Science.gov

Sample records for copper ore tailings

  1. Beneficiation of flotation tailing from Polish copper sulfide ores

    SciTech Connect

    Luszczkiewicz, A.; Sztaba, K.S.

    1995-12-31

    Flotation tailing of Polish copper sulfide ores represents more than 90% of the mass of run-of-mine ore. The tailing contains mainly quartz, dolomite, clay minerals, traces of sulfides, and some accessory minerals. Almost all minerals of the tailing are well liberated and, therefore, any further beneficiation process applied to the tailing is expected to be inexpensive. In this work, results of investigations on utilization of flotation tailing using classification and gravity concentration are presented. It is shown that due to classification of flotation tailing in hydrocyclones, the coarse fraction becomes suitable material for gravity separation providing backfill material for underground mines as well as heavy minerals, a source of valuable rare elements. It was also found that heavy minerals separated by gravity methods contain a significant amount of rare elements such as zirconium, titanium, silver, rare earth metals, and uranium. The light fraction of the gravity separation contains well deslimed quartz particles and meets strict requirements for hydraulic filling material used for structural support in underground mines. Evaluation of the cost of the proposed technology indicated that investment to implement the method would provide a return within 2--4 years.

  2. Isolation and characterization of lost copper and molybdenum particles in the flotation tailings of Kennecott copper porphyry ores

    NASA Astrophysics Data System (ADS)

    Tserendavga, Tsend-Ayush

    The importance of flotation separation has long been, and continues to be, an important technology for the mining industry, especially to metallurgical engineers. However, the flotation process is quite complex and expensive, in addition to being influenced by many variables. Understanding the variables affecting flotation efficiency and how valuable minerals are lost to the tailings gives metallurgists an advantage in their attempts to increase efficiency by designing operations to target the areas of greatest potential value. A successful, accurate evaluation of lost minerals in the tailings and appropriate solutions to improve flotation efficiency can save millions of dollars in the effective utilization of our mineral resources. In this dissertation research, an attempt has been made to understand the reasons for the loss of valuable mineral particles in the tailings from Kennecott Utah Copper ores. Possibilities include liberation, particle aggregation (slime coating) and surface chemistry issues associated with the flotation separation. This research generally consisted of three main aspects. The first part involved laboratory flotation experiments and factors, which affect the flotation efficiency. Results of flotation testing are reported that several factors such as mineral exposure/liberation and slime coating and surface oxidation strongly affect the flotation efficiency. The second part of this dissertation research was to develop a rapid scan dual energy (DE) methodology using 2D radiography to identify, isolate, and prepare lost sulfide mineral particles with the advantages of simple sample preparation, short analysis time, statistically reliable accuracy and confident identification. The third part of this dissertation research was concerned with detailed characterization of lost particles including such factors as liberation, slime coating, and surface chemistry characteristics using advanced analytical techniques and instruments. Based on the

  3. Pressure leaching las cruces copper ore

    NASA Astrophysics Data System (ADS)

    Berezowsky, R. M.; Xue, T.; Collins, M. J.; Makwana, M.; Barton-Jones, I.; Southgate, M.; Maclean, J. K.

    1999-12-01

    A hydrometallurgical process was developed for treating the Las Cruces massive sulfide-ore deposit located near Seville, Spain. A two-stage countercurrent leach process, consisting of an atmospheric leach and a pressure leach, was developed to effectively leach copper from the copper-bearing minerals and to generate a solution suitable for the subsequent solvent-extraction and copper-electrowinning operations. The results of batch and continuous miniplant tests are presented.

  4. Environmentally safe design of tailing dams for the management of iron ore tailings in Indian context.

    PubMed

    Ghose, Mrinal K; Sen, P K

    2005-10-01

    The need for the disposal of iron ore tailings in an enviornmentally firiendly manner is of great concern. This paper investigates the soil engineering properties for the construction of iron ore tailing dam, its foundation, construction materials and design data used for the construction analysis of the tailing dam. Geophysical investigations were carried out to establish the bedrock below the spillway. A computer programme taking into account the Swedish Slip Circle Method of analysis was used in the stability analysis of dam. It also focuses on the charactierstics of the tailings reponsible for the determination of optimum size of tailing pond for the containment of the tailings. The studies on the settling characteristics of tailings indicate much less area in comparison to the area provided in the existing tailing ponds in India. In the proposed scheme, it is suggested to provide an additional unit of sedimentation tank before the disposal of tailings to the tailing pond. PMID:17051916

  5. 1. VIEW OF EMPIRE MINE AREA WITH TAILINGS, ORE CHUTE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF EMPIRE MINE AREA WITH TAILINGS, ORE CHUTE, AND COLLAPSED BUILDINGS VISIBLE, AND BARE SWITCHBACK HILLSIDE FROM WHICH #4, #5 AND #6 WERE MADE. CAMERA IS POINTED NORTHWEST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  6. Estimated water requirements for the conventional flotation of copper ores

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.

  7. Electrodialytic remediation of copper mine tailings.

    PubMed

    Hansen, Henrik K; Rojo, Adrián; Ottosen, Lisbeth M

    2005-01-31

    Mining activities in Chile have generated large amounts of solid waste, which have been deposited in mine tailing impoundments. These impoundments cause concern to the communities due to dam failures or natural leaching to groundwater and rivers. This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2 V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2 V/cm. The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20 V using approximately 1.8 kg mine tailing on dry basis. In addition, experiments with acidic tailing show that the copper removal is proportional with time. PMID:15629576

  8. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    ERIC Educational Resources Information Center

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  9. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  10. Plant and soil reactions to nickel ore processed tailings

    SciTech Connect

    Sheets, P.J.; Volk, V.V.; Gardner, E.H.

    1982-07-01

    Greenhouse and laboratory experiments were conducted to determine the effect that tailings, produced during the processing of nickeliferous laterite ores by a proposed U.S. Bureau of Mines Process, would have on plant growth and soil properties. The tailings contained soluble salts (7.6 mmhos/cm), NH/sub 4/-N (877 ..mu..g/g), Ni (0.28%), Mn (82 ..mu..g/g DTPA-extractable), Cr (0.44%), P (2 and 6 ..mu..g/g acid F- and NaHCO/sub 3/-extractable, respectively), and Ca and Mg (1.0 and 20.7 meq/100 g NH/sub 4/Ac-extractable, respectively). Water leaching decreased the NH/sub 4/-N concentration to 53 ..mu..g/g and the EC to 0.4 mmhos/cm by removal of (NH/sub 4/)/sub 2/SO/sub 4/ and MgSO/sub 4/ salts. Tall fescue (Festuca arundinacea Schreb.) was grown on Eightlar clay soil (skeletal, serpentinitic, mesic Typic Xerochrept) amended with 0, 223, 446, and 669 g tailings/kg soil and pure, unleached tailings for 32 weeks in the greenhouse. Seedling establishment of plants grown on soil amended at the highest tailings rate and the pure tailings was initially slow, but plants grown on soil amended at lower rates established readily and grew well. Plant P was <0.24%, while plant Ca concentrations were <0.45% throughout the growth period even though Ca(H/sub 2/PO/sub 2/)/sub 2/ and gypsum had been added. Ammonium acetate-extractable Ca at the end of the growth period was <5.0 meq/100 g on all amended soils.The Mn, Ni, and Cr concentrations of plants grown on treated soils were within normal ranges, although soil-analysis values were higher than commonly found. It is recommended that the tailings be washed to reduce NH/sub 4/-N and soluble salts prior to revegetation, and that native soil be added to the surface to reduce crusting.

  11. A Simulator for Copper Ore Leaching

    SciTech Connect

    Travis, B.

    1999-05-14

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Copper is a strategic metal and the nation needs a secure supply both for industrial use and military needs. However, demand is growing worldwide and is outstripping the ability of the mining industry to keep up. Improved recovery methods are critically needed to maintain the balance of supply and demand. The goal of any process design should be to increase the amount of copper recovered, control movement of acid and other environmentally harmful chemicals, and reduce energy requirements. To achieve these ends, several improvements in current technology are required, the most important of which is a better understanding of, and the ability to quantify, how fluids move through heterogeneous materials in a complex chemical environment. The goal of this project is create a new modeling capability that couples hydrology with copper leaching chemistry . once the model has been verified and validated, we can apply the model to specific problems associated with heap leaching (flow channeling due to non-uniformities in heap structure, precipitation/dissolution reactions, and bacterial action), to understand the causes of inefficiencies, and to design better recovery systems. We also intend to work with representatives of the copper mining industry to write a coordinated plan for further model development and application that will provide economic benefits to the industry and the nation.

  12. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  13. The cuprex metal extraction process: Recovering copper from sulfide ores

    NASA Astrophysics Data System (ADS)

    Dalton, R. F.; Diaz, G.; Price, R.; Zunkel, A. D.

    1991-08-01

    The Cuprex™ metal extraction process produces cathode-grade copper using a hydrometallurgical process based on chloride leaching of sulfide ore concentrates. The process incorporates several novel steps to overcome the major problems associated with earlier chloride-based processes, including mild leaching conditions using ferric chloride as leachant and solvent extraction of copper usinga novel reagent. This produces a highly concentrated cupric chloride electrolyte from which cathode-grade copper is electrowon in the Metclor cell. The technical viability and robustness of the core technology have been proven in a series of large-scale pilot trials. More recent work has concentrated on supplementary processes to convert the copper powder product to an article of commerce and to recover valuable by-products. A fully integrated scheme is now being developed with updated cost estimates.

  14. Leaching of molybdenum and arsenic from uranium ore and mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    A sequential, selective extraction procedure was used to assess the effects of sulfuric acid milling on the geochemical associations of molybdenum and arsenic in a uranium ore blend, and the tailings derived therefrom. The milling process removed about 21% of the molybdenum and 53% of the arsenic initially present in the ore. While about one-half of the molybdenum in the ore was water soluble, only about 14% existed in this form in the tailings. The major portion of the extractable molybdenum in the tailings appears to be associated with hydrous oxides of iron, and with alkaline earth sulfate precipitates. In contrast with the pattern seen for molybdenum, the partitioning of arsenic into the various extractable fractions differs little between the ore and the tailings. ?? 1984.

  15. 4. EMPIRE STATE MINE TAILINGS, ORE CHUTE/BIN, COLLAPSED BUILDING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EMPIRE STATE MINE TAILINGS, ORE CHUTE/BIN, COLLAPSED BUILDING FROM BELOW. CAMERA POINTED NORTHEAST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  16. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Wen, Shu-ming; Deng, Jian-ying; Wu, Dan-dan

    2015-03-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.

  17. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material.

    PubMed

    Li, Chao; Sun, Henghu; Yi, Zhonglai; Li, Longtu

    2010-02-15

    In order to comprehensive utilization of iron ore tailings, this experimental research was to investigate the possibility of using the residues after iron recovery from iron ore tailings as raw materials for the preparation of cementitious material, abbreviated as TSC, including analyses of its mechanical properties, physical properties and hydration products. The TSC1 was prepared by blending 30% the residues, 34% blast-furnace slag, 30% clinker and 6% gypsum. Meanwhile, the raw iron ore tailings (before iron recovery) with the same proportion of TSC1 were selected to compare the cementitious activity of raw tailings and the residues after magnetizing roasting, denoted by TSC0. The hydration products of them were mostly ettringite, calcium hydroxide and C-S-H gel, characterized by XRD, IR and SEM. It was found that ettringite and C-S-H gel were principally responsible for the strength development of TSC mortars with curing time. The results showed that the kaolinite of the tailings was decomposed completely after magnetizing roasting, which promoted the cementitious property of TSC1. Moreover, the mechanical properties of TSC1 are well comparable with those of 42.5 ordinary Portland cement according to Chinese GB175-2007 standard. PMID:19782471

  18. Leaching of radionuclides from uranium ore and mill tailings ( Ra- 226, Tn-230).

    USGS Publications Warehouse

    Landa, E.R.

