuboctahedral Pd24L48 sphere measuring about 6.4 nm across. When the wavelength is changed, this interconversion can be fully reversed, as confirmed by NMR and UV/Vis spectroscopy as well as mass spectrometry. The sphere was visualized by AFM, TEM, and GISAXS measurements. Due to dissimilarities in the photoswitch conformations, the interconversion rates between the two assemblies are drastically different in the two directions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands.

    PubMed

    McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P

    2015-07-06

    Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.

  9. Effect of Ligand Substitution around the Dy(III) on the SMM Properties of Dual-Luminescent Zn-Dy and Zn-Dy-Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2016-05-02

    The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical

  10. Ligand effects on the ferro- to antiferromagnetic exchange ratio in bis(o-semiquinonato)copper(II).

    PubMed

    Ovcharenko, Victor I; Gorelik, Elena V; Fokin, Sergey V; Romanenko, Galina V; Ikorskii, Vladimir N; Krashilina, Anna V; Cherkasov, Vladimir K; Abakumov, Gleb A

    2007-08-29

    Heterospin complexes [Cu(SQ)2Py].C7H8, Cu(SQ)2DABCO, and [Cu(SQ)2NIT-mPy].C6H6, where Cu(SQ)2 is bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper(II), DABCO is 1,4-diazabicyclo(2,2,2)octane, and NIT-mPy is the nitronyl nitroxide 2-(pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, have been synthesized. The molecules of these complexes have a specific combination of the intramolecular ferro- and antiferromagnetic exchange interactions between the odd electrons of Cu(II) and SQ ligands, characterized by large exchange coupling parameters |J| approximately 100-300 cm(-1). X-ray and magnetochemical studies of a series of mixed-ligand compounds revealed that an extra ligand (Py, NIT-mPy, or DABCO) coordinated to the metal atom produces a dramatic effect on the magnetic properties of the complex, changing the multiplicity of the ground state. Quantum chemical analysis of magnetostructural correlations showed that the energy of the antiferromagnetic exchange interaction between the odd electrons of the SQ ligands in the Cu(SQ)2 bischelate is extremely sensitive to both the nature of the extra ligand and structural distortions of the coordination unit, arising from extra ligand coordination.

  11. The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.

    PubMed

    Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2003-06-16

    The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.

  12. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view.

    PubMed

    Robson, R

    2008-10-14

    This article, presented from a personal point of view, is concerned with the design of ligands intended to give specifically either binuclear or tetranuclear metal complexes or coordination polymers. No attempt is made to provide a comprehensive coverage of these topics, the focus being mainly upon results from our laboratory. Some emphasis is placed upon aspects of the historical development of the deliberate construction of coordination polymers (aka MOFs)--materials promising useful applications, the study of which continues to expand exponentially. Some of our recent research is described in which the carbonate ion and the tetracyanoquinodimethane dianion are used as bridging ligands to generate targeted coordination polymers. It is intended that Dalton Perspectives be easily comprehensible to non-specialists in the field; an average second year university chemistry student should be easily able to understand the present contribution.

  13. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    DOE PAGES

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; ...

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalaminmore » in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co III, Co II, and Co I species, respectively, and the second model features saturation of each vacant axial coordination site on Co II and Co I species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pK as and 2.3 log units for two log K on/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co axial ligand binding, leading to substantial errors in

  14. I. the Synthesis and Coordination Chemistry of Novel 6Pi-Electron Ligands. II. Improvement of Student Writing Skills in General Chemistry Lab Reports through the Use of Calibrated Peer Review

    ERIC Educational Resources Information Center

    William, Wilson Ngambeki

    2011-01-01

    Abstract I. The goal of this study was to synthesize and characterize a set of coordination complexes containing 6pi-cationic ligands. These compounds could be extremely useful as catalysts for the polymerization of olefins that are widely used in the synthetic polymer industry. The original strategy was to synthesize the 6pi-cationic ligands…

  15. Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).

    PubMed

    Reiss, Guido J

    2013-05-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].

  16. Synthesis of triple-stranded complexes using bis(dipyrromethene) ligands.

    PubMed

    Zhang, Zhan; Dolphin, David

    2010-12-20

    The reaction of an α-free, β,β'-linked bis(dipyrromethene) ligand with Fe(3+) or Co(3+) led to noninterconvertible triple-stranded helicates and mesocates. In the present context, a stable α-free ligand 2 has been developed and complexation of ligands 1 and 2 with diamagnetic Co(3+), Ga(3+), and In(3+) has been studied. The triple-stranded M(2)1(3) (M = Ga, In) and M(2)2(3) (M = Co, Ga, In) complexes were characterized using matrix-assisted laser desorption ionization time-of-flight spectrometry, (1)H NMR and UV-vis spectroscopy, and X-ray crystallography. Again, the (1)H NMR analysis showed that both the triple-stranded helicates and mesocates were generated in this metal-directed assembly. Consistent with our previous finding on coordinatively inert Co(3+) complexes, variable-temperature NMR spectroscopy indicated that the triple-stranded helicate and mesocate of labile In(3+) did not interconvert in solution, either. However, the diastereoselectivity of the M(2)2(3) complexes was found to improve with an increase in the reaction temperature. Taken together, this study complements the coordination chemistry of poly(dipyrromethene) ligands and provides further insight into the formation of helicates versus mesocates.

  17. From sticky-hard-sphere to Lennard-Jones-type clusters

    NASA Astrophysics Data System (ADS)

    Trombach, Lukas; Hoy, Robert S.; Wales, David J.; Schwerdtfeger, Peter

    2018-04-01

    A relation MSHS →LJ between the set of nonisomorphic sticky-hard-sphere clusters MSHS and the sets of local energy minima ML J of the (m ,n ) -Lennard-Jones potential Vmn LJ(r ) =ɛ/n -m [m r-n-n r-m] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N ≳10 . While the map from MSHS→MSHS →LJ is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N =13 , and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m ,n ) . Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  18. From sticky-hard-sphere to Lennard-Jones-type clusters.

    PubMed

    Trombach, Lukas; Hoy, Robert S; Wales, David J; Schwerdtfeger, Peter

    2018-04-01

    A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  19. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-09

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.

  20. Designing a Dy2 Single-Molecule Magnet with Two Well-Differentiated Relaxation Processes by Using a Nonsymmetric Bis-bidentate Bipyrimidine- N-Oxide Ligand: A Comparison with Mononuclear Counterparts.

    PubMed

    Díaz-Ortega, Ismael F; Herrera, Juan Manuel; Aravena, Daniel; Ruiz, Eliseo; Gupta, Tulika; Rajaraman, Gopalan; Nojiri, H; Colacio, Enrique

    2018-06-04

    Herein we report a dinuclear [(μ-mbpymNO){(tmh) 3 Dy} 2 ] (1) single-molecule magnet (SMM) showing two nonequivalent Dy III centers, which was rationally prepared from the reaction of Dy(tmh) 3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the Dy III ions coordinate to the N^O or N^N bidentate donor sets, the Dy III sites present a NO 7 ( D 2 d geometry) or N 2 O 6 ( D 4 d ) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N 2 O 6 ) and Dy(NO 7 ) sites, respectively. Two mononuclear complexes, [Dy(tta) 3 (mbpymNO)] (2) and [Dy(tmh) 3 (phenNO)] (3), have also been prepared for comparative purposes. In both cases, the Dy III center shows a NO 7 coordination sphere and SMM behavior is observed with U eff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.

  1. Photoactive devices including porphyrinoids with coordinating additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths,more » increase the external quantum efficiency of the material, or both.« less

  2. Visualizing ligand molecules in Twilight electron density.

    PubMed

    Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard

    2013-02-01

    Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.

  3. New synthetic routes toward enantiopure nitrogen donor ligands.

    PubMed

    Sala, Xavier; Rodríguez, Anna M; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; von Zelewsky, Alexander; Llobet, Antoni; Benet-Buchholz, Jordi

    2006-12-08

    New polypyridylic chiral ligands, having either C3 or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-alpha-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has been achieved through a new aldehyde building block ((-)-16). As an example, the synthesis of a chiral derivative of N,N-bis(2-pyridylmethyl)ethylamine (bpea) ligand, (-)-19, has been performed to illustrate the viability of the method. The coordinative ability of the ligands has been tested through the synthesis and characterization of complexes [Mn((-)-19)Br2], (-)-20, and [RuCl((-)-10)(bpy)](BF4), (-)-21. Some preliminary results related to the enantioselective catalytic epoxidation of styrene with the ruthenium complex are also presented.

  4. Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques; Castillo, Alain

    2005-02-01

    Brucite (Mg(OH) 2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H 2PO 4- > catechol ≥ HCO 3- > ascorbate > citrate > oxalate > acetate ˜ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO 43-, CO 32-, F -, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO 42- and B(OH) 4- with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation. The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg

  5. Zinc complexes of the biomimetic N,N,O ligand family of substituted 3,3-bis(1-alkylimidazol-2-yl)propionates: the formation of oxalate from pyruvate

    PubMed Central

    Bruijnincx, Pieter C. A.; Lutz, Martin; den Breejen, Johan P.; van Koten, Gerard

    2007-01-01

    The coordination chemistry of the 2-His-1-carboxylate facial triad mimics 3,3-bis(1-methylimidazol-2-yl)propionate (MIm2Pr) and 3,3-bis(1-ethyl-4-isopropylimidazol-2-yl) propionate (iPrEtIm2Pr) towards ZnCl2 was studied both in solution and in the solid state. Different coordination modes were found depending both on the stoichiometry and on the ligand that was employed. In the 2:1 ligand-to-metal complex [Zn(MIm2Pr)2], the ligand coordinates in a tridentate, tripodal N,N,O fashion similar to the 2-His-1-carboxylate facial triad. However, the 1:1 ligand-to-metal complexes [Zn(MIm2Pr)Cl(H2O)] and [Zn(iPrEtIm2Pr)Cl] were crystallographically characterized and found to be polymeric in nature. A new, bridging coordination mode of the ligands was observed in both structures comprising N,N-bidentate coordination of the ligand to one zinc atom and O-monodentate coordination to a zinc second atom. A rather unique transformation of pyruvate into oxalate was found with [Zn(MIm2Pr)Cl], which resulted in the isolation of the new, oxalato bridged zinc coordination polymer [Zn2(MIm2Pr)2(ox)]·6H2O, the structure of which was established by X-ray crystal structure determination. PMID:17828423

  6. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, andmore » XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.« less

  7. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  8. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013952 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, enters data in a computer during test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES (out of frame). The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  9. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  10. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  11. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  12. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  13. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  14. Development of immobilized ligands for actinide separations. Final report, June 1991--May 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paine, R.T.

    1994-06-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined.

  15. Coordination Structure and Fragmentation Chemistry of the Tripositive Lanthanide-Thio-Diglycolamide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Gong, Yu

    2017-12-14

    Tripositive Ln(TMTDA) 3 3+ complexes (Ln = La-Lu except Pm, TMTDA = tetramethyl 3-thio-diglycolamide) were observed in the gas phase by electrospray ionization of LnCl 3 and TMTDA mixtures. Collision-induced dissociation (CID) was employed to investigate their fragmentation chemistry, which revealed the influence of metal center as well as ligand on the ligated complexes. Ln(TMTDA) 2 (TMTDA-45) 3+ resulting from C carbonyl -N bond cleavage of TMTDA and hydrogen transfer was the major CID product for all Ln(TMTDA) 3 3+ except Eu(TMTDA) 3 3+ , which predominantly formed charge-reducing product Eu II (TMTDA) 2 2+ via electron transfer from TMTDA to Eu 3+ . Density functional theory calculations on the structure of La(TMTDA) 3 3+ and Lu(TMTDA) 3 3+ revealed that Ln 3+ was coordinated by six O carbonyl atoms from three neutral TMTDA ligands, and both complexes possessed C 3h symmetry. The S ether atom deviating from the ligand plane was not coordinated to the metal center. On the basis of the CID results of Ln(TMTDA) 3 3+ , Ln(TMGA) 3 3+ , and Ln(TMOGA) 3 3+ , the fragmentation chemistry associated with the ligand depends on the coordination mode, while the redox chemistry of these tripositive ions is related to the nature of both metal centers and diamide ligands.

  16. Percolation of disordered jammed sphere packings

    NASA Astrophysics Data System (ADS)

    Ziff, Robert M.; Torquato, Salvatore

    2017-02-01

    We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato-Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.

  17. Two zinc(II) coordination complexes based on an asymmetric multidentate ligand: syntheses, structures, selective fluorescence sensing of iron(III) ions and thermal analyses.

    PubMed

    Liu, Yaru; Liu, Lan; Zhang, Xiao; Liang, Guorui; Gong, Xuebing

    2018-01-01

    The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel Zn II complexes, namely bis(acetato-κO)bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II) monohydrate, [Zn(C 13 H 15 N 5 ) 2 (C 2 H 3 O 2 ) 2 ]·H 2 O, (1), and bis(azido-κN 1 )bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II), [Zn(C 13 H 15 N 5 ) 2 (N 3 ) 2 ], (2), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. Both complexes exhibit a three-dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that (1) is a promising fluorescence sensor for detecting Fe 3+ ions and (2) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.

  18. Ligand.Info small-molecule Meta-Database.

    PubMed

    von Grotthuss, Marcin; Koczyk, Grzegorz; Pas, Jakub; Wyrwicz, Lucjan S; Rychlewski, Leszek

    2004-12-01

    Ligand.Info is a compilation of various publicly available databases of small molecules. The total size of the Meta-Database is over 1 million entries. The compound records contain calculated three-dimensional coordinates and sometimes information about biological activity. Some molecules have information about FDA drug approving status or about anti-HIV activity. Meta-Database can be downloaded from the http://Ligand.Info web page. The database can also be screened using a Java-based tool. The tool can interactively cluster sets of molecules on the user side and automatically download similar molecules from the server. The application requires the Java Runtime Environment 1.4 or higher, which can be automatically downloaded from Sun Microsystems or Apple Computer and installed during the first use of Ligand.Info on desktop systems, which support Java (Ms Windows, Mac OS, Solaris, and Linux). The Ligand.Info Meta-Database can be used for virtual high-throughput screening of new potential drugs. Presented examples showed that using a known antiviral drug as query the system was able to find others antiviral drugs and inhibitors.

  19. Metallosupramolecular Architectures Formed with Ferrocene-Linked Bis-Bidentate Ligands: Synthesis, Structures, and Electrochemical Studies.

    PubMed

    Findlay, James A; McAdam, C John; Sutton, Joshua J; Preston, Dan; Gordon, Keith C; Crowley, James D

    2018-04-02

    The self-assembly of ligands of different geometries with metal ions gives rise to metallosupramolecular architectures of differing structural types. The rotational flexibility of ferrocene allows for conformational diversity, and, as such, self-assembly processes with 1,1'-disubstituted ferrocene ligands could lead to a variety of interesting architectures. Herein, we report a small family of three bis-bidentate 1,1'-disubstituted ferrocene ligands, functionalized with either 2,2'-bipyridine or 2-pyridyl-1,2,3-triazole chelating units. The self-assembly of these ligands with the (usually) four-coordinate, diamagnetic metal ions Cu(I), Ag(I), and Pd(II) was examined using a range of techniques including 1 H and DOSY NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, X-ray crystallography, and density functional theory calculations. Additionally, the electrochemical properties of these redox-active metallosupramolecular assemblies were examined using cyclic voltammetry and differential pulse voltammetry. The copper(I) complexes of the 1,1'-disubstituted ferrocene ligands were found to be coordination polymers, while the silver(I) and palladium(II) complexes formed discrete [1 + 1] or [2 + 2] metallomacrocyclic architectures.

  20. I. The synthesis and coordination chemistry of novel 6pi-electron ligands. II. Improvement of student writing skills in general chemistry lab reports through the use of Calibrated Peer Review

    NASA Astrophysics Data System (ADS)

    William, Wilson Ngambeki

    Abstract I. The goal of this study was to synthesize and characterize a set of coordination complexes containing 6pi-cationic ligands. These compounds could be extremely useful as catalysts for the polymerization of olefins that are widely used in the synthetic polymer industry. The original strategy was to synthesize the 6pi-cationic ligands using (Ph2P) 3CH (1) and (Me2P)3CH (10) as precursors; however, both precursors 1 and 10 were found to be highly reactive leading to the fragmentation products (Ph 2P)2CH2 and (Me2P)2CH 2 respectively. In trying to control the reactivity, precursor 1 was coordinated to the group 6B metal carbonyl in two modes, Mo(CO)3(C 2H5CN)(Ph2P)2CHPPh2 and W(CO) 3(C2H5CN)(Ph2P)2CHPPh 2. In these novel compounds, two of the three phosphorus atoms are chelated to the metal. These complexes were isolated and characterized by X-ray analysis, elemental analysis, NMR and infrared spectroscopy. When these metal complexes were reacted with B(C6F5)3, the complexes were stabilized, and no molecular fragmentation was observed. Instead, a second mode of coordination was observed by 31P{1H} NMR spectroscopy, where all three phosphorus atoms are bonded to the metal in a tridentate fashion, yielding the novel product EtCNB(C6F 5)3, which was characterized by X-ray analysis. However, because there was no hydride abstraction from the tertiary carbon in either compound, further studies will be required to develop a strategy for hydride abstraction to produce a cationic ligand. Another strategy for the synthesis of 6pi-cationic ligands was to directly synthesize the halogenated version of the tertiary carbon atom of compound 10. Fractional recrystallization of the crude product yielded two compounds of 2,4,6-trimethypyridinium bromide and (PMe2)3CBr. (PMe2)3CBr was determined to be pure as revealed by 31P{1H} NMR. It is expected that oxidation of the bromide should yield the 6pi-cationic ligand. In the next strategy, density function theory calculations (DFT

  1. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014468 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity. Russian cosmonaut Maxim Suraev (bottom right), flight engineer, looks on.

  2. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. From GLC to double-null coordinates and illustration with static black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugier, Fabien, E-mail: fnugier@ntu.edu.tw

    We present a system of coordinates deriving directly from the so-called Geodesic Light-Cone (GLC) coordinates and made of two null scalars intersecting on a 2-dimensional sphere parameterized by two constant angles along geodesics. These coordinates are shown to be equivalent to the well-known double-null coordinates. As GLC, they present interesting properties for cosmology and astrophysics. We discuss this latter topic for static black holes, showing simple descriptions for the metric or particles and photons trajectories. We also briefly comment on the time of flight of ultra-relativistic particles.

  4. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  5. Pseudosymmetric fac-di­aqua­trichlorido[(di­methyl­phosphor­yl)methanaminium-κO]manganese(II)

    PubMed Central

    Reiss, Guido J.

    2013-01-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the MnII metal center has a distorted o­cta­hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol­ecules and the O-coordinated dpmaH cation [dpmaH = (di­methyl­phosphor­yl)methanaminium] complete the coordination sphere. Each complex mol­ecule is connected to its neighbours by O—H⋯Cl and N—H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)]. PMID:23723764

  6. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster

    DOE PAGES

    Suess, Daniel L. M.; Bürstel, Ingmar; De La Paz, Liliana; ...

    2015-08-31

    Hydrogenases catalyze the redox interconversion of protons and H 2, an important reaction for a number of metabolic processes and for solar fuel production. In FeFe hydrogenases, catalysis occurs at the H cluster, a metallocofactor comprising a [4Fe–4S] H subcluster coupled to a [2Fe] H subcluster bound by CO, CN–, and azadithiolate ligands. The [2Fe] H subcluster is assembled by the maturases HydE, HydF, and HydG. HydG is a member of the radical S-adenosyl-L-methionine family of enzymes that transforms Fe and L-tyrosine into an [Fe(CO) 2(CN)] synthon that is incorporated into the H cluster. Though it is thought that themore » site of synthon formation in HydG is the “dangler” Fe of a [5Fe] cluster, many mechanistic aspects of this chemistry remain unresolved including the full ligand set of the synthon, how the dangler Fe initially binds to HydG, and how the synthon is released at the end of the reaction. In order to address these questions, we show in this paper that L-cysteine (Cys) binds the auxiliary [4Fe–4S] cluster of HydG and further chelates the dangler Fe. We demonstrate that a [4Fe–4S] aux[CN] species is generated during HydG catalysis, a process that entails the loss of Cys and the [Fe(CO) 2(CN)] fragment; on this basis, we suggest that Cys likely completes the coordination sphere of the synthon. Finally, through spectroscopic analysis of HydG before and after the synthon is formed, we conclude that Cys serves as the ligand platform on which the synthon is built and plays a role in both Fe 2+ binding and synthon release.« less

  7. Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites

    NASA Astrophysics Data System (ADS)

    Gautam, Ritika

    Linear oligopyrroles are degradation products of heme, which is converted in the presence of heme oxygenase to bile pigments, such as biliverdin and bilirubin. These tetrapyrrolic oligopyrroles are ubiquitously present in biological systems and find applications in the fields of catalysis and sensing. These linear tetrapyrrolic scaffolds are further degraded into linear tripyrrolic and dipyrrolic fragments. Although these lower oligopyrroles are abundantly present, their coordination chemistry requires further characterization. This dissertation focuses mainly on two classes of bioinspired linear oligopyrroles, propentdyopent and tripyrrindione, and their transition metal complexes, which present a rich ligand-based redox chemistry. Chapter 1 offers an overview of heme degradation to different classes of linear oligopyrroles and properties of their transition metal complexes. Chapter 2 is focused on the tripyrrin-1,14-dione scaffold of the urinary pigment uroerythrin, which coordinates divalent transition metals palladium and copper with square planar geometry. Specifically, the tripyrrin-1, 14-dione ligand binds Cu(II) and Pd(II) as a dianionic organic radical under ambient conditions. The electrochemical study confirms the presence of ligand based redox chemistry, and one electron oxidation or reduction reactions do not alter the planar geometry around the metal center. The X-Ray analysis and the electron paramagnetic resonance (EPR) studies of the complexes in the solid and solution phase reveals intermolecular interactions between the ligand based unpaired electrons and therefore formation of neutral pi-pi dimers. In Chapter 3, the antioxidant activity and the fluorescence sensor properties of the tripyrrin-1,14-dione ligand in the presence of superoxide are described. We found that the tripyrrindione ligand undergoes one-electron reduction in the presence of the superoxide radical anion (O2•- ) to form highly fluorescent H3TD1•- radical anion, which emits

  8. Secondary coordination sphere interactions within the biomimetic iron azadithiolate complexes related to Fe-only hydrogenase: dynamic measure of electron density about the Fe sites.

