Science.gov

Sample records for copia retrotransposon tos17

  1. Mobilized retrotransposon Tos17 of rice by alien DNA introgression transposes into genes and causes structural and methylation alterations of a flanking genomic region.

    PubMed

    Han, F P; Liu, Z L; Tan, M; Hao, S; Fedak, G; Liu, B

    2004-01-01

    Tos17 is a copia-like endogenous retrotransposon of rice, which can be activated by various stresses such as tissue culture and alien DNA introgression. To confirm element mobilization by introgression and to study possible structural and epigenetic effects of Tos17 insertion on its target sequences, we isolated all flanking regions of Tos17 in an introgressed rice line (Tong35) that contains minute amount of genomic DNA from wild rice (Zizania latifolia). It was found that there has been apparent but limited mobilization of Tos17 in this introgression line, as being reflected by increased but stable copy number of the element in progeny of the line. Three of the five activated copies of the element have transposed into genes. Based on sequence analysis and Southern blot hybridization with several double-enzyme digests, no structural change in Tos17 could be inferred in the introgression line. Cytosine methylation status at all seven CCGG sites within Tos17 was also identical between the introgression line and its rice parent (Matsumae)-all sites being heavily methylated. In contrast, changes in structure and cytosine methylation patterns were detected in one of the three low-copy genomic regions that flank newly transposed Tos17, and all changes are stably inherited through selfed generations. PMID:15703040

  2. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    PubMed Central

    La, Honggui; Ding, Bo; Mishra, Gyan P.; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guo-Liang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counteract transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli. PMID:21896764

  3. Target Site Specificity of the Tos17 Retrotransposon Shows a Preference for Insertion within Genes and against Insertion in Retrotransposon-Rich Regions of the Genome

    PubMed Central

    Miyao, Akio; Tanaka, Katsuyuki; Murata, Kazumasa; Sawaki, Hiromichi; Takeda, Shin; Abe, Kiyomi; Shinozuka, Yoriko; Onosato, Katsura; Hirochika, Hirohiko

    2003-01-01

    Because retrotransposons are the major component of plant genomes, analysis of the target site selection of retrotransposons is important for understanding the structure and evolution of plant genomes. Here, we examined the target site specificity of the rice retrotransposon Tos17, which can be activated by tissue culture. We have produced 47,196 Tos17-induced insertion mutants of rice. This mutant population carries ∼500,000 insertions. We analyzed >42,000 flanking sequences of newly transposed Tos17 copies from 4316 mutant lines. More than 20,000 unique loci were assigned on the rice genomic sequence. Analysis of these sequences showed that insertion events are three times more frequent in genic regions than in intergenic regions. Consistent with this result, Tos17 was shown to prefer gene-dense regions over centromeric heterochromatin regions. Analysis of insertion target sequences revealed a palindromic consensus sequence, ANGTT-TSD-AACNT, flanking the 5-bp target site duplication. Although insertion targets are distributed throughout the chromosomes, they tend to cluster, and 76% of the clusters are located in genic regions. The mechanisms of target site selection by Tos17, the utility of the mutant lines, and the knockout gene database are discussed. PMID:12897251

  4. Reverse genetics in rice using Tos17.

    PubMed

    Mieulet, Delphine; Diévart, Anne; Droc, Gaëtan; Lanau, Nadège; Guiderdoni, Emmanuel

    2013-01-01

    Transposon of Oryza sativa 17 (Tos17), a Ty1-Copia Class I retroelement, is one of the few active retroelements identified in rice, the main cereal crop of human consumption and the model genome for cereals. Tos17 exists in two copies in the standard Nipponbare japonica genome (n = 12 and 379 Mb). Tos17 copies are inactive in the plant grown under normal conditions. However, the copy located on chromosome 7 can be activated upon tissue culture. Plants regenerated from 3- and 5-month-old tissue cultures harbor, respectively, an average of 3.5 and 8 newly transposed copies that are stably inserted at new positions in the genome. Due to its favorable features, Tos17 has been extensively used for insertion mutagenesis of the model genome and 31,403 sequence indexed inserts harbored by regenerants/T-DNA plants are available in the databases. The corresponding seed stocks can be ordered from the laboratories which generated them. Both forward genetics and reverse genetics approaches using these lines have allowed the deciphering of gene function in rice. We report here two protocols for ascertaining the presence of a Tos17 insertion in a gene of interest among R2/T2 seeds received from Tos17 mutant stock centers: The first protocol is PCR-based and allows the identification of azygous, heterozygous and homozygous plants among progenies segregating the insertion. The second protocol is based on DNA blot analysis and can be used to identify homozygous plants carrying the Tos17 copy responsible for gene disruption while cleaning the mutant background from other unwitting mutagen inserts. PMID:23918431

  5. Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families.

    PubMed

    Dias, Elaine Silva; Hatt, Clémence; Hamon, Serge; Hamon, Perla; Rigoreau, Michel; Crouzillat, Dominique; Carareto, Claudia Marcia Aparecida; de Kochko, Alexandre; Guyot, Romain

    2015-09-01

    Retrotransposons are the main component of plant genomes. Recent studies have revealed the complexity of their evolutionary dynamics. Here, we have identified Copia25 in Coffea canephora, a new plant retrotransposon belonging to the Ty1-Copia superfamily. In the Coffea genomes analyzed, Copia25 is present in relatively low copy numbers and transcribed. Similarity sequence searches and PCR analyses show that this retrotransposon with LTRs (Long Terminal Repeats) is widely distributed among the Rubiaceae family and that it is also present in other distantly related species belonging to Asterids, Rosids and monocots. A particular situation is the high sequence identity found between the Copia25 sequences of Musa, a monocot, and Ixora, a dicot species (Rubiaceae). Our results reveal the complexity of the evolutionary dynamics of the ancient element Copia25 in angiosperm, involving several processes including sequence conservation, rapid turnover, stochastic losses and horizontal transfer. PMID:26245353

  6. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants.

    PubMed Central

    Flavell, A J; Dunbar, E; Anderson, R; Pearce, S R; Hartley, R; Kumar, A

    1992-01-01

    We have used the polymerase chain reaction to isolate fragments of Ty1-copia group retrotransposons from a wide variety of members of the higher plant kingdom. 56 out of 57 species tested generate an amplified fragment of the size expected for reverse transcriptase fragments of Ty1-copia group retrotransposons. Sequence analysis of subclones shows that the PCR fragments display varying degrees of sequence heterogeneity. Sequence heterogeneity therefore seems a general property of Ty1-copia group retrotransposons of higher plants, in contrast to the limited diversity seen in retrotransposons of Saccharomyces cerevisiae and Drosophila melanogaster. Phylogenetic analysis of all these sequences shows, with some significant exceptions, that the degree of sequence divergence in the retrotransposon populations between any pair of species is proportional to the evolutionary distance between those species. This implies that sequence divergence during vertical transmission of Ty1-copia group retrotransposons within plant lineages has been a major factor in the evolution of Ty1-copia group retrotransposons in higher plants. Additionally, we suggest that horizontal transmission of this transposon group between different species has also played a role in this process. PMID:1379359

  7. Characterization and chromosomal organization of Ty1-copia retrotransposons in wax gourd.

    PubMed

    Jiang, Biao; Liu, Wenrui; Peng, Qingwu; He, Xiaoming; Xie, Dasen

    2014-11-01

    Wax gourd (2n=2x=24) is an important vegetable species in Cucurbitaceae. Because it can be stored for a very long period of time, it plays an important role in ensuring the annual supply and regulating off-season supply of the vegetables. However, the availability of genetic information about wax gourd is limited. This study aimed to identify the useful genetic information for wax gourd. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia retrotransposons were isolated from the genome of wax gourd using degenerate oligonucleotide primers. A total of twenty eight RT sequences were obtained, which showed high heterogeneity with the similarity ranging from 47.5% to 94.3%. Sixteen (57.1%) of them were found to be defective, being disrupted by stop codons and/or frameshift mutations. These 28 sequences were divided into five subfamilies. The comparative phylogenetic analysis with other Cucurbitaceae species from GenBank database showed that most retrotransposons derived from the same genus tended to cluster together, although there were a few exceptions. These results indicate that both vertical transmission and horizontal transmission are the sources of Ty1-copia retrotransposons in wax gourd. Fluorescent in situ hybridization (FISH) with Ty1-copia retrotransposon sequences as probes revealed that this kind of retrotransposons had a dispersed genomic organization, physically distributed among all the chromosomes of wax gourd, with clusters in the heterochromatin regions. This is the first report of Ty1-copia retrotransposons in wax gourd, which would be helpful for our understanding about the organization and evolutions of wax gourd genome and also provide valuable information for our utilization of wax gourd retrotransposons. PMID:25108132

  8. Copia-, Gypsy- and Line-like Retrotransposon Fragments in the Mitochondrial Genome of Arabidopsis Thaliana

    PubMed Central

    Knoop, V.; Unseld, M.; Marienfeld, J.; Brandt, P.; Sunkel, S.; Ullrich, H.; Brennicke, A.

    1996-01-01

    Several retrotransposon fragments are integrated in the mitochondrial genome of Arabidopsis thaliana. These insertions are derived from all three classes of nuclear retrotransposons, the Ty1/copia-, Ty3/gypsy- and non-LTR/LINE-families. Members of the Ty3/gypsy group of elements have not yet been identified in the nuclear genome of Arabidopsis. The varying degrees of similarity with nuclear elements and the dispersed locations of the sequences in the mitochondrial genome suggest numerous independent transfer-insertion events in the evolutionary history of this plant mitochondrial genome. Overall, we estimate remnants of retrotransposons to cover >/=5% of the mitochondrial genome in Arabidopsis. PMID:8852855

  9. Characterisation and physical localisation of Ty1-copia-like retrotransposons in four Alstroemeria species.

    PubMed

    Kuipers, A G; Heslop-Harrison, J S; Jacobsen, E

    1998-06-01

    The genus Alstroemeria contains species with large genomes (2C = 36.5-78.9 pg (17,600-38,000 Mb) in those species with 2n = 2x = 16). We investigated the diversity and genomic and chromosomal organisation of Ty1-copia-like retrotransposons in four Alstroemeria species. Analysis of 33 PCR-amplified sequences corresponding to a conserved domain of the Ty1-copia reverse transcriptase (rt) gene showed high heterogeneity among predicted amino acid sequences; no two sequences were identical, but most fell into one of five subgroups. Levels of inter- and intra-specific heterogeneity of sequences were similar. HaeIII-digested genomic DNA of various Alstroemeria species contained distinct bands upon hybridisation with individual rt gene fragments. Hybridisation with the heterogeneous PCR pool of rt fragments (retrotransposon pool) revealed additional bands; some minor bands were characteristic of either Brazilian or Chilean species. In situ hybridisation of the retrotransposon pool from three species to metaphase chromosomes from the same species showed a dispersed distribution of the retrotransposon pool with exclusion from rDNA and other chromosomal sites. Alstroemeria pelegrina, which is without major heterochromatic sites, showed some clustering and small negative bands. The retrotransposon pool was excluded from major DAPI-staining bands in Alstroemeria aurea, but in contrast, the sites of the major tandemly repeated sequences in Alstroemeria inodora showed a hybridisation signal similar to that in the rest of the chromosomes. The data are discussed in the context of the contribution of Ty1-copia-like retrotransposons to plant genome size, their evolution, and their value for phylogenetic and biodiversity studies. PMID:9729770

  10. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression.

    PubMed Central

    White, S E; Habera, L F; Wessler, S R

    1994-01-01

    The wx-K mutation results from the insertion of a copia-like retrotransposon into exon 12 of the maize waxy gene. This retrotransposon, named Hopscotch, has one long open reading frame encoding all of the domains required for transposition. Computer-assisted database searches using Hopscotch and other plant copia-like retroelements as query sequences have revealed that ancient, degenerate retrotransposon insertions are found in close proximity to 21 previously sequenced plant genes. The data suggest that these elements may be involved in gene duplication and the regulation of gene expression. Similar searches using the Drosophila retrotransposon copia did not reveal any retrotransposon-like sequences in the flanking regions of animal genes. These results, together with the recent finding that reverse-transcriptase sequences characteristic of copia-like elements are ubiquitous and diverse in plants, suggest that copia-like retrotransposons are an ancient component of plant genomes. Images PMID:7991537

  11. Isolation and characterization of novel Ty1-copia-like retrotransposons from lily.

    PubMed

    Lee, Sung-Il; Park, Kyong-Cheul; Son, Jae-Han; Hwang, Youn-Jung; Lim, Ki-Byung; Song, Ye-Su; Kim, Jong-Hwa; Kim, Nam-Soo

    2013-09-01

    Species of the genus Lilium are well known for their large genomes. Although expansion of noncoding repeated DNA is believed to account for this genome size, retroelement del Ty3-gypsy is the only one described so far in the genus Lilium. We isolated Ty1-copia elements from Lilium longiflorum and named them LIREs (lily retrotransposons). The long terminal repeats, primer binding site, and polypurine tract sequences are highly similar among the LIRE elements, indicating that they are in the same lineage. Although the protein-coding regions were highly decayed, the sequence motifs of the integrase, reverse transcriptase, and RNase H domains were identifiable as belonging to the order of Ty1-copia elements. Phylogenetic analysis and primer binding site sequences revealed that these elements belonged to the Ale lineage among the six lineages of plant Ty1-copia elements. Base substitutions in the long terminal repeats estimated that the integration times of the LIRE Ty1-copia elements were between 0.7 and 5.5 mya. In situ hybridization showed that the LIRE elements were present in all the chromosomes of L. longiflorum and L. lancifolium, but absent in centromeres, telomeres, and 45S rRNA sites in both species. The LIRE elements were present very abundantly in species of the genus Lilium, but absent in other genera of the family Liliaceae, implying that the LIRE elements might have contributed to the expansion of the genome in the genus Lilium. PMID:24168670

  12. pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans.

    PubMed Central

    Matthews, G D; Goodwin, T J; Butler, M I; Berryman, T A; Poulter, R T

    1997-01-01

    Retrotransposons are mobile genetic elements. They can transpose via the reverse transcription of mRNA into double-stranded DNA (dsDNA) followed by the insertion of this dsDNA into new sites within the host genome. The unintegrated, linear, dsDNA form of retrotransposons is usually very rare. We report here the isolation of a retrotransposon from Candida albicans which is unusual in this respect. This element, which we have named pCal, was first identified as a distinct band when uncut C. albicans DNA was examined on an agarose gel. Sequence analysis of the cloned element revealed that it is a retrotransposon belonging to the Ty1/copia group. It is estimated that pCal produces 50 to 100 free, linear, dsDNA copies of itself per cell. This is a much higher level of expression than even that of the system in which Ty1 is expressed behind the highly active GAL1 promoter on a high-copy-number plasmid (about 10 copies per cell). Another unusual feature of pCal is that its Pol enzymes are likely to be expressed via the pseudoknot-assisted suppression of an upstream, in-phase stop codon, as has been shown for Moloney murine leukemia virus. PMID:9371461

  13. Sequence heterogeneity and phylogenetic relationships between the copia retrotransposon in Drosophila species of the repleta and melanogaster groups

    PubMed Central

    De Almeida, Luciane M; Carareto, Claudia MA

    2006-01-01

    Although the retrotransposon copia has been studied in the melanogaster group of Drosophila species, very little is known about copia dynamism and evolution in other groups. We analyzed the occurrence and heterogeneity of the copia 5'LTR-ULR partial sequence and their phylogenetic relationships in 24 species of the repleta group of Drosophila. PCR showed that copia occurs in 18 out of the 24 species evaluated. Sequencing was possible in only eight species. The sequences showed a low nucleotide diversity, which suggests selective constraints maintaining this regulatory region over evolutionary time. On the contrary, the low nucleotide divergence and the phylogenetic relationships between the D. willistoni/Zaprionus tuberculatus/melanogaster species subgroup suggest horizontal transfer. Sixteen transcription factor binding sites were identified in the LTR-ULR repleta and melanogaster consensus sequences. However, these motifs are not homologous, neither according to their position in the LTR-ULR sequences, nor according to their sequences. Taken together, the low motif homologies, the phylogenetic relationship and the great nucleotide divergence between the melanogaster and repleta copia sequences reinforce the hypothesis that there are two copia families. PMID:16954045

  14. LTR-Retrotransposons in R. exoculata and Other Crustaceans: The Outstanding Success of GalEa-Like Copia Elements

    PubMed Central

    Esnault, Caroline; Graça, Paula; Higuet, Dominique; Bonnivard, Eric

    2013-01-01

    Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species- or lineage-dependent. Our results also support the hypothesis of the Copia retrotransposon scarcity in metazoans compared to Gypsy elements. In such a context, the GalEa-like elements present an outstanding wide distribution among eukaryotes, from fishes to red algae, and can be even highly predominant within a large taxon, such as Malacostraca. Their distribution among crustaceans suggests a dynamics that follows a “domino days spreading” branching process in which successive amplifications may interact positively. PMID:23469217

  15. A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats.

    PubMed

    Di Giovanni, Michela; Cenci, Alberto; Janni, Michela; D'Ovidio, Renato

    2008-04-01

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. Wheat pgip genes have been isolated from the B (Tapgip1) and D (Tapgip2) genomes, and now we report the identification of pgip genes from the A genomes of wild and cultivated wheats. By Southern blots and sequence analysis of BAC clones we demonstrated that wheat contains a single copy pgip gene per genome and the one from the A genome, pgip3, is inactivated by the insertion of a long terminal repeat copia retrotranspon within the fourth LRR. We demonstrated also that this retrotransposon insertion is present in Triticum urartu and all the polyploidy wheats assayed, but is absent in T. monococcum (Tmpgip3), suggesting that this insertion took place after the divergence between T. monococcum and T. urartu, but before the formation of the polyploid wheats. We identified also two independent insertion events of new Class II transposable elements, Vacuna, belonging to the Mutator superfamily, that interrupted the Tdipgip1 gene of T. turgidum ssp. dicoccoides. The occurrence of these transposons within the coding region of Tdipgip1 facilitated the mapping of the Pgip locus in the pericentric region of the short arm of chromosome group 7. We speculate that the inactivation of pgip genes are tolerated because of redundancy of PGIP activities in the wheat genome. PMID:18301877

  16. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L.

    PubMed Central

    2013-01-01

    Background Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. Results In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. Conclusion This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA

  17. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome.

    PubMed

    Schmidt, T; Kubis, S; Heslop-Harrison, J S

    1995-09-01

    DNA sequences of the reverse transcriptase gene of long terminal repeat (LTR) and non-LTR (non-viral) retrotransposons have been isolated and cloned from the genome of sugar beet (Beta vulgaris). Both retrotransposon types are highly amplified in sugar beet and may account for 2-5% of the genome. The BNR1 family, representing the first non-viral retrotransposon reported from a dicotyledonous species, shows homology to the mammalian L1 family of long interspersed repeated sequences (LINEs) and to retrotransposable elements from maize and lily. Sequences of the Tbv family are homologous to the Ty1-copia class of LTR retrotransposons. The BNR1 and Tbv retrotransposon families are characterized by sequence heterogeneity and are probably defective. The deduced peptide sequences were used to investigate the relation to other retroelements from plants, insects and mammals. Fluorescence in situ hybridization was used to investigate the physical distribution and revealed that both retrotransposon families are present on all sugar beet chromosomes and largely excluded from chromosomal regions harbouring the 18S-5.8S-25S rRNA genes. The BNR1 family is organized in discrete clusters, while the Tbv family of Ty1-copia-like retrotransposons shows a more uniform distribution along chromosome arms and is absent from some chromosomal regions. These contrasting distributions emphasize the differences in evolutionary amplification and dispersion mechanisms between the two types of retrotransposons. The in situ results of both elements reflect significant features of a higher order structure of the genome, as it is known for both short interspersed repeated sequences (SINEs) and LINEs in human. PMID:7551548

  18. Germline mutations induced by N-nitroso-N-ethylurea do not affect the inserted copia retrotransposon in a Drosophila melanogaster wa mutant.

    PubMed

    Baldrich, E; Velázquez, A; Xamena, N; Cabré, O

    2003-11-01

    The white-apricot (wa) mutant of Drosophila melanogaster is characterized by a copia retrotransposon inserted in the second intron of the white locus. After germinal exposure to the alkylating agent N-ethyl-N-nitrosourea, we have obtained new phenotypes in the offspring, mainly lighter eye colour, but not revertants to the original phenotype. Subsequent genetic crosses showed that only 3 out of 13 new mutant phenotypes were allelic. Three white gene regions were analysed by Southern blot in order to determine the nature of the mutations. These three regions were the 5' regulatory region, the copia insertion site and the 3' coding region. The results obtained indicate that the treatment does not induce the total or partial excision of copia in the white locus. Two of the new allelic mutants present a 5' or 3' deletion in the white locus. The other new phenotypes seem to be caused by mutations being induced in other loci acting as modifiers, most of them located on the X chromosome. PMID:14614188

  19. The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana.

    PubMed

    Matsunaga, Wataru; Kobayashi, Akie; Kato, Atsushi; Ito, Hidetaka

    2012-05-01

    Environmental stress influences genetic and epigenetic regulation in plant genomes. We previously reported that heat stress activated a copia-like retrotransposon named ONSEN. To investigate the heat sensitivity and transgenerational activation of ONSEN, we analyzed the stress response by temperature shift and multiple heat stress treatments. ONSEN was activated at 37°C, and the newly inserted ONSEN was transcriptionally active and mobile to the next generation subjected to heat stress, indicating that the regulation of ONSEN is independent of positional effects on the chromosome. Reciprocal crosses with activated ONSEN revealed that the transgenerational transposition was inherited from both sexes, indicating that the transposition is suppressed independently of gametophytic regulation. We showed previously that ONSEN was transposed in mutants deficient in small interfering RNA (siRNA) biogenesis, including nrpd2 and rdr2, but not dcl3. To define the functional redundancy of Dicer-like (DCL) proteins in Arabidopsis, we analyzed ONSEN activation in mutants deficient in DCL proteins, including dcl2, dcl3 and dcl4. ONSEN was nearly immobile in a single Dicer mutant; however, some transgenerational transpositions were observed in dcl2/dcl3/dcl4 triple mutants subjected to heat stress. This indicated that the Dicer family is redundant for ONSEN transposition. To examine the activation of ONSEN in undifferentiated cells, ONSEN transcripts and synthesized DNA were analyzed in heat-stressed callus tissue. In contrast to vegetative tissue, high accumulation of the transcripts and amplified DNA copies of ONSEN were detected in callus. This result indicated that ONSEN activation is controlled by cell-specific regulatory mechanisms. PMID:22173101

  20. Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs).

    PubMed

    Wang, Hong-Yan; Tian, Qin; Ma, Yi-Qiao; Wu, Ying; Miao, Gao-Jian; Ma, Yan; Cao, Dong-Hui; Wang, Xiao-Li; Lin, Chunjing; Pang, Jingsong; Liu, Bao

    2010-12-01

    Hybridization is prevalent in plants, which plays important roles in genome evolution. Apart from direct transfer and recombinatory generation of genetic variations by hybridization, de novo genetic instabilities can be induced by the process per se. One mechanism by which such de novo genetic variability can be generated by interspecific hybridization is transpositional reactivation of quiescent parental transposable elements (TEs) in the nascent hybrids. We have reported previously that introgressive hybridization between rice (Oryza sativa L.) and Zizania latifolia Griseb had induced rampant mobilization of three TEs, a copia-like LTR retrotransposon Tos17, a MITE mPing and a class II TE belonging to the hAT superfamily, Dart/nDart. In this study, we further found that two additional LTR retrotransposons, a gypsy-like (named RIRE2) and a copia-like (named Copia076), were also transpositionally reactivated in three recombinant inbred lines (RILs) derived from introgressive hybridization between rice and Z. latifolia. Novel bands of these two retroelements appeared in the RILs relative to their rice parental line (cv. Matsumae) in Southern blot, suggestive of retrotransposition, which was substantiated by transposon display (TD) and locus-specific PCR amplification for insertion sites. Both elements were found to be transcribed but at variable levels in the leaf tissue of the parental line and the RILs, suggesting that transcriptional control was probably not a mechanism for their transpositional activity in the RILs. Expression analysis of four genes adjacent to de novo insertions by Copia076 revealed marked difference in the transcript abundance for each of the genes between the RILs and their rice parental line, but the alterations in expression appeared unrelated with the retroelement insertions. PMID:21166796

  1. Identification and characterization of jute LTR retrotransposons:

    PubMed Central

    Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit

    2011-01-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842

  2. Identification and characterization of jute LTR retrotransposons:: Their abundance, heterogeneity and transcriptional activity.

    PubMed

    Ahmed, Salim; Shafiuddin, Md; Azam, Muhammad Shafiul; Islam, Md Shahidul; Ghosh, Ajit; Khan, Haseena

    2011-05-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842

  3. LTR Retrotransposons in Fungi

    PubMed Central

    Muszewska, Anna; Hoffman-Sommer, Marta; Grynberg, Marcin

    2011-01-01

    Transposable elements with long terminal direct repeats (LTR TEs) are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (<50 elements), others demonstrate huge expansions (>8000 elements). The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other. PMID:22242120

  4. Reverse transcriptase domain sequences from tree peony (Paeonia suffruticosa) long terminal repeat retrotransposons: sequence characterization and phylogenetic analysis

    PubMed Central

    Guo, Da-Long; Hou, Xiao-Gai; Jia, Tian

    2014-01-01

    Tree peony is an important horticultural plant worldwide of great ornamental and medicinal value. Long terminal repeat retrotransposons (LTR-retrotransposons) are the major components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their sequence characteristics, genetic distribution and transcriptional activity; however, no information about them is available in tree peony. Ty1-copia-like reverse transcriptase sequences were amplified from tree peony genomic DNA by polymerase chain reaction (PCR) with degenerate oligonucleotide primers corresponding to highly conserved domains of the Ty1-copia-like retrotransposons in this study. PCR fragments of roughly 270 bp were isolated and cloned, and 33 sequences were obtained. According to alignment and phylogenetic analysis, all sequences were divided into six families. The observed difference in the degree of nucleotide sequence similarity is an indication for high level of sequence heterogeneity among these clones. Most of these sequences have a frame shift, a stop codon, or both. Dot-blot analysis revealed distribution of these sequences in all the studied tree peony species. However, different hybridization signals were detected among them, which is in agreement with previous systematics studies. Reverse transcriptase PCR (RT-PCR) indicated that Ty1-copia retrotransposons in tree peony were transcriptionally inactive. The results provide basic genetic and evolutionary information of tree peony genome, and will provide valuable information for the further utilization of retrotransposons in tree peony. PMID:26019529

  5. A nest of LTR retrotransposons adjacent the disease resistance-priming gene NPR1 in Beta vulgaris L. U.S. Hybrid H20

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LTR_STRUC and LTR FINDER analyses of a sugar beet BAC, with the NPR1 disease resistance priming gene, identified two distinct LTR (long terminal repeats) retrotransposons. BvRTR1 has two ORFs: one encoding a Ty1/copia-like integrase and the other a hypothetical gene. RTR1 is 10,833 bp in length inc...

  6. Retrotransposon activation followed by rapid repression in introgressed rice plants.

    PubMed

    Liu, B; Wendel, J F

    2000-10-01

    Plant retrotransposons are largely inactive during normal development, but may be activated by stresses. Both copia-like and gypsy-like retrotransposons of rice were activated by introgression of DNA from the wild species Zizania latifolia Griseb. The copy number increase was associated with cytosine methylation changes of the elements. Activity of the elements was ephemeral, as evidenced by nearly identical genomic Southern hybridization patterns among randomly chosen individuals both within and between generations for a given line, and the absence of transcripts based on Northern analysis. DNA hypermethylation, internal sequence deletion, and possibly other mechanisms are likely responsible for the rapid element repression. Implications of the retroelement dynamics on plant genome evolution are discussed. PMID:11081978

  7. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data.

    PubMed

    Tetreault, Hannah M; Ungerer, Mark C

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  8. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

    PubMed Central

    Tetreault, Hannah M.; Ungerer, Mark C.

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  9. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome

    PubMed Central

    Barghini, Elena; Natali, Lucia; Giordani, Tommaso; Cossu, Rosa Maria; Scalabrin, Simone; Cattonaro, Federica; Šimková, Hana; Vrána, Jan; Doležel, Jaroslav; Morgante, Michele; Cavallini, Andrea

    2015-01-01

    Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR’s divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms. PMID:25428895

  10. Retrotransposons Control Fruit-Specific, Cold-Dependent Accumulation of Anthocyanins in Blood Oranges[W][OA

    PubMed Central

    Butelli, Eugenio; Licciardello, Concetta; Zhang, Yang; Liu, Jianjun; Mackay, Steve; Bailey, Paul; Reforgiato-Recupero, Giuseppe; Martin, Cathie

    2012-01-01

    Traditionally, Sicilian blood oranges (Citrus sinensis) have been associated with cardiovascular health, and consumption has been shown to prevent obesity in mice fed a high-fat diet. Despite increasing consumer interest in these health-promoting attributes, production of blood oranges remains unreliable due largely to a dependency on cold for full color formation. We show that Sicilian blood orange arose by insertion of a Copia-like retrotransposon adjacent to a gene encoding Ruby, a MYB transcriptional activator of anthocyanin production. The retrotransposon controls Ruby expression, and cold dependency reflects the induction of the retroelement by stress. A blood orange of Chinese origin results from an independent insertion of a similar retrotransposon, and color formation in its fruit is also cold dependent. Our results suggest that transposition and recombination of retroelements are likely important sources of variation in Citrus. PMID:22427337

  11. The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms.

    PubMed Central

    Kamm, A; Doudrick, R L; Heslop-Harrison, J S; Schmidt, T

    1996-01-01

    A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610105

  12. Restricting retrotransposons: a review.

    PubMed

    Goodier, John L

    2016-01-01

    Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research. PMID:27525044

  13. Retrotransposon Proliferation Coincident with the Evolution of Dioecy in Asparagus

    PubMed Central

    Harkess, Alex; Mercati, Francesco; Abbate, Loredana; McKain, Michael; Pires, J. Chris; Sala, Tea; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2016-01-01

    Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus. Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n = 2× = 20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species. PMID:27342737

  14. Retrotransposon Proliferation Coincident with the Evolution of Dioecy in Asparagus.

    PubMed

    Harkess, Alex; Mercati, Francesco; Abbate, Loredana; McKain, Michael; Pires, J Chris; Sala, Tea; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2016-01-01

    Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n = 2× = 20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species. PMID:27342737

  15. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster.

    PubMed Central

    Kim, A; Terzian, C; Santamaria, P; Pélisson, A; Purd'homme, N; Bucheton, A

    1994-01-01

    Retroviruses are commonly considered to be restricted to vertebrates. However, the genome of many eukaryotes contains mobile sequences known as retrotransposons with long terminal repeats (LTR retrotransposons) or viral retrotransposons, showing similarities with integrated proviruses of retroviruses, such as Ty elements in Saccharomyces cerevisiae, copia-like elements in Drosophila, and endogenous proviruses in vertebrates. The gypsy element of Drosophila melanogaster has LTRs and contains three open reading frames, one of which encodes potential products similar to gag-specific protease, reverse transcriptase, and endonuclease. It is more similar to typical retroviruses than to LTR retrotransposons. We report here experiments showing that gypsy can be transmitted by microinjecting egg plasma from embryos of a strain containing actively transposing gypsy elements into embryos of a strain originally devoid of transposing elements. Horizontal transfer is also observed when individuals of the "empty" stock are raised on medium containing ground pupae of the stock possessing transposing elements. These results suggest that gypsy is an infectious retrovirus and provide evidence that retroviruses also occur in invertebrates. Images PMID:8108403

  16. Structural Diversity of a Novel LTR Retrotransposon, RTPOSON, in the Genus Oryza

    PubMed Central

    Hsu, Yu-Chia; Wang, Chang-Sheng; Lin, Yann-Rong; Wu, Yong-Pei

    2016-01-01

    Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an uncharacterized protein and UBN2_2 and zinc knuckle, respectively. More than 700 RTPOSONs were identified in Oryza genomes; 127 RTPOSONs with LTRs and gag-pol elements were classified into three subgroups. The subgroup RTPOSON_sub3 had the smallest DNA size and 97% (32/33) of RTPOSON elements from Oryza punctata are classified in this group. The insertion time of these RTPOSONs varied and their proliferation occurred within the last 8 Mya, with two bursting periods within the last 1.5–5.0 Mya. A total of 37 different orthologous insertions of RTPOSONs, with different nested transposable elements and gene fragments, were identified by comparing the genomes of ssp. japonica cv. Nipponbare and ssp. indica cv. 93–11. A part of intact RTPOSON elements was evolved independently after the divergence of indica and japonica. In addition, intact RTPOSONs and homologous fragments were preferentially retained or integrated in genic regions. This novel LTR retrotransposon, RTPOSON, might have an impact on genome evolution, genic innovation, and genetic variation. PMID:26819544

  17. Structural Diversity of a Novel LTR Retrotransposon, RTPOSON, in the Genus Oryza.

    PubMed

    Hsu, Yu-Chia; Wang, Chang-Sheng; Lin, Yann-Rong; Wu, Yong-Pei

    2016-01-01

    Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an uncharacterized protein and UBN2_2 and zinc knuckle, respectively. More than 700 RTPOSONs were identified in Oryza genomes; 127 RTPOSONs with LTRs and gag-pol elements were classified into three subgroups. The subgroup RTPOSON_sub3 had the smallest DNA size and 97% (32/33) of RTPOSON elements from Oryza punctata are classified in this group. The insertion time of these RTPOSONs varied and their proliferation occurred within the last 8 Mya, with two bursting periods within the last 1.5-5.0 Mya. A total of 37 different orthologous insertions of RTPOSONs, with different nested transposable elements and gene fragments, were identified by comparing the genomes of ssp. japonica cv. Nipponbare and ssp. indica cv. 93-11. A part of intact RTPOSON elements was evolved independently after the divergence of indica and japonica. In addition, intact RTPOSONs and homologous fragments were preferentially retained or integrated in genic regions. This novel LTR retrotransposon, RTPOSON, might have an impact on genome evolution, genic innovation, and genetic variation. PMID:26819544

  18. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species.

    PubMed

    Piednoël, Mathieu; Carrete-Vega, Greta; Renner, Susanne S

    2013-08-01

    Comparisons of closely related species are needed to understand the fine-scale dynamics of retrotransposon evolution in flowering plants. Towards this goal, we classified the long terminal repeat (LTR) retrotransposons from six diploid and one tetraploid species of Orobanchaceae. The study species are the autotrophic, non-parasitic Lindenbergia philippensis (as an out-group) and six closely related holoparasitic species of Orobanche [O. crenata, O. cumana, O. gracilis (tetraploid) and O. pancicii] and Phelipanche (P. lavandulacea and P. ramosa). All major plant LTR retrotransposon clades could be identified, and appear to be inherited from a common ancestor. Species of Orobanche, but not Phelipanche, are enriched in Ty3/Gypsy retrotransposons due to a diversification of elements, especially chromoviruses. This is particularly striking in O. gracilis, where tetraploidization seems to have contributed to the Ty3/Gypsy enrichment and led to the emergence of seven large species-specific families of chromoviruses. The preferential insertion of chromoviruses in heterochromatin via their chromodomains might have favored their diversification and enrichment. Our phylogenetic analyses of LTR retrotransposons from Orobanchaceae also revealed that the Bianca clade of Ty1/Copia and the SMART-related elements are much more widely distributed among angiosperms than previously known. PMID:23663083

  19. Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats.

    PubMed

    Konovalov, Fedor A; Goncharov, Nikolay P; Goryunova, Svetlana; Shaturova, Aleksandra; Proshlyakova, Tatyana; Kudryavtsev, Alexander

    2010-06-01

    Molecular markers based on retrotransposon insertions are widely used for various applications including phylogenetic analysis. Multiple cases were described where retrotransposon-based markers, namely sequence-specific amplification polymorphism (SSAP), were superior to other marker types in resolving the phylogenetic relationships due to their higher variability and informativeness. However, the patterns of evolutionary relationships revealed by SSAP may be dependent on the underlying retrotransposon activity in different periods of time. Hence, the proper choice of retrotransposon family is essential for obtaining significant results. We compared the phylogenetic trees for a diverse set of diploid A-genome wheat species (Triticum boeoticum, T. urartu and T. monococcum) based on two unrelated retrotransposon families, BARE-1 and Jeli. BARE-1 belongs to Copia class and has a uniform distribution between common wheat (T. aestivum) genomes of different origin (A, B and D), indicating similar activity in the respective diploid genome donors. Gypsy-class family Jeli was found by us to be an A-genome retrotransposon with >70% copies residing in A genome of hexaploid common wheat, suggesting a burst of transposition in the history of A-genome progenitors. The results indicate that a higher Jeli transpositional activity was associated with T. urartu versus T. boeoticum speciation, while BARE-1 produced more polymorphic insertions during subsequent intraspecific diversification; as an outcome, each retrotransposon provides more informative markers at the corresponding level of phylogenetic relationships. We conclude that multiple retroelement families should be analyzed for an image of evolutionary relationships to be solid and comprehensive. PMID:20407790

  20. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase.

    PubMed

    Athauda, Senarath B P; Yoshioka, Katsuji; Shiba, Tadayoshi; Takahashi, Kenji

    2006-11-01

    The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe-Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 degrees C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15-Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects. PMID:16813567

  1. Isolation and chromosomal distribution of a novel Ty1-copia-like sequence from Secale, which enables identification of wheat-Secale africanum introgression lines.

    PubMed

    Jia, J; Yang, Z; Li, G; Liu, Ch; Lei, M; Zhang, T; Zhou, J; Ren, Z

    2009-01-01

    A repetitive sequence of 411 bp, named pSaO5411, was identified in the Secale africanum genome (Ra) by random amplified polymorphic DNA (RAPD) analysis of wheat and wheat-S. africanum amphiploids. GenBank BLAST search revealed that the sequence of pSaO5411 was highly homologous to a part of a Ty1-copia retrotransposon. Fluorescence in situ hybridization (FISH) analyses indicated that pSaO5411 was significantly hybridized to S. africanum chromosomes of a wheat-S. africanum amphiploid, and it was dispersed along the Secale chromosome arms except the terminal regions. Basing on the sequence of pSaO5411, a pair of sequence-characterized amplified region (SCAR) primers were designed, and the resultant SCAR marker was able to target both cultivated rye and the wild Secale species, which also enabled to identify effectively the S. africanum chromatin introduced into the wheat genome. PMID:19193979

  2. LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers.

    PubMed

    Tam, Sheh May; Lefebvre, Véronique; Palloix, Alain; Sage-Palloix, Anne-Marie; Mhiri, Corinne; Grandbastien, Marie-Angèle

    2009-10-01

    Plant genetic resources often constitute the foundation of successful breeding programs. Pepper (Capsicum annuum L.) is one of the most economically important and diversely utilized Solanaceous crop species worldwide, but less studied compared to tomato and potato. We developed and used molecular markers based on two copia-type retrotransposons, Tnt1 and T135, in a set of Capsicum species and wild relatives from diverse geographical origins. Results showed that Tnt1 and T135 insertion polymorphisms are very useful for studying genetic diversity and relationships within and among pepper species. Clusters of accessions correspond to cultivar types based on fruit shape, pungency, geographic origin and pedigree. Genetic diversity values, normally reflective of past transposition activity and population dynamics, showed positive correlation with the average number of insertions per accession. Similar evolutionary relationships are observed to that inferred by previous karyosystematics studies. These observations support the possibility that retrotransposons have contributed to genome inflation during Capsicum evolution. PMID:19618162

  3. Terminal-Repeat Retrotransposons with GAG Domain in Plant Genomes: A New Testimony on the Complex World of Transposable Elements

    PubMed Central

    Chaparro, Cristian; Gayraud, Thomas; de Souza, Rogerio Fernandes; Domingues, Douglas Silva; Akaffou, Sélastique; Laforga Vanzela, Andre Luis; de Kochko, Alexandre; Rigoreau, Michel; Crouzillat, Dominique; Hamon, Serge; Hamon, Perla; Guyot, Romain

    2015-01-01

    A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (<4 kb) showing the typical features of LTR-retrotransposons. However, they carry only one open reading frame coding for the GAG precursor protein involved for instance in transposition, the assembly, and the packaging of the element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes. PMID:25573958

  4. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice

    PubMed Central

    Wang, Hao; Liu, Jin-Song

    2008-01-01

    Background Long terminal repeat retrotransposons (LTR elements) are ubiquitous Eukaryotic TEs that transpose through RNA intermediates. Accounting for significant proportion of many plant genomes, LTR elements have been well established as one of the major forces underlying the evolution of plant genome size, structure and function. The accessibility of more than 40% of genomic sequences of the model legume Medicago truncatula (Mt) has made the comprehensive study of its LTR elements possible. Results We use a newly developed tool LTR_FINDER to identify LTR retrotransposons in the Mt genome and detect 526 full-length elements as well as a great number of copies related to them. These elements constitute about 9.6% of currently available genomic sequences. They are classified into 85 families of which 64 are reported for the first time. The majority of the LTR retrotransposons belong to either Copia or Gypsy superfamily and the others are categorized as TRIMs or LARDs by their length. We find that the copy-number of Copia-like families is 3 times more than that of Gypsy-like ones but the latter contribute more to the genome. The analysis of PBS and protein-coding domain structure of the LTR families reveals that they tend to use only 4–5 types of tRNAs and many families have quite conservative ORFs besides known TE domains. For several important families, we describe in detail their abundance, conservation, insertion time and structure. We investigate the amplification-deletion pattern of the elements and find that the detectable full-length elements are relatively young and most of them were inserted within the last 0.52 MY. We also estimate that more than ten million bp of the Mt genomic sequences have been removed by the deletion of LTR elements and the removal of the full-length structures in Mt has been more rapid than in rice. Conclusion This report is the first comprehensive description and analysis of LTR retrotransposons in the Mt genome. Many important

  5. How retrotransposons shape genome regulation.

    PubMed

    Mita, Paolo; Boeke, Jef D

    2016-04-01

    Retrotransposons are mutagenic units able to move within the genome. Despite many defenses deployed by the host to suppress potentially harmful activities of retrotransposons, these genetic units have found ways to meld with normal cellular functions through processes of exaptation and domestication. The same host mechanisms targeting transposon mobility allow for expansion and rewiring of gene regulatory networks on an evolutionary time scale. Recent works demonstrating retrotransposon activity during development, cell differentiation and neurogenesis shed new light on unexpected activities of transposable elements. Moreover, new technological advances illuminated subtler nuances of the complex relationship between retrotransposons and the host genome, clarifying the role of retroelements in evolution, development and impact on human disease. PMID:26855260

  6. The Ty1 Retrotransposon Restriction Factor p22 Targets Gag

    PubMed Central

    Tucker, Jessica M.; Larango, Morgan E.; Wachsmuth, Lucas P.; Kannan, Natarajan; Garfinkel, David J.

    2015-01-01

    A novel form of copy number control (CNC) helps maintain a low number of Ty1 retrovirus-like transposons in the Saccharomyces genome. Ty1 produces an alternative transcript that encodes p22, a trans-dominant negative inhibitor of Ty1 retrotransposition whose sequence is identical to the C-terminal half of Gag. The level of p22 increases with copy number and inhibits normal Ty1 virus-like particle (VLP) assembly and maturation through interactions with full length Gag. A forward genetic screen for CNC-resistant (CNCR) mutations in Ty1 identified missense mutations in GAG that restore retrotransposition in the presence of p22. Some of these mutations map within a predicted UBN2 domain found throughout the Ty1/copia family of long terminal repeat retrotransposons, and others cluster within a central region of Gag that is referred to as the CNCR domain. We generated multiple alignments of yeast Ty1-like Gag proteins and found that some Gag proteins, including those of the related Ty2 elements, contain non-Ty1 residues at multiple CNCR sites. Interestingly, the Ty2-917 element is resistant to p22 and does not undergo a Ty1-like form of CNC. Substitutions conferring CNCR map within predicted helices in Ty1 Gag that overlap with conserved sequence in Ty1/copia, suggesting that p22 disturbs a central function of the capsid during VLP assembly. When hydrophobic residues within predicted helices in Gag are mutated, Gag level remains unaffected in most cases yet VLP assembly and maturation is abnormal. Gag CNCR mutations do not alter binding to p22 as determined by co-immunoprecipitation analyses, but instead, exclude p22 from Ty1 VLPs. These findings suggest that the CNCR alleles enhance retrotransposition in the presence of p22 by allowing productive Gag-Gag interactions during VLP assembly. Our work also expands the strategies used by retroviruses for developing resistance to Gag-like restriction factors to now include retrotransposons. PMID:26451601

  7. Tyrosine Recombinase Retrotransposons and Transposons.

    PubMed

    Poulter, Russell T M; Butler, Margi I

    2015-04-01

    Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes. PMID:26104693

  8. The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster.

    PubMed

    Vagin, Vasily V; Klenov, Mikhail S; Kalmykova, Alla I; Stolyarenko, Anastasia D; Kotelnikov, Roman N; Gvozdev, Vladimir A

    2004-05-01

    RNA interference (RNAi) is considered as a defense against expansion of transposable elements. The proteins related to RNA helicase and Argonaute families are involved in RNAi process in different organisms. It was shown that Argonaute AUBERGINE and putative RNA helicase SPINDLE-E proteins were essential for RNAi in Drosophila. Here, we describe the role of aubergine (aub) and spindle-E (spn-E) genes in the control of LTR retrotransposon copia and nonLTR telomeric Het-A and I retrotransposons in ovaries. spn-E mutation causes a drastically increased lacZ expression driven by copia LTR. For the first time we show the involvement of AUBERGINE protein and VASA RNA helicase, essential for oocyte patterning, in the retrotransposon silencing. spn-E, vasa and aub mutations cause similar accumulation of both I element and Het-A transcripts in the developing oocyte. VASA and AUBERGINE proteins are known as components of perinuclear ribonucleoprotein particles in germ cells, and spn-E mutation disturbs protein content of the particles. We suggest participation of these proteins in the same silencing pathway. PMID:17194939

  9. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon

    PubMed Central

    Jordan, I. King; Matyunina, Lilya V.; McDonald, John F.

    1999-01-01

    The evolutionary dynamics existing between transposable elements (TEs) and their host genomes have been likened to an “arms race.” The selfish drive of TEs to replicate, in turn, elicits the evolution of host-mediated regulatory mechanisms aimed at repressing transpositional activity. It has been postulated that horizontal (cross-species) transfer may be one effective strategy by which TEs and other selfish genes can escape host-mediated silencing mechanisms over evolutionary time; however, to date, the most definitive evidence that TEs horizontally transfer between species has been limited to class II or DNA-type elements. Evidence that the more numerous and widely distributed retroelements may also be horizontally transferred between species has been more ambiguous. In this paper, we report definitive evidence for a recent horizontal transfer of the copia long terminal repeat retrotransposon between Drosophila melanogaster and Drosophila willistoni. PMID:10535972

  10. A dosage-sensitive modifier of retrotransposon-induced alleles of the Drosophila white locus.

    PubMed Central

    Rabinow, L; Birchler, J A

    1989-01-01

    The apricot allele of the white locus results from the insertion of the retrotransposon copia. Mutations in a newly discovered locus, the Darkener-of-apricot (Doa), suppress wa and some of its revertants. Of 44 other white alleles tested, only wsp55 is affected by Doa, although, in contrast, it is enhanced by Doa mutations. The Doa locus modulates wa and wsp55 expression as a function of its own dosage. Mutations in Doa are dominant suppressors or enhancers and are recessive lethals. Rare Doa mutant homozygotes escaping lethality demonstrate extreme phenotypic suppression of wa and enhancement of wsp55. RNA from wa is substantially wild-type in structure in escapers, although reduced in quantity. Images PMID:2542025

  11. The 5' termini of RNAs encoded by the transposable element copia.

    PubMed Central

    Flavell, A J; Levis, R; Simon, M A; Rubin, G M

    1981-01-01

    The 5' termini of copia-specific RNAs in Drosophila melanogaster tissue culture cells were determined by S1 nuclease mapping and cap analysis. Both major copia RNAs share an identical set of heterogeneous 5' ends. Three major cap 1 structures M7GpppCmpUp, M7GpppCmpCp and M7GpppGmpUp together with several other minor caps were found. Almost all the 5' termini, as judged by S-1 nuclease mapping, were located either in a pyrimidine-rich part of the terminal direct repeat or apparently outside of the copia element, suggesting that a proportion of copia transcripts derive from promoters external to the genetic element. Images PMID:6275356

  12. DIRS and Ngaro Retrotransposons in Fungi

    PubMed Central

    Muszewska, Anna; Steczkiewicz, Kamil; Ginalski, Krzysztof

    2013-01-01

    Retrotransposons with a tyrosine recombinase (YR) have been discovered recently and lack thorough annotation in fungi. YR retrotransposons are divided into 3 groups: DIRS, Ngaro and VIPER (known only from kinetoplastida). We used comparative genomics to investigate the evolutionary patterns of retrotransposons in the fungal kingdom. The identification of both functional and remnant elements provides a unique view on both recent and past transposition activity. Our searches covering a wide range of fungal genomes allowed us to identify 2241 YR retrotransposons. Based on CLANS clustering of concatenated sequences of the reverse transcriptase (RT), RNase H (RH), DNA N-6-adenine-methyltransferase (MT) and YR protein domains we propose a revised classification of YR elements expanded by two new categories of Ngaro elements. A phylogenetic analysis of 477 representatives supports this observation and additionally demonstrates that DIRS and Ngaro abundance changed independently in Basidiomycota and Blastocladiomycota/Mucoromycotina/Kixellomycotina. Interestingly, a single remnant Ngaro element could be identified in an Ascomycota genome. Our analysis revealed also that 3 Pucciniomycotina taxa, known for their overall mobile element abundance and big genome size, encode an elevated number of Ngaro retrotransposons. Considering the presence of DIRS elements in all analyzed Mucoromycotina, Kickxellomycotina and Blastocladiomycota genomes one might assume a common origin of fungal DIRS retrotransposons with a loss in Dicarya. Ngaro elements described to date from Opisthokonta, seem to have invaded the common ancestor of Agaricomycotina and Pucciniomycotina after Ustilagomycotina divergence. Yet, most of analyzed genomes are devoid of YR elements and most identified retrotransposons are incomplete. PMID:24086727

  13. DIRS and Ngaro Retrotransposons in Fungi.

    PubMed

    Muszewska, Anna; Steczkiewicz, Kamil; Ginalski, Krzysztof

    2013-01-01

    Retrotransposons with a tyrosine recombinase (YR) have been discovered recently and lack thorough annotation in fungi. YR retrotransposons are divided into 3 groups: DIRS, Ngaro and VIPER (known only from kinetoplastida). We used comparative genomics to investigate the evolutionary patterns of retrotransposons in the fungal kingdom. The identification of both functional and remnant elements provides a unique view on both recent and past transposition activity. Our searches covering a wide range of fungal genomes allowed us to identify 2241 YR retrotransposons. Based on CLANS clustering of concatenated sequences of the reverse transcriptase (RT), RNase H (RH), DNA N-6-adenine-methyltransferase (MT) and YR protein domains we propose a revised classification of YR elements expanded by two new categories of Ngaro elements. A phylogenetic analysis of 477 representatives supports this observation and additionally demonstrates that DIRS and Ngaro abundance changed independently in Basidiomycota and Blastocladiomycota/Mucoromycotina/Kixellomycotina. Interestingly, a single remnant Ngaro element could be identified in an Ascomycota genome. Our analysis revealed also that 3 Pucciniomycotina taxa, known for their overall mobile element abundance and big genome size, encode an elevated number of Ngaro retrotransposons. Considering the presence of DIRS elements in all analyzed Mucoromycotina, Kickxellomycotina and Blastocladiomycota genomes one might assume a common origin of fungal DIRS retrotransposons with a loss in Dicarya. Ngaro elements described to date from Opisthokonta, seem to have invaded the common ancestor of Agaricomycotina and Pucciniomycotina after Ustilagomycotina divergence. Yet, most of analyzed genomes are devoid of YR elements and most identified retrotransposons are incomplete. PMID:24086727

  14. Retrotransposon evolution in diverse plant genomes.

    PubMed Central

    Langdon, T; Seago, C; Mende, M; Leggett, M; Thomas, H; Forster, J W; Jones, R N; Jenkins, G

    2000-01-01

    Retrotransposon or retrotransposon-like sequences have been reported to be conserved components of cereal centromeres. Here we show that the published sequences are derived from a single conventional Ty3-gypsy family or a nonautonomous derivative. Both autonomous and nonautonomous elements are likely to have colonized Poaceae centromeres at the time of a common ancestor but have been maintained since by active retrotransposition. The retrotransposon family is also present at a lower copy number in the Arabidopsis genome, where it shows less pronounced localization. The history of the family in the two types of genome provides an interesting contrast between "boom and bust" and persistent evolutionary patterns. PMID:10978295

  15. Activation of tobacco retrotransposons during tissue culture.

    PubMed Central

    Hirochika, H

    1993-01-01

    Sequences of at least three new families of retrotransposons (Tto1-Tto3) were amplified by PCR from cDNA prepared from protoplasts of an established tobacco cell line, based on the fact that certain amino acids are highly conserved in the reverse transcriptases encoded by retrotransposons. Structural analysis indicates that Tto1 is 5.5 kb long and has features typical of retrotransposons. Transcription of Tto1 starting in the long terminal repeat was active only in cultured cells. Protoplast formation enhanced the transcription. The copy number of Tto1 increased 10-fold in established cell lines; it also increased in plants regenerated from tissue cultures and in transgenic plants. These results indicate that Tto1 is activated during tissue culture. This is the first demonstration of activation of a plant retrotransposon by tissue culture. The copy number of Tto2 and a previously isolated transposon, Tnt1, also increased in established cell lines, indicating that these two retrotransposons may also be activated by tissue culture. These three retrotransposons are cryptic in normally propagated plants: no difference in the copy number was observed between individuals of the same cultivars or even between different cultivars. Images PMID:8389699

  16. Eukaryote DIRS1-like retrotransposons: an overview

    PubMed Central

    2011-01-01

    Background DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes. Results To determine the distribution of DIRS1-like retrotransposons, we developed a new computational tool, ReDoSt, which allows us to identify well-conserved DIRS1-like elements. By screening 274 completely sequenced genomes, we identified more than 4000 DIRS1-like copies distributed among 30 diverse species which can be clustered into roughly 300 families. While the diversity in most species appears restricted to a low copy number, a few bursts of transposition are strongly suggested in certain species, such as Danio rerio and Saccoglossus kowalevskii. Conclusion In this study, we report 14 new species and 8 new higher taxa that were not previously known to harbor DIRS1-like retrotransposons. Now reported in 61 species, these elements appear widely distributed among eukaryotes, even if they remain undetected in streptophytes and mammals. Especially in unikonts, a broad range of taxa from Cnidaria to Sauropsida harbors such elements. Both the distribution and the similarities between the DIRS1-like element phylogeny and conventional phylogenies of the host species suggest that DIRS1-like retrotransposons emerged early during the radiation of eukaryotes. PMID:22185659

  17. What might retrotransposons teach us about aging?

    PubMed

    Maxwell, Patrick H

    2016-05-01

    Retrotransposons are activated as organisms age, based on work from several model systems. Since these mobile DNA elements can promote genome instability, this has raised the possibility that they can contribute to loss of cellular function with age. Many questions remain to be addressed about the relationship between retrotransposons and aging, so it is unclear if changes in their activity will be found to contribute to aging or to be a consequence of aging. A few broad perspectives are presented regarding how continued work on these elements could provide important insights into the aging process, regardless of whether their mobility is ultimately found to significantly contribute to reduced lifespan and healthspan. PMID:26581630

  18. Skipper, an LTR retrotransposon of Dictyostelium.

    PubMed Central

    Leng, P; Klatte, D H; Schumann, G; Boeke, J D; Steck, T L

    1998-01-01

    The complete sequence of a retrotransposon from Dictyostelium discoideum , named skipper , was obtained from cDNA and genomic clones. The sequence of a nearly full-length skipper cDNA was similar to that of three other partially sequenced cDNAs. The corresponding retrotransposon is represented in approximately 15-20 copies and is abundantly transcribed. Skipper contains three open reading frames (ORFs) with an unusual sequence organization, aspects of which resemble certain mammalian retroviruses. ORFs 1 and 3 correspond to gag and pol genes; the second ORF, pro, corresponding to protease, was separated from gag by a single stop codon followed shortly thereafter by a potential pseudoknot. ORF3 (pol) was separated from pro by a +1 frameshift. ORFs 2 and 3 overlapped by 32 bp. The computed amino acid sequences of the skipper ORFs contain regions resembling retrotransposon polyprotein domains, including a nucleic acid binding protein, aspartyl protease, reverse transcriptase and integrase. Skipper is the first example of a retrotransposon with a separate pro gene. Skipper is also novel in that it appears to use stop codon suppression rather than frameshifting to modulate pro expression. Finally, skipper and its components may provide useful tools for the genetic characterization of Dictyostelium. PMID:9518497

  19. Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melanogaster.

    PubMed

    Di Franco, C; Pisano, C; Dimitri, P; Gigliotti, S; Junakovic, N

    1989-12-01

    The genomic distribution of elements of the copia, 412, B 104, mdg 1, mdg 4 and 1731 transposon families was compared by the Southern technique in DNA preparations extracted from brains, salivary glands and adult flies of two related Drosophila lines. The copia, 412 and mdg 1 sequences were also probed in DNA from sperm, embryos, and 1st and 2nd instar larvae. The homogeneity of the patterns observed shows that somatic transposition is unlikely to occur frequently. A correlation between mobility and the euchromatic or heterochromatic location of transposable elements is discussed. In addition, an explanation of the variable band intensities of transposable elements in Southern autoradiographs is proposed. PMID:2560696

  20. Convergent Evolution of Ribonuclease H in LTR Retrotransposons and Retroviruses

    PubMed Central

    Ustyantsev, Kirill; Novikova, Olga; Blinov, Alexander; Smyshlyaev, Georgy

    2015-01-01

    Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events. PMID:25605791

  1. Analysis of plant diversity with retrotransposon-based molecular markers

    PubMed Central

    Kalendar, R; Flavell, A J; Ellis, T H N; Sjakste, T; Moisy, C; Schulman, A H

    2011-01-01

    Retrotransposons are both major generators of genetic diversity and tools for detecting the genomic changes associated with their activity because they create large and stable insertions in the genome. After the demonstration that retrotransposons are ubiquitous, active and abundant in plant genomes, various marker systems were developed to exploit polymorphisms in retrotransposon insertion patterns. These have found applications ranging from the mapping of genes responsible for particular traits and the management of backcrossing programs to analysis of population structure and diversity of wild species. This review provides an insight into the spectrum of retrotransposon-based marker systems developed for plant species and evaluates the contributions of retrotransposon markers to the analysis of population diversity in plants. PMID:20683483

  2. Roles for retrotransposon insertions in human disease.

    PubMed

    Hancks, Dustin C; Kazazian, Haig H

    2016-01-01

    Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans. PMID:27158268

  3. Two retrotransposons maintain telomeres in Drosophila

    PubMed Central

    Pardue, M.-L.; Rashkova, S.; Casacuberta, E.; DeBaryshe, P.G.; George, J. A.; Traverse, K.L.