    1982-01-01

    The major part of the extractable uranium is associated with a readily acid-soluble fraction in both ore and tailings. The major part of the extractable 226Ra was associated with an iron, manganese hydrous-oxide fraction in the ore and tailings. Thorium-230 was the least leachable of the radionuclides studied. The major portion of the extractable 230Th was associated with alkaline-earth sulphate precipitates, organic matter, or both. The specific effects of milling on each of the nuclides are discussed.-Author

  19. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory. (a)...

  20. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory. (a)...

  1. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined. PMID:24687752

  2. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics

    SciTech Connect

    Liu, Jie; Meng, Junping; Liang, Jinsheng; Duan, Xinhui; Huo, Xiaoli; Tang, Qingguo

    2015-06-15

    Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibits excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.

  3. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    PubMed

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere. PMID:24057960

  4. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.

    PubMed

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-10-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C. PMID:23024410

  5. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  6. Synthesis of Fe-MCM-41 Using Iron Ore Tailings as the Silicon and Iron Source

    PubMed Central

    Li, Xin; Yu, Honghao; He, Yan; Xue, Xiangxin

    2012-01-01

    Highly ordered Fe-MCM-41 molecular sieve was successfully synthesized by using n-hexadecyl-trimethyl ammonium bromide (CTAB) as the template and the iron ore tailings (IOTs) as the silicon and iron source. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy, 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption were used to characterize the samples. The results showed that the mesoporous materials had highly ordered 2-dimensional hexagonal structure. The synthesized sample had high surface area, and part of iron atoms is retained in the framework with formation of tetrahedron after removal of the template by calcinations. The results obtained in the present work demonstrate the feasibility of employing iron ore tailings as a potential source of silicon and iron to produce Fe-MCM-41 mesoporous materials. PMID:22567574

  7. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum...

  8. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum...

  9. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100 Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum...

  10. Effect of Tourmaline-Doped on the Far Infrared Emission of Iron Ore Tailings Ceramics.

    PubMed

    Liu, Jie; Meng, Junping; Liang, Jinsheng; Zhang, Hongchen; Gu, Xiaoyang

    2016-04-01

    Iron ore tailings as secondary resources have been of great importance to many countries in the world. Their compositions are similar to that of infrared emission ceramics, but there are few reports about it. In addition, tourmaline has high infrared emission properties due to its unique structure. With the purpose of expanding functional utilization of iron ore tailings, as well as reducing the production cost of far infrared ceramics, a new kind of far infrared emission ceramics was prepared by using iron ore tailings, calcium carbonate, silica, and natural tourmaline. The ceramics powders were characterized by Fourier transform infrared spectroscope, X-ray diffraction and scanning electron microscopy, respectively. The results show that after being sintered at 1065 °C, the percentage of pseudobrookite and lattice strain of samples increased with increasing the elbaite content. Furthermore, the added tourmaline was conducive to the densification sintering of ceramics. The appearance of Li-O vibration at 734.73 cm-1, as well as the strengthened Fe-O vibration at 987.68 cm-1 were attributed to the formation of Li0.375Fe1.23Ti1.4O5 solid solution, which led the average far infrared emissivity of ceramics increase from 0.861 to 0.906 within 8-14 µm. PMID:27451708

  11. Native plant restoration of biosolids-amended copper mine tailings

    SciTech Connect

    Kramer, P.A.; Zabowski, D.; Everett, R.L.; Scherer, G.

    1998-12-31

    Copper mine tailings are difficult to revegetate due to nutrient deficiencies, high levels of acidity, and potential metal toxicities. An amendment of biosolids could ameliorate these harsh growing conditions through the addition of available nutrients, improvement of physical soil properties (e.g., increased water holding capacity), and possible lowering of toxic metal availability through complexation with organic matter. A study was conducted on mine tailings at Holden, WA to evaluate the effect of an amendment of biosolids on the survival and growth of five native plant species (Sitka alder, big leaf maple, fireweed, w. yarrow, and pearly everlasting). Plots were established in tailings, gravel over tailings (G/T), and biosolids plus gravel over tailings. Each of the native plant species, except maple, had their highest survival in the biosolids-amended plot with 3 species at 100% survival. The biosolids amendment was shown to improve the growth of all species except maple. Fireweed produced 62 times more biomass in the biosolids-amended plot compared to the unamended plot (G/T). Plant analysis revealed a dramatic increase in nutrient content with the amendment of biosolids. Biosolids improved the survival, growth, and nutritional status of native plant species on the copper mine tailings.

  12. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  13. 63,65Cu NMR Method in a Local Field for Investigation of Copper Ore Concentrates

    NASA Astrophysics Data System (ADS)

    Gavrilenko, A. N.; Starykh, R. V.; Khabibullin, I. Kh.; Matukhin, V. L.

    2015-01-01

    To choose the most efficient method and ore beneficiation flow diagram, it is important to know physical and chemical properties of ore concentrates. The feasibility of application of the 63,65Cu nuclear magnetic resonance (NMR) method in a local field aimed at studying the properties of copper ore concentrates in the copper-iron-sulfur system is demonstrated. 63,65Cu NMR spectrum is measured in a local field for a copper concentrate sample and relaxation parameters (times T1 and T2) are obtained. The spectrum obtained was used to identify a mineral (chalcopyrite) contained in the concentrate. Based on the experimental data, comparative characteristics of natural chalcopyrite and beneficiated copper concentrate are given. The feasibility of application of the NMR method in a local field to explore mineral deposits is analyzed.

  14. Rheological investigations of tailings of kimberlite ore dressing and numerical simulation of its behaviour in PLAXIS

    NASA Astrophysics Data System (ADS)

    Korshunov, A.; Nevzorov, A.

    2015-04-01

    The article presents the results of analysis of rheology properties of sandy-clay tailings (wastes) of kimberlite ore dressing of the diamond deposit (Russia, Arkhangelsk region). The coefficient of secondary compression as main parameter of soil's creep is defined by implementing standard one-dimensional consolidation test. The linear correlation between initial void ratio and coefficient of secondary compression of sandy-clay tailings were obtained. For numerical simulation of tailing's behaviour subject to its rheology properties in Soft Soil Creep (SSC) model (time independent behaviour) of PLAXIS software was used. According to laboratory tests calibration of SSC model was implemented. It allows predicting dam's safety and reliability for long-term outlook.

  15. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    PubMed

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides. PMID:16054920

  16. Catalytic-Oxidative Leaching of Low-Grade Complex Zinc Ore by Cu (II) Ions Produced from Copper Ore in Ammonia-Ammonium Sulfate Solution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi Xiong; Yin, Zhou Lan; Hu, Hui Ping; Chen, Qi Yuan

    2012-10-01

    The catalytic-oxidative leaching of a mixed ore, which consists of low-grade oxide copper ore and oxide zinc ore containing ZnS, was investigated in ammonia-ammonium sulfate solution. The effect of the main parameters, such as mass ratio of copper ore to zinc ore, liquid-to-solid ratio, concentration of lixivant, leaching time, and temperature, was studied. The optimal leaching conditions with a maximum extraction of Cu 92.6 pct and Zn 85.5 pct were determined as follows: the mass ratio of copper ore to zinc ore 4/10 g/g, temperature 323.15 K (50 °C), leaching time 6 hours, stirring speed 500 r/min, liquid-to-solid ratio 3.6/1 cm3/g, concentration of lixivant including ammonia 2.0 mol/dm3, ammonium sulfate 1.0 mol/dm3, and ammonium persulfate 0.3 mol/dm3. It was found that ZnS in the oxide zinc ore could be extracted with Cu(II) ion, which was produced from copper ore and was used as the catalyst in the presence of ammonium persulfate.

  17. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.

    PubMed

    Harahuc, L; Lizama, H M; Suzuki, I

    2000-07-20

    Bacterial leaching of sulfide ores using Thiobacillus ferrooxidans, Thiobacillus thiooxidans, or a combination of the two was studied at various concentrations of specific anions. Selective zinc and copper solubilization was obtained by inhibiting iron oxidation without affecting sulfur/sulfide oxidation. Phosphate reduced iron solubilization from a pyrite (FeS(2))-sphalerite (ZnS) mixture without significantly affecting zinc solubilization. Copper leaching from a chalcopyrite (CuFeS(2))-sphalerite mixture was stimulated by phosphate, whereas chloride accelerated zinc extraction. In a complex sulfide ore containing pyrite, chalcopyrite, and sphalerite, both phosphate and chloride reduced iron solubilization and increased copper extraction, whereas only chloride stimulated zinc extraction. Maximum leaching obtained was 100% zinc and 50% copper. Time-course studies of copper and zinc solubilization suggest the possibility of selective metal recovery following treatment with specific anions. PMID:10861398

  18. Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products

    NASA Astrophysics Data System (ADS)

    Das, S. K.

    2015-04-01

    Mineralogical characterization and liberation of valuable minerals are primary concerns in mineral processing industries. The present investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN®, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spectrometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr2O3 and 39.19wt% Fe2O3, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 μm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr2O3 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.

  19. Use of mesophilic and thermophilic bacteria for the improvement of copper extraction from a low-grade ore

    NASA Astrophysics Data System (ADS)

    Darezereshki, E.; Schaffie, M.; Lotfalian, M.; Seiedbaghery, S. A.; Ranjbar, M.

    2011-04-01

    Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.

  20. Natural radiation and its hazard in copper ore mines in Poland

    NASA Astrophysics Data System (ADS)

    Chau, Nguyen; Jodłowski, Paweł; Kalita, Stefan; Olko, Paweł; Chruściel, Edward; Maksymowicz, Adam; Waligórski, Michał; Bilski, Paweł; Budzanowski, Maciej

    2008-06-01

    The doses of gamma radiation, concentrations of radium isotopes in water and sediments, radon concentration and concentration of alpha potential energy of radon decay products in the copper ore mine and in the mining region in the vicinity of Lubin town in Poland are presented. These data served as a basis for the assessment of radiological hazard to the mine workers and general public. The results of this assessment indicate that radiological hazard in the region does not differ substantially from typical values associated with natural radiation background. The calculated average annual effective dose for copper miners is 1.48 mSv. In general, copper ore mines can be regarded as radiologically safe workplaces.

  1. Krasnotur'insk Skarn copper ore field, Northern Urals: The U-Pb age of ore-controlling diorites and their place in the regional metallogeny

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.

    2014-06-01

    The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.

  2. Reclamation of acidic copper mine tailings using municipal biosolids

    SciTech Connect

    Rogers, M.T.; Thompson, T.L.; Bengson, S.A.

    1998-12-31

    Reclamation of copper mine tailings in a cost effective, successful, and sustainable manner is an ongoing area of evaluation in the arid southwest. A study was initiated in September, 1996 near Hayden, Arizona to evaluate the use of municipal biosolids for reclaiming acidic copper mine tailings (pH of 2.5 to 4.0). The main objectives of the study were to (1) define an appropriate level of biosolids application for optimum plant growth, and (2) evaluate the effects of green waste and lime amendments. The experiment was a randomized complete block design with four biosolid rates of 20, 70, 100 and 135 dry tons/acre, three amendment treatments (none, green waste, and green waste plus lime); with three replications. Non-replicated controls (no treatment, green waste only and lime only) were included for comparison. Shortly after biosolids incorporation to a depth of 10--12 inches, composite soil samples (0--12 inches) of each plot were taken. Biosolids incorporation increased the pH of the tailings (>5.75) and additional increases in pH were noted with lime application. In January 1997, the plots were seeded and sprinkler irrigation was commenced. A total of 4.47 inches of rainfall and 3.8 inches of irrigation were applied until harvest in May 1997. Data from the first growing season indicates optimum growth (>66 lbs/acre) at biosolids rates of 70--100 dry tons/acre. There was a significant positive effect on growth of green waste and lime amendments. Surface NO{sub 3}-N concentrations in biosolids amended plots were greatly reduced (from 23 to 6 mg/kg) by addition of green waste. There was no evidence for NO{sub 3}N leaching below 12 inches.