    PubMed

    Liu, Yu-Chiao; Tu, Ling-Kuang; Yen, Tao-Hung; Lee, Gene-Hsiang; Yang, Shu-Ting; Chiang, Ming-Hsi

    2010-07-19

    A series of iron azadithiolate complexes possessing an intramolecular secondary coordination sphere interaction and an ability to reduce HOAc at the potential near the first electron-transfer process are reported. A unique structural feature in which the aza nitrogen has its lone pair point toward the apical carbonyl carbon is observed in [Fe(2)(mu-S(CH(2))(2)NR(CH(2))(2)S)(CO)(6-x)L(x)](2) (R = (n)Pr, x = 0, 1a; R = (i)Pr, x = 0, 1b; R = (n)Pr, L = PPh(3), x = 1, 2; R = (n)Pr, L = P(n)Bu(3), x = 1, 3) as biomimetic models of the active site of Fe-only hydrogenase. The presence of this weak N...C(CO(ap)) interaction provides electronic perturbation at the Fe center. The distance of the N...C(CO(ap)) contact is 3.497 A in 1a. It increases by 0.455 A in 2 when electronic density of the Fe site is slightly enriched by a weak sigma-donating ligand, PPh(3). A longer distance (4.040 A) is observed for the P(n)Bu(3) derivative, 3. This N...C(CO(ap)) distance is thus a dynamic measure of electronic nature of the Fe(2) core. Variation of electronic richness within the Fe(2) moiety among the complexes reflects on their electrochemical response. Reduction of 2 is recorded at the potential of -2.17 V, which is 270 mV more negative than that of 1. Complex 3 requires additional 150 mV for the same reduction. Such cathodic shift results from CO substitution by phosphines. Electrocatalytic hydrogen production from HOAc by both kinds of complexes (all-CO and phosphine-substituted species) requires the potential close to that for reduction of the parent molecules in the absence of acids. The catalytic mechanism of 1a is proposed to involve proton uptake at the Fe(0)Fe(I) redox level instead of the Fe(0)Fe(0) level. This result is the first observation among the all-CO complexes with respect to electrocatalysis of HOAc.

  9. Studies of the structural and magnetic properties of an unsymmetrical ligand 1,2,4-benzenetricarboxylic acid based chiral 3-D trinickel coordination polymer as an alkali base-influenced hydrothermal reaction product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi-Ru; Chien, Po-Hsiu; Chung, Huey-Ting

    2014-04-01

    The reaction of 1,2,4-benzenetricarboxylic acid (H{sub 3}btc), as a ligand, under pH-controlled hydrothermal conditions with nickel salts leads to the formation of a coordination polymer of (CsNi{sub 3}(OH)(H{sub 2}O){sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 2}·3H{sub 2}O){sub n} (1). The subunit of compound 1 contains a hydroxide- and carboxylate-bridged trinickel clusters that are linked by an unsymmetrical organic carboxylate spacer to form a chiral three-dimensional anionic framework, in which cesium cations and guest water molecules are located in one-dimensional channels. The presence of a hydroxide ion serves both as a deprotonation agent and a cation source during the hydrothermal reaction, thusmore » permitting the extent of deprotonation of the unsymmetrical ligand H{sub 3}btc to be controlled, which is essential for the successful formation of compound 1. The magnetic properties of compound 1 were analyzed. Both dc and ac magnetic susceptibility as well as reduced magnetization measurements confirmed the spin-frustration nature of 1. - Graphical abstract: A chiral three-dimension MOF compound and its magnetic properties are described. - Highlights: • A new chiral three-dimension coordination polymer were made. • An un-symmetric bridging ligand was used. • Alkali metal ion Cs{sup +} was incorporated in the structure. • Magnetic properties were studied.« less

  10. Gas-phase behaviour of Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands by electrospray ionization mass spectrometry: fragmentation pathways and energetics.

    PubMed

    Madeira, Paulo J Amorim; Morais, Tânia S; Silva, Tiago J L; Florindo, Pedro; Garcia, M Helena

    2012-08-15

    The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and

  11. Design of Research on Performance of a New Iridium Coordination Compound for the Detection of Hg2.

    PubMed

    Ma, Hailing; Tsai, Sang-Bing

    2017-10-16

    Heavy metal pollution has become one of the most significant pollution problems encountered by our country in terms of environment protection. In addition to the significant effects of heavy metals on the human body and other organisms through water, food chain enrichment and other routes, heavy metals involved in daily necessities beyond the level limit could also affect people's lives, so the detection of heavy metals is extremely important. Ir (III) coordination compound, considered to be one of the best phosphorescent sensing materials, is characterized by high luminous efficiency, easy modification of the ligand and so on, and it has potential applications in the field of heavy metal detection. This project aims to product a new Ir (III) functional coordination compound by designing a new auxiliary ligand and a main ligand with a sulfur identification unit, in order to systematically investigate the application of iridium coordination compound in the detection of the heavy metal Hg 2+ . With the introduction of the sulfur identification unit, selective sensing of Hg 2+ could be achieved. Additionally, a new auxiliary ligand is also introduced to produce a functional iridium coordination compound with high quantum efficiency, and to diversify the application of iridium coordination compound in this field.

  12. Visualizing ligand molecules in twilight electron density

    PubMed Central

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2013-01-01

    Three-dimensional models of protein structures determined by X-ray crystallo­graphy are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767

  13. Sphere based fluid systems

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  14. SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033888 (22 Jan. 2014) --- A new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, already on the station, is featured in this image photographed by an Expedition 38 crew member in the International Space Station's Kibo laboratory. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding a plastic tank with green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  15. SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033890 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works with a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  16. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    DOE PAGES

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; ...

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (Cp C5F4N)Fe(P EtN (CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary,more » secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  17. A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse

    2018-03-01

    It has long been suggested that a purely Lagrangian solution to global-scale atmospheric/oceanic flows can potentially outperform tradition Eulerian schemes. Meanwhile, a demonstration of a scalable and practical framework remains elusive. Motivated by recent progress in particle-based methods when applied to convection dominated flows, this work presents a fully Lagrangian method for solving the inviscid shallow water equations on a rotating sphere in a smooth particle hydrodynamics framework. To avoid singularities at the poles, the governing equations are solved in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the surface of the sphere. An underlying grid in spherical coordinates is used to facilitate efficient neighbor detection and parallelization. The method is applied to a suite of canonical test cases, and conservation, accuracy, and parallel performance are assessed.

  18. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    PubMed

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  19. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  20. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  1. Laser initiation of Fe(II) complexes of 4-nitro-pyrazolyl substituted tetrazine ligands

    DOE PAGES

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.; ...

    2017-02-01

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  2. Measurement of the translation and rotation of a sphere in fluid flow

    NASA Astrophysics Data System (ADS)

    Barros, Diogo; Hiltbrand, Ben; Longmire, Ellen K.

    2018-06-01

    The problem of determining the translation and rotation of a spherical particle moving in fluid flow is considered. Lagrangian tracking of markers printed over the surface of a sphere is employed to compute the center motion and the angular velocity of the solid body. The method initially calculates the sphere center from the 3D coordinates of the reconstructed markers, then finds the optimal rotation matrix that aligns a set of markers tracked at sequential time steps. The parameters involved in the experimental implementation of this procedure are discussed, and the associated uncertainty is estimated from numerical analysis. Finally, the proposed methodology is applied to characterize the motion of a large spherical particle released in a turbulent boundary layer developing in a water channel.

  3. Structures of M2(SO2)6B12F12 (M = Ag or K) and Ag2(H2O)4B12F12: Comparison of the Coordination of SO2 versus H2O and of B12F122- versus Other Weakly Coordinating Anions to Metal Ions in the Solid State.

    PubMed

    Malischewski, Moritz; Peryshkov, Dmitry V; Bukovsky, Eric V; Seppelt, Konrad; Strauss, Steven H

    2016-12-05

    The structures of three solvated monovalent cation salts of the superweak anion B 12 F 12 2- (Y 2- ), K 2 (SO 2 ) 6 Y, Ag 2 (SO 2 ) 6 Y, and Ag 2 (H 2 O) 4 Y, are reported and discussed with respect to previously reported structures of Ag + and K + with other weakly coordinating anions. The structures of K 2 (SO 2 ) 6 Y and Ag 2 (SO 2 ) 6 Y are isomorphous and are based on expanded cubic close-packed arrays of Y 2- anions with M(OSO) 6 + complexes centered in the trigonal holes of one expanded close-packed layer of B 12 centroids (⊙). The K + and Ag + ions have virtually identical bicapped trigonal prism MO 6 F 2 coordination spheres, with M-O distances of 2.735(1)-3.032(2) Å for the potassium salt and 2.526(5)-2.790(5) Å for the silver salt. Each M(OSO) 6 + complex is connected to three other cationic complexes through their six μ-SO 2 -κ 1 O,κ 2 O' ligands. The structure of Ag 2 (H 2 O) 4 Y is unique [different from that of K 2 (H 2 O) 4 Y]. Planes of close-packed arrays of anions are offset from neighboring planes along only one of the linear ⊙···⊙···⊙ directions of the close-packed arrays, with [Ag(μ-H 2 O) 2 Ag(μ-H 2 O) 2 )] ∞ infinite chains between the planes of anions. There are two nearly identical AgO 4 F 2 coordination spheres, with Ag-O distances of 2.371(5)-2.524(5) Å and Ag-F distances of 2.734(4)-2.751(4) Å. This is only the second structurally characterized compound with four H 2 O molecules coordinated to a Ag + ion in the solid state. Comparisons with crystalline H 2 O and SO 2 solvates of other Ag + and K + salts of weakly coordinating anions show that (i) N[(SO 2 ) 2 (1,2-C 6 H 4 )] - , BF 4 - , SbF 6 - , and Al(OC(CF 3 ) 3 ) 4 - coordinate much more strongly to Ag + than does Y 2- , (ii) SnF 6 2- coordinates somewhat more strongly to K + than does Y 2- , and (iii) B 12 Cl 12 2- coordinates to K + about the same as, if not slightly weaker than, Y 2- .

  4. Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination is Stabilized by Hydrophobic Contacts Without Increased Inhibitor Potency

    PubMed Central

    Martell, Jeffrey D.; Li, Huiying; Doukov, Tzanko; Martásek, Pavel; Roman, Linda J.; Soltis, Michael; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge, the first crystal structure of a thioether inhibitor complexed to any heme enzyme. A series of related potential inhibitors (4-8) also were evaluated. Compounds 4-8 were all found to be type I (non-heme-coordinating) inhibitors of ferric nNOS, but 4 and 6-8 were found to switch to type II upon heme reduction to the ferrous state, reflecting the higher affinity of thioethers for ferrous heme than for ferric heme. Contrary to what has been widely thought, thioether-heme ligation was found not to increase inhibitor potency, illustrating the intrinsic weakness of the thioether-ferric heme linkage. Subtle changes in the alkyl groups attached to the thioether sulfur caused drastic changes in binding conformation, indicating that hydrophobic contacts play a crucial role in stabilizing the thioether-heme coordination. PMID:20014790

  5. Silver(I) complexes with hydantoins and allantoin: synthesis, crystal and molecular structure, cytotoxicity and pharmacokinetics.

    PubMed

    Puszyńska-Tuszkanow, Mariola; Grabowski, Tomasz; Daszkiewicz, Marek; Wietrzyk, Joanna; Filip, Beata; Maciejewska, Gabriela; Cieślak-Golonka, Maria

    2011-01-01

    Coordination polymers [Ag(L(1,3))](n) (L(1)=hydantoin, L(3)=5,5-dimethylhydantoin), {[Ag(L(2))](.)0.5H(2)O}(n) (L(2)=1-methylhydantoin) and [Ag(NH(3))(L(4))](n) (L(4)=allantoin) were prepared and characterized by elemental analysis, spectroscopic (IR, FTIR and NMR), thermal and mass spectrometry methods. The crystal structure of {[Ag(1-methylhydantoin)]·0,5H(2)O}(n) was determined and analyzed. Three 1-methylhydantoinate ligands create a T-shape (CN=3) coordination sphere around the Ag(+) ion. Additionally, a short Ag⋯Ag distance of 2.997Å was found in the structure resulting in the expanded [3+2] environment of a distorted square shape. The [Ag(L(2))] entities are bound to each other by the bridging organic ligands. Thus a two-dimensional coordination polymer is created with water molecules located between the layers. In contrast to hydantoins, the allantoin complex contains an additional ammonia molecule in the coordination sphere. Moreover, in the Ag-alla complex the M-organic ligand binding site is shifted to the N-atom of the ureid chain. Free ligands are cytotoxically inactive against human MCF-7 and A549 cancer cell lines and mouse fibroblasts Balb/3T3. The silver hydantoin complexes exhibit a very strong activity against these lines. (The introduction of the methyl groups to the ring slightly increases resistance only against the A549 cell line.) In contrast, the silver complex of allantoin shows only a weak activity which may be related to the presence of the cytotoxic ammonia group in the composition of the compound and/or the different binding site of the ligand. Calculated in silico physiochemical parameters are promising for the future application of the complexes as drugs. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart

    USGS Publications Warehouse

    Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen

    1992-01-01

    This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.

  7. Reversible five-coordinate ⇄ six-coordinate transformation in cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Xiao, Linda; Bhadbhade, Mohan; Baker, Anthony T.

    2018-04-01

    The heterocyclic ligands 2,6-bis(pyrazol-1-yl)pyridine (L1) and 2,6-bis(benzimidazol-2-yl)pyridine (L2) and their cobalt(II) complexes were synthesized. The blue five-coordinate complex [Co(L1)Cl2] isolated initially from the reaction mixture rapidly absorbed water vapour from the atmosphere to yield the pink six-coordinate complex [Co(L1)(H2O)3]Cl2. This change is reversible upon desiccation or transferring [Co(L1)(H2O)3]Cl2 into acetonitrile. The five coordinate complex [Co(L2)Cl2], however, remains stable under similar conditions. The structures of the complexes [Co(L1)Cl2], [Co(L1)(H2O)3]Cl2 and [Co(L2)Cl2] have been determined by x-ray crystallography. The magnetic susceptibilities and the electronic spectra for [Co(L1)Cl2], [Co(L2)Cl2] and [Co(L1)(H2O)3]Cl2 are presented.

  8. Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies.

    PubMed

    Prata, Maria I M; André, João P; Kovács, Zoltán; Takács, Anett I; Tircsó, Gyula; Tóth, Imre; Geraldes, Carlos F G C

    2017-12-01

    Three triaza macrocyclic ligands, H 6 NOTP (1,4,7-triazacyclononane-N,N',N″-trimethylene phosphonic acid), H 4 NO2AP (1,4,7-triazacyclononane-N-methylenephosphonic acid-N',N″-dimethylenecarboxylic acid), and H 5 NOA2P (1,4,7-triazacyclononane-N,N'-bis(methylenephosphonic acid)-N″-methylene carboxylic acid), and their gallium(III) chelates were studied in view of their potential interest as scintigraphic and PET (Positron Emission Tomography) imaging agents. A 1 H, 31 P and 71 Ga multinuclear NMR study gave an insight on the structure, internal dynamics and stability of the chelates in aqueous solution. In particular, the analysis of 71 Ga NMR spectra gave information on the symmetry of the Ga 3+ coordination sphere and the stability of the chelates towards hydrolysis. The 31 P NMR spectra afforded information on the protonation of the non-coordinated oxygen atoms from the pendant phosphonate groups and on the number of species in solution. The 1 H NMR spectra allowed the analysis of the structure and the number of species in solution. 31 P and 1 H NMR titrations combined with potentiometry afforded the measurement of the protonation constants (log K Hi ) and the microscopic protonation scheme of the triaza macrocyclic ligands. The remarkably high thermodynamic stability constant (log K GaL =34.44 (0.04) and stepwise protonation constants of Ga(NOA2P) 2- were determined by potentiometry and 69 Ga and 31 P NMR titrations. Biodistribution and gamma imaging studies have been performed on Wistar rats using the radiolabeled 67 Ga(NO2AP) - and 67 Ga(NOA2P) 2- chelates, having both demonstrated to have renal excretion. The correlation of the molecular properties of the chelates with their pharmacokinetic properties has been analysed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Luminescence of five-coordinated nickel(ii) complexes with substituted-8-hydroxyquinolines and macrocyclic ligands.

    PubMed

    Santana, M Dolores; García-Bueno, Rocío; García, Gabriel; Pérez, José; García, Luis; Monge, Miguel; Laguna, Antonio

    2010-02-21

    A series of heteroleptic quinolinolate pentacoordinated nickel(ii) complexes, [Ni(mcN(3))(R(1),R(2),R(3)-8-hq)](PF(6)), were synthesized and characterized by spectroscopic methods. Single-crystal X-ray diffraction studies for [(Me(3)-mcN(3))Ni(N,O-2-CN-8-hq)][PF(6)] (6a), [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] (2b) and [(Me(4)-mcN(3))Ni(N,O-5,7-I(2)-8-hq)][PF(6)] (5b) indicate that these complexes consist of a square-pyramidal ligand arrangement containing one chelating quinolinolate and one macrocyclic ligand (mcN(3)). Variation of the substituents on quinolinolate ligands imposes obvious electronic or structural effects on the nickel atom. These chromophores absorb moderately in the visible region and emit in the yellowish-green spectral region from a quinolinolate-centered intraligand charge-transfer excited state. The emission maxima are in the range 520-548 nm, with quantum yields between 0.11 and 1.63%, in deoxygenated organic solvents at room temperature. TD-DFT calculations allow exploration of the photophysical properties of complex [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] and reveal the influence of the quinolinolate ligand on the HOMO/LUMO energies and oscillator strengths.

  10. Parametrization of the contribution of mono- and bidentate ligands on the symmetric C[triple bond]O stretching frequency of fac-[Re(CO)(3)](+) complexes.

    PubMed

    Zobi, Fabio

    2009-11-16

    A ligand parameter, IR(P)(L), is introduced in order to evaluate the effect that different monodentate and bidentate ligands have on the symmetric C[triple bond]O stretching frequency of octahedral d(6) fac-[Re(CO)(3)L(3)] complexes (L = mono- or bidentate ligand). The parameter is empirically derived by assuming that the electronic effect, or contribution, that any given ligand L will add to the fac-[ReCO(3)](+) core, in terms of the total observed energy of symmetric C[triple bond]O stretching frequency (nu(CO(obs))), is additive. The IR(P)(CO) (i.e., the IR(P) of carbon monoxide) is first defined as one-sixth that of the observed C[triple bond]O frequency (nu(CO(obs))) of [Re(CO)(6)](+). All subsequent IR(P)(L) parameters of fac-[Re(CO)(3)L(3)] complexes are derived from IR(P)(L) = (1)/(3)[nu(CO(obs)) - 3IR(P)(CO)]. The symmetric C[triple bond]O stretching frequency was selected for analysis by assuming that it alone describes the "average electronic environment" in the IR spectra of the complexes. The IR(P)(L) values for over 150 ligands are listed, and the validity of the model is tested against other octahedral d(6) fac-[M(CO)(3)L(3)] complexes (M = Mn, (99)Tc, and Ru) and cis-[Re(CO)(2)L(4)](+) species and by calculations at the density functional level of theory. The predicted symmetric C[triple bond]O stretching frequency (nu(CO(cal))) is given by nu(CO(cal)) = S(R)[ sum IR(P)(L)] + I(R), where S(R) and I(R) are constants that depend upon the metal, its oxidation state, and the number of CO ligands in its primary coordination sphere. A linear relationship between IR(P) values and the well-established ligand electrochemical parameter E(L) is found. From a purely thermodynamic point of view, it is suggested that ligands with high IR(P)(L) values should weaken the M-CO bond to a greater extent than ligands with low IR(P)(L) values. The significance of the results and the limitations of the model are discussed.