    2005-01-01

    Telomeres across the genus Drosophila are maintained, not by telomerase, but by two non-LTR retrotransposons, HeT-A and TART, that transpose specifically to chromosome ends. Successive transpositions result in long head-to-tail arrays of these elements. Thus Drosophila telomeres, like those produced by telomerase, consist of repeated sequences reverse transcribed from RNA templates. The Drosophila repeats, complete and 5′-truncated copies of HeT-A and TART, are more complex than telomerase repeats; nevertheless these evolutionary variants have functional similarities to the more common telomeres. Like other telomeres, the Drosophila arrays are dynamic, fluctuating around an average length that can be changed by changes in the genetic background. Several proteins that interact with telomeres in other species have been found to have homologues that interact with Drosophila telomeres. Although they have hallmarks of non-LTR retrotransposons, HeT-A and TART appear to have a special relationship to Drosophila. Their Gag proteins are efficiently transported into diploid nuclei where HeT-A Gag recruits TART Gag to chromosome ends. Gags of other non-LTR elements remain predominantly in the cytoplasm. These studies provide intriguing evolutionary links between telomeres and retrotransposable elements. PMID:16132810

  4. The first complete Mag family retrotransposons discovered in Drosophila.

    PubMed

    Glukhov, I A; Kotnova, A P; Stefanov, Y E; Ilyin, Y V

    2016-01-01

    A retrotransposon of the Mag family was found in the Drosophila simulans genome for the first time. We also identified novel transposable elements representing the Mag family in seven Drosophila species. The high similarity between the 3' and 5' long terminal repeats in the found copies of transposable elements indicates that their retrotransposition has occurred relatively recently. Thus, the Mag family of retrotransposons is quite common for the genus Drosophila. PMID:27025475

  5. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. PMID:26912865

  6. LTR retrotransposons, handy hitchhikers of plant regulation and stress response.

    PubMed

    Grandbastien, Marie-Angèle

    2015-04-01

    LTR retrotransposons are major components of plant genomes. They are regulated by a diverse array of external stresses and tissue culture conditions, displaying finely tuned responses to these stimuli, mostly in the form of upregulation. Second to stress conditions and tissue culture, meristems are also permissive for LTR retrotransposon expression, suggesting that a dedifferentiated cell status may represent a frequent activating condition. LTR regions are highly plastic and contain regulatory motifs similar to those of cellular genes. The activation of LTR retrotransposons results from interplay between the release of epigenetic silencing and the recruitment by LTRs of specific regulatory factors. Despite the role of LTR retrotransposons in driving plant genome diversification, convincing evidence for major mobilizations of LTR retrotransposons remains much rarer than observations of massive bursts of transcriptional upregulation. Current evidence suggests that LTR retrotransposon expression may be involved in host functional plasticity, acting as dispersed regulatory modules able to redirect stress stimuli to adjacent plant genes. This may be of crucial importance for plants that cannot escape stress, and have evolved complex and highly coordinated responses to external challenges. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity. PMID:25086340

  7. Evidence of multiple retrotransposons in two litopenaeid species.

    PubMed

    Hizer, S E; Tamulis, W G; Robertson, L M; Garcia, D K

    2008-08-01

    Retrotransposons encompass a specific class of mobile genetic elements that are widespread across eukaryotic genomes. The impact of the varied types of retrotransposons on these genomes is just beginning to be deciphered. In a step towards understanding their role in litopenaeid shrimp, we have herein identified nine non-LTR retrotransposons, among which several appear to exist outside the standard defined clades. Two Litopenaeus stylirostris elements were discovered through degenerate PCR amplification using previously defined non-LTR degenerate primers, and through primers designed from a RAPD-derived sequence. A third genomic L. stylirostris element was identified using specific priming from an amplification protocol. These three PCR-derived sequences showed conserved domains of the non-LTR reverse transcriptase gene. In silico searching of genome databases and subsequent contig construction yielded six non-LTR retrotransposons (both genomic and expressed) in the Litopenaeus vannamei genome that also exhibited the highly conserved domains found in our PCR-derived sequences. Phylogenetic placement among representatives from all non-LTR clades showed a possibly novel monophyletic group that included five of our nine sequences. This group, which included elements from both L. stylirostris and L. vannamei, appeared most closely related to the highly active RTE clade. Our remaining four sequences placed in the CR1 and I clades of retrotransposons, with one showing strong similarity to ancient Penelope elements. This research describes three newly discovered retrotransposons in the L. stylirostris genome. Phylogenetic analysis clusters these in a monophyletic grouping with retrotransposons previously described from two closely related species, L. vannamei and Penaeus monodon. PMID:18557973

  8. Composite non-LTR retrotransposons in hominoid primates

    PubMed Central

    Damert, Annette

    2015-01-01

    Composite retrotransposons are widely distributed in the plant and animal kingdoms. Some of the most complex of these are found in hominoid primates. SVA, LAVA, PVA and FVA combine simple repeats, Alu fragments, a VNTR (Variable Number of Tandem Repeats) and variable 3′ domains, which are, except for PVA, derived from other retrotransposons. Although a likely precursor of SVA–a “tailed VNTR” named SVA2–had been identified in the Rhesus genome, the exact sequence and mechanism of the assembly of this type of composite retrotransposon had been elusive. The discovery of LAVA, PVA and FVA in gibbons provided the opportunity to delineate the order of assembly of the components of VNTR-containing retrotransposons. Our recent analysis suggests that an extinct “Alu-SVA2” acquired variant 3′ ends by splicing. In this commentary I will discuss the mode of assembly of VNTR composites in the context of their capacity to engage in alternative splicing to co-mobilize host RNA sequences and to become exonized. The second part will focus on structural determinants of VNTR composite retrotransposon mobilization in the context of lineage-specific expansion of particular families/subfamilies of these elements. PMID:26904376

  9. Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis

    PubMed Central

    Yin, Hao; Du, Jianchang; Wu, Jun; Wei, Shuwei; Xu, Yingxiu; Tao, Shutian; Wu, Juyou; Zhang, Shaoling

    2015-01-01

    Recent sequencing of the Oriental pear (P. bretschneideri Rehd.) genome and the availability of the draft genome sequence of Occidental pear (P. communis L.), has provided a good opportunity to characterize the abundance, distribution, timing, and evolution of long terminal repeat retrotransposons (LTR-RTs) in these two important fruit plants. Here, a total of 7247 LTR-RTs, which can be classified into 148 families, have been identified in the assembled Oriental pear genome. Unlike in other plant genomes, approximately 90% of these elements were found to be randomly distributed along the pear chromosomes. Further analysis revealed that the amplification timeframe of elements varies dramatically in different families, super-families and lineages, and the Copia-like elements have highest activity in the recent 0.5 million years (Mys). The data also showed that two genomes evolved with similar evolutionary rates after their split from the common ancestor ~0.77–1.66 million years ago (Mya). Overall, the data provided here will be a valuable resource for further investigating the impact of transposable elements on gene structure, expression, and epigenetic modification in the pear genomes. PMID:26631625

  10. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres.

    PubMed

    Liu, Zhao; Yue, Wei; Li, Dayong; Wang, Richard R-C; Kong, Xiuying; Lu, Kun; Wang, Guixiang; Dong, Yushen; Jin, Weiwei; Zhang, Xueyong

    2008-10-01

    Little is known of the dynamics of centromeric DNA in polyploid plants. We report the sequences of two centromere-associated bacterial artificial chromosome clones from a Triticum boeoticum library. Both autonomous and non-autonomous wheat centromeric retrotransposons (CRWs) were identified, both being closely associated with the centromeres of wheat. Fiber-fluorescence in situ hybridization and chromatin immunoprecipitation analysis showed that wheat centromeric retrotransposons (CRWs) represent a dominant component of the wheat centromere and are associated with centromere function. CRW copy number showed variation among different genomes: the D genome chromosomes contained fewer copies than either the A or B genome chromosomes. The frequency of lengthy continuous CRW arrays was higher than that in either rice or maize. The dynamics of CRWs and other retrotransposons at centromeric and pericentromeric regions during diploid speciation and polyploidization of wheat and its related species are discussed. PMID:18496705

  11. The diversity of retrotransposons and the properties of their reverse transcriptases.

    PubMed

    Eickbush, Thomas H; Jamburuthugoda, Varuni K

    2008-06-01

    A number of abundant mobile genetic elements called retrotransposons reverse transcribe RNA to generate DNA for insertion into eukaryotic genomes. Four major classes of retrotransposons are described here. First, the long-terminal-repeat (LTR) retrotransposons have similar structures and mechanisms to those of the vertebrate retroviruses. Genes that may enable these retrotransposons to leave a cell have been acquired by these elements in a number of animal and plant lineages. Second, the tyrosine recombinase retrotransposons are similar to the LTR retrotransposons except that they have substituted a recombinase for the integrase and recombine into the host chromosomes. Third, the non-LTR retrotransposons use a cleaved chromosomal target site generated by an encoded endonuclease to prime reverse transcription. Finally, the Penelope-like retrotransposons are not well understood but appear to also use cleaved DNA or the ends of chromosomes as primer for reverse transcription. Described in the second part of this review are the enzymatic properties of the reverse transcriptases (RTs) encoded by retrotransposons. The RTs of the LTR retrotransposons are highly divergent in sequence but have similar enzymatic activities to those of retroviruses. The RTs of the non-LTR retrotransposons have several unique properties reflecting their adaptation to a different mechanism of retrotransposition. PMID:18261821

  12. Yeast retrotransposon particles as antigen delivery systems.

    PubMed

    Kingsman, A J; Burns, N R; Layton, G T; Adams, S E

    1995-05-31

    The development of technologies to produce recombinant proteins for use in the pharmaceutical industry has made substantial advances, in particular in the area of generating antigens containing multiple copies of important immunological regions. One such antigen-carrier system is based on the ability of a protein encoded by the yeast retrotransposon, Ty, to self-assemble into virus-like particles. Ty-fusion proteins retain this ability to form particles, and a range of hybrid VLPs carrying a variety of heterologous antigens have been produced and shown to induce potent immune responses. In particular, hybrid VLPs carrying the core protein p24 of HIV (p24-VLPs) have been shown to induce antibody and T-cell proliferative responses in both experimental animals and human volunteers, and immunization of rabbits with VLPs carrying the principal neutralizing determinant of HIV (V3-VLPs) resulted in the induction of neutralizing antibody responses and T-cell proliferation. Further studies with V3-VLPs have shown that this particulate antigen stimulates enhanced V3-specific lymphoproliferative responses as compared to whole recombinant gp120 or to V3 peptide conjugated to albumin. The V3-VLPs also induce potent CTL responses following immunization of mice in the absence of adjuvant. These responses are MHC class I restricted and are mediated by CD8-positive cells. These observations therefore demonstrate that hybrid Ty-VLPs induce both humoral and cellular immune responses against HIV and suggest that these immunogens may be important in combatting AIDS and other infections. PMID:7625653

  13. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration.

    PubMed

    Bridier-Nahmias, Antoine; Tchalikian-Cosson, Aurélie; Baller, Joshua A; Menouni, Rachid; Fayol, Hélène; Flores, Amando; Saïb, Ali; Werner, Michel; Voytas, Daniel F; Lesage, Pascale

    2015-05-01

    Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host. PMID:25931562

  14. Natural selection maintains the transcribed LTR retrotransposons in Nosema bombycis.

    PubMed

    Xiang, Heng; Pan, Guoqing; Zhang, Ruizhi; Xu, Jinshan; Li, Tian; Li, Wenle; Zhou, Zeyang; Xiang, Zhonghuai

    2010-05-01

    Eight intact LTR retrotransposons (Nbr1-Nbr8) have been previously characterized from the genome of Nosema bombycis, a eukaryotic parasite with a compact and reduced genome. Here we describe six novel transcribed Nbr elements (Nbr9-Nbr14) identified through either cDNA library or RT-PCR. Like previously determined ones, all of them belong to the Ty3/Gypsy superfamily. Retrotransposon diversity and incomplete domains with insertions (Nbr12), deletions (Nbr11) and in-frame stop codons in coding regions (Nbr9) were detected, suggesting that both defective and loss events of LTR retrotransposon have happened in N. bombycis genome. Analysis of selection showed that strong purifying selection acts on all elements except Nbr11. This implies that selective pressure keeps both these Nbrs and their functions in genome. Interestingly, Nbr11 is under positive selection and some positively selected codons were identified, indicating that new functionality might have evolved in the Nbr11 retrotransposon. Unlike other transposable elements, Nbr11 has integrated into a conserved syntenic block and probably resulted in the inversion of both flanking regions. This demonstrates that transposable element is an important factor for the reshuffling and evolution of their host genomes, and may be maintained under natural selection. PMID:20513631

  15. Structure and Dynamics of Retrotransposons at Wheat Centromeres and Pericentromeres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A centromere-associated bacterial artificial chromosome (BAC) clone TbBAC5, containing a 90 kb insert of Triticum boeoticum Boiss, genomic DNA, was fully sequenced. The Erika, Sukkula and Wgel-2 retrotransposons identified in TbBAC5 were A-genome rich in annual Triticeae. Southern analysis reveale...

  16. Plant centromeric retrotransposons: a structural and cytogenetic perspective

    PubMed Central

    2011-01-01

    Background The centromeric and pericentromeric regions of plant chromosomes are colonized by Ty3/gypsy retrotransposons, which, on the basis of their reverse transcriptase sequences, form the chromovirus CRM clade. Despite their potential importance for centromere evolution and function, they have remained poorly characterized. In this work, we aimed to carry out a comprehensive survey of CRM clade elements with an emphasis on their diversity, structure, chromosomal distribution and transcriptional activity. Results We have surveyed a set of 190 CRM elements belonging to 81 different retrotransposon families, derived from 33 host species and falling into 12 plant families. The sequences at the C-terminus of their integrases were unexpectedly heterogeneous, despite the understanding that they are responsible for targeting to the centromere. This variation allowed the division of the CRM clade into the three groups A, B and C, and the members of each differed considerably with respect to their chromosomal distribution. The differences in chromosomal distribution coincided with variation in the integrase C-terminus sequences possessing a putative targeting domain (PTD). A majority of the group A elements possess the CR motif and are concentrated in the centromeric region, while members of group C have the type II chromodomain and are dispersed throughout the genome. Although representatives of the group B lack a PTD of any type, they appeared to be localized preferentially in the centromeres of tested species. All tested elements were found to be transcriptionally active. Conclusions Comprehensive analysis of the CRM clade elements showed that genuinely centromeric retrotransposons represent only a fraction of the CRM clade (group A). These centromeric retrotransposons represent an active component of centromeres of a wide range of angiosperm species, implying that they play an important role in plant centromere evolution. In addition, their transcriptional activity

  17. Retrotransposon- and microsatellite sequence-associated genomic changes in early 2 generations of a newly synthesized allotetraploid cucumis × hytivus Chen & Kirkbride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allopolyploidization is considered an essential evolutionary process in plants that could trigger genomic shock in allopolyploid genome through activation of transcription of retrotransposons, which may be important in plant evolution. Two retrotransposon-based markers, inter-retrotransposon amplifi...

  18. DIRS-1 and the other tyrosine recombinase retrotransposons.

    PubMed

    Poulter, R T M; Goodwin, T J D

    2005-01-01

    DIRS-1 is a retroelement from the slime mold Dictyostelium discoideum. Until recently only two related retrotransposons had been described: PAT from the nematode Panagrellus redivivus and Prt1 from the zygomycete fungus Phycomyces blakesleeanus. Analyses of the reverse transcriptase sequences encoded by these three elements suggested that they were closely related to each other and more distantly related to the Ty3/gypsy Long Terminal Repeat (LTR) retroelements. They have several unusual structural features that distinguish them from typical LTR elements. For instance, they each encode a tyrosine recombinase (YR), but not a DDE-type integrase or an aspartic protease. Although the DIRS-1-related elements are bordered by terminal repeats these differ from typical LTRs in a number of ways. In DIRS-1, for example, the terminal repeats are inverted (complementary), non-identical in sequence, and the outer edges of the terminal sequences are repeated (adjacent to each other) in the internal region. PAT has so-called "split" direct repeats in which the unrelated terminal sequences appear as direct repeats adjacent to each other in the internal region. The only repetition displayed by Prt1 is the presence of short inverted terminal repeats, but the sequenced copy of this element is believed to be a truncated version of an element with a structure resembling DIRS-1. The unusual structure of the terminal repeats of the DIRS1-like elements appears to be related to their replication via free circular intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. In recognition of these important distinctions it is proposed that the retrotransposons that encode tyrosine recombinases be called the tyrosine recombinase (or YR) retrotransposons. Recently a large number of additional YR retrotransposons have been described, including elements from fungi (zygomycetes and basidiomycetes), plants (green algae) and a

  19. Divergent long-terminal-repeat retrotransposon families in the genome of Paragonimus westermani

    PubMed Central

    Bae, Young-An

    2003-01-01

    To gain information on retrotransposons in the genome of Paragonimus westermani, PCR was carried out with degenerate primers, specific to protease and reverse transcriptase (rt) genes of long-terminal-repeat (LTR) retrotransposons. The PCR products were cloned and sequenced, after which 12 different retrotransposon-related sequences were isolated from the trematode genome. These showed various degrees of identity to the polyprotein of divergent retrotransposon families. A phylogenetic analysis demonstrated that these sequences could be classified into three different families of LTR retrotransposons, namely, Xena, Bel, and Gypsy families. Of these, two mRNA transcripts were detected by reverse transcriptase-PCR, showing that these two elements preserved their mobile activities. The genomic distributions of these two sequences were found to be highly repetitive. These results suggest that there are diverse retrotransposons including the ancient Xena family in the genome of P. westermani, which may have been involved in the evolution of the host genome. PMID:14699263

  20. Condensin II Subunit dCAP-D3 Restricts Retrotransposon Mobilization in Drosophila Somatic Cells

    PubMed Central

    Schuster, Andrew T.; Sarvepalli, Kavitha; Murphy, Eain A.; Longworth, Michelle S.

    2013-01-01

    Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1) higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2) increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin II influences local

  1. Retrotransposon "Qian" mediated segmental duplication in silkworm, Bombyx mori.

    PubMed

    Xu, Yunmin; Jiang, Ning; Zou, Ziliang; Tu, Zhijian; Chen, Anli; Zhao, Qiaoling; Xiang, Zhonghuai; He, Ningjia

    2014-03-01

    Transposable elements constitute a large fraction of the eukaryotic genomes. They have the potential to alter genome structure and play a major role in genome evolution. Here, we report a segmental duplication mediated by a novel long terminal repeat (LTR) retrotransposon as the cause of an egg-shell recessive lethal mutant (l-em mutant) in silkworm (Bombyx mori). The segmental duplication resulted in the duplication of six genes and the disruption of two genes. Disruption of BmEP80 (B. mori egg protein 80), a gene encoding a major egg-shell structure protein, is likely responsible for the lethal water-loss phenotype in the l-em/l-em mutant. Our data revealed that BmEP80 is present in the inner egg-shell layer and plays important roles in resistance to water efflux form eggs. A novel LTR retrotransposon (named as "Qian") was identified and the model for the Qian-mediated chromosomal segmental duplication was proposed. Detail biochemical and genomic analyses on the l-em mutant offer an opportunity to demonstrate that an LTR retrotransposon could trigger duplication of a chromosomal segment (∼96.3 kb) and confer novel phenotype. PMID:24462715

  2. Retrotransposon profiling of RNA polymerase III initiation sites.

    PubMed

    Qi, Xiaojie; Daily, Kenneth; Nguyen, Kim; Wang, Haoyi; Mayhew, David; Rigor, Paul; Forouzan, Sholeh; Johnston, Mark; Mitra, Robi David; Baldi, Pierre; Sandmeyer, Suzanne

    2012-04-01

    Although retroviruses are relatively promiscuous in choice of integration sites, retrotransposons can display marked integration specificity. In yeast and slime mold, some retrotransposons are associated with tRNA genes (tDNAs). In the Saccharomyces cerevisiae genome, the long terminal repeat retrotransposon Ty3 is found at RNA polymerase III (Pol III) transcription start sites of tDNAs. Ty1, 2, and 4 elements also cluster in the upstream regions of these genes. To determine the extent to which other Pol III-transcribed genes serve as genomic targets for Ty3, a set of 10,000 Ty3 genomic retrotranspositions were mapped using high-throughput DNA sequencing. Integrations occurred at all known tDNAs, two tDNA relics (iYGR033c and ZOD1), and six non-tDNA, Pol III-transcribed types of genes (RDN5, SNR6, SNR52, RPR1, RNA170, and SCR1). Previous work in vitro demonstrated that the Pol III transcription factor (TF) IIIB is important for Ty3 targeting. However, seven loci that bind the TFIIIB loader, TFIIIC, were not targeted, underscoring the unexplained absence of TFIIIB at those sites. Ty3 integrations also occurred in two open reading frames not previously associated with Pol III transcription, suggesting the existence of a small number of additional sites in the yeast genome that interact with Pol III transcription complexes. PMID:22287102

  3. Characterization of AFLAV, a Tfl/Sushi retrotransposon from Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insert of pAF28 contains a 4.5 kb region which encodes a truncated retrotransposon (AfRTL-1). In search for a full-length and intact copy of retrotransposon, we exploited a novel PCR cloning strategy by amplifying a 3.4 kb region from the genomic DNA of A. flavus NRRL 6541. The fragment was cl...

  4. Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian.

    PubMed

    Cao, Liping; Yin, Guojun; Cao, Zheming; Bing, Xuwen; Ding, Weidong

    2016-06-01

    A Ty3/gypsy-retrotransposon-type transposon was found in the genome of the Jian carp (Cyprinus carpio var. Jian) in a previous study (unpublished), and was designated a JRE retrotransposon (Jian retrotransposon). The full-length JRE retrotransposon is 5126 bp, which includes two long terminal repeats of 470 bp at the 5' end and 453 bp at the 3' end, and two open reading frames between them: 4203 bp encoding the group-specific antigen (GAG) and polyprotein (POL). The pol gene has a typical Ty3/gypsy retrotransposon structure, and the gene order is protease, reverse transcriptase, RNase H, and integrase (PR-RT-RH-IN). A phylogenetic analysis of the pol gene showed that it has similarities of 40.7, 40, and 32.8 %, to retrotransposons of Azumapecten farreri, Mizuhopecten yessoensis, and Xiphophorus maculatus, respectively. Therefore, JRE might belong to the JULE retrotransposon family. The copy number of the JRE transposon in the genome of the Jian carp is 124, determined with real-time quantitative PCR. The mRNA of the JRE retrotransposon is expressed in five Jian carp tissues, the liver, kidney, blood, muscle, and gonad, and slightly higher in the kidney and liver than in the other tissues. PMID:27178280

  5. DNA Methylation and Expression of the EgDEF1 Gene and Neighboring Retrotransposons in mantled Somaclonal Variants of Oil Palm

    PubMed Central

    Jaligot, Estelle; Beulé, Thierry; Collin, Myriam; Agbessi, Mawussé D. T.; Sabot, François; Garsmeur, Olivier; D'Hont, Angélique; Alwee, Sharifah Shahrul Rabiah Syed; Rival, Alain

    2014-01-01

    The mantled floral phenotype of oil palm (Elaeis guineensis) affects somatic embryogenesis-derived individuals and is morphologically similar to mutants defective in the B-class MADS-box genes. This somaclonal variation has been previously demonstrated to be associated to a significant deficit in genome-wide DNA methylation. In order to elucidate the possible role of DNA methylation in the transcriptional regulation of EgDEF1, the APETALA3 ortholog of oil palm, we studied this epigenetic mark within the gene in parallel with transcript accumulation in both normal and mantled developing inflorescences. We also examined the methylation and expression of two neighboring retrotransposons that might interfere with EgDEF1 regulation. We show that the EgDEF1 gene is essentially unmethylated and that its methylation pattern does not change with the floral phenotype whereas expression is dramatically different, ruling out a direct implication of DNA methylation in the regulation of this gene. Also, we find that both the gypsy element inserted within an intron of the EgDEF1 gene and the copia element located upstream from the promoter are heavily methylated and show little or no expression. Interestingly, we identify a shorter, alternative transcript produced by EgDEF1 and characterize its accumulation with respect to its full-length counterpart. We demonstrate that, depending on the floral phenotype, the respective proportions of these two transcripts change differently during inflorescence development. We discuss the possible phenotypical consequences of this alternative splicing and the new questions it raises in the search for the molecular mechanisms underlying the mantled phenotype in the oil palm. PMID:24638102

  6. Diversity and varietal classification of Hibiscus syriacus L. with the heterogeneity within retrotransposon-like elements.

    PubMed

    Lee, Seung Jae; Jeung, Ji Ung; Cho, Sung Ki; Um, Bo Young; Chung, Won-Il; Bae, Jung Myung; Shin, Jeong Sheop

    2002-06-30

    Retrotransposons are present in multi-copy numbers that are integrated into plant genomes with considerable heterogeneous sequences within a single plant and between plant species, which allows the use of retrotransposons as additional sources of DNA polymorphism. A primer design for the sequence-tagged specific site and cleaved amplified polymorphic sequences (STS-CAPs) that are derived from retrotransposon-like sequences was developed for the molecular marker analysis in Hibiscus syriacus. This method was applied for the detection of sequence variations of intact retrotransposons that exist in plant genomes, which resulted in higher polymorphisms than in the amplified fragment length polymorphism (AFLP). Through STS-CAPs, specific fingerprinting data among H. syriacus varieties can be easily distinguished and generated with reproducible results. It could also be adapted to any species that possess multi-copy retrotransposons for varietal identification as well as the assessment of genetic relationships. PMID:12132574

  7. The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200 MY of evolution.

    PubMed

    Zuccolo, Andrea; Scofield, Douglas G; De Paoli, Emanuele; Morgante, Michele

    2015-08-15

    Long Terminal Repeat retroelements (LTR-RTs) are a major component of many plant genomes. Although well studied and described in angiosperms, their features and dynamics are poorly understood in gymnosperms. Representative complete copies of a Ty1-copia element isolate in Picea abies and named PARTC were identified in six other conifer species (Picea glauca, Pinus sylvestris, Pinus taeda, Abies sibirica, Taxus baccata and Juniperus communis) covering more than 200 million years of evolution. Here we characterized the structure of this element, assessed its abundance across conifers, studied the modes and timing of its amplification, and evaluated the degree of conservation of its extant copies at nucleotide level over distant species. We demonstrated that the element is ancient, abundant, widespread and its paralogous copies are present in the genera Picea, Pinus and Abies as an LTR-RT family. The amplification leading to the extant copies of PARTC occurred over long evolutionary times spanning 10s of MY and mostly took place after the speciation of the conifers analyzed. The level of conservation of PARTC is striking and may be explained by low substitution rates and limited removal mechanisms for LTR-RTs. These PARTC features and dynamics are representative of a more general scenario for LTR-RTs in gymnosperms quite different from that characterizing the vast majority of LTR-RT elements in angiosperms. PMID:25982862

  8. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    PubMed

    Suzuki, Shunsuke; Ono, Ryuichi; Narita, Takanori; Pask, Andrew J; Shaw, Geoffrey; Wang, Changshan; Kohda, Takashi; Alsop, Amber E; Marshall Graves, Jennifer A; Kohara, Yuji; Ishino, Fumitoshi; Renfree, Marilyn B; Kaneko-Ishino, Tomoko

    2007-04-13

    Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation. PMID:17432937

  9. LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders

    PubMed Central

    Sun, Cheng; Shepard, Donald B.; Chong, Rebecca A.; López Arriaza, José; Hall, Kathryn; Castoe, Todd A.; Feschotte, Cédric; Pollock, David D.; Mueller, Rachel Lockridge

    2012-01-01

    Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ∼14 to ∼120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders. PMID:22200636

  10. Coevolution of the telomeric retrotransposons across Drosophila species.

    PubMed Central

    Casacuberta, Elena; Pardue, Mary-Lou

    2002-01-01

    As in other eukaryotes, telomeres in Drosophila melanogaster are composed of long arrays of repeated DNA sequences. Remarkably, in D. melanogaster these repeats are produced, not by telomerase, but by successive transpositions of two telomere-specific retrotransposons, HeT-A and TART. These are the only transposable elements known to be completely dedicated to a role in chromosomes, a finding that provides an opportunity for investigating questions about the evolution of telomeres, telomerase, and the transposable elements themselves. Recent studies of D. yakuba revealed the presence of HeT-A elements with precisely the same unusual characteristics as HeT-A(mel) although they had only 55% nucleotide sequence identity. We now report that the second element, TART, is also a telomere component in D. yakuba; thus, these two elements have been evolving together since before the separation of the melanogaster and yakuba species complexes. Like HeT-A(yak), TART(yak) is undergoing concerted sequence evolution, yet they retain the unusual features TART(mel) shares with HeT-A(mel). There are at least two subfamilies of TART(yak) with significantly different sequence and expression. Surprisingly, one subfamily of TART(yak) has >95% sequence identity with a subfamily of TART(mel) and shows similar transcription patterns. As in D. melanogaster, other retrotransposons are excluded from the D. yakuba terminal arrays studied to date. PMID:12136015

  11. LINE-1 Retrotransposons: Mediators of Somatic Variation in Neuronal Genomes?

    PubMed Central

    Singer, Tatjana; McConnell, Michael J.; Marchetto, Maria C.N.; Coufal, Nicole G.; Gage, Fred H.

    2010-01-01

    LINE-1 (L1) elements are retrotransposons that insert extra copies of themselves throughout the genome using a “copy and paste” mechanism. L1s have contributed ~20% to total human genome content and are able to influence chromosome integrity and gene expression upon reinsertion. Recent studies show that L1 elements are active and “jumping” during neuronal differentiation. New somatic L1 insertions may generate “genomic plasticity” in neurons by causing variation in genomic DNA sequences and by altering the transcriptome of individual cells. Thus, L1-induced variation may affect neuronal plasticity and behavior. Here, we discuss potential consequences of L1-induced neuronal diversity and propose that a mechanism generating diversity in the brain could broaden the spectrum of behavioral phenotypes that can originate from any single genome. PMID:20471112

  12. The Tnt1 Retrotransposon Escapes Silencing in Tobacco, Its Natural Host

    PubMed Central

    Hernández-Pinzón, Inmaculada; Cifuentes, Marta; Hénaff, Elizabeth; Santiago, Néstor; Espinás, M. Lluïsa; Casacuberta, Josep M.

    2012-01-01

    Retrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing. However no evidence of retrotransposon silencing escape has been reported. Here we analyze the silencing control of the tobacco Tnt1 retrotransposon and report that even though constructs driven by the Tnt1 promoter become silenced when stably integrated in tobacco, the endogenous Tnt1 elements remain active. Silencing of Tnt1-containing transgenes correlates with high DNA methylation and the inability to incorporate H2A.Z into their promoters, whereas the endogenous Tnt1 elements remain partially methylated at asymmetrical positions and incorporate H2A.Z upon induction. Our results show that the promoter of Tnt1 is a target of silencing in tobacco, but also that endogenous Tnt1 elements can escape this control and be expressed in their natural host. PMID:22479451

  13. Functional and Structural Divergence of an Unusual LTR Retrotransposon Family in Plants

    PubMed Central

    Iwata, Aiko; Gill, Navdeep; Jackson, Scott A.

    2012-01-01

    Retrotransposons with long terminal repeats (LTRs) more than 3 kb are not frequent in most eukaryotic genomes. Rice LTR retrotransposon, Retrosat2, has LTRs greater than 3.2 kb and two open reading frames (ORF): ORF1 encodes enzymes for retrotransposition whereas no function can be assigned to ORF0 as it is not found in any other organism. A variety of experimental and in silico approaches were used to determine the origin of Retrosat2 and putative function of ORF0. Our data show that not only is Retrosat2 highly abundant in the Oryza genus, it may yet be active in rice. Homologs of Retrosat2 were identified in maize, sorghum, Arabidopsis and other plant genomes suggesting that the Retrosat2 family is of ancient origin. Several putatively cis-acting elements, some multicopy, that regulate retrotransposon replication or responsiveness to environmental factors were found in the LTRs of Retrosat2. Unlike the ORF1, the ORF0 sequences from Retrosat2 and homologs are divergent at the sequence level, 3D-structures and predicted biological functions. In contrast to other retrotransposon families, Retrosat2 and its homologs are dispersed throughout genomes and not concentrated in the specific chromosomal regions, such as centromeres. The genomic distribution of Retrosat2 homologs varies across species which likely reflects the differing evolutionary trajectories of this retrotransposon family across diverse species. PMID:23119066

  14. CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome.

    PubMed

    Göke, Jonathan; Ng, Huck Hui

    2016-08-01

    The human genome contains millions of fragments from retrotransposons-highly repetitive DNA sequences that were once able to "copy and paste" themselves to other regions in the genome. However, the majority of retrotransposons have lost this capacity through acquisition of mutations or through endogenous silencing mechanisms. Without this imminent threat of transposition, retrotransposons have the potential to act as a major source of genomic innovation. Indeed, large numbers of retrotransposons have been found to be active in specific contexts: as gene regulatory elements and promoters for protein-coding genes or long noncoding RNAs, among others. In this review, we summarise recent findings about retrotransposons, with implications in gene expression regulation, the expansion of gene isoform diversity and the generation of long noncoding RNAs. We highlight key examples that demonstrate their role in cellular identity and their versatility as markers of cell states, and we discuss how their dysregulation may contribute to the formation of and possibly therapeutic response in human cancers. PMID:27402545

  15. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons

    PubMed Central

    Lexa, Matej; Kejnovský, Eduard; Šteflová, Pavlína; Konvalinová, Helena; Vorlíčková, Michaela; Vyskot, Boris

    2014-01-01

    Retrotransposons with long terminal repeats (LTR) form a significant proportion of eukaryotic genomes, especially in plants. They have gag and pol genes and several regulatory regions necessary for transcription and reverse transcription. We searched for potential quadruplex-forming sequences (PQSs) and potential triplex-forming sequences (PTSs) in 18 377 full-length LTR retrotransposons collected from 21 plant species. We found that PQSs were often located in LTRs, both upstream and downstream of promoters from which the whole retrotransposon is transcribed. Upstream-located guanine PQSs were dominant in the minus DNA strand, whereas downstream-located guanine PQSs prevailed in the plus strand, indicating their role both at transcriptional and post-transcriptional levels. Our circular dichroism spectroscopy measurements confirmed that these PQSs readily adopted guanine quadruplex structures—some of them were paralell-stranded, while others were anti-parallel-stranded. The PQS often formed doublets at a mutual distance of up to 400 bp. PTSs were most abundant in 3′UTR (but were also present in 5′UTR). We discuss the potential role of quadruplexes and triplexes as the regulators of various processes participating in LTR retrotransposon life cycle and as potential recombination sites during post-insertional retrotransposon-based genome rearrangements. PMID:24106085

  16. Retrotransposon Hypomethylation in Melanoma and Expression of a Placenta-Specific Gene

    PubMed Central

    Macaulay, Erin C.; Roberts, Hester E.; Cheng, Xi; Jeffs, Aaron R.; Baguley, Bruce C.; Morison, Ian M.

    2014-01-01

    In the human placenta, DNA hypomethylation permits the expression of retrotransposon-derived genes that are normally silenced by methylation in somatic tissues. We previously identified hypomethylation of a retrotransposon-derived transcript of the voltage-gated potassium channel gene KCNH5 that is expressed only in human placenta. However, an RNA sequence from this placental-specific transcript has been reported in melanoma. This study examined the promoter methylation and expression of the retrotransposon-derived KCNH5 transcript in 25 melanoma cell lines to determine whether the acquisition of ‘placental’ epigenetic marks is a feature of melanoma. Methylation and gene expression analysis revealed hypomethylation of this retrotransposon in melanoma cell lines, particularly in those samples that express the placental KCNH5 transcript. Therefore we propose that hypomethylation of the placental-specific KCNH5 promoter is frequently associated with KCNH5 expression in melanoma cells. Our findings show that melanoma can develop hypomethylation of a retrotransposon-derived gene; a characteristic notably shared with the normal placenta. PMID:24759919

  17. Proliferation and copy number variation of BEL-like long terminal repeat retrotransposons within the Diabrotica virgifera virgifera genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proliferation of retrotransposons within a genome can contribute to increased sizes and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the western corn root...

  18. LINE-1 retrotransposons: from 'parasite' sequences to functional elements.

    PubMed

    Paço, Ana; Adega, Filomena; Chaves, Raquel

    2015-02-01

    Long interspersed nuclear elements-1 (LINE-1) are the most abundant and active retrotransposons in the mammalian genomes. Traditionally, the occurrence of LINE-1 sequences in the genome of mammals has been explained by the selfish DNA hypothesis. Nevertheless, recently, it has also been argued that these sequences could play important roles in these genomes, as in the regulation of gene expression, genome modelling and X-chromosome inactivation. The non-random chromosomal distribution is a striking feature of these retroelements that somehow reflects its functionality. In the present study, we have isolated and analysed a fraction of the open reading frame 2 (ORF2) LINE-1 sequence from three rodent species, Cricetus cricetus, Peromyscus eremicus and Praomys tullbergi. Physical mapping of the isolated sequences revealed an interspersed longitudinal AT pattern of distribution along all the chromosomes of the complement in the three genomes. A detailed analysis shows that these sequences are preferentially located in the euchromatic regions, although some signals could be detected in the heterochromatin. In addition, a coincidence between the location of imprinted gene regions (as Xist and Tsix gene regions) and the LINE-1 retroelements was also observed. According to these results, we propose an involvement of LINE-1 sequences in different genomic events as gene imprinting, X-chromosome inactivation and evolution of repetitive sequences located at the heterochromatic regions (e.g. satellite DNA sequences) of the rodents' genomes analysed. PMID:25106509

  19. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry. PMID:15236611

  20. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma.

    PubMed

    Rodić, Nemanja; Steranka, Jared P; Makohon-Moore, Alvin; Moyer, Allison; Shen, Peilin; Sharma, Reema; Kohutek, Zachary A; Huang, Cheng Ran; Ahn, Daniel; Mita, Paolo; Taylor, Martin S; Barker, Norman J; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Boeke, Jef D; Burns, Kathleen H

    2015-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed after the disease has metastasized; it is among the most lethal forms of cancer. We recently described aberrant expression of an open reading frame 1 protein, ORF1p, encoded by long interspersed element-1 (LINE-1; L1) retrotransposon, in PDAC. To test whether LINE-1 expression leads to somatic insertions of this mobile DNA, we used a targeted method to sequence LINE-1 insertion sites in matched PDAC and normal samples. We found evidence of 465 somatic LINE-1 insertions in 20 PDAC genomes, which were absent from corresponding normal samples. In cases in which matched normal tissue, primary PDAC and metastatic disease sites were available, insertions were found in primary and metastatic tissues in differing proportions. Two adenocarcinomas secondarily involving the pancreas, but originating in the stomach and duodenum, acquired insertions with a similar discordance between primary and metastatic sites. Together, our findings show that LINE-1 contributes to the genetic evolution of PDAC and suggest that somatic insertions are acquired discontinuously in gastrointestinal neoplasms. PMID:26259033

  1. Chromosomal Inversions between Human and Chimpanzee Lineages Caused by Retrotransposons

    PubMed Central

    Lee, Jungnam; Han, Kyudong; Meyer, Thomas J.; Kim, Heui-Soo; Batzer, Mark A.

    2008-01-01

    The long interspersed element-1 (LINE-1 or L1) and Alu elements are the most abundant mobile elements comprising 21% and 11% of the human genome, respectively. Since the divergence of human and chimpanzee lineages, these elements have vigorously created chromosomal rearrangements causing genomic difference between humans and chimpanzees by either increasing or decreasing the size of genome. Here, we report an exotic mechanism, retrotransposon recombination-mediated inversion (RRMI), that usually does not alter the amount of genomic material present. Through the comparison of the human and chimpanzee draft genome sequences, we identified 252 inversions whose respective inversion junctions can clearly be characterized. Our results suggest that L1 and Alu elements cause chromosomal inversions by either forming a secondary structure or providing a fragile site for double-strand breaks. The detailed analysis of the inversion breakpoints showed that L1 and Alu elements are responsible for at least 44% of the 252 inversion loci between human and chimpanzee lineages, including 49 RRMI loci. Among them, three RRMI loci inverted exonic regions in known genes, which implicates this mechanism in generating the genomic and phenotypic differences between human and chimpanzee lineages. This study is the first comprehensive analysis of mobile element bases inversion breakpoints between human and chimpanzee lineages, and highlights their role in primate genome evolution. PMID:19112500

  2. Inter-retrotransposon-amplified polymorphism markers for germplasm characterization in Manihot esculenta (Euphorbiaceae).

    PubMed

    Oliveira-Silva, A M; Silva, G F; Dias, M C; Clement, C R; Sousa, N R

    2014-01-01

    Manioc, Manihot esculenta, is economically important in many tropical and subtropical countries. The genetic variability of the species has not been fully explored, and new information may help expand its use. Molecular markers based on retrotransposons have good potential for analysis of genetic diversity given their abundance in the genome. Eight long terminal repeat retrotransposons were selected for the development of inter-retrotransposon-amplified polymorphism markers. To test these primers, we analyzed 32 varieties from Anori, 30 from Manicoré and 10 Mandiocabas from the Manioc Germplasm Bank at Embrapa Western Amazonia. The six informative primer pairs yielded 20- 60 polymorphic bands, averaging 92% polymorphism (51.7-98.4) and 0.37 heterozygosity (0.17 to 0.40), with a Shannon information index of 0.54 (0.26-0.59). These markers can be used to explore the genetic diversity of manioc. PMID:24938466

  3. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance

    PubMed Central

    Servant, Geraldine; Deininger, Prescott L.

    2016-01-01

    The telomerase complex is a specialized reverse transcriptase (RT) that inserts tandem DNA arrays at the linear chromosome ends and contributes to the protection of the genetic information in eukaryotic genomes. Telomerases are phylogenetically related to retrotransposons, encoding also the RT activity required for the amplification of their sequences throughout the genome. Intriguingly the telomerase gene is lost from the Drosophila genome and tandem retrotransposons replace telomeric sequences at the chromosome extremities. This observation suggests the versatility of RT activity in counteracting the chromosome shortening associated with genome replication and that retrotransposons can provide this activity in case of a dysfunctional telomerase. In this review paper, we describe the major classes of retroelements present in eukaryotic genomes in order to point out the differences and similarities with the telomerase complex. In a second part, we discuss the insertion of retroelements at the ends of chromosomes as an adaptive response for dysfunctional telomeres. PMID:26779254

  4. DNA Editing of LTR Retrotransposons Reveals the Impact of APOBECs on Vertebrate Genomes.

    PubMed

    Knisbacher, Binyamin A; Levanon, Erez Y

    2016-02-01

    Long terminal repeat retrotransposons (LTR) are widespread in vertebrates and their dynamism facilitates genome evolution. However, these endogenous retroviruses (ERVs) must be restricted to maintain genomic stability. The APOBECs, a protein family that can edit C-to-U in DNA, do so by interfering with reverse transcription and hypermutating retrotransposon DNA. In some cases, a retrotransposon may integrate into the genome despite being hypermutated. Such an event introduces a unique sequence into the genome, increasing retrotransposon diversity and the probability of developing new function at the locus of insertion. The prevalence of this phenomenon and its effects on vertebrate genomes are still unclear. In this study, we screened ERV sequences in the genomes of 123 diverse species and identified hundreds of thousands of edited sites in multiple vertebrate lineages, including placental mammals, marsupials, and birds. Numerous edited ERVs carry high mutation loads, some with greater than 350 edited sites, profoundly damaging their open-reading frames. For many of the species studied, this is the first evidence that APOBECs are active players in their innate immune system. Unexpectedly, some birds and especially zebra finch and medium ground-finch (one of Darwin's finches) are exceptionally enriched in DNA editing. We demonstrate that edited retrotransposons may be preferentially retained in active genomic regions, as reflected from their enrichment in genes, exons, promoters, and transcription start sites, thereby raising the probability of their exaptation for novel function. In conclusion, DNA editing of retrotransposons by APOBECs has a substantial role in vertebrate innate immunity and may boost genome evolution. PMID:26541172

  5. DNA Editing of LTR Retrotransposons Reveals the Impact of APOBECs on Vertebrate Genomes

    PubMed Central

    Knisbacher, Binyamin A.; Levanon, Erez Y.

    2016-01-01

    Long terminal repeat retrotransposons (LTR) are widespread in vertebrates and their dynamism facilitates genome evolution. However, these endogenous retroviruses (ERVs) must be restricted to maintain genomic stability. The APOBECs, a protein family that can edit C-to-U in DNA, do so by interfering with reverse transcription and hypermutating retrotransposon DNA. In some cases, a retrotransposon may integrate into the genome despite being hypermutated. Such an event introduces a unique sequence into the genome, increasing retrotransposon diversity and the probability of developing new function at the locus of insertion. The prevalence of this phenomenon and its effects on vertebrate genomes are still unclear. In this study, we screened ERV sequences in the genomes of 123 diverse species and identified hundreds of thousands of edited sites in multiple vertebrate lineages, including placental mammals, marsupials, and birds. Numerous edited ERVs carry high mutation loads, some with greater than 350 edited sites, profoundly damaging their open-reading frames. For many of the species studied, this is the first evidence that APOBECs are active players in their innate immune system. Unexpectedly, some birds and especially zebra finch and medium ground-finch (one of Darwin’s finches) are exceptionally enriched in DNA editing. We demonstrate that edited retrotransposons may be preferentially retained in active genomic regions, as reflected from their enrichment in genes, exons, promoters, and transcription start sites, thereby raising the probability of their exaptation for novel function. In conclusion, DNA editing of retrotransposons by APOBECs has a substantial role in vertebrate innate immunity and may boost genome evolution. PMID:26541172

  6. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes.

    PubMed

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H; Cavallini, Andrea; Natali, Lucia

    2015-12-01

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. PMID:26608057

  7. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes

    PubMed Central

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H.; Cavallini, Andrea; Natali, Lucia

    2015-01-01

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes—7 wild accessions and 8 cultivars—of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. PMID:26608057

  8. Somatic reversion of some copia-like induced mutations, at the white locus of Drosophila melanogaster, after treatment with alkylating agents.

    PubMed

    Soriano, S; Creus, A; Marcos, R; Xamena, N

    1995-01-01

    It has been suggested that transposable elements can be associated with different types of genotoxic effects. For this reason it seems appropriate to outline suitable systems to detect changes in the phenotypic expression of the loci containing transposable elements, as well as those agents that induce such changes. The sex-linked white locus offers a suitable experimental system for studying such events because most of the spontaneous mutations at the white locus are the result of insertions of repeated mobile sequences, and it is easy to follow mutational changes of the locus due to the possibility of detecting even slight changes in eye color. Here we report the results obtained in different strains of Drosophila melanogaster with copia-like induced mutations at the white locus, after treatment with three alkylating agents: ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and N-nitroso-N-ethylurea (ENU). The three insertional white mutants used in this work were wa4, wbf, and wsp55, with the wa2 mutation used as control because its mutant phenotype is the result of a point mutation instead of the insertion of a DNA fragment. Our data constitute evidence that EMS, MMS, and ENU induce a clear increase in the frequencies of somatic-revertant sectors in the three strains carrying a white allele with an inserted copia-like element. For the wa2 strain, whose mutant phenotype is the result of a point mutation, only ENU at the highest concentration tested is able to induce a significant increase in the somatic reversion frequency. In addition, our results indicate that the use of D. melanogaster strains with transposable elements in the white locus is suitable for detecting genotoxic damage induced by chemicals. PMID:7698106

  9. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum.

    PubMed Central

    Vicient, CM; Suoniemi, A; Anamthawat-Jónsson, K; Tanskanen, J; Beharav, A; Nevo, E; Schulman, AH

    1999-01-01

    The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity." PMID:10488242

  10. Mechanism of the piRNA-mediated silencing of Drosophila telomeric retrotransposons

    PubMed Central

    Shpiz, Sergey; Olovnikov, Ivan; Sergeeva, Anna; Lavrov, Sergey; Abramov, Yuri; Savitsky, Mikhail; Kalmykova, Alla

    2011-01-01

    In the Drosophila germline, retrotransposons are silenced by the PIWI-interacting RNA (piRNA) pathway. Telomeric retroelements HeT-A, TART and TAHRE, which are involved in telomere maintenance in Drosophila, are also the targets of piRNA-mediated silencing. We have demonstrated that expression of reporter genes driven by the HeT-A promoter is under the control of the piRNA silencing pathway independent of the transgene location. In order to test directly whether piRNAs affect the transcriptional state of retrotransposons we performed a nuclear run-on (NRO) assay and revealed increased density of the active RNA polymerase complexes at the sequences of endogenous HeT-A and TART telomeric retroelements as well as HeT-A-containing constructs in the ovaries of spn-E mutants and in flies with piwi knockdown. This strongly correlates with enrichment of two histone H3 modifications (dimethylation of lysine 79 and dimethylation of lysine 4), which mark transcriptionally active chromatin, on the same sequences in the piRNA pathway mutants. spn-E mutation and piwi knockdown results in transcriptional activation of some other non-telomeric retrotransposons in the ovaries, such as I-element and HMS Beagle. Therefore piRNA-mediated transcriptional mode of silencing is involved in the control of retrotransposon expression in the Drosophila germline. PMID:21764773

  11. Epigenetics and cortical spreading depression: changes of DNA methylation level at retrotransposon sequences.

    PubMed

    Drongitis, Denise; Rainone, Sara; Piscopo, Marina; Viggiano, Emanuela; Viggiano, Alessandro; De Luca, Bruno; Fucci, Laura; Donizetti, Aldo

    2016-08-01

    Cortical spreading depression (CSD) is an evolutionarily conserved phenomenon that involves a slow and self-propagating depolarization wave associated with spontaneous depression of electrical neuronal activity. CSD plays a central role in the pathophysiology of several brain diseases and is considered to be able to promote "Preconditioning". This phenomenon consists of the brain protecting itself against future injury by adaptation. Understanding of the molecular mechanisms underlying Preconditioning has significant clinical implications. We have already proposed that the long-lasting effects of CSD could be related to silencing of retrotransposon sequences by histone methylation. We analyzed DNA methylation of two retrotransposon sequences, LINE1 and L1, and their corresponding expression pattern after CSD induction. Based on immunoprecipitation assay of the methylated DNA (meDIP), we demonstrated hypermethylation of both sequences in preconditioned rat brain cortex compared with a control 24 h after CSD induction. Using quantitative PCR, we also showed that CSD induction caused a decrease of the transcript level of both retrotransposon sequences. Our data are consistent with the hypothesis of epigenetic modifications in Preconditioning-dependent neuroprotection by increasing genome stability via the silencing of retrotransposon sequences. PMID:27169424

  12. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae

    PubMed Central

    Curcio, M. Joan; Lutz, Sheila; Lesage, Pascale

    2015-01-01

    Summary Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology. PMID:25893143

  13. Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain.

    PubMed

    Weber, Beatrice; Schmidt, Thomas

    2009-01-01

    LTR retrotransposons belong to a major group of DNA sequences that are often localized in plant centromeres. Using BAC inserts originating from the centromere of a monosomic wild beet (Beta procumbens) chromosome fragment in Beta vulgaris, two complete LTR retrotransposons were identified. Both elements, designated Beetle1 and Beetle2, possess a coding region with genes in the order characteristic for Ty3-gypsy retrotransposons. Beetle1 and Beetle2 have a chromodomain in the C-terminus of the integrase gene and are highly similar to the centromeric retrotransposons (CRs) of rice, maize, and barley. Both retroelements were localized in the centromeric region of B. procumbens chromosomes by fluorescence in-situ hybridization. They can therefore be classified as centromere-specific chromoviruses. PCR analysis using RNA as template indicated that Beetle1 and Beetle2 are transcriptionally active. On the basis of the sequence diversity between the LTR sequences, it was estimated that Beetle1 and Beetle2 transposed within the last 60,000 years and 130,000 years, respectively. The centromeric localization of Beetle1 and Beetle2 and their transcriptional activity combined with high sequence conservation within each family play an important structural role in the centromeres of B. procumbens chromosomes. PMID:19322668

  14. Molecular characterization and genomic distribution of Isis: a new retrotransposon of Drosophila buzzatii.

    PubMed

    García Guerreiro, M P; Fontdevila, A

    2007-01-01

    A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse transcriptase (RT), an Rnase H (RH) and an integrase (IN) region. The analysis of a putative env product, encoded by the env ORF3, shows a degenerated protein containing several stop codons. The molecular study of the putative proteins coded by this new element shows striking similarities to both Ulysses and Osvaldo elements, two LTR retrotransposons, present in D. virilis and D. buzzatii, respectively. Comparisons of the predicted Isis RT to several known retrotransposons show strong phylogenetic relationships to gypsy-like elements, particulary to Ulysses retrotransposon. Studies of Isis chromosomal distribution show a strong hybridization signal in centromeric and pericentromeric regions, and a scattered distribution along all chromosomal arms. The existence of insertional polymorphisms between different strains and high molecular weight bands by Southern blot suggests the existence of full-sized copies that have been active recently. The presence of euchromatic insertion sites coincident between Isis and Osvaldo could indicate preferential insertion sites of Osvaldo element into Isis sequence or vice versa. Moreover, the presence of Isis in different species of the buzzatii complex indicates the ancient origin of this element. PMID:17039376

  15. The dingo non-long terminal repeat retrotransposons from the genome of the hookworm, Ancylostoma caninum.

    PubMed

    Laha, Thewarach; Kewgrai, Nonglack; Loukas, Alex; Brindley, Paul J

    2006-07-01

    Members of the retrotransposable element (RTE) clade of non-long terminal repeat (LTR) retrotransposon are widely distributed among eukaryote taxa, with representatives known from Caenorhabditis elegans, mammals, mosquitoes, schistosomes, and other taxa. An RTE retrotransposon has not, however, been characterized in detail from a parasitic nematode. Here, we characterize two discrete copies of an RTE-like non-LTR retrotransposon from the genome of the dog hookworm, Ancylostoma caninum. The elements were named dingo-1 and dingo-2. The full-length dingo-1 and dingo-2 elements were 3421 and 3171bp in length, respectively. They exhibited 54% nucleotide sequence identity to one another across their entire length and 40%/58% amino-acid sequence identity/similarity across their open reading frames. dingo-1 and dingo-2 exhibited hallmark structures and sequences of non-LTR retrotransposons of the RTE family including a single open reading frame encoding apurinic-apyrimidinic endonuclease (EN) and reverse transcriptase (RT), in that order. Phylogenetic analyses targeting the RT and the EN domains both confirmed that dingo-1 and dingo-2 were members of the RTE clade and that they were closely related to RTE-1 from C. elegans, to BDDF from Bos taurus and to SR2 from Schistosoma mansoni. Dot blot hybridization indicated that as many as 100-1000 copies of dingo-1 reside within the genome of A. caninum, while detection by RT-PCR of transcripts encoding dingo-like elements suggested that dingo-1 and -2 may be retrotranspositionally active within the genome of A. caninum. The dingo elements are the first retrotransposons to be characterized from a hookworm genome. PMID:16445914

  16. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    PubMed

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress. PMID:26396013

  17. An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons

    PubMed Central

    Jacobs, Frank MJ; Greenberg, David; Nguyen, Ngan; Haeussler, Maximilian; Ewing, Adam D; Katzman, Sol; Paten, Benedict; Salama, Sofie R; Haussler, David

    2014-01-01

    Summary Throughout evolution, primate genomes have been modified by waves of retrotransposon insertions1,2,3. For each wave, the host eventually finds a way to repress retrotransposon transcription and prevent further insertions. In mouse embryonic stem cells (mESCs), transcriptional silencing of retrotransposons requires TRIM28 (KAP1) and it’s repressive complex, which can be recruited to target sites by KRAB zinc finger proteins such as murine-specific ZFP809 which binds to integrated murine leukemia virus DNA elements and recruits KAP1 to repress them4,5. KZNF genes are one of the fastest growing gene families in primates and this expansion is hypothesized to enable primates to respond to newly emerged retrotransposons6,7. However, the identity of KZNF genes battling retrotransposons currently active in the human genome, such as SINE-VNTR-Alu (SVA)8 and Long Interspersed Nuclear Element-1 (L1)9, is unknown. We find that two primate-specific KZNF genes rapidly evolved to repress these two distinct retrotransposon families shortly after they began to spread in our ancestral genome. ZNF91 underwent a series of structural changes 8-12 MYA that enabled it to repress SVA elements. ZNF93 evolved earlier to repress the primate L1 lineage until ~12.5 MYA when the L1PA3-subfamily escaped ZNF93’s restriction through purge of the ZNF93 binding site. Our data support a model where KZNF gene expansion limits the activity of newly emerged retrotransposon classes, and this is followed by mutations in these retrotransposons to evade repression, a cycle of events that could explain the rapid expansion of lineage-specific KZNF genes. PMID:25274305

  18. A new non-LTR retrotransposon provides evidence for multiple distinct site-specific elements in Crithidia fasciculata miniexon arrays.

    PubMed Central

    Teng, S C; Wang, S X; Gabriel, A

    1995-01-01

    We have identified a new member of the family of trypanosome site-specific retrotransposons, using a degenerate oligonucleotide PCR strategy. The 9595 bp element, termed Crithidia retrotransposable element 2 (CRE2), was cloned and found to be inserted in the tandemly arrayed miniexon genes of Crithidia fasciculata. The element is flanked by 29 bp target site duplications but lacks the 3' poly dA tract characteristic of most other non-long terminal repeat retrotransposons. The amino terminal region of the single 2518-codon open reading frame contains a putative metal-binding motif and a proline-rich region similar to gag-like domains of other retrotransposons. The carboxy terminal region of this open reading frame shares sequence homology with the reverse transcriptase and putative endonuclease regions of three previously described trypanosomatid site-specific retrotransposons. All four of these retrotransposons are specifically inserted between nucleotides 11 and 12 of the highly conserved 39mer sequence of the miniexon gene. Most copies of CRE2 and the previously characterized CRE1 are located on different sized chromosomes. Additional CRE-related sequences were identified by screening Crithidia libraries. These results suggest that a particular sequence in the C. fasciculata miniexon repeat is the target for multiple distinct site-specific retrotransposon insertions. Images PMID:7659515

  19. Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences

    PubMed Central

    Kapitonov, Vladimir V.; Tempel, Sébastien; Jurka, Jerzy

    2009-01-01

    Rapidly growing number of sequenced genomes requires fast and accurate computational tools for analysis of different transposable elements (TEs). In this paper we focus on rapid and reliable procedure for classification of autonomous non-LTR retrotransposons based on alignment and clustering of their reverse transcriptase (RT) domains. Typically, the RT domain protein sequences encoded by different non-LTR retrotransposons are similar to each other in terms of significant BLASTP E-values. Therefore, they can be easily detected by the routine BLASTP searches of genomic DNA sequences coding for proteins similar to the RT domains of known non-LTR retrotransposons. However, detailed classification of non-LTR retrotransposons, i.e. their assignment to specific clades, is a slow and complex procedure that is not formalized or integrated as a standard set of computational methods and data. Here we describe a tool (RTclass1) designed for the fast and accurate automated assignment of novel non-LTR retrotransposons to known or novel clades using phylogenetic analysis of the RT domain protein sequences. RTclass1 classifies a particular non-LTR retrotransposon based on its RT domain in less than 10 minutes on a standard desktop computer and achieves 99.5% accuracy. RT1class1 works either as a standalone program installed locally or as a web-server that can be accessed distantly by uploading sequence data through the internet (http://www.girinst.org/RTphylogeny/RTclass1). PMID:19651192

  20. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution

    PubMed Central

    Vitte, Clémentine; Bennetzen, Jeffrey L.