  3. Speciation and Characterization of Arsenic in Gold Ores and Cyanidation Tailings Using X-ray Absorption Spectroscopy

    SciTech Connect

    Paktunc, Dogan; Foster, Andrea; Heald, Steve M.; Laflamme, Gilles

    2004-03-25

    The knowledge of mineralogy and molecular structure of arsenic is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption spectroscopy (XAFS) techniques were employed to determine the mineralogical composition and local coordination environment of arsenic in gold ores and process tailings from a bench-scale testwork designed to mimic a common plant practice. Arsenic -bearing minerals identified in the ores and tailings include Fe oxyhydroxides, scorodite, ferric arsenates, arseniosiderite, Ca-Fe arsenates, pharmacosiderite, jarosite and arsenopyrite. Iron oxyhydroxides contain variable levels of As from trace to about 22 wt % and Ca to approximately 9 %.

  4. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. PMID:25284800

  5. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production. PMID:23160957

  6. Bioleaching model of a copper-sulfide ore bed in heap and dump configurations

    NASA Astrophysics Data System (ADS)

    Casas, J. M.; Vargas, T.; Martinez, J.; Moreno, L.

    1998-08-01

    A two-dimensional (2-D) model for a heap or dump bioleaching of a copper ore containing mainly chalcocite and pyrite has been developed. The rate of the mineral sulfide dissolution was related to the rate of oxidation by bacteria attached onto the ore surface. The latter was calculated using the model of Michaelis-Menten, where both temperature and dissolved oxygen in the leach solution were taken into account by the kinetic equation. Oxygen transport through the ore bed was associated with natural air convection originating from the decrease in gas density inside the ore bed, which was attributable not only to heating, but also to humidification and decrease in the oxygen concentration. The model was used to estimate air-velocity fields and profiles of temperature and oxygen concentrations as well as mineral conversions during the bioleaching operation for ore beds with different pyrite contents, bacterial populations, widths, heights, and permeabilities. The model provides a useful tool for the design, improvement, and optimization of industrial operating conditions.

  7. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.

    PubMed

    Dold, Bernhard; Blowes, David W; Dickhout, Ralph; Spangenberg, Jorge E; Pfeifer, Hans-Rudolf

    2005-04-15

    The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(III) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances

  8. Characterization of energy critical elements in ore resources and associated waste tailings: Implications for recovery and remediation

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.

    2015-04-01

    The occurrence of Energy Critical Elements (ECE) in primary ore minerals and their subsequent enrichment in waste tailings is of great metallurgical interest. Recovery of many ECEs, in particular In, Ge, and Ga have come chiefly as a by-product of base-metal production (smelting and refining); these elements are found only at very low levels in the Earth's crust and do not typically form economic deposits on their own. As the ECEs become more important for a growing number of technological applications, it is critical to map the distribution of these elements in ore and waste (gangue) minerals to optimize their recovery and remediation. The characterization and beneficiation of ECEs is best illustrated for Zn-rich ore systems, where a mineral such as sphalerite (ZnS) will concentrate a number of major (Fe, Mn) and important trace elements (Cd, Se, In, Ge, Te, Sn, Bi, Sb, Hg). Interestingly, the mineral chemistry of sphalerite will often differ between different styles of mineralization (i.e., granite-hosted veins versus volcanic-hosted massive sulfides) and can even exhibit considerable variability within a deposit in response to metal zonation across hydrothermal facies. This has significant metallurgical implications for the blending of ore resources, the efficient production of Zn concentrates, and their ultimate value during the smelting and refining stages. Gangue minerals transferred to waste tailings may also exhibit significant enrichment in ECEs and precious metals; including Au in pyrite-arsenopyrite, and rare earth elements in a range of carbonate and phosphate minerals. In situ micro-analytical techniques are ideal for the quantitative measurement of trace elements in ore minerals as well as associated gangue materials. Recent advances in ICP-MS and ICP-OES technology coupled with newer classes of UV Excimer lasers (native 193 nm light) have allowed for more discrete analyses, permitting micro-chemical mapping at small scales (<10 microns). Further

  9. Mineralogy, petrology, and chemistry studies to evaluate oxide copper ores for heap leaching in Sarcheshmeh copper mine, Kerman, Iran.

    PubMed

    Shayestehfar, M R; Nasab, S Karimi; Mohammadalizadeh, H

    2008-06-15

    In recent years, as a result of biological, environmental, and economic considerations, available copper in copper oxide ores that could not be recovered by pyrometallurgical methods was accumulated in so-called oxide dumps. Suitable material is treated with dilute sulfuric acid in a heap-leaching process, whereupon the copper content of the rock slowly dissolves in the acidic solution. The performed investigations show that one needs to consider the action of the acid on the copper oxide-containing rocks at the microscopic level. In this paper, we describe research carried out on oxide samples from the western dump of the Sarcheshmeh copper mine. Each sample was split into two parts and a portion of each was exposed to heap-leaching conditions in a column. Subsequently, polished sections, thin sections, and powdered samples were subjected to chemical analysis as well as petrographic and mineralogical considerations. Changes in the weight percentages of non-metal and metal minerals before and after acid treatment were measured. Microscopic studies have indicated that chemical analyses do not provide a complete picture of the effects of acid on the rock. Thus, microscopic studies on sections are shown to be a necessary requirement, neglection of which can have negative economic and environmental effects. PMID:18096317

  10. Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.

    PubMed

    Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J

    2012-12-01

    In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions. PMID:23110501

  11. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  12. Recovery of Rare Earths, Niobium, and Thorium from the Tailings of Giant Bayan Obo Ore in China

    NASA Astrophysics Data System (ADS)

    Yu, Xiu-Lan; Bai, Li; Wang, Qing-Chun; Liu, Jia; Chi, Ming-Yu; Wang, Zhi-Chang

    2012-06-01

    The recovery of rare earths, niobium, and thorium from Bayan Obo's tailings has been investigated because the Bayan Obo ore is rich in rare earths and rich in niobium and thorium, but it is mined mainly as an iron ore and will be used up soon. By carbochlorination between 823 K (550 °C) and 873 K (600 °C) for 2 hours, 76 to 93 pct of rare earths were recovered from the tailings, which were much higher than those from Bayan Obo's rare earth concentrate, together with 65 to 78 pct of niobium, 72 to 92 pct of thorium, 84 to 91 pct of iron, and 81 to 94 pct of fluorine. This suggests a cooperative reaction mechanism that carbochlorination of iron minerals (and carbonates) in the tailings enhances that of rare earth minerals, which is supported by a thermodynamic analysis. Subsequently, niobium separation from the low-volatile, ultrahigh iron chloride mixture was achieved efficiently by selective oxidation with Fe2O3. This process, combined with the best available technologies for separation of rare earths and thorium from the involatile chloride mixture and for comprehensively using other valuable elements, allows the ore to minimize radioactive waste and to use rare metal resources sustainably in the future.

  13. Apatite ore mine tailings as an amendment for remediation of a lead-contaminated shooting range soil.

    PubMed

    Venäläinen, Salla H

    2011-10-01

    This study investigated the use of tailings from apatite ore beneficiation in the remediation of a heavily contaminated shooting range soil. The tailings originating in Siilinjärvi carbonatite complex, Finland, consist of apatite residues accompanied by phlogopite and calcite. In a pot experiment, organic top layer of a boreal forest soil predisposed to pellet-derived lead (Pb) was amended with tailings of various particle-sizes (Ø>0.2mm, Ø<0.2mm and unsieved material) differing in their mineralogical composition. After 9-, 10-, 14- and 21-month incubation, the samples were monitored for tailings-induced changes in the different Pb pools by means of sequential fractionation. Following the incubation, the samples were extracted with water and the extracts were analyzed for Pb species distribution by means of a cation exchange resin. The results revealed that Pb was continuously released from the shotgun pellet fragments due to weathering. However, the apatite and calcite compartments in the tailings counteracted the mobility of the released Pb through the formation of sparingly soluble fluorpyromorphite and cerussite. Furthermore, the tailings efficiently reduced the bioavailability of Pb by transferring it from the water-soluble and exchangeable pools into the organic one. The material also increased the proportion of the less toxic non-cationic Pb to the total dissolved Pb from the initial level of 5% to 9-12%. The results suggest that the tailings-induced stabilization of Pb may be an environmentally sound remediation technique at polluted sites. PMID:21871651

  14. Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials.

    PubMed

    Hitchen, A; Zechanowitsch, G

    1980-03-01

    Chelatometric methods for the determination of calcium and magnesium in iron ores, slags, anorthosite, copper-nickel-lead-zinc ores and various other materials are described. Potential interfering elements are masked with triethanolamine and potassium cyanide. In one aliquot calcium is titrated at pH > 12, with calcein and thymolphthalein mixed indicator and in another aliquot calcium and magnesium are titrated in ammonia buffer, with o-cresolphthalein complexone screened with Naphthol Green B as indicator. The results compare favourably with certified values for reference materials of diverse nature. PMID:18962661

  15. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...

  16. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  17. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Paktunc, D.; Foster, A.; Heald, S.; Laflamme, G.

    2004-01-01

    The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO4??2H2O), ferric arsenates, arseniosiderite (Ca2Fe3 (AsO4)3O2??3H2O), Ca-Fe arsenates, pharmacosiderite (KFe4 (AsO4)3(OH)4??6-7H2O), jarosite (K2Fe6(SO4)4 (OH)12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%. Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 A?? and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III) oxyhydroxides

  18. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2016-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  19. Recovery of Copper from Cyanidation Tailing by Flotation

    NASA Astrophysics Data System (ADS)

    Qiu, Tingsheng; Huang, Xiong; Yang, Xiuli

    2016-02-01

    In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10-3 mol/L and copper sulfate 1.67 × 10-4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.

  20. Intermetallic compounds, copper and palladium alloys in Au-Pd ore of the Skaergaard pluton, Greenland

    NASA Astrophysics Data System (ADS)

    Rudashevsky, N. S.; Rudashevsky, V. N.; Nielsen, T. F. D.

    2015-12-01

    Copper-palladium intermetallic compounds and alloys (2314 grains) from the Au-Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd-Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe-Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe-Cu sulfide phase as Pd-Cu and Cu-Au alloys.

  1. The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration.

    PubMed

    Hu, Hanjun; Tang, Yang; Ying, Haisong; Wang, Minghai; Wan, Pingyu; Jin Yang, X

    2014-07-01

    The International Standard Organization (ISO) specifies two titrimetric methods for the determination of total iron content in iron ores using potassium dichromate as titrant after reduction of the iron(III) by tin(II) chloride and/or titanium(III) chloride. These two ISO methods (ISO2597-1 and ISO2597-2) require nearly boiling-point temperature for iron(III) reduction and suffer from copper interference and/or mercury pollution. In this study, potassium borohydride was used for reduction of iron(III) catalyzed by copper ions at ambient temperatures. In the absence of copper, iron(III) reduction by potassium borohydride was sluggish while a trace amount of copper significantly accelerated the reduction and reduced potassium borohydride consumption. The catalytic mechanism of iron(III) reduction in sulfuric acid and hydrochloric acid was investigated. Potassium borohydride in sodium hydroxide solution was stable without a significant degradation within 24h at ambient conditions and the use of potassium borohydride prepared in sodium hydroxide solution was safe and convenient in routine applications. The applicability of potassium borohydride reduction for the determination of total iron content by potassium dichromate titration was demonstrated by comparing with the ISO standard method using iron and copper ore reference materials and iron ore samples. PMID:24840467

  2. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    PubMed

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. PMID:27006021

  3. Evaluation of metal mobility from copper mine tailings in northern Chile.

    PubMed

    Lam, Elizabeth J; Gálvez, M E; Cánovas, M; Montofré, I L; Rivero, D; Faz, A

    2016-06-01

    This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu(2+), Mn, Fe, Zn, Mg(2+), and K(+) and Ca(2+), SO4 (2-), NO3 (-), and PO4 (3-) leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu(2+) leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu(2+)/Fe and NO3 (-)/SO4 (2-); (2) tailings treated with CaCO3, Cu(2+)/K(+); (3) tailings treated with compost, NO3 (-)/SO4 (-2) and EC/Cu(2+); and (4) tailings treated with both amendments, EC/Fe and Cu(2+)/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility. PMID:26957432

  4. Biogeochemical evolution of sulfide ore mine tailings profiles under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Chorover, J.