  11. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel

    2017-11-01

    We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).

  12. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets

    PubMed Central

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude

    2017-01-01

    Abstract We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA–ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9). PMID:28570103

  13. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    PubMed

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  14. The trigonal prism in coordination chemistry.

    PubMed

    Cremades, Eduard; Echeverría, Jorge; Alvarez, Santiago

    2010-09-10

    Herein we analyze the accessibility of the trigonal-prismatic geometry to metal complexes with different electron configurations, as well as the ability of several hexadentate ligands to favor that coordination polyhedron. Our study combines i) a structural database analysis of the occurrence of the prismatic geometry throughout the transition-metal series, ii) a qualitative molecular orbital analysis of the distortions expected for a trigonal-prismatic geometry, and iii) a computational study of complexes of several transition-metal ions with different hexadentate ligands. Also the tendency of specific electron configurations to present a cis bond-stretch Jahn-Teller distortion is analyzed.

  15. Ligand reprogramming in dinuclear helicate complexes: a consequence of allosteric or electrostatic effects?

    PubMed

    Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas

    2007-01-01

    The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is

  16. Synthesis, crystal structures and Hirshfeld surface analyses of two new Salen type nickel/sodium heteronuclear complexes

    NASA Astrophysics Data System (ADS)

    Mahlooji, Niloofar; Behzad, Mahdi; Tarahhomi, Atekeh; Maroney, Michael; Rudbari, Hadi Amiri; Bruno, Giuseppe; Ghanbari, Bahram

    2016-04-01

    Two new heteronuclear Nickel(II)/Sodium(I) complexes of a side-off compartmental Schiff base ligand were synthesized and characterized by spectroscopic methods. Crystal structures of both of the complexes were also obtained. The Schiff base ligand was synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-3-methoxybenzaldehyde. In both of the complexes the Ni(II) ion is coordinated to the inner N2O2 coordination sphere with square-planar geometry and the Na(I) ion is coordinated to the outer O2 O2‧ coordination sphere. In Complex (1) with general formula [Ni(L)Na(CH3OH)(ClO4)] the sodium ion is seven coordinated while in (2) with general formula [{Ni(L)Na(OH2)}2(μ-Ni(CN)4)] the sodium ion is six coordinated. Intermolecular interactions in two studied complexes were analyzed using 3D Hirshfeld surfaces and corresponding 2D fingerprint plots. This analysis showed that the H … H and C … H/H … C contacts for both structures (altogether 67.5% of total Hirshfeld surface area for (1) and 77.6% for (2)) and the O … H/H … O (24.2%) for (1) and the N … H/H … N (8.1%) contacts for (2) were the characteristic intermolecular contacts in the related crystal structures.

  17. Diarylethene-containing cyclometalated platinum(II) complexes: tunable photochromism via metal coordination and rational ligand design.

    PubMed

    Chan, Jacky Chi-Hung; Lam, Wai Han; Wong, Hok-Lai; Zhu, Nianyong; Wong, Wing-Tak; Yam, Vivian Wing-Wah

    2011-08-17

    The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.

  18. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less

  19. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity.

    PubMed

    Smith, Dayle M A; Raugei, Simone; Squier, Thomas C

    2014-11-21

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  20. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Yeşilel, Okan Zafer; Taş, Murat

    Three new Cd(II)-coordination polymers, namely, ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,5-bipe){sub 2}]·2H{sub 2}O){sub n} (1), ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,4-bix){sub 2}]{sub n}·2DMF) (2) and ([Cd{sub 2}(μ{sub 8}-abtc)(μ-1,4-betix)]·DMF·H{sub 2}O){sub n} (3) (ao{sub 2}btc=di-oxygenated form of 3,3′,5,5′-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the raremore » sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed. - Graphical abstract: In this study, three novel Cd(II)-coordination polymers were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology

  1. Design of a Hole Trapping Ligand

    DOE PAGES

    La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.; ...

    2017-01-18

    A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less

  2. Design of a Hole Trapping Ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.

    A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less

  3. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  4. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  5. Coordination chemistry with phosphine and phosphine oxide-substituted hydroxyferrocenes.

    PubMed

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P

    2010-08-28

    New unsymmetrical hydroxyferrocenes were synthesised from dibromoferrocene. The oxygen heteroatom was introduced via lithiation and quenching with bis-trimethylsilylperoxide followed by hydrolysis to unmask the hydroxyl functionality. The coordination chemistry of 1'-(diphenylphosphino)-1-hydroxyferrocene 2 was explored with palladium and rhodium precursors. A dinuclear palladium methyl complex with bridging ferrocenyloxo groups was obtained from the reaction between 2 and (cyclooctadiene)methylchloropalladium(II). With tetracarbonyldichlorodirhodium(I), two complexes were isolated. The major product was a bis ligand cis phosphine ligated complex with one ligand bound in a chelating mode and one with a pendant hydroxyl group. A minor product was crystallographically characterised as a dinuclear ferrocenyloxo-bridged rhodium carbonyl complex. The coordination chemistry of 2 and the corresponding phosphine oxide 3 was examined with group 4 metals and the resulting complexes examined as ethylene polymerisation catalysts. The ligands were found to bind in either a chelating fashion or with pendant phosphine donors. In all cases, low to moderately active ethylene polymerisation catalysts were found. The catalysts were very unstable and catalyst residues were observed in the isolated polymer indicating a short catalyst lifetime.

  6. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands.

    PubMed

    Nag, Angshuman; Kovalenko, Maksym V; Lee, Jong-Soo; Liu, Wenyong; Spokoyny, Boris; Talapin, Dmitri V

    2011-07-13

    All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.

  7. The First Seven-Coordinated Triiodo Complex of Rhenium(III)

    NASA Astrophysics Data System (ADS)

    Schoultz, X.; Gerber, T. I. A.; Betz, R.; Hosten, E. C.

    2017-12-01

    The reaction of cis-[ReO2I(P Ph 3)2] with tert-butyl isocyanide in benzene led to the isolation of the complex [ReI3(CN- t-Bu)3(P Ph 3)] ( 1). The complex is unusual since it contains bulky ligands with large cone angles, i.e. three iodides, three isocyanides with tert-butyl groups and a triphenylphosphine as ligands in a seven-coordinate geometry around the rhenium(III) metal ion.

  8. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  9. Combining ligand design and photo-ligation to provide optimal quantum dot-bioconjugates for sensing and imaging

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian; Palui, Goutam; Safi, Malak; Mattoussi, Hedi

    2014-03-01

    We describe the design and synthesis of two metal-coordinating zwitterion ligands to promote the transfer of hydrophobic QDs to buffer media over broad range of conditions. The ligands are prepared by appending either one or two lipoic acid anchoring groups onto a zwitterion, LA-TEG200-ZW and bis(LA)- ZW. Combining these ligands with a photochemical reduction of the lipoic acid group in the presence of UV irradiation, provides an easy to implement method to transfer luminescent QDs to buffer media, while preserving their optical and spectroscopic properties intact. The resulting zwitterion-QDs have very thin capping shell, which allows their self-assembly with full size proteins via metal-to-histidine coordination. These conjugates have great potential for use in various bio-motivated applications.

  10. C-H activations at iridium(I) square-planar complexes promoted by a fifth ligand.

    PubMed

    Martín, Marta; Torres, Olga; Oñate, Enrique; Sola, Eduardo; Oro, Luis A

    2005-12-28

    In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate

  11. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Jing; Han Xiao; Meng Qin

    2013-01-15

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexesmore » were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas

    Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand andmore » replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.« less

  13. Zinc(II) and Cadmium(II) coordination polymers constructed from phenylenediacetate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sezer, Güneş Günay; Department of Chemistry, Eskişehir Osmangazi University, Eskişehir; Yeşilel, Okan Zafer

    ABSTRACT: A series of new coordination polymers {[Zn(μ-opda)(μ-bpa)]·2H_2O}{sub n} (1), [Zn(μ{sub 3}-ppda)(μ-bpa)]{sub n} (2), [Cd(μ{sub 3}-ppda)(μ-bpa)]{sub n} (3), [Cd(μ{sub 3}-mpda)(μ-bpa)]{sub n} (4) and [Cd(μ{sub 3}-mpda)(μ-bipy)]{sub n} (5), (o/m/ppda=1,2/1,3/1,4-phenylenediacetate, bpa=1,2-bi(4-pyridyl)ethane, bipy=4,4′-bipyridine) were synthesized. Their structures were characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffraction. Furthermore, the effect of metal sources (zinc acetate and zinc oxide) and acidity of the solution on the structure of the coordination polymers was discussed for complexes 1 and 5, respectively. The single-crystal X-ray crystallographic studies revealed that complexes 1, 3, 4 and 5 are uninodal (4)-connected 2D frameworks and display sql topology withmore » the point symbol of (4{sup 4}.6{sup 2}). Complex 2 is 3D coordination polymer and exhibits pcu topology with the point symbol of (4{sup 12}.6{sup 3}). In addition, the luminescent properties and thermal behavior of all complexes were also investigated. - Graphical abstract: Scheme 1. Topologies of Coordination Polymers Reported in This Paper.« less

  14. An oxadiazole-functionalized ligand and its yellow-emitting Re(I) complex for organoelectronic application

    NASA Astrophysics Data System (ADS)

    Hu, Ge; Guo, Lei; Wei, Sheng; Zhang, Shuang

    2012-06-01

    A Re(I) complex of Re(CO)3(PTO)Br with 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole (PTO) as the diamine ligand is synthesized, resulting in a phosphorescent emitter which contains oxadiazole functional moiety. Single crystal analysis confirms that oxadiazole moiety of PTO ligand participates in the coordination with Re center. Coordination ability difference between N atom from pyridine ring and that from oxadiazole moiety is found. Density functional theory calculation on the crystal suggests that the onset electronic transition owns a mixed character of metal-to-ligand-charge-transfer and ligand-to-ligand-charge-transfer. Upon photon excitation, Re(CO)3(PTO)Br exhibits a yellow emission peaking at 549 nm with a short excited state lifetime of 0.15 μs. Further measurements suggest that Re(CO)3(PTO)Br owns HOMO and LUMO energy levels of -5.79 V and -3.49 V and a high decomposition temperature of 322 °C. The optimal electroluminescence device using Re(CO)3(PTO)Br as the emitting dopant shows an orange light of 598 nm, with a maximum luminance of 4600 cd/m2 and a maximum current efficiency of 11.5 cd/A.

  15. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  16. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  17. Coordination of N,O-donor appended Schiff base ligand (H2L1) towards Zinc(II) in presence of pseudohalides: Syntheses, crystal structures, photoluminescence, antimicrobial activities and Hirshfeld surfaces

    NASA Astrophysics Data System (ADS)

    Majumdar, Dhrubajyoti; Biswas, Jayanta Kumar; Mondal, Monojit; Surendra Babu, M. S.; Metre, Ramesh K.; Das, Sourav; Bankura, Kalipada; Mishra, Dipankar

    2018-03-01

    A series of dinuclear Zn(II) complexes [Zn2 (L1) (CH3OH)2(SCN) (OAc)](1), [Zn2 (L1) (CH3OH)2(N3)2](2) and [Zn2 (L1) (Cl)2(CH3OH)]·CH3OH (3) have been synthesized by the reaction of compartmental Schiff base ligand (H2L1) [N,N‧-Bis(3-ethoxysalicylidenimino)-1,3-diaminopropane] with Zn(OAc)2·2H2O in presence of coligand like KSCN, NaN3 and NaCl respectively. X-ray diffraction analysis revealed that all the complexes are neutral and possess a 4-membered Zn2 (μ2-O)2 ring fastened by the unified coordination action of a doubly deprotonated ligand. In addition, solid state structure of the complexes display extensive intermolecular interaction which has been supported theoretically by Hirshfeld surface analysis with 2D Fingerprint plots. The synthesized Zn(II) metal complexes observed enhancement of luminescence emission compared to the parent Schiff base due to emanating ligand based intraligand (π→π∗) fluorescence. Additionally, Zn(II) metal complexes exhibited considerable antimicrobial potency against some important Gram +ve and Gram -ve bacteria.

  18. Three-component entanglements consisting of three crescent-shaped bidentate ligands coordinated to an octahedral metal centre.

    PubMed

    Durola, Fabien; Russo, Luca; Sauvage, Jean-Pierre; Rissanen, Kari; Wenger, Oliver S

    2007-01-01

    3,3'-biisoquinoline ligands (biiq) L, bearing aromatic substituents on their 8 and 8' positions, have been used to generate interwoven systems consisting of three crescent-shaped ligands disposed around an octahedral metal centre. Mono-ligand complexes of the type [ReL(CO)3py]+ (py: pyridine) have also been prepared, leading to sterically non-hindering complexes in spite of the endotopic nature of the chelate used. The three-component entanglements have been prepared by using either FeII or RuII as gathering metal centre. The synthetic procedure is simple and efficient, affording fully characterised complexes as their PF6 or SbCl6 salts. X-ray crystallography clearly shows that the crescent-shaped ligands do not repel each other in the tris-chelate complexes. In an analogous way, the ReI complexes show open structures with no steric repulsion between the L ligand and the ancillary CO or py groups. The FeL3 or RuL3 compounds are very unusual in the sense that, contrary to all the other tris-bidentate chelate complexes made till now, the three organic components are tangled up, in a situation which will be very favourable to the formation of new non trivial topologies of the catenane type.

  19. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  20. Synthesis, X-ray crystal structure, photo luminescent property, antimicrobial activities and DFT computational study of Zn(II) coordination polymer derived from multisite N,O donor Schiff base ligand (H2L1)

    NASA Astrophysics Data System (ADS)

    Majumdar, Dhrubajyoti; Surendra Babu, M. S.; Das, Sourav; Biswas, Jayanta Kumar; Mondal, Monojit; Hazra, Suman

    2017-06-01

    A unique thiocyanato linked 1D chain of Zn(II) coordination polymer [Zn2L1(μ1,3-SCN)(η1SCN)]n (1) has been synthesized using potential multisite compartmental N,O donor Schiff base blocker ligand (L1H2) in presence of Zn(OAc)2 and KSCN. The Schiff base ligand [N, N‧-bis(3-methoxysalicylidenimino)-1,3-daminopropane] (L1H2) is 2:1 M ratio condensation product of O-vaniline and 1,3-diaminopropane in methanol medium. The characterization of Complex 1 was accomplished by means of different micro analytical techniques like elemental analyses, IR, UV-Vis, 1H NMR, emission spectroscopy and Single X-ray crystallographic study. Complex 1 crystallizes in Orthorhombic system, space group Pbca, with values a = 11.579(2), b = 18.538(3), and c = 22.160(4) Å; α = β = γ = 90.00°; V = 4756.6(14) and Z = 8. The single crystal X-ray revealed that the one dimensional chain system with the repeating unit [Zn2(μ1,3-SCN)(η1SCN)(L1)]n bridge by an end to end μ1,3 thiocyanate anion. Within each repeating unit two different types of Zn(II) ions are present. One of these is five-coordinate in a square pyramidal geometry while the other is six-coordinate in an octahedral geometry. A brief but lucid comparative approach has been demonstrated in between Schiff base (L1H2) and complex 1 with respect to their photoluminescence activities. Active luminescence behavior of complex 1 in presence of ligand (L1H2) is due to quenching of PET process which is mediated by 'chelating effect'. Complex 1 exhibits strong antimicrobial efficacy against some important Gram + ve and Gram -ve bacteria. Apart from antimicrobial potential, a combined experimental and theoretical investigation has been performed via DFT on molecular structure of complex 1 with respect to Hirshfeld surface analysis.

  1. A Guided Inquiry Activity for Teaching Ligand Field Theory

    ERIC Educational Resources Information Center

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  2. An Unusual Rolling-Sphere Phenomenon.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1996-01-01

    Discusses the theory behind a study of motion where a hollow plastic sphere racing against a steel sphere in two parallel sections of inclined channeling always reaches the bottom first; once on the floor, however, the steel sphere travels faster, speeding past the plastic sphere when both are about one meter from the base of the track. (JRH)

  3. Applications of several spectral techniques to characterize coordination compounds derived from 2,6-diacetylpyridine derivative

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Sharma, Amit Kumar

    2009-09-01

    The coordination compounds of Cr III, Mn II and Co II metal ions derived from quinquedentate 2,6-diacetylpyridine derivative have been synthesized and characterized by using the various physicochemical studies like stoichiometric, molar conductivity and magnetic, and spectral techniques like IR, NMR, mass, UV and EPR. The general stoichiometries of the complexes are found to be [Cr(H 2L)X] and [M(HL)X], where M = Mn(II) and Co(II); H 2L = dideprotonated ligand, HL = monodeprotonated ligand and X = NO 3-, Cl - and OAc -. The studies reveal that the complexes possess monomeric compositions with six coordinated octahedral geometry (Cr III and Mn II complexes) and six coordinated tetragonal geometry (Co II complexes).

  4. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak; Motamedi, Hossein; Mayer, Peter; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2017-05-01

    Two new compounds namely [Cu(SCN)(μ-L)]n (1) and {[Ag (μ2-L)](ClO4)}n (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS2N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS4 tetrahedral geometry with 4-membered Ag2S2 rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV-vis spectrum could be attributed to the π→π* and MLCT transitions, respectively.

  5. Synthesis, photophysical properties, and computational studies of four-coordinate copper(I) complexes based on benzimidazolylidene N-heterocyclic carbene (NHC) ligands bearing aryl substituents

    NASA Astrophysics Data System (ADS)

    Xu, Shengxian; Wang, Jinglan; Liu, Shaobo; Zhao, Feng; Xia, Hongying; Wang, Yibo

    2018-02-01

    Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Ph-BenIm-Py)(POP)]PF6 (1), [Cu(Naph-BenIm-Py)(POP)]PF6 (2), and [Cu(Anthr-BenIm-Py)(POP)]PF6 (3) (Ph-BenIm-Py = 3-benzyl-1-(pyridin-2-yl)-1H-benzimidazolylidene, Naph-BenIm-Py = 3-(naphthalen-2-yl-1-(pyridin-2-yl)-1H- benzimidazolylidene, Anthr-BenIm-Py = 3-(anthracen-9-yl)-1-(pyridin-2-yl)-1H-benzimidazolylidene, and POP = bis[2-diphenylphosphino]-phenyl)ether) have been synthesized and characterized. The different aryl substituents (phenyl, naphthyl, and anthracyl groups) were introduced into NHC ligands and the corresponding photophysical properties of the complexes were systematically investigated. The absorption spectra of all NHCsbnd Cu(I) complexes show a characteristic feature of metal-to-ligand charge transfer (MLCT) in the lower-energy region. Complex 1 exhibited good photoluminescence (PL) properties companying with the high quantum yields and long excited-state lifetimes, whereas 2 and 3 with naphthyl and anthracyl groups show the low PL efficiency caused by the strong π-π stacking interactions. Density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations were employed to rationalize the photophysical properties of the NHCsbnd Cu(I) complexes.

  6. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  7. Hyperfine coupling constants on inner-sphere water molecules of a triazacyclononane-based Mn(II) complex and related systems relevant as MRI contrast agents.

    PubMed

    Patinec, Véronique; Rolla, Gabriele A; Botta, Mauro; Tripier, Raphaël; Esteban-Gómez, David; Platas-Iglesias, Carlos

    2013-10-07

    We report the synthesis of the ligand H2MeNO2A (1,4-bis(carboxymethyl)-7-methyl-1,4,7-triazacyclononane) and a detailed experimental and computational study of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Mn(MeNO2A)] and related Mn(2+) complexes relevant as potential contrast agents in magnetic resonance imaging (MRI). Nuclear magnetic relaxation dispersion (NMRD) profiles, (17)O NMR chemical shifts, and transverse relaxation rates of aqueous solutions of [Mn(MeNO2A)] were recorded to determine the parameters governing the relaxivity in this complex and the (17)O and (1)H HFCCs. DFT calculations (TPSSh model) performed in aqueous solution (PCM model) on the [Mn(MeNO2A)(H2O)]·xH2O and [Mn(EDTA)(H2O)](2-)·xH2O (x = 0-4) systems were used to determine theoretically the (17)O and (1)H HFCCs responsible for the (17)O NMR chemical shifts and the scalar contributions to (17)O and (1)H NMR relaxation rates. The use of a mixed cluster/continuum approach with the explicit inclusion of a few second-sphere water molecules is critical for an accurate calculation of HFCCs of coordinated water molecules. The impact of complex dynamics on the calculated HFCCs was evaluated with the use of molecular dynamics simulations within the atom-centered density matrix propagation (ADMP) approach. The (17)O and (1)H HFCCs calculated for these complexes and related systems show an excellent agreement with the experimental data. Both the (1)H and (17)O HFCCs (A(iso) values) are dominated by the spin delocalization mechanism. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Mn(2+) ion, as well as by the orientation of the water molecule plane with respect to the Mn-O vector.