    2006-01-01

    Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegitimate recombination. The larger plant genomes contained many LTR retrotransposon families with >10,000 copies per haploid genome, whereas the smaller genomes contained few or no LTR retrotransposon families with >1,000 copies, suggesting that this differential potential for retroelement amplification is a primary factor in angiosperm genome size variation. The average ratios of transition to transversion mutations (Ts/Tv) in diverging LTRs were >1.5 for each species studied, suggesting that these elements are mostly 5-methylated at cytosines in an epigenetically silenced state. However, the diploid wheat Triticum monococcum and barley have unusually low Ts/Tv values (respectively, 1.9 and 1.6) compared with maize (3.9), medicago (3.6), and lotus (2.5), suggesting that this silencing is less complete in the two Triticeae. Such characteristics as the ratios of point mutations to indels (insertions and deletions) and the relative efficiencies of DNA removal by unequal homologous recombination compared with illegitimate recombination were highly variable between species. These latter variations did not correlate with genome size or phylogenetic relatedness, indicating that they frequently change during the evolutionary descent of plant lineages. In sum, the results indicate that the different sizes, contents, and structures of angiosperm genomes are outcomes of the same suite of mechanistic processes, but acting with different relative efficiencies in different plant lineages. PMID:17101966

  1. [Retrotransposon MDG4 and its role in genetic instability of a mutator strain of Drosophila melanogaster].

    PubMed

    Liubomirskaia, N V; Kim, A I; Il'in, Iu V

    2003-02-01

    This article summarizes the results of a ten-year study of genetic instability of a mutator strain of Drosophila melanogaster caused by transposition of the gypsy retrotransposon. The results of other authors working with an analogous system are analyzed. Possible mechanisms are suggested for the interaction of gypsy with the cell gene flamenco that participates in transposition control of this mobile element. PMID:12669411

  2. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers.

    PubMed

    Smýkal, P; Bačová-Kerteszová, N; Kalendar, R; Corander, J; Schulman, A H; Pavelek, M

    2011-05-01

    Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics. PMID:21293839

  3. Retrotransposon-Based Molecular Markers for Analysis of Genetic Diversity within the Genus Linum

    PubMed Central

    Melnikova, Nataliya V.; Kudryavtseva, Anna V.; Zelenin, Alexander V.; Lakunina, Valentina A.; Yurkevich, Olga Yu.; Speranskaya, Anna S.; Dmitriev, Alexey A.; Krinitsina, Anastasia A.; Belenikin, Maxim S.; Uroshlev, Leonid A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Koroban, Nadezda V.; Amosova, Alexandra V.; Samatadze, Tatiana E.; Guzenko, Elena V.; Lemesh, Valentina A.; Savilova, Anastasya M.; Rachinskaia, Olga A.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Bolsheva, Nadezhda L.; Muravenko, Olga V.

    2014-01-01

    SSAP method was used to study the genetic diversity of 22 Linum species from sections Linum, Adenolinum, Dasylinum, Stellerolinum, and 46 flax cultivars. All the studied flax varieties were distinguished using SSAP for retrotransposons FL9 and FL11. Thus, the validity of SSAP method was demonstrated for flax marking, identification of accessions in genebank collections, and control during propagation of flax varieties. Polymorphism of Fl1a, Fl1b, and Cassandra insertions were very low in flax varieties, but these retrotransposons were successfully used for the investigation of Linum species. Species clusterization based on SSAP markers was in concordance with their taxonomic division into sections Dasylinum, Stellerolinum, Adenolinum, and Linum. All species of sect. Adenolinum clustered apart from species of sect. Linum. The data confirmed the accuracy of the separation in these sections. Members of section Linum are not as closely related as members of other sections, so taxonomic revision of this section is desirable. L. usitatissimum accessions genetically distant from modern flax cultivars were revealed in our work. These accessions are of utmost interest for flax breeding and introduction of new useful traits into flax cultivars. The chromosome localization of Cassandra retrotransposon in Linum species was determined. PMID:25243121

  4. Links between human LINE-1 retrotransposons and hepatitis virus-related hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Honda, Tomoyuki

    2016-05-01

    Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposons, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease.

  5. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons.

    PubMed

    Qi, L L; Wu, J J; Friebe, B; Qian, C; Gu, Y Q; Fu, D L; Gill, B S

    2013-08-01

    Brachypodium distachyon is a wild annual grass belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than rice and maize. As an experimental model, the completed genome sequence of B. distachyon provides a unique opportunity to study centromere evolution during the speciation of grasses. Centromeric satellite sequences have been identified in B. distachyon, but little is known about centromeric retrotransposons in this species. In the present study, bacterial artificial chromosome (BAC)-fluorescence in situ hybridization was conducted in maize, rice, barley, wheat, and rye using B. distachyon (Bd) centromere-specific BAC clones. Eight Bd centromeric BAC clones gave no detectable fluorescence in situ hybridization (FISH) signals on the chromosomes of rice and maize, and three of them also did not yield any FISH signals in barley, wheat, and rye. In addition, four of five Triticeae centromeric BAC clones did not hybridize to the B. distachyon centromeres, implying certain unique features of Brachypodium centromeres. Analysis of Brachypodium centromeric BAC sequences identified a long terminal repeat (LTR)-centromere retrotransposon of B. distachyon (CRBd1). This element was found in high copy number accounting for 1.6 % of the B. distachyon genome, and is enriched in Brachypodium centromeric regions. CRBd1 accumulated in active centromeres, but was lost from inactive ones. The LTR of CRBd1 appears to be specific to B. distachyon centromeres. These results reveal different evolutionary events of this retrotransposon family across grass species. PMID:23955173

  6. Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization

    PubMed Central

    Murton, Heather E.; Grady, Patrick J. R.; Chan, Tsun Ho; Cam, Hugh P.; Whitehall, Simon K.

    2016-01-01

    Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization. PMID:27343236

  7. Links between Human LINE-1 Retrotransposons and Hepatitis Virus-Related Hepatocellular Carcinoma

    PubMed Central

    Honda, Tomoyuki

    2016-01-01

    Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposon, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease. PMID:27242996

  8. Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization.

    PubMed

    Murton, Heather E; Grady, Patrick J R; Chan, Tsun Ho; Cam, Hugh P; Whitehall, Simon K

    2016-08-01

    Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1(+) (histone H3 lysine 4 methyltransferase) or abp1(+) (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization. PMID:27343236

  9. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat.

    PubMed

    Senerchia, Natacha; Wicker, Thomas; Felber, François; Parisod, Christian

    2013-01-01

    Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindrica and Ae. geniculata using 454 identified more than 70% of the sequences as known TEs, mainly long terminal repeat (LTR) retrotransposons. Comparing the abundance of reads as well as patterns of sequence diversity and divergence within and among genomes assessed the dynamics of 44 major LTR retrotransposon families of the 165 identified. In particular, molecular population genetics on individual TE copies distinguished recently active from quiescent families and highlighted different evolutionary trajectories of retrotransposons among related species. This work presents a suite of tools suitable for current sequencing data, allowing to address the genome-wide evolutionary dynamics of TEs at the family level and advancing our understanding of the evolution of nonmodel genomes. PMID:23595021

  10. Retrotransposon-based molecular markers for analysis of genetic diversity within the Genus Linum.

    PubMed

    Melnikova, Nataliya V; Kudryavtseva, Anna V; Zelenin, Alexander V; Lakunina, Valentina A; Yurkevich, Olga Yu; Speranskaya, Anna S; Dmitriev, Alexey A; Krinitsina, Anastasia A; Belenikin, Maxim S; Uroshlev, Leonid A; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Koroban, Nadezda V; Amosova, Alexandra V; Samatadze, Tatiana E; Guzenko, Elena V; Lemesh, Valentina A; Savilova, Anastasya M; Rachinskaia, Olga A; Kishlyan, Natalya V; Rozhmina, Tatiana A; Bolsheva, Nadezhda L; Muravenko, Olga V

    2014-01-01

    SSAP method was used to study the genetic diversity of 22 Linum species from sections Linum, Adenolinum, Dasylinum, Stellerolinum, and 46 flax cultivars. All the studied flax varieties were distinguished using SSAP for retrotransposons FL9 and FL11. Thus, the validity of SSAP method was demonstrated for flax marking, identification of accessions in genebank collections, and control during propagation of flax varieties. Polymorphism of Fl1a, Fl1b, and Cassandra insertions were very low in flax varieties, but these retrotransposons were successfully used for the investigation of Linum species. Species clusterization based on SSAP markers was in concordance with their taxonomic division into sections Dasylinum, Stellerolinum, Adenolinum, and Linum. All species of sect. Adenolinum clustered apart from species of sect. Linum. The data confirmed the accuracy of the separation in these sections. Members of section Linum are not as closely related as members of other sections, so taxonomic revision of this section is desirable. L. usitatissimum accessions genetically distant from modern flax cultivars were revealed in our work. These accessions are of utmost interest for flax breeding and introduction of new useful traits into flax cultivars. The chromosome localization of Cassandra retrotransposon in Linum species was determined. PMID:25243121

  11. LINE-1 retrotransposons and let-7 miRNA: partners in the pathogenesis of cancer?

    PubMed Central

    Ohms, Stephen; Lee, Sung-Hun; Rangasamy, Danny

    2014-01-01

    Long interspersed nuclear element-1 (LINE-1 or L1) retrotransposons are insertional mutagens capable of altering the genomic landscape in many ways. Activation of the normally silent LINE-1 retrotransposon is associated with a high level of cancer-associated DNA damage and genomic instability. Studies of LINE-1 have so far focused mainly on changes in gene expression, and our knowledge of its impact on functional non-coding RNAs is in its infancy. However, current evidence suggests that a significant number of human miRNAs originate from retrotransposon sequences. Furthermore, LINE-1 is generally not expressed in normal tissues while its expression is widespread in epithelial cancers. Based on our recent studies, we demonstrate a functional link between aberrant LINE-1 expression and deregulation of let-7 miRNA expression. Since the expression of let-7 is modulated by LINE-1 activity, we discuss possible mechanisms for this effect and how the silencing of LINE-1 activation could provide new therapeutic options for cancer treatment. Based on the deep sequencing of small RNAs in parallel with gene expression profiling in breast cancer cells, we have identified potential pathways linking L1 activity to let-7 processing and maturation and ultimately to the control of stemness in human cancer cells. PMID:25339972

  12. Development of retrotransposon-based markers IRAP and REMAP for cassava (Manihot esculenta).

    PubMed

    Kuhn, B C; Mangolin, C A; Souto, E R; Vicient, C M; Machado, M F P S

    2016-01-01

    Retrotransposons are abundant in the genomes of plants. In the present study, inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers were developed for the cassava genome (Manihot esculenta Crantz). Four cassava cultivars (Fécula Branca, IPR-União, Olho Junto, and Tamboara, two samples per cultivar) were used to obtain IRAP and REMAP fingerprints. Twelve designed primers were amplified alone and in combinations. The 42 IRAP/REMAP primer combinations amplified 431 DNA segments (bands; markers) of which 36 (8.36%) were polymorphic. The largest number of informative markers (16) was detected using the primers AYF2 and AYF2xAYF4. The number of bands for each primer varied from 3 to 16, with an average of 10.26 amplified segments per primer. The size of the amplified products ranged between 100 and 7000 bp. The AYF2 primer generated the highest number of amplified segments and showed the highest number of polymorphic bands (68.75%). Two samples of each cassava cultivar were used to illustrate the usefulness and the polymorphism of IRAP/REMAP markers. IRAP and REMAP markers produced a high number of reproducible bands, and might be informative and reliable for investigation of genetic diversity and relationships among cassava cultivars. PMID:27173210

  13. Three retrotransposon families in the genome of Giardia lamblia: Two telomeric, one dead

    PubMed Central

    Arkhipova, Irina R.; Morrison, Hilary G.

    2001-01-01

    Transposable elements inhabiting eukaryotic genomes are generally regarded either as selfish DNA, which is selectively neutral to the host organism, or as parasitic DNA, deleterious to the host. Thus far, the only agreed-upon example of beneficial eukaryotic transposons is provided by Drosophila telomere-associated retrotransposons, which transpose directly to the chromosome ends and thereby protect them from degradation. This article reports the transposon content of the genome of the protozoan Giardia lamblia, one of the earliest-branching eukaryotes. A total of three non-long terminal repeat retrotransposon families have been identified, two of which are located at the ends of chromosomes, and the third one contains exclusively dead copies with multiple internal deletions, nucleotide substitutions, and frame shifts. No other reverse transcriptase- or transposase-related sequences were found. Thus, the entire genome of this protozoan, which is not known to reproduce sexually, contains only retrotransposons that are either confined to telomeric regions and possibly beneficial, or inactivated and completely nonfunctional. PMID:11734649

  14. Genetic bottlenecks in Turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment.

    PubMed

    Yıldız, M; Koçak, M; Baloch, F S

    2015-01-01

    Lack of requisite genetic variation in Turkish okra has necessitated the use of different types of markers for estimating the genetic diversity and identifying the source of variation. Transposable elements, present abundantly in plant genomes, generate genomic diversity through their replication and are thus an excellent source of molecular markers. We hypothesized that inter-primer binding site (iPBS)-retrotransposons could be the source of variation because of their genome plasticity nature. In the present study, genetic diversity of 66 okra landraces was analyzed using iPBS-retrotransposon markers. iPBS-retrotransposons detected 88 bands with 40.2% polymorphism and an average of 6.8 bands per primer. Gene diversity and Shannon's information index ranged from 0.01 to 0.13 and 0.02 to 0.21 for iPBS-retrotransposons and from 0.06 to 0.46 and 0.14 to 0.65 for simple sequence repeat (SSR) markers, respectively. Polymorphism information content value for retrotransposons varied between 0.12 and 0.99, while that for SSR was from 0.52 to 0.81. Neighbor joining analysis based on retrotransposons and SSRs divided all the accessions into four clusters; however, SSR markers were more efficient in clustering the landraces based on their origin. Using the STRUCTURE software for determining population structure, and two populations (at the number of hypothetical subpopulations, K = 2) were identified among the landraces. Low genetic diversity in Turkish okra highlights the need for the introduction of plants from countries with greater genetic diversity for these crops. This study also demonstrates the utility and role of iPBS-retrotransposons, a dominant and ubiquitous part of eukaryotic genomes, for diversity studies in okra. PMID:26400290

  15. Transposable Element Proliferation and Genome Expansion Are Rare in Contemporary Sunflower Hybrid Populations Despite Widespread Transcriptional Activity of LTR Retrotransposons

    PubMed Central

    Kawakami, Takeshi; Dhakal, Preeti; Katterhenry, Angela N.; Heatherington, Chelsea A.; Ungerer, Mark C.

    2011-01-01

    Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species have undergone large-scale increases in genome size attributable to long terminal repeat (LTR) retrotransposon proliferation. The parental species that gave rise to the hybrid taxa are widely distributed, often sympatric, and contemporary hybridization between them is common. Natural H. annuus × H. petiolaris hybrid populations likely served as source populations from which the hybrid species arose and, as such, represent excellent natural experiments for examining the potential role of hybridization in transposable element derepression and proliferation in this group. In the current report, we examine multiple H. annuus × H. petiolaris hybrid populations for evidence of genome expansion, LTR retrotransposon copy number increases, and LTR retrotransposon transcriptional activity. We demonstrate that genome expansion and LTR retrotransposon proliferation are rare in contemporary hybrid populations, despite independent proliferation events that took place in the genomes of the ancient hybrid species. Interestingly, LTR retrotransposon lineages that proliferated in the hybrid species genomes remain transcriptionally active in hybrid and nonhybrid genotypes across the entire sampling area. The finding of transcriptional activity but not copy number increases in hybrid genotypes suggests that proliferation and genome expansion in contemporary hybrid populations may be mitigated by posttranscriptional mechanisms of repression. PMID:21282712

  16. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence.

    PubMed

    Chen, Haiyang; Zheng, Xiaobin; Xiao, Danqing; Zheng, Yixian

    2016-06-01

    Eukaryotic genomes contain transposable elements (TE) that can move into new locations upon activation. Since uncontrolled transposition of TEs, including the retrotransposons and DNA transposons, can lead to DNA breaks and genomic instability, multiple mechanisms, including heterochromatin-mediated repression, have evolved to repress TE activation. Studies in model organisms have shown that TEs become activated upon aging as a result of age-associated deregulation of heterochromatin. Considering that different organisms or cell types may undergo distinct heterochromatin changes upon aging, it is important to identify pathways that lead to TE activation in specific tissues and cell types. Through deep sequencing of isolated RNAs, we report an increased expression of many retrotransposons in the old Drosophila fat body, an organ equivalent to the mammalian liver and adipose tissue. This de-repression correlates with an increased number of DNA damage foci and decreased level of Drosophila lamin-B in the old fat body cells. Depletion of the Drosophila lamin-B in the young or larval fat body results in a reduction of heterochromatin and a corresponding increase in retrotransposon expression and DNA damage. Further manipulations of lamin-B and retrotransposon expression suggest a role of the nuclear lamina in maintaining the genome integrity of the Drosophila fat body by repressing retrotransposons. PMID:27072046

  17. Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.).

    PubMed

    Payen, Thibaut; Murat, Claude; Martin, Francis

    2016-08-01

    Truffles are ascomycete fungi belonging to genus Tuber, and they form ectomycorrhizal associations with trees and shrubs. Transposable elements constitute more than 50 % of the black Périgord truffle (Tuber melanosporum) genome, which are mainly class 1 gypsy retrotransposons, but their impact on its genome is unknown. The aims of this study are to investigate the diversity of gypsy retrotransposons in this species and their evolutionary history by analysing the reference genome and six resequenced genomes of different geographic accessions. Using the reverse transcriptase sequences, six different gypsy retrotransposon clades were identified. Tmt1 and Tmt6 are the most abundant transposable elements, representing 14 and 13 % of the T. melanosporum genome, respectively. Tmt6 showed a major burst of proliferation between 1 and 4 million years ago, but evidence of more recent transposition was observed. Except for Tmt2, the other clades tend to aggregate, and their mode of transposition excluded the master copy model. This suggests that each new copy has the same probability of transposing as other copies. This study provides a better view of the diversity and dynamic nature of gypsy retrotransposons in T. melanosporum. Even if the major gypsy retrotransposon bursts are old, some elements seem to have transposed recently, suggesting that they may continue to model the truffle genomes. PMID:27025914

  18. Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3.

    PubMed

    Pachulska-Wieczorek, Katarzyna; Le Grice, Stuart F J; Purzycka, Katarzyna J

    2016-01-01

    Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation. PMID:27428991

  19. Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3

    PubMed Central

    Pachulska-Wieczorek, Katarzyna; Le Grice, Stuart F.J.; Purzycka, Katarzyna J.

    2016-01-01

    Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation. PMID:27428991

  20. Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells.

    PubMed

    Pasquarella, Alessandra; Ebert, Anja; Pereira de Almeida, Gustavo; Hinterberger, Maria; Kazerani, Maryam; Nuber, Alexander; Ellwart, Joachim; Klein, Ludger; Busslinger, Meinrad; Schotta, Gunnar

    2016-05-15

    The H3K9me3-specific histone methyltransferase Setdb1 impacts on transcriptional regulation by repressing both developmental genes and retrotransposons. How impaired retrotransposon silencing may lead to developmental phenotypes is currently unclear. Here, we show that loss of Setdb1 in pro-B cells completely abrogates B cell development. In pro-B cells, Setdb1 is dispensable for silencing of lineage-inappropriate developmental genes. Instead, we detect strong derepression of endogenous murine leukemia virus (MLV) copies. This activation coincides with an unusual change in chromatin structure, with only partial loss of H3K9me3 and unchanged DNA methylation, but strongly increased H3K4me3. Production of MLV proteins leads to activation of the unfolded protein response pathway and apoptosis. Thus, our data demonstrate that B cell development depends on the proper repression of retrotransposon sequences through Setdb1. PMID:27013243

  1. Saci-1, -2, and -3 and Perere, Four Novel Retrotransposons with High Transcriptional Activities from the Human Parasite Schistosoma mansoni

    PubMed Central

    DeMarco, Ricardo; Kowaltowski, Andre T.; Machado, Abimael A.; Soares, M. Bento; Gargioni, Cybele; Kawano, Toshie; Rodrigues, Vanderlei; Madeira, Alda M. B. N.; Wilson, R. Alan; Menck, Carlos F. M.; Setubal, João C.; Dias-Neto, Emmanuel; Leite, Luciana C. C.; Verjovski-Almeida, Sergio

    2004-01-01

    Using the data set of 180,000 expressed sequence tags (ESTs) of the blood fluke Schistosoma mansoni generated recently by our group, we identified three novel long-terminal-repeat (LTR)- and one novel non-LTR-expressed retrotransposon, named Saci-1, -2, and -3 and Perere, respectively. Full-length sequences were reconstructed from ESTs and have deduced open reading frames (ORFs) with several uncorrupted features, characterizing them as possible active retrotransposons of different known transposon families. Alignment of reconstructed sequences to available preliminary genome sequence data confirmed the overall structure of the transposons. The frequency of sequenced transposon transcripts in cercariae was 14% of all transcripts from that stage, twofold higher than that in schistosomula and three- to fourfold higher than that in adults, eggs, miracidia, and germ balls. We show by Southern blot analysis, by EST annotation and tallying, and by counting transposon tags from a Social Analysis of Gene Expression library, that the four novel retrotransposons exhibit a 10- to 30-fold lower copy number in the genome and a 4- to 200-fold-higher transcriptional rate per copy than the four previously described S. mansoni retrotransposons. Such differences lead us to hypothesize that there are two different populations of retrotransposons in S. mansoni genome, occupying different niches in its ecology. Examples of retrotransposon fragment inserts were found into the 5′ and 3′ untranslated regions of four different S. mansoni target gene transcripts. The data presented here suggest a role for these elements in the dynamics of this complex human parasite genome. PMID:14990715

  2. Ylli, a non-LTR retrotransposon L1 family in the dimorphic yeast Yarrowia lipolytica.

    PubMed

    Casaregola, Serge; Neuvéglise, Cécile; Bon, Elisabeth; Gaillardin, Claude

    2002-05-01

    During the course of a random sequencing project of the genome of the dimorphic yeast Yarrowia lipolytica, we have identified sequences that were repeated in the genome and that matched the reverse transcriptase (RT) sequence of non-long terminal repeat (non-LTR) retrotransposons. Extension of sequencing on each side of this zone of homology allowed the definition of an element over 6 kb long. The conceptual translation of this sequence revealed two open reading frames (ORFs) that displayed several characteristics of non-LTR retrotransposons: a Cys-rich motif in the ORF1, an N-terminal endonuclease, a central RT, and a C-terminal zinc finger domain in the ORF2. We called this element Ylli (for Y. lipolytica LINE). A total of 19 distinct repeats carrying the 3' untranslated region (UTR) and all ending with a poly-A tail were detected. Most of them were very short, 17 being 134 bp long or less. The number of copies of Ylli was estimated to be around 100 if these short repeats are 5' truncations. No 5' UTR was clearly identified, indicating that entire and therefore active elements might be very rare in the Y. lipolytica strain tested. Ylli does not seem to have any insertion specificity. Phylogenetic analysis of the RT domain unambiguously placed Ylli within the L1 clade. It forms a monophyletic group with the Zorro non-LTR retrotransposons discovered in another dimorphic yeast Candida albicans. BLAST comparisons showed that ORF2 of Ylli is closely related to that of the slime mold Dictyostelium discoideum L1 family, TRE. PMID:11961100

  3. Cryo-electron microscopy structure of yeast Ty retrotransposon virus-like particles.

    PubMed

    Palmer, K J; Tichelaar, W; Myers, N; Burns, N R; Butcher, S J; Kingsman, A J; Fuller, S D; Saibil, H R

    1997-09-01

    The virus-like particles (VLPs) produced by the yeast retrotransposon Ty1 are functionally related to retroviral cores. These particles are unusual in that they have variable radif. A paired mass-radius analysis of VLPs by scanning transmission electron microscopy showed that many of these particles form an icosahedral T-number series. Three-dimensional reconstruction to 38-A resolution from cryo-electron micrographs of T = 3 and T = 4 shells revealed that the single structural protein encoded by the TYA gene assembles into spiky shells from trimeric units. PMID:9261411

  4. Retrotransposons at Drosophila telomeres: host domestication of a selfish element for the maintenance of genome integrity

    PubMed Central

    Zhang, Liang; Rong, Yikang S.

    2012-01-01

    Telomere serves two essential functions for the cell. It prevents the recognition of natural chromosome ends as DNA breaks (the end capping function). It counteracts incomplete end replication by adding DNA to the ends of chromosomes (the end elongation function). In most organisms studied, telomerase fulfills the end elongation function. In Drosophila, however, telomere specific retrotransposons have been coerced into performing this essential function for the host. In this review, we focus our discussion on transposition mechanisms and transcriptional regulation of these transposable elements, and present provocative models for the purpose of spurring new interests in the field. PMID:22342531

  5. rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus

    PubMed Central

    Shpiz, Sergey; Kwon, Dmitry; Rozovsky, Yakov; Kalmykova, Alla

    2009-01-01

    Telomeres in Drosophila are maintained by the specialized telomeric retrotransposons HeT-A, TART and TAHRE. Sense transcripts of telomeric retroelements were shown to be the targets of a specialized RNA-interference mechanism, a repeat-associated short interfering (rasi)RNA-mediated system. Antisense rasiRNAs play a key role in this mechanism, highlighting the importance of antisense expression in retrotransposon silencing. Previously, bidirectional transcription was reported for the telomeric element TART. Here, we show that HeT-A is also bidirectionally transcribed, and HeT-A antisense transcription in ovaries is regulated by a promoter localized within its 3′ untranslated region. A remarkable feature of noncoding HeT-A antisense transcripts is the presence of multiple introns. We demonstrate that sense and antisense HeT-A-specific rasiRNAs are present in the same tissue, indicating that transcripts of both directions may be considered as natural targets of the rasiRNA pathway. We found that the expression of antisense transcripts of telomeric elements is regulated by the RNA silencing machinery, suggesting rasiRNA-mediated interplay between sense and antisense transcripts in the cell. Finally, this regulation occurs in the nucleus since disruption of the rasiRNA pathway leads to an accumulation of TART and HeT-A transcripts in germ cell nuclei. PMID:19036789

  6. Disentangling the relationship of the Australian marsupial orders using retrotransposon and evolutionary network analyses.

    PubMed

    Gallus, Susanne; Janke, Axel; Kumar, Vikas; Nilsson, Maria A

    2015-04-01

    The ancestors to the Australian marsupials entered Australia around 60 (54-72) Ma from Antarctica, and radiated into the four living orders Peramelemorphia, Dasyuromorphia, Diprotodontia, and Notoryctemorphia. The relationship between the four Australian marsupial orders has been a long-standing question, because different phylogenetic studies have not been able to consistently reconstruct the same topology. Initial in silico analysis of the Tasmanian devil genome and experimental screening in the seven marsupial orders revealed 20 informative transposable element insertions for resolving the inter- and intraordinal relationships of Australian and South American orders. However, the retrotransposon insertions support three conflicting topologies regarding Peramelemorphia, Dasyuromorphia, and Notoryctemorphia, indicating that the split between the three orders may be best understood as a network. This finding is supported by a phylogenetic reanalysis of nuclear gene sequences, using a consensus network approach that allows depicting hidden phylogenetic conflict, otherwise lost when forcing the data into a bifurcating tree. The consensus network analysis agrees with the transposable element analysis in that all possible topologies regarding Peramelemorphia, Dasyuromorphia, and Notoryctemorphia in a rooted four-taxon topology are equally well supported. In addition, retrotransposon insertion data support the South American order Didelphimorphia being the sistergroup to all other living marsupial orders. The four Australian orders originated within 3 Myr at the Cretaceous-Paleogene boundary. The rapid divergences left conflicting phylogenetic information in the genome possibly generated by incomplete lineage sorting or introgressive hybridization, leaving the relationship among Australian marsupial orders unresolvable as a bifurcating process millions of years later. PMID:25786431

  7. Primate-specific ORF0 contributes to retrotransposon-mediated diversity.

    PubMed

    Denli, Ahmet M; Narvaiza, Iñigo; Kerman, Bilal E; Pena, Monique; Benner, Christopher; Marchetto, Maria C N; Diedrich, Jolene K; Aslanian, Aaron; Ma, Jiao; Moresco, James J; Moore, Lynne; Hunter, Tony; Saghatelian, Alan; Gage, Fred H

    2015-10-22

    LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity. PMID:26496605

  8. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome.

    PubMed

    Kubat, Zdenek; Zluvova, Jitka; Vogel, Ivan; Kovacova, Viera; Cermak, Tomas; Cegan, Radim; Hobza, Roman; Vyskot, Boris; Kejnovsky, Eduard

    2014-04-01

    Some transposable elements (TEs) show extraordinary variance in abundance along sex chromosomes but the mechanisms responsible for this variance are unknown. Here, we studied Ogre long terminal repeat (LTR) retrotransposons in Silene latifolia, a dioecious plant with evolutionarily young heteromorphic sex chromosomes. Ogre elements are ubiquitous in the S. latifolia genome but surprisingly absent on the Y chromosome. Bacterial artificial chromosome (BAC) library analysis and fluorescence in situ hybridization (FISH) were used to determine Ogre structure and chromosomal localization. Next generation sequencing (NGS) data were analysed to assess the transcription level and abundance of small RNAs. Methylation of Ogres was determined by bisulphite sequencing. Phylogenetic analysis was used to determine mobilization time and selection forces acting on Ogre elements. We characterized three Ogre families ubiquitous in the S. latifolia genome. One family is nearly absent on the Y chromosome despite all the families having similar structures and spreading mechanisms. We showed that Ogre retrotransposons evolved before sex chromosomes appeared but were mobilized after formation of the Y chromosome. Our data suggest that the absence of one Ogre family on the Y chromosome may be caused by 24-nucleotide (24-nt) small RNA-mediated silencing leading to female-specific spreading. Our findings highlight epigenetic silencing mechanisms as potentially crucial factors in sex-specific spreading of some TEs, but other possible mechanisms are also discussed. PMID:24456522

  9. Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms

    PubMed Central

    Rebollo, Rita; Karimi, Mohammad M.; Bilenky, Misha; Gagnier, Liane; Miceli-Royer, Katharine; Zhang, Ying; Goyal, Preeti; Keane, Thomas M.; Jones, Steven; Hirst, Martin; Lorincz, Matthew C.; Mager, Dixie L.

    2011-01-01

    The “arms race” relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE–induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness. PMID:21980304

  10. Retrotransposon-associated long non-coding RNAs in mice and men.

    PubMed

    Ganesh, Sravya; Svoboda, Petr

    2016-06-01

    Over a half of mammalian genomes is occupied by repetitive elements whose ability to provide functional sequences, move into new locations, and recombine underlies the so-called genome plasticity. At the same time, mobile elements exemplify selfish DNA, which is expanding in the genome at the expense of the host. The selfish generosity of mobile genetic elements is in the center of research interest as it offers insights into mechanisms underlying evolution and emergence of new genes. In terms of numbers, with over 20,000 in count, protein-coding genes make an outstanding >2 % minority. This number is exceeded by an ever-growing list of genes producing long non-coding RNAs (lncRNAs), which do not encode for proteins. LncRNAs are a dynamically evolving population of genes. While it is not yet clear what fraction of lncRNAs represents functionally important ones, their features imply that many lncRNAs emerge at random as new non-functional elements whose functionality is acquired through natural selection. Here, we explore the intersection of worlds of mobile genetic elements (particularly retrotransposons) and lncRNAs. In addition to summarizing essential features of mobile elements and lncRNAs, we focus on how retrotransposons contribute to lncRNA evolution, structure, and function in mammals. PMID:27044413

  11. Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons

    PubMed Central

    Verneau, Olivier; Catzeflis, François; Furano, Anthony V.

    1998-01-01

    Phylogenies based on the inheritance of shared derived characters will be ambiguous when the shared characters are not the result of common ancestry. Such characters are called homoplasies. Phylogenetic analysis also can be problematic if the characters have not changed sufficiently, as might be the case for rapid or recent speciations. The latter are of particular interest because evolutionary processes may be more accessible the more recent the speciation. The repeated DNA subfamilies generated by the mammalian L1 (LINE-1) retrotransposon are apparently homoplasy-free phylogenetic characters. L1 retrotransposons are transmitted only by inheritance and rapidly generate novel variants that produce distinct subfamilies of mostly defective copies, which then “age” as they diverge. Here we show that the L1 character can both resolve and date recent speciation events within the large group of very closely related rats known as Rattus sensu stricto. This lineage arose 5–6 million years ago (Mya) and subsequently underwent two episodes of speciation: an intense one, ≈2.7 Mya, produced at least five lineages in <0.3 My; a second began ≈1.2 Mya and may still be continuing. PMID:9736728

  12. Ty3 Retrotransposon Hijacks Mating Yeast RNA Processing Bodies to Infect New Genomes

    PubMed Central

    Kaake, Robyn; Dawson, Anthony R.; Matheos, Dina; Nagashima, Kunio; Sitlani, Parth; Patterson, Kurt; Chang, Ivan; Huang, Lan; Sandmeyer, Suzanne

    2015-01-01

    Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5’ to 3’ exonuclease Xrn1 were among the proteins identified. These proteins associated with Ty3 proteins and RNA, and were required for formation of Ty3 VLP retrosome assembly factories and for retrotransposition. Specifically, Dhh1/DDX6 was required for normal levels of Ty3 genomic RNA, and Lsm1 and Xrn1 were required for association of Ty3 protein and RNA into retrosomes. This role for components of RNA processing bodies in promoting VLP assembly and retrotransposition during mating in a yeast that lacks RNA interference, contrasts with roles proposed for orthologous components in animal germ cell ribonucleoprotein granules in turnover and epigenetic suppression of retrotransposon RNAs. PMID:26421679

  13. Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome.

    PubMed Central

    Friesen, P D; Nissen, M S

    1990-01-01

    A single copy of the retrotransposon TED, from the moth Trichoplusia ni (a lepidopteran noctuid), was identified within the DNA genome of the baculovirus Autographa californica nuclear polyhedrosis virus. Determination of the complete nucleotide sequence (7,510 base pairs) of the integrated copy indicated that TED belongs to the family of retrotransposons that includes Drosophila melanogaster elements 17.6 and gypsy and thus represents the first nondipteran member of this invertebrate group to be identified. The internal portion of TED, flanked by long terminal repeats (LTRs), is composed of three long open reading frames comparable in size and location to the gag, pol, and env genes of the vertebrate retroviruses. Sequence similarity with the dipteran elements was the highest within individual domains of TED open reading frame 2 (pol region) that are also conserved among the retroviruses and encode protease, reverse transcriptase, and integrase functions, respectively. Mapping the 5' and 3' termini of TED RNAs indicated that the LTRs have a retroviral U3-R-U5 structural organization that is capable of directing the synthesis of transcripts that represent potential substrates for reverse transcription and intermediates in transposition. Abundant RNAs were also initiated from a site within the 5' LTR that matches the consensus motif for the promoter of late, hyperexpressed baculovirus genes. The presence of this viruslike promoter within TED and its subsequent activation only after integration within the viral genome suggest a possible symbiotic relationship with the baculovirus that could extend transposon host range. Images PMID:1692964

  14. Splicing of Retrotransposon Insertions from Transcripts of the Drosophila Melanogaster Vermilion Gene in a Revertant

    PubMed Central

    Pret, A. M.; Searles, L. L.

    1991-01-01

    A mutation of the Drosophila melanogaster vermilion (v) gene known as v(1) is caused by the insertion of a 412 retrotransposon into the 5' untranslated region of the first exon. Mutants carrying this insertion accumulate a low level of mRNA from which most of the transposon sequences have been eliminated by splicing at cryptic sites within transposon sequences. Here, we demonstrate that a revertant of the v(1) allele called v(+37) is caused by the insertion of a second retrotransposon, the B104/roo element, into a site near one end of the 412 element. The revertant strain accumulates a higher level of mRNA from which most of both transposons have been removed by splicing at new donor sites introduced by the B104/roo insertion and the same acceptor site within 412. Mutations at suppressor of sable [su(s)], which increase the accumulation of v(1) transcripts, slightly elevate the level of v(+37) RNA. In addition, we show that the first v intron downstream of the 412 insertion is not efficiently removed in the v(1) mutant, and suppressor and reversion mutations increase the proportion of transcripts that are properly spliced at that downstream intron. Thus, it appears that both the suppressor and reversion mutations exert an effect at the level of pre-mRNA splicing. PMID:1664404

  15. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots

    PubMed Central

    Zhu, Zhenglin; Tan, Shengjun; Zhang, Yaqiong; Zhang, Yong E.

    2016-01-01

    RNA-based duplicated genes or functional retrocopies (retrogenes) are known to drive phenotypic evolution. Retrogenes emerge via retroposition, which is mainly mediated by long interspersed nuclear element 1 (LINE-1 or L1) retrotransposons in mammals. By contrast, long terminal repeat (LTR) retrotransposons appear to be the major player in plants, although an L1-like mechanism has also been hypothesized to be involved in retroposition. We tested this hypothesis by searching for young retrocopies, as these still retain the sequence features associated with the underlying retroposition mechanism. Specifically, we identified polymorphic retrocopies (retroCNVs) by analyzing public Arabidopsis (Arabidopsis thaliana) resequencing data. Furthermore, we searched for recently originated retrocopies encoded by the reference genome of Arabidopsis and Manihot esculenta. Across these two datasets, we found cases with L1-like hallmarks, namely, the expected target site sequence, a polyA tail and target site duplications. Such data suggest that an L1-like mechanism could operate in plants, especially dicots. PMID:27098918

  16. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor.

    PubMed

    Morales-Hernández, Antonio; González-Rico, Francisco J; Román, Angel C; Rico-Leo, Eva; Alvarez-Barrientos, Alberto; Sánchez, Laura; Macia, Ángela; Heras, Sara R; García-Pérez, José L; Merino, Jaime M; Fernández-Salguero, Pedro M

    2016-06-01

    Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions. PMID:26883630

  17. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor

    PubMed Central

    Morales-Hernández, Antonio; González-Rico, Francisco J.; Román, Angel C.; Rico-Leo, Eva; Alvarez-Barrientos, Alberto; Sánchez, Laura; Macia, Ángela; Heras, Sara R.; García-Pérez, José L.; Merino, Jaime M.; Fernández-Salguero, Pedro M.

    2016-01-01

    Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions. PMID:26883630

  18. Mutant gene phenotypes mediated by a Drosophila melanogaster retrotransposon require sequences homologous to mammalian enhancers.

    PubMed Central

    Geyer, P K; Green, M M; Corces, V G

    1988-01-01

    We have analyzed the molecular structure of phenotypic revertants of gypsy-induced mutations to understand the molecular mechanisms by which this retrotransposon causes mutant phenotypes in Drosophila melanogaster. The independent partial revertants analyzed are caused by the insertion of different transposons into the same region of gypsy. One partial revertant of the yellow allele y2 arose as a consequence of the insertion of the jockey mobile element into gypsy sequences, whereas a second incomplete revertant is due to the insertion of the hobo transposon. In addition, a previously isolated partial revertant of the Hairy-wing allele Hw1 resulted from the integration of the BS transposable element into the same gypsy sequences. The region affected by the insertion of the three transposons contains 12 copies of a repeated motif that shows striking homology to mammalian transcriptional enhancers. Our results suggest that these sequences, which might be involved in the transcriptional control of the gypsy element, are also responsible for the induction of mutant phenotypes by this retrotransposon. PMID:2847167

  19. Disentangling the Relationship of the Australian Marsupial Orders Using Retrotransposon and Evolutionary Network Analyses

    PubMed Central

    Gallus, Susanne; Janke, Axel; Kumar, Vikas; Nilsson, Maria A.

    2015-01-01

    The ancestors to the Australian marsupials entered Australia around 60 (54–72) Ma from Antarctica, and radiated into the four living orders Peramelemorphia, Dasyuromorphia, Diprotodontia, and Notoryctemorphia. The relationship between the four Australian marsupial orders has been a long-standing question, because different phylogenetic studies have not been able to consistently reconstruct the same topology. Initial in silico analysis of the Tasmanian devil genome and experimental screening in the seven marsupial orders revealed 20 informative transposable element insertions for resolving the inter- and intraordinal relationships of Australian and South American orders. However, the retrotransposon insertions support three conflicting topologies regarding Peramelemorphia, Dasyuromorphia, and Notoryctemorphia, indicating that the split between the three orders may be best understood as a network. This finding is supported by a phylogenetic reanalysis of nuclear gene sequences, using a consensus network approach that allows depicting hidden phylogenetic conflict, otherwise lost when forcing the data into a bifurcating tree. The consensus network analysis agrees with the transposable element analysis in that all possible topologies regarding Peramelemorphia, Dasyuromorphia, and Notoryctemorphia in a rooted four-taxon topology are equally well supported. In addition, retrotransposon insertion data support the South American order Didelphimorphia being the sistergroup to all other living marsupial orders. The four Australian orders originated within 3 Myr at the Cretaceous–Paleogene boundary. The rapid divergences left conflicting phylogenetic information in the genome possibly generated by incomplete lineage sorting or introgressive hybridization, leaving the relationship among Australian marsupial orders unresolvable as a bifurcating process millions of years later. PMID:25786431

  20. Characterization of retrotransposon sequences expressed in inflorescences of apomictic and sexual Paspalum notatum plants.

    PubMed

    Ochogavía, Ana Claudia; Seijo, José Guillermo; González, Ana María; Podio, Maricel; Duarte Silveira, Erica; Machado Lacerda, Ana Luiza; Tavares de Campos Carneiro, Vera; Ortiz, Juan Pablo A; Pessino, Silvina Claudia

    2011-09-01

    Apomixis, an asexual mode of reproduction through seeds, holds much promise for agricultural advances. However, the molecular mechanisms underlying this trait are still poorly understood. We previously isolated several transcripts representing novel sequences differentially expressed in reproductive tissues of sexual and apomictic plants. Here, we report the characterization of two of these unknown RNA transcripts (experimental codes N17 and N22). Since original fragments showed no significant homologies to sequences at databases, preliminary genomic PCR experiments were carried out to discard possible contaminations. RACE extension on flanking regions provided longer sequences for the candidates and additional related transcripts, which revealed similarity to LTR retrotransposons carrying short transduplicated segments of protein-coding genes. Interestingly, some transduplicated segments corresponded to genes previously associated with apomictic development. Gene copy number estimations revealed a moderate representation of the elements in the genome, with significantly increased numbers in a sexual genotype with respect to an apomictic one. Genetic mapping of N17 showed that a copy of this particular element was located onto Paspalum notatum linkage group F3c, at a central non-recombinant region resembling a centromere. Expression analysis showed an increased activity of N17 and N22 sense strands in ovules of the sexual genotypes. A retrotransposon-specific differential display analysis aimed at detecting related sequences allowed the identification of a complex family, with the majority of its members represented in the sexual genotype. Our results suggest that these elements could be participating in regulatory pathways related to apomixis and sexuality. PMID:21394488

  1. Co-evolution of plant LTR-retrotransposons and their host genomes.

    PubMed

    Zhao, Meixia; Ma, Jianxin

    2013-07-01

    Transposable elements (TEs), particularly, long terminal repeat retrotransposons (LTR-RTs), are the most abundant DNA components in all plant species that have been investigated, and are largely responsible for plant genome size variation. Although plant genomes have experienced periodic proliferation and/or recent burst of LTR-retrotransposons, the majority of LTR-RTs are inactivated by DNA methylation and small RNA-mediated silencing mechanisms, and/or were deleted/truncated by unequal homologous recombination and illegitimate recombination, as suppression mechanisms that counteract genome expansion caused by LTR-RT amplification. LTR-RT DNA is generally enriched in pericentromeric regions of the host genomes, which appears to be the outcomes of preferential insertions of LTR-RTs in these regions and low effectiveness of selection that purges LTR-RT DNA from these regions relative to chromosomal arms. Potential functions of various TEs in their host genomes remain blurry; nevertheless, LTR-RTs have been recognized to play important roles in maintaining chromatin structures and centromere functions and regulation of gene expressions in their host genomes. PMID:23794032

  2. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots.

    PubMed

    Zhu, Zhenglin; Tan, Shengjun; Zhang, Yaqiong; Zhang, Yong E

    2016-01-01

    RNA-based duplicated genes or functional retrocopies (retrogenes) are known to drive phenotypic evolution. Retrogenes emerge via retroposition, which is mainly mediated by long interspersed nuclear element 1 (LINE-1 or L1) retrotransposons in mammals. By contrast, long terminal repeat (LTR) retrotransposons appear to be the major player in plants, although an L1-like mechanism has also been hypothesized to be involved in retroposition. We tested this hypothesis by searching for young retrocopies, as these still retain the sequence features associated with the underlying retroposition mechanism. Specifically, we identified polymorphic retrocopies (retroCNVs) by analyzing public Arabidopsis (Arabidopsis thaliana) resequencing data. Furthermore, we searched for recently originated retrocopies encoded by the reference genome of Arabidopsis and Manihot esculenta. Across these two datasets, we found cases with L1-like hallmarks, namely, the expected target site sequence, a polyA tail and target site duplications. Such data suggest that an L1-like mechanism could operate in plants, especially dicots. PMID:27098918

  3. Recent Expansion of a New Ingi-Related Clade of Vingi non-LTR Retrotransposons in Hedgehogs

    PubMed Central

    Kojima, Kenji K.; Kapitonov, Vladimir V.; Jurka, Jerzy

    2011-01-01

    Autonomous non-long terminal repeat (non-LTR) retrotransposons and their repetitive remnants are ubiquitous components of mammalian genomes. Recently, we identified non-LTR retrotransposon families, Ingi-1_AAl and Ingi-1_EE, in two hedgehog genomes. Here we rename them to Vingi-1_AAl and Vingi-1_EE and report a new clade “Vingi,” which is a sister clade of Ingi that lacks the ribonuclease H domain. In the European hedgehog genome, there are 11 non-autonomous families of elements derived from Vingi-1_EE by internal deletions. No retrotransposons related to Vingi elements were found in any of the remaining 33 mammalian genomes nearly completely sequenced to date, but we identified several new families of Vingi and Ingi retrotransposons outside mammals. Our data suggest the horizontal transfer of Vingi elements to hedgehog, although the vertical transfer cannot be ruled out. The compact structure and trans-mobilization of nonautonomous derivatives of Vingi can make them useful for in vivo retrotransposition assay system. PMID:20716533

  4. The insertion of a novel retrotransposon in the promoter of a vernalization gene resulted in early flowering in tetraploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous reports showed allelic variation in wheat vernalization gene VRN1 was due to deletions either in the promoter or the first intron. Here, we identified a novel Vrn-B1 allele that has a retrotransposon in its promoter conferring spring growth habit. The VRN-B1 gene was mapped in a doubled hap...

  5. Transcriptome Analysis of ESTs from a Chaetognath Reveals a Deep-Branching Clade of Retrovirus-Like Retrotransposons.

    PubMed

    Barthélémy, Roxane M; Casanova, Jean-Paul; Faure, Eric

    2008-01-01

    Chaetognaths constitute a small marine phylum exhibiting several characteristic which are highly unusual in animal genomes, including two classes of both rRNA and protein ribosomal genes. As in this phylum presence of retrovirus-like elements has never been documented, analysis of a published expressed sequence tag (EST) collection of the chaetognath Spadella cephaloptera has been made. Twelve sequences representing transcript sections of reverse transcriptase domain of active retrotransposons were isolated from~11,000 ESTs. Five of them are originated from Gypsy retrovirus-like elements, whereas the other are transcripts from a Bel-Pao LTR-retrotransposon, a Penelope-like element and LINE retrotransposons. Moreover, a part of a putative integrase has also been found. Phylogenetic analyses suggest a deep-branching clade of the retrovirus-like elements, which is in agreement with the probably Cambrian origin of the phylum. Moreover, retrotransposons have not been found in telomeric-like transcripts which are probably constituted by both vertebrate and arthropod canonical repeats. PMID:19440464

  6. Exploiting the power of LINE-1 retrotransposon mutagenesis for identification of genes involved in embryonic stem cell differentiation.

    PubMed

    Lenka, Nibedita; Krishnan, Shruthi; Board, Philip; Rangasamy, Danny

    2014-06-01

    Identifying the genes or epigenetic factors that control the self-renewal and differentiation of stem cells is critical to understanding the molecular basis of cell commitment. Although a number of insertional mutagenesis vectors have been developed for identifying gene functions in animal models, the L1 retrotransposition system offers additional advantages as a tool to disrupt genes in embryonic stem cells in order to identify their functions and the phenotypes associated with them. Recent advances in producing synthetic versions of L1 retrotransposon vector system and the optimization of techniques to accurately identify retrotransposon integration sites have increased their utility for gene discovery applications. We have developed a novel episomal, nonviral L1 retrotransposon vector using scaffold/matrix attachment regions that provides stable, sustained levels of retrotransposition in cell cultures without being affected by epigenetic silencing or from some of the common problems of vector integration. This modified vector contains a GFP marker whose expression occurs only after successful gene disruption events and thus the cells with disrupted genes can be easily picked for functional analysis. Here we present a method to disrupt gene function in embryonic stem cells that aid in the identification of genes involved in stem cell differentiation processes. The methods presented here can be easily adapted to the study of other types of cancer stem cells or induced pluripotent stem cells using the L1 retrotransposon as an insertional mutagen. PMID:24610122

  7. Transcriptome Analysis of ESTs from a Chaetognath Reveals a Deep-Branching Clade of Retrovirus-Like Retrotransposons

    PubMed Central

    Barthélémy, Roxane M; Casanova, Jean-Paul; Faure, Eric

    2008-01-01

    Chaetognaths constitute a small marine phylum exhibiting several characteristic which are highly unusual in animal genomes, including two classes of both rRNA and protein ribosomal genes. As in this phylum presence of retrovirus-like elements has never been documented, analysis of a published expressed sequence tag (EST) collection of the chaetognath Spadella cephaloptera has been made. Twelve sequences representing transcript sections of reverse transcriptase domain of active retrotransposons were isolated from~11,000 ESTs. Five of them are originated from Gypsy retrovirus-like elements, whereas the other are transcripts from a Bel-Pao LTR-retrotransposon, a Penelope-like element and LINE retrotransposons. Moreover, a part of a putative integrase has also been found. Phylogenetic analyses suggest a deep-branching clade of the retrovirus-like elements, which is in agreement with the probably Cambrian origin of the phylum. Moreover, retrotransposons have not been found in telomeric-like transcripts which are probably constituted by both vertebrate and arthropod canonical repeats. PMID:19440464

  8. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.

    PubMed

    Santos, Fabíola Carvalho; Guyot, Romain; do Valle, Cacilda Borges; Chiari, Lucimara; Techio, Vânia Helena; Heslop-Harrison, Pat; Vanzela, André Luís Laforga

    2015-09-01

    Like other eukaryotes, the nuclear genome of plants consists of DNA with a small proportion of low-copy DNA (genes and regulatory sequences) and very abundant DNA sequence motifs that are repeated thousands up to millions of times in the genomes including transposable elements (TEs) and satellite DNA. Retrotransposons, one class of TEs, are sequences that amplify via an RNA intermediate and reinsert into the genome, are often the major fraction of a genome. Here, we put research on retrotransposons into the larger context of plant repetitive DNA and genome behaviour, showing features of genome evolution in a grass genus, Brachiaria, in relation to other plant species. We show the contrasting amplification of different retroelement fractions across the genome with characteristics for various families and domains. The genus Brachiaria includes both diploid and polyploid species, with similar chromosome types and chromosome basic numbers x = 6, 7, 8 and 9. The polyploids reproduce asexually and are apomictic, but there are also sexual species. Cytogenetic studies and flow cytometry indicate a large variation in DNA content (C-value), chromosome sizes and genome organization. In order to evaluate the role of transposable elements in the genome and karyotype organization of species of Brachiaria, we searched for sequences similar to conserved regions of TEs in RNAseq reads library produced in Brachiaria decumbens. Of the 9649 TE-like contigs, 4454 corresponded to LTR-retrotransposons, and of these, 79.5 % were similar to members of the gypsy superfamily. Sequences of conserved protein domains of gypsy were used to design primers for producing the probes. The probes were used in FISH against chromosomes of accesses of B. decumbens, Brachiaria brizantha, Brachiaria ruziziensis and Brachiaria humidicola. Probes showed hybridization signals predominantly in proximal regions, especially those for retrotransposons of the clades CRM and Athila, while elements of Del and Tat

  9. The varying microsporidian genome: existence of long-terminal repeat retrotransposon in domesticated silkworm parasite Nosema bombycis.

    PubMed

    Xu, Jinshan; Pan, Guoqing; Fang, Lin; Li, Jun; Tian, Xiangjun; Li, Tian; Zhou, Zeyang; Xiang, Zhonghuai

    2006-08-01

    Microsporidia are a group of intracellular parasites with an extremely compact genome and there is no confirmed evidence that retroelements are parasitised in these organisms. Using the dataset of 200,000 genomic shotgun reads of the silkworm pebrine Nosema bombycis, we have identified the eight complete N. bombycis long-terminal repeat retrotransposon (Nbr) elements. All of the Nbr elements are Ty3/gypsy members and have close relationships to Saccharomycetes long-terminal repeat retrotransposons identified previously, providing further evidence of their relationship to fungi. To explore the effect of retrotransposons in microsporidian genome evolution, their distribution was characterised by comparisons between two N. bombycis contigs containing the Nbr elements with the completed genome of the human parasite Encephalitozoon cuniculi, which is closely related to N. bombycis. The Nbr elements locate between or beside syntenic blocks, which are often clustered with other transposable-like sequences, indicating that they are associated with genome size variation and syntenic discontinuities. The ratios of the number of non-synonymous substitutions per non-synonymous site to the number of synonymous substitutions per synonymous site of the open reading frames among members of each of the eight Nbr families were estimated, which reveal the purifying selection acted on the N. bombycis long-terminal repeat retrotransposons. These results strongly suggest that retrotransposons play a major role in reorganization of the microsporidian genome and they might be active. The present study presents an initial characterization of some transposable elements in the N. bombycis genome and provides some insight into the evolutionary mechanism of microsporidian genomes. PMID:16797019

  10. Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy

    PubMed Central

    Xu, Xuewen; Ectors, Fabien; Davis, Erica E.; Pirottin, Dimitri; Cheng, Huijun; Farnir, Frédéric; Hadfield, Tracy; Cockett, Noelle; Charlier, Carole; Georges, Michel; Takeda, Haruko

    2015-01-01

    The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous +Mat/CLPGPat animals receiving the CLPG mutation from their father express the phenotype. +Mat/CLPGPat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep. PMID:26474044

  11. Nucleotide sequence analysis of a cloned DNA fragment from human cells reveals homology to retrotransposons.

    PubMed Central

    Flügel, R M; Maurer, B; Bannert, H; Rethwilm, A; Schnitzler, P; Darai, G

    1987-01-01

    During molecular cloning of proviral DNA of human spumaretrovirus, various recombinant clones were established and analyzed. Blot hybridization revealed that one of the recombinant plasmids had the characteristic features of a member of the long interspersed repetitive sequences family. The DNA element was analyzed by restriction mapping and nucleotide sequencing. It showed a high degree of amino acid sequence homology of 54.3% when compared with the 5'-terminal part of the pol gene product of the murine retrotransposon LIMd. The 3' region of the cloned DNA element encodes proteins with an even higher degree of homology of 67.4% in comparison to the corresponding parts of a member of the primate KpnI sequence family. Images PMID:3031462

  12. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes.

    PubMed

    Suh, Alexander; Witt, Christopher C; Menger, Juliana; Sadanandan, Keren R; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A; Mudge, Joann; Edwards, Scott V; Rheindt, Frank E

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83-99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25-22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20-17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  13. Acquisition of Full-Length Viral Helicase Domains by Insect Retrotransposon-Encoded Polypeptides

    PubMed Central

    Lazareva, Ekaterina; Lezzhov, Alexander; Vassetzky, Nikita; Solovyev, Andrey; Morozov, Sergey

    2015-01-01

    Recent metagenomic studies in insects identified many sequences unexpectedly closely related to plant virus genes. Here we describe a new example of this kind, insect R1 LINEs with an additional C-terminal domain in their open reading frame 2. This domain is similar to NTPase/helicase (SF1H) domains, which are found in replicative proteins encoded by plant viruses of the genus Tobamovirus. We hypothesize that the SF1H domain could be acquired by LINEs, directly or indirectly, upon insect feeding on virus-infected plants. Possible functions of this domain in LINE transposition and involvement in LINEs counteraction the silencing-based cell defense against retrotransposons are discussed. PMID:26733982

  14. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    PubMed Central

    Suh, Alexander; Witt, Christopher C.; Menger, Juliana; Sadanandan, Keren R.; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A.; Mudge, Joann; Edwards, Scott V.; Rheindt, Frank E.

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  15. An epi [c] genetic battle: LINE-1 retrotransposons and intragenomic conflict in humans.

    PubMed

    Muñoz-Lopez, Martin; Macia, Angela; Garcia-Cañadas, Marta; Badge, Richard M; Garcia-Perez, Jose L

    2011-07-01

    The ongoing activity of the human retrotransposon Long Interspersed Element 1 (LINE-1 or L1) continues to impact the human genome in various ways. Throughout evolution, mammalian and primate genomes have been under selection to generate strategies to reduce the activity of selfish DNA like L1. Similarly, selfish DNA has evolved to elude these containment systems. This intragenomic conflict has left many inactive versions of LINEs and other Transposable Elements (TEs) littering the human genome, which together account for roughly half of our DNA. Here, we survey the distinct mechanisms operating in the human genome that seem to reduce the mobility of L1s. In addition, we discuss recent findings that strongly suggest epigenetic mechanisms specifically regulate L1 activity in pluripotent human cells. PMID:22016860

  16. Fission yeast retrotransposon Tf1 integration is targeted to 5′ ends of open reading frames

    PubMed Central

    Behrens, Ralf; Hayles, Jacky; Nurse, Paul

    2000-01-01

    Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100–420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed. PMID:11095681

  17. Comparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear (Pyrus bretschneideri Rehd.)

    PubMed Central

    Yin, Hao; Du, Jianchang; Li, Leiting; Jin, Cong; Fan, Lian; Li, Meng; Wu, Jun; Zhang, Shaoling

    2014-01-01

    Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants. PMID:24899073

  18. Population structure of rice varieties used in Turkish rice breeding programs determined using simple-sequence repeat and inter-primer binding site-retrotransposon data.