    2014-12-01

    Mining represents a principal form of earth surface disturbance in the anthropocene. Weathering reactions that ensue following tailings deposition are strongly affected by climatic forcing and tailings composition, and these also affect the weathering-induced transformations of the associated mineral assemblages and metal(loid) contaminants. The presence or absence of plants and associated microbiota can have a profound influence on these weathering trajectories. We employed field, laboratory and modeling approaches to resolve the impact of (bio)geochemical weathering reactions on the transformation of mine tailings parent materials into soil over the time following mining cessation. Using controlled experiments, we have evaluated the impacts of plants and associated rhizosphere microbiota on these reactions, hydrologic fluxes, and the molecular speciation of mining derived contaminants. Plant establishment is shown to alter site ecohydrology and biogeochemical weathering processes leading to distinctly different weathering products and patterns.

  5. Treatment of copper ores and concentrates with industrial nitrogen species catalyzed pressure leaching and non-cyanide precious metals recovery

    NASA Astrophysics Data System (ADS)

    Anderson, Corby G.

    2003-04-01

    Today, with a stringent economic and environmental climate prevailing in the copper business, there is increased interest in evaluating new processing alternatives for production. Hydrometallurgical pressure oxidation of copper concentrates is one of the more viable approaches, and several technological candidates have emerged. Of these, an overlooked but, ironically, the first industrially proven methodology utilized nitrogen species catalyzation in the oxidizing pressure-leach system to produce copper via solvent extraction/electrowinning. Given its advantages, this may prove to be a feasible process alternative for the future. In this article, the history of the system and its application to copper concentrates and ores will be outlined. In particular, a non-cyanide methodology for effective recovery of precious metals from chalcopyrite concentrates will be discussed.

  6. Impact of commercial garden growth substratum and NPK-fertilizer on copper fractionation in a copper-mine tailing

    NASA Astrophysics Data System (ADS)

    Charles, A.; Karam, A.; Jaouich, A.

    2009-04-01

    Organic amendment and NPK-fertilizer could affect the distribution of copper (Cu) among Cu-mine tailing compounds and hence the availability or phytotoxicity of Cu to plants. A laboratory incubation experiment was conducted to investigate the forms of Cu in a Cu-mine tailing (pH 7.70) amended with a commercial garden growth substratum (GGS) containing peat moss and natural mycorrhizae (Glomus intraradices) in combination with a commercial NPK-fertilizer (20-20-20), by a sequential extraction method. There were eight treatments after the combination of four rates of GGS (0, 12.4, 50 and 100 g/kg tailing) and two rates of fertilizer (0 and 20 g/kg tailing). At the end of a 52-week incubation period, tailing Cu was sequentially extracted to fractionate Cu into five operationally defined geochemical forms, namely ‘water-soluble' (Cu-sol), ‘exchangeable' (Cu-exc), ‘specifically adsorbed on carbonates or carbonate-bound' (Cu-car), ‘organic-bound' (Cu-org) and ‘residual' (Cu-res) fractions. After treatments, the most labile Cu pool (Cu-sol + Cu-exc) represented about 0.94 % of the total Cu, the Cu-car and Cu-org accounted for 22.7 and 5.0% of total Cu, and the residual Cu accounted for nearly 71.3% of total Cu. Compared with the control, the application of GGS decreased Cu-car and increased CuORG whereas the addition of fertilizer increased Cu-sol + Cu-exc and decreased Cu-carb. Fertilizer-treated tailings had the highest amount of Cu-sol + Cu-exc. High rates of GGS resulted in Cu-org levels in GGS-treated tailings which were more than 2.0-2.8 times those obtained in the untreated tailing (control). The partition of Cu in GGS-treated tailings followed the order: Cu-sol + Cu-exc < Cu-car < Cu-org < Cu-res. This study suggests that NPK-fertilizer promotes the formation of labile Cu forms in the calcite-containing Cu-mine tailing. GGS in the tailing matrix acts as effective sorbent for Cu.

  7. Geophysical model of the Cu-Mo porphyry ore deposit at Copper Flat Mine, Hillsboro, Sierra County, New Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez, Adrian Emmanuel Gutierrez

    A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A

  8. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms. PMID:23793914

  9. Recolonisation of mine tailing by meiofauna in mesocosm and microcosm experiments.

    PubMed

    Gwyther, David; Batterham, Grant J; Waworuntu, Jorina; Gultom, Tonny H; Prayogo, Windy; Susetiono; Karnan

    2009-06-01

    The Batu Hijau copper/gold mine in Sumbawa, Indonesia processes ore at approximately 130,000tpd and discharges tailing via a submarine pipeline to depths below 3000m at the base of a submarine canyon. The study investigated recolonisation of tailing by meiofauna and its dependence on subsequent accumulation of natural sediment. Microcosm and mesocosm scale experiments were carried out using two tailing and two control samples, the latter comprising defaunated and unaffected natural sediment. All test materials were similar in physical and chemical respects, except for the higher copper concentration in the tailing. The abundances of meiofauna colonising defaunated controls and both tailing samples increased from zero to levels statistically indistinguishable from natural unaffected controls after 97 and 203days. Colonisation was well established in tailing from freshly mined ore after 40days, and in oxidized tailing from stockpiled ore after 65days, and was not dependent on settled natural material. PMID:19268316

  10. Identification and stochastic modelling of sources in copper ore crusher vibrations

    NASA Astrophysics Data System (ADS)

    Wylomanska, Agnieszka; Zimroz, Radoslaw; Janczura, Joanna

    2015-07-01

    A problem of rolling element bearings diagnostics for different machines is widely discussed in the literature. Most of the methods are based on the vibration signal analysis. However for some real signals the classical methods of damage detection are insufficient because of the specific nature of examined data. This specific nature is very often manifested through overlapping, mixing or interleaving of processes with different statistical properties and may be the result of different sources that have influence on the analysed signal. The problem of different sources identification and parametrisation of processes which are related to them is very challenging and requires advanced techniques. There are many methods which can be useful in this context however each signal should be analysed separately and there is no universal technique adequate to all possible time series. In this paper we propose a method of sources identification for vibration signal from the heavy duty crusher used in mineral processing plant. A crusher is a kind of machine which use a metal surface to crumble materials into small fractional pieces. During this process, as well as during entering material stream into the crusher, a lot of impacts appear. They are present in vibration signal acquired from bearings housing. Moreover, for some cases we also observe cyclic impulses which may be related to damage of rolling element bearings in the machine. The proposed sources identification method, especially useful for crushers vibrations, is based on the statistical analysis of examined data. Moreover by using advanced techniques of time series theory we propose a stochastic model that exhibits similar statistical properties as analysed signals. The introduced technique can be a starting point to damage detection of rolling element bearings of copper ore crushers.

  11. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  12. Using soil island plantings as dispersal vectors in large area copper tailings reforestation

    SciTech Connect

    Scherer, G.; Everett, R.

    1998-12-31

    The Wenatchee National Forest undertook the reforestation of the 80 acre (35 ha) Holden copper mine tailings of Washington State in 1989 by using 20, one-fourth acre, triangular shaped soil islands as a source of plant propagules targeted for gravel-covered tailings surfaces. The islands were constructed of soil and surface litter transported from a nearby gravel pit, and planted with four species of conifer seedlings, the shrub Sitka alder (Alnus sinuata) and eight species of grasses. Conifer and alder seedlings were also planted in graveled covered tailings with amendments. Since reproductive status of the conifers would not occur for several years, this propagule vector hypothesis was tested by measuring the distances traveled onto the tailings surface by grass seeds. The number of grass shoots established in four treatment blocks in target plots downwind from the soil island source plantings was also determined. After 36 months, grass seed had migrated to a distance of 32 feet (11 m) from the soil island source. Grass shoots were present within 10 feet (3 m) downwind of the soil island, the most frequent being Mountain brome (Bromus marginatus). Among the tree species, lodgepole pine (Pinus contorta) and Sitka alder grew an average of 6 inches (15--16 cm) after 40 months on the soil islands but somewhat less on the tailing surface. By the third growing season, the only tree species in reproductive condition on the tailings was alder. The soil-island technique is successful for grass dispersal and may have potential for conifer and alder migration.

  13. Molybdenum and copper levels in white-tailed deer near uranium mines in Texas

    USGS Publications Warehouse

    King, K.A.; LeLeux, J.; Mulhern, B.M.

    1984-01-01

    Molybdenum toxicity, molybdenosis, in ruminant animals has been identified in at least 15 states and in Canada, England, Australia, and New Zealand. In most western states, molybdenosis has been associated with strip-mine spoil deposits. Molybdenum toxicity has been diagnosed in cattle pastured near uranium strip-mine spoils in several Texas counties. Recent reports from hunters and the authors' observations indicated that white-tailed deer (Odocoileus virginianus ) that fed near uranium-mine spoil deposits may also have been exposed to high levels of molybdenum. The objectives of this study were to determine if white-tailed deer from a South Texas uranium mining district were accumulating harmful levels of molybdenum and to compare molybdenum and copper levels with antler development in deer from the mined area vs. an unmined control area.

  14. Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis

    NASA Astrophysics Data System (ADS)

    Safina, N. P.; Maslennikov, V. V.; Maslennikova, S. P.; Kotlyarov, V. A.; Danyushevsky, L. V.; Large, R. R.; Blinov, I. A.

    2015-05-01

    The results of investigation of metamorphosed sulfide-magnetite ores from the Mauk deposit located within the Main Ural Fault at the junction of Tagil and Magnitogorsk massive sulfide zones are discussed. The ore-hosting sequence comprises metamorphic rocks formed from basalt, carbonaceous and carbonaceous-cherty siltstone, and lenticular serpentinized ultramafic bodies. The ores of the deposit are represented by banded varieties and less frequent breccia. The clastic origin of the banded ore is indicated by load casts at the bottom of sulfide beds, alternation of sulfide and barren beds, and the truncation of the growth zones of pyrite crystals. Pyrite, pyrrhotite, chalcopyrite, sphalerite, and magnetite are the major minerals of the banded ores. The internal structure of the listed minerals testifies to the deep metamorphic recrystallization of primary hydrothermal-sedimentary ores accompanied with deformation. Cubanite, pyrrhotite, mackinawite, greigite, and gold are enclosed in metacrysts of pyrite, magnetite, and chalcopyrite. The accessory minerals of the Pb-Bi-Te, Bi-Te, and Ag-Te systems as well as uraninite have been found at the Mauk deposit for the first time. Magnetite predominantly replaces pyrite and less frequently chalcopyrite, pyrrhotite, and gangue minerals. It was established that the major carriers of As and Co are crystals of metamorphic pyrite. Chalcopyrite is the major carrier of Zn, Sn, Te, Pb, Bi, and Ag. Admixture of Fe and Cu is typical of sphalerite, and Se and Ni are characteristic of pyrrhotite. Ti, V, Mn, Sb, As, Ba, and U are concentrated in magnetite. The banded ores of the Mauk deposit are suggested as having been transformed in several stages: diagenesis, anadiagenesis, epidiagenesis ( t < 300°C), and amphibolite facies metamorphism ( t > 500°C).