  8. Syntheses, structures and photoluminescence properties of three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) based on a pyridine N-oxide bridging ligand

    NASA Astrophysics Data System (ADS)

    Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin

    2018-06-01

    Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.

  9. Intramolecular Hydrogen Bonding Restricts Gd-Aqua-Ligand Dynamics [The Day the Water Stood Still: Intramolecular Hydrogen Bonding to Restrict Gd-Aqua Ligand Dynamics

    DOE PAGES

    Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung; ...

    2017-04-11

    Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less

  10. StenniSphere

    NASA Image and Video Library

    2000-10-25

    The John C. Stennis Space Center's visitor center, StenniSphere, is one of Mississippi's leading tourist attractions and features a 14,000-square-foot interactive review of Stennis Space Center's role in America's space program. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies located at Stennis Space Center in Hancock County, Miss.

  11. StenniSphere

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The John C. Stennis Space Center's visitor center, StenniSphere, is one of Mississippi's leading tourist attractions and features a 14,000-square-foot interactive review of Stennis Space Center's role in America's space program. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies located at Stennis Space Center in Hancock County, Miss.

  12. Syntheses, crystal structures and spectroscopic properties of copper(II)-tetracyanometallate(II) complexes with nicotinamide and isonicotinamide ligands

    NASA Astrophysics Data System (ADS)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-09-01

    Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.

  13. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation ofmore » the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  14. A series of coordination polymers constructed from R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands: Syntheses, structures and fluorescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong-Hong, E-mail: zhou21921@sina.com; Zhou, Xu-Wan; Zhou, Su-Rong

    Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn{sub 2}Na(sip){sub 2}(bpp){sub 3}(Hbpp)(H{sub 2}O){sub 2}]·8H{sub 2}O (1), [Cd{sub 3}(sip){sub 2}(nbi){sub 6}(H{sub 2}O){sub 2}]·7H{sub 2}O (2), [Zn(sip)(nbi){sub 2}(H{sub 2}O)]·Hnbi·3H{sub 2}O (3), [Cd(hip)(nbi){sub 2}(H{sub 2}O)]·nbi·5H{sub 2}O (4), [Cd{sub 2}(nip){sub 2}(nbi){sub 2}(H{sub 2}O){sub 2}]·DMF (5), and [Cu(nip)(nbi)(H{sub 2}O){sub 2}]·H{sub 2}O (6) (H{sub 3}sip=5-sulfoisophthalic acid, H{sub 2}hip=5-hydroxylisophthalic acid, H{sub 2}nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through Omore » atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip{sup 3−} anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3–5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip{sup 2−} ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied. - Graphical abstract: A series of Cd(II)/Zn(II)/ Cu(II) coordination polymers based on R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands have been synthesized under hydrothermal conditions and structurally characterized. Photoluminescent

  15. Tantallacyclopentadiene as a unique metal-containing diene ligand coordinated to nickel for preparing tantalum-nickel heterobimetallic complexes.

    PubMed

    Laskar, Payel; Yamamoto, Keishi; Srinivas, Anga; Mifleur, Alexis; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi

    2017-10-03

    A mononuclear tantallacyclopentadiene complex, TaCl 3 (C 4 H 2 tBu 2 ) (3), serves as a unique ligand to nickel: the addition of Ni(COD) 2 to 3 selectively afforded heterobimetallic Ta-Ni complex 4. The cyclooctadiene ligand bound to the nickel center in complex 4 was readily substituted by monodentate and bidentate phosphine ligands, such as dimethylphenylphosphine, 1,2-bis(diphenylphosphino)ethane, and 1,2-bis(diethylphosphino)ethane, to give the corresponding phosphine complexes 5, 6a, and 6b. We also examined a ligand substitution reaction with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) to produce the corresponding Ta-Ni complex 7. These newly prepared Ta-Ni heterobimetallic complexes were characterized spectroscopically together with the crystal structures of 4, 6a, and 7.

  16. FT-Raman and FT-IR spectra of some heterobimetallic complexes with phenylcyclopentadienyl ligands

    NASA Astrophysics Data System (ADS)

    Nie, Chong-Shi; Guo, Jianhua; Qian, Changtao; Tan, Ying

    1996-11-01

    The FT-Raman and selected IR spectra of 14 heterobimetallic complexes of (CO) 3CrC 6H 5-C 5H 4M(CO) n(NO) mX (M = transition metal, X = other ligands) are reported. FT-Raman exhibits distinct strong characteristic bands of coordinated C 6H 5-C 5H 4 ligand ring deformation near 1540, 1490 and 1280 cm -1 and the coordinated phenyl ring deformation mode near 1000 cm -1, which are negligible in IR spectra. It is also easy to find the M-CO stretching and M-C-O bending as well as phenyl-M stretching bands in the FT-Raman spectra. The v(CO) IR absorptions in THF solution were reasonably assigned according to the local symmetry of the complexes.

  17. Structures of plutonium coordination compounds: A review of past work, recent single crystal x-ray diffraction results, and what we're learning about plutonium coordination chemistry

    NASA Astrophysics Data System (ADS)

    Neu, M. P.; Matonic, J. H.; Smith, D. M.; Scott, B. L.

    2000-07-01

    The compounds we have isolated and characterized include plutonium(III) and plutonium(IV) bound by ligands with a range of donor types and denticity (halide, phosphine oxide, hydroxamate, amine, sulfide) in a variety of coordination geometries. For example, we have obtained the first X-ray structure of Pu(III) complexed by a soft donor ligand. Using a "one pot" synthesis beginning with Pu metal strips and iodine in acetonitrile and adding trithiacyclononane we isolated the complex, PuI3(9S3)(MeCN)2 (Figure 1). On the other end of the coordination chemistry spectrum, we have obtained the first single crystal structure of the Pu(IV) hexachloro anion (Figure 2). Although this species has been used in plutonium purification via anion exchange chromatography for decades, the bond distances and exact structure were not known. We have also characterized the first plutonium-biomolecule complex, Pu(IV) bound by the siderophore desferrioxamine E.In this presentation we will review the preparation, structures, and importance of previously known coordination compounds and of those we have recently isolated. We will show the coordination chemistry of plutonium is rich and varied, well worth additional exploration.

  18. N-aryl pyrrolo-tetrathiafulvalene based ligands: synthesis and metal coordination.

    PubMed

    Balandier, Jean-Yves; Chas, Marcos; Dron, Paul I; Goeb, Sébastien; Canevet, David; Belyasmine, Ahmed; Allain, Magali; Sallé, Marc

    2010-03-05

    A straightforward general synthetic access to N-aryl-1,3-dithiolo[4,5-c]pyrrole-2-thione derivatives 6 from acetylenedicarbaldehyde monoacetal is depicted. In addition to their potentiality as precursors to dithioalkyl-pyrrole derivatives, thiones 6 are key building blocks to N-aryl monopyrrolo-tetrathiafulvalene (MPTTF) derivatives 10. X-ray structures of four of these thiones intermediates, reminiscent of the corresponding MPTTF derivatives, are provided. When the aryl group is a binding pyridyl unit, the MPTTF derivative 10a can coordinate M(II) salts (M = Pt, Pd). The first examples of metal-directed orthogonal MPTTF-based dimers 11-14, obtained through coordination of 10a to cis-blocked square planar Pt or Pd complexes are described. Studies on the parameters influencing the dimer construction are presented, as well as first recognition properties of the resulting electron-rich clip for C(60).

  19. Implementation of Satellite Formation Flight Algorithms Using SPHERES Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mandy, Christophe P.; Sakamoto, Hiraku; Saenz-Otero, Alvar; Miller, David W.

    2007-01-01

    The MIT's Space Systems Laboratory developed the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) as a risk-tolerant spaceborne facility to develop and mature control, estimation, and autonomy algorithms for distributed satellite systems for applications such as satellite formation flight. Tests performed study interferometric mission-type formation flight maneuvers in deep space. These tests consist of having the satellites trace a coordinated trajectory under tight control that would allow simulated apertures to constructively interfere observed light and measure the resulting increase in angular resolution. This paper focuses on formation initialization (establishment of a formation using limited field of view relative sensors), formation coordination (synchronization of the different satellite s motion) and fuel-balancing among the different satellites.

  20. Eu(III) Complex with DO3A-amino-phosphonate Ligand as a Concentration-Independent pH-Responsive Contrast Agent for Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Krchová, Tereza; Herynek, Vít; Gálisová, Andrea; Blahut, Jan; Hermann, Petr; Kotek, Jan

    2017-02-20

    A new DOTA-like ligand H 5 do3aNP with a 2-[amino(methylphosphonic acid)]ethyl-coordinating pendant arm was prepared, and its coordinating properties were studied by NMR spectroscopy and potentiometry. The study revealed a rare slow exchange (on the 1 H and 31 P NMR time scale) between protonated and unprotonated complex species with a corresponding acidity constant pK A ∼ 8.0. This unusually slow time scale associated with protonation is caused by a significant geometric change from square-antiprismatic (SA) arrangement observed for protonated complex SA-[Eu(Hdo3aNP)] - to twisted-square-antiprismatic (TSA) arrangement found for deprotonated complex TSA-[Eu(do3aNP)] 2- . This behavior results in simultaneous occurrence of the signals of both species in the 31 P NMR spectra at approximately -118 and +70 ppm, respectively. Such an unprecedented difference in the chemical shifts between species differing by a proton is caused by a significant movement of the principal magnetic axis and by a change of phosphorus atom position in the coordination sphere of the central Eu(III) ion (i.e., by relative movement of the phosphorus atom with respect to the principal magnetic axis). It changes the sign of the paramagnetic contribution to the 31 P NMR chemical shift. The properties discovered can be employed in the measurement of pH by MRS techniques as presented by proof-of-principle experiments on phantoms.

  1. Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.

    PubMed

    Rodríguez-López, Tonalli; del Río, Fernando

    2012-01-28

    In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.

  2. Low temperature X-ray structure analyses combined with NBO studies of a new heteroleptic octa-coordinated Holmium(III) complex with N,N,N-tridentate hydrazono-phthalazine-type ligand

    NASA Astrophysics Data System (ADS)

    Soliman, Saied M.; El-Faham, Ayman

    2018-04-01

    The new heteroleptic [HoL(H2O)5]Br3 complex, L is hydrazono-phthalazine ligand, is synthesized and its molecular structure aspects were analyzed using single crystal X-ray structure (SCXRD), Hirshfeld (HF) analysis, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) method. The SCXRD showed that the Ho is octa-coordinated with one N,N,N-tridentate ligand L and five water molecules. The HF analysis is used to analyze the molecular packing in the [HoL(H2O)5]Br3crystal structure. The complex cations are connected via strong Osbnd H⋯Br and Nsbnd H⋯Br H-bonding interactions which have greater importance than the Csbnd H⋯Br contacts. Also, all the Hosbnd N and Hosbnd O bonds have the characteristics of closed shell interactions using QTAIM. The natural orbitals included in these interactions were analyzed using NBO method. The alpha LP*(8)Ho and beta LP*(4)Ho which have mainly s-orbital characters are the most important anti-bonding natural orbitals included in all Ho-N and Hosbnd O bonds. The rest of the Ho anti-bonding orbitals which have either p or d-orbital characters shared partially in the Ho-ligands interactions. Natural charges analysis revealed the presence of significant amount of electron density (0.9225-0.9300 e) transferred from the ligands to Ho (2.0700-2.0775 e). Spherical spin density with ∼4.0 e is predicted over the Ho atom.

  3. Hard sphere perturbation theory for thermodynamics of soft-sphere model liquid

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-09-01

    It is a long-standing consensus in the literature that hard sphere perturbation theory (HSPT) is not accurate for dense soft sphere model liquids, interacting with repulsive r-n pair potentials for small n. In this paper, we show that if the intrinsic error of HSPT for soft sphere model liquids is accounted for, then this is not completely true. We present results for n=4, 6, 9, 12 which indicate that, even first order variational HSPT can provide free energy upper bounds to within a few percent at densities near freezing when corrected for the intrinsic error of the HSPT.

  4. Transition metal coordination chemistry ofN,N-bis(2-{pyrid-2-ylethyl})hydroxylamine.

    PubMed

    Belock, Christopher W; Cetin, Anil; Barone, Natalie V; Ziegler, Christopher J

    2008-08-18

    Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.

  5. Photochemistry of copper(II) complexes with macrocyclic amine ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidharan, S.; Ferraudi, G.

    1981-07-01

    The photochemical properties of Cu(dl-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ and Cu(rac-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ in the presence and absence of axially coordinated ligands have been investigated by continuous and flash irradiations. Flash photolysis of the complexes in deaerated aqueous solutions revealed the presence of copper-ligand radical complexes with closed- and open-cycle ligands. Flash photolysis of methanolic solutions of the complexes, in the presence of halides and pseudohalides, shows Cu(III) macrocyclic intermediates. The experimental observations can be explained in terms of two primary photoprocesses with origins in distinctive charge transfer to metal states. These states have been assigned as aminomore » to copper(II) charge-transfer state and acido to copper(II) charge-transfer state.« less

  6. New monodentate amidine superbasic ligands with a single configuration in fac-[Re(CO)3(5,5'- or 6,6'-Me2bipyridine)(amidine)]BF4 complexes.

    PubMed

    Abhayawardhana, Pramuditha; Marzilli, Patricia A; Perera, Theshini; Fronczek, Frank R; Marzilli, Luigi G

    2012-07-02

    Treatment of two precursors, fac-[Re(CO)(3)(L)(CH(3)CN)]BF(4) [L = 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me(2)bipy) (1) and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me(2)bipy) (2)], with five C(2)-symmetrical saturated heterocyclic amines yielded 10 new amidine complexes, fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) [Y = CH(2), (CH(2))(2), (CH(2))(3), NH, or O]. All 10 complexes possess the novel feature of having only one isomer (amidine E configuration), as established by crystallographic and (1)H NMR spectroscopic methods. We are confident that NMR signals of the other possible isomer (amidine Z configuration) would have been detected, if it were present. Isomers are readily detected in closely related amidine complexes because the double-bond character of the amidine C-N3 bond (N3 is bound to Re) leads to slow E to Z isomer interchange. The new fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) complexes have C-N3 bonds with essentially identical double-bond character. However, the reason that the Z isomer is so unstable as to be undetectable in the new complexes is undoubtedly because of unfavorable clashes between the equatorial ligands and the bulky N(CH(2)CH(2))(2)Y ring moiety of the axial amidine ligand. The amidine formation reactions in acetonitrile (25 °C) proceeded more easily with 2 than with 1, indicating that the distortion in 6,6'-Me(2)bipy resulting from the proximity of the methyl substituents to the inner coordination sphere enhanced the reactivity of the coordinated CH(3)CN. Reaction times for 1 and 2 exhibited a similar dependence on the basicity and ring size of the heterocyclic amine reactants. Moreover, when the product of the reaction of 1 with piperidine, fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))N(CH(2)CH(2))(2)CH(2))]BF(4), was challenged in acetonitrile-d(3) or CDCl(3) with a 5-fold excess of the strong 4-dimethylaminopyridine ligand, there was no evidence for replacement of the amidine ligand after two months, thus establishing

  7. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  8. Heterobimetallic Silver-Iron Complexes Involving Fe(CO)5 Ligands.

    PubMed

    Wang, Guocang; Ceylan, Yavuz S; Cundari, Thomas R; Dias, H V Rasika

    2017-10-11

    Iron(0) pentacarbonyl is an organometallic compound with a long history. It undergoes carbonyl displacement chemistry with various donors (L), leading to molecules of the type Fe(CO) x (L) 5-x . The work reported here illustrates that Fe(CO) 5 can also act as a ligand. The reaction between Fe(CO) 5 with the silver salts AgSbF 6 and Ag[B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] under appropriate conditions resulted in the formation of [(μ-H 2 O)AgFe(CO) 5 ] 2 [SbF 6 ] 2 and [B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ]AgFe(CO) 5 , respectively, featuring heterobimetallic {Ag-Fe(CO) 5 } + fragments. The treatment of [B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ]AgFe(CO) 5 with 4,4'-dimethyl-2,2'-bipyridine (Me 2 Bipy) and Fe(CO) 5 afforded a heterobimetallic [(Me 2 Bipy)AgFe(CO) 5 ][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] species with a Ag-Fe(CO) 5 bond and a heterotrimetallic [{Fe(CO) 5 } 2 (μ-Ag)][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] with a (CO) 5 Fe-Ag-Fe(CO) 5 core, respectively, illustrating that it is possible to manipulate the coordination sphere at silver while keeping the Ag-Fe bond intact. The chemistry of [B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ]AgFe(CO) 5 with Et 2 O and PMes 3 (Mes = 2,4,6-trimethylphenyl) has also been investigated, which led to [(Et 2 O) 3 Ag][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] and [(Mes 3 P) 2 Ag][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] with the displacement of the Fe(CO) 5 ligand. X-ray structural and spectroscopic data of new molecules as well as results of computational analyses are presented. The Fe-Ag bond distances of these metal-only Lewis pairs range from 2.5833(4) to 2.6219(5) Å. These Ag-Fe bonds are of primarily an ionic/electrostatic nature with a modest amount of charge transfer between Ag + and Fe(CO) 5 . The ν̅(CO) bands of the molecules with Ag-Fe(CO) 5 bonds show a notable blue shift relative to those observed for free Fe(CO) 5 , indicating a significant reduction in Fe→CO back-bonding upon its coordination to silver(I).

  9. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  10. Sphere launcher

    NASA Technical Reports Server (NTRS)

    Reed, W. B.

    1972-01-01

    The sphere launcher was designed to eject a 200 lb, 15 in. diameter sphere from a space vehicle or missile, at a velocity of 58 ft/sec without imparting excessive lateral loads to the vehicle. This launching is accomplished with the vehicle operating in vacuum conditions and under a 9 g acceleration. Two principal elements are used: a high thrust, short burn time rocket motor and two snubbers for reducing the lateral loads to acceptable limits.

  11. Manganese-Vanadate Hybrids: Impact of Organic Ligands on Their Structures, Thermal Stabilities, Optical Properties, and Photocatalytic Activities.

    PubMed

    Luo, Lan; Zeng, Yuhan; Li, Le; Luo, Zhixiang; Smirnova, Tatyana I; Maggard, Paul A

    2015-08-03

    Manganese(II)-vanadate(V)/organic hybrids were prepared in high purity using four different N-donor organic ligands (2,6:2',2″-terpyridine = terpy, 2,2'-bipyrimidine = bpym, o-phenanthroline = o-phen, and 4,4'-bipyridine = 4,4'-bpy), and their crystalline structures, thermal stabilities, optical properties, photocatalytic activities and electronic structures were investigated as a function of the organic ligand. Hydrothermal reactions were employed that targeted a 1:2 molar ratio of Mn(II)/V(V), yielding four hybrid solids with the compositions of Mn(terpy)V2O6·H2O (I), Mn2(bpym)V4O12·0.6H2O (II), Mn(H2O)(o-phen)V2O6 (III), and Mn(4,4'-bpy)V2O6·1.16H2O (IV). The inorganic component within these hybrid compounds, that is, [MnV2O6], forms infinite chains in I and layers in II, III, and IV. In each case, the organic ligand preferentially coordinates to the Mn(II) cations within their respective structures, either as chelating and three-coordinate (mer isomer in I) or two-coordinate (cis isomers in II and III), or as bridging and two coordinate (trans isomer in IV). The terminating ligands in I (terpy) and III (o-phen) yield nonbridged "MnV2O6" chains and layers, respectively, while the bridging ligands in II (bpym) and IV (4,4'-bpy) result in three-dimensional, pillared hybrid networks. The coordination number of the ligand, that is, two- or three-coordinate, has the predominant effect on the dimensionality of the inorganic component, while the connectivity of the combined metal-oxide/organic network is determined by the chelating versus bridging ligand coordination modes. Each hybrid compound decomposes into crystalline MnV2O6 upon heating in air with specific surface areas from ∼7 m(2)/g for III to ∼41 m(2)/g for IV, depending on the extent of structural collapse as the lattice water is removed. All hybrid compounds exhibit visible-light bandgap sizes from ∼1.7 to ∼2.0 eV, decreasing with the increased dimensionality of the [MnV2O6] network in the order

  12. Filter Bed of Packed Spheres

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.