    PubMed

    Cömertpay, G; Baloch, F S; Derya, M; Andeden, E E; Alsaleh, A; Sürek, H; Özkan, H

    2016-01-01

    Effective breeding programs based on genetic diversity are needed to broaden the genetic basis of rice (Oryza sativa L.) in Turkey. In this study, 81 commercial varieties from seven countries were studied in order to estimate the genomic relationships among them using nine inter-primer binding site (iPBS)-retrotransposon and 17 simple-sequence repeat (SSR) markers. A total of 59 alleles for the SSR markers and 96 bands for the iPBS-retrotransposon markers were detected, with an average of 3.47 and 10.6 per locus, respectively. Each of the varieties could be unequivocally identified by the SSR and iPBS-retrotransposon profiles. The iPBS-retrotransposon- and SSR-based clustering were identical and closely mirrored each other, with a significantly high correlation (r = 0.73). A neighbor-joining cluster based on the combined SSR and iPBS-retrotransposon data divided the rice varieties into three clusters. The population structure was determined using the STRUCTURE software, and three populations (K = 3) were identified among the varieties studied, showing that the diversity harbored by Turkish rice varieties is low. The results indicate that iPBS-retrotransposon markers are a very powerful technique to determine the genetic diversity of rice varieties. PMID:26909982

  19. Expression and Processing of Proteins Encoded by the Saccharomyces Retrotransposon Ty5†

    PubMed Central

    Irwin, Phillip A.; Voytas, Daniel F.

    2001-01-01

    Retroelements (retrotransposons and retroviruses) have two genes in common: gag, which specifies structural proteins that form a virus or virus-like particle, and pol, which specifies catalytic proteins required for replication. For many retroelements, gag and pol are present on separate reading frames. Their expression is highly regulated, and the ratio of Gag to Pol is critical for retroelement replication. The Saccharomyces retrotransposon Ty5 contains a single open reading frame, and we characterized Gag and Pol expression by generating transpositionally active Ty5 elements with epitope tags at the N terminus or C terminus or within the integrase coding region. Immunoblot analysis identified two Gag species (Gag-p27 and Gag-p37), reverse transcriptase (Pol-p59), and integrase (Pol-p80), all of which are largely insoluble in the absence of urea or ionic detergent. These proteins result from proteolytic processing of a polyprotein, because elements with mutations in the presumed active site of Ty5 protease express a single tagged protein (Gag-Pol-p182). Protease mutants are also transpositionally inactive. In a time course experiment, we monitored protein expression, proteolytic processing, and transposition of a Ty5 element with identical epitope tags at its N and C termini. Both transposition and the abundance of Gag-p27 increased over time. In contrast, the levels of Gag-p37 and reverse transcriptase peaked after ∼14 h of induction and then gradually decreased. This may be due to differences in stability of Gag-p27 relative to Gag-p37 and reverse transcriptase. The ratio of Ty5 Gag to Pol averaged 5:1 throughout the time course experiment, suggesting that differential protein stability regulates the amounts of these proteins. PMID:11160677

  20. [Study of the transcriptional and transpositional activities of the Tirant retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus].

    PubMed

    Nefedova, L N; Urusov, F A; Romanova, N I; Shmel'kova, A O; Kim, A I

    2012-11-01

    Transpositions of the gypsy retrotransposon in the Drosophila melanogaster genome are controlled by the flamenco locus, which is represented as an accumulation of defective copies of transposable elements. In the present work, genetic control by the flamenco locus of the transcriptional and transpositional activities of the Tirant retrotransposon from the gypsy group was studied. Tissue-specific expression of Tirant was detected in the tissues of ovaries in a strain mutant for the flamenco locus. Tirant was found to be transpositionally active in isogenic D. melanogaster strains mutant for the flamenco locus. The sites of two new insertions have been localized by the method of subtractive hybridization. It has been concluded from the results obtained that the flamenco locus is involved in the genetic control of Tirant transpositions. PMID:23297482

  1. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family.

    PubMed

    Volff, J N; Körting, C; Altschmied, J; Duschl, J; Sweeney, K; Wichert, K; Froschauer, A; Schartl, M

    2001-02-01

    Jule is the second complete long-terminal-repeat (LTR) Ty3/Gypsy retrotransposon identified to date in vertebrates. Jule, first isolated from the poeciliid fish Xiphophorus maculatus, is 4.8 kb in length, is flanked by two 202-bp LTRs, and encodes Gag (structural core protein) and Pol (protease, reverse transcriptase, RNase H, and integrase, in that order) but no envelope. There are three to four copies of Jule per haploid genome in X. maculatus. Two of them are located in a subtelomeric region of the sex chromosomes, where they are associated with the Xmrk receptor tyrosine kinase genes, of which oncogenic versions are responsible for the formation of hereditary melanoma in Xiphophorus. One almost intact copy of Jule was found in the first intron of the X-chromosomal allele of the Xmrk proto-oncogene, and a second, more corrupted copy is present only 56 nt downstream of the polyadenylation signal of the Xmrk oncogene. Jule-related elements were detected by Southern blot hybridization with less than 10 copies per haploid genome in numerous other poeciliids, as well as in more divergent fishes, including the medakafish Oryzias latipes and the tilapia Oreochromis niloticus. Database searches also identified Jule-related sequences in the zebrafish Danio rerio and in both genome project pufferfishes, Fugu rubripes and Tetraodon nigroviridis. Phylogenetic analysis revealed that Jule is the first member of the Mag family of Ty3/Gypsy retrotransposons described to date in vertebrates. This family includes the silkworm Mag and sea urchin SURL retrotransposons, as well as sequences from the nematode Caenorhabditis elegans. Additional related elements were identified in the genomes of the malaria mosquito Anopheles gambiae and the nematode Ascaris lumbricoides. Phylogeny of Mag-related elements suggested that the Mag family of retrotransposons is polyphyletic and is constituted of several ancient lineages that diverged before their host genomes more than 600 MYA. PMID

  2. Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons

    PubMed Central

    Albert, Patrice S.; Koo, Dal-Hoe; Shi, Jinghua; Gao, Zhi; Han, Fangpu; Lee, Hyeran; Xu, Ronghui; Allison, Jamie; Birchler, James A.; Jiang, Jiming; Dawe, R. Kelly; Presting, Gernot G.

    2009-01-01

    We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3. PMID:19956743

  3. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes

    PubMed Central

    Iwasaki, Yukimoto; Kitano, Hidemi; Itoh, Jun-Ichi; Maekawa, Masahiko; Murata, Kazumasa; Yatou, Osamu; Nagato, Yasuo; Hirochika, Hirohiko

    2006-01-01

    In order to facilitate the functional analysis of rice genes, we produced about 50,000 insertion lines with the endogenous retrotransposon Tos17. Phenotypes of these lines in the M2 generation were observed in the field and characterized based on 53 phenotype descriptors. Nearly half of the lines showed more than one mutant phenotype. The most frequently observed phenotype was low fertility, followed by dwarfism. Phenotype data with photographs of each line are stored in the Tos17 mutant panel web-based database with a dataset of sequences flanking Tos17 insertion points in the rice genome (http://tos.nias.affrc.go.jp/). This combination of phenotypic and flanking sequence data will stimulate the functional analysis of rice genes. PMID:17180734

  4. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms.

    PubMed

    Kubis, S E; Heslop-Harrison, J S; Desel, C; Schmidt, T

    1998-04-01

    We have isolated and characterized conserved regions of the reverse transcriptase gene from non-LTR retrotransposons, also called long interspersed nuclear elements (LINEs), from Beta vulgaris, B. lomatogona and B. nana. The novel elements show strong homology to other non-LTR retrotransposons from plants, man and animals. LINEs are present in all species of the genus Beta tested, but there was variation in copy number. Analysis by Southern hybridization and fluorescent in situ hybridization revealed the clustered organization of these retroelements in beet species. PCR amplification using degenerate primers to conserved motifs of the predicted LINE protein sequence enabled the cloning of LINEs from both Monocotyledonae (Allium cepa, Oryza sativa and Secale cereale) and Dicotyledonae (Nicotiana tabacum and Antirrhinum majus) indicating that LINEs are a universal feature of plant genomes. A dendrogram of fifteen new and six previously isolated sequences showed the high level of sequence divergence while revealing families characteristic of some genera. The genomic organization of non-LTR retrotransposons was examined more detailed in A. majus and O. sativa. PMID:9520275

  5. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing

    PubMed Central

    Monden, Yuki; Hara, Takuya; Okada, Yoshihiro; Jahana, Osamu; Kobayashi, Akira; Tabuchi, Hiroaki; Onaga, Shoko; Tahara, Makoto

    2015-01-01

    Sweetpotato (Ipomoea batatas L.) is an outcrossing hexaploid species with a large number of chromosomes (2n = 6x = 90). Although sweetpotato is one of the world’s most important crops, genetic analysis of the species has been hindered by its genetic complexity combined with the lack of a whole genome sequence. In the present study, we constructed a genetic linkage map based on retrotransposon insertion polymorphisms using a mapping population derived from a cross between ‘Purple Sweet Lord’ (PSL) and ‘90IDN-47’ cultivars. High-throughput sequencing and subsequent data analyses identified many Rtsp-1 retrotransposon insertion sites, and their allele dosages (simplex, duplex, triplex, or double-simplex) were determined based on segregation ratios in the mapping population. Using a pseudo-testcross strategy, 43 and 47 linkage groups were generated for PSL and 90IDN-47, respectively. Interestingly, most of these insertions (~90%) were present in a simplex manner, indicating their utility for linkage map construction in polyploid species. Additionally, our approach led to savings of time and labor for genotyping. Although the number of markers herein was insufficient for map-based cloning, our trial analysis exhibited the utility of retrotransposon-based markers for linkage map construction in sweetpotato. PMID:26069444

  6. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    PubMed

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes. PMID:26556480

  7. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia

    PubMed Central

    Kojima, Kenji K.

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an “archaeal” RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes. PMID:26556480

  8. Endonuclease domain of non-LTR retrotransposons: loss-of-function mutants and modeling of the R2Bm endonuclease

    PubMed Central

    Govindaraju, Aruna; Cortez, Jeremy D.; Reveal, Brad; Christensen, Shawn M.

    2016-01-01

    Non-LTR retrotransposons are an important class of mobile elements that insert into host DNA by target-primed reverse transcription (TPRT). Non-LTR retrotransposons must bind to their mRNA, recognize and cleave their target DNA, and perform TPRT at the site of DNA cleavage. As DNA binding and cleavage are such central parts of the integration reaction, a better understanding of the endonuclease encoded by non-LTR retrotransposons is needed. This paper explores the R2 endonuclease domain from Bombyx mori using in vitro studies and in silico modeling. Mutations in conserved sequences located across the putative PD-(D/E)XK endonuclease domain reduced DNA cleavage, DNA binding and TPRT. A mutation at the beginning of the first α-helix of the modeled endonuclease obliterated DNA cleavage and greatly reduced DNA binding. It also reduced TPRT when tested on pre-cleaved DNA substrates. The catalytic K was located to a non-canonical position within the second α-helix. A mutation located after the fourth β-strand reduced DNA binding and cleavage. The motifs that showed impaired activity form an extensive basic region. The R2 biochemical and structural data are compared and contrasted with that of two other well characterized PD-(D/E)XK endonucleases, restriction endonucleases and archaeal Holliday junction resolvases. PMID:26961309

  9. Spontaneous retrotransposon insertion into TNF 3'UTR causes heart valve disease and chronic polyarthritis.

    PubMed

    Lacey, Derek; Hickey, Peter; Arhatari, Benedicta D; O'Reilly, Lorraine A; Rohrbeck, Leona; Kiriazis, Helen; Du, Xiao-Jun; Bouillet, Philippe

    2015-08-01

    Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are chronic inflammatory diseases that together affect 2-3% of the population. RA and AS predominantly involve joints, but heart disease is also a common feature in RA and AS patients. Here we have studied a new spontaneous mutation that causes severe polyarthritis in bone phenotype spontaneous mutation 1 (BPSM1) mice. In addition to joint destruction, mutant mice also develop aortic root aneurism and aorto-mitral valve disease that can be fatal depending on the genetic background. The cause of the disease is the spontaneous insertion of a retrotransposon into the 3' untranslated region (3'UTR) of the tumor necrosis factor (TNF), which triggers its strong overexpression in myeloid cells. We found that several members of a family of RNA-binding, CCCH-containing zinc-finger proteins control TNF expression through its 3'UTR, and we identified a previously unidentified regulatory element in the UTR. The disease in BPSM1 mice is independent of the adaptive immune system and does not appear to involve inflammatory cytokines other than TNF. To our knowledge, this is the first animal model showing both polyarthritis and heart disease as a direct result of TNF deregulation. These results emphasize the therapeutic potential of anti-TNF drugs for the treatment of heart valve disease and identify potential therapeutic targets to control TNF expression and inflammation. PMID:26195802

  10. Possible regulatory function of the Saccharomyces cerevisiae Ty1 retrotransposon core protein.

    PubMed

    Roth, J F; Kingsman, S M; Kingsman, A J; Martin-Rendon, E

    2000-07-01

    The yeast Ty1 retrotransposon encodes proteins and RNA that assemble into virus-like particles (VLPs) as part of the life cycle of the retro-element. The Tya protein, which is equivalent to the retroviral Gag, is the major structural component of these particles. In this work, we demonstrate that Tya proteins fulfil other functions apart from their structural role. We show that Tya interacts in vitro with the Ty1 RNA domain required for RNA packaging, suggesting that this RNA-protein interaction may direct the packaging process. Furthermore, the overexpression of both Tya proteins, i.e. p1, the primary translation product, and p2, the mature form, increases endogenous Ty1 RNA levels in trans without increasing translation significantly. These observations suggest that Tya may exert a regulatory function during transposition. Interestingly, however, only p2, the mature form of Tya, trans-activates transposition of a marked genomic Ty element. This confirms that processing is required for transposition. PMID:10870103

  11. The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase.

    PubMed Central

    Lankenau, S; Corces, V G; Lankenau, D H

    1994-01-01

    The micropia transposable element of Drosophila hydei is a long terminal repeat-containing retrotransposon present in both the autosomes and the Y chromosome. micropia expression gives rise to a complex set of sense and antisense RNAs transcribed primarily during spermatogenesis. The most abundant sense RNAs constitute an assortment of heterogeneous high-molecular-weight transcripts expressed as constituents of the Y-chromosomal lampbrush loops of primary spermatocytes. In addition, micropia encodes a full-length RNA that extends between the two long terminal repeats of the element. The major 1.0-kb antisense RNA characterized is complementary to the reverse transcriptase and RNase H coding regions of micropia. It is expressed from a testis-specific promoter during the primary spermatocyte stages and is detectable until spermatid elongation stages. Sequence comparison of this promoter with the 5' region of other testis-specific genes allows the conception of a conserved sequence that is responsible for this pattern of expression. A 284-bp fragment containing this sequence is able to drive testis-specific expression of the Escherichia coli lacZ gene in Drosophila melanogaster. This sequence is conserved in the micropia elements present in other Drosophila species that also encode an antisense RNA. The evolutionary conservation of micropia antisense RNA expression and the sequences responsible for its testis-specific transcription suggests a role for this antisense RNA in the control of germ line expression of the full-length transcript or transposon-encoded proteins. Images PMID:7509447

  12. Spontaneous retrotransposon insertion into TNF 3′UTR causes heart valve disease and chronic polyarthritis

    PubMed Central

    Lacey, Derek; Hickey, Peter; Arhatari, Benedicta D.; O’Reilly, Lorraine A.; Rohrbeck, Leona; Kiriazis, Helen; Du, Xiao-Jun; Bouillet, Philippe

    2015-01-01

    Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are chronic inflammatory diseases that together affect 2–3% of the population. RA and AS predominantly involve joints, but heart disease is also a common feature in RA and AS patients. Here we have studied a new spontaneous mutation that causes severe polyarthritis in bone phenotype spontaneous mutation 1 (BPSM1) mice. In addition to joint destruction, mutant mice also develop aortic root aneurism and aorto-mitral valve disease that can be fatal depending on the genetic background. The cause of the disease is the spontaneous insertion of a retrotransposon into the 3′ untranslated region (3′UTR) of the tumor necrosis factor (TNF), which triggers its strong overexpression in myeloid cells. We found that several members of a family of RNA-binding, CCCH-containing zinc-finger proteins control TNF expression through its 3′UTR, and we identified a previously unidentified regulatory element in the UTR. The disease in BPSM1 mice is independent of the adaptive immune system and does not appear to involve inflammatory cytokines other than TNF. To our knowledge, this is the first animal model showing both polyarthritis and heart disease as a direct result of TNF deregulation. These results emphasize the therapeutic potential of anti-TNF drugs for the treatment of heart valve disease and identify potential therapeutic targets to control TNF expression and inflammation. PMID:26195802

  13. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi.

    PubMed Central

    Nakayashiki, H; Kiyotomi, K; Tosa, Y; Mayama, S

    1999-01-01

    MAGGY is a gypsy-like LTR retrotransposon isolated from the blast fungus Pyricularia grisea (teleomorph, Magnaporthe grisea). We examined transposition of MAGGY in three P. grisea isolates (wheat, finger millet, and crabgrass pathogen), which did not originally possess a MAGGY element, and in two heterologous species of filamentous fungi, Colletotrichum lagenarium and P. zingiberi. Genomic Southern analysis of MAGGY transformants suggested that transposition of MAGGY occurred in all filamentous fungi tested. In contrast, no transposition was observed in any transformants with a modified MAGGY containing a 513-bp deletion in the reverse transcriptase domain. When a MAGGY derivative carrying an artificial intron was introduced into the wheat isolate of P. grisea and C. lagenarium, loss of the intron was observed. These results showed that MAGGY can undergo autonomous RNA-mediated transposition in heterologous filamentous fungi. The frequency of transposition differed among fungal species. MAGGY transposed actively in the wheat isolate of P. grisea and P. zingiberi, but transposition in C. lagenarium appeared to be rare. This is the first report that demonstrates active transposition of a fungal transposable element in heterologous hosts. Possible usage of MAGGY as a genetic tagging tool in filamentous fungi is discussed. PMID:10511549

  14. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila

    PubMed Central

    Zhang, Liang; Beaucher, Michelle; Cheng, Yan; Rong, Yikang S

    2014-01-01

    In Drosophila, a group of retrotransposons is mobilized exclusively to telomeres in a sequence-independent manner. How they target chromosome ends is not understood. Here, we focused on the telomeric element HeT-A and characterized the cell cycle expression and cytological distribution of its protein and RNA products. We determined the timing of telomere replication by creating a single lacO-marked telomere and provide evidence suggesting that transposon expression and recruitment to telomeres is linked to telomere replication. The HeT-A-encoded ORF1p protein is expressed predominantly in S phase, particularly in early S phase. Orf1p binds HeT-A transcripts and forms spherical structures at telomeres undergoing DNA replication. HeT-A sphere formation requires Verrocchio, a putative homolog of the conserved Stn1 telomeric protein. Our results suggest that coupling of telomere elongation and telomere replication is a universal feature, and raise the possibility that transposon recruitment to Drosophila telomeres is mechanistically related to telomerase recruitment in other organisms. Our study also supports a co-adaptive relationship between the Drosophila host and HeT-A mobile elements. PMID:24733842

  15. Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat.

    PubMed

    Kraitshtein, Zina; Yaakov, Beery; Khasdan, Vadim; Kashkush, Khalil

    2010-11-01

    Allopolyploidy, or the combination of two or more distinct genomes in one nucleus, is usually accompanied by radical genomic changes involving transposable elements (TEs). The dynamics of TEs after an allopolyploidization event are poorly understood. In this study, we analyzed the methylation state and genetic rearrangements of a high copied, newly amplified terminal-repeat retrotransposon in miniature (TRIM) family in wheat termed Veju. We found that Veju insertion sites underwent massive methylation changes in the first four generations of a newly formed wheat allohexaploid. Hypomethylation or hypermethylation occurred in ∼43% of the tested insertion sites; while hypomethylation was significantly predominant in the first three generations of the newly formed allohexaploid, hypermethylation became predominant in the subsequent generation. In addition, we determined that the methylation state of Veju long terminal repeats (LTRs) might be correlated with the deletion and/or insertion of the TE. While most of the methylation changes and deletions of Veju occurred in the first generation of the newly formed allohexaploid, most Veju insertions were seen in the second generation. Finally, using quantitative PCR, we quantitatively assessed the genome composition of Veju in the newly formed allohexaploid and found that up to 50% of Veju LTRs were deleted in the first generation. Retrotransposition bursts in subsequent generations, however, led to increases in Veju elements. In light of these findings, the underlying mechanisms of TRIM rearrangements are discussed. PMID:20823338

  16. Differential introgression and reorganization of retrotransposons in hybrid zones between wild wheats.

    PubMed

    Senerchia, Natacha; Felber, François; North, Béatrice; Sarr, Anouk; Guadagnuolo, Roberto; Parisod, Christian

    2016-06-01

    The maintenance of species integrity despite pervasive hybridization is ruled by the interplay between reproductive barriers. Endogenous postzygotic isolation will shape the patterns of introgression in hybrid zones, leading to variable outcomes depending on the genetic mechanism involved. Here, we analysed experimental and natural hybrid populations of Aegilops geniculata and Aegilops triuncialis to examine the genetics of species boundaries in the face of gene flow. Because long-terminal repeat retrotransposons (LTR-RTs) showing differential evolutionary trajectories are probably to affect hybrid dysgenesis and reproductive isolation between these wild wheat species, we addressed the impact of LTR-RTs in shaping introgression between them. Experimental settings involving artificial sympatry and enforced crossings quantified strong, but incomplete reproductive isolation, and highlighted asymmetrical endogenous postzygotic isolation between the two species. Natural hybrid zones located in the northern Golan Heights were analysed using plastid DNA, amplified fragment length polymorphisms (AFLP) marking random sequences, and sequence-specific amplified polymorphisms (SSAP) tracking insertions from six LTR-RT families. This analysis demonstrated asymmetrical introgression and genome reorganization. In comparison with random sequences and quiescent LTR-RTs, those LTR-RTs predicted to be activated following conflicting interactions in hybrids revealed differential introgression across the hybrid zones. As also reported for synthetic F1 hybrids, such LTR-RTs were specifically reorganized in the genomes of viable hybrids, confirming that conflicts between selfish LTR-RTs may represent key incompatibilities shaping species boundaries and fostering long-term species integrity in the face of gene flow. PMID:26678573

  17. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci

    PubMed Central

    Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël

    2016-01-01

    LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617

  18. Serial number tagging reveals a prominent sequence preference of retrotransposon integration.

    PubMed

    Chatterjee, Atreyi Ghatak; Esnault, Caroline; Guo, Yabin; Hung, Stevephen; McQueen, Philip G; Levin, Henry L

    2014-07-01

    Transposable elements (TE) have both negative and positive impact on the biology of their host. As a result, a balance is struck between the host and the TE that relies on directing integration to specific genome territories. The extraordinary capacity of DNA sequencing can create ultra dense maps of integration that are being used to study the mechanisms that position integration. Unfortunately, the great increase in the numbers of insertion sites detected comes with the cost of not knowing which positions are rare targets and which sustain high numbers of insertions. To address this problem we developed the serial number system, a TE tagging method that measures the frequency of integration at single nucleotide positions. We sequenced 1 million insertions of retrotransposon Tf1 in the genome of Schizosaccharomyces pombe and obtained the first profile of integration with frequencies for each individual position. Integration levels at individual nucleotides varied over two orders of magnitude and revealed that sequence recognition plays a key role in positioning integration. The serial number system is a general method that can be applied to determine precise integration maps for retroviruses and gene therapy vectors. PMID:24948612

  19. Structure Prediction and Analysis of DNA Transposon and LINE Retrotransposon Proteins*

    PubMed Central

    Abrusán, György; Zhang, Yang; Szilágyi, András

    2013-01-01

    Despite the considerable amount of research on transposable elements, no large-scale structural analyses of the TE proteome have been performed so far. We predicted the structures of hundreds of proteins from a representative set of DNA and LINE transposable elements and used the obtained structural data to provide the first general structural characterization of TE proteins and to estimate the frequency of TE domestication and horizontal transfer events. We show that 1) ORF1 and Gag proteins of retrotransposons contain high amounts of structural disorder; thus, despite their very low conservation, the presence of disordered regions and probably their chaperone function is conserved. 2) The distribution of SCOP classes in DNA transposons and LINEs indicates that the proteins of DNA transposons are more ancient, containing folds that already existed when the first cellular organisms appeared. 3) DNA transposon proteins have lower contact order than randomly selected reference proteins, indicating rapid folding, most likely to avoid protein aggregation. 4) Structure-based searches for TE homologs indicate that the overall frequency of TE domestication events is low, whereas we found a relatively high number of cases where horizontal transfer, frequently involving parasites, is the most likely explanation for the observed homology. PMID:23530042

  20. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris.

    PubMed

    Wenke, Torsten; Holtgräwe, Daniela; Horn, Axel V; Weisshaar, Bernd; Schmidt, Thomas

    2009-12-01

    We describe a non-LTR retrotransposon family,BvL, of the long interspersed nuclear elements L1 clade isolated from sugar beet (Beta vulgaris). Characteristic molecular domains of three full-length BvL elements were determined in detail, showing that coding sequences are interrupted and most likely non-functionally. In addition,eight highly conserved endonuclease regions were defined by comparison with other plant LINEs. The abundant BvL family is widespread within the genus Beta, however, the vast majority of BvL copies are extremely 50 truncated indicating an error-prone reverse transcriptase activity. The dispersed distribution of BvL copies on all sugar beet chromosomes with exclusion of most heterochromatic regions was shown by fluorescent in situ hybridization. The analysis of BvL 30 end sequences and corresponding flanking regions, respectively, revealed the preferred integration of BvL into A/T-rich regions of the sugar beet genome, but no specific target sequences. PMID:19697140

  1. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation

    PubMed Central

    Senerchia, Natacha; Felber, François; Parisod, Christian

    2015-01-01

    Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation. PMID:25716787

  2. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation.

    PubMed

    Senerchia, Natacha; Felber, François; Parisod, Christian

    2015-04-01

    Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation. PMID:25716787

  3. The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm

    PubMed Central

    Liu, Zhen; Li, Xinxin; Wang, Tingzhang; Messing, Joachim; Xu, Jian-Hong

    2015-01-01

    TRIMs (terminal-repeat retrotransposons in miniature), which are characterized by their small size, have been discovered in all investigated vascular plants and even in animals. Here, we identified a highly conservative TRIM family referred to as Wukong elements in the maize genome. The Wukong family shows a distinct pattern of tandem arrangement in the maize genome suggesting a high rate of unequal crossing over. Estimation of insertion times implies a burst of retrotransposition activity of the Wukong family after the allotetraploidization of maize. Using next-generation sequencing data, we detected 87 new Wukong insertions in parents of the maize NAM population relative to the B73 reference genome and found abundant insertion polymorphism of Wukong elements in 75 re-sequenced maize lines, including teosinte, landraces, and improved lines. These results suggest that Wukong elements possessed a persistent retrotransposition activity throughout maize evolution. Moreover, the phylogenetic relationships among 76 maize inbreds and their relatives based on insertion polymorphisms of Wukong elements should provide us with reliable molecular markers for biodiversity and genetics studies. PMID:26019188

  4. Locus-specific DNA methylation analysis of retrotransposons in ES, somatic and cancer cells using High-Throughput Targeted Repeat Element Bisulfite Sequencing

    PubMed Central

    Bakshi, Arundhati; Ekram, Muhammad B.; Kim, Joomyeong

    2014-01-01

    DNA methylation is a major epigenetic mark associated with multiple aspects of retrotransposons within the mammalian genome. In order to study DNA methylation of a large number of retrotransposons on an individual-locus basis, we have developed a new protocol termed High-Throughput Targeted Repeat Element Bisulfite Sequencing (HT-TREBS) (Ekram and Kim, 2014 [1]). We have used this technique to characterize the locus-specific patterns of DNA methylation of 4799 members of the mouse IAP LTR (Intracisternal A Particle Long Terminal Repeat) retrotransposon family in embryonic stem, somatic and Neuro2A cells (Bakshi and Kim, 2014 [2]). Here we describe in detail the sample preparation and bioinformatics analyses used for these studies. The somatic cell data may be accessed under GEO accession number GSE49222. The ES and Neuro2A data are deposited under GEO accession number GSE60007. PMID:25554740

  5. Lizards and LINEs: Selection and Demography Affect the Fate of L1 Retrotransposons in the Genome of the Green Anole (Anolis carolinensis)

    PubMed Central

    Tollis, Marc; Boissinot, Stéphane

    2013-01-01

    Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array of non-LTR retrotransposon families, whereas copy number is relatively low. The majority of non-LTR retrotransposon insertions in nonmammalian vertebrates also appear to be very recent, suggesting strong purifying selection limits the accumulation of non-LTR retrotransposon copies. It is however unclear whether this turnover model, originally proposed in Drosophila, applies to nonmammalian vertebrates. Here, we studied the population dynamics of L1 in the green anole lizard (Anolis carolinensis). We found that although most L1 elements are recent in this genome, truncated insertions accumulate readily, and many are fixed at both the population and species level. In contrast, full-length L1 insertions are found at lower population frequencies, suggesting that the turnover model only applies to longer L1 elements in Anolis. We also found that full-length L1 inserts are more likely to be fixed in populations of small effective size, suggesting that the strength of purifying selection against deleterious alleles is highly dependent on host demographic history. Similar mechanisms seem to be controlling the fate of non-LTR retrotransposons in both Anolis and teleostean fish, which suggests that mammals have considerably diverged from the ancestral vertebrate in terms of how they interact with their intragenomic parasites. PMID:24013105

  6. Curiously composite structures of a retrotransposon and a complex repeat associated with chromosome ends of Rhynchosciara americana (Diptera: Sciaridae).

    PubMed

    Madalena, Christiane Rodriguez Gutierrez; Fernandes, Thiago; Villasante, Alfredo; Gorab, Eduardo

    2010-07-01

    In Drosophila, telomere retrotransposons counterbalance the loss of telomeric DNA. The exceptional mechanism of telomere recovery characterized in Drosophila has not been found in lower dipterans (Nematocera). However, a retroelement resembling a telomere transposon and termed "RaTART" has been described in the nematoceran Rhynchosciara americana. In this work, DNA and protein sequence analyses, DNA cloning, and chromosomal localization of probes obtained either by PCR or by screening a genomic library were carried out in order to examine additional features of this retroelement. The analyses performed raise the possibility that RaTART represents a genomic clone composed of distinct repetitive elements, one of which is likely to be responsible for its apparent enrichment at chromosome ends. RaTART sequence in addition allowed to assess a novel subtelomeric region of R. americana chromosomes that was analyzed in this work after subcloning a DNA fragment from a phage insert. It contains a complex repeat that is located in the vicinity of simple and complex tandem repeats characterized previously. Quantification data suggest that the copy number of the repeat is significantly lower than that observed for the ribosomal DNA in the salivary gland of R. americana. A short insertion of the RaTART was identified in the cloned segment, which hybridized preferentially to subtelomeres. Like RaTART, it displays truncated sequences related to distinct retrotransposons, one of which has a conceptual translation product with significant identity with an endonuclease from a lepidopteran retrotransposon. The composite structure of this DNA stretch probably reflects mobile element activity in the subtelomeric region analyzed in this work. PMID:20607598

  7. Mapping of retrotransposon sequences in the unstable region surrounding the spinal muscular atrophy locus in 5q13

    SciTech Connect

    Francis, M.J.; Nesbit, M.A.; Theodosiou, A.M.

    1995-05-20

    The mutation that underlies the autosomal recessive disorder spinal muscular atrophy (SMA) is located on chromosome 5q13. Recent studies show that SMA patients frequently have deletions and rearrangements in this region compared to normal controls. During the isolation of candidate cDNAs for the disease, the authors identified a sequence that shows high homology to the THE-1 retrotransposon gene family. Using YAC fragmentation techniques, they have refined the localization of this sequence to the domain known to show instability in SMA patients. The implication of these results for the mechanism of the mutation in SMA is discussed. 20 refs., 1 fig.

  8. Evolution of the R2 Retrotransposon Ribozyme and Its Self-Cleavage Site

    PubMed Central

    Eickbush, Danna G.; Burke, William D.; Eickbush, Thomas H.

    2013-01-01

    R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed. PMID:24066021

  9. The Reverse Transcriptase Encoded by LINE-1 Retrotransposons in the Genesis, Progression, and Therapy of Cancer

    PubMed Central

    Sciamanna, Ilaria; De Luca, Chiara; Spadafora, Corrado

    2016-01-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the non-nucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumors are therapeutically sensitive to RT inhibitors. We summarize mechanistic and gene profiling studies indicating that abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis with possible implications for cancer cell heterogeneity. PMID:26904537

  10. Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons

    PubMed Central

    George, Janet A.; Traverse, Karen L.; DeBaryshe, P. G.; Kelley, Kerry J.; Pardue, Mary-Lou

    2010-01-01

    The retrotransposons HeT-A, TART, and TAHRE, which maintain Drosophila telomeres, transpose specifically onto chromosome ends to form long arrays that extend the chromosome and compensate for terminal loss. Because they transpose by target-primed reverse transcription, each element is oriented so that its 5′ end serves as the extreme end of the chromosome until another element transposes to occupy the terminal position. Thus 5′ sequences are at risk for terminal erosion while the element is at the chromosome end. Here we report that TART elements in Drosophila melanogaster and Drosophila virilis show species-specific innovations in promoter architecture that buffer loss of sequence exposed at chromosome ends. The two elements have evolved different ways to effect this protection. The D. virilis TART (TARTvir) promoter is found in the 3′ UTR of the element directly upstream of the element transcribed. Transcription starts within the upstream element so that a “Tag” of extra sequence is added to the 5′ end of the newly transcribed RNA. This Tag provides expendable sequence to buffer end erosion of essential 5′ sequence after the RNA is reverse transcribed onto the chromosome. In contrast, the D. melanogaster TART (TARTmel) promoter initiates transcription deep within the 5′ UTR, but the element is able to replace and extend the 5′ UTR sequence by copying sequence from its 3′ UTR, we believe while being reverse transcribed onto the chromosome end. Astonishingly, end-protection in TARTvir and HeT-Amel are essentially identical (using Tags), whereas HeT-Avir is clearly protected from end erosion by an as-yet-unspecified program. PMID:21088221

  11. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration

    PubMed Central

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony

    2012-01-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491

  12. Evolutionary Dynamics of the Ty3/Gypsy LTR Retrotransposons in the Genome of Anopheles gambiae

    PubMed Central

    Tubio, Jose Manuel C.; Tojo, Marta; Bassaganyas, Laia; Escaramis, Georgia; Sharakhov, Igor V.; Sharakhova, Maria V.; Tornador, Cristian; Unger, Maria F.; Naveira, Horacio; Costas, Javier; Besansky, Nora J.

    2011-01-01

    Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr) groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis. PMID:21283637

  13. Distinct influences of tandem repeats and retrotransposons on CENH3 nucleosome positioning

    PubMed Central

    2011-01-01

    Background Unique structural characteristics of centromere chromatin enable it to support assembly of the kinetochore and its associated tensions. The histone H3 variant CENH3 (centromeric histone H3) is viewed as the key element of centromere chromatin and its interaction with centromere DNA is epigenetic in that its localization to centromeres is not sequence-dependent. Results In order to investigate what influence the DNA sequence exerts on CENH3 chromatin structure, we examined CENH3 nucleosome footprints on maize centromere DNA. We found a predominant average nucleosome spacing pattern of roughly 190-bp intervals, which was also the dominant arrangement for nucleosomes genome-wide. For CENH3-containing nucleosomes, distinct modes of nucleosome positioning were evident within that general spacing constraint. Over arrays of the major ~156-bp centromeric satellite sequence (tandem repeat) CentC, nucleosomes were not positioned in register with CentC monomers but in conformity with a striking ~10-bp periodicity of AA/TT dimers within the sequence. In contrast, nucleosomes on a class of centromeric retrotransposon (CRM2) lacked a detectable AA/TT periodicity but exhibited tightly phased positioning. Conclusions These data support a model in which general chromatin factors independent of both DNA sequence and CENH3 enforce roughly uniform centromeric nucleosome spacing while allowing flexibility in the mode in which nucleosomes are positioned. In the case of tandem repeat DNA, the natural bending effects related to AA/TT periodicity produce an energetically-favourable arrangement consistent with conformationally rigid nucleosomes and stable chromatin at centromeres. PMID:21352520

  14. Expression of the Retrotransposon Helena Reveals a Complex Pattern of TE Deregulation in Drosophila Hybrids.

    PubMed

    Romero-Soriano, Valèria; Garcia Guerreiro, Maria Pilar

    2016-01-01

    Transposable elements (TEs), repeated mobile sequences, are ubiquitous in the eukaryotic kingdom. Their mobilizing capacity confers on them a high mutagenic potential, which must be strongly regulated to guarantee genome stability. In the Drosophila germline, a small RNA-mediated silencing system, the piRNA (Piwi-interacting RNA) pathway, is the main responsible TE regulating mechanism, but some stressful conditions can destabilize it. For instance, during interspecific hybridization, genomic stress caused by the shock of two different genomes can lead, in both animals and plants, to higher transposition rates. A recent study in D. buzatii-D. koepferae hybrids detected mobilization of 28 TEs, yet little is known about the molecular mechanisms explaining this transposition release. We have characterized one of the mobilized TEs, the retrotransposon Helena, and used quantitative expression to assess whether its high transposition rates in hybrids are preceded by increased expression. We have also localized Helena expression in the gonads to see if cellular expression patterns have changed in the hybrids. To give more insight into changes in TE regulation in hybrids, we analysed Helena-specific piRNA populations of hybrids and parental species. Helena expression is not globally altered in somatic tissues, but male and female gonads have different patterns of deregulation. In testes, Helena is repressed in F1, increasing then its expression up to parental values. This is linked with a mislocation of Helena transcripts along with an increase of their specific piRNA levels. Ovaries have additive levels of Helena expression, but the ping-pong cycle efficiency seems to be reduced in F1 hybrids. This could be at the origin of new Helena insertions in hybrids, which would be transmitted to F1 hybrid female progeny. PMID:26812285

  15. Expression of the Retrotransposon Helena Reveals a Complex Pattern of TE Deregulation in Drosophila Hybrids

    PubMed Central

    Romero-Soriano, Valèria; Garcia Guerreiro, Maria Pilar

    2016-01-01

    Transposable elements (TEs), repeated mobile sequences, are ubiquitous in the eukaryotic kingdom. Their mobilizing capacity confers on them a high mutagenic potential, which must be strongly regulated to guarantee genome stability. In the Drosophila germline, a small RNA-mediated silencing system, the piRNA (Piwi-interacting RNA) pathway, is the main responsible TE regulating mechanism, but some stressful conditions can destabilize it. For instance, during interspecific hybridization, genomic stress caused by the shock of two different genomes can lead, in both animals and plants, to higher transposition rates. A recent study in D. buzatii—D. koepferae hybrids detected mobilization of 28 TEs, yet little is known about the molecular mechanisms explaining this transposition release. We have characterized one of the mobilized TEs, the retrotransposon Helena, and used quantitative expression to assess whether its high transposition rates in hybrids are preceded by increased expression. We have also localized Helena expression in the gonads to see if cellular expression patterns have changed in the hybrids. To give more insight into changes in TE regulation in hybrids, we analysed Helena-specific piRNA populations of hybrids and parental species. Helena expression is not globally altered in somatic tissues, but male and female gonads have different patterns of deregulation. In testes, Helena is repressed in F1, increasing then its expression up to parental values. This is linked with a mislocation of Helena transcripts along with an increase of their specific piRNA levels. Ovaries have additive levels of Helena expression, but the ping-pong cycle efficiency seems to be reduced in F1 hybrids. This could be at the origin of new Helena insertions in hybrids, which would be transmitted to F1 hybrid female progeny. PMID:26812285

  16. Control of gag-pol gene expression in the Candida albicans retrotransposon Tca2

    PubMed Central

    Forbes, Elaine M; Nieduszynska, Siân R; Brunton, Fiona K; Gibson, Joanne; Glover, L Anne; Stansfield, Ian

    2007-01-01

    Background In the C. albicans retrotransposon Tca2, the gag and pol ORFs are separated by a UGA stop codon, 3' of which is a potential RNA pseudoknot. It is unclear how the Tca2 gag UGA codon is bypassed to allow pol expression. However, in other retroelements, translational readthrough of the gag stop codon can be directed by its flanking sequence, including a 3' pseudoknot. Results The hypothesis was tested that in Tca2, gag stop codon flanking sequences direct translational readthrough and synthesis of a gag-pol fusion protein. Sequence from the Tca2 gag-UGA-pol junction (300 nt) was inserted between fused lacZ and luciferase (luc) genes in a Saccharomyces cerevisiae dual reporter construct. Although downstream of UGA, luc was expressed, but its expression was unaffected by inserting additional stop codons at the 3' end of lacZ. Luc expression was instead being driven by a previously unknown minor promoter activity within the gag-pol junction region. Evidence together indicated that junction sequence alone cannot direct UGA readthrough. Using reporter genes in C. albicans, the activities of this gag-pol junction promoter and the Tca2 long terminal repeat (LTR) promoter were compared. Of the two promoters, only the LTR promoter was induced by heat-shock, which also triggers retrotransposition. Tca2 pol protein, epitope-tagged in C. albicans to allow detection, was also heat-shock induced, indicating that pol proteins were expressed from a gag-UGA-pol RNA. Conclusion This is the first demonstration that the LTR promoter directs Tca2 pol protein expression, and that pol proteins are translated from a gag-pol RNA, which thus requires a mechanism for stop codon bypass. However, in contrast to most other retroelement and viral readthrough signals, immediate gag UGA-flanking sequences were insufficient to direct stop readthrough in S. cerevisiae, indicating non-canonical mechanisms direct gag UGA bypass in Tca2. PMID:17961216

  17. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    NASA Astrophysics Data System (ADS)

    Sciamanna, Ilaria; De Luca, Chiara; Spadafora, Corrado

    2016-02-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  18. A Novel Terminal-Repeat Retrotransposon in Miniature (TRIM) Is Massively Expressed in Echinococcus multilocularis Stem Cells

    PubMed Central

    Koziol, Uriel; Radio, Santiago; Smircich, Pablo; Zarowiecki, Magdalena; Fernández, Cecilia; Brehm, Klaus

    2015-01-01

    Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes. PMID:26133390

  19. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3

    PubMed Central

    Chaurasiya, Kathy R.; Geertsema, Hylkje; Cristofari, Gaël; Darlix, Jean-Luc; Williams, Mark C.

    2012-01-01

    Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC. PMID:21917850

  20. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3.

    PubMed

    Chaurasiya, Kathy R; Geertsema, Hylkje; Cristofari, Gaël; Darlix, Jean-Luc; Williams, Mark C

    2012-01-01

    Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC. PMID:21917850

  1. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  2. Genomic Change, Retrotransposon Mobilization and Extensive Cytosine Methylation Alteration in Brassica napus Introgressions from Two Intertribal Hybridizations

    PubMed Central

    Zhang, Xueli; Ge, Xianhong; Shao, Yujiao; Sun, Genlou; Li, Zaiyun

    2013-01-01

    Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4–39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed. PMID:23468861

  3. Variation in Copy Number of Ty3/Gypsy Centromeric Retrotransposons in the Genomes of Thinopyrum intermedium and Its Diploid Progenitors

    PubMed Central

    Divashuk, Mikhail G.; Khuat, Thi Mai L.; Kroupin, Pavel Yu.; Kirov, Ilya V.; Romanov, Dmitry V.; Kiseleva, Anna V.; Khrustaleva, Ludmila I.; Alexeev, Dmitry G.; Zelenin, Alexandr S.; Klimushina, Marina V.; Razumova, Olga V.; Karlov, Gennady I.

    2016-01-01

    Speciation and allopolyploidization in cereals may be accompanied by dramatic changes in abundance of centromeric repeated transposable elements. Here we demonstrate that the reverse transcriptase part of Ty3/gypsy centromeric retrotransposon (RT-CR) is highly conservative in the segmental hexaploid Thinopyrum intermedium (JrJvsSt) and its possible diploid progenitors Th. bessarabicum (Jb), Pseudoroegneria spicata (St) and Dasypyrum villosum (V) but the abundance of the repeats varied to a large extent. Fluorescence in situ hybridization (FISH) showed hybridization signals in centromeric region of all chromosomes in the studied species, although the intensity of the signals drastically differed. In Th. intermedium, the strongest signal of RT-CR probe was detected on the chromosomes of Jv, intermediate on Jr and faint on Js and St subgenome suggesting different abundance of RT-CR on the individual chromosomes rather than the sequence specificity of RT-CRs of the subgenomes. RT-CR quantification using real-time PCR revealed that its content per genome in Th. bessarabicum is ~ 2 times and P. spicata is ~ 1,5 times higher than in genome of D. villosum. The possible burst of Ty3/gypsy centromeric retrotransposon in Th. intermedium during allopolyploidization and its role in proper mitotic and meiotic chromosome behavior in a nascent allopolyploid is discussed. PMID:27119343

  4. Proliferation and copy number variation of BEL-like long terminal repeat retrotransposons within the Diabrotica virgifera virgifera genome.

    PubMed

    Coates, Brad S; Fraser, Lisa M; French, B Wade; Sappington, Thomas W

    2014-01-25

    The proliferation of retrotransposons within a genome can contribute to increased size and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the Western corn rootworm, using survey sequences from bacterial artificial chromosome (BAC) inserts and contigs derived from a low coverage next-generation genome sequence assembly. Eleven unique D. v. virgifera BEL elements were identified that contained full-length gag-pol coding sequences, whereas 88 different partial coding regions were characterized from partially assembled elements. Estimated genome copy number for full and partial BEL-like elements ranged from ~8 to 1582 among individual contigs using a normalized depth of coverage (DOC) among Illumina HiSeq reads (total genome copy number ~8821). BEL element copy number was correlated among different D. v. virgifera populations (R2=0.9846), but individual element numbers varied ≤ 1.68-fold and the total number varied by ~527 copies. These data indicate that BEL element proliferation likely contributed to a large genome size, and suggest that differences in copy number are a source of genetic variability among D. v. virgifera. PMID:24498652

  5. Proliferation and copy number variation of BEL-like long terminal repeat retrotransposons within the Diabrotica virgifera virgifera genome.

    PubMed

    Coates, Brad S; Fraser, Lisa M; French, B Wade; Sappington, Thomas W

    2013-10-25

    The proliferation of retrotransposons within a genome can contribute to increased size and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the western corn rootworm, using survey sequences from bacterial artificial chromosome (BAC) inserts and contigs derived from a low coverage next-generation genome sequence assembly. Eleven unique D. v. virgifera BEL elements were identified that contained full-length gag-pol coding sequences, whereas 88 different partial coding regions were characterized from partially assembled elements. Estimated genome copy number for full and partial BEL-like elements ranged from ~8 to 1,582 among individual contigs using a normalized depth of coverage (DOC) among Illumina HiSeq reads (total genome copy number ~8,821). BEL element copy number was correlated among different D. v. virgifera populations (R(2)=0.9846), but individual element numbers varied≤1.68-fold and the total number varied by ~527 copies. These data indicate that BEL element proliferation likely contributed to a large genome size, and suggest that differences in copy number are a source of genetic variability among D. v. virgifera. PMID:24513336

  6. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans.

    PubMed Central

    Malik, H S; Eickbush, T H

    2000-01-01

    Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition. PMID:10628980

  7. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians.

    PubMed

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-09-01

    Gene targeting of mouse Sushi-ichi-related retrotransposon homologue 11/Zinc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1. PMID:26402067

  8. HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse

    PubMed Central

    Ichiyanagi, Tomoko; Ichiyanagi, Kenji; Ogawa, Ayako; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Chuma, Shinichiro; Sasaki, Hiroyuki; Udono, Heiichiro

    2014-01-01

    HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals. PMID:25262350

  9. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1.

    PubMed

    Leung, Danny; Du, Tingting; Wagner, Ulrich; Xie, Wei; Lee, Ah Young; Goyal, Preeti; Li, Yujing; Szulwach, Keith E; Jin, Peng; Lorincz, Matthew C; Ren, Bing

    2014-05-01

    During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed. PMID:24757056

  10. Protein Interactions Involved in tRNA Gene-Specific Integration of Dictyostelium discoideum Non-Long Terminal Repeat Retrotransposon TRE5-A▿

    PubMed Central

    Chung, Thanh; Siol, Oliver; Dingermann, Theodor; Winckler, Thomas

    2007-01-01

    Mobile genetic elements that reside in gene-dense genomes face the problem of avoiding devastating insertional mutagenesis of genes in their host cell genomes. To meet this challenge, some Saccharomyces cerevisiae long terminal repeat (LTR) retrotransposons have evolved targeted integration at safe sites in the immediate vicinity of tRNA genes. Integration of yeast Ty3 is mediated by interactions of retrotransposon protein with the tRNA gene-specific transcription factor IIIB (TFIIIB). In the genome of the social amoeba Dictyostelium discoideum, the non-LTR retrotransposon TRE5-A integrates ∼48 bp upstream of tRNA genes, yet little is known about how the retrotransposon identifies integration sites. Here, we show direct protein interactions of the TRE5-A ORF1 protein with subunits of TFIIIB, suggesting that ORF1p is a component of the TRE5-A preintegration complex that determines integration sites. Our results demonstrate that evolution has put forth similar solutions to prevent damage of diverse, compact genomes by different classes of mobile elements. PMID:17923679

  11. A new member of a family of site-specific retrotransposons is present in the spliced leader RNA genes of Trypanosoma cruzi.

    PubMed Central

    Villanueva, M S; Williams, S P; Beard, C B; Richards, F F; Aksoy, S

    1991-01-01

    A new member of a family of site-specific retrotransposons is described in the New World trypanosome Trypanosoma cruzi. This element, CZAR (cruzi-associated retrotransposon), resembles two previously described retrotransposons found in the African trypanosome T. brucei gambiense and the mosquito trypanosomatid Crithidia fasciculata in specifically inserting between nucleotides 11 and 12 of the highly conserved 39-mer of the spliced leader RNA (SL-RNA) gene. CZAR is similar in overall organization to the other two SL-RNA-associated elements. It possesses two potential long open reading frames which resemble the gag and pol genes of retroviruses. In the pol open reading frame, all three elements contain similarly arranged endonuclease domains and share extensive amino acid homology in the reverse transcriptase region. All are associated with the SL-RNA gene locus and are present in low copy numbers. They do not appear to have 5' truncated versions. All three retrotransposons are otherwise quite distinct from one another, with no significant overall amino acid homology. The presence of such retroelements inserted into the identical site within SL-RNA gene sequences in at least three evolutionarily distant trypanosomatid species argues for a functional role. Because these elements appear to have a precise target site requirement for integration, we refer to them as SL siteposons. Images PMID:1719380

  12. The Juan non-LTR retrotransposon in mosquitoes: genomic impact, vertical transmission and indications of recent and widespread activity

    PubMed Central

    Biedler, James K; Tu, Zhijian

    2007-01-01

    Background In contrast to DNA-mediated transposable elements (TEs), retrotransposons, particularly non-long terminal repeat retrotransposons (non-LTRs), are generally considered to have a much lower propensity towards horizontal transfer. Detailed studies on site-specific non-LTR families have demonstrated strict vertical transmission. More studies are needed with non-site-specific non-LTR families to determine whether strict vertical transmission is a phenomenon related to site specificity or a more general characteristic of all non-LTRs. Juan is a Jockey clade non-LTR retrotransposon first discovered in mosquitoes that is widely distributed in the mosquito family Culicidae. Being a non-site specific non-LTR, Juan offers an opportunity to further investigate the hypothesis that non-LTRs are genomic elements that are primarily vertically transmitted. Results Systematic analysis of the ~1.3 Gbp Aedes aegypti (Ae. aegypti) genome sequence suggests that Juan-A is the only Juan-type non-LTR in Aedes aegypti. Juan-A is highly reiterated and comprises approximately 3% of the genome. Using minimum cutoffs of 90% length and 70% nucleotide (nt) identity, 663 copies were found by BLAST using the published Juan-A sequence as the query. All 663 copies are at least 95% identical to Juan-A, while 378 of these copies are 99% identical to Juan-A, indicating that the Juan-A family has been transposing recently in evolutionary history. Using the 0.34 Kb 5' UTR as the query, over 2000 copies were identified that may contain internal promoters, leading to questions on the genomic impact of Juan-A. Juan sequences were obtained by PCR, library screening, and database searches for 18 mosquito species of six genera including Aedes, Ochlerotatus, Psorophora, Culex, Deinocerites, and Wyeomyia. Comparison of host and Juan phylogenies shows overall congruence with few exceptions. Conclusion Juan-A is a major genomic component in Ae. aegypti and it has been retrotransposing recently in

  13. Identification of a 5' truncated non-LTR-retrotransposon, YAKPs1, from the variegated cutworm, Peridroma saucia, using PCR.

    PubMed

    Ring, M; Pfeifer, T A; Grigliatti, T A

    1996-05-01

    Retrotransposable elements encode for several polypeptides that contain a number of conserved amino acid motifs, especially in the region encoding reverse transcriptase. We have used these motifs to design primers for the PCR amplification of retrotransposon DNA. These primers have allowed us to isolate a retroposon, or LINE (long interspersed nuclear element), from the pest insect, Peridroma saucia. DNA sequence analysis of this element, YAKPs1, demonstrated a high degree of homology to a number of retroposons from Drosophila melanogaster, in particular the Fw and Doc elements with homologies of up to 69%. Determination of the complete sequence of the YAKPs1 element will enable a detailed analysis of its evolutionary relatedness to other elements as well as a greater insight into its mode of action. PMID:8763168

  14. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates.

    PubMed

    Naville, M; Warren, I A; Haftek-Terreau, Z; Chalopin, D; Brunet, F; Levin, P; Galiana, D; Volff, J-N

    2016-04-01

    Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage. PMID:26899828

  15. Nimbus (BgI): An active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata✰

    PubMed Central

    Raghavan, Nithya; Tettelin, Hervé; Miller, André; Hostetler, Jessica; Tallon, Luke; Knight, Matty

    2009-01-01

    The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95 Kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764 bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterized from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World. PMID:17521654

  16. An Evaluation of a SVA Retrotransposon in the FUS Promoter as a Transcriptional Regulator and Its Association to ALS

    PubMed Central

    Khursheed, Kejhal; Shatunov, Aleksey; Morrison, Karen E.; Shaw, Pamela J.; Shaw, Christopher E.; Smith, Bradley; Breen, Gerome; Al-Chalabi, Ammar; Moss, Diana; Bubb, Vivien J.; Quinn, John P.

    2014-01-01

    Genetic mutations of FUS have been linked to many diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration. A primate specific and polymorphic retrotransposon of the SINE-VNTR-Alu (SVA) family is present upstream of the FUS gene. Here we have demonstrated that this retrotransposon can act as a classical transcriptional regulatory domain in the context of a reporter gene construct both in vitro in the human SK-N-AS neuroblastoma cell line and in vivo in a chick embryo model. We have also demonstrated that the SVA is composed of multiple distinct regulatory domains, one of which is a variable number tandem repeat (VNTR). The ability of the SVA and its component parts to direct reporter gene expression supported a hypothesis that this region could direct differential FUS expression in vivo. The SVA may therefore contribute to the modulation of FUS expression exhibited in and associated with neurological disorders including ALS where FUS regulation may be an important parameter in progression of the disease. As VNTRs are often clinical associates for disease progression we determined the extent of polymorphism within the SVA. In total 2 variants of the SVA were identified based within a central VNTR. Preliminary analysis addressed the association of these SVA variants within a small sporadic ALS cohort but did not reach statistical significance, although we did not include other parameters such as SNPs within the SVA or an environmental factor in this analysis. The latter may be particularly important as the transcriptional and epigenetic properties of the SVA are likely to be directed by the environment of the cell. PMID:24608899

  17. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae)

    PubMed Central

    Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas

    2013-01-01

    Background and Aims The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. Methods A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100–500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Key Results Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S–5·8S–25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. Conclusions The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species. PMID:23666888

  18. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    PubMed Central

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-01-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  19. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications

    PubMed Central

    2013-01-01

    Background Sympatric species pairs are particularly common in freshwater fishes associated with postglacial lakes in northern temperate environments. The nature of divergences between co-occurring sympatric species, factors contributing to reproductive isolation and modes of genome evolution is a much debated topic in evolutionary biology addressed by various experimental tools. To the best of our knowledge, nobody approached this field using molecular cytogenetics. We examined chromosomes and genomes of one postglacial species pair, sympatric European winter-spawning Coregonus albula and the local endemic dwarf-sized spring-spawning C. fontanae, both originating in Lake Stechlin. We have employed molecular cytogenetic tools to identify the genomic differences between the two species of the sympatric pair on the sub-chromosomal level of resolution. Results Fluorescence in situ hybridization (FISH) experiments consistently revealed a distinct variation in the copy number of loci of the major ribosomal DNA (the 45S unit) between C. albula and C. fontanae genomes. In C. fontanae, up to 40 chromosomes were identified to bear a part of the major ribosomal DNA, while in C. albula only 8–10 chromosomes possessed these genes. To determine mechanisms how such extensive genome alternation might have arisen, a PCR screening for retrotransposons from genomic DNA of both species was performed. The amplified retrotransposon Rex1 was used as a probe for FISH mapping onto chromosomes of both species. These experiments showed a clear co-localization of the ribosomal DNA and the retrotransposon Rex1 in a pericentromeric region of one or two acrocentric chromosomes in both species. Conclusion We demonstrated genomic consequences of a rapid ecological speciation on the level undetectable by neither sequence nor karyotype analysis. We provide indirect evidence that ribosomal DNA probably utilized the spreading mechanism of retrotransposons subsequently affecting recombination rates

  20. A subtelomeric non-LTR retrotransposon Hebe in the bdelloid rotifer Adineta vaga is subject to inactivation by deletions but not 5' truncations

    PubMed Central

    2010-01-01

    Background Rotifers of the class Bdelloidea are microscopic freshwater invertebrates best known for: their capacity for anhydrobiosis; the lack of males and meiosis; and for the ability to capture genes from other non-metazoan species. Although genetic exchange between these animals might take place by non-canonical means, the overall lack of meiosis and syngamy should greatly impair the ability of transposable elements (TEs) to spread in bdelloid populations. Previous studies demonstrated that bdelloid chromosome ends, in contrast to gene-rich regions, harbour various kinds of TEs, including specialized telomere-associated retroelements, as well as DNA TEs and retrovirus-like retrotransposons which are prone to horizontal transmission. Vertically-transmitted retrotransposons have not previously been reported in bdelloids and their identification and studies of the patterns of their distribution and evolution could help in the understanding of the high degree of TE compartmentalization within bdelloid genomes. Results We identified and characterized a non-long terminal repeat (LTR) retrotransposon residing primarily in subtelomeric regions of the genome in the bdelloid rotifer Adineta vaga. Contrary to the currently prevailing views on the mode of proliferation of non-LTR retrotransposons, which results in frequent formation of 5'-truncated ('dead-on-arrival') copies due to the premature disengagement of the element-encoded reverse transcriptase from its template, this non-LTR element, Hebe, is represented only by non-5'-truncated copies. Most of these copies, however, were subject to internal deletions associated with microhomologies, a hallmark of non-homologous end-joining events. Conclusions The non-LTR retrotransposon Hebe from the bdelloid rotifer A. vaga was found to undergo frequent microhomology-associated deletions, rather than 5'-terminal truncations characteristic of this class of retrotransposons, and to exhibit preference for telomeric localization

  1. Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons.