  15. Pyasino-Vologochan intrusion: Geological structure and platinum-copper-nickel ores (Norilsk Region)

    NASA Astrophysics Data System (ADS)

    Sluzhenikin, S. F.; Krivolutskaya, N. A.

    2015-09-01

    Rocks enriched in olivine, such as olivine and picritic gabbro-dolerite and troctolite are abundant in the Pyasino-Vologochan intrusion. In contrast to Norilsk type ore-bearing massifs, ultramafic rocks of the intrusion are dominated by troctolite. Picritic gabbro-dolerite and troctolite are located between olivine and olivine-bearing gabbro-dolerite. These rocks are related by gradual transitions. The rocks are enriched in olivine, but depleted in magnesium relative to the Norilsk type ore-bearing massifs. The intrusion is also distinguished by low chromium content in the rocks. Most disseminated Pt-Cu-Ni ores are confined to troctolite and picritic gabbro-dolerite, and to a lesser extent, to contact and olivine gabbro-dolerite. The ore is mainly observed as low-sulfur assemblages of sulfides with troilite, Fe-rich hexagonal pyrrhotite, Fe-rich chalcopyrite, talnakhite, Fe-rich pentlandite, and cubanite. The total content of platinum group elements (PGE) in the ore (ppm) is as follows: from 0.45-3.47 to 7.8; gold, from 0.05-0.24 to 0.49; and silver, from 0.53-4.50 to 8.30. Disseminated ores of the Pyasino-Vologochan intrusion contain the following Pt and Pd minerals: sobolevskite, Te-sobolevskite, Te-insizwaite, maslovite, paolovite, zvyagintsevite, atokite, niggliite, mertieite II, guanglinite, and Pd2(As,Sb), Pd2(Sn,As), Pd3Sb, (Pd,Ni)2As minerals. The similarities and differences between the Pyasino-Vologochan intrusion and Norilsk type ore-bearing massifs are discussed in this paper.

  16. Uranium (-nickel-cobalt-molybdenum) mineralization along the Singhbhum copper belt, India, and the problem of ore genesis

    NASA Astrophysics Data System (ADS)

    Sarkar, S. C.

    1982-08-01

    Uranium mineralization is present at many places along the 200 km long Singhbhum copper belt, but the mineralization is relatively concentrated at the central part of it. The belt is characterized by many shear zone features, such as mylonites, phyllonites, and L-S type of structures and of course, copious metasomatism. Country rocks are basic schists, metapelites, quartzose rocks and albite schist/gneiss (‘Soda Granite’). Orebodies are sheet-like, conformable with the pervasive planar structures in the host rocks. No pronounced ‘wall rock alteration’ accompanied the mineralization. Grade of the ore is low (<0.1% U3O8). The principal uraniferous mineral uraninite occurs as dissemination. Other uranium-bearing minerals include pitchblende, allanite, xenotime, davidite, clarkeite, autunite (-metaautunite), torbernite, schoepite (-metaschoepite) and uranophane. Uranium is also present in a number of refractory phases either as inclusion of uraninite or in the crystal structure. Additionally, nickel, cobalt and molybdenum are present at Jaduguda-Bhatin in the form of millerite, gersdorffite, melonite, nickel-bearing pyrite, molybdenite etc. Dominance of uraninite over pitchblende and the larger cell-edge of uraninite, development of hematite-bearing quartz and Na-oligoclase at places in the ore zone, association of uranium mineralization with Ni-Co-Mo(-S-As) mineralization at Jaduguda-Bhatin and continuation of the orebodies to considerable depths, suggest that the uranium mineralization along the Singhbhum belt belongs to moderate to high temperature ‘vein type’. The age obtained by Pb207/Pb206 ratio and the concordia method suggest that the uranium mineralization in Singhbhum took place 1500 1600 Ma ago and this age is not far different from the age of formation of uranium-vein deposits in many other Precambrian shields of the world. The following two mechanisms of the formation of the deposits are discussed: 1) uranium precipitated in the Dhanjori basal

  17. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation.

    PubMed

    Chen, Baodong; Tang, Xiangyu; Zhu, Yongguan; Christie, Peter

    2005-05-01

    A field survey of metal concentrations and mycorrhizal status of plants growing on copper mine tailings was conducted in Anhui Province, China. Available phosphorus and organic matter in the tailings were very low. High concentrations of Pb, Zn, As and Cd as well as Cu were observed on some sites. The dominant plants growing on mine tailings belonged to the families Gramineae and Compositae, and the most widely distributed plant species were Imperata cylindrica, Cynodon dactylon and Paspalum distichum. Coreopsis drummondii also grew well on the arid sites but not on wet sites. Very low or zero arbuscular mycorrhizal (AM) fungal colonization was observed in most of the plants, but extensive mycorrhizal colonization was recorded in the roots of C. drummondii and C. dactylon. Metal concentrations in plant tissues indicated that I. cylindrica and P. distichum utilized avoidance mechanisms to survive at high metal concentrations. The investigation suggests that remediation and revegetation of heavy metal contaminated sites might be facilitated by selection of tolerant plant species. Isolation of tolerant AM fungi may also be warranted. PMID:16089342

  18. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at <900°C are dominated by early crystallization of hornblende and apatite, and late crystallization (~<780°C) of titanite

  19. Impact of tailings from the Kilembe copper mining district on Lake George, Uganda

    NASA Astrophysics Data System (ADS)

    Owor, Michael; Hartwig, Tina; Muwanga, Andrew; Zachmann, Dieter; Pohl, Walter

    2007-01-01

    The abandoned Kilembe copper mine in western Uganda is a source of contaminants, mobilised from mine tailings into R. Rukoki flowing through a belt of wetlands into Lake George. Water and sediments were investigated on the lakeshore and the lakebed. Metal associations in the sediments reflect the Kilembe sulphide mineralisation. Enrichment of metals was compared between lakebed sediments, both for wet and dry seasons. Total C in a lakebed core shows a general increment, while Cu and Co decrease with depth. The contaminants are predominant (> 65%) in the ≤ 63 μm sediment size range with elevated Cu and Zn (> 28%), while Ni, Pb and Co are low (< 18%) in all the fractions. Sequential extraction of Fe for lakeshore sediment samples reveals low Fe mobility. Relatively higher mobility and biological availability is seen for Co, Cu and S. Heavy metal contents in lake waters are not an immediate risk to the aquatic environment.

  20. Multiple Sulfate Isotopic Evidence on the Formation of Oxide Copper Ore at Spence, Atacama Desert, Northern Chile

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Reich, M.; Palacios, C.

    2007-12-01

    In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide

  1. Assessment of Vegetation Establishment on Tailings Dam at an Iron Ore Mining Site of Suburban Beijing, China, 7 Years After Reclamation with Contrasting Site Treatment Methods

    NASA Astrophysics Data System (ADS)

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.

  2. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods.

    PubMed

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas. PMID:23811774

  3. Copper recovery from ore by liquid-liquid extraction using aqueous two-phase system.

    PubMed

    de Lemos, Leandro Rodrigues; Santos, Igor José Boggione; Rodrigues, Guilherme Dias; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2012-10-30

    We investigated the extraction behavior of Cu(II) in the aqueous two-phase system (ATPS) formed by (L35+MgSO(4)+H(2)O) or (L35+(NH(4))(2)SO(4)+H(2)O) in the presence of the extracting agent 1-(2-pyridylazo)-2-naphthol (PAN). At pH=3 and a PAN concentration of 0.285 mmol kg(-1), both ATPS lead to the effective separation of Cu(II) from other metallic ions (Zn(II), Co(II), Ni(II) and Fe(III)). High separation factors range between 1000 and 10,000 were obtained for the extraction of Cu(II) and concomitant metallic ions. This ATPS was used for the extraction of Cu(II) from a leached ore concentrate with a extraction percentage of 90.4 ± 1.1%; other metals were mainly located in the bottom phase. PMID:22959476

  4. Estimation of temporal changes in oxidation rates of sulphides in copper mine tailings at Laver, Northern Sweden.

    PubMed

    Alakangas, Lena; Ohlander, Björn; Lundberg, Angela

    2010-02-15

    Tailings containing pyrrhotite were deposited in an impoundment at a copper mine at Laver, Northern Sweden, which operated between 1936 and 1946. Since then the oxidation of sulphides has acidified recipient water courses and contaminated them with metals. Measurements from surface water sampled in 1993, 2001 and 2004-05 from a brook into which the tailing impoundment drains indicate that the amounts of sulphide-associated elements such as Cu, S and Zn released into the brook have decreased over time, while pH has increased. The mass transport of S in the brook during 1993 and 2001 corresponded well with the amount of S estimated to be released from the tailings by oxidation. Secondary precipitates such as covellite and gypsum, which can trap sulphur, were shown in earlier studies to be present in only low amounts. The annual release of elements from the tailings was estimated from the volume of tailings assumed to oxidise each year, which depends on movement of the oxidation front with time. The results indicate that the oxidation rate in the tailings has decreased over time, which may be due to the increased distance over which oxygen needs to diffuse to reach unoxidised sulphide grains, or their cores, in the tailings. PMID:19939438

  5. [Distribution characteristics of soil nematodes in reclaimed land of copper-mine-tailings in different plant associations].

    PubMed

    Zhu, Yong-heng; Li, Ke-zhong; Zhang, Heng; Han, Fei; Zhou, Ju-hua; Gao, Ting-ting

    2015-02-01

    A survey was carried out to investigate soil nematode communities in the plant associations of gramineae (Arthraxon lanceolatus, AL; Imperata cylindrica, IC) and leguminosae (Glycine soja, GS) in reclaimed land of copper-mine-tailings and in the plant associations of gramineae (Digitaria chrysoblephara, DC-CK) of peripheral control in Fenghuang Mountain, Tongling City. A total of 1277 nematodes were extracted and sorted into 51 genera. The average individual density of the nematodes was 590 individuals · 100 g(-1) dry soil. In order to analyze the distribution character- istics of soil nematode communities in reclaimed land of copper-mine-tailings, Shannon community diversity index and soil food web structure indices were applied in the research. The results showed that the total number of nematode genus and the Shannon community diversity index of soil nematode in the three plant associations of AL, IC and GS were less than that in the plant associations of DC-CK. Compared with the ecological indices of soil nematode communities among the different plant associations in reclaimed land of copper-mine-tailings and peripheral natural habitat, we found that the structure of soil food web in the plant associations of GS was more mature, with bacterial decomposition being dominant in the soil organic matter decomposition, and that the soil ecosystem in the plant associations of GS was not stable with low interference. This indicated that the soil food web in the plant associations of leguminosae had a greater development potential to improve the ecological stability of the reclaimed land of copper-mine-tailings. On the other hand, the structure of soil food web in the plant associations of AL and IC were relatively stable in a structured state with fungal decomposition being dominant in the decomposition of soil organic matter. This indicated that the soil food web in the plant associations of gramineae was at a poor development level. PMID:26094476

  6. Leaching of metals from ores. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-05-01

    The bibliography contains citations of selected patents concerning the extraction of metals from ores by leaching. Topics include leaching of metals from ore heaps, mine tailings, smelter wastes, and sea nodules. Metals covered include gold, uranium, copper, nickel, silver, manganese, and cobalt. Bacterio-electric, biological-acid, and hydrogen peroxide leaching are included. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Material flows generated by pyromet copper smelting

    USGS Publications Warehouse

    Goonan, T.G.

    2005-01-01

    Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.

  8. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.