    1986-01-01

    Spheres sized and treated for desired sieve properties. Filter constructed from densely packed spheres restrained by screens. Hollow gas-filled plastic or metal spheres normally used. Manufactured within one percent or better diameter tolerance. Normally, all spheres in filter of same nominal diameter. Filter used as sieve to pass only particles smaller than given size or to retain particles larger than that size. Options available under filter concept make it easy to design for specific applications.

  13. Synthesis, structural characterization, reactivity, and catalytic properties of copper(I) complexes with a series of tetradentate tripodal tris(pyrazolylmethyl)amine ligands.

    PubMed

    Haldón, Estela; Delgado-Rebollo, Manuela; Prieto, Auxiliadora; Alvarez, Eleuterio; Maya, Celia; Nicasio, M Carmen; Pérez, Pedro J

    2014-04-21

    Novel tris(pyrazolylmethyl)amine ligands Tpa(Me3), Tpa*(,Br), and Tpa(Br3) have been synthesized and structurally characterized. The coordination chemistries of these three new tetradentate tripodal ligands and the already known Tpa and Tpa* have been explored using different copper(I) salts as starting materials. Cationic copper(I) complexes [Tpa(x)Cu]PF6 (1-4) have been isolated from the reaction of [Cu(NCMe)4]PF6 and 1 equiv of the ligand. Complexes 2 (Tpa(x) = Tpa*) and 3 (Tpa(x) = Tpa(Me3)) have been characterized by X-ray studies. The former is a 1D helical coordination polymer, and the latter is a tetranuclear helicate. In both structures, the Tpa(x) ligand adopts a μ(2):κ(2):κ(1)-coordination mode. However, in solution, all of the four complexes form fluxional species. When CuI is used as the copper(I) source, neutral compounds 5-8 have been obtained. Complexes 6-8 exhibit a 1:1 metal-to-ligand ratio, whereas 5 presents 2:1 stoichiometry. Its solid-state structure has been determined by X-ray diffraction, revealing its 3D polymeric nature. The polymer is composed by the assembly of [Tpa2Cu4I4] units, in which Cu4I4 presents a step-stair structure. The Tpa ligands bridge the Cu4I4 clusters, adopting also a μ(2):κ(2):κ(1)-coordination mode. As observed for the cationic derivatives, the NMR spectra of 5-8 show the equivalence of the three pyrazolyl arms of the ligands in these complexes. The reactivities of cationic copper(I) derivatives 1-4 with PPh3 and CO have been explored. In all cases, 1:1 adducts [Tpa(x)CuL]PF6 [L = PPh3 (9-11), CO (12-15)] have been isolated. The crystal structure of [Tpa*Cu(PPh3)]PF6 (9) has been obtained, showing that the coordination geometry around copper(I) is trigonal-pyramidal with the apical position occupied by the tertiary amine N atom. The Tpa* ligand binds the Cu center to three of its four N atoms, with one pyrazolyl arm remaining uncoordinated. In solution, the carbonyl adducts 13-15 exist as a mixture of two

  14. SPHERES

    NASA Image and Video Library

    2013-08-27

    ISS036-E-037288 (27 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites with ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS, Nyberg performed a demonstration of how power can be transferred between two satellites without physical contact. Station crews beginning with Expedition 8 have operated these robots to test techniques that could lead to advancements in automated dockings, satellite servicing, spacecraft assembly and emergency repairs.

  15. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029522 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  16. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029521 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  17. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029545 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  18. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029539 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  19. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jin-Hua; Tang, Gui-Mei, E-mail: meiguit@163.com; Qin, Ting-Xiao

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11more » nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  20. Molecular and electronic structures of mononuclear iron complexes using strongly electron-donating ligands and their oxidized forms.

    PubMed

    Strautmann, Julia B H; George, Serena DeBeer; Bothe, Eberhard; Bill, Eckhard; Weyhermüller, Thomas; Stammler, Anja; Bögge, Hartmut; Glaser, Thorsten

    2008-08-04

    The ligand L (2-) (H 2L = N, N'-dimethyl- N, N'-bis(3,5-di- t-butyl-2-hydroxybenzyl)-1,2-diaminoethane) has been employed for the synthesis of two mononuclear Fe (III) complexes, namely, [LFe(eta (2)-NO 3)] and [LFeCl]. L (2-) is comprised of four strongly electron-donating groups (two tert-amines and two phenolates) that increase the electron density at the coordinated ferric ions. This property should facilitate oxidation of the complexes, that is, stabilization of the oxidized species. The molecular structures in the solid state have been established by X-ray diffraction studies. [LFeCl] is five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation, while [LFe(eta (2)-NO 3)] is six-coordinate in a distorted octahedral environment with the ligand in a beta-cis conformation. The electronic structures have been studied using magnetization, EPR, Mossbauer (with and without applied field), UV-vis-NIR, and X-ray absorption spectroscopies, which demonstrate highly anisotropic covalency from the strong sigma- and pi-donating phenolates. This analysis is supported by DFT calculations on [LFeCl]. The variations of the well-understood spectroscopic data in the solid state to the spectroscopic data in solution have been used to obtain insight in the molecular structure of the two complexes in solution. While the molecular structures of the solid states are retained in solutions of nonpolar aprotic solvents, there is, however, one common molecular structure in all protic polar solvents. The analysis of the LMCT transitions and the rhombicity E/ D clearly establish that both compounds exhibit a beta-cis conformation in these protic polar solvents. These two open coordination sites, cis to each other, allow access for two potential ligands in close proximity. Electrochemical analysis establishes two reversible oxidation waves for [LFeCl] at +0.55 V and +0.93 V vs Fc (+)/Fc and one reversible oxidation wave at +0.59 V with an

  1. SPHERES: Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites: SPHERES/Astrobee Working Group (SAWG)

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2017-01-01

    SPHERES/Astrobee Working Group (SAWG) Quarterly meeting. Membership includes MIT, FIT, AFS, DARPA, CASIS, SJSU, and NASA (HQ, KSC, JSC, MSFC, and ARC)Face-to-Face, twice a year Purpose: Information sharing across the SPHERES community Program office shares National Lab Facility availability Status of resources (batteries, CO2 tanks, etc.), Overall Calendar (scheduled Test Sessions, up mass return), and Updates on new PD, Investigations, and ISS infrastructure. Provide the SPHERES community (PD, investigators, etc.) with up-to-date information to determine opportunities to use the NL Facility Discuss proposed changes updates to SPHERES Nat Lab which may be required to support a specific activity or research. Discuss specific support requests made to the ISS Office.

  2. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    NASA Astrophysics Data System (ADS)

    Xin, Ling-Yun; Liu, Guang-Zhen; Wang, Li-Ya

    2011-06-01

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H 2PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H 2O)] n(1), [Zn(PHDA)(BPP)] n(2), and [Cu 2(PHDA) 2(BPP)] n(3) (H 2PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4 86 68 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state.

  3. Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands.

    PubMed

    Eliseeva, Svetlana V; Pleshkov, Dmitry N; Lyssenko, Konstantin A; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2010-10-18

    The reaction of hydrated lanthanide hexafluoroacetylacetonates, [Ln(hfa)(3)(H(2)O)(2)], with 1,4-disubstituted benzenes afforded a new series of one-dimensional coordination polymers [Ln(hfa)(3)(Q)](∞), where Ln = Eu, Gd, Tb, and Lu and Q = 1,4-diacetylbenzene (acbz), 1,4-diacetoxybenzene (acetbz), or 1,4-dimethyltherephtalate (dmtph). X-ray single crystal analyses reveal [Ln(hfa)(3)(acbz)](∞) (Ln = Eu, Gd, Tb) consisting of zigzag polymeric chains with Ln-Ln-Ln angles equal to 128°, while the arrays are more linear in [Eu(hfa)(3)(acetbz)](∞) and [Eu(hfa)(3)(dmtph)](∞), with Ln-Ln-Ln angles of 165° and 180°, respectively. In all structures, Ln(III) ions are 8-coordinate and lie in distorted square-antiprismatic environments. The coordination polymers are thermally stable up to 180-210 °C under a nitrogen atmosphere. Their volatility has been tested in vacuum sublimation experiments at 200-250 °C and 10(-2) Torr: the metal-organic frameworks with acetbz and dmtph can be quantitatively sublimed, while [Ln(hfa)(3)(acbz)](∞) undergoes thermal decomposition. The triplet state energies of the ancillary ligands, 21,600 (acetbz), 22,840 (acbz), and 24,500 (dmtph) cm(-1), lie in an ideal range for sensitizing the luminescence of Eu(III) and/or Tb(III). As a result, all of the [Ln(hfa)(3)(Q)](∞) polymers display bright red or green luminescence due to the characteristic (5)D(0) → (7)F(J) (J = 0-4) or (5)D(4) → (7)F(J) (J = 6-0) transitions, respectively. Absolute quantum yields reach 51(Eu) and 56(Tb) % for the frameworks built from dmtph. Thin films of [Eu(hfa)(3)(Q)](∞) with 100-170 nm thickness can be obtained by thermal evaporation (P < 3 × 10(-5) Torr, 200-250 °C). They are stable over a long period of time, and their photophysical parameters are similar to those of the bulk samples so that their use as active materials in luminescent devices can be envisaged. Mixtures of [Ln(hfa)(3)(dmpth)](∞) with Ln = Eu and Tb yield color

  4. Three 3D metal coordination polymers based on triazol-functionalized rigid ligand: Synthesis, topological structure and properties

    NASA Astrophysics Data System (ADS)

    Meng, Lingkun; Liu, Kang; Liang, Chen; Guo, Xiaolei; Han, Xu; Ren, Siyuan; Ma, Dingxuan; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2018-02-01

    By using a triazol-functionalized tricarboxylate, three novel metal coordination polymers, namely, [Zn2L(OH)]·0.5H2O (1), [Co2L(OH)(H2O)]·5.5H2O (2), [Cu2(HL)] (3) L = [5-(3-(4-carboxyphenyl)-5-methyl-4H-1,2,4-triazol-4-yl)isophthalate] were synthesized under hydrothermal reactions. All the compounds were characterized by element analysis, IR spectroscopy, thermogravimetric analysis, power X-ray diffrcation and single-crystal X-ray diffrcation. Structural analysis reveals that compounds 1 and 2 have 3D networks with flu topologies where rigid trizaol-functionalized ligands as 4-connected nodes and Zn4(COO)6 or Co4(COO)6 clusters serves as 8-connected secondary building units. Compound 3 has 3D network with pcu topology where Cu4(COO)4 clusters serve as 6-connected secondary building units. Gas adsorption studies reveal that desolvated compoud 1 exhibits high H2 absorption capacity at 77 K and highly selective separation abilities of CO2 and C3H8 over CH4 at room temperature. The results suggest that 1 has potential application in gas storage and separation. In addition, the magnetic properties of compound 2 were also investigated.

  5. Structure, Bonding, and Stability of Mercury Complexes with Thiolate and Thioether Ligands from High-Resolution XANES Spectroscopy and First-Principles Calculations.

    PubMed

    Manceau, Alain; Lemouchi, Cyprien; Rovezzi, Mauro; Lanson, Martine; Glatzel, Pieter; Nagy, Kathryn L; Gautier-Luneau, Isabelle; Joly, Yves; Enescu, Mironel

    2015-12-21

    We present results obtained from high energy-resolution L3-edge XANES spectroscopy and first-principles calculations for the structure, bonding, and stability of mercury(II) complexes with thiolate and thioether ligands in crystalline compounds, aqueous solution, and macromolecular natural organic matter (NOM). Core-to-valence XANES features that vary in intensity differentiate with unprecedented sensitivity the number and identity of Hg ligands and the geometry of the ligand environment. Post-Hartree-Fock XANES calculations, coupled with natural population analysis, performed on MP2-optimized Hg[(SR)2···(RSR)n] complexes show that the shape, position, and number of electronic transitions observed at high energy-resolution are directly correlated to the Hg and S (l,m)-projected empty densities of states and occupations of the hybridized Hg 6s and 5d valence orbitals. Linear two-coordination, the most common coordination geometry in mercury chemistry, yields a sharp 2p to 6s + 5d electronic transition. This transition varies in intensity for Hg bonded to thiol groups in macromolecular NOM. The intensity variation is explained by contributions from next-nearest, low-charge, thioether-type RSR ligands at 3.0-3.3 Å from Hg. Thus, Hg in NOM has two strong bonds to thiol S and k additional weak Hg···S contacts, or 2 + k coordination. The calculated stabilization energy is -5 kcal/mol per RSR ligand. Detection of distant ligands beyond the first coordination shell requires precise measurement of, and comparison to, spectra of reference compounds as well as accurate calculation of spectra for representative molecular models. The combined experimental and theoretical approaches described here for Hg can be applied to other closed-shell atoms, such as Ag(I) and Au(I). To facilitate further calculation of XANES spectra, experimental data, a new crystallographic structure of a key mercury thioether complex, Cartesian coordinates of the computed models, and examples of

  6. Alkynyl-naphthalimide Fluorophores: Gold Coordination Chemistry and Cellular Imaging Applications.

    PubMed

    Langdon-Jones, Emily E; Lloyd, David; Hayes, Anthony J; Wainwright, Shane D; Mottram, Huw J; Coles, Simon J; Horton, Peter N; Pope, Simon J A

    2015-07-06

    A range of fluorescent alkynyl-naphthalimide fluorophores has been synthesized and their photophysical properties examined. The fluorescent ligands are based upon a 4-substituted 1,8-naphthalimide core and incorporate structural variations (at the 4-position) to tune the amphiphilic character: chloro (L1), 4-[2-(2-aminoethoxy)ethanol] (L2), 4-[2-(2-methoxyethoxy)ethylamino] (L3), piperidine (L4), morpholine (L5), 4-methylpiperidine (L6), and 4-piperidone ethylene ketal (L7) variants. The amino-substituted species (L2-L7) are fluorescent in the visible region at around 517-535 nm through a naphthalimide-localized intramolecular charge transfer (ICT), with appreciable Stokes' shifts of ca. 6500 cm(-1) and lifetimes up to 10.4 ns. Corresponding two-coordinate Au(I) complexes [Au(L)(PPh3)] were isolated, with X-ray structural studies revealing the expected coordination mode via the alkyne donor. The Au(I) complexes retain the visible fluorescence associated with the coordinated alkynyl-naphthalimide ligand. The ligands and complexes were investigated for their cytotoxicity across a range of cell lines (LOVO, MCF-7, A549, PC3, HEK) and their potential as cell imaging agents for HEK (human embryonic kidney) cells and Spironucleus vortens using confocal fluorescence microscopy. The images reveal that these fluorophores are highly compatible with fluorescence microscopy and show some clear intracellular localization patterns that are dependent upon the specific nature of the naphthalimide substituent.

  7. The impact of whole human blood on the kinetic inertness of platinum(iv) prodrugs - an HPLC-ICP-MS study.

    PubMed

    Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda

    2018-04-17

    The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.

  8. Connes distance function on fuzzy sphere and the connection between geometry and statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, Yendrembam Chaoba, E-mail: chaoba@bose.res.in; Chakraborty, Biswajit, E-mail: biswajit@bose.res.in; Prajapat, Shivraj, E-mail: shraprajapat@gmail.com

    An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemov’s SU(2) coherent state. Here also, we get a connection between geometry and statistics which ismore » shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ∈ ℤ/2.« less

  9. Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework

    DOE PAGES

    Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; ...

    2015-10-27

    Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C 6 H 4 CH 2 ) 3 N] 3- (TriNO x 3- ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNO x )thf][BAr F 4 ], in which Ar F =3,5-(CF 3 ) 2 -C 6 H 3 , and [Ce(TriNO x )py][OTf] . A rare complete Ce-halide series, Ce(TriNO x )X, in which X=F - , Clmore » - , Br - , I - , was also synthesized. We explored the solution chemistry of these complexes through detailed solution-phase electrochemistry and 1 H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X - group. DFT calculations on the series of calculations corroborated the experimental findings. Also, the use of a bulky and strongly donating tethered tripodal nitroxide ligand allowed the controlled redox chemistry at cerium. As a result, rare examples of cationic Ce IV complexes were synthesized and fully characterized. The full Ce-halide series supported by the tripodal ligand framework is also reported (see scheme).« less

  10. A new redox-active coordination polymer with cobalticinium dicarboxylate.

    PubMed

    Kondo, Mitsuru; Hayakawa, Yuri; Miyazawa, Makoto; Oyama, Aiko; Unoura, Kei; Kawaguchi, Hiroyuki; Naito, Tetsuyoshi; Maeda, Kenji; Uchida, Fumio

    2004-09-20

    A new two-dimensional coordination polymer with cobalticinium 1,1'-dicarboxylate (ccdc) incorporated in the framework has been prepared, the ccdc functioning as unique monoanionic dicarboxylate ligands. The compound shows a high redox activity based on the ccdc units. Copyright 2004 American Chemical Society

  11. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; zur Loye, Hans-Conrad

    2012-11-01

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi2O2(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P21 (a=9.6479(9) Å, b=4.2349(4) Å, c=11.9615(11) Å, β=109.587(1)°), which contains Bi2O2 chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi4Na4(1R3S-cam)8(EtOH)3.1(H2O)3.4 (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P21 (a=19.0855(7) Å, b=13.7706(5) Å, c=19.2429(7) Å, β=90.701(1)°) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi3+, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer.

  12. Dependence on sphere size of the phase behavior of mixtures of rods and spheres

    NASA Astrophysics Data System (ADS)

    Urakami, Naohito; Imai, Masayuki

    2003-07-01

    By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.

  13. Balls and Spheres

    ERIC Educational Resources Information Center

    Szekely, George

    2011-01-01

    This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…

  14. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong-Cheng; Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063; Fan, Yan

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibitmore » similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.« less

  15. Selective oxoanion separation using a tripodal ligand

    DOEpatents

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  16. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  17. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less

  18. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  19. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079083 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson, Expedition 40 commander, enters data in a computer in preparation for a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  20. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025870 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  1. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025868 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  2. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025866 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  3. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025872 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  4. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025879 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  5. Metal-assisted in situ formation of a tridentate acetylacetone ligand for complexation of fac-Re(CO)3+ for radiopharmaceutical applications.

    PubMed

    Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan

    2008-04-07

    Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.

  6. Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Niu, Jiao; Li, Jun; Ma, Xiaoxun

    2017-05-01

    Three copper complexes constructed with sulfur-containing dibutyldithiocarbamate ligand (DDTC), [(Et2NCS2)4Cu2] (1), [(Et2NCS2)(EtO)Cu]2 (2) and [(Et2NCS2)6Cu13I10]n (3) have been synthesized through the reaction of CuI with different mole ratios of DDTC under solution-diffusion conditions. The single crystal X-ray diffraction revealed that divalent Cu cations in complexes 1 and 2 imply that the reactant, Cu(I), was involved in the redox process. They formed binuclear complexes according to bridging S from DDTC ligands and O atoms from ethanol molecules respectively. The mixed valence Cu cations had two types of coordination environments in complex 3 and formed a two-dimensional layered coordination polymer by bridging the five-core Cu(I) clusters and Cu(II). The powder X-ray diffraction, luminescent, thermogravimetric analysis, etc. were also studied in this paper.

  7. Sulfonamido tripods: tuning redox potentials via ligand modifications

    PubMed Central

    Lau, Nathanael; Ziller, Joseph W.

    2014-01-01

    A series of FeII–OH2 complexes were synthesized with ligands based on the tetradentate sulfonamido tripod N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]-tris-({R-Ph}-sulfonamido). These complexes differ by the substituent on the aryl rings and were fully characterized, including their molecular structures via X-ray diffraction methods. All the complexes were five-coordinate with trigonal bipyramidal geometry. A linear correlation was observed between the electronic effects of each ligand, given by the Hammett constants of the para-substituents, and the potential of the FeII/FeIII redox couple, which were determined using cyclic voltammetry. It was found that the range of redox potentials for the complexes spanned approximately 160 mV. PMID:25419035

  8. Sulfonamido tripods: tuning redox potentials via ligand modifications.

    PubMed

    Lau, Nathanael; Ziller, Joseph W; Borovik, A S

    2015-01-08

    A series of Fe II -OH 2 complexes were synthesized with ligands based on the tetradentate sulfonamido tripod N , N ', N "-[2,2',2"-nitrilotris(ethane-2,1-diyl)]-tris-({R-Ph}-sulfonamido). These complexes differ by the substituent on the aryl rings and were fully characterized, including their molecular structures via X-ray diffraction methods. All the complexes were five-coordinate with trigonal bipyramidal geometry. A linear correlation was observed between the electronic effects of each ligand, given by the Hammett constants of the para -substituents, and the potential of the Fe II /Fe III redox couple, which were determined using cyclic voltammetry. It was found that the range of redox potentials for the complexes spanned approximately 160 mV.