    PubMed Central

    Burch, J B; Davis, D L; Haas, N B

    1993-01-01

    Chicken genomes contain approximately 30,000 chicken repeat 1 (CR1) elements scattered among single-copy sequences, but no information has yet been presented to account for how these elements could have dispersed. The fact that CR1 elements have common (although atypical) 3' ends and variable 5' truncations suggested to us that they might belong to the class of non-long terminal repeat retrotransposons that encode reverse transcriptases. From an analysis of unusually large CR1 elements, we now provide evidence for the presence of such a reverse transcriptase open reading frame. CR1 elements are distantly related to previously described non-long terminal repeat retrotransposons; however, we find that frog and torpedo ray genomes contain dispersed open reading frame segments that have > 50% identity to the CR1 open reading frame. This result suggests that CR1-like elements exist in several vertebrate classes that have evolved independently for approximately 400 million years. PMID:8396264

  2. Identification of a novel PNMA-MS1 gene in marsupials suggests the LTR retrotransposon-derived PNMA genes evolved differently in marsupials and eutherians.

    PubMed

    Iwasaki, Sawa; Suzuki, Shunsuke; Pelekanos, Matthew; Clark, Helen; Ono, Ryuichi; Shaw, Geoff; Renfree, Marilyn B; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2013-10-01

    Two major gene families derived from Ty3/Gypsy long terminal repeat (LTR) retrotransposons were recently identified in mammals. The sushi-ichi retrotransposon homologue (SIRH) family comprises 12 genes: 11 in eutherians including Peg10 and Peg11/Rtl1 that have essential roles in the eutherian placenta and 1 that is marsupial specific. Fifteen and 12 genes were reported in the second gene family, para-neoplastic antigen MA (PNMA), in humans and mice, respectively, although their biological functions and evolutionary history remain largely unknown. Here, we identified two novel candidate PNMA genes, PNMA-MS1 and -MS2 in marsupials. Like all eutherian-specific PNMA genes, they exhibit the highest homology to a Gypsy12_DR (DR, Danio rerio) Gag protein. PNMA-MS1 is conserved in both Australian and South American marsupial species, the tammar wallaby and grey short-tailed opossum. However, no PNMA-MS1 orthologue was found in eutherians, monotremes or non-mammalian vertebrates. PNMA-MS1 was expressed in the ovary, mammary gland and brain during development and growth in the tammar, suggesting that PNMA-MS1 may have acquired a marsupial-specific function. However, PNMA-MS2 seems to be a pseudogene. The absence of marsupial orthologues of eutherian PNMA genes suggests that the retrotransposition events of the Gypsy12_DR-related retrotransposons that gave rise to the PNMA family occurred after the divergence of marsupials and eutherians. PMID:23704700

  3. Differential Expression of Retrotransposon WIS 2-1A Response to Vacuum, Low-Energy N+ Implantation and 60Coγ-ray Irradiation in Wheat

    NASA Astrophysics Data System (ADS)

    Zhao, Huiru; Gu, Yunhong; Ya, Huiyuan; Jiao, Zhen; Qin, Guangyong

    2009-02-01

    Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity in wheat (Triticum aestivum L.) embryos at three different growth times (30 h, 45 h and 60 h) was investigated after they had been treated with N+ implantation in a vacuum of 5 × 10-2 Pa and irradiation by 60Coγ-ray respectively. For each of the three growth times the expression of WIS 2-1A showed almost entirely a same trend of downregulation, upregulation, then downregulation, and upregulation again with the increase in dose of N+ implantation, but the expression appeared irregular with the increase in irradiation of 60Coγ-ray. In conclusion, the acutely activating effect of WIS 2-1A stimulated by vacuum and high dose N+ implantation within a shorter incubation time may provide a convenient tool to advance the research on mutagenic breeding and function genes.

  4. Argonaute Proteins Affect siRNA Levels and Accumulation of a Novel Extrachromosomal DNA from the Dictyostelium Retrotransposon DIRS-1*

    PubMed Central

    Boesler, Benjamin; Meier, Doreen; Förstner, Konrad U.; Friedrich, Michael; Hammann, Christian; Sharma, Cynthia M.; Nellen, Wolfgang

    2014-01-01

    The retrotransposon DIRS-1 is the most abundant retroelement in Dictyostelium discoideum and constitutes the pericentromeric heterochromatin of the six chromosomes in D. discoideum. The vast majority of cellular siRNAs is derived from DIRS-1, suggesting that the element is controlled by RNAi-related mechanisms. We investigated the role of two of the five Argonaute proteins of D. discoideum, AgnA and AgnB, in DIRS-1 silencing. Deletion of agnA resulted in the accumulation of DIRS-1 transcripts, the expression of DIRS-1-encoded proteins, and the loss of most DIRS-1-derived secondary siRNAs. Simultaneously, extrachromosomal single-stranded DIRS-1 DNA accumulated in the cytoplasm of agnA− strains. These DNA molecules appear to be products of reverse transcription and thus could represent intermediate structures before transposition. We further show that transitivity of endogenous siRNAs is impaired in agnA− strains. The deletion of agnB alone had no strong effect on DIRS-1 transposon regulation. However, in agnA−/agnB− double mutant strains strongly reduced accumulation of extrachromosomal DNA compared with the single agnA− strains was observed. PMID:25352599

  5. Insertion of an SVA-E retrotransposon into the CASP8 gene is associated with protection against prostate cancer

    PubMed Central

    Stacey, Simon N.; Kehr, Birte; Gudmundsson, Julius; Zink, Florian; Jonasdottir, Aslaug; Gudjonsson, Sigurjon A.; Sigurdsson, Asgeir; Halldorsson, Bjarni V.; Agnarsson, Bjarni A.; Benediktsdottir, Kristrun R.; Aben, Katja K.H.; Vermeulen, Sita H.; Cremers, Ruben G.; Panadero, Angeles; Helfand, Brian T.; Cooper, Phillip R.; Donovan, Jenny L.; Hamdy, Freddie C.; Jinga, Viorel; Okamoto, Ichiro; Jonasson, Jon G.; Tryggvadottir, Laufey; Johannsdottir, Hrefna; Kristinsdottir, Anna M.; Masson, Gisli; Magnusson, Olafur T.; Iordache, Paul D.; Helgason, Agnar; Helgason, Hannes; Sulem, Patrick; Gudbjartsson, Daniel F.; Kong, Augustine; Jonsson, Eirikur; Barkardottir, Rosa B.; Einarsson, Gudmundur V.; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Mates, Ioan N.; Neal, David E.; Catalona, William J.; Mayordomo, José I.; Kiemeney, Lambertus A.; Thorleifsson, Gudmar; Stefansson, Kari

    2016-01-01

    Transcriptional and splicing anomalies have been observed in intron 8 of the CASP8 gene (encoding procaspase-8) in association with cutaneous basal-cell carcinoma (BCC) and linked to a germline SNP rs700635. Here, we show that the rs700635[C] allele, which is associated with increased risk of BCC and breast cancer, is protective against prostate cancer [odds ratio (OR) = 0.91, P = 1.0 × 10−6]. rs700635[C] is also associated with failures to correctly splice out CASP8 intron 8 in breast and prostate tumours and in corresponding normal tissues. Investigation of rs700635[C] carriers revealed that they have a human-specific short interspersed element-variable number of tandem repeat-Alu (SINE-VNTR-Alu), subfamily-E retrotransposon (SVA-E) inserted into CASP8 intron 8. The SVA-E shows evidence of prior activity, because it has transduced some CASP8 sequences during subsequent retrotransposition events. Whole-genome sequence (WGS) data were used to tag the SVA-E with a surrogate SNP rs1035142[T] (r2 = 0.999), which showed associations with both the splicing anomalies (P = 6.5 × 10−32) and with protection against prostate cancer (OR = 0.91, P = 3.8 × 10−7). PMID:26740556

  6. Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians

    PubMed Central

    Irie, Masahito; Yoshikawa, Masanobu; Ono, Ryuichi; Iwafune, Hirotaka; Furuse, Tamio; Yamada, Ikuko; Wakana, Shigeharu; Yamashita, Yui; Abe, Takaya; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2015-01-01

    Gene targeting of mouse S ushi- i chi-related r etrotransposon h omologue 11 / Z inc finger CCHC domain-containing 16 (Sirh11/Zcchc16) causes abnormal behaviors related to cognition, including attention, impulsivity and working memory. Sirh11/Zcchc16 encodes a CCHC type of zinc-finger protein that exhibits high homology to an LTR retrotransposon Gag protein. Upon microdialysis analysis of the prefrontal cortex region, the recovery rate of noradrenaline (NA) was reduced compared with dopamine (DA) after perfusion of high potassium-containing artificial cerebrospinal fluid in knockout (KO) mice. These data indicate that Sirh11/Zcchc16 is involved in cognitive function in the brain, possibly via the noradrenergic system, in the contemporary mouse developmental systems. Interestingly, it is highly conserved in three out of the four major groups of the eutherians, euarchontoglires, laurasiatheria and afrotheria, but is heavily mutated in xenarthran species such as the sloth and armadillo, suggesting that it has contributed to brain evolution in the three major eutherian lineages, including humans and mice. Sirh11/Zcchc16 is the first SIRH gene to be involved in brain function, instead of just the placenta, as seen in the case of Peg10, Peg11/Rtl1 and Sirh7/Ldoc1. PMID:26402067

  7. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters.

    PubMed

    Zanni, Vanessa; Eymery, Angéline; Coiffet, Michael; Zytnicki, Matthias; Luyten, Isabelle; Quesneville, Hadi; Vaury, Chantal; Jensen, Silke

    2013-12-01

    Most of our understanding of Drosophila heterochromatin structure and evolution has come from the annotation of heterochromatin from the isogenic y; cn bw sp strain. However, almost nothing is known about the heterochromatin's structural dynamics and evolution. Here, we focus on a 180-kb heterochromatic locus producing Piwi-interacting RNAs (piRNA cluster), the flamenco (flam) locus, known to be responsible for the control of at least three transposable elements (TEs). We report its detailed structure in three different Drosophila lines chosen according to their capacity to repress or not to repress the expression of two retrotransposons named ZAM and Idefix, and we show that they display high structural diversity. Numerous rearrangements due to homologous and nonhomologous recombination, deletions and segmental duplications, and loss and gain of TEs are diverse sources of active genomic variation at this locus. Notably, we evidence a correlation between the presence of ZAM and Idefix in this piRNA cluster and their silencing. They are absent from flam in the strain where they are derepressed. We show that, unexpectedly, more than half of the flam locus results from recent TE insertions and that most of the elements concerned are prone to horizontal transfer between species of the melanogaster subgroup. We build a model showing how such high and constant dynamics of a piRNA master locus open the way to continual emergence of new patterns of piRNA biogenesis leading to changes in the level of transposition control. PMID:24248389

  8. Two variants of the Drosophila melanogaster retrotransposon gypsy (mdg4): structural and functional differences, and distribution in fly stocks.

    PubMed

    Lyubomirskaya, N V; Smirnova, J B; Razorenova, O V; Karpova, N N; Surkov, S A; Avedisov, S N; Kim, A I; Ilyin, Y V

    2001-04-01

    Two variants of the Drosophila melanogaster retrotransposon gypsy were subjected to detailed structural and functional analysis. A series of hybrid constructs containing various combinations of "active" and "inactive" gypsy copies were tested for their ability to produce new DNA copies in cultured cells by means of reverse transcription. It was shown that the previously demonstrated variations in retrotranspositional activity are associated with either one or both of two amino acid substitutions at the beginning of ORF2. The first substitution is located at the boundary between the putative protease and reverse transcriptase domains and, hence, may influence the processing of the polyprotein. The other substitution may alter reverse transcriptase activity since it is located in the second of the seven conserved domains of the RT gene. To address the question of the evolutionary relationship between the two gypsy variants, their distribution was analyzed in among various fly stocks. Southern analysis revealed that all D. melanogaster strains studied so far contain the "inactive" gypsy variant, while the "active" copies are present only in some strains; most of the latter were established from flies recently isolated from natural populations. Finally, in stocks carrying the flamenco mutation the "active" gypsy variant is much more abundant than the "inactive" form. Possible scenarios for the orgin of the "active" form of gypsy are discussed. PMID:11361349

  9. Retrotransposon-microsatellite amplified polymorphism, an electrophoretic approach for studying genetic variability among Schistosoma japonicum geographical isolates.

    PubMed

    Li, Juan; Zhao, Guang-Hui; Zhou, Dong-Hui; Sugiyama, Hiromu; Nisbet, Alasdair J; Li, Xiao-Yan; Zou, Feng-Cai; Li, Hai-Long; Ai, Lin; Zhu, Xing-Quan

    2012-09-01

    In the present study, retrotransposon-microsatellite amplified polymorphism (REMAP) was used to examine genetic variability among Schistosoma japonicum isolates from different endemic provinces in mainland China, using S. japonicum from Japan and the Philippines for comparison. Of the 50 primer combinations screened, eight produced highly reproducible REMAP fragments. Using these primers, 190 distinct DNA fragments were generated in total, of which 147 (77.37%) were polymorphic, indicating considerable genetic variation among the 43 S. japonicum isolates examined. The percentage of polymorphic bands (PPB) among S. japonicum isolates from mainland China, Japan, and the Philippines was 77.37%; PPB values of 18.42% and 53.68% were found among isolates from southwestern (SW) China and the lower Yangtze/Zhejiang province in eastern (E) China, respectively. Based on REMAP profiles, unweighted pair-group method with arithmetic averages (UPGMA) dendrogram analysis revealed that all of the S. japonicum samples grouped into three distinct clusters: parasites from mainland China, Japan, and the Philippines were clustered in each individual clade. Within the mainland China cluster, SW China isolates (from Sichuan and Yunnan provinces) grouped together, whereas worms from E China (Zhejiang, Anhui, Jiangxi, Jiangsu, Hunan, and Hubei provinces) grouped together. These results demonstrated that the REMAP marker system provides a reliable electrophoretic technique for studying genetic diversity and population structures of S. japonicum isolates from mainland China, and could be applied to other pathogens of human and animal health significance. PMID:23019103

  10. Genomics of homoploid hybrid speciation: diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers

    PubMed Central

    Renaut, Sebastien; Rowe, Heather C.; Ungerer, Mark C.; Rieseberg, Loren H.

    2014-01-01

    Hybridization is thought to play an important role in plant evolution by introducing novel genetic combinations and promoting genome restructuring. However, surprisingly little is known about the impact of hybridization on transposable element (TE) proliferation and the genomic response to TE activity. In this paper, we first review the mechanisms by which homoploid hybrid species may arise in nature. We then present hybrid sunflowers as a case study to examine transcriptional activity of long terminal repeat retrotransposons in the annual sunflowers Helianthus annuus, Helianthus petiolaris and their homoploid hybrid derivatives (H. paradoxus, H. anomalus and H. deserticola) using high-throughput transcriptome sequencing technologies (RNAseq). Sampling homoploid hybrid sunflower taxa revealed abundant variation in TE transcript accumulation. In addition, genetic diversity for several candidate genes hypothesized to regulate TE activity was characterized. Specifically, we highlight one candidate chromatin remodelling factor gene with a direct role in repressing TE activity in a hybrid species. This paper shows that TE amplification in hybrid lineages is more idiosyncratic than previously believed and provides a first step towards identifying the mechanisms responsible for regulating and repressing TE expansions. PMID:24958919

  11. Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene

    PubMed Central

    Saenko, Suzanne V.; Lamichhaney, Sangeet; Barrio, Alvaro Martinez; Rafati, Nima; Andersson, Leif; Milinkovitch, Michel C.

    2015-01-01

    The corn snake (Pantherophis guttatus) is a new model species particularly appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades. Using our captive-bred colony of corn snakes, transcriptomic and genomic next-generation sequencing, exome assembly, and genotyping of SNPs in multiple families, we delimit the genomic interval bearing the causal mutation of amelanism, the oldest colour variant observed in that species. Proceeding with sequencing the candidate gene OCA2 in the uncovered genomic interval, we identify that the insertion of an LTR-retrotransposon in its 11th intron results in a considerable truncation of the p protein and likely constitutes the causal mutation of amelanism in corn snakes. As amelanistic snakes exhibit white, instead of black, borders around an otherwise normal pattern of dorsal orange saddles and lateral blotches, our results indicate that melanocytes lacking melanin are able to participate to the normal patterning of other colours in the skin. In combination with research in the zebrafish, this work opens the perspective of using corn snake colour and pattern variants to investigate the generative processes of skin colour patterning shared among major vertebrate lineages. PMID:26597053

  12. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients.

    PubMed

    Gainetdinov, Ildar V; Kapitskaya, Kristina Yu; Rykova, Elena Yu; Ponomaryova, Anastasia A; Cherdyntseva, Nadezda V; Vlassov, Valentin V; Laktionov, Pavel P; Azhikina, Tatyana L

    2016-09-01

    Circulating DNA has recently gained attention as a fast and non-invasive way to assess tumor biomarkers. Since hypomethylation of LINE-1 repetitive elements was described as one of the key hallmarks of tumorigenesis, we aimed to establish whether the methylation level of LINE-1 retrotransposons changes in cell-surface-bound fraction of circulating DNA (csbDNA) of lung cancer patients. Methylated CpG Island Recovery Assay (MIRA) coupled to qPCR-based quantitation was performed to assess integral methylation level of LINE-1 promoters in csbDNA of non-small cell lung cancer patients (n=56) and healthy controls (n=44). Deep sequencing of amplicons revealed that hypomethylation of LINE-1 promoters in csbDNA of lung cancer patients is more pronounced for the human-specific L1Hs family. Statistical analysis demonstrates significant difference in LINE-1 promoter methylation index between cancer patients and healthy individuals (ROC-curve analysis: n=100, AUC=0.69, p=0.0012) and supports the feasibility of MIRA as a promising non-invasive approach. PMID:27565927

  13. Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes.

    PubMed

    Conte, Caroline; Dastugue, Bernard; Vaury, Chantal

    2002-03-01

    We recently reported a novel transposition system in which two retroelements from Drosophila melanogaster, ZAM and Idefix, are highly mobilized and preferentially insert within intergenic regions. Among the loci where new copies are detected, a hot spot for their insertion was identified at the white locus, where up to three elements occurred within a 3-kb fragment upstream of the transcriptional start site of white. We have used these insertions as molecular entry points to throw light on the mutagenic effect exerted by multiple insertions of retrotransposons within intergenic regions of a genome. Analysis of the molecular mechanisms by which ZAM and Idefix elements interfere with the regulation of the white gene has shown that ZAM bears cis-acting regulatory sequences able to enhance transcription of the white gene in the eyes of the flies. This activation may be counteracted by Idefix, which acts as an insulator able to isolate the white gene from the upstream ZAM enhancer. In addition to revealing a novel insulator sequence with its own specific features, our data clearly illustrate how retroelements can act as epigenetic factors able to interfere with the transcriptional regulation of their host. PMID:11865056

  14. Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene.

    PubMed

    Saenko, Suzanne V; Lamichhaney, Sangeet; Martinez Barrio, Alvaro; Rafati, Nima; Andersson, Leif; Milinkovitch, Michel C

    2015-01-01

    The corn snake (Pantherophis guttatus) is a new model species particularly appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades. Using our captive-bred colony of corn snakes, transcriptomic and genomic next-generation sequencing, exome assembly, and genotyping of SNPs in multiple families, we delimit the genomic interval bearing the causal mutation of amelanism, the oldest colour variant observed in that species. Proceeding with sequencing the candidate gene OCA2 in the uncovered genomic interval, we identify that the insertion of an LTR-retrotransposon in its 11(th) intron results in a considerable truncation of the p protein and likely constitutes the causal mutation of amelanism in corn snakes. As amelanistic snakes exhibit white, instead of black, borders around an otherwise normal pattern of dorsal orange saddles and lateral blotches, our results indicate that melanocytes lacking melanin are able to participate to the normal patterning of other colours in the skin. In combination with research in the zebrafish, this work opens the perspective of using corn snake colour and pattern variants to investigate the generative processes of skin colour patterning shared among major vertebrate lineages. PMID:26597053

  15. Quantification and organization of WIS2-1A and BARE-1 retrotransposons in different genomes of Triticum and Aegilops species.

    PubMed

    Pagnotta, Mario Augusto; Mondini, Linda; Porceddu, Enrico

    2009-09-01

    A real-time PCR approach was adopted and optimized to estimate and compare, through a relative quantification, the copy number of WIS2-1A and BARE-1 retrotransposons. The aim of this approach was to identify and quantify the presence of these retrotransposons in Triticum and Aegilops species, and to understand better the genome organization of these retroelements. The species were selected to assess and compare the evolution of the different types of genomes between the more recent species such as the diploid Triticum monococcum, tetraploid T. dicoccon and hexaploid T. spelta, and the corresponding genome donors of the ancient diploids Aegilops (Ae. speltoides, Ae. tauschii, Ae. sharonensis and Ae. bicornis) and T. urartu. The results of this study indicated the presence of great variation in copy number both within and among species, and the existence of a non-linear relationship between retrotransposon copy number and ploidy level. For WIS2-1A, as expected, T. monococcum showed the lowest copy number which instead was similar in T. dicoccon and T. spelta; also T. urartu (AA), Ae. speltoides (BB) and Ae. tauschii (DD) showed a higher WIS2-1A copy number. Similar results were observed for BARE-1 retroelements except for Ae. tauschii which as in T. monococcum showed lower retroelements content; a similar content for T. dicoccon and T. urartu, whereas a higher number was found in T. spelta and Ae. speltoides. The results presented here are in accord with previous studies and contribute to unravelling the structure and evolution of polyploidy and repetitive genomes. PMID:19543749

  16. Site-directed spin labeling electron paramagnetic resonance study of the ORF1 protein from a mouse L1 retrotransposon

    PubMed Central

    Januszyk, Kurt; Fleissner, Mark R; Atchabahian, Lara; Shieh, Fa-Kuen; Altenbach, Christian; Martin, Sandra L; Guo, Feng; Hubbell, Wayne L; Clubb, Robert T

    2011-01-01

    Long interspersed nuclear element-1 is a highly abundant mammalian retrotransposon that comprises 17% of the human genome. L1 retrotransposition requires the protein encoded by open reading frame-1 (ORF1p), which binds single-stranded RNA with high affinity and functions as a nucleic acid chaperone. ORF1p has been shown to adopt a homo-trimeric, asymmetric dumbbell-shaped structure. However, its atomic-level structure and mechanism of RNA binding remains poorly understood. Here, we report the results of a site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) study of 27 residues within the RNA binding region of the full-length protein. The EPR data are compatible with the large RNA binding lobe of ORF1p containing a RNA recognition motif (RRM) domain and a carboxyl-terminal domain (CTD) that are predicted from crystallographic and NMR studies of smaller fragments of the protein. Interestingly, the EPR data indicate that residues in strands β3 and β4 of the RRM are structurally unstable, compatible with the previously observed sensitivity of this region to proteolysis. Affinity measurements and RNA-dependent EPR spectral changes map the RNA binding site on ORF1p to residues located in strands β3 and β4 of the RRM domain and to helix α1 of the CTD. Complementary in vivo studies also identify residues within the RRM domain that are required for retrotransposition. We propose that in the context of the full-length trimeric protein these distinct surfaces are positioned adjacent to one another providing a continuous surface that may interact with nucleic acids. PMID:21563223

  17. The Suppressor of Hairy-Wing Protein Regulates the Tissue-Specific Expression of the Drosophila Gypsy Retrotransposon

    PubMed Central

    Smith, P. A.; Corces, V. G.

    1995-01-01

    The gypsy retrotransposon of Drosophila melanogaster causes mutations that show temporal and tissue-specific phenotypes. These mutant phenotypes can be reversed by mutations in su(Hw), a gene that also regulates the transcription of the gypsy element. Gypsy encodes a full-length 7.0-kb RNA that is expressed in the salivary gland precursors and fat body of the embryo, imaginal discs and fat body of larvae, and fat body and ovaries of adult females. The su(Hw)-binding region inserted upstream of the promoter of a lacZ reporter gene can induce β-galactosidase expression in a subset of the embryonic and larval tissues where gypsy is normally transcribed. This expression is dependent on the presence of a functional su(Hw) product, suggesting that this protein is a positive activator of gypsy transcription. Flies transformed with a construct in which the 5' LTR and leader sequences of gypsy are fused to lacZ show β-galactosidase expression in all tissues where gypsy is normally expressed, indicating that sequences other than the su(Hw)-binding site are required for proper spatial and temporal expression of gypsy. Mutations in the zinc fingers of su(Hw) affect its ability to bind DNA and to induce transcription of the lacZ reporter gene. Two other structural domains of su(Hw) also play an important role in transcriptional regulation of gypsy. Deletion of the amino-terminal acidic domain results in the loss of lacZ expression in larval fat body and adult ovaries, whereas mutations in the leucine zipper region result in an increase of lacZ expression in larval fat body and a decrease in adult ovaries. These effects might be the result of interactions of su(Hw) with activator and repressor proteins through the acidic and leucine zipper domains to produce the final pattern of tissue-specific expression of gypsy. PMID:7705625

  18. Achilles, a New Family of Transcriptionally Active Retrotransposons from the Olive Fruit Fly, with Y Chromosome Preferential Distribution.

    PubMed

    Tsoumani, Konstantina T; Drosopoulou, Elena; Bourtzis, Kostas; Gariou-Papalexiou, Aggeliki; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone; Mathiopoulos, Kostas D

    2015-01-01

    Sex chromosomes have many unusual features relative to autosomes. The in depth exploration of their structure will improve our understanding of their origin and divergence (degeneration) as well as the evolution of genetic sex determination pathways which, most often are attributed to them. In Tephritids, the structure of Y chromosome, where the male-determining factor M is localized, is largely unexplored and limited data concerning its sequence content and evolution are available. In order to get insight into the structure and organization of the Y chromosome of the major olive insect pest, the olive fly Bactrocera oleae, we characterized sequences from a Pulse Field Gel Electrophoresis (PFGE)-isolated Y chromosome. Here, we report the discovery of the first olive fly LTR retrotransposon with increased presence on the Y chromosome. The element belongs to the BEL-Pao superfamily, however, its sequence comparison with the other members of the superfamily suggests that it constitutes a new family that we termed Achilles. Its ~7.5 kb sequence consists of the 5'LTR, the 5'non-coding sequence and the open reading frame (ORF), which encodes the polyprotein Gag-Pol. In situ hybridization to the B. oleae polytene chromosomes showed that Achilles is distributed in discrete bands dispersed on all five autosomes, in all centromeric regions and in the granular heterochromatic network corresponding to the mitotic sex chromosomes. The between sexes comparison revealed a variation in Achilles copy number, with male flies possessing 5-10 copies more than female (CI range: 18-38 and 12-33 copies respectively per genome). The examination of its transcriptional activity demonstrated the presence of at least one intact active copy in the genome, showing a differential level of expression between sexes as well as during embryonic development. The higher expression was detected in male germline tissues (testes). Moreover, the presence of Achilles-like elements in different species of

  19. Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia

    PubMed Central

    2010-01-01

    Background It is widely recognized that interspecific hybridization may induce "genome shock", and lead to genetic and epigenetic instabilities in the resultant hybrids and/or backcrossed introgressants. A prominent component involved in the genome shock is reactivation of cryptic transposable elements (TEs) in the hybrid genome, which is often associated with alteration in the elements' epigenetic modifications like cytosine DNA methylation. We have previously reported that introgressants derived from hybridization between Oryza sativa (rice) and Zizania latifolia manifested substantial methylation re-patterning and rampant mobilization of two TEs, a copia retrotransposon Tos17 and a MITE mPing. It was not known however whether other types of TEs had also been transpositionally reactivated in these introgressants, their relevance to alteration in cytosine methylation, and their impact on expression of adjacent cellular genes. Results We document in this study that the Dart TE family was transpositionally reactivated followed by stabilization in all three studied introgressants (RZ1, RZ2 and RZ35) derived from introgressive hybridization between rice (cv. Matsumae) and Z. latifolia, while the TEs remained quiescent in the recipient rice genome. Transposon-display (TD) and sequencing verified the element's mobility and mapped the excisions and re-insertions to the rice chromosomes. Methylation-sensitive Southern blotting showed that the Dart TEs were heavily methylated along their entire length, and moderate alteration in cytosine methylation patterns occurred in the introgressants relative to their rice parental line. Real-time qRT-PCR quantification on the relative transcript abundance of six single-copy genes flanking the newly excised or inserted Dart-related TE copies indicated that whereas marked difference in the expression of all four genes in both tissues (leaf and root) were detected between the introgressants and their rice parental line under both normal

  20. Morphine Induces Redox-Based Changes in Global DNA Methylation and Retrotransposon Transcription by Inhibition of Excitatory Amino Acid Transporter Type 3–Mediated Cysteine Uptake

    PubMed Central

    Trivedi, Malav; Shah, Jayni; Hodgson, Nathaniel; Byun, Hyang-Min

    2014-01-01

    Canonically, opioids influence cells by binding to a G protein–coupled opioid receptor, initiating intracellular signaling cascades, such as protein kinase, phosphatidylinositol 3-kinase, and extracellular receptor kinase pathways. This results in several downstream effects, including decreased levels of the reduced form of glutathione (GSH) and elevated oxidative stress, as well as epigenetic changes, especially in retrotransposons and heterochromatin, although the mechanism and consequences of these actions are unclear. We characterized the acute and long-term influence of morphine on redox and methylation status (including DNA methylation levels) in cultured neuronal SH-SY5Y cells. Acting via μ-opioid receptors, morphine inhibits excitatory amino acid transporter type 3–mediated cysteine uptake via multiple signaling pathways, involving different G proteins and protein kinases in a temporal manner. Decreased cysteine uptake was associated with decreases in both the redox and methylation status of neuronal cells, as defined by the ratios of GSH to oxidized forms of glutathione and S-adenosylmethionine to S-adenosylhomocysteine levels, respectively. Further, morphine induced global DNA methylation changes, including CpG sites in long interspersed nuclear elements (LINE-1) retrotransposons, resulting in increased LINE-1 mRNA. Together, these findings illuminate the mechanism by which morphine, and potentially other opioids, can influence neuronal-cell redox and methylation status including DNA methylation. Since epigenetic changes are implicated in drug addiction and tolerance phenomenon, this study could potentially extrapolate to elucidate a novel mechanism of action for other drugs of abuse. PMID:24569088

  1. Germ line and embryonic expression of Fex, a member of the Drosophila F-element retrotransposon family, is mediated by an internal cis-regulatory control region.

    PubMed Central

    Kerber, B; Fellert, S; Taubert, H; Hoch, M

    1996-01-01

    The F elements of Drosophila melanogaster belong to the superfamily of long interspersed nucleotide element retrotransposons. To date, F-element transcription has not been detected in flies. Here we describe the isolation of a member of the F-element family, termed Fex, which is transcribed in specific cells of the female and male germ lines and in various tissues during embryogenesis of D. melanogaster. Sequence analysis revealed that this element contains two complete open reading frames coding for a putative nucleic acid-binding protein and a putative reverse transcriptase. Functional analysis of the 5' region, using germ line transformation of Fex-lacZ reporter gene constructs, demonstrates that major aspects of tissue-specific Fex expression are controlled by internal cis-acting elements that lie in the putative coding region of open reading frame 1. These sequences mediate dynamic gene expression in eight expression domains during embryonic and germ line development. The capacity of the cis-regulatory region of the Fex element to mediate such complex expression patterns is unique among members of the long interspersed nucleotide element superfamily of retrotransposons and is reminiscent of regulatory regions of developmental control genes. PMID:8649411

  2. TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs.

    PubMed

    Bachman, Nurjana; Gelbart, Marnie E; Tsukiyama, Toshio; Boeke, Jef D

    2005-04-15

    Retrotransposons are RNA elements that reverse transcribe their RNA genomes and make a cDNA copy that is inserted back into a new genomic location by the element-encoded integrase protein. Ty1 is a long terminal repeat (LTR) retrotransposon in Saccharomyces cerevisiae that inserts into an approximately 700-bp integration window upstream of tRNA genes with a periodicity of approximately 80 bp. ATP-dependent chromatin remodeling by Isw2 upstream of tRNA genes leads to changes in chromatin structure and Ty1 integration site selection. We show that the N terminus of Bdp1p, a component of the RNA polymerase III transcription factor TFIIIB, is required for periodic integration of Ty1 into the integration window. Deletion of the Bdp1p N terminus and mutation of ISW2 result in similar disruption of nucleosome positioning upstream of some tRNA genes, and the N-terminal domain of Bdp1p is required for targeting of Isw2 complex to tRNA genes. This study provides the first example for recruitment of an ATP-dependent chromatin-remodeling factor by a general transcription factor in vivo. PMID:15833918

  3. An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians.

    PubMed

    Irie, Masahito; Koga, Akihiko; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    Amongst the 11 eutherian-specific genes acquired from a sushi-ichi retrotransposon is the CCHC type zinc-finger protein-encoding gene SIRH11/ZCCHC16. Its contribution to eutherian brain evolution is implied because of its involvement in cognitive function in mice, possibly via the noradrenergic system. Although, the possibility that Sirh11/Zcchc16 functions as a non-coding RNA still remains, dN/dS ratios in pairwise comparisons between its orthologs have provided supportive evidence that it acts as a protein. It became a pseudogene in armadillos (Cingulata) and sloths (Pilosa), the only two extant orders of xenarthra, which prompted us to examine the lineage-specific variations of SIRH11/ZCCHC16 in eutherians. We examined the predicted SIRH11/ZCCHC16 open reading frame (ORF) in 95 eutherian species based on the genomic DNA information in GenBank. A large variation in the SIRH11/ZCCHC16 ORF was detected in several lineages. These include a lack of a CCHC RNA-binding domain in its C-terminus, observed in gibbons (Hylobatidae: Primates) and megabats (Megachiroptera: Chiroptera). A lack of the N-terminal half, on the other hand, was observed in New World monkeys (Platyrrhini: Primates) and species belonging to New World and African Hystricognaths (Caviomorpha and Bathyergidae: Rodents) along with Cetacea and Ruminantia (Cetartiodactyla). Among the hominoids, interestingly, three out of four genera of gibbons have lost normal SIRH11/ZCCHC16 function by deletion or the lack of the CCHC RNA-binding domain. Our extensive dN/dS analysis suggests that such truncated SIRH11/ZCCHC16 ORFs are functionally diversified even within lineages. Combined, our results show that SIRH11/ZCCHC16 may contribute to the diversification of eutherians by lineage-specific structural changes after its domestication in the common eutherian ancestor, followed by putative species-specific functional changes that enhanced fitness and occurred as a consequence of complex natural selection events

  4. An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians

    PubMed Central

    Irie, Masahito; Koga, Akihiko; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    Amongst the 11 eutherian-specific genes acquired from a sushi-ichi retrotransposon is the CCHC type zinc-finger protein-encoding gene SIRH11/ZCCHC16. Its contribution to eutherian brain evolution is implied because of its involvement in cognitive function in mice, possibly via the noradrenergic system. Although, the possibility that Sirh11/Zcchc16 functions as a non-coding RNA still remains, dN/dS ratios in pairwise comparisons between its orthologs have provided supportive evidence that it acts as a protein. It became a pseudogene in armadillos (Cingulata) and sloths (Pilosa), the only two extant orders of xenarthra, which prompted us to examine the lineage-specific variations of SIRH11/ZCCHC16 in eutherians. We examined the predicted SIRH11/ZCCHC16 open reading frame (ORF) in 95 eutherian species based on the genomic DNA information in GenBank. A large variation in the SIRH11/ZCCHC16 ORF was detected in several lineages. These include a lack of a CCHC RNA-binding domain in its C-terminus, observed in gibbons (Hylobatidae: Primates) and megabats (Megachiroptera: Chiroptera). A lack of the N-terminal half, on the other hand, was observed in New World monkeys (Platyrrhini: Primates) and species belonging to New World and African Hystricognaths (Caviomorpha and Bathyergidae: Rodents) along with Cetacea and Ruminantia (Cetartiodactyla). Among the hominoids, interestingly, three out of four genera of gibbons have lost normal SIRH11/ZCCHC16 function by deletion or the lack of the CCHC RNA-binding domain. Our extensive dN/dS analysis suggests that such truncated SIRH11/ZCCHC16 ORFs are functionally diversified even within lineages. Combined, our results show that SIRH11/ZCCHC16 may contribute to the diversification of eutherians by lineage-specific structural changes after its domestication in the common eutherian ancestor, followed by putative species-specific functional changes that enhanced fitness and occurred as a consequence of complex natural selection events

  5. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis

    PubMed Central

    2010-01-01

    Background The genetic diversity of crop species is the result of natural selection on the wild progenitor and human intervention by ancient and modern farmers and breeders. The genomes of modern cultivars, old cultivated landraces, ecotypes and wild relatives reflect the effects of these forces and provide insights into germplasm structural diversity, the geographical dimension to species diversity and the process of domestication of wild organisms. This issue is also of great practical importance for crop improvement because wild germplasm represents a rich potential source of useful under-exploited alleles or allele combinations. The aim of the present study was to analyse a major Pisum germplasm collection to gain a broad understanding of the diversity and evolution of Pisum and provide a new rational framework for designing germplasm core collections of the genus. Results 3020 Pisum germplasm samples from the John Innes Pisum germplasm collection were genotyped for 45 retrotransposon based insertion polymorphism (RBIP) markers by the Tagged Array Marker (TAM) method. The data set was stored in a purpose-built Germinate relational database and analysed by both principal coordinate analysis and a nested application of the Structure program which yielded substantially similar but complementary views of the diversity of the genus Pisum. Structure revealed three Groups (1-3) corresponding approximately to landrace, cultivar and wild Pisum respectively, which were resolved by nested Structure analysis into 14 Sub-Groups, many of which correlate with taxonomic sub-divisions of Pisum, domestication related phenotypic traits and/or restricted geographical locations. Genetic distances calculated between these Sub-Groups are broadly supported by principal coordinate analysis and these, together with the trait and geographical data, were used to infer a detailed model for the domestication of Pisum. Conclusions These data provide a clear picture of the major distinct gene

  6. Achilles, a New Family of Transcriptionally Active Retrotransposons from the Olive Fruit Fly, with Y Chromosome Preferential Distribution

    PubMed Central

    Tsoumani, Konstantina T.; Drosopoulou, Elena; Bourtzis, Kostas; Gariou-Papalexiou, Aggeliki; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone; Mathiopoulos, Kostas D.

    2015-01-01

    Sex chromosomes have many unusual features relative to autosomes. The in depth exploration of their structure will improve our understanding of their origin and divergence (degeneration) as well as the evolution of genetic sex determination pathways which, most often are attributed to them. In Tephritids, the structure of Y chromosome, where the male-determining factor M is localized, is largely unexplored and limited data concerning its sequence content and evolution are available. In order to get insight into the structure and organization of the Y chromosome of the major olive insect pest, the olive fly Bactrocera oleae, we characterized sequences from a Pulse Field Gel Electrophoresis (PFGE)-isolated Y chromosome. Here, we report the discovery of the first olive fly LTR retrotransposon with increased presence on the Y chromosome. The element belongs to the BEL-Pao superfamily, however, its sequence comparison with the other members of the superfamily suggests that it constitutes a new family that we termed Achilles. Its ~7.5 kb sequence consists of the 5’LTR, the 5’non-coding sequence and the open reading frame (ORF), which encodes the polyprotein Gag-Pol. In situ hybridization to the B. oleae polytene chromosomes showed that Achilles is distributed in discrete bands dispersed on all five autosomes, in all centromeric regions and in the granular heterochromatic network corresponding to the mitotic sex chromosomes. The between sexes comparison revealed a variation in Achilles copy number, with male flies possessing 5–10 copies more than female (CI range: 18–38 and 12–33 copies respectively per genome). The examination of its transcriptional activity demonstrated the presence of at least one intact active copy in the genome, showing a differential level of expression between sexes as well as during embryonic development. The higher expression was detected in male germline tissues (testes). Moreover, the presence of Achilles-like elements in different

  7. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome

    PubMed Central

    Isbel, Luke; Srivastava, Rahul; Oey, Harald; Spurling, Alex; Daxinger, Lucia; Puthalakath, Hamsa; Whitelaw, Emma

    2015-01-01

    Transposable elements (TEs) have been active in the mammalian genome for millions of years and the silencing of these elements in the germline is important for the survival of the host. Mice carrying reporter transgenes can be used to model transcriptional silencing. A mutagenesis screen for modifiers of epigenetic gene silencing produced a line with a mutation in Trim33; the mutants displayed increased expression of the reporter transgene. ChIP-seq of Trim33 in testis revealed 9,109 peaks, mostly at promoters. This is the first report of ChIP-seq for Trim33 in any tissue. Comparison with ENCODE datasets showed that regions of high read density for Trim33 had high read density for histone marks associated with transcriptional activity and mapping to TE consensus sequences revealed Trim33 enrichment at RLTR10B, the LTR of one of the youngest retrotransposons in the mouse genome, MMERVK10C. We identified consensus sequences from the 266 regions at which Trim33 ChIP-seq peaks overlapped RLTR10B elements and found a match to the A-Myb DNA-binding site. We found that TRIM33 has E3 ubiquitin ligase activity for A-MYB and regulates its abundance. RNA-seq revealed that mice haploinsufficient for Trim33 had altered expression of a small group of genes in the testis and the gene with the most significant increase was found to be transcribed from an upstream RLTR10B. These studies provide the first evidence that A-Myb has a role in the actions of Trim33 and suggest a role for both A-Myb and Trim33 in the arms race between the transposon and the host. This the first report of any factor specifically regulating RLTR10B and adds to the current literature on the silencing of MMERVK10C retrotransposons. This is also the first report that A-Myb has a role in the transcription of any retrotransposon. PMID:26624618

  8. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome.

    PubMed

    Isbel, Luke; Srivastava, Rahul; Oey, Harald; Spurling, Alex; Daxinger, Lucia; Puthalakath, Hamsa; Whitelaw, Emma

    2015-12-01

    Transposable elements (TEs) have been active in the mammalian genome for millions of years and the silencing of these elements in the germline is important for the survival of the host. Mice carrying reporter transgenes can be used to model transcriptional silencing. A mutagenesis screen for modifiers of epigenetic gene silencing produced a line with a mutation in Trim33; the mutants displayed increased expression of the reporter transgene. ChIP-seq of Trim33 in testis revealed 9,109 peaks, mostly at promoters. This is the first report of ChIP-seq for Trim33 in any tissue. Comparison with ENCODE datasets showed that regions of high read density for Trim33 had high read density for histone marks associated with transcriptional activity and mapping to TE consensus sequences revealed Trim33 enrichment at RLTR10B, the LTR of one of the youngest retrotransposons in the mouse genome, MMERVK10C. We identified consensus sequences from the 266 regions at which Trim33 ChIP-seq peaks overlapped RLTR10B elements and found a match to the A-Myb DNA-binding site. We found that TRIM33 has E3 ubiquitin ligase activity for A-MYB and regulates its abundance. RNA-seq revealed that mice haploinsufficient for Trim33 had altered expression of a small group of genes in the testis and the gene with the most significant increase was found to be transcribed from an upstream RLTR10B. These studies provide the first evidence that A-Myb has a role in the actions of Trim33 and suggest a role for both A-Myb and Trim33 in the arms race between the transposon and the host. This the first report of any factor specifically regulating RLTR10B and adds to the current literature on the silencing of MMERVK10C retrotransposons. This is also the first report that A-Myb has a role in the transcription of any retrotransposon. PMID:26624618

  9. Yeast Ty retrotransposons assemble into virus-like particles whose T-numbers depend on the C-terminal length of the capsid protein.

    PubMed

    AL-Khayat, H A; Bhella, D; Kenney, J M; Roth, J F; Kingsman, A J; Martin-Rendon, E; Saibil, H R

    1999-09-10

    The virus-like particles (VLPs) produced by the yeast Ty retrotransposons are structurally and functionally related to retroviral cores. Using cryo-electron microscopy (cryo-EM) and three-dimensional (3D) reconstruction, we have examined the structures of VLPs assembled from full-length and truncated forms of the capsid structural protein. The VLPs are highly polydisperse in their radius distribution. We have found that the length of the C-terminal region of the capsid structural protein dictates the T -number, and thus the size, of the assembled particles. Each construct studied appears to assemble into at least two or three size classes, with shorter C termini giving rise to smaller particles. This assembly property provides a model for understanding the variable assembly of retroviral core proteins. The particles are assembled from trimer-clustered units and there are holes in the capsid shells. PMID:10493857

  10. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe.

    PubMed

    Bowen, Nathan J; Jordan, I King; Epstein, Jonathan A; Wood, Valerie; Levin, Henry L

    2003-09-01

    The complete DNA sequence of the genome of Schizosaccharomyces pombe provides the opportunity to investigate the entire complement of transposable elements (TEs), their association with specific sequences, their chromosomal distribution, and their evolution. Using homology-based sequence identification, we found that the sequenced strain of S. pombe contained only one family of full-length transposons. This family, Tf2, consisted of 13 full-length copies of a long terminal repeat (LTR) retrotransposon. We found that LTR-LTR recombination of previously existing transposons had resulted in extensive populations of solo LTRs. These included 35 solo LTRs of Tf2, as well as 139 solo LTRs from other Tf families. Phylogenetic analysis of solo Tf LTRs reveals that Tf1 and Tf2 were the most recently active elements within the genome. The solo LTRs also served as footprints for previous insertion events by the Tf retrotransposons. Analysis of 186 genomic insertion events revealed a close association with RNA polymerase II promoters. These insertions clustered in the promoter-proximal regions of genes, upstream of protein coding regions by 100 to 400 nucleotides. The association of Tf insertions with pol II promoters was very similar to the preference previously observed for Tf1 integration. We found that the recently active Tf elements were absent from centromeres and pericentromeric regions of the genome containing tandem tRNA gene clusters. In addition, our analysis revealed that chromosome III has twice the density of insertion events compared to the other two chromosomes. Finally we describe a novel repetitive sequence, wtf, which was also preferentially located on chromosome III, and was often located near solo LTRs of Tf elements. PMID:12952871

  11. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons

    SciTech Connect

    Xiong, Y.; Eickbush, T.H.

    1988-01-01

    Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. The authors present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. The authors therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons.

  12. Discovery and partial characterization of a non-LTR retrotransposon that may be associated with abdominal segment deformity disease (ASDD) in the whiteleg shrimp Penaeus (Litopenaeus) vannamei

    PubMed Central

    2013-01-01

    Background Abdominal segment deformity disease (ASDD) of cultivated whiteleg shrimp Penaeus (Litopenaeus) vannamei causes economic loss of approximately 10% in affected specimens because of the unsightliness of distorted abdominal muscles. It is associated with the presence of viral-like particles seen by electron microscopy in the ventral nerve cords of affected shrimp. Thus, shotgun cloning was carried out to seek viral-like sequences in affected shrimp. Results A new retrovirus-like element of 5052 bp (named abdominal segment deformity element or ASDE) was compiled by shotgun cloning and 3′ and 5′ RACE using RNA and DNA extracted from ventral nerve cords of ASDD shrimp. ASDE contained 7 putative open reading frames (ORF). One ORF (called the PENS sub-domain), had a deduced amino acid (aa) sequence homologous to the GIY-YIG endonuclease domain of penelope-like retrotransposons while two others were homologous to the reverse transcriptase (RT) and RNaseH domains of the pol gene of non-long terminal repeat (non-LTR) retrotransposons (called the NLRS sub-domain). No single amplicon of 5 kb containing both these elements was obtained by PCR or RT-PCR from ASDD shrimp. Subsequent analysis indicated that PENS and NLRS were not contiguous and that NLRS was a host genetic element. In situ hybridization using a dioxygenin-labeled NLRS probe revealed that NLRS gave positive reactions in abdominal-ganglion neurons of ASDD shrimp but not normal shrimp. Preliminary analysis indicated that long-term use of female broodstock after eyestalk ablation in the hatchery increased the intensity of RT-PCR amplicons for NLRS and also the prevalence of ASDD in mysis 3 offspring of the broodstock. The deformities persist upon further cultivation until shrimp harvest but do not increase in prevalence and do not affect growth or survival. Conclusions Our results suggested that NLRS is a shrimp genetic element associated with ASDD and that immediate preventative measures could include

  13. An antisense promoter in mouse L1 retrotransposon open reading frame-1 initiates expression of diverse fusion transcripts and limits retrotransposition

    PubMed Central

    Li, Jingfeng; Kannan, Manoj; Trivett, Anna L.; Liao, Hongling; Wu, Xiaolin; Akagi, Keiko; Symer, David E.

    2014-01-01

    Between 6 and 30% of human and mouse transcripts are initiated from transposable elements. However, the promoters driving such transcriptional activity are mostly unknown. We experimentally characterized an antisense (AS) promoter in mouse L1 retrotransposons for the first time, oriented antiparallel to the coding strand of L1 open reading frame-1. We found that AS transcription is mediated by RNA polymerase II. Rapid amplification of cDNA ends cloning mapped transcription start sites adjacent to the AS promoter. We identified >100 novel fusion transcripts, of which many were conserved across divergent mouse lineages, suggesting conservation of potential functions. To evaluate whether AS L1 transcription could regulate L1 retrotransposition, we replaced portions of native open reading frame-1 in donor elements by synonymously recoded sequences. The resulting L1 elements lacked AS promoter activity and retrotransposed more frequently than endogenous L1s. Overexpression of AS L1 transcripts also reduced L1 retrotransposition. This suppression of retrotransposition was largely independent of Dicer. Our experiments shed new light on how AS fusion transcripts are initiated from endogenous L1 elements across the mouse genome. Such AS transcription can contribute substantially both to natural transcriptional variation and to endogenous regulation of L1 retrotransposition. PMID:24493738

  14. Isoenergetic penta- and hexanucleotide microarray probing and chemical mapping provide a secondary structure model for an RNA element orchestrating R2 retrotransposon protein function.

    PubMed

    Kierzek, Elzbieta; Kierzek, Ryszard; Moss, Walter N; Christensen, Shawn M; Eickbush, Thomas H; Turner, Douglas H

    2008-04-01

    LNA (locked nucleic acids, i.e. oligonucleotides with a methyl bridge between the 2' oxygen and 4' carbon of ribose) and 2,6-diaminopurine were incorporated into 2'-O-methyl RNA pentamer and hexamer probes to make a microarray that binds unpaired RNA approximately isoenergetically. That is, binding is roughly independent of target sequence if target is unfolded. The isoenergetic binding and short probe length simplify interpretation of binding to a structured RNA to provide insight into target RNA secondary structure. Microarray binding and chemical mapping were used to probe the secondary structure of a 323 nt segment of the 5' coding region of the R2 retrotransposon from Bombyx mori (R2Bm 5' RNA). This R2Bm 5' RNA orchestrates functioning of the R2 protein responsible for cleaving the second strand of DNA during insertion of the R2 sequence into the genome. The experimental results were used as constraints in a free energy minimization algorithm to provide an initial model for the secondary structure of the R2Bm 5' RNA. PMID:18252773

  15. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    PubMed

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage. PMID:26123917

  16. NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon.

    PubMed

    Hart, James M; Kennedy, Scott D; Mathews, David H; Turner, Douglas H

    2008-08-01

    As the rate of functional RNA sequence discovery escalates, high-throughput techniques for reliable structural determination are becoming crucial for revealing the essential features of these RNAs in a timely fashion. Computational predictions of RNA secondary structure quickly generate reasonable models but suffer from several approximations, including overly simplified models and incomplete knowledge of significant interactions. Similar problems limit the accuracy of predictions for other self-folding polymers, including DNA and peptide nucleic acid (PNA). The work presented here demonstrates that incorporating unassigned data from simple nuclear magnetic resonance (NMR) experiments into a dynamic folding algorithm greatly reduces the potential folding space of a given RNA and therefore increases the confidence and accuracy of modeling. This procedure has been packaged into an NMR-assisted prediction of secondary structure (NAPSS) algorithm that can produce pseudoknotted as well as non-pseudoknotted secondary structures. The method reveals a probable pseudoknot in the part of the coding region of the R2 retrotransposon from Bombyx mori that orchestrates second-strand DNA cleavage during insertion into the genome. PMID:18613678

  17. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints

    PubMed Central

    2014-01-01

    Background Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites. Conclusions Since active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome. PMID:24958239

  18. Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila

    PubMed Central

    Stage, Deborah E; Eickbush, Thomas H

    2009-01-01

    Background Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements? Results Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis. Conclusions These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis. PMID:19416522

  19. Nuclear Import of the Retrotransposon Tf1 Is Governed by a Nuclear Localization Signal That Possesses a Unique Requirement for the FXFG Nuclear Pore Factor Nup124p

    PubMed Central

    Dang, Van-Dinh; Levin, Henry L.

    2000-01-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674

  20. Loss of function of OsMADS3 via the insertion of a novel retrotransposon leads to recessive male sterility in rice (Oryza sativa).

    PubMed

    Zhang, Li; Mao, Donghai; Xing, Feng; Bai, Xufeng; Zhao, Hu; Yao, Wen; Li, Guangwei; Xie, Weibo; Xing, Yongzhong

    2015-09-01

    Natural mutation is the source of natural variation, which is the fundamental basis for the genetic improvement of crops. During the process of developing a recombinant inbred line (RI), a spontaneous mutagenesis in RI127 led to the production of the recessive male-sterile line RI127S. Via a map-based cloning approach, the gene controlling the male sterility was identified as OsMADS3, which was previously reported to be associated with floral organ development and male sterility. Thermal asymmetric interlaced PCR isolated one 1633-bp insertion in OsMADS3 in RI127S, which damaged its function due to failed transcription. The 1633-bp insertion was derived from a fragment flanked by retrotransposon genes on chromosome 5. Seven haplotypes of OsMADS3 were observed among 529 cultivars and 107 wild rice accessions, and 98% of the investigated genotypes carried the same H2 haplotype, indicating that OsMADS3 is highly conserved. RI127S has the combined genome constitution of its parents, indica rice Teqing and japonica 02428, and carries the widely compatible S5 gene donated by 02428. RI127 exhibits good performance in regard to its agronomic traits and has a wide compatibility. Therefore, RI127S would be an elite mediator for recurrent breeding in cases requiring a tedious hand-crossing-based inter-crossing phase. RI127S can be crossed not only with indica rice but also with japonica rice, thus providing breeders with flexible arrangements in recurrent breeding programs. PMID:26259187

  1. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.

    PubMed

    Ji, Yanzhu; DeWoody, J Andrew

    2016-06-01

    Transposable elements (TEs) are nearly ubiquitous among eukaryotic genomes, but TE contents vary dramatically among phylogenetic lineages. Several mechanisms have been proposed as drivers of TE dynamics in genomes, including the fixation/loss of a particular TE insertion by selection or drift as well as structural changes in the genome due to mutation (e.g., recombination). In particular, recombination can have a significant and directional effect on the genomic TE landscape. For example, ectopic recombination removes internal regions of long terminal repeat retrotransposons (LTR-RTs) as well as one long terminal repeat (LTR), resulting in a solo LTR. In this study, we focus on the intra-species dynamics of LTR-RTs and solo LTRs in bird genomes. The distribution of LTR-RTs and solo LTRs in birds is intriguing because avian recombination rates vary widely within a given genome. We used published linkage maps and whole genome assemblies to study the relationship between recombination rates and LTR-removal events in the chicken and zebra finch. We hypothesized that regions with low recombination rates would harbor more full-length LTR-RTs (and fewer solo LTRs) than regions with high recombination rates. We tested this hypothesis by comparing the ratio of full-length LTR-RTs and solo LTRs across chromosomes, across non-overlapping megabase windows, and across physical features (i.e., centromeres and telomeres). The chicken data statistically supported the hypothesis that recombination rates are inversely correlated with the ratio of full-length to solo LTRs at both the chromosome level and in 1-Mb non-overlapping windows. We also found that the ratio of full-length to solo LTRs near chicken telomeres was significantly lower than those ratios near centromeres. Our results suggest a potential role of ectopic recombination in shaping the chicken LTR-RT genomic landscape. PMID:27154235

  2. An insertion of intracisternal A-particle retrotransposon in a novel member of the phosphoglycerate mutase family in the lew allele of mutant mice.

    PubMed

    Jiao, Yan; Jin, Xiudong; Yan, Jian; Jiao, Feng; Li, Xinmin; Roe, Bruce A; Jarrett, Harry W; Gu, Weikuan

    2009-10-01

    Intracisternal A-particle retrotransposons (IAPs) are known, moveable, retrovirus-like elements and are defective in envelope protein synthesis in the mouse genome. Insertion of IAP elements can either interupt or enhance gene function or expression. Using a mouse model called lethal wasting (lew), we recently identified the insertion of an IAP sequence in a gene, 9630033F20Rik, that contains domains involved in glycolysis. The expression pattern of the 9630033F20Rik gene between various normal and diseased tissues was determined by semi-quantitative RT-PCR. The effect of the insertion mutation in 9630033F20Rik on glycolysis in heart, muscle, and brain tissues was further investigated using oligonuleotide microarray analysis. Results indicated that the expression of 9630033F20Rik is ubiquitous and its signal is relatively higher in heart and brain tissues. The insertion caused the deletion of exon 5 and decreased expression of this gene in all the tissues studied in the lew mice. Changes in the expression levels of glycolytic genes mainly occured in muscle tissue, raising a possibility that 9630033F20Rik may function as one of the transcriptional regulators of glycolytic genes in skeletal muscle. However, considering the fact that a single nucleotide mutation in vesicle-associated membrane protein 1 (VAMP1) has been reported as the causal gene for the lew mouse, how much of an impact the IAP insertion in the lew mouse phenotype has on glycolytic genes compared to the effect from the VAMP1 mutation responsible for the lew mouse phenotype should be further investigated. PMID:20154419

  3. The Dictyostelium discoideum RNA-dependent RNA polymerase RrpC silences the centromeric retrotransposon DIRS-1 post-transcriptionally and is required for the spreading of RNA silencing signals

    PubMed Central

    Wiegand, Stephan; Meier, Doreen; Seehafer, Carsten; Malicki, Marek; Hofmann, Patrick; Schmith, Anika; Winckler, Thomas; Földesi, Balint; Boesler, Benjamin; Nellen, Wolfgang; Reimegård, Johan; Käller, Max; Hällman, Jimmie; Emanuelsson, Olof; Avesson, Lotta; Söderbom, Fredrik; Hammann, Christian

    2014-01-01

    Dictyostelium intermediate repeat sequence 1 (DIRS-1) is the founding member of a poorly characterized class of retrotransposable elements that contain inverse long terminal repeats and tyrosine recombinase instead of DDE-type integrase enzymes. In Dictyostelium discoideum, DIRS-1 forms clusters that adopt the function of centromeres, rendering tight retrotransposition control critical to maintaining chromosome integrity. We report that in deletion strains of the RNA-dependent RNA polymerase RrpC, full-length and shorter DIRS-1 messenger RNAs are strongly enriched. Shorter versions of a hitherto unknown long non-coding RNA in DIRS-1 antisense orientation are also enriched in rrpC– strains. Concurrent with the accumulation of long transcripts, the vast majority of small (21 mer) DIRS-1 RNAs vanish in rrpC– strains. RNASeq reveals an asymmetric distribution of the DIRS-1 small RNAs, both along DIRS-1 and with respect to sense and antisense orientation. We show that RrpC is required for post-transcriptional DIRS-1 silencing and also for spreading of RNA silencing signals. Finally, DIRS-1 mis-regulation in the absence of RrpC leads to retrotransposon mobilization. In summary, our data reveal RrpC as a key player in the silencing of centromeric retrotransposon DIRS-1. RrpC acts at the post-transcriptional level and is involved in spreading of RNA silencing signals, both in the 5′ and 3′ directions. PMID:24369430

  4. Widespread horizontal transfer of retrotransposons.

    PubMed

    Walsh, Ali Morton; Kortschak, R Daniel; Gardner, Michael G; Bertozzi, Terry; Adelson, David L

    2013-01-15

    In higher organisms such as vertebrates, it is generally believed that lateral transfer of genetic information does not readily occur, with the exception of retroviral infection. However, horizontal transfer (HT) of protein coding repetitive elements is the simplest way to explain the patchy distribution of BovB, a long interspersed element (LINE) about 3.2 kb long, that has been found in ruminants, marsupials, squamates, monotremes, and African mammals. BovB sequences are a major component of some of these genomes. Here we show that HT of BovB is significantly more widespread than believed, and we demonstrate the existence of two plausible arthropod vectors, specifically reptile ticks. A phylogenetic tree built from BovB sequences from species in all of these groups does not conform to expected evolutionary relationships of the species, and our analysis indicates that at least nine HT events are required to explain the observed topology. Our results provide compelling evidence for HT of genetic material that has transformed vertebrate genomes. PMID:23277587

  5. Evidence of ectopic recombination and a repeat-induced point (RIP) mutation in the genome of Sclerotinia sclerotiorum, the agent responsible for white mold.