    PubMed

    Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Pan, Hong-Wei; Sun, Hai-Jing; Liu, Cai-Xia; Liu, Jian-Feng; Jiang, Ze-Ping

    2016-11-01

    Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China. PMID:27216539

  9. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste.

    PubMed

    Diaby, Nouhou; Dold, Bernhard; Pfeifer, Hans-Rudolf; Holliger, Christof; Johnson, D Barrie; Hallberg, Kevin B

    2007-02-01

    The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) 'oxidation zone' characterized by low-pH (2.5-4), a 'neutralization zone' (70-80 to 300-400 cm) and an unaltered 'primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment. PMID:17222129

  10. Integrated biomarker assessment of the effects of tailing discharges from an iron ore mine using blue mussels (Mytilus spp.).

    PubMed

    Brooks, Steven J; Harman, Christopher; Hultman, Maria T; Berge, John Arthur

    2015-08-15

    The blue mussel (Mytilus spp.) has been used to assess the potential biological effects of the discharge effluent from the Sydvaranger mine, which releases its tailings into Bøk fjord at Kirkenes in the north of Norway. Metal bioaccumulation and a suite of biomarkers were measured in mussels positioned for 6 weeks at varying distances from the discharge outlet. The biomarkers used included: stress on stress (SS); condition index (CI); cellular energy allocation (CEA); micronuclei formation (MN); lysosomal membrane stability (LMS), basophilic cell volume (VvBAS); and neutral lipid (NL) accumulation. The individual biomarkers were integrated using the integrated biological response (IBR/n) index. The accumulation of Fe was significantly higher in mussels located closer to the discharge outlet, indicating that these mussels had been exposed to the suspended mine effluent. The IBR/n results were in good agreement with the location of the mussels in relation to the distance from the discharge outlet and expected exposure to the mine effluent. Several biomarkers showed responses resulting in higher IBR/n values of analysed mussels within a 3 km distance from the tailing discharge. PMID:25889549

  11. Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman, Iran.

    PubMed

    Kargar, Maryam; Khorasani, Neamatolah; Karami, Mahmoud; Rafiee, Gholamreza; Naseh, Reza

    2012-10-01

    Identifying the possible sources of potential harmful metals in groundwater systems plays a crucial role in evaluating the potential risks to residents and local plant cover. An attempt was made to define the origin of Al, Cd, Cu, Fe, Mo, Ni, and Pb in groundwater using multivariate statistic approaches [principal component analysis (PCA), hierarchical cluster analysis], and tailings sequential extraction by the method of Tessier et al. The concentrations of studied elements were measured in 42 samples collected from 15 stations surrounding and downward the tailings dam of Miduk Copper Complex, central province of Kerman, Iran. According to the PCA results, confirmed by cluster dendrogram and metal content measurement of tailings sequential extracts, two components accounting for nearly 73% of the total variance, controlled the heavy metal variability and classified the possible source of groundwater contamination into two categories: (1) upper seepage which controls the variability of Cd, Cu, Fe, Ni, and Pb and (2) toe seepage of tailings dump affecting on Mo and Al concentration in downstream groundwater. PMID:22048922

  12. Temporal variability of radon in a remediated tailing of uranium ore processing--the case of Urgeiriça (central Portugal).

    PubMed

    Barbosa, S M; Lopes, F; Correia, A D; Barbosa, S; Pereira, A C; Neves, L F

    2015-04-01

    Radon monitoring at different levels of the cover of the Urgeiriça tailings shows that the sealing is effective and performing as desired in terms of containing the strongly radioactive waste resulting from uranium ore processing. However, the analysis of the time series of radon concentration shows a very complex temporal structure, particularly at depth, including very large and fast variations from a few tens of kBq m(-3) to more than a million kBq m(-3) in less than one day. The diurnal variability is strongly asymmetric, peaking at 18 h/19 h and decreasing very fast around 21 h/22 h. The analysis is performed for summer and for a period with no rain in order to avoid the potential influence of precipitation and related environmental conditions on the radon variability. Analysis of ancillary measurements of temperature, relative humidity, wind speed and wind direction, as well as atmospheric pressure reanalysis data shows that the daily averaged radon concentration in the taillings material is anti-correlated with the atmospheric pressure and that the diurnal amplitude is associated with the magnitude of atmospheric pressure daily oscillations. PMID:25618233

  13. ELEMENTAL MERCURY IN COPPER, SILVER, AND GOLD ORES: AN UNEXPECTED CONTRIBUTION TO LAKE SUPERIOR SEDIMENTS WITH GLOBAL IMPLICATIONS

    EPA Science Inventory

    Mercury and copper inventories are low in central Lake Superior and increase markedly towards the Keweenaw Peninsula...where copper, mercury, and silver inventories are elevated and highly correlated. High copper, silver, and mercury inventories can be traced back to shoreline st...

  14. Occurrence of copper, gold, silver,uranium, tungsten, tin ore deposits in the Late Proterozoic aulacogen mobile melt of southeast China

    SciTech Connect

    Ma, X.H.

    1985-01-01

    In the early period of the late Proterozoic Era (1100 m.y. +/-) an aulacogen mobile belt was formed in the southeast of China. It extends about 1000 km crossing the Yantze Platform and Jiangnan Foldbelt in NNE-NE direction and adjoins the south China geosyncline basement. This belt shows some features of geology and mineralization similar to the Adelaide geosyncline and the Zambia-Zaire Copper-uranium belt. Within the belt, there are about 9000 to 12,000 m polystratotype strata and continuous sediments of the Late Proterozoic Erathem, including alkaline and meta-alkaline volcanic products of 4 epochs of mainly marine facies. A great number of ore-forming elements, such as Cu, U, Pb, Zn, Au, Ag, Fe, Co, Ni, Mn, P, and W, Sn, TR etc., were deposited and enriched in the whole volcano-sedimentary sequency at various times and in various places. A few of them have become syngenetic deposits, but most of them have been transformed into large-scale ore deposits or mineralization fields or areas of copper and gold, lead-zinc and silver, uranium, tungsten, tin, and other metals.

  15. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    NASA Astrophysics Data System (ADS)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  16. Environmental impacts of iron ore tailings—The case of Tolo Harbour, Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, M. H.

    1981-03-01

    Disposal of iron ore tailings along the shore of Tolo Harbour, Hong Kong has altered the adjacent environment. Due to the ever-expanding population, the vast development of various industries, and the lack of sanitary control, the existing pollution problem of Tolo Harbour is serious. The iron ore tailings consist of a moderate amount of various heavy metals, e.g., copper, iron, manganese, lead, zinc, and a lower level of macronutrients. A few living organisms have been found colonizing this manmade habitat. Higher metal contents were also found in the tissue of Paphia sp. (clam); Scopimera intermedia (crab); Chaetomorpha brychagona (green alga); Enteromorpha crinita (green alga); and Neyraudia reynaudiana (grass). The area can be reclaimed by surface amelioration using inert materials, soils, or organic substrates, and by direct seeding, using nontolerant and tolerant plant materials. Reclamation of the tailings would improve the amenity of the adjacent environment and also mitigate pollution escaping to the sea.

  17. Determination of uranium, iron, copper, and nickel from ore samples by MEKC using N,N'-ethylene bis(salicylaldimine) as complexing reagent.

    PubMed

    Mirza, Muhammed Aslam; Khuhawar, Muhammad Yar; Arain, Rafee

    2008-02-01

    An analytical procedure has been developed for the separation of dioxouranium(VI), iron(III), copper(II), nickel(II), cobalt(II), cobalt(III), palladium(II), and thorium(IV) by MEKC using N,N'-ethylene bis(salicylaldimine) (H(2)SA(2)en) as a complexing reagent with total runtime <4.5 min. SDS was used as micellar medium at pH 8 with sodium tetraborate buffer (0.1 M). An uncoated fused-silica capillary with an effective length of 50 cm x 75 microm id was used with an applied voltage of 30 kV with photodiode array detection at 231 nm. Linear calibrations were obtained within 0.111-1000 microg/mL of each element with LODs within 37-325 ng/mL. The developed method was tested for analysis of uranium ore samples indicating its presence within 103-1789 microg/g with RSD within 0.79-1.87%. Likewise copper, nickel, and iron in their combined matrix were also simultaneously determined with RSD 0.4-1.6% (n = 6). PMID:18186535

  18. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    PubMed Central

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  19. Germination and early growth of Brassica juncea in copper mine tailings amended with technosol and compost.

    PubMed

    Novo, Luís A B; González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  20. Study of Munella Ores. (puka Region, Albania)

    NASA Astrophysics Data System (ADS)

    Liçaj, Engjell; Mandili, Jorgo; Tabaku, Boran; Thomo, Niko

    2010-01-01

    The study of Munella ores is based on four analysis (A, B, Cand cores). They represent different types of minerals in the Munella area. Cores were taken by the geologist of Puka Geological Enterprise. A Core: It represents an ore with pyrite and chalcopyrite where copper and sulfur contents are 0.77 and 8.2% respectively. B Core: This core represents an ore with spharelites and pyrite where zinc content is 1.5% and 2.9% sulfur one. C Core: It is a chalcopyrite ore, massive in nature, where copper content is 2.01% and 36% sulfur one. D Core: It also represents copper- zinc—sulfur ore where their content is 0.66, 1.00 and 4.28% respectively. Each core is studied individually by selective schema to have copper, zinc and pyrite concentrates. Copper and pyrite concentrates will be the first material for pyro- metallurgical industry.

  1. Selective copper diffusion into quartz-hosted vapor inclusions: Evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hun; Heinrich, Christoph A.

    2013-07-01

    larger ion analyzed in vapor inclusions probably represent true gold concentrations in magmatic-hydrothermal vapor. These findings imply that brine-vapor separation in porphyry deposits does not cause selective Cu transfer to the vapor, but is more likely to destabilize Cu complexes and promote copper ore deposition during decompression and unmixing of the two fluid phases. By contrast, Au may be selectively transferred into the vapor phase, allowing its transport through the deeper porphyry copper deposits to form epithermal gold deposits closer to the earth's surface.

  2. Long-term passive restoration following fluvial deposition of sulphidic copper tailings: nature filters out the solutions.

    PubMed

    Nikolic, Nina; Böcker, Reinhard; Nikolic, Miroslav

    2016-07-01

    Despite the growing popularity of ecological restoration approach, data on primary succession on toxic post-mining substrates, under site environmental conditions which considerably differ from the surrounding environment, are still scarce. Here, we studied the spontaneous vegetation development on an unusual locality created by long-term and large-scale fluvial deposition of sulphidic tailings from a copper mine in a pronouncedly xerothermic, calcareous surrounding. We performed multivariate analyses of soil samples (20 physical and chemical parameters) and vegetation samples (floristic and structural parameters in three types of occurring forests), collected along the pollution gradients throughout the affected floodplain. The nature can cope with two types of imposed constraints: (a) excessive Cu concentrations and (b) very low pH, combined with nutrient deficiency. The former will still allow convergence to the original vegetation, while the latter will result in novel, depauperate assemblages of species typical for cooler and moister climate. Our results for the first time demonstrate that with the increasing severity of environmental filtering, the relative importance of the surrounding vegetation for primary succession strongly decreases. PMID:26300359

  3. COPPER

    EPA Science Inventory

    The report is a review of current knowledge of the distribution of copper in the environment and living things. Metabolism and the effects of copper in the biosphere are also considered. Copper compounds are common and widely distributed in nature. They are also extensively mined...