  9. Silver(i) complexes with 1'-(diphenylphosphino)-1-cyanoferrocene: the art of improvisation in coordination.

    PubMed

    Škoch, Karel; Uhlík, Filip; Císařová, Ivana; Štěpnička, Petr

    2016-06-28

    1'-(Diphenylphosphino)-1-cyanoferrocene () reacts with silver(i) halides at a 1 : 1 metal-to-ligand ratio to afford the heterocubane complexes [Ag(μ3-X)(-κP)]4, where X = Cl (), Br (), and I (). In addition, the reaction with AgCl with 2 equiv. of leads to chloride-bridged dimer [(μ-Cl)2{Ag(-κP)2}2] () and, presumably, also to [(μ(P,N)-){AgCl(-κP)}]2 (). While similar reactions with AgCN furnished only the insoluble coordination polymer [(-κP)2Ag(NC)Ag(CN)]n (), those with AgSCN afforded the heterocubane [Ag(-κP)(μ-SCN-S,S,N)]4 () and the thiocyanato-bridged disilver(i) complex [Ag(-κP)2(μ-SCN-S,N)]2 (), thereby resembling reactions in the AgCl- system. Attempted reactions with AgF led to ill-defined products, among which [Ag(-κP)2(μ-HF2)]2 () and [(μ-SiF6){Ag(-κP)2}2] () could be identified. The latter compound was prepared also from Ag2[SiF6] and . Reactions between and AgClO4 or Ag[BF4] afforded disilver complexes [(μ(P,N)-)Ag(ClO4-κO)]2 () and [(μ(P,N)-)Ag(BF4-κF)]2 () featuring pseudolinear Ag(i) centers that are weakly coordinated by the counter anions. A similar reaction with Ag[SbF6] followed by crystallization from ethyl acetate produced an analogous complex, albeit with coordinated solvent, [(μ(P,N)-)Ag(AcOEt-κO)]2[SbF6]2 (). Ultimately, a compound devoid of any additional ligands at the Ag(i) centers, [(μ(P,N)-)Ag]2[B(C6H3(CF3)2-3,5)4]2 (), was obtained from the reaction of with silver(i) tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. The reaction of Ag[BF4] with two equivalents of produced unique coordination polymer [Ag(-κP)(μ(P,N)-)]n[BF4]n (), the structure of which contained one of the phosphinoferrocene ligands coordinated as a P,N-chelate and the other forming a bridge to an adjacent Ag(i) center. All of these compounds were structurally characterized by single-crystal X-ray crystallography, revealing that the lengths of the bonds between silver and its anionic ligand(s) typically exceed the sum of the respective

  10. Probing the importance of the hemilabile site of bis(phosphine) monoxide ligands in the copper-catalyzed addition of diethylzinc to N-phosphinoylimines: discovery of new effective chiral ligands.

    PubMed

    Bonnaventure, Isabelle; Charette, André B

    2008-08-15

    The hemilabile ligand Me-DuPHOS(O) 2 has proven to be a successful ligand for the copper-catalyzed addition of diethylzinc to N-phosphinoylimines. The corresponding alpha-chiral amines were obtained in high yields (80-98%) and enantiomeric ratios (19.0:1 to 99.0:1 er). Furthermore, this Cu* 2 catalytic system has been shown to be effective in the addition of diethylzinc to nitroalkenes and in the reduction of beta,beta-disubstituted vinyl phenyl sulfones. This paper describes a general structure/selectivity study in which the three ligand subunits (chiral phospholane-linker-labile coordinating group (Z)) are systematically modified and tested in the copper-catalyzed addition of diethylzinc to the N-phosphinoylimine 1 derived from benzaldehyde. This study led to the discovery of a new class of effective chiral ligands that combine a chiral phospholane unit and an achiral phosphine oxide.

  11. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  12. Coordinating the Provision of Health Services in Humanitarian Crises: a Systematic Review of Suggested Models.

    PubMed

    Lotfi, Tamara; Bou-Karroum, Lama; Darzi, Andrea; Hajjar, Rayan; El Rahyel, Ahmed; El Eid, Jamale; Itani, Mira; Brax, Hneine; Akik, Chaza; Osman, Mona; Hassan, Ghayda; El-Jardali, Fadi; Akl, Elie

    2016-08-03

    Our objective was to identify published models of coordination between entities funding or delivering health services in humanitarian crises, whether the coordination took place during or after the crises. We included reports describing models of coordination in sufficient detail to allow reproducibility. We also included reports describing implementation of identified models, as case studies. We searched Medline, PubMed, EMBASE, Cochrane Central Register of Controlled Trials, CINAHL, PsycINFO, and the WHO Global Health Library. We also searched websites of relevant organizations. We followed standard systematic review methodology. Our search captured 14,309 citations. The screening process identified 34 eligible papers describing five models of coordination of delivering health services: the "Cluster Approach" (with 16 case studies), the 4Ws "Who is Where, When, doing What" mapping tool (with four case studies), the "Sphere Project" (with two case studies), the "5x5" model (with one case study), and the "model of information coordination" (with one case study). The 4Ws and the 5x5 focus on coordination of services for mental health, the remaining models do not focus on a specific health topic. The Cluster approach appears to be the most widely used. One case study was a mixed implementation of the Cluster approach and the Sphere model. We identified no model of coordination for funding of health service. This systematic review identified five proposed coordination models that have been implemented by entities funding or delivering health service in humanitarian crises. There is a need to compare the effect of these different models on outcomes such as availability of and access to health services.

  13. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  14. SPHERES-RINGS Time Lapse

    NASA Image and Video Library

    2014-07-10

    ISS040-E-059344 (10 July 2014) --- In the International Space Station’s Kibo laboratory, NASA astronaut Reid Wiseman (left) and European Space Agency astronaut Alexander Gerst, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  15. SPHERES-RINGS Time Lapse

    NASA Image and Video Library

    2014-07-10

    ISS040-E-059467 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst and NASA astronaut Reid Wiseman (mostly obscured), both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  16. SPHERES-RINGS Time Lapse

    NASA Image and Video Library

    2014-07-10

    ISS040-E-059478 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  17. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    PubMed

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental

  18. Insulin mimesis of vanadium derivatives. Oxidation of cysteine by V(V) oxo diperoxo complexes.

    PubMed

    Ballistreri, F P; Barbuzzi, E G; Tomaselli, G A; Toscano, R M

    2000-05-30

    Kinetics of the oxidation of cysteine to cystine by four V(V) oxo diperoxo complexes [VO(O2)2L] possessing insulin mimetic activity, where L = oxalate(oxa), picolinate (pic), bipyridil (bipy), phenanthroline(phen), were performed in water at 10 degrees C by the UV or stopped-flow technique. 51V NMR spectra indicate that oxa undergoes a total ligand dissociation differently from pic, bipy and phen which hold their ligands also in solution. The observed reactivity is deeply affected by the identity of the ligand. The process seems to require coordination of the cysteine to the metal, followed by oxidation within the coordination sphere. In this respect phen and bipy make the coordination of cysteine much easier than oxa and pic. It is suggested, also on the basis of some preliminary observations concerning the oxidation of C6H5CH2SH, that the oxidation process is triggered by an electron transfer step. The rate of this step would be higher for oxa and pic than for phen and bipy. The observation that the oxidative ability of these vanadium peroxo complexes is dependent upon the nature of the ligands might match the analogous finding that their insulin mimetic activity is also modulated by the ligand identities.

  19. The Amyloid-β Peptide of Alzheimer’s Disease Binds CuI in a Linear Bis-His Coordination Environment: Insight into a Possible Neuroprotective Mechanism for the Amyloid-β Peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, J.; Szalai, V

    Oxidative stress has been suggested to contribute to neuronal apoptosis associated with Alzheimer's disease (AD). Copper may participate in oxidative stress through redox-cycling between its +2 and +1 oxidation states to generate reactive oxygen species (ROS). In vitro, copper binds to the amyloid-? peptide of AD, and in vivo, copper is associated with amyloid plaques characteristic of AD. As a result, the A?CuI complex may be a critical reactant involved in ROS associated with AD etiology. To characterize the A?CuI complex, we have pursued X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopy of A?CuII and A?CuI (produced by ascorbatemore » reduction of A?CuII). The A?CuII complex Cu K-edge XAS spectrum is indicative of a square-planar CuII center with mixed N/O ligation. Multiple scattering analysis of the extended X-ray absorption fine structure (EXAFS) data for A?CuII indicates that two of the ligands are imidazole groups of histidine ligands, indicating a (NIm)2(N/O)2 CuII ligation sphere for A?CuII. After reduction of the A?CuII complex with ascorbate, the edge region decreases in energy by 4 eV. The X-ray absorption near-edge spectrum region of A?CuI displays an intense pre-edge feature at 8984.1(2) eV. EXAFS data fitting yielded a two-coordinate geometry, with two imidazole ligands coordinated to CuI at 1.877(2) A in a linear geometry. Ascorbate reduction of A?CuII under inert atmosphere and subsequent air oxidation of A?CuI to regenerate A?CuII was monitored by low-temperature EPR spectroscopy. Slow reappearance of the A?CuII EPR signal indicates that O2 oxidation of the A?CuI complex is kinetically sluggish and A? damage is occurring following reoxidation of A?CuI by O2. Together, these results lead us to hypothesize that CuI is ligated by His13 and His14 in a linear coordination environment in ??, that A? may be playing a neuroprotective role, and that metal-mediated oxidative damage of A? occurs over multiple redox cycles.« less

  20. Science on a Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Researchers at the National Oceanic and Atmospheric Administration developed Science on a Sphere to help explain Earth system science to people of all ages. Animated images, ranging from space to ocean temperatures and more, can be seen on this interactive sphere.

  1. Synthesis and characterisation of luminescent rhenium tricarbonyl complexes with axially coordinated 1,2,3-triazole ligands.

    PubMed

    Uppal, Baljinder S; Booth, Rebecca K; Ali, Noreen; Lockwood, Cindy; Rice, Craig R; Elliott, Paul I P

    2011-08-07

    A series of 1-alkyl-4-aryl-1,2,3-triazoles (1-methyl-4-phenyl-1,2,3-triazole (1a); 1-propyl-4-phenyl-1,2,3-triazole (1b); 1-benzyl-4-phenyl-1,2,3-triazole (1c); 1-propyl-4-p-tolyl-1,2,3-triazole (1d)) have been prepared through a one-pot procedure involving in situ generation of the alkyl azide from a halide precursor followed by copper catalysed alkyne/azide cycloaddition (CuAAC) with the appropriate aryl alkyne. Cationic Re(I) complexes [Re(bpy)(CO)(3)(1a-d)]PF(6) (2a-d) were then prepared by stirring [Re(bpy)(CO)(3)Cl] with AgPF(6) in dichloromethane in the presence of ligands 1a-d. X-ray crystal structures were obtained for 2a and 2b. In the solid state, 2a adopts a highly distorted geometry, which is not seen for 2b, in which the plane of the triazole ligand tilts by 13° with respect to the Re-N bond as a result of a π-stacking interaction between the Ph substituent and one of the rings of the bpy ligand. This π-stacking interaction also results in severe twisting of the bpy ligand. Infrared spectra of 2a-d exhibit ν(CO) bands at ∼2035 and ∼1926 cm(-1) suggesting that these ligands are marginally better donors than pyridine (ν(CO) = 2037, 1932 cm(-1)). The complexes are luminescent in aerated dichloromethane at room temperature with emission maxima at 542 to 552 nm comparable to that of the pyridine analogue (549 nm) and blue shifted relative to the parent chloride complex. Long luminescent lifetimes are observed for the triazole complexes (475 to 513 ns) in aerated dichloromethane solutions at room temperature.

  2. WONKA: objective novel complex analysis for ensembles of protein-ligand structures.

    PubMed

    Bradley, A R; Wall, I D; von Delft, F; Green, D V S; Deane, C M; Marsden, B D

    2015-10-01

    WONKA is a tool for the systematic analysis of an ensemble of protein-ligand structures. It makes the identification of conserved and unusual features within such an ensemble straightforward. WONKA uses an intuitive workflow to process structural co-ordinates. Ligand and protein features are summarised and then presented within an interactive web application. WONKA's power in consolidating and summarising large amounts of data is described through the analysis of three bromodomain datasets. Furthermore, and in contrast to many current methods, WONKA relates analysis to individual ligands, from which we find unusual and erroneous binding modes. Finally the use of WONKA as an annotation tool to share observations about structures is demonstrated. WONKA is freely available to download and install locally or can be used online at http://wonka.sgc.ox.ac.uk.

  3. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  4. A one-dimensional nickel(II) coordination polymer containing 2,6-dipicolinate and dipyrido[3,2-a:2',3'-c]phenazine.

    PubMed

    Ma, Yi; Zhang, Li-Tian; Wang, Xiao-Fang; He, Yong-Ke; Han, Zheng-Bo

    2007-12-01

    A new coordination polymer, catena-poly[[(dipyrido[3,2-a:2',3'-c]phenazine-kappa(2)N,N')nickel(II)]-mu-2,6-dipicolinato-kappa(4)O(2),N,O(6):O(2')], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one-dimensional structure in which 2,6-dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one Ni(II) center, one dipyrido[3,2-a:2',3'-c]phenazine ligand and one 2,6-dipicolinate ligand. Each Ni(II) center is six-coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2-a:2',3'-c]phenazine ligand and two different 2,6-dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by pi-pi stacking interactions and weak interactions to form a three-dimensional supramolecular network.

  5. Molecular mechanics approach for design and conformational studies of macrocyclic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohini,; Akbar, Rifat; Kanungo, B. K., E-mail: b.kanungo@gmail.com

    2015-08-28

    Computational Chemistry has revolutionized way of viewing molecules at the quantum mechanical scale by allowing simulating various chemical scenarios that are not possible to study in a laboratory. The remarkable applications of computational chemistry have promoted to design and test of the effectiveness of various methods for searching the conformational space of highly flexible molecules. In this context, we conducted a series of optimization and conformational searches on macrocyclic based ligands, 9N3Me5Ox, (1,4,7-tris(5-methyl-8-hydroxyquinoline)-1,4,7-triazacyclononane) and 12N3Me5Ox, (1,5,9-tris(5-methyl-8-hydroxyquinoline)-1,5,9-triazacyclododecane) and studied their selectivity and coordination behavior with some lanthanide metal ions in molecular mechanics and semiempirical methods. The methods include both systematic andmore » random conformational searches for dihedral angles, torsion angles and Cartesian coordinates. Structural studies were carried out by using geometry optimization, coordination scans and electronic properties were evaluated. The results clearly show that chair-boat conformational isomer of 9N3Me5Ox ligand is more stable due to lower eclipsing ethane interaction and form stronger adduct complexes with lanthanide metal ion. This is because of the fact that, in a central unit of 9N3 of the ligand form six endo type bonds out of nine. The rest of bonds have trans conformation. In contrast, for the adduct of 12N3Me5Ox, two C-C bonds have on eclipsed conformation, and others have synclinal and antiperiplanar confirmations. The distortion of the two eclipsed conformations may affect the yields and the stability of the complexes.« less

  6. Crystal structure of [NaZn(BTC)(H2O)4]·1.5H2O (BTC = benzene-1,3,5-tri-carb-oxy-l-ate): a heterometallic coordination compound.

    PubMed

    Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing

    2015-07-01

    The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.

  7. Synthesis and Structure of Vanadium Halide Complexes Containing Diphosphine Ligands with Pendant Amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbert, Jonathan D.; Labios, Liezel A.; Darmon, Jonathan M.

    2016-02-18

    A series of vanadium(III) diiodide complexes of the formula CpV(P RN R'P R)I 2 (Cp = 5-C 5H 5; P RN R'P R = (R 2PCH 2) 2N(R)), where R = Et, R = Me (1a), R = Ph (1b); R = Ph, R = Me (1c)) is reported. The corresponding vanadium(II) monoiodide complexes of the formula CpV(P RN R' PR)I, where R = Et, R = Me (2a), R = Ph (2b); R = Ph, R = Me (2c)) were prepared in THF by reduction of 1a-c with Zn powder. The paramagnetic complexes 1a-c and 2a-c are characterized bymore » elemental analysis, 1H NMR spectroscopy, and by cyclic voltammetry for complexes 2b and 4b. Complexes 1c and 2a-c were also characterized in the single crystal by X-ray crystallography. We report the preparation of the vanadium(II) complexes CpV(P Ph 2N Ph 2)I (3) (P Ph 2N Ph 2 = 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) and trans-[VCl 2(PEtNMePEt)2] (4a) and trans-[VCl 2(PEtNPhPEt) 2] (4b). These complexes represent initial coordination chemistry of vanadium complexes with P RN R'P R and P Ph 2N Ph 2 diphosphine ligands, which contain a pendant amine in the second coordination sphere. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  8. N-phosphino-p-tolylsulfinamide ligands: synthesis, stability, and application to the intermolecular Pauson-Khand reaction.

    PubMed

    Revés, Marc; Achard, Thierry; Solà, Jordi; Riera, Antoni; Verdaguer, Xavier

    2008-09-19

    Here we synthesized a family of racemic and optically pure N-phosphino-p-tolylsulfinamide (PNSO) ligands. Their stability and coordination behavior toward dicobalt-alkyne complexes was evaluated. Selectivities of up to 3:1 were achieved in the ligand exchange process with (mu-TMSC2H)Co2(CO)6. The resulting optically pure major complexes were tested in the asymmetric intermolecular Pauson-Khand reaction and yielded up to 94% ee. X-ray studies of the major complex 18a indicated that the presence of an aryl group on the sulfinamide reduces the hemilabile character of the PNSO ligands.

  9. Casimir interaction between spheres in ( D + 1)-dimensional Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2014-05-01

    We consider the Casimir interaction between two spheres in ( D + 1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in [39]. The result is expressed in terms of an integral over Gegenbauer polynomials. In contrast to the D=3 case, we do not re-express the integral in terms of 3 j-symbols and hyper-spherical waves, which in principle, can be done but does not simplify the formula. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order L -2 D+3, L -2 D+1 and L -2 D-1 respectively for Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions, where L is the center-to-center distance of the two spheres. In the small separation regime, we confirm that the leading term of the Casimir interaction agrees with the proximity force approximation, which is of order , where d is the distance between the two spheres. Another main result of this work is the analytic computations of the next-to-leading order term in the small separation asymptotic expansion. This term is computed using careful order analysis as well as perturbation method. In the case the radius of one of the sphere goes to infinity, we find that the results agree with the one we derive for sphere-plate configuration. When D=3, we also recover previously known results. We find that when D is large, the ratio of the next-to-leading order term to the leading

  10. Dynamical tachyons on fuzzy spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenstein, David; Institute for Advanced Study, School of Natural Science, Princeton, New Jersey 08540; Trancanelli, Diego

    2011-05-15

    We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set upmore » a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.« less

  11. Two conformations of the integrin A-domain (I-domain): a pathway for activation?

    PubMed

    Lee, J O; Bankston, L A; Arnaout, M A; Liddington, R C

    1995-12-15

    Integrins are plasma membrane proteins that mediate adhesion to other cells and to components of the extracellular matrix. Most integrins are constitutively inactive in resting cells, but are rapidly and reversibly activated in response to agonists, leading to highly regulated cell adhesion. This activation is associated with conformational changes in their extracellular portions, but the nature of the structural changes that lead to a change in adhesiveness is not understood. The interactions of several integrins with their extracellular ligands are mediated by an A-type domain (generally called the I-domain in integrins). Binding of the I-domain to protein ligands is dependent on divalent cations. We have described previously the structure of the I-domain from complement receptor 3 with bound Mg2+, in which the glutamate side chain from a second I-domain completes the octahedral coordination sphere of the metal, acting as a ligand mimetic. We now describe a new crystal form of the I-domain with bound Mn2+, in which water completes the metal coordination sphere and there is no equivalent of the glutamate ligand. Comparison of the two crystal forms reveals a change in metal coordination which is linked to a large (10 A) shift of the C-terminal helix and the burial of two phenylalanine residues into the hydrophobic core of the Mn2+ form. These structural changes, analogous to those seen in the signal-transducing G-proteins, alter the electrophilicity of the metal, reducing its ability to bind ligand-associated acidic residues, and dramatically alter the surface of the protein implicated in binding ligand. Our observations provide the first atomic resolution view of conformational changes in an integrin domain, and suggest how these changes are linked to a change in integrin adhesiveness. We propose that the Mg2+ form represents the conformation of the domain in the active state and the Mn2+ form the conformation in the inactive state of the integrin.