    PubMed

    Goldfarb, Míriam; Santana, Mateus Ferreira; Salomão, Tânia Maria Fernandes; Queiroz, Marisa Vieira de; Barros, Everaldo Gonçalves de

    2016-01-01

    Two retrotransposons from the superfamilies Copia and Gypsy named as Copia-LTR_SS and Gypsy-LTR_SS, respectively, were identified in the genomic bank of Sclerotinia sclerotiorum. These transposable elements (TEs) contained direct and preserved long terminal repeats (LTR). Domains related to codified regions for gag protein, integrase, reverse transcriptase and RNAse H were identified in Copia-LTR_SS, whereas in Gypsy-LTR_SS only domains for gag, reverse transcriptase and RNAse H were found. The abundance of identified LTR-Solo suggested possible genetic recombination events in the S. sclerotiorum genome. Furthermore, alignment of the sequences for LTR elements from each superfamily suggested the presence of a RIP (repeat-induced point mutation) silencing mechanism that may directly affect the evolution of this species. PMID:27560652

  6. Evidence of ectopic recombination and a repeat-induced point (RIP) mutation in the genome of Sclerotinia sclerotiorum, the agent responsible for white mold

    PubMed Central

    Goldfarb, Míriam; Santana, Mateus Ferreira; Salomão, Tânia Maria Fernandes; de Queiroz, Marisa Vieira; de Barros, Everaldo Gonçalves

    2016-01-01

    Abstract Two retrotransposons from the superfamilies Copia and Gypsy named as Copia-LTR_SS and Gypsy-LTR_SS, respectively, were identified in the genomic bank of Sclerotinia sclerotiorum. These transposable elements (TEs) contained direct and preserved long terminal repeats (LTR). Domains related to codified regions for gag protein, integrase, reverse transcriptase and RNAse H were identified in Copia-LTR_SS, whereas in Gypsy-LTR_SS only domains for gag, reverse transcriptase and RNAse H were found. The abundance of identified LTR-Solo suggested possible genetic recombination events in the S. sclerotiorum genome. Furthermore, alignment of the sequences for LTR elements from each superfamily suggested the presence of a RIP (repeat-induced point mutation) silencing mechanism that may directly affect the evolution of this species. PMID:27560652

  7. Evidence of ectopic recombination and a repeat-induced point (RIP) mutation in the genome of Sclerotinia sclerotiorum, the agent responsible for white mold.

    PubMed

    Goldfarb, Míriam; Santana, Mateus Ferreira; Salomão, Tânia Maria Fernandes; Queiroz, Marisa Vieira de; Barros, Everaldo Gonçalves de

    2016-07-01

    Two retrotransposons from the superfamilies Copia and Gypsy named as Copia-LTR_SS and Gypsy-LTR_SS, respectively, were identified in the genomic bank of Sclerotinia sclerotiorum. These transposable elements (TEs) contained direct and preserved long terminal repeats (LTR). Domains related to codified regions for gag protein, integrase, reverse transcriptase and RNAse H were identified in Copia-LTR_SS, whereas in Gypsy-LTR_SS only domains for gag, reverse transcriptase and RNAse H were found. The abundance of identified LTR-Solo suggested possible genetic recombination events in the S. sclerotiorum genome. Furthermore, alignment of the sequences for LTR elements from each superfamily suggested the presence of a RIP (repeat-induced point mutation) silencing mechanism that may directly affect the evolution of this species. PMID:27392240

  8. Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag.

    PubMed

    Nichuguti, Narisu; Hayase, Mayumi; Fujiwara, Haruhiko

    2016-05-15

    Ribosomal elements (R elements) are site-specific non-long terminal repeat (LTR) retrotransposons that target ribosomal DNA (rDNA). To elucidate how R elements specifically access their target sites, we isolated and characterized the 18S rDNA-specific R element R7Ag from Anopheles gambiae Using an in vivo and ex vivo recombinant baculovirus retrotransposition system, we found that the exact host 18S rDNA sequence at the target site is essential for the precise insertion of R7Ag. In addition, a long poly(A) tail is necessary for the accurate initiation of R7Ag reverse transcription, a novel mechanism found in non-LTR elements. We further compared the subcellular localizations of proteins in R7Ag as well as R1Bm, another R element that targets 28S rDNA. Although the open reading frame 1 proteins (ORF1ps) of both R7Ag and R1Bm localized predominantly in the cytoplasm, ORF2 proteins (ORF2ps) colocalized in the nucleus with the nucleolar marker fibrillarin. The ORF1ps and ORF2ps of both R elements colocalized largely in the nuclear periphery and to a lesser extent within the nucleus. These results suggest that R7Ag and R1Bm proteins may access nucleolar rDNA targets in an ORF2p-dependent manner. PMID:26976636

  9. Control of transposon activity by a histone H3K4 demethylase in rice

    PubMed Central

    Cui, Xiekui; Jin, Ping; Cui, Xia; Gu, Lianfeng; Lu, Zhike; Xue, Yongming; Wei, Liya; Qi, Jianfei; Song, Xianwei; Luo, Ming; An, Gynheung; Cao, Xiaofeng

    2013-01-01

    Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. PMID:23319643

  10. Efficient Translation Initiation Directed by the 900-Nucleotide-Long and GC-Rich 5′ Untranslated Region of the Human Retrotransposon LINE-1 mRNA Is Strictly Cap Dependent Rather than Internal Ribosome Entry Site Mediated▿

    PubMed Central

    Dmitriev, Sergey E.; Andreev, Dmitri E.; Terenin, Ilya M.; Olovnikov, Ivan A.; Prassolov, Vladimir S.; Merrick, William C.; Shatsky, Ivan N.

    2007-01-01

    Retrotransposon L1 is a mobile genetic element of the LINE family that is extremely widespread in the mammalian genome. It encodes a dicistronic mRNA, which is exceptionally rare among eukaryotic cellular mRNAs. The extremely long and GC-rich L1 5′ untranslated region (5′UTR) directs synthesis of numerous copies of RNA-binding protein ORF1p per mRNA. One could suggest that the 5′UTR of L1 mRNA contained a powerful internal ribosome entry site (IRES) element. Using transfection of cultured cells with the polyadenylated monocistronic (L1 5′UTR-Fluc) or bicistronic (Rluc-L1 5′UTR-Fluc) RNA constructs, capped or uncapped, it has been firmly established that the 5′UTR of L1 does not contain an IRES. Uncapping reduces the initiation activity of the L1 5′UTR to that of background. Moreover, the translation is inhibited by upstream AUG codons in the 5′UTR. Nevertheless, this cap-dependent initiation activity of the L1 5′UTR was unexpectedly high and resembles that of the beta-actin 5′UTR (84 nucleotides long). Strikingly, the deletion of up to 80% of the nucleotide sequence of the L1 5′UTR, with most of its stem loops, does not significantly change its translation initiation efficiency. These data can modify current ideas on mechanisms used by 40S ribosomal subunits to cope with complex 5′UTRs and call into question the conception that every long GC-rich 5′UTR working with a high efficiency has to contain an IRES. Our data also demonstrate that the ORF2 translation initiation is not directed by internal initiation, either. It is very inefficient and presumably based on a reinitiation event. PMID:17470553

  11. Yeast Ty1 retrotransposon: the minus-strand primer binding site and a cis-acting domain of the Ty1 RNA are both important for packaging of primer tRNA inside virus-like particles.

    PubMed Central

    Wilhelm, M; Wilhelm, F X; Keith, G; Agoutin, B; Heyman, T

    1994-01-01

    Reverse transcription of the yeast retrotransposon Ty1 is primed by the cytoplasmic initiator methionine tRNA (tRNA(iMet)). The primer tRNA(iMet) is packaged inside virus-like particles (VLPs) and binds to a 10 nucleotides minus-strand primer binding site, the (-)PBS, complementary to its 3' acceptor stem. We have found that three short sequences of the Ty1 RNA (box 1, box 2.1 and box 2.2) located 3' to the (-)PBS are complementary to other regions of the primer tRNA(iMet) (T psi C and DHU stems and loops). Reconstitution of reverse transcription in vitro with T7 transcribed Ty1 RNA species and tRNA(iMet) purified from yeast cells shows that the boxes do not affect the efficiency of reverse transcription. Thus the role of the boxes on packaging of the primer tRNA(iMet) into the VLPs was investigated by analysing the level of tRNA(iMet) packaged into mutant VLPs. Specific nucleotide changes in the (-)PBS or in the boxes that do not change the protein coding sequence but disrupt the complementarity with the primer tRNA(iMet) within the VLPs. We propose that base pairing between the primer tRNA(iMet) and the Ty1 RNA is of major importance for tRNA(iMet) packaging into the VLPs. Moreover the intactness of the boxes is essential for retrotransposition as shown by the transposition defect of a Ty1 element harboring an intact (-)PBS and mutated boxes. Images PMID:7527135

  12. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin

    2015-06-01

    Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure. PMID:25515665

  13. Heterologous induction of Ty1 retrotransposition: Reverse transcriptase plays a key role in initiation of the retrotransposition cycle

    SciTech Connect

    Reznik, N.L.; Kidgotko, O.V.; Zolotova, L.I.

    1995-12-01

    A new method was developed to study the mechanism of initiation of the retrotransposition cycle: retrotransposons of Drosophila melanogaster, gypsy, copia, and 17.6 were expressed in yeast under the control of strong yeast promoters. Expression of retrotransposons induced formation of viruslike particles (VLPs) associated with full-length Ty1 RNA and DNA sequences. This phenomenon was termed heterologous induction. When the gene for reverse transcriptase of human immunodeficiency virus (HIV) was expressed in yeast, the same results were obtained. These data allowed us to assume that the excess of active reverse transcriptase plays the key role in induction of transposition. Possible mechanisms of induction of Ty1 transposition by homologous and heterologous elements are discussed. 34 refs., 5 figs.

  14. Rice Undeveloped Tapetum1 Is a Major Regulator of Early Tapetum DevelopmentW⃞

    PubMed Central

    Jung, Ki-Hong; Han, Min-Jung; Lee, Yang-Seok; Kim, Yong-Woo; Hwang, Inhwan; Kim, Min-Jeong; Kim, Yeon-Ki; Nahm, Baek Hie; An, Gynheung

    2005-01-01

    The tapetum, the innermost of four sporophytic layers in the anther wall, comes in direct contact with the developing male gametophyte and is thought to play a crucial role in the development and maturation of microspores. Here, we report the identification of rice (Oryza sativa) Undeveloped Tapetum1 (Udt1), which is required for the differentiation of secondary parietal cells to mature tapetal cells. T-DNA or retrotransposon Tos17 insertions in the Udt1 gene caused male sterility. The anther walls and meiocytes of the mutants were normal during the early premeiosis stage, but their tapeta failed to differentiate and became vacuolated during the meiotic stage. In addition, meiocytes did not develop to microspores, and middle layer degeneration was inhibited. Consequently, the anther locules contained no pollen. The UDT1:green fluorescent protein fusion protein was localized to the nucleus. This, together with its homology with other basic helix-loop-helix proteins, suggests that UDT1 is a transcription factor. DNA microarray analysis identified 958 downregulated and 267 upregulated genes in the udt1-1 anthers, suggesting that Udt1 plays a major role in maintaining tapetum development, starting in early meiosis. PMID:16141453

  15. Characterization of Transposable Elements in Laccaria bicolor

    SciTech Connect

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle; Tuskan, Gerald A; Le Tacon, F; Martin, Francis

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copies elements distributed within 172 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs are ancient except some terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TEs expansion in L. bicolor; the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 500,000 years ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis represents an initial characterization of TEs in the L. bicolor genome, contributes to genome assembly and to a greater understanding of the role TEs played in genome organization and evolution, and provides a valuable resource for the ongoing Laccaria Pan-Genome project supported by the U.S.-DOE Joint Genome Institute.

  16. Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor

    SciTech Connect

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle; Tuskan, Gerald A; Le Tacon, F; Martin, Francis

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TEspecific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.

  17. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data.

    PubMed

    Li, Shu-Fen; Gao, Wu-Jun; Zhao, Xin-Peng; Dong, Tian-Yu; Deng, Chuan-Liang; Lu, Long-Dou

    2014-01-01

    Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant. PMID:24810432

  18. Insertional mutagenesis using Tnt1 retrotransposon in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is the third most important food crop in the world. However, genetics and genomics research of potato has lagged behind many major crop species due to its autotetraploidy and a highly heterogeneous genome. Insertional mutagenesis using T-DNA or transposable elements, which is available in sev...

  19. MIR retrotransposon sequences provide insulators to the human genome

    PubMed Central

    Wang, Jianrong; Vicente-García, Cristina; Seruggia, Davide; Moltó, Eduardo; Fernandez-Miñán, Ana; Neto, Ana; Lee, Elbert; Gómez-Skarmeta, José Luis; Montoliu, Lluís; Lunyak, Victoria V.; Jordan, I. King

    2015-01-01

    Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4+ T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4+ T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell–specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell–specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks. PMID:26216945

  20. Horizontal transfer of non-LTR retrotransposons in vertebrates.

    PubMed

    Kordis, D; Gubensek, F

    1999-01-01

    Since their discovery in family Bovidae (bovids), Bov-B LINEs, believed to be order-specific SINEs, have been found in all ruminants and recently also in Viperidae snakes. The distribution and the evolutionary relationships of Bov-B LINEs provide an indication of their origin and evolutionary dynamics in different species. The evolutionary origin of Bov-B LINE elements has been shown unequivocally to be in Squamata (squamates). The horizontal transfer of Bov-B LINE elements in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The direction of horizontal transfer from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution of Bov-B LINE elements. The ancestral snake lineage (Boidae) has been recognized as a possible donor of Bov-B LINE elements to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINE elements in Ruminantia and the fossil data of Ruminantia to be 40-50 mya. The phylogenetic relationships of Bov-B LINE elements from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINE elements have been stably maintained by vertical transmission since the origin of Squamata in the Mesozoic era. PMID:10952205

  1. Retrotransposons and pediatric genetic disorders: Importance and implications

    PubMed Central

    Akrami, Seyed Mohammad; Habibi, Laleh

    2014-01-01

    Pediatric disorders are generally observed to have a greater genetic load than diseases occurring during adulthood. Clinical manifestations of many genetic defects including chromosomal abnormalities and mutations in specific genes appear during childhood. One of the notable mutagens in human cells is mobile DNA element. They possess the ability to move and insert themselves in new genomic locations including critical disease-causing genes. Although our cells inhibit their transport by different mechanisms, factors such as aging and environmental heavy metals have effect on increasing their activities. In this article, we try to go over the features of active human retroelements and highlight their role in the pathology of pediatric genetic disorders. We also propose two mechanisms in which aged parental gametes and embryonic exposure to environmental stresses followed by mobile elements insertion may result in de novo pediatric diseases.

  2. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    PubMed Central

    Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés

    2009-01-01

    Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network

  3. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome

    PubMed Central

    2012-01-01

    Background Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Results Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. Conclusions The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in

  4. DNA Elements Reducing Transcriptional Gene Silencing Revealed by a Novel Screening Strategy

    PubMed Central

    Ueno, Keiichiro; Ohashi, Yuko; Mitsuhara, Ichiro

    2013-01-01

    Transcriptional gene silencing (TGS)–a phenomenon observed in endogenous genes/transgenes in eukaryotes–is a huge hindrance to transgenic technology and occurs mainly when the genes involved share sequence homology in their promoter regions. TGS depends on chromosomal position, suggesting the existence of genomic elements that suppress TGS. However, no systematic approach to identify such DNA elements has yet been reported. Here, we developed a successful novel screening strategy to identify such elements (anti-silencing regions–ASRs), based on their ability to protect a flanked transgene from TGS. A silenced transgenic tobacco plant in which a subsequently introduced transgene undergoes obligatory promoter-homology dependent TGS in trans allowed the ability of DNA elements to prevent TGS to be used as the screening criterion. We also identified ASRs in a genomic library from a different plant species (Lotus japonicus: a perennial legume); the ASRs include portions of Ty1/copia retrotransposon-like and pararetrovirus-like sequences; the retrotransposon-like sequences also showed interspecies anti-TGS activity in a TGS-induction system in Arabidopsis. Anti-TGS elements could provide effective tools to reduce TGS and ensure proper regulation of transgene expression. Furthermore, the screening strategy described here will also facilitate the efficient identification of new classes of anti-TGS elements. PMID:23382937

  5. Communities of Practice in Academe (CoP-iA): Understanding Academic Work Practices to Enable Knowledge Building Capacities in Corporate Universities

    ERIC Educational Resources Information Center

    Nagy, Judy; Burch, Tony

    2009-01-01

    A form of voluntary workplace engagement, communities of practice are characterised in literature as providing entities with the potential to harness the multiplier effects of collaborative processes by building on informal networks within entities. As knowledge building and sharing institutions it would be reasonable to presume that communities…

  6. Identification of a novel retrotransposon with sex chromosome-specific distribution in Silene latifolia.

    PubMed

    Kralova, Tereza; Cegan, Radim; Kubat, Zdenek; Vrana, Jan; Vyskot, Boris; Vogel, Ivan; Kejnovsky, Eduard; Hobza, Roman

    2014-01-01

    Silene latifolia is a dioecious plant species with chromosomal sex determination. Although the evolution of sex chromosomes in S. latifolia has been the subject of numerous studies, a global view of X chromosome structure in this species is still missing. Here, we combine X chromosome microdissection and BAC library screening to isolate new X chromosome-linked sequences. Out of 8 identified BAC clones, only BAC 86M14 showed an X-preferential signal after FISH experiments. Further analysis revealed the existence of the Athila retroelement which is enriched in the X chromosome and nearly absent in the Y chromosome. Based on previous data, the Athila retroelement belongs to the CL3 group of most repetitive sequences in the S. latifolia genome. Structural, transcriptomics and phylogenetic analyses revealed that Athila CL3 represents an old clade in the Athila lineage. We propose a mechanism responsible for Athila CL3 distribution in the S. latifolia genome. PMID:24751661

  7. [Phylogeny of the order Rodentia inferred from structural analysis of short retrotransposon B1].

    PubMed

    Veniaminova, N A; Vasetskiĭ, N S; Lavrechenko, L A; Popov, S V; Kramerov, D A

    2007-07-01

    A large-scale study of short retroposon (SINE) B1 has been conducted in the genome of rodents from most of the known families of this mammalian order. The B1 nucleotide sequences of rodents from different families exhibited a number of characteristic features including substitutions, deletions, and tandem duplications. Comparing the distribution of these features among the rodent families, the currently discussed phylogenetic relationships were tested. The results of analysis indicated (1) an early divergence of Sciuridae and related families (Aplodontidae and Gliridae) from the other rodents; (2) a possible subsequent divergence of beavers (Castoridae); (3) a monophyletic origin of the group Hystricognathi, which includes several families, such as porcupines (Hystricidae) and guinea pigs (Caviidae); (4) a possible monophyletic origin of the group formed by the remaining families, including six families of mouselike rodents (Myodonta). Various approaches to the use of short retroposons for phylogenetic studies are discussed. PMID:17899810

  8. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells.

    PubMed

    De La Fuente, Rabindranath; Baumann, Claudia; Fan, Tao; Schmidtmann, Anja; Dobrinski, Ina; Muegge, Kathrin

    2006-12-01

    Lymphoid specific helicase (Lsh) is a major epigenetic regulator that is essential for DNA methylation and transcriptional silencing of parasitic elements in the mammalian genome. However, whether Lsh is involved in the regulation of chromatin-mediated processes during meiosis is not known. Here, we show that Lsh is essential for the completion of meiosis and transcriptional repression of repetitive elements in the female gonad. Oocytes from Lsh knockout mice exhibit demethylation of transposable elements and tandem repeats at pericentric heterochromatin, as well as incomplete chromosome synapsis associated with persistent RAD51 foci and gammaH2AX phosphorylation. Failure to load crossover-associated foci results in the generation of non-exchange chromosomes. The severe oocyte loss observed and lack of ovarian follicle formation, together with the patterns of Lsh nuclear compartmentalization in the germ line, demonstrate that Lsh has a critical and previously unidentified role in epigenetic gene silencing and maintenance of genomic stability during female meiosis. PMID:17115026

  9. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer.

    PubMed

    Scott, Emma C; Gardner, Eugene J; Masood, Ashiq; Chuang, Nelson T; Vertino, Paula M; Devine, Scott E

    2016-06-01

    Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient's genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion worked together with a point mutation in the second APC allele to initiate tumorigenesis through the classic two-hit CRC pathway. We also show that L1 source profiles vary considerably depending on the ancestry of an individual, and that population-specific hot L1 elements represent a novel form of cancer risk. PMID:27197217

  10. Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor

    PubMed Central

    2014-01-01

    Background Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. Results Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. Conclusions We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing. PMID:24946810

  11. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane

    PubMed Central

    Metcalfe, Cushla J.; Oliveira, Sarah G.; Gaiarsa, Jonas W.; Aitken, Karen S.; Carneiro, Monalisa S.; Zatti, Fernanda; Van Sluys, Marie-Anne

    2015-01-01

    Sugarcane is the main source of the world’s sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum. PMID:26093024

  12. Probing Retroviral and Retrotransposon Genome Structures: The “SHAPE” of Things to Come

    PubMed Central

    Sztuba-Solinska, Joanna; Le Grice, Stuart F. J.

    2012-01-01

    Understanding the nuances of RNA structure as they pertain to biological function remains a formidable challenge for retrovirus research and development of RNA-based therapeutics, an area of particular importance with respect to combating HIV infection. Although a variety of chemical and enzymatic RNA probing techniques have been successfully employed for more than 30 years, they primarily interrogate small (100–500 nt) RNAs that have been removed from their biological context, potentially eliminating long-range tertiary interactions (such as kissing loops and pseudoknots) that may play a critical regulatory role. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), pioneered recently by Merino and colleagues, represents a facile, user-friendly technology capable of interrogating RNA structure with a single reagent and, combined with automated capillary electrophoresis, can analyze an entire 10,000-nucleotide RNA genome in a matter of weeks. Despite these obvious advantages, SHAPE essentially provides a nucleotide “connectivity map,” conversion of which into a 3-D structure requires a variety of complementary approaches. This paper summarizes contributions from SHAPE towards our understanding of the structure of retroviral genomes, modifications to which technology that have been developed to address some of its limitations, and future challenges. PMID:22685659

  13. Retrotransposon mdg3 of Drosophila: General structure and functional domains of the full-length copy

    SciTech Connect

    Avedisov, S.N.; Ilyin, Yu.V.

    1995-09-01

    A full-length copy of the transposable element mdg3 from the plasmid clone Dm38 of Drosophila melanogaster was obtained by screening the DNA library of the cell culture 67J25D. Previous work demonstrated that only full-length copies of mdg3 (5.5 kb) are amplified in this culture, whereas the number of deleted copies probably has not changed since the cell line was established. We sequenced the full-length copy of mdg3 from cDm38 by the method described by Sanger. 10 refs., 2 figs., 2 tabs.

  14. New insights into Oryza genome evolution: high gene colinearity and differential retrotransposon amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genomic region (~247kb) from an FF genome, wild Oryza species, O. brachyantha L., was sequenced and compared to the orthologous region (~450 kb) from AA genome rice, O. sativa L. ssp japonica ¬ the first such comparison reported between cultivated Oryza and a distantly related wild species. Among ...

  15. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brachypodium distachyon is a wild annual grass belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than rice and maize. As an experimental model, the completed genome sequence of B. distachyon provides a unique opportunity to study centromere evolution during the spe...

  16. Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice

    PubMed Central

    2014-01-01

    Background Endogenous small (sm) RNAs (primarily si- and miRNAs) are important trans/cis-acting regulators involved in diverse cellular functions. In plants, the RNA-dependent RNA polymerases (RDRs) are essential for smRNA biogenesis. It has been established that RDR2 is involved in the 24 nt siRNA-dependent RNA-directed DNA methylation (RdDM) pathway. Recent studies have suggested that RDR1 is involved in a second RdDM pathway that relies mostly on 21 nt smRNAs and functions to silence a subset of genomic loci that are usually refractory to the normal RdDM pathway in Arabidopsis. Whether and to what extent the homologs of RDR1 may have similar functions in other plants remained unknown. Results We characterized a loss-of-function mutant (Osrdr1) of the OsRDR1 gene in rice (Oryza sativa L.) derived from a retrotransposon Tos17 insertion. Microarray analysis identified 1,175 differentially expressed genes (5.2% of all expressed genes in the shoot-tip tissue of rice) between Osrdr1 and WT, of which 896 and 279 genes were up- and down-regulated, respectively, in Osrdr1. smRNA sequencing revealed regional alterations in smRNA clusters across the rice genome. Some of the regions with altered smRNA clusters were associated with changes in DNA methylation. In addition, altered expression of several miRNAs was detected in Osrdr1, and at least some of which were associated with altered expression of predicted miRNA target genes. Despite these changes, no phenotypic difference was identified in Osrdr1 relative to WT under normal condition; however, ephemeral phenotypic fluctuations occurred under some abiotic stress conditions. Conclusions Our results showed that OsRDR1 plays a role in regulating a substantial number of endogenous genes with diverse functions in rice through smRNA-mediated pathways involving DNA methylation, and which participates in abiotic stress response. PMID:24980094

  17. Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability

    PubMed Central

    Wang, Hongyan; Chai, Yang; Chu, Xiucheng; Zhao, Yunyang; Wu, Ying; Zhao, Jihong; Ngezahayo, Frédéric; Xu, Chunming; Liu, Bao

    2009-01-01

    Background Inter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants. It remains unclear however whether pollination by alien pollens of an incompatible species may impose a "biological stress" even in the absence of genome-merger or genetic introgression, whereby genetic and/or epigenetic instability of the maternal recipient genome might be provoked. Results We report here the identification of a rice mutator-phenotype from a set of rice plants derived from a crossing experiment involving two remote and apparently incompatible species, Oryza sativa L. and Oenothera biennis L. The mutator-phenotype (named Tong211-LP) showed distinct alteration in several traits, with the most striking being substantially enlarged panicles. Expectably, gel-blotting by total genomic DNA of the pollen-donor showed no evidence for introgression. Characterization of Tong211-LP (S0) and its selfed progenies (S1) ruled out contamination (via seed or pollen) or polyploidy as a cause for its dramatic phenotypic changes, but revealed transgenerational mobilization of several previously characterized transposable elements (TEs), including a MITE (mPing), and three LTR retrotransposons (Osr7, Osr23 and Tos17). AFLP and MSAP fingerprinting revealed extensive, transgenerational alterations in cytosine methylation and to a less extent also genetic variation in Tong211-LP and its immediate progenies. mPing mobility was found to correlate with cytosine methylation alteration detected by MSAP but not with genetic variation detected by AFLP. Assay by q-RT-PCR of the steady-state transcript abundance of a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, and small interference RNA (siRNA) pathway-related proteins showed that, relative to the rice parental line, heritable perturbation in expression of 12 out of the 13 genes occurred

  18. Deletion of Drosophila Nopp140 induces subcellular ribosomopathies.

    PubMed

    He, Fang; James, Allison; Raje, Himanshu; Ghaffari, Helya; DiMario, Patrick

    2015-06-01

    The nucleolar and Cajal body phosphoprotein of 140 kDa (Nopp140) is considered a ribosome assembly factor, but its precise functions remain unknown. To approach this problem, we deleted the Nopp140 gene in Drosophila using FLP-FRT recombination. Genomic PCR, reverse transcriptase-PCR (RT-PCR), and immunofluorescence microscopy confirmed the loss of Nopp140, its messenger RNA (mRNA), and protein products from all tissues examined. Nopp140-/- larvae arrested in the second instar stage and most died within 8 days. While nucleoli appeared intact in Nopp140-/- cells, the C/D small nucleolar ribonucleoprotein (snoRNP) methyltransferase, fibrillarin, redistributed to the nucleoplasm in variable amounts depending on the cell type; RT-PCRs showed that 2'-O-methylation of ribosomal RNA (rRNA) in Nopp140-/- cells was reduced at select sites within both the 18S and 28S rRNAs. Ultrastructural analysis showed that Nopp140-/- cells were deficient in cytoplasmic ribosomes, but instead contained abnormal electron-dense cytoplasmic granules. Immunoblot analysis showed a loss of RpL34, and metabolic labeling showed a significant drop in protein translation, supporting the loss of functional ribosomes. Northern blots showed that pre-RNA cleavage pathways were generally unaffected by the loss of Nopp140, but that R2 retrotransposons that naturally reside within the 28S region of normally silent heterochromatic Drosophila ribosomal DNA (rDNA) genes were selectively expressed in Nopp140-/- larvae. Unlike copia elements and the related R1 retrotransposon, R2 expression appeared to be preferentially dependent on the loss of Nopp140 and not on environmental stresses. We believe the phenotypes described here define novel intracellular ribosomopathies resulting from the loss of Nopp140. PMID:25384888

  19. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes.

    PubMed

    Cheung, Stephanie; Ma, Lina; Chan, Patrick H W; Hu, Hui-Lan; Mayor, Thibault; Chen, Hung-Ta; Measday, Vivien

    2016-03-18

    Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes. PMID:26797132

  20. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop.

    PubMed

    Hazzouri, Khaled M; Flowers, Jonathan M; Visser, Hendrik J; Khierallah, Hussam S M; Rosas, Ulises; Pham, Gina M; Meyer, Rachel S; Johansen, Caryn K; Fresquez, Zoë A; Masmoudi, Khaled; Haider, Nadia; El Kadri, Nabila; Idaghdour, Youssef; Malek, Joel A; Thirkhill, Deborah; Markhand, Ghulam S; Krueger, Robert R; Zaid, Abdelouahhab; Purugganan, Michael D

    2015-01-01

    Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop. PMID:26549859

  1. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop

    PubMed Central

    Hazzouri, Khaled M.; Flowers, Jonathan M.; Visser, Hendrik J.; Khierallah, Hussam S. M.; Rosas, Ulises; Pham, Gina M.; Meyer, Rachel S.; Johansen, Caryn K.; Fresquez, Zoë A.; Masmoudi, Khaled; Haider, Nadia; El Kadri, Nabila; Idaghdour, Youssef; Malek, Joel A.; Thirkhill, Deborah; Markhand, Ghulam S.; Krueger, Robert R.; Zaid, Abdelouahhab; Purugganan, Michael D.

    2015-01-01

    Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop. PMID:26549859

  2. Structural analysis and physical mapping of a pericentromeric region of chromosome 5 of Arabidopsis thaliana.

    PubMed

    Tutois, S; Cloix, C; Cuvillier, C; Espagnol, M C; Lafleuriel, J; Picard, G; Tourmente, S

    1999-01-01

    The Arabidopsis thaliana CIC YAC 2D2, 510 kb long and containing a small block of 180 bp satellite units was subcloned after EcoR1 digestion in the pBluescript plasmid. One of these clones was mapped genetically in the pericentromeric region of chromosome 5. The analysis of 40 subclones of this YAC showed that they all contain repeated sequences with a high proportion of transposable elements. Three new retrotransposons, two Ty-3 Gypsy-like and one Ty-1 Copia, were identified in addition to two new tandem-repeat families. A physical map of the chromosome 5 pericentromeric region was established using CIC YAC clones, spanning around 1000 kb. This contig extends from the CIC YAC 9F5 and 7A2 positioned on the left arm of chromosome 5 to a 5S rDNA genes block localized by in-situ hybridization in the pericentromeric region. Hybridization of the subclones on the CIC YAC library showed that some of them are restricted to the pericentromeric region of chromosome 5 and represent specific markers of this region. PMID:10328626

  3. A PCR screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of pest resistance to transgenic crop plants producing insecticidal toxins from Bacillus thuringiensis Berliner (Bt) poses a continuing threat to their sustainable use in agriculture. One component of the USA-wide resistance management plan for Bt cotton involves monitoring the freque...

  4. [Interlineage distribution and characteristics of the structure of two subfamilies of Drosophila melanogaster MDG4 (gypsy) retrotransposon].

    PubMed

    Razorenova, O V; Karpova, N N; Smirnova, Iu B; Kusulidu, L K; Reneva, N K; Subocheva, E A; Kim, A I; Liubomirskaia, N V; Il'in, Iu V

    2001-02-01

    The distribution of two variants of MDG4 (gypsy) was analyzed in several Drosophila melanogaster strains. Southern blot hybridization revealed the inactive variant of MDG4 in all strains examined and active MDG4 only in some of them. Most of the strains harboring the active MDG4 variant were recently isolated from natural populations. It is of interest that the active MDG4 prevailed over the inactive one only in strains carrying the mutant flamenco gene. Several lines were analyzed in more detail. The number of MDG4 sites on salivary-gland polytene chromosomes was established via in situ hybridization, and MDG4 was tested for transposition using the ovoD test. PMID:11253423

  5. [Transcriptional analysis of the Grp gene, a genomic homolog of the retrotransposon gypsy gag gene, in Drosophila melanogaster].

    PubMed

    Nefedova, L N; Kuz'min, I V; Burmistrova, D A; Rezazadekh, S; Kim, A I

    2011-08-01

    In the present work, we studied the Grp gene (CG4680, Gag related protein) expression at the transcriptional level. It was found that at the embryonic and larval stages of D. melanogaster development the Grp expression proceeds at a low level, but it significantly increases at the adult stage. Adult individuals display a tissue-specific expression: an eleveated level of transcription is observed in the gut tissues, but not in the chitin carcass, head, and gonads. Since the gut may potentially be a primary barrier for the penetration of a viral infection, we conducted a comparative analysis of Grp gene transcription in D. melanogaster strains differing in the presence of active copies of the gypsy errantivirus and in the status of the flamenco gene controlling sensitivity to errantiviral infections. No noticeable differences in the level of Grp gene transcription were revealed. Thus, the Grp gene is not a pseudogene, but it is a functional gene of the D. melanogaster genome whose role remains to be elucidated. PMID:21954611

  6. THE WHEAT D-GENOME HMW-GLUTENIN LOCUS:BAC SEQUENCING, GENE DISTRIBUTION, AND RETROTRANSPOSON CLUSTERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bacterial-artificial-chromosome (BAC) clone from the genome of Triticum tauschii, the D-genome ancestor of hexaploid bread wheat, was sequenced and the presence of the two paralogous x- and y- type high-molecular-weight (HMW) glutenin genes of the Glu-D1 locus was confirmed. These two genes occur...

  7. Repeated Recruitment of LTR Retrotransposons as Promoters by the Anti-Apoptotic Locus NAIP during Mammalian Evolution

    PubMed Central

    Romanish, Mark T; Lock, Wynne M; van de Lagemaat, Louie N.; Dunn, Catherine A; Mager, Dixie L

    2007-01-01

    Neuronal apoptosis inhibitory protein (NAIP, also known as BIRC1) is a member of the conserved inhibitor of apoptosis protein (IAP) family. Lineage-specific rearrangements and expansions of this locus have yielded different copy numbers among primates and rodents, with human retaining a single functional copy and mouse possessing several copies, depending on the strain. Roles for this gene in disease have been documented, but little is known about transcriptional regulation of NAIP. We show here that NAIP has multiple promoters sharing no similarity between human and rodents. Moreover, we demonstrate that multiple, domesticated long terminal repeats (LTRs) of endogenous retroviral elements provide NAIP promoter function in human, mouse, and rat. In human, an LTR serves as a tissue-specific promoter, active primarily in testis. However, in rodents, our evidence indicates that an ancestral LTR common to all rodent genes is the major, constitutive promoter for these genes, and that a second LTR found in two of the mouse genes is a minor promoter. Thus, independently acquired LTRs have assumed regulatory roles for orthologous genes, a remarkable evolutionary scenario. We also demonstrate that 5′ flanking regions of IAP family genes as a group, in both human and mouse are enriched for LTR insertions compared to average genes. We propose several potential explanations for these findings, including a hypothesis that recruitment of LTRs near NAIP or other IAP genes may represent a host-cell adaptation to modulate apoptotic responses. PMID:17222062

  8. Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia

    PubMed Central

    Macas, Jiří; Kejnovský, Eduard; Neumann, Pavel; Novák, Petr; Koblížková, Andrea; Vyskot, Boris

    2011-01-01

    Background Silene latifolia is a dioceous plant with well distinguished X and Y chromosomes that is used as a model to study sex determination and sex chromosome evolution in plants. However, efficient utilization of this species has been hampered by the lack of large-scale sequencing resources and detailed analysis of its genome composition, especially with respect to repetitive DNA, which makes up the majority of the genome. Methodology/Principal Findings We performed low-pass 454 sequencing followed by similarity-based clustering of 454 reads in order to identify and characterize sequences of all major groups of S. latifolia repeats. Illumina sequencing data from male and female genomes were also generated and employed to quantify the genomic proportions of individual repeat families. The majority of identified repeats belonged to LTR-retrotransposons, constituting about 50% of genomic DNA, with Ty3/gypsy elements being more frequent than Ty1/copia. While there were differences between the male and female genome in the abundance of several repeat families, their overall repeat composition was highly similar. Specific localization patterns on sex chromosomes were found for several satellite repeats using in situ hybridization with probes based on k-mer frequency analysis of Illumina sequencing data. Conclusions/Significance This study provides comprehensive information about the sequence composition and abundance of repeats representing over 60% of the S. latifolia genome. The results revealed generally low divergence in repeat composition between the sex chromosomes, which is consistent with their relatively recent origin. In addition, the study generated various data resources that are available for future exploration of the S. latifolia genome. PMID:22096552

  9. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis

    PubMed Central

    2013-01-01

    Background Nicotiana sylvestris and Nicotiana tomentosiformis are members of the Solanaceae family that includes tomato, potato, eggplant and pepper. These two Nicotiana species originate from South America and exhibit different alkaloid and diterpenoid production. N. sylvestris is cultivated largely as an ornamental plant and it has been used as a diploid model system for studies of terpenoid production, plastid engineering, and resistance to biotic and abiotic stress. N. sylvestris and N. tomentosiformis are considered to be modern descendants of the maternal and paternal donors that formed Nicotiana tabacum about 200,000 years ago through interspecific hybridization. Here we report the first genome-wide analysis of these two Nicotiana species. Results Draft genomes of N. sylvestris and N. tomentosiformis were assembled to 82.9% and 71.6% of their expected size respectively, with N50 sizes of about 80 kb. The repeat content was 72-75%, with a higher proportion of retrotransposons and copia-like long terminal repeats in N. tomentosiformis. The transcriptome assemblies showed that 44,000-53,000 transcripts were expressed in the roots, leaves or flowers. The key genes involved in terpenoid metabolism, alkaloid metabolism and heavy metal transport showed differential expression in the leaves, roots and flowers of N. sylvestris and N. tomentosiformis. Conclusions The reference genomes of N. sylvestris and N. tomentosiformis represent a significant contribution to the SOL100 initiative because, as members of the Nicotiana genus of Solanaceae, they strengthen the value of the already existing resources by providing additional comparative information, thereby helping to improve our understanding of plant metabolism and evolution. PMID:23773524

  10. Transposable elements play an important role during cotton genome evolution and fiber cell development.

    PubMed

    Wang, Kun; Huang, Gai; Zhu, Yuxian

    2016-02-01

    Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities. PMID:26687725

  11. Salinity tolerance in soybean is modulated by natural variation in GmSALT3.

    PubMed

    Guan, Rongxia; Qu, Yue; Guo, Yong; Yu, Lili; Liu, Ying; Jiang, Jinghan; Chen, Jiangang; Ren, Yulong; Liu, Guangyu; Tian, Lei; Jin, Longguo; Liu, Zhangxiong; Hong, Huilong; Chang, Ruzhen; Gilliham, Matthew; Qiu, Lijuan

    2014-12-01

    The identification of genes that improve the salt tolerance of crops is essential for the effective utilization of saline soils for agriculture. Here, we use fine mapping in a soybean (Glycine max (L.) Merr.) population derived from the commercial cultivars Tiefeng 8 and 85-140 to identify GmSALT3 (salt tolerance-associated gene on chromosome 3), a dominant gene associated with limiting the accumulation of sodium ions (Na+) in shoots and a substantial enhancement in salt tolerance in soybean. GmSALT3 encodes a protein from the cation/H+ exchanger family that we localized to the endoplasmic reticulum and which is preferentially expressed in the salt-tolerant parent Tiefeng 8 within root cells associated with phloem and xylem. We identified in the salt-sensitive parent, 85-140, a 3.78-kb copia retrotransposon insertion in exon 3 of Gmsalt3 that truncates the transcript. By sequencing 31 soybean landraces and 22 wild soybean (Glycine soja) a total of nine haplotypes including two salt-tolerant haplotypes and seven salt-sensitive haplotypes were identified. By analysing the distribution of haplotypes among 172 Chinese soybean landraces and 57 wild soybean we found that haplotype 1 (H1, found in Tiefeng 8) was strongly associated with salt tolerance and is likely to be the ancestral allele. Alleles H2-H6, H8 and H9, which do not confer salinity tolerance, were acquired more recently. H1, unlike other alleles, has a wide geographical range including saline areas, which indicates it is maintained when required but its potent stress tolerance can be lost during natural selection and domestication. GmSALT3 is a gene associated with salt tolerance with great potential for soybean improvement. PMID:25292417

  12. Potential Start Codon Targeted (SCoT) and Inter-retrotransposon Amplified Polymorphism (IRAP) Markers for Evaluation of Genetic Diversity and Conservation of Wild Pistacia Species Population.

    PubMed

    Sorkheh, Karim; Amirbakhtiar, Nazanin; Ercisli, Sezai

    2016-08-01

    Wild pistachio species is important species in forests regions Iran and provide protection wind and soil erosion. Even though cultivation and utilization of Pistacia are fully exploited, the evolutionary history of the Pistacia genus and the relationships among the species and accessions is still not well understood. Two molecular marker strategies, SCoT and IRAP markers were analyzed for assessment of 50 accessions of this species accumulated from diverse geographical areas of Iran. A thorough of 115 bands were amplified using eight IRAP primers, of which 104 (90.4 %) have been polymorphic, and 246 polymorphic bands (68.7 %) had been located in 358 bands amplified by way of forty-four SCoT primers. Average PIC for IRAP and SCoT markers became 0.32 and 0.48, respectively. This is exposed that SCoT markers have been extra informative than IRAP for the assessment of variety among pistachio accessions. Primarily based on the two extraordinary molecular markers, cluster evaluation revealed that the 50 accessions taken for the evaluation may be divided into three distinct clusters. Those results recommend that the performance of SCoT and IRAP markers was highly the equal in fingerprinting of accessions. The results affirmed a low genetic differentiation among populations, indicating the opportunity of gene drift most of the studied populations. These findings might render striking information in breeding management strategies for genetic conservation and cultivar improvement. PMID:27056191

  13. Primitive Genepools of Asian Pears and Their Complex Hybrid Origins Inferred from Fluorescent Sequence-Specific Amplification Polymorphism (SSAP) Markers Based on LTR Retrotransposons

    PubMed Central

    Jiang, Shuang; Zheng, Xiaoyan; Yu, Peiyuan; Yue, Xiaoyan; Ahmed, Maqsood; Cai, Danying; Teng, Yuanwen

    2016-01-01

    Recent evidence indicated that interspecific hybridization was the major mode of evolution in Pyrus. The genetic relationships and origins of the Asian pear are still unclear because of frequent hybrid events, fast radial evolution, and lack of informative data. Here, we developed fluorescent sequence-specific amplification polymorphism (SSAP) markers with lots of informative sites and high polymorphism to analyze the population structure among 93 pear accessions, including nearly all species native to Asia. Results of a population structure analysis indicated that nearly all Asian pear species experienced hybridization, and originated from five primitive genepools. Four genepools corresponded to four primary Asian species: P. betulaefolia, P. pashia, P. pyrifolia, and P. ussuriensis. However, cultivars of P. ussuriensis were not monophyletic and introgression occurred from P. pyrifolia. The specific genepool detected in putative hybrids between occidental and oriental pears might be from occidental pears. The remaining species, including P. calleryana, P. xerophila, P. sinkiangensis, P. phaeocarpa, P. hondoensis, and P. hopeiensis in Asia, were inferred to be of hybrid origins and their possible genepools were identified. This study will be of great help for understanding the origin and evolution of Asian pears. PMID:26871452

  14. A novel retrotransposon inserted in the dominant Vm-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is traditionally divided into winter and spring wheat that either has or lacks a vernalization requirement. In this study, a doubled haploid (DH) population derived from a cross between two spring tetraploid wheat (Triticum turgidum L.) genotypes, durum ‘Lebsock’ and Persian wheat accession PI...

  15. Retrotransposon Insertion in the T-cell Acute Lymphocytic Leukemia 1 (Tal1) Gene Is Associated with Severe Renal Disease and Patchy Alopecia in Hairpatches (Hpt) Mice

    PubMed Central

    Burzenski, Lisa M.; Riding, Rebecca L.; Alley, Lynn; Lyons, Bonnie L.; Kavirayani, Anoop; Martin, Kimberly A.; Cox, Gregory A.; Johnson, Kenneth R.; Shultz, Leonard D.

    2013-01-01

    “Hairpatches” (Hpt) is a naturally occurring, autosomal semi-dominant mouse mutation. Hpt/Hpt homozygotes die in utero, while Hpt/+ heterozygotes exhibit progressive renal failure accompanied by patchy alopecia. This mutation is a model for the rare human disorder “glomerulonephritis with sparse hair and telangiectases" (OMIM 137940). Fine mapping localized the Hpt locus to a 6.7 Mb region of Chromosome 4 containing 62 known genes. Quantitative real time PCR revealed differential expression for only one gene in the interval, T-cell acute lymphocytic leukemia 1 (Tal1), which was highly upregulated in the kidney and skin of Hpt/+ mice. Southern blot analysis of Hpt mutant DNA indicated a new EcoRI site in the Tal1 gene. High throughput sequencing identified an endogenous retroviral class II intracisternal A particle insertion in Tal1 intron 4. Our data suggests that the IAP insertion in Tal1 underlies the histopathological changes in the kidney by three weeks of age, and that glomerulosclerosis is a consequence of an initial developmental defect, progressing in severity over time. The Hairpatches mouse model allows an investigation into the effects of Tal1, a transcription factor characterized by complex regulation patterns, and its effects on renal disease. PMID:23301070

  16. The Pattern of R2 Retrotransposon Activity in Natural Populations of Drosophila simulans Reflects the Dynamic Nature of the rDNA Locus

    PubMed Central

    Zhou, Jun; Eickbush, Thomas H.

    2009-01-01

    The pattern and frequency of insertions that enable transposable elements to remain active in a population are poorly understood. The retrotransposable element R2 exclusively inserts into the 28S rRNA genes where it establishes long-term, stable relationships with its animal hosts. Previous studies with laboratory stocks of Drosophila simulans have suggested that control over R2 retrotransposition resides within the rDNA loci. In this report, we sampled 180 rDNA loci of animals collected from two natural populations of D. simulans. The two populations were found to have similar patterns of R2 activity. About half of the rDNA loci supported no or very low levels of R2 transcripts with no evidence of R2 retrotransposition. The remaining half of the rDNA loci had levels of R2 transcripts that varied in a continuous manner over almost a 100-fold range and did support new retrotransposition events. Structural analysis of the rDNA loci in 18 lines that spanned the range of R2 transcript levels in these populations revealed that R2 number and rDNA locus size varied 2-fold; however, R2 activity was not readily correlated with either of these parameters. Instead R2 activity was best correlated with the distribution of elements within the rDNA locus. Loci with no activity had larger contiguous blocks of rDNA units free of R2-insertions. These data suggest a model in which frequent recombination within the rDNA locus continually redistributes R2-inserted units resulting in changing levels of R2 activity within individual loci and persistent R2 activity within the population. PMID:19229317

  17. Methods for accurate quantification of LTR-retrotransposon copy number using short-read sequence data: a case study in Sorghum.

    PubMed

    Ramachandran, Dhanushya; Hawkins, Jennifer S

    2016-10-01

    Transposable elements (TEs) are ubiquitous in eukaryotic genomes and their mobility impacts genome structure and function in myriad ways. Because of their abundance, activity, and repetitive nature, the characterization and analysis of TEs remain challenging, particularly from short-read sequencing projects. To overcome this difficulty, we have developed a method that estimates TE copy number from short-read sequences. To test the accuracy of our method, we first performed an in silico analysis of the reference Sorghum bicolor genome, using both reference-based and de novo approaches. The resulting TE copy number estimates were strikingly similar to the annotated numbers. We then tested our method on real short-read data by estimating TE copy numbers in several accessions of S. bicolor and its close relative S. propinquum. Both methods effectively identify and rank similar TE families from highest to lowest abundance. We found that de novo characterization was effective at capturing qualitative variation, but underestimated the abundance of some TE families, specifically families of more ancient origin. Also, interspecific reference-based mapping of S. propinquum reads to the S. bicolor database failed to fully describe TE content in S. propinquum, indicative of recent TE activity leading to changes in the respective repetitive landscapes over very short evolutionary timescales. We conclude that reference-based analyses are best suited for within-species comparisons, while de novo approaches are more reliable for evolutionarily distant comparisons. PMID:27295958

  18. The take and give between retrotransposable elements and their hosts

    PubMed Central

    Beauregard, Arthur; Curcio, M. Joan; Belfort, Marlene

    2009-01-01

    Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons, also called non-LTR retrotransposons, and extrachromosomally-primed (EP) retrotransposons, also called LTR retrotransposons. The TP retrotransposons considered here are group II introns, LINEs and SINEs, whereas the EP elments considered are the Ty and Tf retrotransposons, with a brief comparison to retroviruses. Recurring themes for these elements, in hosts ranging from microbes to man, are tie-ins of the retrotransposons to RNA metabolism, DNA replication and repair, and cellular stress. Likewise, there are parallels among host-cell defenses to combat rampant retrotransposon spread. The interactions between the retrotransposon and the host, and their co-evolution to balance the tension between retrotransposon proliferation and host survival, form the basis of this review. PMID:18680436

  19. The study of a barley epigenetic regulator, HvDME, in seed development and under drought

    PubMed Central

    2013-01-01

    Background Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. Results An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5′ and 3′ Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3′ downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. Conclusion A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation

  20. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis

    PubMed Central

    2011-01-01

    Background Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding. Results We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes) of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species. Conclusion Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive DNA and SSR markers

  1. In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches.

    PubMed

    Lorieux, Mathias; Blein, Mélisande; Lozano, Jaime; Bouniol, Mathieu; Droc, Gaétan; Diévart, Anne; Périn, Christophe; Mieulet, Delphine; Lanau, Nadège; Bès, Martine; Rouvière, Claire; Gay, Céline; Piffanelli, Pietro; Larmande, Pierre; Michel, Corinne; Barnola, Isabelle; Biderre-Petit, Corinne; Sallaud, Christophe; Perez, Pascual; Bourgis, Fabienne; Ghesquière, Alain; Gantet, Pascal; Tohme, Joe; Morel, Jean Benoit; Guiderdoni, Emmanuel

    2012-06-01

    We report here the molecular and phenotypic features of a library of 31,562 insertion lines generated in the model japonica cultivar Nipponbare of rice (Oryza sativa L.), called Oryza Tag Line (OTL). Sixteen thousand eight hundred and fourteen T-DNA and 12,410 Tos17 discrete insertion sites have been characterized in these lines. We estimate that 8686 predicted gene intervals--i.e. one-fourth to one-fifth of the estimated rice nontransposable element gene complement--are interrupted by sequence-indexed T-DNA (6563 genes) and/or Tos17 (2755 genes) inserts. Six hundred and forty-three genes are interrupted by both T-DNA and Tos17 inserts. High quality of the sequence indexation of the T2 seed samples was ascertained by several approaches. Field evaluation under agronomic conditions of 27,832 OTL has revealed that 18.2% exhibit at least one morphophysiological alteration in the T1 progeny plants. Screening 10,000 lines for altered response to inoculation by the fungal pathogen Magnaporthe oryzae allowed to observe 71 lines (0.7%) developing spontaneous lesions simulating disease mutants and 43 lines (0.4%) exhibiting an enhanced disease resistance or susceptibility. We show here that at least 3.5% (four of 114) of these alterations are tagged by the mutagens. The presence of allelic series of sequence-indexed mutations in a gene among OTL that exhibit a convergent phenotype clearly increases the chance of establishing a linkage between alterations and inserts. This convergence approach is illustrated by the identification of the rice ortholog of AtPHO2, the disruption of which causes a lesion-mimic phenotype owing to an over-accumulation of phosphate, in nine lines bearing allelic insertions. PMID:22369597

  2. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene.

    PubMed

    Papamichos, Spyros I; Margaritis, Dimitrios; Kotsianidis, Ioannis

    2015-01-01

    The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF), a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential. PMID:26568894

  3. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    PubMed Central

    Papamichos, Spyros I.; Margaritis, Dimitrios; Kotsianidis, Ioannis

    2015-01-01

    The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF), a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential. PMID:26568894

  4. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichomes developed from the protodermal cells are hair-like structures covering the aerial parts of plants. Trichomes are of adaptive roles in evolution. The presence or absence of trichomes also constitutes an important quality issue for cucumber. In this study, we reported characterization and ma...

  5. Much ado about zero.

    PubMed

    Boeke, Jef D; Fenyo, David

    2015-10-22

    LINE retrotransposons actively shape mammalian genomes. Denli et al. reveal a new open reading frame, ORF0, on the antisense strand of human LINE-1 encoding a small regulatory protein. This finding may represent the birth of an emerging retrotransposon gene that can adopt various fates, as it can be fused to adjacent host sequences. PMID:26496595

  6. Reduction of Aflatoxin in Pistachio Through Biological Control of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A retrotransposon, AFLAV (A. flavus retrotransposon), has been recently characterized in A. flavus. Complete DNA sequence of 7784 bp containing the AFLAV has been submitted to GenBank (accession number AY485785). Multicopies of this transposon are dispersed in the chromosomes of A. flavus. PCR pr...

  7. Replication of Nonautonomous Retroelements in Soybean Appears to be Both Recent and Common

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retrotransposons and their remnants often constitute more than 50% of higher plant genomes and have had major impacts on genome structure. Although extensively studied in monocot crops such as maize and rice, the impact of retrotransposons on major dicot crop genomes is not well documented. Here w...

  8. Molecular Technique to Fingerprint Aspergillus flavus Causing Aflatoxin Contamination in Food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A retrotransposon, AFLAV (A. flavus retrotransposon), has been recently characterized in A. flavus. Complete DNA sequence of 7784 bp containing the AFLAV has been submitted to GenBank (accession number AY485785). Multicopies of this transposon are dispersed in the chromosomes of A. flavus. PCR pri...

  9. Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer

    PubMed Central

    Kemp, Jacqueline R.; Longworth, Michelle S.

    2015-01-01

    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer. PMID:26734601

  10. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    NASA Astrophysics Data System (ADS)

    Kemp, Jacqueline; Longworth, Michelle

    2015-12-01

    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  11. Polyploidization as a Retraction Force in Plant Genome Evolution: Sequence Rearrangements in Triticale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyploidization is a major evolutionary process in plants where hybridization and chromosome doubling induce enormous genomic stress and restructuring. Here, we show that PCR-based molecular marker techniques involving retrotransposons and microsatellites are extremely powerful tools to uncover pol...

  12. Genomes Behave as Social Entities: Alien Chromatin Minorities Evolve Through Specificities Reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization and chromosome doubling entailed by allopolyploidization requires genetic and epigenetic modifications, resulting in the adjustment of different genomes to the same nuclear environment. Recently, the main role of retrotransposon/microsatellite-rich regions of the genome in DNA sequenc...

  13. Hammerhead ribozymes going viral.

    PubMed

    Hammann, Christian

    2016-01-01

    An association between hammerhead ribozymes and non-autonomous, long terminal repeat retrotransposons is uncovered in plants, shedding light on the biological function of genomically encoded ribozymes. PMID:27339278

  14. Replication of nonautonomous retroelements in soybean appears to be both recent and common.

    PubMed

    Wawrzynski, Adam; Ashfield, Tom; Chen, Nicolas W G; Mammadov, Jafar; Nguyen, Ashley; Podicheti, Ram; Cannon, Steven B; Thareau, Vincent; Ameline-Torregrosa, Carine; Cannon, Ethalinda; Chacko, Ben; Couloux, Arnaud; Dalwani, Anita; Denny, Roxanne; Deshpande, Shweta; Egan, Ashley N; Glover, Natasha; Howell, Stacy; Ilut, Dan; Lai, Hongshing; Del Campo, Sara Martin; Metcalf, Michelle; O'Bleness, Majesta; Pfeil, Bernard E; Ratnaparkhe, Milind B; Samain, Sylvie; Sanders, Iryna; Ségurens, Béatrice; Sévignac, Mireille; Sherman-Broyles, Sue; Tucker, Dominic M; Yi, Jing; Doyle, Jeff J; Geffroy, Valérie; Roe, Bruce A; Maroof, M A Saghai; Young, Nevin D; Innes, Roger W

    2008-12-01

    Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated. PMID:18952860

  15. The Engineered SVA Trans-mobilization Assay.

    PubMed

    Bock, Anja; Schumann, Gerald G

    2016-01-01

    Mammalian genomes harbor autonomous retrotransposons coding for the proteins required for their own mobilization, and nonautonomous retrotransposons, such as the human SVA element, which are transcribed but do not have any coding capacity. Mobilization of nonautonomous retrotransposons depends on the recruitment of the protein machinery encoded by autonomous retrotransposons. Here, we summarize the experimental details of SVA trans-mobilization assays which address multiple questions regarding the biology of both nonautonomous SVA elements and autonomous LINE-1 (L1) retrotransposons. The assay evaluates if and to what extent a noncoding SVA element is mobilized in trans by the L1-encoded protein machinery, the structural organization of the resulting marked de novo insertions, if they mimic endogenous SVA insertions and what the roles of individual domains of the nonautonomous retrotransposon for SVA mobilization are. Furthermore, the highly sensitive trans-mobilization assay can be used to verify the presence of otherwise barely detectable endogenously expressed functional L1 proteins via their marked SVA trans-mobilizing activity. PMID:26895056

  16. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability.