  4. Zircon U-Pb geochronology, geochemistry, and Sr-Nd-Hf isotopes of granitoids in the Yulekenhalasu copper ore district, northern Junggar, China: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Yang, Fuquan; Chai, Fengmei; Zhang, Zhixin; Geng, Xinxia; Li, Qiang

    2014-03-01

    The Yulekenhalasu porphyry copper deposit is located in the Kalaxiange'er metallogenic belt in northern Junggar, China. We present the results from zircon U-Pb geochronology, and geochemical and Sr-Nd-Hf isotope analyses of the granitoids associated with the ore deposits with a view to constrain their petrogenesis and tectonic setting. The granitoids consist of quartz diorite, diorite porphyry, porphyritic monzonite, and quartz porphyry, emplaced at 382, 379, 375-374, and 348 Ma, respectively, which span Late Devonian to early Carboniferous ages. The ore-bearing intrusion is mainly diorite porphyry, with subordinate porphyritic monzonite. The Late Devonian intrusions are characterized by SiO2 contents of 54.5-64.79 wt.%, Na2O contents of 3.82-8.24 wt.%, enrichment in Na, light rare-earth elements (LREEs), and large ion lithophile elements. They also display relative depletion in Y, Ba, P, Nb, Ta, and Ti, and weak negative Eu anomalies (δEu = 0.6-0.87). The early Carboniferous quartz porphyry is characterized by high SiO2 content (72.26-73.35 wt.%), enrichment in LREEs, K, and Sr, and relative depletion in Y (10.82-12.52 ppm) and Yb (1.06-1.15 ppm). The Late Devonian and early Carboniferous granitoids are characterized by positive ɛNd(t) values (5.2-10.1, one sample at - 1.9), positive ɛHf(t) values (7.46-18.45), low (87Sr/86Sr)i values (0.70363-0.70476), and young crustal residence ages. These data indicate that the sources of the granitoids were mainly mantle-derived juvenile rocks. Geochemical and Nd-Sr-Hf isotopic data demonstrate that the Late Devonian granitoids formed in an oceanic island arc, and they were formed from different sources, among which the mineralized diorite porphyry might have originated from a mixed slab-derived and mantle wedge melt source. The early Carboniferous quartz porphyry was likely emplaced in a mature island arc environment, and was probably derived from juvenile crust.

  5. 44. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND LOADING TERMINAL, CROSS SECTION AND SIDE ELEVATION - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  6. 43. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. PHOTOCOPY OF DRAWING OF THE MINE ORE BIN AND LOADING TERMINAL, CROSS SECTION AND SIDE ELEVATION - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  7. Geothermal energy for the increased recovery of copper by flotation enhancement

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The possible use of geothermal energy (a) to speed the recovery of copper from ore flotation and/or leaching of flotation tailings and (b) to utilize geothermal brines to replace valuable fresh water in copper flotation operations was evaluated. Geothermal energy could be used to enhance copper and molybdenum recovery in mineral flotation by increasing the kinetics of the flotation process. In another approach, geothermal energy could be used to heat the leaching solution which might permit greater copper recovery using the same residence time in a tailings leach facility. Since there is no restriction on the temperature of the leaching fluid, revenues generated from the additional copper recovered would be greater for tailings leach operations than for other types of leach operations (for example, dump leaching operation) for which temperature restrictions exist. The estimated increase in total revenues resulting from two percent increase copper recovery in a 50,000 tons ore/day plant was estimated to be over $2,000,000 annually. It would require an estimated geothermal investment of about $2,130,000 for a geothermal well and pumping system. Thus, the capital investment would be paid out in about one year. Furthermore, considerable savings of fresh waters and process equipment are possible if the geothermal waters can be used directly in the mine-mill operations, which is believed to be practical.

  8. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    USGS Publications Warehouse

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later

  9. 37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ADDITION AND CRUSHED OXIDIZED ORE BIN. VISIBLE ARE DINGS MAGNETIC PULLEY (CENTER), THE 100-TON STEEL CRUSHED UNOXIDIZED ORE BIN, AND UPPER PORTION OF THE STEPHENS-ADAMSON 25 TON/HR BUCKET ELEVATOR. THE UPPER TAILINGS POND LIES BEYOND THE MILL WITH THE UPPER TAILINGS DAM UNDER THE GRAVEL ROAD IN THE UPPER RIGHT CORNER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  10. Distribution of trace elements in soils surrounding the El Teniente porphyry copper deposit, Chile: the influence of smelter emissions and a tailings deposit

    NASA Astrophysics Data System (ADS)

    Kelm, U.; Helle, S.; Matthies, R.; Morales, A.

    2009-03-01

    In the area surrounding the El Teniente giant porphyry copper deposit, eight soil sites were sampled at three depth levels in the summer 2004. The sites were selected for their theoretical potential of being influenced by past SO2 emissions from the smelter and/or seepage from a now idle tailings impoundment. The soil mineralogy, grain size distribution, total organic matter contents, major element composition, cation exchange capacity, and Cu, Mo, Pb, Zn, As and SO4 2- concentrations were determined for all samples after nitric acid extraction and separate leaches by ammonium acetate (pH 7) and sodium acetate (pH 5). For water rinses, only Cu could be determined with the analytical set-up used. Cu and SO4 2- enrichment in topsoils was found at six sites either downwind from the smelter or within the combined influence of the smelter and the tailings impoundment. Both elements were released partially by ammonium and sodium acetate extractions. Due to the scarce background trace element concentrations of soil and rock outside the immediate mine area, assessment of trace element mobility for Mo, Zn, Pb and As was difficult. Arsenic was found to be concentrated in soil horizons with high smectite and/or organic matter contents. Mo appears to be linked to the presence of windblown tailings sediment in the soils. Mobilization of Mo, Zn, and As for the acetate extractions was minimal or below the detection limits for the AAS technique used. The presence of windblown tailings is considered to be an additional impact on the soils in the foothills of the El Teniente compound, together with the potential of acidity surges and Cu mobilization in topsoils after rainfalls. Two sites located at the western limit of the former SO2 saturated zone with strongly zeolitized soils and underlying rock did not show any Cu or SO4 2- enrichment in the topsoils, and remaining total trace element concentrations were below the known regional background levels.

  11. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  12. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    PubMed

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation

  13. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  14. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  15. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  16. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  17. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  18. Long-term effects of different type and rates of organic amendments on reclamation of copper mine tailing in Central Chile.

    NASA Astrophysics Data System (ADS)

    Arellano, Eduardo; Garreton, Bruna; Ginocchio, Rosanna

    2016-04-01

    A study was conducted to evaluate the long-term effects of a single application of organic amendments on a copper mine tailings. Seven years after seeding of a mix of herbaceous plant and planting of ten native trees, and the application of organic amendment, plant community and soil fertility was measured in replicated plots that received six different treatments of waste water treatment plant biosolids (100 ton/ha, and 200 ton/ha), olive oil waste (100 ton/ha, and 200 ton/ha) and pisco grapes waste (90 ton/ha, and 200 ton/ha). A control treatment that received no organic amendment was also measured after seven years. Field measurements demonstrated that application of biosolids and pisco grapes waste, at both rates significantly improved vegetation coverage in comparison to the control treatment (80 and 100% vs control, 25%). The high rates of pisco waste had the highest vegetation diversity and survival in comparison to the other treatments. The high rate of olive oil waste had a negative effect on vegetation development in comparison to the control treatment. The application of organic amendment improved soil fertility in the long-term. All the treatments had a significant higher nitrogen concentration in comparison to the control treatment. The high rates of biosolids and pisco grape waste had a significantly effect of soil carbon concentration. Soil macro-aggregate in the high rate of pisco grape waste were also higher than the control, showing a positive relation between soil recover and vegetation development. We can conclude assisted phytostabilization of mine tailings is likely a technically effective solution for the valorisation of organic residues.

  19. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  20. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).

    PubMed

    Antonijević, M M; Dimitrijević, M D; Milić, S M; Nujkić, M M

    2012-03-01

    In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As. PMID:22314513

  1. Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Torresi, Ignacio; Xavier, Roberto Perez; Bortholoto, Diego F. A.; Monteiro, Lena V. S.

    2012-03-01

    The Alvo 118 iron oxide-copper-gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW-ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz-carbonate-sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz-sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au-Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu-Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. δ 18OH2O values in equilibrium with calcite (-1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin

  2. Complex research of molybdenum ore tailings

    NASA Astrophysics Data System (ADS)

    Volokitin, G.; Skripnikova, N.; Volokitin, O.; Iuriev, I.; Shekhovtsov, V.

    2015-01-01

    The paper considers the processes of plasma chemical synthesis of silicate melts produced from quartz-feldspar raw materials with a view to obtain new construction materials having the advanced functional performance. Presented results illustrate physicochemical research findings (X-ray diffraction analysis, infrared spectroscopy, thermal analysis) related to quartz-feldspar raw materials and melts produced there from.

  3. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    PubMed

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. PMID:27222219

  4. Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds.

    PubMed

    Haque, N; Peralta-Videa, J R; Duarte-Gardea, M; Gardea-Torresdey, J L

    2009-12-01

    The selection of appropriate seeds is essential for the success of phytoremediation/restoration projects. In this research, the growth and elements uptake by the offspring of mesquite plants (Prosopis sp.) grown in a copper mine tailing (site seeds, SS) and plants derived from vendor seeds (VS) was investigated. Plants were grown in a modified Hoagland solution containing a mixture of Cu, Mo, Zn, As(III) and Cr(VI) at 0, 1, 5 and 10 mg L(-1) each. After one week, plants were harvested and the concentration of elements was determined by using ICP-OES. At 1 mg L(-1), plants originated from SS grew faster and longer than control plants (0 mg L(-1)); whereas plants grown from VS had opposite response. At 5 mg L(-1), 50% of the plants grown from VS did not survive, while plants grown from SS had no toxicity effects on growth. Finally, plants grown from VS did not survive at 10 mg L(-1) treatment, whilst 50% of the plants grown from SS survived. The ICP-OES data demonstrated that at 1 mg L(-1) the concentration of all elements in SS plants was significantly higher compared to control plants and VS plants. While at 5 mg L(-1), the shoots of SS plants had significantly more Cu, Mo, As, and Cr. The results suggest that SS could be a better source of plants intended to be used for phytoremediation of soil impacted with Cu, Mo, Zn, As and Cr. PMID:19631524

  5. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife.

    PubMed

    Donato, D B; Nichols, O; Possingham, H; Moore, M; Ricci, P F; Noller, B N

    2007-10-01

    industry. Cyanide concentrations below 50 mg/L weak-acid-dissociable (WAD) are deemed safe to wildlife but are considered an interim benchmark for discharge into tailings storage facilities (TSFs). Cyanide is a fast acting poison, and its toxicity is related to the types of cyanide complexes that are present. Cyanide in biota binds to iron, copper and sulfur-containing enzymes and proteins required for oxygen transportation to cells. The accurate determination of cyanide concentrations in the field is difficult to achieve due to sampling techniques and analytical error associated with loss and interferences following collection. The main WAD cyanide complexes in gold mine tailings are stable in the TSF environment but can release cyanide ions under varying environmental conditions including ingestion and absorption by wildlife. Therefore distinction between free, WAD and total cyanide forms in tailings water for regulatory purposes is justified. From an environmental perspective, there is a distinction between ore bodies on the basis of their copper content. For example, wildlife deaths are more likely to occur at mines possessing copper-gold ores due to the formation of copper-cyanide complexes which is toxic to birds and bats. The formation of copper-cyanide complex occurs preferentially to gold cyanide complex indicating the relative importance of economic vs. environmental considerations in the tailings water. Management of cyanide to a perceived threshold has inherent risks since cyanide has a steep toxicity response curve; is difficult to accurately measure in the field; and is likely to vary due to variable copper content of ore bodies and ore blending. Consequently, wildlife interaction needs to be limited to further reduce the risks. A gap in knowledge exists to design or manage cyanide-bearing mine waste solutions to render such facilities unattractive to at-risk wildlife species. This gap may be overcome by understanding the wildlife behaviour and habitat usage

  6. View looking northwest toward HIghGrade Ore Bin and Concentrate Bin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking northwest toward HIgh-Grade Ore Bin and Concentrate Bin - Kennecott Copper Corporation, Concentration Mill, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  7. 40 CFR 421.40 - Applicability: Description of the primary copper smelting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary copper smelting subcategory. 421.40 Section 421.40 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Copper Smelting Subcategory § 421.40 Applicability: Description of the primary copper... the primary smelting of copper from ore or ore concentrates. Primary copper smelting includes, but...