  12. Molecualr-scale multicoordinating ligands for coating luminescent QDs and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian

    Colloidal semiconductor quantum dots (QDs) are inorganic nanocrystals that possess several unique photophysical properties, including tunable narrow emission and remarkable photo- and chemical stability. They have large surface area, and thus can be decorated with large numbers and a variety of molecular vectors. These properties combined offer a potentially superior alternative to traditional organic fluorophore for advanced applications in bio-imaging and bio-sensing. Herein, our effort has centered on developing a series of metal coordinating ligands with controllable structures to modify the QD surfaces and construct biocompatible nanocrystals. The ligand architecture accounts for several factors: (i) variable coordination number, (ii) nature of the hydrophilic moiety, polyethylene glycol (PEG) or zwitterion, and (iii) versatility of end-reactive groups including amine, azide, carboxylic acid and aldehyde. The ligand design is combined with a newly developed photoligation strategy to promote the dispersion of luminescent QDs in buffer media. The dissertation is organized in six chapters: In chapter 1, we provide a brief introduction of the basic photophysical properties of QDs and the synthesis history for growing high quality semiconductor nanocrystals. We also present some of the most effective methods reported to date to prepare aqueous QD dispersions, discuss the effective chemical coupling strategies for conjugating biomolecules, and review the recent literatures that have used QD-bioconjugates for imaging and sensing purposes. In Chapter 2, we describe a novel photoligation strategy to promote the transfer of luminescent QDs from hydrophobic to hydrophilic media using lipic acid (LA)-based ligands. We also discusse the experimental conditions, mechanismfor in-situ ligand exchange and the generosity of the method towards the diverse functionality while maintaining the optical properties of the nanocrystals. In chapter 3, we present the design and synthesis

  13. Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    NASA Astrophysics Data System (ADS)

    Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C.; Birjega, Ruxandra; Ene, Ramona; Carp, Oana

    2013-06-01

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N2 adsorption-desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization.

  14. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079355 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  15. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079129 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  16. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079910 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  17. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079332 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  18. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization.

    PubMed

    Mote, Nilesh R; Patel, Ketan; Shinde, Dinesh R; Gaikwad, Shahaji R; Koshti, Vijay S; Gonnade, Rajesh G; Chikkali, Samir H

    2017-10-16

    Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOC 6 H 4 NH(CO)NH 2 }{Ph 2 PC 6 H 4 NH(CO)NH 2 }PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOC 6 H 4 NH(CO)NHPh}{Ph 2 PC 6 H 4 NH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.

  19. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex.

    PubMed

    Gonzalez, Megan E; Eckert, Juergen; Aquino, Adelia J A; Poirier, Bill

    2018-04-21

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H) 2 (H 2 )(PEtPh 2 ) 3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm -1 -in excellent agreement with the experimental value of 6.4 cm -1 . This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  20. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex

    NASA Astrophysics Data System (ADS)

    Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill

    2018-04-01

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  1. Multidentate oligomeric ligands to enhance the biocompatibility of iron oxide and other metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Palui, Goutam; Ji, Xin; Aldeek, Fadi; Mattoussi, Hedi

    2014-03-01

    We prepared a set of multi-coordinating and reactive amphiphilic polymer ligands and used them for surface-functionalizing magnetic iron oxide nanoparticles. The amphiphilic oligomers were prepared by coupling (via one step nucleophilic addition) several dopamine anchoring groups, polyethylene glycol moieties and reactive groups onto a poly(isobutylene-alt-maleic anhydride) chain. The availability of several anchoring groups in the same ligand greatly enhances the ligand affinity to the nanoparticle surfaces, via multiplecoordination, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation to target biomolecules. The hydrophilic nanoparticles capped with these polymers maintain compact size and exhibit great long term colloidal stability.

  2. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods.

    PubMed

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-12-15

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  3. Experiment SPHERE status 2008

    NASA Astrophysics Data System (ADS)

    Shaulov, S. B.; Besshapov, S. P.; Kabanova, N. V.; Sysoeva, T. I.; Antonov, R. A.; Anyuhina, A. M.; Bronvech, E. A.; Chernov, D. V.; Galkin, V. I.; Tkaczyk, W.; Finger, M.; Sonsky, M.

    2009-12-01

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10-10 eV.

  4. Higher coordinate gold(I) complexes with the weak Lewis base tri(4-fluorophenyl) phosphine. Synthesis, structural, luminescence, and DFT studies

    NASA Astrophysics Data System (ADS)

    Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos

    2016-03-01

    The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.

  5. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallejos, Javier; Brito, Iván, E-mail: ivanbritob@yahoo.com; Cárdenas, Alejandro

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differencesmore » in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.« less

  6. Non-empirical Prediction of the Photophysical and Magnetic Properties of Systems with Open d- and f-Shells Based on Combined Ligand Field and Density Functional Theory (LFDFT).

    PubMed

    Daul, Claude

    2014-09-01

    Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal-ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ∼90). However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1(st) principles achieves quite a high accuracy (<5%) in terms of states energies. Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate the

  7. Liquid hydrogen sphere project

    NASA Image and Video Library

    2011-06-22

    A 107,000-gallon liquid hydrogen sphere no longer needed at Stennis Space Center is barged through the facility locks June 21. The rocket engine test facility has teamed with the Mississippi Department of Marine Resource to place the sphere in offshore waters as an artificial reef.

  8. Electronic influences of bridging and chelating diimine ligand coordination in formamidinate-bridged Rh 2 (II,II) dimers

    DOE PAGES

    White, Travis A.; Dunbar, Kim R.; Thummel, Randolph P.; ...

    2015-10-22

    We report two new formamidinate-bridged Rh 2 II,II complexes, cis-[Rh 2 II,II(μ-DTolF) 2(μ-np) 2] 2+ (3; DTolF = N,N'-di-p-tolylformamidinate; np = 1,8-naphthyridine) and cis-[Rh 2 II,II(μ-DTolF) 2(κ 2-dap) 2] 2+ (4; dap = 1,12-diazaperylene), were synthesized from cis-[Rh 2 II,II(μ-DTolF) 2(CH 3CN) 6](BF 4) 2 (1), and their properties were compared to those of cis-[Rh 2 II,II(μ-DTolF) 2(phen) 2](BF 4) 2 (2). Density functional theory (DFT) and electrochemical analyses support the description of the highest occupied molecular orbitals (HOMOs) of 3 and 4 as possessing contributions from the metals and formamidinate bridging ligands, with Rh 2/form character, and lowest unoccupiedmore » molecular orbitals (LUMOs) localized on the respective diimine ligand np and dap π* orbitals. Both 3 and 4 display strong, low energy Rh 2/form → diimine(π*) metal/ligand-to-ligand charger transfer ( 1ML–LCT) transitions with maxima at 566 nm (ε = 3600 M -1 cm -1) for 3 and at 630 nm (ε = 2900 M -1 cm -1) for 4 in CH 3CN. Time dependent-DFT (TD-DFT) calculations support these assignments. Finally, the ability of both the bridging np and chelating dap diimine ligands to produce strong absorption of these Rh 2 II,II complexes throughout the visible region is potentially useful for the development of new photocatalysts for H 2 production and photochemotherapeutics.« less

  9. On the Intensity of Radiation of an Electromagnetic Field by a Rotating Ferroelectric Sphere

    NASA Astrophysics Data System (ADS)

    Gladkov, S. O.; Bogdanova, S. B.

    2018-05-01

    It is shown that in the case when the spontaneous polarization vector P 0 and the rotational frequency vector ω of a ferroelectric sphere do not coincide, electromagnetic waves will be radiated. The intensity of the radiation is calculated as a function of the coordinates and time, and the anisotropy of this radiation is proven. The distribution of the intensity of radiation is graphically illustrated in the form of a function of the central distance r.

  10. Eddy currents in a conducting sphere

    NASA Technical Reports Server (NTRS)

    Bergman, John; Hestenes, David

    1986-01-01

    This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.

  11. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  12. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  13. Hopkins during SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033884 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, holds a plastic container partially filled with green-colored water which will be used in a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  14. SPHERES experiment session

    NASA Image and Video Library

    2007-03-24

    ISS014-E-17880 (24 March 2007) --- This medium close-up view shows three bowling-ball-sized free-flying satellites called Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) in the Destiny laboratory of the International Space Station. SPHERES were designed to test control algorithms for spacecraft by performing autonomous rendezvous and docking maneuvers inside the station. The results are important for multi-body control and in designing constellation and array spacecraft configurations.

  15. Mechanical Characterization of Partially Crystallized Sphere Packings

    NASA Astrophysics Data System (ADS)

    Hanifpour, M.; Francois, N.; Vaez Allaei, S. M.; Senden, T.; Saadatfar, M.

    2014-10-01

    We study grain-scale mechanical and geometrical features of partially crystallized packings of frictional spheres, produced experimentally by a vibrational protocol. By combining x-ray computed tomography, 3D image analysis, and discrete element method simulations, we have access to the 3D structure of internal forces. We investigate how the network of mechanical contacts and intergranular forces change when the packing structure evolves from amorphous to near perfect crystalline arrangements. We compare the behavior of the geometrical neighbors (quasicontracts) of a grain to the evolution of the mechanical contacts. The mechanical coordination number Zm is a key parameter characterizing the crystallization onset. The high fluctuation level of Zm and of the force distribution in highly crystallized packings reveals that a geometrically ordered structure still possesses a highly random mechanical backbone similar to that of amorphous packings.

  16. A computer program for converting rectangular coordinates to latitude-longitude coordinates

    USGS Publications Warehouse

    Rutledge, A.T.

    1989-01-01

    A computer program was developed for converting the coordinates of any rectangular grid on a map to coordinates on a grid that is parallel to lines of equal latitude and longitude. Using this program in conjunction with groundwater flow models, the user can extract data and results from models with varying grid orientations and place these data into grid structure that is oriented parallel to lines of equal latitude and longitude. All cells in the rectangular grid must have equal dimensions, and all cells in the latitude-longitude grid measure one minute by one minute. This program is applicable if the map used shows lines of equal latitude as arcs and lines of equal longitude as straight lines and assumes that the Earth 's surface can be approximated as a sphere. The program user enters the row number , column number, and latitude and longitude of the midpoint of the cell for three test cells on the rectangular grid. The latitude and longitude of boundaries of the rectangular grid also are entered. By solving sets of simultaneous linear equations, the program calculates coefficients that are used for making the conversion. As an option in the program, the user may build a groundwater model file based on a grid that is parallel to lines of equal latitude and longitude. The program reads a data file based on the rectangular coordinates and automatically forms the new data file. (USGS)

  17. Science on a Sphere exhibit

    NASA Image and Video Library

    2009-03-31

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  18. Science on a Sphere exhibit

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  19. Gas phase reactions of doubly charged alkaline earth and transition metal(II)-ligand complexes generated by electrospray ionization

    NASA Astrophysics Data System (ADS)

    Kohler, Martin; Leary, Julie A.

    1997-03-01

    Doubly charged metal(II)-complexes of [alpha] 1-3, [alpha] 1-6 mannotriose and the conserved trimannosyl core pentasaccharide as well as doubly charged complexes of Co(II), Mn(II), Ca(II) and Sr(II) with acetonitrile generated by electrospray ionization were studied by low energy collision induced dissociation (CID). Two main fragmentation pathways were observed for the metal(II)-oligosaccharide complexes. Regardless of the coordinating metal, loss of a neutral dehydrohexose residue (162 Da) from the doubly charged precursor ion is observed, forming a doubly charged product ion. However, if the oligosaccharide is coordinated to Co(II) or Mn(II), loss of a dehydroxyhexose cation is also observed. Investigation of the low mass region of the mass spectra of the metal coordinated oligosaccharides revealed intense signals corresponding to [metal(II) + (CH3CN)n2+ (where n = 1-6) species which were being formed by the metal(II) ions and the acetonitrile present in the sample. Analysis of these metal(II)-acetonitrile complexes provided further insight into the processes occurring upon low energy CID of doubly charged metal complexes. The metal(II)-acetonitrile system showed neutral loss and ligand cleavage as observed with the oligosaccharide complexes, as well as a series of six different dissociation mechanisms, most notable among them reduction from [metal(II) + (CH3CN)n2+ to the bare [metal(I)]+ species by electron transfer. Depending on the metal and collision gas chosen, one observes electron transfer from the ligand to the metal, electron transfer from the collision gas to the metal, proton transfer between ligands, heterolytic cleavage of the ligands, reactive collisions and loss of neutral ligands.

  20. Synthesis, structure and property of diorganotin complexes with chiral N-(5-chlorosalicylidene)valinate ligand

    NASA Astrophysics Data System (ADS)

    Tian, Laijin; Yao, Yanze; Wang, Yuhua; Liu, Jin

    2018-03-01

    Six new diorganotin N-[(5-chloro-2-oxyphenyl)methylene]valinates, R2SnL (R = Me, 1; Et, 2; L = 5-Cl-2-OC6H3CH = NCH(i-Pr)COO: (S)-, a; (R)-, b; (RS)-, c), have been synthesized from the reaction of R2SnCl2 with the chiral ligand KHL (potassium salt of HL) in different solvents and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra. In benzene, the configuration of the chiral ligand was retained. (S)-Enantiomers (1a and 2a) and (R)-enantiomers (1b and 2b) display discrete molecular structures with distorted trigonal bipyramidal geometries in which two C atoms of organic groups (R) and the imino N atom occupy the equatorial positions and a phenoxide O and an unidentate carboxylate group O atom are in the axial orientation. In the methanol, the chiral ligand was racemized. 1cṡMeOH is a centrosymmetric dimers formed by (R)- and (S)- enantiomers through two Snsbnd OṡṡṡSn bridges. The coordination geometry of the Sn atom can be described as a distorted pentagonal bipyramid with two methyl groups in axial positions. The crystal of 2c is composed of two threefold symmetric trimers, a [Et2SnL-(R)]3 and a [Et2SnL-(S)]3, with a macrocyclic 12-membered ring structure formed by the bidenate bridging coordination of carboxylate group to tin atoms. Each tin atom is six-coordinated in distorted [SnC2NO3] octahedron geometry. The fluorescence properties of ligand KHL and complexes 1 (1a-1c) and 2 (2a-2c) have been measured. The results show the complexes may be explored for potential luminescent materials.

  1. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN) 4] 2-: Synthesis, crystal structure, magnetic properties and ESR studies

    NASA Astrophysics Data System (ADS)

    Jian, Fang-Fang; Xiao, Hai-Lian; Liu, Fa Qian

    2006-12-01

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4Ni(Im) 3] ∞1, [Hg(SCN) 4Mn(Im) 2] ∞2, and [Hg(SCN) 4Cu(Me-Im) 2 Hg(SCN) 4Cu(Me-Im) 4] ∞3, (Im=imidazole, Me-Im= N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg⋯M⋯Hg chain ( M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4] 2- anion connects three [Ni(Im) 3] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4] 2- and [Mn(Im) 2] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment.

  2. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    NASA Astrophysics Data System (ADS)

    Li, Lin; Liu, Chong-Bo; Yang, Gao-Shan; Xiong, Zhi-Qiang; Liu, Hong; Wen, Hui-Liang

    2015-11-01

    Hydrothermal reactions of 2,2‧-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H2L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn2(μ2-OH)(μ4-O)0.5(L)]·0.5H2O (1), [Zn(L)(2,2‧-bipy)(H2O)] (2), [Zn3(L)3(phen)2]·H2O (3) and [Zn2(L)2(4,4‧-bipy)] (4) (2,2‧-bipy=2,2‧-bipyridine; 4,4‧-bipy=4,4‧-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn4(μ4-O)(μ2-OH)2]4+ clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}2{34·44·52·66·710·82}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {44·62} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {44·62} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1-4 have been investigated.

  3. Synthesis, spectroscopic characterization, electrochemical behavior and computational analysis of mixed diamine ligand gold(III) complexes: antiproliferative and in vitro cytotoxic evaluations against human cancer cell lines.

    PubMed

    Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A

    2014-12-01

    The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.

  4. Synthesis, structure and catalytic activities of nickel(II) complexes bearing N4 tetradentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata

    2018-05-01

    Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.

  5. LigandRNA: computational predictor of RNA–ligand interactions

    PubMed Central

    Philips, Anna; Milanowska, Kaja; Łach, Grzegorz; Bujnicki, Janusz M.

    2013-01-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. PMID:24145824

  6. Synthesis, structure, and excited state kinetics of heteroleptic Cu(i) complexes with a new sterically demanding phenanthroline ligand

    DOE PAGES

    Kohler, Lars; Hadt, Ryan G.; Hayes, Dugan; ...

    2017-09-25

    In this paper we describe the synthesis of a new phenanthroline ligand, 2,9-di(2,4,6-tri-isopropyl-phenyl)-1,10-phenanthroline (bL2) and its use as the blocking ligand in the preparation of two new heteroleptic Cu(I)diimine complexes. Analysis of the CuHETPHEN single crystal structures shows a distinct distortion from an ideal tetrahedral geometry around the Cu(I) center, forced by the secondary phenanthroline ligand rotating to accommodate the isopropyl groups of bL2. The increased steric bulk of bL2 as compared to the more commonly used 2,9-dimesityl-1,10-phenanthroline blocking ligand prohibits intramolecular ligand–ligand interaction, which is unique among CuHETPHEN complexes. The ground state optical and redox properties of CuHETPHEN complexesmore » are responsive to the substitution on the blocking ligand even though the differences in structure are far removed from the Cu(I) center. Transient optical spectroscopy was used to understand the excited state kinetics in both coordinating and non-coordinating solvents following visible excitation. Substitution of the blocking phenanthroline ligand has a significant impact on the 3MLCT decay and can be used to increase the excited state lifetime by 50%. Electronic structure calculations established relationships between ground and excited state properties, and general entatic state concepts are discussed for copper photosensitizers. This work contributes to the growing library of CuHETPHEN complexes and broadens the fundamental understanding of their ground and excited state properties.« less

  7. Tuning the Electronic Structure of Fe(II) Polypyridines via Donor Atom and Ligand Scaffold Modifications: A Computational Study.

    PubMed

    Bowman, David N; Bondarev, Alexey; Mukherjee, Sriparna; Jakubikova, Elena

    2015-09-08

    Fe(II) polypyridines are an important class of pseudo-octahedral metal complexes known for their potential applications in molecular electronic switches, data storage and display devices, sensors, and dye-sensitized solar cells. Fe(II) polypyridines have a d(6) electronic configuration and pseudo-octahedral geometry and can therefore possess either a high-spin (quintet) or a low-spin (singlet) ground state. In this study, we investigate a series of complexes based on [Fe(tpy)2](2+) (tpy = 2,2';6',2″-terpyridine) and [Fe(dcpp)2](2+) (dcpp = 2,6-bis(2-carboxypyridyl)pyridine). The ligand field strength in these complexes is systematically tuned by replacing the central pyridine with five-membered (N-heterocyclic carbene, pyrrole, furan) or six-membered (aryl, thiazine-1,1-dioxide, 4-pyrone) moieties. To determine the impact of ligand substitutions on the relative energies of metal-centered states, the singlet, triplet, and quintet states of the Fe(II) complexes were optimized in water (PCM) using density functional theory at the B3LYP+D2 level with 6-311G* (nonmetals) and SDD (Fe) basis sets. It was found that the dcpp ligand scaffold allows for a more ideal octahedral coordination environment in comparison to the tpy ligand scaffold. The presence of six-membered central rings also allows for a more ideally octahedral coordination environment relative to five-membered central rings, regardless of the ligand scaffold. We find that the ligand field strength in the Fe(II) polypyridines can be tuned by altering the donor atom identity, with C donor atoms providing the strongest ligand field.

  8. Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jianshan; Sheng Tianlu; Hu Shengmin

    2012-08-15

    Using aminocarboxylate derivates (S)-N-(4-cyanobenzoic)-glutamic acid (denoted as cbg, 1a) and (S)-N-(4-nitrobenzoic)-glutamic acid (denoted as nbg, 1b) as chiral ligands, five new homochiral coordination polymers formulated as [Cu(cbg)(H{sub 2}O){sub 2}]{sub n} (3), [Cu(cbop){sub 2}(4,4 Prime -bipy)(H{sub 2}O)]{sub n} (4) (cbop=(S)-N-(4-cyanobenzoic)-5-oxoproline, 4,4 Prime -bipy=4,4 Prime -bipyridine), {l_brace}[Cu(nbop){sub 2}(4,4 Prime -bipy)]{center_dot}4H{sub 2}O{r_brace}{sub n} (5) (nbop=(S)-N-(4-nitrobenzoic)-5-oxoproline), {l_brace}[Cd(nbop){sub 2}(4,4 Prime -bipy)]{center_dot}2H{sub 2}O{r_brace}{sub n} (6), and [Ni(nbop){sub 2}(4,4 Prime -bipy)(H{sub 2}O){sub 2}]{sub n} (7) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction study reveals that the original chirality of aminocarboxylate derivates is maintained in all these complexes. Complexes 3, 4, and 7 are one-dimensionalmore » infinite chain coordination polymers, while complexes 5 and 6 possess two-dimensional network structures. In situ cyclization of 1a and 1b was taken place in the formation of complexes 4-7, which may be due to the competition of 4,4 Prime -bipyridine with chiral ligands during the coordination process. Preliminary optical behavior investigation indicates that ligands 1a, 1b, and complexes 6, 7 are nonlinear optical active. - Graphical abstract: Using aminocarboxylate derivates as chiral ligands, five new homochiral coordination polymers possessing second harmonic generation activities have been hydrothermally synthesized. Highlights: Black-Right-Pointing-Pointer Two new chiral aminocarboxylate derivates were firstly synthesized. Black-Right-Pointing-Pointer Five new homochiral metal organic complexes were obtained hydrothermally based on these ligands. Black-Right-Pointing-Pointer Intramolecular amidation was taken place on the aminocarboxylate derivates during the formation of these complexes. Black-Right-Pointing-Pointer In

  9. Porous Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  10. Pi-metal complexes of tetrapyrrolic systems. A novel coordination mode in "porphyrin-like" chemistry.