    PubMed

    Patterson, Melissa N; Scannapieco, Alison E; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A; Maxwell, Patrick H

    2015-10-01

    Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species. PMID:26298836

  17. Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the Topoisomerase II inhibitor, Etoposide, in rice

    PubMed Central

    2012-01-01

    Background Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. Results To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. Conclusions Our results demonstrate that etoposide imposes a similar genotoxic stress on

  18. Species-specific signals for the splicing of a short Drosophila intron in vitro.

    PubMed Central

    Guo, M; Lo, P C; Mount, S M

    1993-01-01

    The effects of branchpoint sequence, the pyrimidine stretch, and intron size on the splicing efficiency of the Drosophila white gene second intron were examined in nuclear extracts from Drosophila and human cells. This 74-nucleotide intron is typical of many Drosophila introns in that it lacks a significant pyrimidine stretch and is below the minimum size required for splicing in human nuclear extracts. Alteration of sequences of adjacent to the 3' splice site to create a pyrimidine stretch was necessary for splicing in human, but not Drosophila, extracts. Increasing the size of this intron with insertions between the 5' splice site and the branchpoint greatly reduced the efficiency of splicing of introns longer than 79 nucleotides in Drosophila extracts but had an opposite effect in human extracts, in which introns longer than 78 nucleotides were spliced with much greater efficiency. The white-apricot copia insertion is immediately adjacent to the branchpoint normally used in the splicing of this intron, and a copia long terminal repeat insertion prevents splicing in Drosophila, but not human, extracts. However, a consensus branchpoint does not restore the splicing of introns containing the copia long terminal repeat, and alteration of the wild-type branchpoint sequence alone does not eliminate splicing. These results demonstrate species specificity of splicing signals, particularly pyrimidine stretch and size requirements, and raise the possibility that variant mechanisms not found in mammals may operate in the splicing of small introns in Drosophila and possibly other species. Images PMID:8423778

  19. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal

    PubMed Central

    Tomás, Diana; Rodrigues, Joana; Varela, Ana; Veloso, Maria Manuela; Viegas, Wanda; Silva, Manuela

    2016-01-01

    Genomic diversity of Portuguese accessions of Avena species—diploid A. strigosa and hexaploids A. sativa and A. sterilis—was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species—rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies—IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)—were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs. PMID:26861283

  20. Use of Repetitive Sequences for Molecular and Cytogenetic Characterization of Avena Species from Portugal.

    PubMed

    Tomás, Diana; Rodrigues, Joana; Varela, Ana; Veloso, Maria Manuela; Viegas, Wanda; Silva, Manuela

    2016-01-01

    Genomic diversity of Portuguese accessions of Avena species--diploid A. strigosa and hexaploids A. sativa and A. sterilis--was evaluated through molecular and cytological analysis of 45S rDNA, and other repetitive sequences previously studied in cereal species--rye subtelomeric sequence (pSc200) and cereal centromeric sequence (CCS1). Additionally, retrotransposons and microsatellites targeting methodologies--IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism)--were performed. A very high homology was detected for ribosomal internal transcribed sequences (ITS1 and ITS2) between the species analyzed, although nucleolar organizing regions (NOR) fluorescent in situ hybridization (FISH) analysis revealed distinct number of Nor loci between diploid and hexaploid species. Moreover, morphological diversity, evidenced by FISH signals with different sizes, was observed between distinct accessions within each species. pSc200 sequences were for the first time isolated from Avena species but proven to be highly similar in all genotypes analyzed. The use of primers designed for CCS1 unraveled a sequence homologous to the Ty3/gypsy retrotransposon Cereba, that was mapped to centromeric regions of diploid and hexaploid species, being however restricted to the more related A and D haplomes. Retrotransposon-based methodologies disclosed species- and accessions-specific bands essential for the accurate discrimination of all genotypes studied. Centromeric, IRAP and REMAP profiles therefore allowed accurate assessment of inter and intraspecific variability, demonstrating the potential of these molecular markers on future oat breeding programs. PMID:26861283

  1. Evolution of species-specific promoter-associated mechanisms for protecting chromosome ends by Drosophila Het-A telomeric transposons

    PubMed Central

    Traverse, Karen L.; George, Janet A.; DeBaryshe, P. G.; Pardue, Mary-Lou

    2010-01-01

    The non-LTR retrotransposons forming Drosophila telomeres constitute a robust mechanism for telomere maintenance, one which has persisted since before separation of the extant Drosophila species. These elements in D. melanogaster differ from nontelomeric retrotransposons in ways that give insight into general telomere biology. Here, we analyze telomere-specific retrotransposons from D. virilis, separated from D. melanogaster by 40 to 60 million years, to evaluate the evolutionary divergence of their telomeric traits. The telomeric retrotransposon HeT-A from D. melanogaster has an unusual promoter near its 3′ terminus that drives not the element in which it resides, but the adjacent downstream element in a head-to-tail array. An obvious benefit of this promoter is that it adds nonessential sequence to the 5′ end of each transcript, which is reverse transcribed and added to the chromosome. Because the 5′ end of each newly transposed element forms the end of the chromosome until another element transposes onto it, this nonessential sequence can buffer erosion of sequence essential for HeT-A. Surprisingly, we have now found that HeT-A in D. virilis has a promoter typical of non-LTR retrotransposons. This promoter adds no buffering sequence; nevertheless, the complete 5′ end of the element persists in telomere arrays, necessitating a more precise processing of the extreme end of the telomere in D. virilis. PMID:20194755

  2. International Consortium of Rice Mutagenesis: resources and beyond

    PubMed Central

    2013-01-01

    Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses. As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds. PMID:24341871

  3. A kinesin with calponin-homology domain is involved in premitotic nuclear migration

    PubMed Central

    Frey, Nicole; Klotz, Jan; Nick, Peter

    2010-01-01

    Interaction and cross-talk between microtubules and actin microfilaments are important for numerous processes during plant growth and development, including the control of cell elongation and tissue expansion, but little is known about the molecular components of this interaction. Plant kinesins with the calponin-homology domain (KCH) were recently identified and associated with a putative role in microtubule-microfilament cross-linking. The putative biological role of the rice KCH member OsKCH1 is addressed here using a combined approach with Tos17 kch1 knock-out mutants on the one hand, and a KCH1 overexpression line generated in tobacco BY-2 cells. It is shown that OsKCH1 is expressed in a development and tissue-specific manner in rice and antagonistic cell elongation and division phenotypes as a result of knock-down and overexpression are reported. Further, the dynamic repartitioning of OsKCH1 during the cell cycle is described and it is demonstrated that KCH overexpression delays nuclear positioning and mitosis in BY-2 cells. These findings are discussed with respect to a putative role of KCHs as linkers between actin filaments and microtubules during nuclear positioning. PMID:20566563

  4. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila.

    PubMed

    Goic, Bertsy; Vodovar, Nicolas; Mondotte, Juan A; Monot, Clément; Frangeul, Lionel; Blanc, Hervé; Gausson, Valérie; Vera-Otarola, Jorge; Cristofari, Gael; Saleh, Maria-Carla

    2013-04-01

    How persistent viral infections are established and maintained is widely debated and remains poorly understood. We found here that the persistence of RNA viruses in Drosophila melanogaster was achieved through the combined action of cellular reverse-transcriptase activity and the RNA-mediated interference (RNAi) pathway. Fragments of diverse RNA viruses were reverse-transcribed early during infection, which resulted in DNA forms embedded in retrotransposon sequences. Those virus-retrotransposon DNA chimeras produced transcripts processed by the RNAi machinery, which in turn inhibited viral replication. Conversely, inhibition of reverse transcription hindered the appearance of chimeric DNA and prevented persistence. Our results identify a cooperative function for retrotransposons and antiviral RNAi in the control of lethal acute infection for the establishment of viral persistence. PMID:23435119

  5. Human Transposon Tectonics

    PubMed Central

    Burns, Kathleen H.; Boeke, Jef D.

    2012-01-01

    Mobile DNAs have had a central role in shaping our genome. More than half of our DNA is comprised of interspersed repeats resulting from replicative copy and paste events of retrotransposons. Although most are fixed, incapable of templating new copies, there are important exceptions to retrotransposon quiescence. De novo insertions cause genetic diseases and cancers, though reliably detecting these occurrences has been difficult. New technologies aimed at uncovering polymorphic insertions reveal that mobile DNAs provide a substantial and dynamic source of structural variation. Key questions going forward include the how and how much new transposition events affect human health and disease. PMID:22579280

  6. Drosophila errantiviruses

    PubMed Central

    Stefanov, Yury; Salenko, Veniamin; Glukhov, Ivan

    2012-01-01

    Retroelements with long-terminal repeats (LTRs) inhabit nearly all eukaryotic genomes. During the time of their rich evolutionary history they have developed highly diverse forms, ranging from ordinary retrotransposons to complex pathogenic retroviruses such as HIV-I. Errantiviruses are a group of insect endogenous LTR elements that share structural and functional features with vertebrate endogenous retroviruses. The errantiviruses illustrate one of the evolutionary strategies of retrotransposons to become infective, which together with their similarities to vertebrate retroviruses make them an attractive object of research promising to shed more light on the evolution of retroviruses. PMID:22754751

  7. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency

    PubMed Central

    Schoorlemmer, Jon; Pérez-Palacios, Raquel; Climent, María; Guallar, Diana; Muniesa, Pedro

    2014-01-01

    About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process. PMID:24567914

  8. Coel is a LTR retrotransopson-like element, in Beta vulgaris L., and contains a Tnp2-domain transposase gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe herein the discovery of Coe1, a LTR retrotransposon-like element in Beta vulgaris, that carries a Tnp2-type transposase gene, Tbv1, and is flanked by the 8-mer sequence motif CACTATAA in or near inverted repeats. The Tbv1 transposase gene within Coe1 consists of eight exons, and the pre...

  9. Quantitative evaluation of DNA methylation patterns for ALVEs and TVB genes in a neoplastic disease susceptible and resistant chicken model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken endogenous virus, ALVE (Avian Leukosis Virus subgroup E), is inherited as LTR (long terminal repeat) retrotransposons, which is negatively correlated with fitness and disease resistance, and any changes in DNA methylation pattern may thus contribute to the susceptibility to neoplastic diseas...

  10. Drosophila telomeres: an example of co-evolution with transposable elements.

    PubMed

    Silva-Sousa, R; López-Panadѐs, E; Casacuberta, E

    2012-01-01

    Telomeres have a DNA component composed of repetitive sequences. In most eukaryotes these repeats are very similar in length and sequence and are maintained by a highly conserved specialized cellular enzyme, telomerase. Some exceptions of the telomerase mechanism exist in eukaryotes of which the most studied are concentrated in insects, and from these, Drosophila species stand out in particular. The alternative mechanism of telomere maintenance in Drosophila is based on targeted transposition of 3 very special non-LTR retrotransposons, HeT-A, TART and TAHRE. The fingerprint of the co-evolution between the Drosophila genome and the telomeric retrotransposons is visible in special features of both. In this chapter, we will review the main aspects of Drosophila telomeres and the telomere retrotransposons that explain how this alternative mechanism works, is regulated, and evolves. By going through the different aspects of this symbiotic relationship, we will try to unravel which have been the necessary changes at Drosophila telomeres in order to exert their telomeric function analogously to telomerase telomeres, and also which particularities have been maintained in order to preserve the retrotransposon personality of HeT-A, TART and TAHRE. Drosophila telomeres constitute a remarkable variant that reminds us how exceptions should be treasured in order to widen our knowledge in any particular biological mechanism. PMID:22759813

  11. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients.

    PubMed

    Udomsinprasert, Wanvisa; Kitkumthorn, Nakarin; Mutirangura, Apiwat; Chongsrisawat, Voranush; Poovorawan, Yong; Honsawek, Sittisak

    2016-01-01

    Alu and LINE-1 elements are retrotransposons with a ubiquitous presence in the human genome that can cause genomic instability, specifically relating to telomere length. Genotoxic agents may induce methylation of retrotransposons, in addition to oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methylation of retrotransposons induced by these agents may contribute to biliary atresia (BA) etiology. Here, we investigated correlations between global methylation, 8-OHdG, and relative telomere length, as well as reporting on Alu and LINE-1 hypomethylation in BA patients. Alu and LINE-1 hypomethylation were found to be associated with elevated risk of BA (OR = 4.07; 95% CI: 2.27-7.32; P < 0.0001 and OR = 3.51; 95% CI: 1.87-6.59; P < 0.0001, respectively). Furthermore, LINE-1 methylation was associated with liver stiffness in BA patients (β coefficient = -0.17; 95% CI: -0.24 to -0.10; P < 0.0001). Stratified analysis revealed negative correlations between Alu and LINE-1 methylation and 8-OHdG in BA patients (P < 0.0001). In contrast, positive relationships were identified between Alu and LINE-1 methylation and relative telomere length in BA patients (P < 0.0001). These findings suggest that retrotransposon hypomethylation is associated with plasma 8-OHdG and telomere length in BA patients. PMID:27243754

  12. Computational Finishing of Large Sequence Contigs Reveals Interspersed Nested Repeats and Gene Islands in the rf1-associated Region of Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The architecture of grass genomes varies on multiple levels. Large long terminal repeat (LTR) retrotransposon clusters occupy significant portions of the intergenic regions, and islands of protein-encoding genes are interspersed among the repeat clusters. Hence, advanced assembly techniques are requ...

  13. OsDMC1 Is Not Required for Homologous Pairing in Rice Meiosis1[OPEN

    PubMed Central

    Tang, Ding; Liu, Xiaofei; Du, Guijie; Shen, Yi; Li, Yafei; Cheng, Zhukuan

    2016-01-01

    Meiotic homologous recombination is pivotal to sexual reproduction. DMC1, a conserved recombinase, is involved in directing single-end invasion between interhomologs during meiotic recombination. In this study, we identified OsDMC1A and OsDMC1B, two closely related proteins in rice (Oryza sativa) with high sequence similarity to DMC1 proteins from other species. Analysis of Osdmc1a and Osdmc1b Tos17 insertion mutants indicated that these genes are functionally redundant. Immunolocalization analysis revealed OsDMC1 foci occurred at leptotene, which disappeared from late pachytene chromosomes in wild-type meiocytes. According to cytological analyses, homologous pairing is accomplished in the Osdmc1a Osdmc1b double mutant, but synapsis is seriously disrupted. The reduced number of bivalents and abnormal OsHEI10 foci in Osdmc1a Osdmc1b establishes an essential role for OsDMC1 in crossover formation. In the absence of OsDMC1, early recombination events probably occur normally, leading to normal localization of γH2AX, PAIR3, OsMRE11, OsCOM1, and OsRAD51C. Moreover, OsDMC1 was not detected in pairing-defective mutants, such as pair2, pair3, Oscom1, and Osrad51c, while it was loaded onto meiotic chromosomes in zep1, Osmer3, Oszip4, and Oshei10. Taken together, these results suggest that during meiosis, OsDMC1 is dispensable for homologous pairing in rice, which is quite different from the DMC1 homologs identified so far in other organisms. PMID:26960731

  14. OsDMC1 Is Not Required for Homologous Pairing in Rice Meiosis.

    PubMed

    Wang, Hongjun; Hu, Qing; Tang, Ding; Liu, Xiaofei; Du, Guijie; Shen, Yi; Li, Yafei; Cheng, Zhukuan

    2016-05-01

    Meiotic homologous recombination is pivotal to sexual reproduction. DMC1, a conserved recombinase, is involved in directing single-end invasion between interhomologs during meiotic recombination. In this study, we identified OsDMC1A and OsDMC1B, two closely related proteins in rice (Oryza sativa) with high sequence similarity to DMC1 proteins from other species. Analysis of Osdmc1a and Osdmc1b Tos17 insertion mutants indicated that these genes are functionally redundant. Immunolocalization analysis revealed OsDMC1 foci occurred at leptotene, which disappeared from late pachytene chromosomes in wild-type meiocytes. According to cytological analyses, homologous pairing is accomplished in the Osdmc1a Osdmc1b double mutant, but synapsis is seriously disrupted. The reduced number of bivalents and abnormal OsHEI10 foci in Osdmc1a Osdmc1b establishes an essential role for OsDMC1 in crossover formation. In the absence of OsDMC1, early recombination events probably occur normally, leading to normal localization of γH2AX, PAIR3, OsMRE11, OsCOM1, and OsRAD51C. Moreover, OsDMC1 was not detected in pairing-defective mutants, such as pair2, pair3, Oscom1, and Osrad51c, while it was loaded onto meiotic chromosomes in zep1, Osmer3, Oszip4, and Oshei10 Taken together, these results suggest that during meiosis, OsDMC1 is dispensable for homologous pairing in rice, which is quite different from the DMC1 homologs identified so far in other organisms. PMID:26960731

  15. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements.

    PubMed

    Shepherd, N S; Schwarz-Sommer, Z; Blumberg vel Spalve, J; Gupta, M; Wienand, U; Saedler, H

    It has been suggested that the middle repetitive class of sequences that make up a large proportion of the eukaryotic genome have been amplified and dispersed by DNA transposition. Transposition is a phenomenon first postulated by Barbara McClintock on the basis of her genetic analysis of mutants in Zea mays. Since then, DNA transposition has been studied genetically in various plant systems and is well documented on the molecular level in both prokaryotes and eukaryotes. This has included the isolation of DNA inserts at various loci in several plants; however, the prevalence of transposition in plants is not established. We report here DNA nucleotide sequence data which show that some members of the Cin1 middle repetitive family of maize have features characteristic of known transposable elements. One cloned Cin1 repeat has a 6-base pair (bp) perfect inverted repeat sequence at its ends. The terminal five base pairs (5' TGTTG . . . CAACA 3') are identical to the termini of Drosophila copia transposable elements. Two other Cin1 alleles are flanked by 5-bp direct repeats. A comparison is made with the long terminal repeat (LTR) of the copia-Ty1-retrovirus families of moveable genetic elements. PMID:6318125

  16. Molecular Cytogenetic Analysis of Podocarpus and Comparison with Other Gymnosperm Species

    PubMed Central

    MURRAY, BRIAN G.; FRIESEN, NIKOLAI; HESLOP‐HARRISON, J. S. (PAT)

    2002-01-01

    DNA sequences have been mapped to the chromosomes of Podocarpus species from New Zealand and Australia by fluorescent in situ hybridization. Unlike other conifers, these species show only one pair of major sites of 45S rDNA genes, and two additional minor sites were seen in the Australian P. lawrencei. Unusually, 45S sequences collocalize to the same chromosomal region as the 5S rDNA. The telomere probe (TTTAGGG)n hybridizes to the ends of all chromosomes as well as to a large number of small sites distributed along the length of all chromosomes. Two other simple sequence repeats, (AAC)5 and (GATA)4, show a diffuse pattern of hybridization sites distributed along chromosomes. Southern blots using a variety of probes obtained from the reverse transcriptase of retroelements (gypsy, copia and LINE) from P. totara, P. nivalis and Dacrycarpus dacrydioides show that these retroelements are abundant and widespread in Podocarpaceae and also in others conifers. Some retroelements such as copia pPonty3 and gypsy pPot1li are more abundant in the genome of Picea abies and Ginkgo biloba than in the species from which they were amplified. PMID:12096809

  17. Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species.

    PubMed

    Roncal, Julissa; Guyot, Romain; Hamon, Perla; Crouzillat, Dominique; Rigoreau, Michel; Konan, Olivier N'Guessan; Rakotomalala, Jean-Jacques; Nowak, Michael D; Davis, Aaron P; de Kochko, Alexandre

    2016-02-01

    The completion of the genome assembly for the economically important coffee plant Coffea canephora (Rubiaceae) has allowed the use of bioinformatic tools to identify and characterize a diverse array of transposable elements (TEs), which can be used in evolutionary studies of the genus. An overview of the copy number and location within the C. canephora genome of four TEs is presented. These are tested for their use as molecular markers to unravel the evolutionary history of the Millotii Complex, a group of six wild coffee (Coffea) species native to Madagascar. Two TEs from the Gypsy superfamily successfully recovered some species boundaries and geographic structure among samples, whereas a TE from the Copia superfamily did not. Notably, species occurring in evergreen moist forests of eastern and southeastern Madagascar were divergent with respect to species in other habitats and regions. Our results suggest that the peak of transpositional activity of the Gypsy and Copia TEs occurred, respectively, before and after the speciation events of the tested Madagascan species. We conclude that the utilization of active TEs has considerable potential to unravel the evolutionary history and delimitation of closely related Coffea species. However, the selection of TE needs to be experimentally tested, since each element has its own evolutionary history. Different TEs with similar copy number in a given species can render different dendrograms; thus copy number is not a good selection criterion to attain phylogenetic resolution. PMID:26231981

  18. Adapting to life at the end of the line

    PubMed Central

    DeBaryshe, PG

    2011-01-01

    Drosophila telomeres are remarkable because they are maintained by telomere-specific retrotransposons, rather than the enzyme telomerase that maintains telomeres in almost every other eukaryotic organism. Successive transpositions of the Drosophila retrotransposons onto chromosome ends produce long head-to-tail arrays that are analogous in form and function to the long arrays of short repeats produced by telomerase in other organisms. Nevertheless, Drosophila telomere repeats are retrotransposons, complex entities three orders of magnitude longer than simple telomerase repeats. During the >40–60 My they have been coevolving with their host, these retrotransposons perforce have evolved a complex relationship with Drosophila cells to maintain populations of active elements while carrying out functions analogous to those of telomerase repeats in other organisms. Although they have assumed a vital role in maintaining the Drosophila genome, the three Drosophila telomere-specific elements are non-LTR retrotransposons, closely related to some of the best known non-telomeric elements in the Drosophila genome. Thus, these elements offer an opportunity to study ways in which retrotransposons and their host cells can coevolve cooperatively. The telomere-specific elements display several characteristics that appear important to their roles at the telomere; for example, we have recently reported that they have evolved at least two innovative mechanisms for protecting essential sequence on their 5′ends. Because every element serves as the end of the chromosome immediately after it transposes, its 5′end is subject to chromosomal erosion until it is capped by a new transposition. These two mechanisms make it possible for at least a significant fraction of elements to survive their initial time as the chromosome end without losing sequence necessary to be competent for subsequent transposition. Analysis of sequence from >90 kb of assembled telomere array shows that these

  19. Encapsidation of Host RNAs by Cucumber Necrosis Virus Coat Protein during both Agroinfiltration and Infection

    PubMed Central

    Ghoshal, Kankana; Theilmann, Jane; Reade, Ron; Maghodia, Ajay

    2015-01-01

    ABSTRACT Next-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs. The most predominant host RNA species encapsidated in VLPs were chloroplast encoded, consistent with the efficient targeting of CNV CP to chloroplasts during agroinfiltration. Interestingly, droplet digital PCR analysis showed that the CNV CP mRNA expressed during agroinfiltration was the most efficiently encapsidated mRNA, suggesting that the CNV CP open reading frame may contain a high-affinity site or sites for CP binding and thus contribute to the specificity of CNV RNA encapsidation. Approximately 0.09% to 0.7% of the RNA derived from authentic CNV virions contained host RNA, with chloroplast RNA again being the most prominent species. This is consistent with our previous finding that a small proportion of CNV CP enters chloroplasts during the infection process and highlights the possibility that chloroplast targeting is a significant aspect of CNV infection. Remarkably, 6 to 8 of the top 10 most efficiently encapsidated nucleus-encoded RNAs in CNV virions correspond to retrotransposon or retrotransposon-like RNA sequences. Thus, CNV could potentially serve as a vehicle for horizontal transmission of retrotransposons to new hosts and thereby significantly influence genome evolution. IMPORTANCE Viruses predominantly encapsidate their own virus-related RNA species due to the possession of specific sequences and/or structures on viral RNA which serve as high-affinity binding sites for the coat protein. In this study

  20. DNA damage and L1 retrotransposition.

    PubMed

    Farkash, Evan A; Luning Prak, Eline T

    2006-01-01

    Barbara McClintock was the first to suggest that transposons are a source of genome instability and that genotoxic stress assisted in their mobilization. The generation of double-stranded DNA breaks (DSBs) is a severe form of genotoxic stress that threatens the integrity of the genome, activates cell cycle checkpoints, and, in some cases, causes cell death. Applying McClintock's stress hypothesis to humans, are L1 retrotransposons, the most active autonomous mobile elements in the modern day human genome, mobilized by DSBs? Here, evidence that transposable elements, particularly retrotransposons, are mobilized by genotoxic stress is reviewed. In the setting of DSB formation, L1 mobility may be affected by changes in the substrate for L1 integration, the DNA repair machinery, or the L1 element itself. The review concludes with a discussion of the potential consequences of L1 mobilization in the setting of genotoxic stress. PMID:16877815

  1. Transposable elements in sexual and ancient asexual taxa

    PubMed Central

    Arkhipova, Irina; Meselson, Matthew

    2000-01-01

    Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049

  2. Soma to germline inheritance of extrachromosomal genetic information via a LINE-1 reverse transcriptase-based mechanism.

    PubMed

    Spadafora, Corrado

    2016-08-01

    Mature spermatozoa are permeable to foreign DNA and RNA molecules. Here I propose a model, whereby extrachromosomal genetic information, mostly encoded in the form of RNA in somatic cells, can cross the Weismann barrier and reach epididymal spermatozoa. LINE-1 retrotransposon-derived reverse transcriptase (RT) can play key roles in the process by expanding the RNA-encoded information. Retrotransposon-encoded RT is stored in mature gametes, is highly expressed in early embryos and undifferentiated cells, and becomes downregulated in differentiated cells. In turn, RT plays a role in developmental control, as its inhibition arrests developmental progression of early embryos with globally altered transcriptomic profiles. Thus, sperm cells act as recipients, and transgenerational vectors of somatically derived genetic information which they pass to the next generation with the potential to modify the fate of the developing embryos. PMID:27315018

  3. Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley.

    PubMed

    Rostoks, Nils; Park, Yong-Jin; Ramakrishna, Wusirika; Ma, Jianxin; Druka, Arnis; Shiloff, Bryan A; SanMiguel, Phillip J; Jiang, Zeyu; Brueggeman, Robert; Sandhu, Devinder; Gill, Kulvinder; Bennetzen, Jeffrey L; Kleinhofs, Andris

    2002-05-01

    Barley (Hordeum vulgare L.) is one of the most important large-genome cereals with extensive genetic resources available in the public sector. Studies of genome organization in barley have been limited primarily to genetic markers and sparse sequence data. Here we report sequence analysis of 417.5 kb DNA from four BAC clones from different genomic locations. Sequences were analyzed with respect to gene content, the arrangement of repetitive sequences and the relationship of gene density to recombination frequencies. Gene densities ranged from 1 gene per 12 kb to 1 gene per 103 kb with an average of 1 gene per 21 kb. In general, genes were organized into islands separated by large blocks of nested retrotransposons. Single genes in apparent isolation were also found. Genes occupied 11% of the total sequence, LTR retrotransposons and other repeated elements accounted for 51.9% and the remaining 37.1% could not be annotated. PMID:12021850

  4. [Molecular-genetic polymorphism of wheat cell lines resistant to metabolites of G. graminis var. tritici and osmotic stress].

    PubMed

    Bavol, A V; Zinchenko, M O; Dubrovna, O V

    2014-01-01

    It was analyzed polymorphism of DNA loci, flanked by inverted repeats of LTR retrotransposon Cassandra, in cell lines of bread wheat, resistant to the metabolites of ophiobolus root rot (G. graminis var. tritici), under osmotic stress and induced from them plant-regenerants. The differences in the polynucleotide sequences of DNA at the direct and step cell selection it was identified. Assessment of the level of genetic divergence showed that calluses obtained at the direct selection and calluses in the later stages of step selection were the most genetically distant from the original forms (D(NL) = 0.4855), this means that at the sublethal doses of selective factors occur the most significant changes at the genome of the investigated objects. In contrast to the original form at the spectra of products DNA amplification of calluses and regenerated plants showed the emergence of bands approximately 638 bp length, which may indicate the activation of retrotransposon Cassandra. PMID:24791474

  5. Gtsf1l and Gtsf2 Are Specifically Expressed in Gonocytes and Spermatids but Are Not Essential for Spermatogenesis

    PubMed Central

    Takemoto, Noriaki; Yoshimura, Takuji; Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-ichi

    2016-01-01

    The unknown protein family 0224 (UPF0224) includes three members that are expressed in germ-line cells in mice: Gtsf1, Gtsf1l, and BC048502 (Gtsf2). These genes produce proteins with two repeats of the CHHC Zn-finger domain, a predicted RNA-binding motif, in the N terminus. We previously reported that Gtsf1 is essential for spermatogenesis and retrotransposon suppression. In this study, we investigated the expression patterns and functions of Gtsf1l and Gtsf2. Interestingly, Gtsf1l and Gtsf2 were found to be sequentially but not simultaneously expressed in gonocytes and spermatids. Pull-down experiments showed that both GTSF1L and GTSF2 can interact with PIWI-protein complexes. Nevertheless, knocking out Gtsf1, Gtsf2, or both did not cause defects in spermatogenesis or retrotransposon suppression in mice. PMID:26930067

  6. Transposable Elements and Genome Size Variations in Plants

    PubMed Central

    Lee, Sung-Il

    2014-01-01

    Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR) retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms. PMID:25317107

  7. High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events

    PubMed Central

    Wolfgruber, Thomas K.; Nakashima, Megan M.; Schneider, Kevin L.; Sharma, Anupma; Xie, Zidian; Albert, Patrice S.; Xu, Ronghui; Bilinski, Paul; Dawe, R. Kelly; Ross-Ibarra, Jeffrey; Birchler, James A.; Presting, Gernot G.

    2016-01-01

    The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10−6 and 5 × 10−5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres. PMID:27047500

  8. High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events.

    PubMed

    Wolfgruber, Thomas K; Nakashima, Megan M; Schneider, Kevin L; Sharma, Anupma; Xie, Zidian; Albert, Patrice S; Xu, Ronghui; Bilinski, Paul; Dawe, R Kelly; Ross-Ibarra, Jeffrey; Birchler, James A; Presting, Gernot G

    2016-01-01

    The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10(-6) and 5 × 10(-5) for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres. PMID:27047500

  9. Adaption by Rewiring Epigenetic Landscapes

    PubMed Central

    Liu, Yifei; Xiao, Andrew

    2016-01-01

    Embryonic stem cells (ESCs) generally rely on repressive histone modifications to silence retrotransposons, rather than DNA methylation as in differentiated cells. In this issue of Cell Stem Cell, He et al. (2015) show that Daxx/Atrx repress transposons in ESCs devoid of 5mC, demonstrating dynamic reorganization of epigenetic networks and crosstalk between distinct repressive mechanisms to maintain transposon silencing. PMID:26340521

  10. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: APOBEC3 (A3) proteins deaminate DNA cytosines and block the replication of retroviruses and retrotransposons. Each A3 gene encodes a protein with one or two conserved zinc-coordinating motifs (Z1, Z2 or Z3). The presence of one A3 gene in mice (Z2-Z3) and seven in humans, A3A-H (Z1a, Z2a...

  11. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients

    PubMed Central

    Udomsinprasert, Wanvisa; Kitkumthorn, Nakarin; Mutirangura, Apiwat; Chongsrisawat, Voranush; Poovorawan, Yong; Honsawek, Sittisak

    2016-01-01

    Alu and LINE-1 elements are retrotransposons with a ubiquitous presence in the human genome that can cause genomic instability, specifically relating to telomere length. Genotoxic agents may induce methylation of retrotransposons, in addition to oxidative DNA damage in the form of 8-hydroxy-2′-deoxyguanosine (8-OHdG). Methylation of retrotransposons induced by these agents may contribute to biliary atresia (BA) etiology. Here, we investigated correlations between global methylation, 8-OHdG, and relative telomere length, as well as reporting on Alu and LINE-1 hypomethylation in BA patients. Alu and LINE-1 hypomethylation were found to be associated with elevated risk of BA (OR = 4.07; 95% CI: 2.27–7.32; P < 0.0001 and OR = 3.51; 95% CI: 1.87–6.59; P < 0.0001, respectively). Furthermore, LINE-1 methylation was associated with liver stiffness in BA patients (β coefficient = −0.17; 95% CI: −0.24 to −0.10; P < 0.0001). Stratified analysis revealed negative correlations between Alu and LINE-1 methylation and 8-OHdG in BA patients (P < 0.0001). In contrast, positive relationships were identified between Alu and LINE-1 methylation and relative telomere length in BA patients (P < 0.0001). These findings suggest that retrotransposon hypomethylation is associated with plasma 8-OHdG and telomere length in BA patients. PMID:27243754

  12. Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes

    PubMed Central

    Su, You-Qiang; Sun, Fengyun; Handel, Mary Ann; Schimenti, John C.; Eppig, John J.

    2012-01-01

    Orderly regulation of meiosis and protection of germline genomic integrity from transposable elements are essential for male and female gamete development. In the male germline, these processes are ensured by proteins associated with cytoplasmic nuage, but morphologically similar germ granules or nuage have not been identified in mammalian female germ cells. Indeed, many mutations affecting nuage-associated proteins such as PIWI and tudor domain containing proteins 5 and 7 (TDRD5/7) can result in failure of meiosis, up-regulation of retrotransposons, and infertility only in males and not in females. We recently identified MARF1 (meiosis arrest female 1) as a protein essential for controlling meiosis and retrotransposon surveillance in oocytes; and in contrast to PIWI-pathway mutations, Marf1 mutant females are infertile, whereas mutant males are fertile. Here we put forward the hypothesis that MARF1 in mouse oocytes is a functional counterpart of the nuage-associated components of spermatocytes. We describe the developmental pattern of Marf1 expression and its roles in retrotransposon silencing and protection from DNA double-strand breaks. Analysis of MARF1 protein domains compared with PIWI and TDRD5/7 revealed that these functional similarities are reflected in remarkable structural analogies. Thus, functions that in the male germline require protein interactions and cooperative scaffolding are combined in MARF1, allowing a single molecule to execute crucial activities of meiotic regulation and protection of germline genomic integrity. PMID:23090997

  13. Embryonic expression of endogenous retroviral RNAs in somatic tissues adjacent to the Oikopleura germline

    PubMed Central

    Henriet, Simon; Sumic, Sara; Doufoundou-Guilengui, Carlette; Jensen, Marit Flo; Grandmougin, Camille; Fal, Kateryna; Thompson, Eric; Volff, Jean-Nicolas; Chourrout, Daniel

    2015-01-01

    Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5′LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5′LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements. PMID:25779047

  14. p53 genes function to restrain mobile elements

    PubMed Central

    Wylie, Annika; Jones, Amanda E.; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V.; Rakheja, Dinesh; Chen, Kenneth S.; Hammer, Robert E.; Comerford, Sarah A.; Amatruda, James F.; Abrams, John M.

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  15. Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations.

    PubMed

    Sharma, Anupma; Schneider, Kevin L; Presting, Gernot G

    2008-10-01

    The term "C-value paradox" was coined by C. A. Thomas, Jr. in 1971 [Thomas CA (1971) Ann Rev Genetics 5:237-256] to describe the initially puzzling lack of correlation between an organism's genome size and its morphological complexity. Polyploidy and the expansion of repetitive DNA, primarily transposable elements, are two mechanisms that have since been found to account for this differential. While the inactivation of retrotransposons by methylation and their removal from the genome by illegitimate recombination have been well documented, the cause of the apparently periodic bursts of retrotranposon expansion is as yet unknown. We show that the expansion of the CRM1 retrotransposon subfamily in the ancient allotetraploid crop plant corn is linked to the repeated formation of novel recombinant elements derived from two parental retrotransposon genotypes, which may have been brought together during the hybridization of two sympatric species that make up the present day corn genome, thus revealing a unique mechanism linking polyploidy and retrotransposition. PMID:18832157

  16. p53 genes function to restrain mobile elements.

    PubMed

    Wylie, Annika; Jones, Amanda E; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V; Rakheja, Dinesh; Chen, Kenneth S; Hammer, Robert E; Comerford, Sarah A; Amatruda, James F; Abrams, John M

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  17. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets

    PubMed Central

    Cass, Ashley A.; Bahn, Jae Hoon; Lee, Jae-Hyung; Greer, Christopher; Lin, Xianzhi; Kim, Yong; Hsiao, Yun-Hua Esther; Xiao, Xinshu

    2016-01-01

    In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation. PMID:26975654

  18. Retroviral DNA Transposition: Themes and Variations

    PubMed Central

    Skalka, Anna Marie

    2015-01-01

    SUMMARY Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive. PMID:25844274

  19. Evolutionary active transposable elements in the genome of the coelacanth.

    PubMed

    Chalopin, Domitille; Fan, Shaohua; Simakov, Oleg; Meyer, Axel; Schartl, Manfred; Volff, Jean-Nicolas

    2014-09-01

    The apparent morphological stasis in the lineage of the coelacanth, which has been called a "living fossil" by many, has been suggested to be causally related to a slow evolution of its genome, with strongly reduced activity of transposable elements (TEs). Analysis of the African coelacanth showed that at least 25% of its genome is constituted of transposable elements including retrotransposons, endogenous retroviruses and DNA transposons, with a strong predominance of non-Long Terminal Repeat (non-LTR) retrotransposons. The coelacanth genome has been shaped by four major general bursts of transposition during evolution, with major contributions of LINE1, LINE2, CR1, and Deu non-LTR retrotransposons. Many transposable elements are expressed in different tissues and might be active. The number of TE families in coelacanth, but also in lungfish, is lower than in teleost fish, but is higher than in chicken and human. This observation is in agreement with the hypothesis of a sequential elimination of many TE families in the sarcopterygian lineage during evolution. Taken together, our analysis indicates that the coelacanth contains more TE families than birds and mammals, and that these elements have been active during the evolution of the coelacanth lineage. Hence, at the level of transposable element activity, the coelacanth genome does not appear to evolve particularly slowly. PMID:23908136

  20. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition.

    PubMed

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-12-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ that is essential for mammalian viviparity and plays a major endocrinological role during pregnancy in addition to providing nutrients and oxygen to the fetus. P4 is an essential hormone in the preparation and maintenance of pregnancy and the determination of the timing of parturition in mammals; however, the biological significance of placental P4 in rodents is not properly recognized. Here, we demonstrate that mouse placentas do produce P4 in mid-gestation, coincident with a temporal reduction in ovarian P4, suggesting that it plays a role in the protection of the conceptuses specifically in this period. Pregnant Sirh7/Ldoc1 knockout females also displayed delayed parturition associated with a low pup weaning rate. All these results suggest that Sirh7/Ldoc1 has undergone positive selection during eutherian evolution as a eutherian-specific acquired gene because it impacts reproductive fitness via the regulation of placental endocrine function. PMID:25468940

  1. A Ty1 Reverse Transcriptase Active-Site Aspartate Mutation Blocks Transposition but Not Polymerization†

    PubMed Central

    Uzun, Ozcan; Gabriel, Abram

    2001-01-01

    Reverse transcriptases (RTs) are found in a wide variety of mobile genetic elements including viruses, retrotransposons, and infectious organellar introns. An invariant triad of aspartates is thought to be required for the catalytic function of RTs. We generated RT mutants in the yeast retrotransposon Ty1, changing each of these active-site aspartates to asparagine or glutamate. All but one of the mutants lacked detectable polymerase activity. The novel exception, D211N, retained near wild-type in vitro polymerase activity within virus-like particles but failed to carry out in vivo transposition. For this mutant, minus-strand synthesis is impaired and formation of the plus-strand strong-stop intermediate is eliminated. Intragenic second-site suppressor mutations of the transposition defect map to the RNase H domain of the enzyme. Our results demonstrate that one of the three active-site aspartates in a retrotransposon RT is not catalytically critical. This implies a basic difference in the polymerase active-site geometry of Ty1 and human immunodeficiency virus RT and shows that subtle mutations in one domain can cause dramatic functional effects on a distant domain of the same enzyme. PMID:11413300

  2. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition

    PubMed Central

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-01-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ that is essential for mammalian viviparity and plays a major endocrinological role during pregnancy in addition to providing nutrients and oxygen to the fetus. P4 is an essential hormone in the preparation and maintenance of pregnancy and the determination of the timing of parturition in mammals; however, the biological significance of placental P4 in rodents is not properly recognized. Here, we demonstrate that mouse placentas do produce P4 in mid-gestation, coincident with a temporal reduction in ovarian P4, suggesting that it plays a role in the protection of the conceptuses specifically in this period. Pregnant Sirh7/Ldoc1 knockout females also displayed delayed parturition associated with a low pup weaning rate. All these results suggest that Sirh7/Ldoc1 has undergone positive selection during eutherian evolution as a eutherian-specific acquired gene because it impacts reproductive fitness via the regulation of placental endocrine function. PMID:25468940

  3. Specific Localization of the Drosophila Telomere Transposon Proteins and RNAs, Give Insight in Their Behavior, Control and Telomere Biology in This Organism

    PubMed Central

    López-Panadès, Elisenda; Gavis, Elizabeth R.; Casacuberta, Elena

    2015-01-01

    Drosophila telomeres constitute a remarkable exception to the telomerase mechanism. Although maintaining the same cytological and functional properties as telomerase maintain telomeres, Drosophila telomeres embed the telomere retrotransposons whose specific and highly regulated terminal transposition maintains the appropriate telomere length in this organism. Nevertheless, our current understanding of how the mechanism of the retrotransposon telomere works and which features are shared with the telomerase system is very limited. We report for the first time a detailed study of the localization of the main components that constitute the telomeres in Drosophila, HeT-A and TART RNAs and proteins. Our results in wild type and mutant strains reveal localizations of HeT-A Gag and TART Pol that give insight in the behavior of the telomere retrotransposons and their control. We find that TART Pol and HeT-A Gag only co-localize at the telomeres during the interphase of cells undergoing mitotic cycles. In addition, unexpected protein and RNA localizations with a well-defined pattern in cells such as the ovarian border cells and nurse cells, suggest possible strategies for the telomere transposons to reach the oocyte, and/or additional functions that might be important for the correct development of the organism. Finally, we have been able to visualize the telomere RNAs at different ovarian stages of development in wild type and mutant lines, demonstrating their presence in spite of being tightly regulated by the piRNA mechanism. PMID:26068215

  4. Alternative splicing and co-option of transposable elements: the case of TMPO/LAP2α and ZNF451 in mammals.

    PubMed

    Abascal, Federico; Tress, Michael L; Valencia, Alfonso

    2015-07-15

    Transposable elements constitute a large fraction of vertebrate genomes and, during evolution, may be co-opted for new functions. Exonization of transposable elements inserted within or close to host genes is one possible way to generate new genes, and alternative splicing of the new exons may represent an intermediate step in this process. The genes TMPO and ZNF451 are present in all vertebrate lineages. Although they are not evolutionarily related, mammalian TMPO and ZNF451 do have something in common-they both code for splice isoforms that contain LAP2alpha domains. We found that these LAP2alpha domains have sequence similarity to repetitive sequences in non-mammalian genomes, which are in turn related to the first ORF from a DIRS1-like retrotransposon. This retrotransposon domestication happened separately and resulted in proteins that combine retrotransposon and host protein domains. The alternative splicing of the retrotransposed sequence allowed the production of both the new and the untouched original isoforms, which may have contributed to the success of the colonization process. The LAP2alpha-specific isoform of TMPO (LAP2α) has been co-opted for important roles in the cell, whereas the ZNF451 LAP2alpha isoform is evolving under strong purifying selection but remains uncharacterized. PMID:25735770

  5. Association of a Drosophila transposable element of the roo family with chromosomal deletion breakpoints.

    PubMed Central

    McGinnis, W; Beckendorf, S K

    1983-01-01

    A 9.3 kb transposable element of the roo family has been found inserted 3' to the Sgs-4 glue protein gene of Drosophila. The X chromosome which carries this insert also carries wDZL, a dominant, unstable allele of the white locus caused by the insertion of the 13 kb wDZL element. Three deletions isolated from the wDZL strain have molecular breakpoints 3' to Sgs-4 that are associated with the roo element. Though the deletions eliminate much of the DNA between white and Sgs-4, none of the distal breakpoints fall at or near the wDZL element. The results suggest that this copia-like element, which is structurally similar to an integrated retrovirus, is capable of promoting chromosomal deletions. Images PMID:6300765

  6. Geologic Map of the Aino Planitia (V46) Quadrangle, Venus 1:5,000,000

    USGS Publications Warehouse

    Stofan, Ellen R.; Guest, John E.

    2003-01-01

    The Aino Planitia quadrangle (V-46) extends from 25?-50? S. latitude, 60?-90? E. longitude. The quadrangle was mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. Aino Planitia is a lowland region in the southern hemisphere of Venus and is southwest of Thetis Regio in western Aphrodite Terra. It is dominated by low-lying plains units that are characterized by northeast-trending wrinkle ridges and numerous small volcanic edifices, including shields, domes, and cones. The quadrangle contains a major volcano, Kunapipi Mons, and portions of Juno Chasma. A northern extension of the Lada Terra highland is in the southwestern portion of the map. Eight coronae are mapped in the quadrangle, the largest of which is the 500-km-diameter Copia Corona. The region is dominated by plains that are interpreted to be of volcanic origin. Most of the plains units are composites of flow units of differing ages. The overall topography of V-46 consists of low-lying plains slightly below Mean Planetary Radius (MPR, 6051.84 km). The summit of Kunapipi Mons is the highest point in the quadrangle, at about 2.2 km above MPR; the lowest points in rifts and troughs are at about 1.7 km below MPR. The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along the rim of Copia Corona, with most regions being relatively smooth (roughness comparable to the average Venus surface. Emissivity values in the quadrangle vary from 0.82-0.90.

  7. An expanding universe of the non-coding genome in cancer biology

    PubMed Central

    Xue, Bin; He, Lin

    2014-01-01

    Neoplastic transformation is caused by accumulation of genetic and epigenetic alterations that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential and invasive growth [Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674]. Although the majority of the cancer studies have focused on the functions of protein-coding genes, emerging evidence has started to reveal the importance of the vast non-coding genome, which constitutes more than 98% of the human genome. A number of non-coding RNAs (ncRNAs) derived from the ‘dark matter’ of the human genome exhibit cancer-specific differential expression and/or genomic alterations, and it is increasingly clear that ncRNAs, including small ncRNAs and long ncRNAs (lncRNAs), play an important role in cancer development by regulating protein-coding gene expression through diverse mechanisms. In addition to ncRNAs, nearly half of the mammalian genomes consist of transposable elements, particularly retrotransposons. Once depicted as selfish genomic parasites that propagate at the expense of host fitness, retrotransposon elements could also confer regulatory complexity to the host genomes during development and disease. Reactivation of retrotransposons in cancer, while capable of causing insertional mutagenesis and genome rearrangements to promote oncogenesis, could also alter host gene expression networks to favor tumor development. Taken together, the functional significance of non-coding genome in tumorigenesis has been previously underestimated, and diverse transcripts derived from the non-coding genome could act as integral functional components of the oncogene and tumor suppressor network. PMID:24747961

  8. A trans-Dominant Form of Gag Restricts Ty1 Retrotransposition and Mediates Copy Number Control

    PubMed Central

    Saha, Agniva; Mitchell, Jessica A.; Nishida, Yuri; Hildreth, Jonathan E.; Ariberre, Joshua A.; Gilbert, Wendy V.

    2015-01-01

    ABSTRACT Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation. IMPORTANCE Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both “host and parasite.” To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate

  9. Evolutionary Histories of Transposable Elements in the Genome of the Largest Living Marsupial Carnivore, the Tasmanian Devil

    PubMed Central

    Gallus, Susanne; Hallström, Björn M; Kumar, Vikas; Dodt, William G; Janke, Axel; Schumann, Gerald G; Nilsson, Maria A

    2015-01-01

    The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions. PMID:25633377

  10. DIRS retroelements in arthropods: identification of the recently active TcDirs1 element in the red flour beetle Tribolium castaneum.

    PubMed

    Goodwin, T J D; Poulter, R T M; Lorenzen, M D; Beeman, R W

    2004-08-01

    Members of the DIRS family of retrotransposons differ from most other known retrotransposons in that they encode a tyrosine recombinase (YR), a type of enzyme frequently involved in site-specific recombination. This enzyme is believed to insert the extrachromosomal DNA intermediate of DIRS element retrotransposition into the host genome. DIRS elements have been found in plants, a slime mold, fungi, and a variety of animals including vertebrates, echinoderms and nematodes. They have a somewhat patchy distribution, however, apparently being absent from a number of model organisms such as Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster. In this report we describe the first DIRS retroelement to be identified in an arthropod. This element, TcDirs1, was found in the red flour beetle Tribolium castaneum (Coleoptera). It is generally similar in sequence and structure to several previously described members of the DIRS group: it is bordered by inverted terminal repeats and it has a similar set of protein-coding domains (Gag, reverse transcriptase/ribonuclease H, and the YR), although these are arranged in a novel fashion. TcDirs1 elements exhibit several features indicative of recent activity, such as intact coding regions, a high level of sequence similarity between distinct elements and polymorphic insertion sites. Given their presence in an experimentally tractable host, these potentially active elements might serve as useful models for the study of DIRS element retrotransposition. An element closely related to TcDirs1 was also detected in sequences from a second arthropod, the honey bee Apis mellifera (Hymenoptera), suggesting that these retrotransposons are long-term residents of arthropod genomes. PMID:15221458

  11. Evolutionary histories of transposable elements in the genome of the largest living marsupial carnivore, the Tasmanian devil.

    PubMed

    Gallus, Susanne; Hallström, Björn M; Kumar, Vikas; Dodt, William G; Janke, Axel; Schumann, Gerald G; Nilsson, Maria A

    2015-05-01

    The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions. PMID:25633377

  12. Hellbender Genome Sequences Shed Light on Genomic Expansion at the Base of Crown Salamanders

    PubMed Central

    Sun, Cheng; Mueller, Rachel Lockridge

    2014-01-01

    Among animals, genome sizes range from 20 Mb to 130 Gb, with 380-fold variation across vertebrates. Most of the largest vertebrate genomes are found in salamanders, an amphibian clade of 660 species. Thus, salamanders are an important system for studying causes and consequences of genomic gigantism. Previously, we showed that plethodontid salamander genomes accumulate higher levels of long terminal repeat (LTR) retrotransposons than do other vertebrates, although the evolutionary origins of such sequences remained unexplored. We also showed that some salamanders in the family Plethodontidae have relatively slow rates of DNA loss through small insertions and deletions. Here, we present new data from Cryptobranchus alleganiensis, the hellbender. Cryptobranchus and Plethodontidae span the basal phylogenetic split within salamanders; thus, analyses incorporating these taxa can shed light on the genome of the ancestral crown salamander lineage, which underwent expansion. We show that high levels of LTR retrotransposons likely characterize all crown salamanders, suggesting that disproportionate expansion of this transposable element (TE) class contributed to genomic expansion. Phylogenetic and age distribution analyses of salamander LTR retrotransposons indicate that salamanders’ high TE levels reflect persistence and diversification of ancestral TEs rather than horizontal transfer events. Finally, we show that relatively slow DNA loss rates through small indels likely characterize all crown salamanders, suggesting that a decreased DNA loss rate contributed to genomic expansion at the clade’s base. Our identification of shared genomic features across phylogenetically distant salamanders is a first step toward identifying the evolutionary processes underlying accumulation and persistence of high levels of repetitive sequence in salamander genomes. PMID:25115007

  13. Expression vectors for the construction of hybrid Ty-VLPs.

    PubMed

    Adams, S E; Richardson, S M; Kingsman, S M; Kingsman, A J

    1994-04-01

    Purification of expressed proteins can be facilitated by expressing the recombinant protein as a fusion with a carrier protein that assembles into particulate structures. This article describes the use of expression vectors in producing a hybrid of the yeast retrotransposon Ty, which self-assembles into virus-like particles (VLPs). Hybrid VLPs can be used in such laboratory applications as the production of polyclonal and monoclonal antibodies, structure/function analyses, the detection of important antigenic determinants, and epitope mapping of monoclonal antibodies. PMID:7859156

  14. Characterization of piRNAs across postnatal development in mouse brain

    PubMed Central

    Ghosheh, Yanal; Seridi, Loqmane; Ryu, Taewoo; Takahashi, Hazuki; Orlando, Valerio; Carninci, Piero; Ravasi, Timothy

    2016-01-01

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs. PMID:27112104

  15. Epigenetic control of mobile DNA as an interface between experience and genome change

    PubMed Central

    Shapiro, James A.

    2014-01-01

    Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration. PMID:24795749

  16. Host co-factors of the retrovirus-like transposon Ty1

    PubMed Central

    2012-01-01

    Background Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies into the host genome. The limited coding capacity of retrotransposons necessitates an extensive reliance on host co-factors; however, it has been challenging to identify co-factors that are required for endogenous retrotransposon mobility because retrotransposition is such a rare event. Results To circumvent the low frequency of Ty1 LTR-retrotransposon mobility in Saccharomyces cerevisiae, we used iterative synthetic genetic array (SGA) analysis to isolate host mutations that reduce retrotransposition. Query strains that harbor a chromosomal Ty1his3AI reporter element and either the rtt101Δ or med1Δ mutation, both of which confer a hypertransposition phenotype, were mated to 4,847 haploid ORF deletion strains. Retrotransposition was measured in the double mutant progeny, and a set of 275 ORF deletions that suppress the hypertransposition phenotypes of both rtt101Δ and med1Δ were identified. The corresponding set of 275 retrotransposition host factors (RHFs) includes 45 previously identified Ty1 or Ty3 co-factors. More than half of the RHF genes have statistically robust human homologs (E < 1 x 10-10). The level of unintegrated Ty1 cDNA in 181 rhfΔ single mutants was altered <2-fold, suggesting that the corresponding co-factors stimulate retrotransposition at a step after cDNA synthesis. However, deletion of 43 RHF genes, including specific ribosomal protein and ribosome biogenesis genes and RNA degradation, modification and transport genes resulted in low Ty1 cDNA levels. The level of Ty1 Gag but not RNA was reduced in ribosome biogenesis mutants bud21Δ, hcr1Δ, loc1Δ, and puf6Δ. Conclusion Ty1 retrotransposition is dependent on multiple co-factors acting at different steps in the replication cycle. Human orthologs of these RHFs are

  17. L1 retrotransposition in neurons is modulated by MeCP2.

    PubMed

    Muotri, Alysson R; Marchetto, Maria C N; Coufal, Nicole G; Oefner, Ruth; Yeo, Gene; Nakashima, Kinichi; Gage, Fred H

    2010-11-18

    Long interspersed nuclear elements-1 (LINE-1 or L1s) are abundant retrotransposons that comprise approximately 20% of mammalian genomes. Active L1 retrotransposons can impact the genome in a variety of ways, creating insertions, deletions, new splice sites or gene expression fine-tuning. We have shown previously that L1 retrotransposons are capable of mobilization in neuronal progenitor cells from rodents and humans and evidence of massive L1 insertions was observed in adult brain tissues but not in other somatic tissues. In addition, L1 mobility in the adult hippocampus can be influenced by the environment. The neuronal specificity of somatic L1 retrotransposition in neural progenitors is partially due to the transition of a Sox2/HDAC1 repressor complex to a Wnt-mediated T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activator. The transcriptional switch accompanies chromatin remodelling during neuronal differentiation, allowing a transient stimulation of L1 transcription. The activity of L1 retrotransposons during brain development can have an impact on gene expression and neuronal function, thereby increasing brain-specific genetic mosaicism. Further understanding of the molecular mechanisms that regulate L1 expression should provide new insights into the role of L1 retrotransposition during brain development. Here we show that L1 neuronal transcription and retrotransposition in rodents are increased in the absence of methyl-CpG-binding protein 2 (MeCP2), a protein involved in global DNA methylation and human neurodevelopmental diseases. Using neuronal progenitor cells derived from human induced pluripotent stem cells and human tissues, we revealed that patients with Rett syndrome (RTT), carrying MeCP2 mutations, have increased susceptibility for L1 retrotransposition. Our data demonstrate that L1 retrotransposition can be controlled in a tissue-specific manner and that disease-related genetic mutations can influence the frequency of neuronal L

  18. Increased Length of Long Terminal Repeats Inhibits Ty1 Transposition and Leads to the Formation of Tandem Multimers

    PubMed Central

    Lauermann, V.; Hermankova, M.; Boeke, J. D.

    1997-01-01

    The Ty1 retrotransposon of Saccharomyces cerevisiae is bounded by long-terminal repeats (LTRs). We have constructed a variety of Ty1 elements in which the LTR length has been increased from the normal length of 334 bp to >2 kb. Although small insertions in the LTR have minimal effects on transposition frequency, larger insertions dramatically reduce it. Nevertheless, elements with long LTRs are incorporated into the genome at a low frequency. Most of these rare insertion events represent Ty1 tandem (head to tail) multimers. PMID:9093846

  19. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition

    PubMed Central

    Goodier, John L.; Cheung, Ling E.; Kazazian, Haig H.

    2013-01-01

    LINE1s occupy 17% of the human genome and are its only active autonomous mobile DNA. L1s are also responsible for genomic insertion of processed pseudogenes and >1 million non-autonomous retrotransposons (Alus and SVAs). These elements have significant effects on gene organization and expression. Despite the importance of retrotransposons for genome evolution, much about their biology remains unknown, including cellular factors involved in the complex processes of retrotransposition and forming and transporting L1 ribonucleoprotein particles. By co-immunoprecipitation of tagged L1 constructs and mass spectrometry, we identified proteins associated with the L1 ORF1 protein and its ribonucleoprotein. These include RNA transport proteins, gene expression regulators, post-translational modifiers, helicases and splicing factors. Many cellular proteins co-localize with L1 ORF1 protein in cytoplasmic granules. We also assayed the effects of these proteins on cell culture retrotransposition and found strong inhibiting proteins, including some that control HIV and other retroviruses. These data suggest candidate cofactors that interact with the L1 to modulate its activity and increase our understanding of the means by which the cell coexists with these genomic ‘parasites’. PMID:23749060

  20. Ty1 Gag enhances the stability and nuclear export of Ty1 mRNA

    PubMed Central

    Checkley, Mary Ann; Mitchell, Jessica A.; Eizenstat, Linda D.; Lockett, Stephen J.; Garfinkel, David J.

    2012-01-01

    Retrotransposon and retroviral RNA delivery to particle assembly sites is essential for their replication. mRNA and Gag from the Ty1 retrotransposon colocalize in cytoplasmic foci, which are required for transposition and may be sites for virus-like particle (VLP) assembly. To determine which Ty1 components are required to form mRNA/Gag foci, localization studies were performed in a Ty1-less strain expressing galactose-inducible Ty1 plasmids (pGTy1) containing mutations in GAG or POL. Ty1 mRNA/Gag foci remained unaltered in mutants defective in Ty1 protease or deleted for POL. However, Ty1 mRNA containing a frameshift mutation (Ty1fs) that prevents the synthesis of all proteins accumulated in the nucleus. Ty1fs RNA showed a decrease in stability that was mediated by the cytoplasmic exosome, nonsense mediated decay, and the processing-body. Localization of Ty1fs RNA remained unchanged in an nmd2Δ mutant. When Gag and Ty1fs mRNA were expressed independently, Gag provided in trans increased Ty1fs RNA level and restored localization of Ty1fs RNA in cytoplasmic foci. Endogenously expressed Gag also localized to the nuclear periphery independent of RNA export. These results suggest that Gag is required for Ty1 mRNA stability, efficient nuclear export, and localization into cytoplasmic foci. PMID:22998189

  1. DNA Rearrangement in Orthologous Orp Regions of the Maize, Rice and Sorghum Genomes

    PubMed Central

    Ma, Jianxin; SanMiguel, Phillip; Lai, Jinsheng; Messing, Joachim; Bennetzen, Jeffrey L.

    2005-01-01

    The homeologous Orp1 and Orp2 regions of maize and the orthologous regions in sorghum and rice were compared by generating sequence data for >486 kb of genomic DNA. At least three genic rearrangements differentiate the maize Orp1 and Orp2 segments, including an insertion of a single gene and two deletions that removed one gene each, while no genic rearrangements were detected in the maize Orp2 region relative to sorghum. Extended comparison of the orthologous Orp regions of sorghum and japonica rice uncovered numerous genic rearrangements and the presence of a transposon-rich region in rice. Only 11 of 27 genes (40%) are arranged in the same order and orientation between sorghum and rice. Of the 8 genes that are uniquely present in the sorghum region, 4 were found to have single-copy homologs in both rice and Arabidopsis, but none of these genes are located near each other, indicating frequent gene movement. Further comparison of the Orp segments from two rice subspecies, japonica and indica, revealed that the transposon-rich region is both an ancient and current hotspot for retrotransposon accumulation and genic rearrangement. We also identify unequal gene conversion as a mechanism for maize retrotransposon rearrangement.

  2. A WD40 Repeat Protein from Medicago truncatula Is Necessary for Tissue-Specific Anthocyanin and Proanthocyanidin Biosynthesis But Not for Trichome Development1[W][OA

    PubMed Central

    Pang, Yongzhen; Wenger, Jonathan P.; Saathoff, Katie; Peel, Gregory J.; Wen, Jiangqi; Huhman, David; Allen, Stacy N.; Tang, Yuhong; Cheng, Xiaofei; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Sumner, Lloyd W.; Marks, M. David; Dixon, Richard A.

    2009-01-01

    WD40 repeat proteins regulate biosynthesis of anthocyanins, proanthocyanidins (PAs), and mucilage in the seed and the development of trichomes and root hairs. We have cloned and characterized a WD40 repeat protein gene from Medicago truncatula (MtWD40-1) via a retrotransposon-tagging approach. Deficiency of MtWD40-1 expression blocks accumulation of mucilage and a range of phenolic compounds, including PAs, epicatechin, other flavonoids, and benzoic acids, in the seed, reduces epicatechin levels without corresponding effects on other flavonoids in flowers, reduces isoflavone levels in roots, but does not impair trichome or root hair development. MtWD40-1 is expressed constitutively, with highest expression in the seed coat, where its transcript profile temporally parallels those of PA biosynthetic genes. Transcript profile analysis revealed that many genes of flavonoid biosynthesis were down-regulated in a tissue-specific manner in M. truncatula lines harboring retrotransposon insertions in the MtWD40-1 gene. MtWD40-1 complemented the anthocyanin, PA, and trichome phenotypes of the Arabidopsis (Arabidopsis thaliana) transparent testa glabrous1 mutant. We discuss the function of MtWD40-1 in natural product formation in M. truncatula and the potential use of the gene for engineering PAs in the forage legume alfalfa (Medicago sativa). PMID:19710231

  3. Plant genome size variation: bloating and purging DNA.

    PubMed

    Michael, Todd P

    2014-07-01

    Plant genome size variation is a dynamic process of bloating and purging DNA. While it was thought plants were on a path to obesity through continual DNA bloating, recent research supports that most plants activity purge DNA. Plant genome size research has greatly benefited from the cataloguing of genome size estimates at the Kew Plant DNA C-values Database, and the recent availability of over 50 fully sequenced and published plant genomes. The emerging trend is that plant genomes bloat due to the copy-and-paste proliferation of a few long terminal repeat retrotransposons (LTRs) and aggressively purge these proliferating LTRs through several mechanisms including illegitimate and incomplete recombination, and double-strand break repair through non-homologous end joining. However, ultra-small genomes such as Utricularia gibba (Bladderwort), which is 82 megabases (Mb), purge excess DNA through genome fractionation and neofunctionalization during multiple rounds of whole genome duplication (WGD). In contrast, the largest published genome, Picea abies (Norway Spruce) at 19 800 Mb, has no detectable WGD but has bloated with diverse and diverged LTRs that either have evaded purging mechanisms or these purging mechanism are absent in gymnosperms. Finally, advances in DNA methylation studies suggest that smaller genomes have a more aggressive epigenomic surveillance system to purge young LTR retrotransposons, which is less active or missing in larger genomes like the bloated gymnosperms. While genome size may not reflect genome complexity, evidence is mounting that genome size may reflect evolutionary status. PMID:24651721

  4. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells

    PubMed Central

    Klawitter, Sabine; Fuchs, Nina V.; Upton, Kyle R.; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J.; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J. Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J.; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L.; Faulkner, Geoffrey J.; Schumann, Gerald G.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. PMID:26743714

  5. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development

    PubMed Central

    Ito, Mitsuteru; Sferruzzi-Perri, Amanda N.; Edwards, Carol A.; Adalsteinsson, Bjorn T.; Allen, Sarah E.; Loo, Tsui-Han; Kitazawa, Moe; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi; Stewart, Colin L.; Ferguson-Smith, Anne C.

    2015-01-01

    The paternally expressed imprinted retrotransposon-like 1 (Rtl1) is a retrotransposon-derived gene that has evolved a function in eutherian placentation. Seven miRNAs, including miR-127, are processed from a maternally expressed antisense Rtl1 transcript (Rtl1as) and regulate Rtl1 levels through RNAi-mediated post-transcriptional degradation. To determine the relative functional role of Rtl1as miRNAs in Rtl1 dosage, we generated a mouse specifically deleted for miR-127. The miR-127 knockout mice exhibit placentomegaly with specific defects within the labyrinthine zone involved in maternal-fetal nutrient transfer. Although fetal weight is unaltered, specific Rtl1 transcripts and protein levels are increased in both the fetus and placenta. Phenotypic analysis of single (ΔmiR-127/Rtl1 or miR-127/ΔRtl1) and double (ΔmiR-127/ΔRtl1) heterozygous miR-127- and Rtl1-deficient mice indicate that Rtl1 is the main target gene of miR-127 in placental development. Our results demonstrate that miR-127 is an essential regulator of Rtl1, mediated by a trans-homologue interaction between reciprocally imprinted genes on the maternally and paternally inherited chromosomes. PMID:26138477

  6. Characterization of non-LTR retrotransposable TRAS elements in the aphids Acyrthosiphon pisum and Myzus persicae (Aphididae, Hemiptera).

    PubMed

    Monti, Valentina; Serafini, Chiara; Manicardi, Gian Carlo; Mandrioli, Mauro

    2013-01-01

    A non-LTR TRAS retrotransposon (identified as TRASAp1) has been amplified in the pea aphid Acyrthosiphon pisum and its presence has been assessed also in the peach potato aphid Myzus persicae. This TRAS element possesses 2 overlapping ORFs (a gag-ORF1 and a pol-ORF2 containing the reverse transcriptase and the endonuclease domains) that show a similarity ranging from 40% to 48% to proteins coded by other TRAS elements identified in insects (including the beetle Tribolium castaneum and the moth Bombyx mori). The study of the TRAS chromosomal insertion sites, performed by standard fluorescent in situ hybridization (FISH) and fiber FISH, showed that TRAS elements were located in a subtelomeric position, just before the telomeric (TTAGG) n repeats. In both the aphid species, TRAS elements were present at all termini of autosomes, but the 2 X chromosome telomeres show a clear-cut structural difference. Indeed, cromomycin A3 staining, together with FISH using a TRAS probe, revealed that TRAS signals only occur at the telomere opposite to the NOR-bearing one. Lastly, the analysis of the distribution of TRAS retrotransposons in a M. persicae strain possessing spontaneous fragmentations of the X chromosomes assessed that TRAS elements were not involved in the healing of de novo telomeres. PMID:23530141

  7. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    PubMed

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. PMID:26743714

  8. Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast

    PubMed Central

    Kim, Kyoung-Dong; Tanizawa, Hideki; Iwasaki, Osamu; Corcoran, Christopher J.; Capizzi, Joseph R.; Hayden, James E.; Noma, Ken-ichi

    2013-01-01

    Summary Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as ‘genome mobility elements’ by facilitating physical relocations of associating genomic regions. PMID:23986481

  9. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells.

    PubMed

    Conti, Anastasia; Rota, Federica; Ragni, Enrico; Favero, Chiara; Motta, Valeria; Lazzari, Lorenza; Bollati, Valentina; Fustinoni, Silvia; Dieci, Giorgio

    2016-06-10

    Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies. PMID:27154225

  10. Metal A and Metal B Sites of Nuclear RNA Polymerases Pol IV and Pol V Are Required for siRNA-Dependent DNA Methylation and Gene Silencing

    PubMed Central

    Haag, Jeremy R.; Pontes, Olga; Pikaard, Craig S.

    2009-01-01

    Plants are unique among eukaryotes in having five multi-subunit nuclear RNA polymerases: the ubiquitous RNA polymerases I, II and III plus two plant-specific activities, nuclear RNA polymerases IV and V (previously known as Polymerases IVa and IVb). Pol IV and Pol V are not required for viability but play non-redundant roles in small interfering RNA (siRNA)-mediated pathways, including a pathway that silences retrotransposons and endogenous repeats via siRNA-directed DNA methylation. RNA polymerase activity has not been demonstrated for Polymerases IV or V in vitro, making it unclear whether they are catalytically active enzymes. Their largest and second-largest subunit sequences have diverged considerably from Pol I, II and III in the vicinity of the catalytic center, yet retain the invariant Metal A and Metal B amino acid motifs that bind magnesium ions essential for RNA polymerization. By using site-directed mutagenesis in conjunction with in vivo functional assays, we show that the Metal A and Metal B motifs of Polymerases IV and V are essential for siRNA production, siRNA-directed DNA methylation, retrotransposon silencing, and the punctate nuclear localization patterns typical of both polymerases. Collectively, these data show that the minimal core sequences of polymerase active sites, the Metal A and B sites, are essential for Pol IV and Pol V biological functions, implying that both are catalytically active. PMID:19119310

  11. Differential expression of a retrotransposable element, Rex6, in Colossoma macropomum fish from different Amazonian environments.

    PubMed

    Barbosa, Cassiane Martins; Mareco, Edson Assunção; Silva, Maeli Dal Pai; Martins, Cesar; Alves-Costa, Fernanda Antunes

    2014-01-01

    Transposable elements (TEs) are DNA sequences that have the ability to move and replicate within the genomes. TEs can be classified according to their intermediates of transposition, RNA (retrotransposons) or DNA. In some aquatic organisms, it has been observed that environmental factors such as pH, temperature and pollution may stimulate differential transcription and mobilization of retrotransposons. In light of this information, the present study sought to evaluate the expression of Rex6 TE transcripts in Colossoma macropomum, which is a very commercially exploited fish in Brazil. In order to establish a comparative analysis using real-time PCR, the samples were collected from Amazonian rivers with different physical and chemical characteristics (distinguished by clear water and black water). Quantitative RT-PCR analyses revealed a differential pattern of expression between tissues collected from different types of water (clear and black waters). When it came to the hepatic and muscle tissues sampled, the levels of Rex6 transcripts were significantly different between the two Amazonian water types. These results suggest that environmental conditions operate differently in the regulation of Rex6 transcription in C. macropomum, results which have implications in the reshaping of the genome against environmental variations. PMID:25089227

  12. The positive response of Ty1 retrotransposition test to carcinogens is due to increased levels of reactive oxygen species generated by the genotoxins.

    PubMed

    Dimitrov, Martin; Venkov, Pencho; Pesheva, Margarita

    2011-01-01

    In previous laboratory and environmental studies, the Ty1 short-term test showed positive responses (i.e. induced mobility of the Ty1 retrotransposon) to carcinogenic genotoxins. Here, we provide evidence for a causal relationship between increased level of reactive oxygen species and induction the mobility of the Ty1 retrotransposon. Results obtained in concentration and time-dependent experiments after treatment, the tester cells with carcinogenic genotoxins [benzo(a)pyrene, benzo(a)anthracene, ethylmethanesulfonate, formamide], free bile acids (chenodeoxycholic, lithocholic acids) and metals (arsenic, hexavelant chromium, lead) showed a simultaneous increase in both cellular level of the superoxide anions and Ty1 retrotransposition rates. Treatment with the noncarcinogenic genotoxins [benzo(e)pyrene, benzo(b)anthracen, anthracene], conjugated bile acids (taurodeoxycholic, glycodeoxycholic acids) and metals (zinc, trivalent chromium) did not change significantly superoxide anions level and Ty1 retrotransposition rate. The induction by carcinogens of the Ty1 mobility seems to depend on the accumulation of superoxide anions, since the addition of the scavenger N-acetylcysteine resulted in loss of both increased amount of superoxide anions and induced Ty1 retrotransposition. Increased hydrogen peroxide levels are also involved in the induction of Ty1 retrotransposition rates in response to treatment with carcinogenic genotoxins, as evidenced by disruption of YAP1 gene in the tester cells. It is concluded that the carcinogen-induced high level of reactive oxygen species play a primary and key role in determination the selective response of Ty1 test to carcinogenic genotoxins. PMID:20401468

  13. A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development.

    PubMed

    Pang, Yongzhen; Wenger, Jonathan P; Saathoff, Katie; Peel, Gregory J; Wen, Jiangqi; Huhman, David; Allen, Stacy N; Tang, Yuhong; Cheng, Xiaofei; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Sumner, Lloyd W; Marks, M David; Dixon, Richard A

    2009-11-01

    WD40 repeat proteins regulate biosynthesis of anthocyanins, proanthocyanidins (PAs), and mucilage in the seed and the development of trichomes and root hairs. We have cloned and characterized a WD40 repeat protein gene from Medicago truncatula (MtWD40-1) via a retrotransposon-tagging approach. Deficiency of MtWD40-1 expression blocks accumulation of mucilage and a range of phenolic compounds, including PAs, epicatechin, other flavonoids, and benzoic acids, in the seed, reduces epicatechin levels without corresponding effects on other flavonoids in flowers, reduces isoflavone levels in roots, but does not impair trichome or root hair development. MtWD40-1 is expressed constitutively, with highest expression in the seed coat, where its transcript profile temporally parallels those of PA biosynthetic genes. Transcript profile analysis revealed that many genes of flavonoid biosynthesis were down-regulated in a tissue-specific manner in M. truncatula lines harboring retrotransposon insertions in the MtWD40-1 gene. MtWD40-1 complemented the anthocyanin, PA, and trichome phenotypes of the Arabidopsis (Arabidopsis thaliana) transparent testa glabrous1 mutant. We discuss the function of MtWD40-1 in natural product formation in M. truncatula and the potential use of the gene for engineering PAs in the forage legume alfalfa (Medicago sativa). PMID:19710231

  14. The Evolution of Tyrosine-Recombinase Elements in Nematoda

    PubMed Central

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L.; Lunt, David H.

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum. PMID:25197791

  15. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group. PMID:24088337

  16. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  17. Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements

    PubMed Central

    Chatterjee, Aniruddha; Macaulay, Erin C.; Rodger, Euan J.; Stockwell, Peter A.; Parry, Matthew F.; Roberts, Hester E.; Slatter, Tania L.; Hung, Noelyn A.; Devenish, Celia J.; Morison, Ian M.

    2016-01-01

    The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes. PMID:27172225

  18. Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley.

    PubMed

    Wei, Fusheng; Wing, Rod A; Wise, Roger P

    2002-08-01

    Genes that confer defense against pathogens often are clustered in the genome and evolve via diverse mechanisms. To evaluate the organization and content of a major defense gene complex in cereals, we determined the complete sequence of a 261-kb BAC contig from barley cv Morex that spans the Mla (powdery mildew) resistance locus. Among the 32 predicted genes on this contig, 15 are associated with plant defense responses; 6 of these are associated with defense responses to powdery mildew disease but function in different signaling pathways. The Mla region is organized as three gene-rich islands separated by two nested complexes of transposable elements and a 45-kb gene-poor region. A heterochromatic-like region is positioned directly proximal to Mla and is composed of a gene-poor core with 17 families of diverse tandem repeats that overlap a hypermethylated, but transcriptionally active, gene-dense island. Paleontology analysis of long terminal repeat retrotransposons indicates that the present Mla region evolved over a period of >7 million years through a variety of duplication, inversion, and transposon-insertion events. Sequence-based recombination estimates indicate that R genes positioned adjacent to nested long terminal repeat retrotransposons, such as Mla, do not favor recombination as a means of diversification. We present a model for the evolution of the Mla region that encompasses several emerging features of large cereal genomes. PMID:12172030

  19. Production and Processing of siRNA Precursor Transcripts from the Highly Repetitive Maize Genome

    PubMed Central

    Hale, Christopher J.; Erhard, Karl F.; Lisch, Damon; Hollick, Jay B.

    2009-01-01

    Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA–directed DNA methylation (RdDM) factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR) retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA–dependent RNA polymerase, RDR2 (MOP1). Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV) function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II–based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species. PMID:19680464

  20. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass.

    PubMed

    Liu, Shuwei; Li, Fei; Kong, Lina; Sun, Yang; Qin, Lumin; Chen, Suiyun; Cui, Haifeng; Huang, Yinghua; Xia, Guangmin

    2015-04-01

    Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock. PMID:25670745

  1. Genetic and Epigenetic Changes in Somatic Hybrid Introgression Lines Between Wheat and Tall Wheatgrass

    PubMed Central

    Liu, Shuwei; Li, Fei; Kong, Lina; Sun, Yang; Qin, Lumin; Chen, Suiyun; Cui, Haifeng; Huang, Yinghua; Xia, Guangmin

    2015-01-01

    Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock. PMID:25670745

  2. The rhizome of life: what about metazoa?

    PubMed Central

    Ramulu, Hemalatha G.; Raoult, Didier; Pontarotti, Pierre

    2012-01-01

    The increase in huge number of genomic sequences in recent years has contributed to various genetic events such as horizontal gene transfer (HGT), gene duplication and hybridization of species. Among them HGT has played an important role in the genome evolution and was believed to occur only in Bacterial and Archaeal genomes. As a result, genomes were found to be chimeric and the evolution of life was represented in different forms such as forests, networks and species evolution was described more like a rhizome, rather than a tree. However, in the last few years, HGT has also been evidenced in other group such as metazoa (for example in root-knot nematodes, bdelloid rotifers and mammals). In addition to HGT, other genetic events such as transfer by retrotransposons and hybridization between more closely related lineages are also well established. Therefore, in the light of such genetic events, whether the evolution of metazoa exists in the form of a tree, network or rhizome is highly questionable and needs to be determined. In the current review, we will focus on the role of HGT, retrotransposons and hybridization in the metazoan evolution. PMID:22919641

  3. Origin and evolution of retroelements based upon their reverse transcriptase sequences.

    PubMed Central

    Xiong, Y; Eickbush, T H

    1990-01-01

    To study the evolutionary relationship of reverse transcriptase (RT) containing genetic elements, a phylogenetic tree of 82 retroelements from animals, plants, protozoans and bacteria was constructed. The tree was based on seven amino acid domains totalling 178 residues identified in all RTs. We have also identified these seven domains in the RNA-directed RNA polymerases from various plus-strand RNA viruses. The sequence similarity of these RNA polymerases to RT suggests that these two enzymes evolved from a common ancestor, and thus RNA polymerase can be used as an outgroup to root the RT tree. A comparison of the genetic organization of the various RT containing elements and their position on the tree allows several inferences concerning the origin and evolution of these elements. The most probable ancestor of current retroelements was a retrotransposable element with both gag-like and pol-like genes. On one major branch of the tree, organelle and bacterial sequences (e.g. group II introns and bacterial msDNA) appear to have captured the RT sequences from retrotransposons which lack long terminal repeats (LTRs). On the other major branch, acquisition of LTRs gave rise to two distinct groups of LTR retrotransposons and three groups of viruses: retroviruses, hepadnaviruses and caulimoviruses. Images Fig. 4. PMID:1698615

  4. Retrotransposition and Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation.

    PubMed

    Ahl, Valentina; Keller, Heiko; Schmidt, Steffen; Weichenrieder, Oliver

    2015-12-01

    The Alu element is the most successful human genomic parasite affecting development and causing disease. It originated as a retrotransposon during early primate evolution of the gene encoding the signal recognition particle (SRP) RNA. We defined a minimal Alu RNA sufficient for effective retrotransposition and determined a high-resolution structure of its complex with the SRP9/14 proteins. The RNA adopts a compact, closed conformation that matches the envelope of the SRP Alu domain in the ribosomal translation elongation factor-binding site. Conserved structural elements in SRP RNAs support an ancient function of the closed conformation that predates SRP9/14. Structure-based mutagenesis shows that retrotransposition requires the closed conformation of the Alu ribonucleoprotein particle and is consistent with the recognition of stalled ribosomes. We propose that ribosome stalling is a common cause for the cis-preference of the mammalian L1 retrotransposon and for the efficiency of the Alu RNA in hijacking nascent L1 reverse transcriptase. PMID:26585389

  5. Differential expression of a retrotransposable element, Rex6, in Colossoma macropomum fish from different Amazonian environments

    PubMed Central

    Barbosa, Cassiane Martins; Mareco, Edson Assunção; Silva, Maeli Dal Pai; Martins, Cesar; Alves-Costa, Fernanda Antunes

    2014-01-01

    Transposable elements (TEs) are DNA sequences that have the ability to move and replicate within the genomes. TEs can be classified according to their intermediates of transposition, RNA (retrotransposons) or DNA. In some aquatic organisms, it has been observed that environmental factors such as pH, temperature and pollution may stimulate differential transcription and mobilization of retrotransposons. In light of this information, the present study sought to evaluate the expression of Rex6 TE transcripts in Colossoma macropomum, which is a very commercially exploited fish in Brazil. In order to establish a comparative analysis using real-time PCR, the samples were collected from Amazonian rivers with different physical and chemical characteristics (distinguished by clear water and black water). Quantitative RT-PCR analyses revealed a differential pattern of expression between tissues collected from different types of water (clear and black waters). When it came to the hepatic and muscle tissues sampled, the levels of Rex6 transcripts were significantly different between the two Amazonian water types. These results suggest that environmental conditions operate differently in the regulation of Rex6 transcription in C. macropomum, results which have implications in the reshaping of the genome against environmental variations. PMID:25089227

  6. Sequence Analysis of a 282-Kilobase Region Surrounding the Citrus Tristeza Virus Resistance Gene (Ctv) Locus in Poncirus trifoliata L. Raf.1

    PubMed Central

    Yang, Zhong-Nan; Ye, Xin-Rong; Molina, Joe; Roose, Mikeal L.; Mirkov, T. Erik

    2003-01-01

    Citrus tristeza virus (CTV) is the major virus pathogen causing significant economic damage to citrus worldwide, and a single dominant gene, Ctv, provides broad spectrum resistance to CTV in Poncirus trifoliata L. Raf. Ctv was physically mapped to a 282-kb region using a P. trifoliata bacterial artificial chromosome library. This region was completely sequenced to about 8× coverage using a shotgun sequencing strategy and primer walking for gap closure. Sequence analysis predicts 22 putative genes, two mutator-like transposons and eight retrotransposons. This sequence analysis also revealed some interesting features of this region of the P. trifoliata genome: a disease resistance gene cluster with seven members and eight retrotransposons clustered in a 125-kb gene-poor region. Comparative sequence analysis suggests that six genes in the Ctv region have significant sequence similarity with their orthologs in bacterial artificial chromosome clones F7H2 and F21T11 from Arabidopsis chromosome I. However, the analysis of gene colinearity between P. trifoliata and Arabidopsis indicates that Arabidopsis genome sequence information may be of limited use for positional gene cloning in P. trifoliata and citrus. Analysis of candidate genes for Ctv is also discussed. PMID:12586873

  7. Sequence analysis of a 282-kilobase region surrounding the citrus Tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf.

    PubMed

    Yang, Zhong-Nan; Ye, Xin-Rong; Molina, Joe; Roose, Mikeal L; Mirkov, T Erik

    2003-02-01

    Citrus tristeza virus (CTV) is the major virus pathogen causing significant economic damage to citrus worldwide, and a single dominant gene, Ctv, provides broad spectrum resistance to CTV in Poncirus trifoliata L. Raf. Ctv was physically mapped to a 282-kb region using a P. trifoliata bacterial artificial chromosome library. This region was completely sequenced to about 8x coverage using a shotgun sequencing strategy and primer walking for gap closure. Sequence analysis predicts 22 putative genes, two mutator-like transposons and eight retrotransposons. This sequence analysis also revealed some interesting features of this region of the P. trifoliata genome: a disease resistance gene cluster with seven members and eight retrotransposons clustered in a 125-kb gene-poor region. Comparative sequence analysis suggests that six genes in the Ctv region have significant sequence similarity with their orthologs in bacterial artificial chromosome clones F7H2 and F21T11 from Arabidopsis chromosome I. However, the analysis of gene colinearity between P. trifoliata and Arabidopsis indicates that Arabidopsis genome sequence information may be of limited use for positional gene cloning in P. trifoliata and citrus. Analysis of candidate genes for Ctv is also discussed. PMID:12586873

  8. A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces.

    PubMed

    Garfinkel, David J; Tucker, Jessica M; Saha, Agniva; Nishida, Yuri; Pachulska-Wieczorek, Katarzyna; Błaszczyk, Leszek; Purzycka, Katarzyna J

    2016-05-01

    Retrotransposons and retroviral insertions have molded the genomes of many eukaryotes. Since retroelements transpose via an RNA intermediate, the additive nature of the replication cycle can result in massive increases in copy number if left unchecked. Host organisms have countered with several defense systems, including domestication of retroelement genes that now act as restriction factors to minimize propagation. We discovered a novel truncated form of the Saccharomyces Ty1 retrotransposon capsid protein, dubbed p22 that inhibits virus-like particle (VLP) assembly and function. The p22 restriction factor expands the repertoire of defense proteins targeting the capsid and highlights a novel host-parasite strategy. Instead of inhibiting all transposition by domesticating the restriction gene as a distinct locus, Ty1 and budding yeast may have coevolved a relationship that allows high levels of transposition when Ty1 copy numbers are low and progressively less transposition as copy numbers rise. Here, we offer a perspective on p22 restriction, including its mode of expression, effect on VLP functions, interactions with its target, properties as a nucleic acid chaperone, similarities to other restriction factors, and future directions. PMID:26650614

  9. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula.

    PubMed

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A; Hahn, Michael G; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A

    2013-08-13

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. PMID:23901113

  10. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats.

    PubMed

    Pagán, Heidi J T; Macas, Jiří; Novák, Petr; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-01

    The repetitive landscapes of mammalian genomes typically display high Class I (retrotransposon) transposable element (TE) content, which usually comprises around half of the genome. In contrast, the Class II (DNA transposon) contribution is typically small (<3% in model mammals). Most mammalian genomes exhibit a precipitous decline in Class II activity beginning roughly 40 Ma. The first signs of more recently active mammalian Class II TEs were obtained from the little brown bat, Myotis lucifugus, and are reflected by higher genome content (~5%). To aid in determining taxonomic limits and potential impacts of this elevated Class II activity, we performed 454 survey sequencing of a second Myotis species as well as four additional taxa within the family Vespertilionidae and an outgroup species from Phyllostomidae. Graph-based clustering methods were used to reconstruct the major repeat families present in each species and novel elements were identified in several taxa. Retrotransposons remained the dominant group with regard to overall genome mass. Elevated Class II TE composition (3-4%) was observed in all five vesper bats, while less than 0.5% of the phyllostomid reads were identified as Class II derived. Differences in satellite DNA and Class I TE content are also described among vespertilionid taxa. These analyses present the first cohesive description of TE evolution across closely related mammalian species, revealing genome-scale differences in TE content within a single family. PMID:22491057

  11. Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae.

    PubMed

    Jie Jin, Feng; Hara, Seiichi; Sato, Atsushi; Koyama, Yasuji

    2014-01-01

    Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number. PMID:24646755

  12. The breadth of antiviral activity of Apobec3DE in chimpanzees has been driven by positive selection.

    PubMed

    Duggal, Nisha K; Malik, Harmit S; Emerman, Michael

    2011-11-01

    The Apobec3 family of cytidine deaminases can inhibit the replication of retroviruses and retrotransposons. Human and chimpanzee genomes encode seven Apobec3 paralogs; of these, Apobec3DE has the greatest sequence divergence between humans and chimpanzees. Here we show that even though human and chimpanzee Apobec3DEs are very divergent, the two orthologs similarly restrict long terminal repeat (LTR) and non-LTR retrotransposons (MusD and Alu, respectively). However, chimpanzee Apobec3DE also potently restricts two lentiviruses, human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagmTAN), unlike human Apobec3DE, which has poor antiviral activity against these same viruses. This difference between human and chimpanzee Apobec3DE in the ability to restrict retroviruses is not due to different levels of Apobec3DE protein incorporation into virions but rather to the ability of Apobec3DE to deaminate the viral genome in target cells. We further show that Apobec3DE rapidly evolved in chimpanzee ancestors approximately 2 to 6 million years ago and that this evolution drove the increased breadth of chimpanzee Apobec3DE antiviral activity to its current high activity against some lentiviruses. Despite a difference in target specificities between human and chimpanzee Apobec3DE, Apobec3DE is likely to currently play a role in host defense against retroelements in both species. PMID:21835794

  13. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula

    PubMed Central

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A.; Hahn, Michael G.; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A.

    2013-01-01

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. PMID:23901113

  14. A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads.

    PubMed

    Kang, Houxiang; Zhu, Dan; Lin, Runmao; Opiyo, Stephen Obol; Jiang, Ning; Shiu, Shin-Han; Wang, Guo-Liang

    2016-06-01

    Identification of polymorphic transposable elements (TEs) is important because TE polymorphism creates genetic diversity and influences the function of genes in the host genome. However, de novo scanning of polymorphic TEs remains a challenge. Here, we report a novel computational method, called PTEMD (polymorphic TEs and their movement detection), for de novo discovery of genome-wide polymorphic TEs. PTEMD searches highly identical sequences using reads supported breakpoint evidences. Using PTEMD, we identified 14 polymorphic TE families (905 sequences) in rice blast fungus Magnaporthe oryzae, and 68 (10,618 sequences) in maize. We validated one polymorphic TE family experimentally, MoTE-1; all MoTE-1 family members are located in different genomic loci in the three tested isolates. We found that 57.1% (8 of 14) of the PTEMD-detected polymorphic TE families in M. oryzae are active. Furthermore, our data indicate that there are more polymorphic DNA transposons in maize than their counterparts of retrotransposons despite the fact that retrotransposons occupy largest fraction of genomic mass. We demonstrated that PTEMD is an effective tool for identifying polymorphic TEs in M. oryzae and maize genomes. PTEMD and the genome-wide polymorphic TEs in M. oryzae and maize are publically available at http://www.kanglab.cn/blast/PTEMD_V1.02.htm. PMID:27098848

  15. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    PubMed

    Linheiro, Raquel S; Bergman, Casey M

    2012-01-01

    Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes. PMID:22347367

  16. Evolutionary interaction between W/Y chromosome and transposable elements.

    PubMed

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation. PMID:27000053

  17. A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads

    PubMed Central

    Kang, Houxiang; Zhu, Dan; Lin, Runmao; Opiyo, Stephen Obol; Jiang, Ning; Shiu, Shin-Han; Wang, Guo-Liang

    2016-01-01

    Identification of polymorphic transposable elements (TEs) is important because TE polymorphism creates genetic diversity and influences the function of genes in the host genome. However, de novo scanning of polymorphic TEs remains a challenge. Here, we report a novel computational method, called PTEMD (polymorphic TEs and their movement detection), for de novo discovery of genome-wide polymorphic TEs. PTEMD searches highly identical sequences using reads supported breakpoint evidences. Using PTEMD, we identified 14 polymorphic TE families (905 sequences) in rice blast fungus Magnaporthe oryzae, and 68 (10,618 sequences) in maize. We validated one polymorphic TE family experimentally, MoTE-1; all MoTE-1 family members are located in different genomic loci in the three tested isolates. We found that 57.1% (8 of 14) of the PTEMD-detected polymorphic TE families in M. oryzae are active. Furthermore, our data indicate that there are more polymorphic DNA transposons in maize than their counterparts of retrotransposons despite the fact that retrotransposons occupy largest fraction of genomic mass. We demonstrated that PTEMD is an effective tool for identifying polymorphic TEs in M. oryzae and maize genomes. PTEMD and the genome-wide polymorphic TEs in M. oryzae and maize are publically available at http://www.kanglab.cn/blast/PTEMD_V1.02.htm. PMID:27098848

  18. Stress and the dynamic genome: Steroids, epigenetics, and the transposome

    PubMed Central

    Hunter, Richard G.; Gagnidze, Khatuna; McEwen, Bruce S.; Pfaff, Donald W.

    2015-01-01

    Stress plays a substantial role in shaping behavior and brain function, often with lasting effects. How these lasting effects occur in the context of a fixed postmitotic neuronal genome has been an enduring question for the field. Synaptic plasticity and neurogenesis have provided some of the answers to this question, and more recently epigenetic mechanisms have come to the fore. The exploration of epigenetic mechanisms recently led us to discover that a single acute stress can regulate the expression of retrotransposons in the rat hippocampus via an epigenetic mechanism. We propose that this response may represent a genomic stress response aimed at maintaining genomic and transcriptional stability in vulnerable brain regions such as the hippocampus. This finding and those of other researchers have made clear that retrotransposons and the genomic plasticity they permit play a significant role in brain function during stress and disease. These observations also raise the possibility that the transposome might have adaptive functions at the level of both evolution and the individual organism. PMID:25385609

  19. Analysis of the human immunodeficiency virus-1 RNA packageome.

    PubMed

    Eckwahl, Matthew J; Arnion, Helene; Kharytonchyk, Siarhei; Zang, Trinity; Bieniasz, Paul D; Telesnitsky, Alice; Wolin, Sandra L

    2016-08-01

    All retroviruses package cellular RNAs into virions. Studies of murine leukemia virus (MLV) revealed that the major host cell RNAs encapsidated by this simple retrovirus were LTR retrotransposons and noncoding RNAs (ncRNAs). Several classes of ncRNAs appeared to be packaged by MLV shortly after synthesis, as precursors to tRNAs, small nuclear RNAs, and small nucleolar RNAs were all enriched in virions. To determine the extent to which the human immunodeficiency virus (HIV-1) packages similar RNAs, we used high-throughput sequencing to characterize the RNAs within infectious HIV-1 virions produced in CEM-SS T lymphoblastoid cells. We report that the most abundant cellular RNAs in HIV-1 virions are 7SL RNA and transcripts from numerous divergent and truncated members of the long interspersed element (LINE) and short interspersed element (SINE) families of retrotransposons. We also detected precursors to several tRNAs and small nuclear RNAs as well as transcripts derived from the ribosomal DNA (rDNA) intergenic spacers. We show that packaging of a pre-tRNA requires the nuclear export receptor Exportin 5, indicating that HIV-1 recruits at least some newly made ncRNAs in the cytoplasm. Together, our work identifies the set of RNAs packaged by HIV-1 and reveals that early steps in HIV-1 assembly intersect with host cell ncRNA biogenesis pathways. PMID:27247436

  20. Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements.

    PubMed

    Chatterjee, Aniruddha; Macaulay, Erin C; Rodger, Euan J; Stockwell, Peter A; Parry, Matthew F; Roberts, Hester E; Slatter, Tania L; Hung, Noelyn A; Devenish, Celia J; Morison, Ian M

    2016-01-01

    The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes. PMID:27172225

  1. The Updated Phylogenies of the Phasianidae Based on Combined Data of Nuclear and Mitochondrial DNA

    PubMed Central

    Shen, Yong-Yi; Dai, Kun; Cao, Xue; Murphy, Robert W.; Shen, Xue-Juan; Zhang, Ya-Ping

    2014-01-01

    The phylogenetic relationships of species in the Phasianidae, Order Galliformes, are the object of intensive study. However, convergent morphological evolution and rapid species radiation result in much ambiguity in the group. Further, matrilineal (mtDNA) genealogies conflict with trees based on nuclear DNA retrotransposable elements. Herein, we analyze 39 nearly complete mitochondrial genomes (three new) and up to seven nuclear DNA segments. We combine these multiple unlinked, more informative genetic markers to infer historical relationships of the major groups of phasianids. The nuclear DNA tree is largely congruent with the tree derived from mt genomes. However, branching orders of mt/nuclear trees largely conflict with those based on retrotransposons. For example, Gallus/Bambusicola/Francolinus forms the sister-group of Coturnix/Alectoris in the nuclear/mtDNA trees, yet the tree based on retrotransposable elements roots the former at the base of the tree and not with the latter. Further, while peafowls cluster with Gallus/Coturnix in the mt tree, they root at the base of the phasianids following Gallus in the tree based on retrotransposable elements. The conflicting branch orders in nuclear/mtDNA and retrotransposons-based trees in our study reveal the complex topology of the Phasianidae. PMID:24748132

  2. MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells.

    PubMed

    Kojima-Kita, Kanako; Kuramochi-Miyagawa, Satomi; Nagamori, Ippei; Ogonuki, Narumi; Ogura, Atsuo; Hasuwa, Hidetoshi; Akazawa, Takashi; Inoue, Norimitsu; Nakano, Toru

    2016-09-13

    During the development of mammalian embryonic germ cells, global demethylation and de novo DNA methylation take place. In mouse embryonic germ cells, two PIWI family proteins, MILI and MIWI2, are essential for the de novo DNA methylation of retrotransposons, presumably through PIWI-interacting RNAs (piRNAs). Although piRNA-associated MIWI2 has been reported to play critical roles in the process, its molecular mechanisms have remained unclear. To identify the mechanism, transgenic mice were produced; they contained a fusion protein of MIWI2 and a zinc finger (ZF) that recognized the promoter region of a type A LINE-1 gene. The ZF-MIWI2 fusion protein brought about DNA methylation, suppression of the type A LINE-1 gene, and a partial rescue of the impaired spermatogenesis of MILI-null mice. In addition, ZF-MIWI2 was associated with the proteins involved in DNA methylation. These data indicate that MIWI2 functions as an effector of de novo DNA methylation of the retrotransposon. PMID:27626653

  3. Fitness cost of LINE-1 (L1) activity in humans

    PubMed Central

    Boissinot, Stephane; Davis, Jerel; Entezam, Ali; Petrov, Dimitri; Furano, Anthony V.

    2006-01-01

    The self-replicating LINE-1 (L1) retrotransposon family is the dominant retrotransposon family in mammals and has generated 30–40% of their genomes. Active L1 families are present in modern mammals but the important question of whether these currently active families affect the genetic fitness of their hosts has not been addressed. This issue is of particular relevance to humans as Homo sapiens contains the active L1 Ta1 subfamily of the human specific Ta (L1Pa1) L1 family. Although DNA insertions generated by the Ta1 subfamily can cause genetic defects in current humans, these are relatively rare, and it is not known whether Ta1-generated inserts or any other property of Ta1 elements have been sufficiently deleterious to reduce the fitness of humans. Here we show that full-length (FL) Ta1 elements, but not the truncated Ta1 elements or SINE (Alu) insertions generated by Ta1 activity, were subject to negative selection. Thus, one or more properties unique to FL L1 elements constitute a genetic burden for modern humans. We also found that the FL Ta1 elements became more deleterious as the expansion of Ta1 has proceeded. Because this expansion is ongoing, the Ta1 subfamily almost certainly continues to decrease the fitness of modern humans. PMID:16766655

  4. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  5. CG gene body DNA methylation changes and evolution of duplicated genes in cassava

    PubMed Central

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J.; Bart, Rebecca; Carrington, James C.; Jacobsen, Steven E.; Ausin, Israel

    2015-01-01

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits. PMID:26483493

  6. Transposable elements as a factor in the aging of Drosophila melanogaster.

    PubMed

    Driver, C J; McKechnie, S W

    1992-12-26

    We have considered the hypothesis that transposable elements may contribute to the aging process through somatic mutation. We have presented evidence to suggest that at least two elements, Copia and 412, are capable of somatic activity in adult Drosophila tissue. A strain harboring a third transposable element, P, was produced that showed eye color mosaicism and reversion to wild phenotype (red eyes) as a result of somatic and germ line transposition. A high-fat diet, known to accelerate aging, increased the frequency of eye color mosaicism and red eyes. We induced life span shortening by artificially activating somatic transposition of P elements, and the extent of reduction in life span was similar in both sexes. These data are consistent with the notion that some aspects of the age phenotype may be caused by mutational activity of transposable elements in somatic tissues. The hypothesis is readily tested in other organisms, including humans. It offers new dimensions in the understanding and management of age-associated changes. PMID:1336649

  7. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0.

    PubMed

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org. PMID:21036865

  8. Chromosomal Distribution of Transposable Elements in Drosophila Melanogaster: Test of the Ectopic Recombination Model for Maintenance of Insertion Site Number

    PubMed Central

    Hoogland, C.; Biemont, C.

    1996-01-01

    Data of insertion site localization and site occupancy frequency of P, hobo, I, copia, mdg1, mdg3, 412, 297, and roo transposable elements (TEs) on the polytene chromosomes of Drosophila melanogaster were extracted from the literature. We show that TE insertion site number per chromosomal division was significantly correlated with the amount of DNA. The insertion site number weighted by DNA content was not correlated with recombination rate for all TEs except hobo, for which a positive correlation was detected. No global tendency emerged in the relationship between TE site occupancy frequency, weighted by DNA content, and recombination rate; a strong negative correlation was, however, found for the 3L arm. A possible dominant deleterious effect of chromosomal rearrangements due to recombination between TE insertions is thus not the main factor explaining the dynamics of TEs, since this hypothesis implies a negative relationship between recombination rate and both TE insertion site number and site occupancy frequency. The alternative hypothesis of selection against deleterious effects of insertional mutations is discussed. PMID:8878685

  9. Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum violaceum

    PubMed Central

    Hood, Michael E.; Katawczik, Melanie; Giraud, Tatiana

    2005-01-01

    Repeat-induced point mutation (RIP) is a genome defense in fungi that hypermutates repetitive DNA and is suggested to limit the accumulation of transposable elements. The genome of Microbotryum violaceum has a high density of transposable elements compared to other fungi, but there is also evidence of RIP activity. This is the first report of RIP in a basidiomycete and was obtained by sequencing multiple copies of the integrase gene of a copia-type transposable element and the helicase gene of a Helitron-type element. In M. violaceum, the targets for RIP mutations are the cytosine residues of TCG trinucleotide combinations. Although RIP is a linkage-dependent process that tends to increase the variation among repetitive sequences, a chromosome-specific substructuring was observed in the transposable element population. The observed chromosome-specific patterns are not consistent with RIP, but rather suggest an effect of gene conversion, which is also a linkage-dependent process but results in a homogenization of repeated sequences. Particular sequences were found more widely distributed within the genome than expected by chance and may reflect the recently active variants. Therefore, sequence variation of transposable elements in M. violaceum appears to be driven by selection for transposition ability in combination with the context-specific forces of the RIP and gene conversion.

  10. The Drosophila melanogaster 60A chromosomal division is extremely dense with functional genes: their sequences, genomic organization, and expression.

    PubMed

    Lukacsovich, T; Asztalos, Z; Juni, N; Awano, W; Yamamoto, D

    1999-04-01

    We cloned and sequenced genomic DNA contigs spanning over 45 kb, surrounding the insertion site of the P-element that is responsible for the developmental defects in the ken and barbie (ken) mutant of Drosophila. This region harbors 10 functional transcription units, in addition to the already well-characterized TGFbeta-60A gene. These include the genes, undefined 1 (UD1), UD2, and UD3, each coding for proteins of unknown function, the ken gene encoding a new Krüppel-like putative transcription factor, the fly homologues of the mammalian mitochondrial trifunctional enzyme (thiolase), and the TAR DNA-binding protein-43 (TBPH), the first nonvertebrate member of the transmembrane 4 superfamily (TM4SF) gene, a new homeodomain gene, and a gene coding for a putative nuclear binding protein (PNBP) that is homologous to maleless, and a Copia-like element. UD3 exists in an intron of the maleless homologue, yet is expressed independent of it. The UD1 and TM4SF genes orient in a tail-to-tail manner with their 3' untranslated region sequences overlapping over 44 nucleotides. Thus the partial overlap and intraintronic organization permitted dense packing of the functional genes within a short segment of the genome. PMID:10191082

  11. CG gene body DNA methylation changes and evolution of duplicated genes in cassava.

    PubMed

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J; Bart, Rebecca; Carrington, James C; Jacobsen, Steven E; Ausin, Israel

    2015-11-01

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits. PMID:26483493

  12. Copy number variation in transcriptionally active regions of sexual and apomictic Boechera demonstrates independently derived apomictic lineages.

    PubMed

    Aliyu, Olawale M; Seifert, Michael; Corral, José M; Fuchs, Joerg; Sharbel, Timothy F

    2013-10-01

    In asexual (apomictic) plants, the absence of meiosis and sex is expected to lead to mutation accumulation. To compare mutation accumulation in the transcribed genomic regions of sexual and apomictic plants, we performed a double-validated analysis of copy number variation (CNV) on 10 biological replicates each of diploid sexual and diploid apomictic Boechera, using a high-density (>700 K) custom microarray. The Boechera genome demonstrated higher levels of depleted CNV, compared with enriched CNV, irrespective of reproductive mode. Genome-wide patterns of CNV revealed four divergent lineages, three of which contain both sexual and apomictic genotypes. Hence genome-wide CNV reflects at least three independent origins (i.e., expression) of apomixis from different sexual genetic backgrounds. CNV distributions for different families of transposable elements were lineage specific, and the enrichment of LINE/L1 and long term repeat/Copia elements in lineage 3 apomicts is consistent with sex and meiosis being mechanisms for purging genomic parasites. We hypothesize that significant overrepresentation of specific gene ontology classes (e.g., pollen-pistil interaction) in apomicts implies that gene enrichment could be an adaptive mechanism for genome stability in diploid apomicts by providing a polyploid-like system for buffering the effects of deleterious mutations. PMID:24170129

  13. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0

    PubMed Central

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M.; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P.; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M.; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org. PMID:21036865

  14. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae.

    PubMed

    Piednoël, Mathieu; Aberer, Andre J; Schneeweiss, Gerald M; Macas, Jiri; Novak, Petr; Gundlach, Heidrun; Temsch, Eva M; Renner, Susanne S

    2012-11-01

    We used next-generation sequencing to characterize the genomes of nine species of Orobanchaceae of known phylogenetic relationships, different life forms, and including a polyploid species. The study species are the autotrophic, nonparasitic Lindenbergia philippensis, the hemiparasitic Schwalbea americana, and seven nonphotosynthetic parasitic species of Orobanche (Orobanche crenata, Orobanche cumana, Orobanche gracilis (tetraploid), and Orobanche pancicii) and Phelipanche (Phelipanche lavandulacea, Phelipanche purpurea, and Phelipanche ramosa). Ty3/Gypsy elements comprise 1.93%-28.34% of the nine genomes and Ty1/Copia elements comprise 8.09%-22.83%. When compared with L. philippensis and S. americana, the nonphotosynthetic species contain higher proportions of repetitive DNA sequences, perhaps reflecting relaxed selection on genome size in parasitic organisms. Among the parasitic species, those in the genus Orobanche have smaller genomes but higher proportions of repetitive DNA than those in Phelipanche, mostly due to a diversification of repeats and an accumulation of Ty3/Gypsy elements. Genome downsizing in the tetraploid O. gracilis probably led to sequence loss across most repeat types. PMID:22723303

  15. Harvey, by Hercules! The hero of the blood's circulation.

    PubMed

    O'Rourke Boyle, Marjorie

    2013-01-01

    This article continues the analyses in Medical History 52 (2008), 73-90, 365-86 of William Harvey's self-understanding as the philosopher and discoverer of the blood's circulation. Harvey brilliantly and subversively assumed the persona of the mythological Hercules to embody his own anatomical labour in De motu cordis et sanguinis (1628). He reprised the role in self-defence against accusations in the College of Physicians, London, of his breach of faith with medical tradition. Harvey sought to usurp the medical epithet 'a second Hercules' by reforming humanist dependence on ancient texts as authoritative medicine. A knowledge of the theory and practice of Renaissance humanism discloses his identification with the Herculean labour of cleansing the Augean stable. He employed anatomical demonstration against Galen's porous cardiac septum, which admitted blood across the ventricles. Harvey's oath mehercule swore against Galen's Dia to assert the necessity of opening an alternate route for the blood flow. His Herculean labour was to dam the cardiac septum and divert the blood flow into a continuous channel through the arteries and veins. His circulation of the blood also imitated Hercules' successful dependence on the force of the water flow to flush the Augean stable. Harvey's copia did not denote a quantitative amount but a powerful supply. Harvey aspired to be, like Hercules, immortal, a term which the College belatedly acknowledged. This cultural analysis exposes Harvey's professional issues and personal ambitions, so to promote a fuller understanding of his historic role in medical discovery. PMID:23393400

  16. Postnatal epigenetic reprogramming in the germline of a marsupial, the tammar wallaby

    PubMed Central

    2013-01-01

    Background Epigenetic reprogramming is essential to restore totipotency and to reset genomic imprints during mammalian germ cell development and gamete formation. The dynamic DNA methylation change at DMRs (differentially methylated regions) within imprinted domains and of retrotransposons is characteristic of this process. Both marsupials and eutherian mammals have genomic imprinting but these two subgroups have been evolving separately for up to 160 million years. Marsupials have a unique reproductive strategy and deliver tiny, altricial young that complete their development within their mother's pouch. Germ cell proliferation in the genital ridge continues after birth in the tammar wallaby (Macropus eugenii), and it is only after 25 days postpartum that female germ cells begin to enter meiosis and male germ cells begin to enter mitotic arrest. At least two marsupial imprinted loci (PEG10 and H19) also have DMRs. To investigate the evolution of epigenetic reprogramming in the marsupial germline, here we collected germ cells from male pouch young of the tammar wallaby and analysed the methylation status of PEG10 and H19 DMR, an LTR (long terminal repeat) and a non-LTR retrotransposons. Results Demethylation of the H19 DMR was almost completed by 14 days postpartum and de-novo methylation started from 34 days postpartum. These stages correspond to 14 days after the completion of primordial germ cell migration into genital ridge (demethylation) and 9 days after the first detection of mitotic arrest (re-methylation) in the male germ cells. Interestingly, the PEG10 DMR was already unmethylated at 7 days postpartum, suggesting that the timing of epigenetic reprogramming is not the same at all genomic loci. Retrotransposon methylation was not completely removed after the demethylation event in the germ cells, similar to the situation in the mouse. Conclusions Thus, despite the postnatal occurrence of epigenetic reprogramming and the persistence of genome

  17. Identification of proteolytic cleavage sites within the gag-analogue protein of Ty1 virus-like particles.

    PubMed

    Martin-Rendon, E; Hurd, D W; Marfany, G; Kingsman, S M; Kingsman, A J

    1996-12-01

    Like retroviruses, the yeast retrotransposon Ty1 produces its proteins as precursors that are subsequently cleaved by a protease encoded by the element. These cleavage events are essential for transposition as they release the active reverse transcriptase and integrase and they modify the structure of the virus-like particles in a way that is analogous to the morphological changes that occur during retrovirus core maturation. Using a combination of epitope tagging, amino acid analysis and mutagenesis, we have identified the major cleavage sites for the Ty1 protease within the particle-forming protein, p1, at 407S/408N. In addition, we present evidence indicating that the Ty1 protease may be a 17 kDa protein. PMID:8971723

  18. Hybrid Ty virus-like particles.

    PubMed

    Adams, S E; Burns, N R; Layton, G T; Kingsman, A J

    1994-01-01

    Vaccines need to activate antigen presenting cells, overcome genetic restriction in T-cell responses and elicit both T and B memory cells. In order to produce recombinant vaccines which can do this, considerable effort has been put into developing particulate antigen presentation systems to generate polyvalent, high molecular weight antigens which should maximally stimulate the immune system. One such antigen-carrier system is based on the ability of a protein encoded by the yeast retrotransposon, Ty, to self-assemble into virus-like particles (VLPs). Ty-fusion proteins retain this ability to form particles and a range of hybrid VLPs carrying a variety of heterologous antigens have been produced and shown to elicit potent immune responses. Hybrid VLPs carrying human immunodeficiency virus (HIV) antigens stimulate the three main components of the immune system, namely antibody synthesis, T-cell proliferative responses and cytotoxic T-lymphocyte (CTL) responses. PMID:8046274

  19. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams

    PubMed Central

    Metzger, Michael J.; Reinisch, Carol; Sherry, James; Goff, Stephen P.

    2015-01-01

    SUMMARY Outbreaks of fatal leukemia-like cancers of marine bivalves throughout the world have led to massive population loss. The cause of the disease is unknown. We recently identified a retrotransposon, Steamer, that is highly expressed and amplified to high copy number in neoplastic cells of soft-shell clams (Mya arenaria). Through analysis of Steamer integration sites, mitochondrial DNA single nucleotide polymorphisms (SNPs), and polymorphic microsatellite alleles, we show that the genotypes of neoplastic cells do not match those of the host animal. Instead, neoplastic cells from dispersed locations in New York, Maine, and Prince Edward Island (PEI), Canada, all have nearly identical genotypes that differ from those of the host. These results indicate that the cancer is spreading between animals in the marine environment as a clonal transmissible cell derived from a single original clam. Our findings suggest that horizontal transmission of cancer cells is more widespread in nature than previously supposed. PMID:25860608

  20. Sigma elements are position-specific for many different yeast tRNA genes.

    PubMed Central

    Sandmeyer, S B; Bilanchone, V W; Clark, D J; Morcos, P; Carle, G F; Brodeur, G M

    1988-01-01

    We determined the DNA sequence of seventeen sigma elements and flanking regions in order to investigate the extent of the association between the yeast repetitive element, sigma, and tRNA genes. Fifteen of seventeen sigma elements analyzed begin at position -19 to -16 with respect to the 5' end of a tRNA-coding sequence. This region is close to the initiation point of tRNA gene transcription and contains a sequence which is modestly conserved for a number of tRNA genes. Two pairs of identical sigma elements occur as the long terminal repeats of a sequence which, together with flanking sigma elements, has the structural properties of a retrotransposon; this element has been named Ty3 (manuscript submitted). Hybridization analysis of yeast chromosomal DNA separated by orthogonal field alternation gel electrophoresis (OFAGE) showed that Ty3 and isolated sigma elements are distributed over many chromosomes in the yeast genome. Images PMID:3279393

  1. Architecture and evolution of a minute plant genome

    PubMed Central

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C.; Himmelbauer, Heinz; Minoche, André E.; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P.; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A.; Herrera-Estrella, Luis

    2016-01-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation1. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  2. Architecture and evolution of a minute plant genome.

    PubMed

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C; Himmelbauer, Heinz; Minoche, André E; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A; Herrera-Estrella, Luis

    2013-06-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  3. Processed pseudogenes acquired somatically during cancer development.

    PubMed

    Cooke, Susanna L; Shlien, Adam; Marshall, John; Pipinikas, Christodoulos P; Martincorena, Inigo; Tubio, Jose M C; Li, Yilong; Menzies, Andrew; Mudie, Laura; Ramakrishna, Manasa; Yates, Lucy; Davies, Helen; Bolli, Niccolo; Bignell, Graham R; Tarpey, Patrick S; Behjati, Sam; Nik-Zainal, Serena; Papaemmanuil, Elli; Teixeira, Vitor H; Raine, Keiran; O'Meara, Sarah; Dodoran, Maryam S; Teague, Jon W; Butler, Adam P; Iacobuzio-Donahue, Christine; Santarius, Thomas; Grundy, Richard G; Malkin, David; Greaves, Mel; Munshi, Nikhil; Flanagan, Adrienne M; Bowtell, David; Martin, Sancha; Larsimont, Denis; Reis-Filho, Jorge S; Boussioutas, Alex; Taylor, Jack A; Hayes, Neil D; Janes, Sam M; Futreal, P Andrew; Stratton, Michael R; McDermott, Ultan; Campbell, Peter J

    2014-01-01

    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5' truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context. PMID:24714652

  4. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities

    PubMed Central

    Williams, Bryony AP; Lee, Renny CH; Becnel, James J; Weiss, Louis M; Fast, Naomi M; Keeling, Patrick J

    2008-01-01

    Background Microsporidia are well known models of extreme nuclear genome reduction and compaction. The smallest microsporidian genomes have received the most attention, but genomes of different species range in size from 2.3 Mb to 19.5 Mb and the nature of the larger genomes remains unknown. Results Here we have undertaken genome sequence surveys of two diverse microsporidia, Brachiola algerae and Edhazardia aedis. In both species we find very large intergenic regions, many transposable elements, and a low gene-density, all in contrast to the small, model microsporidian genomes. We also find no recognizable genes that are not also found in other surveyed or sequenced microsporidian genomes. Conclusion Our results demonstrate that microsporidian genome architecture varies greatly between microsporidia. Much of the genome size difference could be accounted for by non-coding material, such as intergenic spaces and retrotransposons, and this suggests that the forces dictating genome size may vary across the phylum. PMID:18445287

  5. Epigenetic Control of Early Mouse Development.

    PubMed

    Lim, C Y; Knowles, B B; Solter, D; Messerschmidt, D M

    2016-01-01

    Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life. PMID:27475856

  6. A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity.

    PubMed

    Ito, Hidetaka; Kim, Jong-Myong; Matsunaga, Wataru; Saze, Hidetoshi; Matsui, Akihiro; Endo, Takaho A; Harukawa, Yoshiko; Takagi, Hiroki; Yaegashi, Hiroki; Masuta, Yukari; Masuda, Seiji; Ishida, Junko; Tanaka, Maho; Takahashi, Satoshi; Morosawa, Taeko; Toyoda, Tetsuro; Kakutani, Tetsuji; Kato, Atsushi; Seki, Motoaki

    2016-01-01

    Transposable elements (TEs), or transposons, play an important role in adaptation. TE insertion can affect host gene function and provides a mechanism for rapid increases in genetic diversity, particularly because many TEs respond to environmental stress. In the current study, we show that the transposition of a heat-activated retrotransposon, ONSEN, generated a mutation in an abscisic acid (ABA) responsive gene, resulting in an ABA-insensitive phenotype in Arabidopsis, suggesting stress tolerance. Our results provide direct evidence that a transposon activated by environmental stress could alter the genome in a potentially positive manner. Furthermore, the ABA-insensitive phenotype was inherited when the transcription was disrupted by an ONSEN insertion, whereas ABA sensitivity was recovered when the effects of ONSEN were masked by IBM2. These results suggest that epigenetic mechanisms in host plants typically buffered the effect of a new insertion, but could selectively "turn on" TEs when stressed. PMID:26976262

  7. DNA Editing by APOBECs: A Genomic Preserver and Transformer.

    PubMed

    Knisbacher