    PubMed

    Cuesta, Luciano; Sessler, Jonathan L

    2009-09-01

    The coordination chemistry of porphyrins and related tetrapyrrolic ligands has traditionally centered around the ability of these systems to form pyrrole N-ligated complexes via the formation of sigma bonds, either within the N(4) core or displaced above it. In fact, such sigma-complexes are known with almost every metal cation in the periodic table. However, a growing number of pi-complexes derived from tetrapyrrolic ligands have been reported in recent years. The underlying coordination mode, while still novel in the context of "porphyrin-like" chemistry, is already being recognized for the effects it can impart over the reactivity, as well as the spectroscopic, redox, electronic, and optical properties of various oligopyrrolic macrocycles. This critical review summarizes accomplishments made in this fast-emerging field (59 references).

  11. Probing the coordination environment of Ti(3+) ions coordinated to nitrogen-containing Lewis bases.

    PubMed

    Morra, E; Maurelli, S; Chiesa, M; Van Doorslaer, S

    2015-08-28

    Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate the coordination of nitrogen-containing ligands to Ti(3+)-chloro complexes. Frozen solutions of TiCl3 and TiCl3(Py)3 dissolved in nitrogen-containing solvents have been investigated together with the TiCl3(Py)3 solid-state complex. For these different systems, the hyperfine and nuclear quadrupole data of Ti(3+)-bound (14)N nuclei are reported and discussed in the light of DFT computations, allowing for a detailed description of the microscopic structure of these systems.

  12. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  13. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  14. Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels.

    PubMed

    Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L

    2013-03-05

    AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine, and phenylalanine, which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate, and serine. AvGluR1 LBD crystal structures reveal an unusual scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, whereas in the alanine, methionine, and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl(-) lowers affinity for these ligands but not for glutamate or aspartate nor for phenylalanine, which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure-based studies on iGluR-ligand interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels

    PubMed Central

    Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L.

    2014-01-01

    SUMMARY AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine and phenylalanine which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate and serine. AvGluR1 LBD crystal structures reveal a novel scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, while in the alanine, methionine and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl− lowers affinity for these ligands, but not for glutamate, aspartate or for phenylalanine which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure based studies on iGluR-ligand interactions. PMID:23434404

  16. Quantifying the density of surface capping ligands on semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian; Palui, Goutam; Merkl, Jan-Philip; Mattoussi, Hedi

    2015-03-01

    We have designed a new set of coordinating ligands made of a lipoic acid (LA) anchor and poly(ethylene glycol) (PEG) hydrophilic moiety appended with a terminal aldehyde for the surface functionalization of QDs. This ligand design was combined with a recently developed photoligation strategy to prepare hydrophilic CdSe-ZnS QDs with good control over the fraction of intact aldehyde (-CHO) groups per nanocrystal. We further applied the efficient hydrazone ligation to react aldehyde-QDs with 2-hydrazinopyridine (2-HP). This covalent modification produces QD-conjugates with a well-defined absorption feature at 350 nm ascribed to the hydrazone chromophore. We exploited this unique optical signature to accurately measure the number of aldehyde groups per QD when the fraction of LA-PEG-CHO per nanocrystal was varied. This allowed us to extract an estimate for the number of LA-PEG ligands per QD. These results suggest that hydrazone ligation has the potential to provide a simple and general analytical method to estimate the number of surface ligands for a variety of nanocrystals such as metal, metal oxide and semiconductor nanocrystals.

  17. Aerial View of StenniSphere

    NASA Image and Video Library

    2001-04-25

    StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.

  18. Aerial View of StenniSphere

    NASA Technical Reports Server (NTRS)

    2001-01-01

    StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.

  19. Reductive Activation of O2 by Non-Heme Iron(II) Benzilate Complexes of N4 Ligands: Effect of Ligand Topology on the Reactivity of O2-Derived Oxidant.

    PubMed

    Chakraborty, Biswarup; Jana, Rahul Dev; Singh, Reena; Paria, Sayantan; Paine, Tapan Kanti

    2017-01-03

    A series of iron(II) benzilate complexes (1-7) with general formula [(L)Fe II (benzilate)] + have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N 4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me 3 -TPA in 2), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic

  20. Crystal structure, magnetism, and luminescent properties of two isostructural pcu MOFs based on a triangular ligand

    NASA Astrophysics Data System (ADS)

    Yan, Pen-Ji; Yao, Xiao-Qiang; Xie, Hua; Xiao, Guo-Bin; Liu, Jia-Cheng; Xu, Xin-Jian

    2018-05-01

    Two isomorphous metal-organic frameworks, {[M(TIPA) (btec)½]H2O}n, [M = Co (1) or Zn (2)] were synthesized hydrothermally based on a semi-rigid N-center triangular ligand TIPA, where TIPA = tris(4-(1H-imidazol-1-yl)-phenyl)amine, H4btec = 1,2,4,5-benzenetetracarboxylic acid. Single crystal structural analyses show that complexes 1 and 2 are isostructural and both feature a twofold interpenetrated pcu topology. In 1 and 2, the btec4- ligand adopting μ2-η2:η1 and μ1-η1:η0 coordination modes connect adjacent dinuclear Co/Zn units to form a 1D straight polymeric chain. Then these chains arranged in parallel/parallel fashion were further extended to a 3D network by exo-tridentate ligand TIPA with μ2-κ2N:N‧ coordination mode. The magnetic property of 1 and the luminescent property of 2 were investigated. Furthermore, the structure and spectroscopic property of 2 were further investigated by DFT and TD-DFT calculations.

  1. Inhibition of cyclin-dependent kinase CDK1 by oxindolimine ligands and corresponding copper and zinc complexes.

    PubMed

    Miguel, Rodrigo Bernardi; Petersen, Philippe Alexandre Divina; Gonzales-Zubiate, Fernando A; Oliveira, Carla Columbano; Kumar, Naresh; do Nascimento, Rafael Rodrigues; Petrilli, Helena Maria; da Costa Ferreira, Ana Maria

    2015-10-01

    Oxindolimine-copper(II) and zinc(II) complexes that previously have shown to induce apoptosis, with DNA and mitochondria as main targets, exhibit here significant inhibition of kinase CDK1/cyclin B protein. Copper species are more active than the corresponding zinc, and the free ligand shows to be less active, indicating a major influence of coordination in the process, and a further modulation by the coordinated ligand. Molecular docking and classical molecular dynamics provide a better understanding of the effectiveness and kinase inhibition mechanism by these compounds, showing that the metal complex provides a stronger interaction than the free ligand with the ATP-binding site. The metal ion introduces charge in the oxindole species, giving it a more rigid conformation that then becomes more effective in its interactions with the protein active site. Analogous experiments resulted in no significant effect regarding phosphatase inhibition. These results can explain the cytotoxicity of these metal complexes towards different tumor cells, in addition to its capability of binding to DNA, and decreasing membrane potential of mitochondria.

  2. Theoretical study on phosphorescence efficiency and color tuning from orange to blue-green of Ir(III) complexes based on substituted 2-phenylimidazo[1,2-a]pyridine ligand.

    PubMed

    Li, Xiao-Na; Wu, Zhi-Jian; Li, Xi-Yan; Zhang, Hong-Jie; Liu, Xiao-Juan

    2011-04-30

    The geometrical structures, phosphorescence quantum yields, and electroluminescence (EL) efficiency of six iridium(III) complexes containing 2-phenylimidazo[1,2-a]pyridine ligand are investigated by density functional theory (DFT), which show a wide color tuning of photoluminescence from orange (λ(em) = 550 nm) to blue-green (λ(em) = 490 nm). The calculated results shed some light on the reasons of the remarkably manipulated excited-state and EL properties through substitution effect. The Mulliken charge calculation reveals that attached -CF(3) groups on phenyl and imidazo[1,2-a]pyridine (impy) moieties (4) can make both of them as electron-deficient region, which will lead to the contraction of the whole coordination sphere and strengthen the metal-ligand interaction. While attaching two -CF(3) groups on phenyl ring can make it more electron-deficient, which will induce electron transferring from acac and impy fragment to phenyl ring, and also result in the contracted structure. The largest metal-to-ligand charge transfer ((3)MLCT) character and the smaller S(1)-T(1) energy gap (ΔE(S(1)-T(1))) value increase the emission quantum yields of 4 and 6 than other complexes. For EL efficiency, because of the similar highest occupied molecular orbital (HOMO) levels of 4 and 6 to that of holes injection material poly(N-vinylcarbazole) (PVK) and the larger dipole moments, majority hole will be accumulated on the HOMO of 4 and 6. Combination with the lower lowest unoccupied molecular orbital energy levels compared with PVK, the recombination zones of 4 and 6 can be well confined within emitting material layer (EML) and lead to the higher EL efficiency. Copyright © 2010 Wiley Periodicals, Inc.

  3. Light-triggered self-assembly of triarylamine-based nanospheres

    NASA Astrophysics Data System (ADS)

    Moulin, Emilie; Niess, Frédéric; Fuks, Gad; Jouault, Nicolas; Buhler, Eric; Giuseppone, Nicolas

    2012-10-01

    Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm. Electronic supplementary information (ESI) available: Synthetic procedures and products' characterization (2-4 and 6-9). 1H NMR titration of compound 6 by Zn(OTf)2 to form complex 7. Kinetic measurements by UV-Vis-NIR spectroscopy. Transmission electron microscopy imaging for complexes 8 and 9. UV-Vis-NIR for an Fe2+ analogue of complex 7. Dynamic light scattering and time autocorrelation function for self-assembly of complexes 7-9. Copies of 1H and 13C NMR spectra for compounds 2-4 and 6. See DOI: 10.1039/c2nr32168h

  4. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko

    2017-04-01

    Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.

  5. Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study

    PubMed Central

    Wu, Ruibo; Hu, Po; Wang, Shenglong; Cao, Zexing; Zhang, Yingkai

    2009-01-01

    Abstracs The different coordination modes and fast ligand exchange of zinc coordination has been suggested to be one key catalytic feature of the zinc ion which makes it an invaluable metal in biological catalysis. However, partly due to the well known difficulties for zinc to be characterized by spectroscopy methods, evidence for dynamic nature of the catalytic zinc coordination has so far mainly been indirect. In this work, Born-Oppenheimer ab initio QM/MM molecular dynamics simulation has been employed, which allows for a first-principle description of the dynamics of the metal active site while properly including effects of the heterogeneous and fluctuating protein environment. Our simulations have provided direct evidence regarding inherent flexibility of the catalytic zinc coordination shell in Thermolysin (TLN) and Histone Deacetylase 8 (HDAC8). We have observed different coordination modes and fast ligand exchange during the picosecond's time-scale. For TLN, the coordination of the carboxylate group of Glu166 to Zinc is found to continuously change between monodentate and bidentate manner dynamically; while for HDAC8, the flexibility mainly comes from the coordination to a non-amino-acid ligand. Such distinct dynamics in the zinc coordination shell between two enzymes suggests that the catalytic role of Zinc in TLN and HDAC8 is likely to be different in spite of the fact that both catalyze the hydrolysis of amide bond. Meanwhile, considering that such Born-Oppenheimer ab initio QM/MM MD simulations are very much desired but are widely considered to be too computationally expensive to be feasible, our current study demonstrates the viability and powerfulness of this state-of-the-art approach in simulating metalloenzymes. PMID:20161624

  6. Measurement of the Casimir Force between Two Spheres

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.

    2018-01-01

    Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

  7. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    PubMed Central

    Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina

    2015-01-01

    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384

  8. Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

    PubMed

    Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Helm, Lothar; Platas-Iglesias, Carlos

    2012-11-12

    Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. One-dimensional Cu(II) coordination polymers containing C2h-symmetric 1,1':4',1''-terphenyl-3,3'-dicarboxylate linkers.

    PubMed

    Kim, Hyun Chul; Gu, Ja Min; Huh, Seong; Yo, Chul Hyun; Kim, Youngmee

    2015-10-01

    Two new one-dimensional Cu(II) coordination polymers (CPs) containing the C2h-symmetric terphenyl-based dicarboxylate linker 1,1':4',1''-terphenyl-3,3'-dicarboxylate (3,3'-TPDC), namely catena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(4)O,O':O'':O'''] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(2)O(3):O(3')] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3'-TPDC bridging ligands coordinate the Cu(II) ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).

  10. Existence of frozen-in coordinate systems

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.

  11. DOD SPHERES-RINGS Test Session

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025915 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  12. Structural diversity and photocatalytic properties of Cd(II) coordination polymers constructed by a flexible V-shaped bipyridyl benzene ligand and dicarboxylate derivatives.

    PubMed

    Liu, Lei-Lei; Yu, Cai-Xia; Ma, Feng-Ji; Li, Ya-Ru; Han, Jing-Jing; Lin, Lu; Ma, Lu-Fang

    2015-01-28

    Hydrothermal reactions of Cd(OAc)2·2H2O with a flexible V-shaped bipyridyl benzene ligand and five benzenedicarboxylic acid derivatives gave rise to five new coordination polymers i.e., [Cd(1,4-BDC)(bpmb)(H2O)]n (1), {[Cd(1,3-BDC)(bpmb)]·0.125H2O}n (2), [Cd2(5-Me-1,3-BDC)2(bpmb)2]n (3), [Cd(5-NO2-1,3-BDC)(bpmb)(H2O)]n (4) and [Cd(5-OH-1,3-BDC)(bpmb)(H2O)]n (5) (bpmb = 1,3-bis(pyridine-3-ylmethoxy)benzene, 1,4-H2BDC = 1,4-benzenedicarboxylic acid, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 5-Me-1,3-H2BDC = 5-methyl-1,3-benzenedicarboxylic acid, 5-NO2-1,3-H2BDC = 5-nitro-1,3-benzenedicarboxylic acid, 5-OH-1,3-H2BDC = 5-hydroxy-1,3-benzenedicarboxylic acid). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Compound 1 is a two-fold interpenetrating network showing the coexistence of polyrotaxane and polycatenane characters. Compounds 2 and 3 exhibit similar 2D (3,5)-connected (4(2)·6(7)·8)(4(2)·6) nets in which the bpmb ligands work as lockers in interlocking 1D [Cd(1,3-BDC/5-Me-1,3-BDC)]n chains. Compound 4 shows a 2D 4-connected (6(6)) sandwich-like structure with differently oriented [Cd(5-NO2-1,3-BDC)]n chains. Compound 5 is a 3D supramolecular pcu net based on a 1D ladder-shaped chain. These results suggest that the substituted positions of carboxylate groups and changes in substituted R groups in the 5-position of BDC ligands have significant effect on the final structures. These compounds exhibited relatively good photocatalytic activity towards the degradation of methylene blue (MB) in aqueous solution under UV irradiation. Moreover, solid-state photoluminescence properties of 1-5 were also investigated.

  13. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    PubMed

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  14. Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei

    2015-09-01

    Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.

  15. Development of Catalysts and Ligands for Enantioselective Gold Catalysis

    PubMed Central

    Wang, Yi-Ming; Lackner, Aaron D.; Toste, F. Dean

    2014-01-01

    CONSPECTUS The use of Au(I) complexes for the catalytic activation of C-C π-bonds has been the subject of intense investigation in the last decade or so. The facile formation of carbon-carbon and carbon-heteroatom bonds facilitated by gold naturally led to efforts to render these transformations enantioselective. Early examples of enantioselective gold-catalyzed transformations have focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, careful choice of the weakly coordinating ligand (or counterion) was needed to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, a new class of mononuclear phosphite and phosphoramidite ligands was developed to supplement the previously widely utilized phosphines. Finally carbene ligands, in particular, the acyclic diaminocarbenes, have also been successfully applied to enantioselective transformations. PMID:24228794

  16. A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000; Bai, Chao

    Eight Zn(II)-based coordination polymers, namely, [Zn{sub 2}L{sub 2}(2,2’-bipy)]{sub n}·nH{sub 2}O (1), [Zn{sub 2}L{sub 2}(phen)]{sub n}·nH{sub 2}O (2), [ZnL(phen)(H{sub 2}O)]{sub n} (3), [Zn{sub 3}L{sub 3}(4,4’-bipy)]{sub n} (4), [Zn{sub 2}L{sub 2}(4,4’-bipy){sub 2}]{sub n} [Zn{sub 2}L{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (5), [Zn{sub 4}L{sub 4}(bpp){sub 2}]{sub n} (6), [ZnL(bbi){sub 0.5}]{sub n} (7), [ZnL(bpz)]{sub n} (8) (H{sub 2}L=4,4’-([1,2-phenylenebis-(methylene)]bis(oxy))dibenzoic acid, 2,2’-bipy =2,2’-bipyridine, phen =1,10-phenanthroline, 4,4’-bpy=4,4’-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1–8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1–8 in solid statemore » were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials. - Graphical abstract: Eight new Zn(II)-based coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and different N-donor ligands have been hydrothermally synthesized through fixing the metal salts and the solvent systems. The photoluminescent properties of complexes 1−8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for

  17. Photochemistry of fac-[Re(CO)3(dcbH2)( trans-stpy)]+: New Insights on the Isomerization Mechanism of Coordinated Stilbene-like Ligands.

    PubMed

    Faustino, Leandro A; Hora Machado, Antonio Eduardo; Patrocinio, Antonio Otavio T

    2018-03-05

    In this work, a novel complex fac-[Re(CO) 3 (dcbH 2 )( trans-stpy)] + , (dcbH 2 = 4,4'-dicarboxylic acid-2,2'-bipyridine; trans-stpy = trans-4-styrylpyridine) was synthesized and characterized toward its spectroscopic, photochemical, and photophysical properties. The experimental data provide new insights on the mechanism of photochemical trans-to- cis isomerization of the stilbene-like ligand coordinated to Re(I) polypyridyl complexes. The new complex exhibits an unusual and strong dependence of the isomerization quantum yield (Φ t →c ) on the irradiation wavelength. Φ t →c was 0.81 ± 0.08 for irradiation at 365 nm and continuously decreased as the irradiation wavelength is shifted to the visible. At 405 nm irradiation Φ t →c is almost 2 orders of magnitude lower (0.010 ± 0.005) than that observed at 365 nm excitation. This behavior can be explained by the low-lying triplet metal-to-ligand charge-transfer excited state ( 3 MLCT) that hinders the triplet photoreaction mechanism under visible light absorption. Under UV irradiation, direct population of styrylpyridine-centered excited state ( 1 IL) leads to the occurrence of the photoisomerization via a singlet mechanism. Further experiments were performed with the complex immobilized on the surface of TiO 2 and Al 2 O 3 films. The nonoccurrence of isomerization at the oxide surfaces even under UV excitation evidences the role of energy gap between the 1 IL/ 1 MLCT states on the photochemical/photophysical processes. The results establish important relationships between the molecular structure and the photoelectrochemical behavior, which can further contribute to the development of solid-state molecular switches based on Re(I) polypyridyl complexes.

  18. Divergent Coordination Chemistry: Parallel Synthesis of [2×2] Iron(II) Grid-Complex Tauto-Conformers.

    PubMed

    Schäfer, Bernhard; Greisch, Jean-François; Faus, Isabelle; Bodenstein, Tilmann; Šalitroš, Ivan; Fuhr, Olaf; Fink, Karin; Schünemann, Volker; Kappes, Manfred M; Ruben, Mario

    2016-08-26

    The coordination of iron(II) ions by a homoditopic ligand L with two tridentate chelates leads to the tautomerism-driven emergence of complexity, with isomeric tetramers and trimers as the coordination products. The structures of the two dominant [Fe(II) 4 L4 ](8+) complexes were determined by X-ray diffraction, and the distinctness of the products was confirmed by ion-mobility mass spectrometry. Moreover, these two isomers display contrasting magnetic properties (Fe(II) spin crossover vs. a blocked Fe(II) high-spin state). These results demonstrate how the coordination of a metal ion to a ligand that can undergo tautomerization can increase, at a higher hierarchical level, complexity, here expressed by the formation of isomeric molecular assemblies with distinct physical properties. Such results are of importance for improving our understanding of the emergence of complexity in chemistry and biology. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2.

    PubMed

    Cruz, Josefa; Bota-Rabassedas, Neus; Franch-Marro, Xavier

    2015-12-03

    How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth.

  20. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2

    PubMed Central

    Cruz, Josefa; Bota-Rabassedas, Neus; Franch-Marro, Xavier

    2015-01-01

    How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth. PMID:26632449