  8. 40 CFR 421.40 - Applicability: Description of the primary copper smelting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary copper smelting subcategory. 421.40 Section 421.40 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Copper Smelting Subcategory § 421.40 Applicability: Description of the primary copper... the primary smelting of copper from ore or ore concentrates. Primary copper smelting includes, but...

  9. 40 CFR 421.40 - Applicability: Description of the primary copper smelting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary copper smelting subcategory. 421.40 Section 421.40 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Copper Smelting Subcategory § 421.40 Applicability: Description of the primary copper... the primary smelting of copper from ore or ore concentrates. Primary copper smelting includes, but...

  10. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    USGS Publications Warehouse

    Lund, K.; Tysdal, R.G.; Evans, K.V.; Kunk, M.J.; Pillers, R.M.

    2011-01-01

    Textural data at all scales indicate that the host sites for veins and the tectonic evolution of both host rocks and mineral deposits were kinematically linked to Late Cretaceous regional thrust faulting. Heat, fluids, and conduits for generation and circulation of fluids were part of the regional crustal thickening. The faulting also juxtaposed metaevaporite layers in the Mesoproterozoic Yellowjacket Formation over Blackbird district host rocks. We conclude that this facilitated chemical exchange between juxtaposed units resulting in leaching of critical elements (Cl, K, B, Na) from metaevaporites to produce brines, scavenging of metals (Co, Cu, etc) from rocks in the region, and, finally, concentrating metals in the lower-plate ramp structures. Although the ultimate source of the metals remains undetermined, the present Cu-Co ± Au (± Ag ± Ni ± REE) Blackbird ore deposits formed during Late Cretaceous compressional deformation.

  11. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  12. A preliminary combined geochemical and rock-magnetic study of tailings of non-magnetic ores from Tlalpujahua-El Oro mining districts, Michoacán and Estado de México States

    NASA Astrophysics Data System (ADS)

    Morales, J.; Hernández-Bernal, M.; Corona-Chávez, P.

    2013-05-01

    Mining activities in Mexico have been continuously developed since 1550. Since then several thousands of million tons of waste produced as a result of the mining activity have been accumulated and scattered throughout the territory. These wastes can contain minerals with potentially toxic elements (PTEs) such as Cr, As, Cd, Cu, Pb, Zn, which show a distribution and mobility in the environment according to the chemical species in which are hosted. The Tlalpujahua - El Oro mining district (TOMD) concentrates an impressive number of mines and historical tailings. Due to their in-slope hydrographic position, the mining activities increase the risk of generating anthropogenic effluent that could contribute with a certain amount of mine-water with high contents of PTEs. Although magnetic methods have been widely applied to pollution studies of regions with high anthropogenic impact, its application to tailings is scarce in spite of the several studies that document the environmental effects as a result of the mining waste. We present the results obtained by combined geochemical and rock-magnetic studies in these tailings. Similarly to the traditional EPTs vs SiO2 diagrams, EPTs vs Fe show good linear (inverse) correlation with most of these health-risk elements. Fe concentrations determined magnetically from room-temperature susceptibility measurements agrees with those obtained by traditionally geochemical methods.

  13. Draft Genome Sequence of Sinorhizobium meliloti CCNWSX0020, a Nitrogen-Fixing Symbiont with Copper Tolerance Capability Isolated from Lead-Zinc Mine Tailings

    PubMed Central

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli

    2012-01-01

    Sinorhizobium meliloti CCNWSX0020 was isolated from Medicago lupulina plants growing in lead-zinc mine tailings, which can establish a symbiotic relationship with Medicago species. Also, the genome of this bacterium contains a number of protein-coding sequences related to metal tolerance. We anticipate that the genomic sequence provides valuable information to explore environmental bioremediation. PMID:22328762

  14. Ores and Climate Change - Primary Shareholders

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  15. 3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN BOTTOM LEFT AND COLLAPSED ADIT LOCATED BELOW DARK SHADOWS IN FAR RIGHT/LOWER THIRD. COLLAPSED BUILDING AND PARTIAL VIEW OF ORE CHUTE/BIN IS VISIBLE ON HILLSIDE ABOVE TAILINGS. CAMERA POINTED NORTH/NORTHWEST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  16. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    ERIC Educational Resources Information Center

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  17. Correlation between aggregation structure and tailing mineral crystallinity

    NASA Astrophysics Data System (ADS)

    Hu, Wen-tao; Li, Xin-wei; Wang, Hua-jun; Sun, Chuan-yao; Duan, Xu-qin

    2014-09-01

    Direct reduction is an emerging technology for the utilization of refractory iron ore. With this technology, iron oxides in the ore can be reduced to recoverable elemental iron. The structure of granular aggregates in direct reduction products was investigated by X-ray diffraction (XRD). The results show that iron is mainly generated as a shell in the outer edge of the aggregates. The thermal conductivity of the iron shell is higher than that of other minerals. Thus, minerals close to the iron shell cool faster than those in the inner shells and do not crystallize well. These minerals mainly become stage 2 tailings. Hence the XRD intensity of stage 2 tailings is lower than that of stage 1 tailings. When iron is mainly generated in the interior of the aggregates, the crystallinity of stage 2 tailings will be higher than that of stage 1 tailings. This indicates that the crystallinity of tailings can be used as a marker for the aggregate structure.

  18. Electrochemical processes in recovering metals from ores

    SciTech Connect

    Felker, D.L. ); Bautista, R.G. . Dept. of Chemical and Metallurgical Engineering)

    1990-04-01

    Chalcopyrite (CuFeS{sub 2}) is one of the most abundant copper-bearing minerals in the U.S. Oxidative leaching and smelting and refining are the most common methods used for recovering copper from chalcopyrite. One of the problems associated with oxidative leaching is the formation of an elemental sulfur product layer around the unreacted chalcopyrite core. The sulfur coating slows the reaction by inhibiting both the diffusion of the oxidant to the unreacted core, and the diffusion of the copper and iron species to the bulk solution. Another problem with leaching is that the iron and copper are oxidized simultaneously. Both appear in the bulk solution in their most oxidized states. The direct electrodissolution of copper sulfide ore slurries could reduce the number of steps involved in the copper recovery process, possibly leading to significant reductions in energy consumption and operating costs. The potential application of electrodissolution processes in hydrometallurgy has been reviewed. This paper reviews investigations of the electrochemical dissolution of chalcopyrite, digenite (Cu{sub 1.8}S), chalcocite (Cu{sub 2}S) and covellite (CuS).

  19. Velocity field measurements in tailings dam failure experiments using a combined PIV-PTV approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tailings dams are built to impound mining waste, also called tailings, which consists of a mixture of fine-sized sediments and water contaminated with some hazardous chemicals used for extracting the ore by leaching. Non-Newtonian flow of sediment-water mixture resulting from a failure of tailings d...

  20. [Determination of gold in copper matte and sintered copper material].

    PubMed

    Ge, Yu-wei; Xiao, Li-mei; Suo, Jin-ling; Wang, Cheng; Hu, Xiao-min; Zhao, Shu-yun

    2011-05-01

    Ore sample, pretreated at 650 degrees C, was decomposed with aqua regia. Gold in the sample solution was then pre-concentrated by adsorbing with polyurethane foam plastic, released with thiourea solution, and determined by inductively coupled plasma-atomic emission spectrometry and flame atomic absorption spectrometry. Based on the characteristic of the copper matte and sinter containing copper, the effects of sample dissolving condition, matrix effect and interference of coexisting elements were investigated. The accuracy, precision and detection limit were discussed. The results of test show that both of the two methods were suitable for determining the contents of gold in copper matte and sintered copper material. PMID:21800614

  1. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits. PMID:10521343

  2. Tail Buffeting

    NASA Technical Reports Server (NTRS)

    Abdrashitov, G.

    1943-01-01

    An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.

  3. Bioprocessing of ores: Application to space resources

    NASA Technical Reports Server (NTRS)

    Johansson, Karl R.

    1992-01-01

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  4. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  5. 11. VIEW OF THE MILL LOOKING SOUTHWEST SHOWING THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF THE MILL LOOKING SOUTHWEST SHOWING THE ORE RECEIVING STATION AND ORE BIN ON THE LEFT SIDE OF THE IMAGE, THE TRESTLE ON THE NORTH SIDE OF THE MILL LEADING FROM THE GROUND TO THE DELIVERY LEVEL. NOTE THE A FRAME STRUCTURE PROJECTING UP FROM THE INCLINED TRESTLE, THIS IS THE ONLY REMAINING PIECE OF A TRESTLE THAT CARRIED TAILING FROM THE MILL TO A CYANIDE PLANT THAT WAS LOCATED NORTH OF THE MILL. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  6. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  7. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  8. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.

  9. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  10. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  11. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  12. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; K. Lewandowski

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.

  13. The application of PGNAA borehole logging for copper grade estimation at Chuquicamata mine.

    PubMed

    Charbucinski, J; Duran, O; Freraut, R; Heresi, N; Pineyro, I

    2004-05-01

    The field trials of a prompt gamma neutron activation (PGNAA) spectrometric logging method and instrumentation (SIROLOG) for copper grade estimation in production holes of a porphyry type copper ore mine, Chuquicamata in Chile, are described. Examples of data analysis, calibration procedures and copper grade profiles are provided. The field tests have proved the suitability of the PGNAA logging system for in situ quality control of copper ore. PMID:15082058

  14. 24. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ON LEFT WITH ELEVATOR/CRUSHED ORE BIN TOWER TO RIGHT. MAIN MILL BUILDING IN CENTER WITH THICKENER ADDITION TO RIGHT. MACHINE SHOP ON CRUDE ORE BIN TERRACE ABOVE ROASTER. THE LOCATION OF THE 100,000 GALLON MILL WATER TANK CAN BE SEEN AT THE CENTER RIGHT NEAR THE TOP OF THE MOUNTAIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  15. 165. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    165. VIEW OF MILL FROM UPPER TAILINGS POND (NORTH). ROASTER ON LEFT WITH ELEVATOR/CRUSHED ORE BIN TOWER TO RIGHT. MAIN MILL BUILDING IN CENTER WITH THICKENER ADDITION TO RIGHT. MACHINE SHOP ON CRUDE ORE BIN TERRACE ABOVE ROASTER. THE LOCATION OF THE 100,000 GALLON MILL WATER TANK CAN BE SEEN AT THE CENTER RIGHT NEAR THE TOP OF THE MOUNTAIN - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. Potential for cobalt recovery from lateritic ores in Europe

    NASA Astrophysics Data System (ADS)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  17. The genesis of ores

    SciTech Connect

    Brimhall, G. )

    1991-05-01

    Human history and technology have been shaped by metals. How did they become concentrated in minable deposits located so conveniently near the earth's surface The author explains the mechanisms of fluid transport-by magma, water and even air and wind-responsible for the chemical and physical interactions that created bodies of metallic ores throughout geologic history. From their formation to their modification at the surface of the earth, ore deposits are geologically transitory and reflect dynamic processes within the earth as well as atmospheric and climatic influences on hydrologic systems. As highly reactive supracrustal systems, they then serve as geochemical sensors providing a powerful record and set of tracer elements for deducing the history, transport paths and forces operative in the crust.

  18. Hauling urban ore

    SciTech Connect

    Lueck, P.A. )

    1991-05-01

    This paper reports that during the last few years, many railroads have viewed this country's growing MSW disposal problem as mountains of urban ore, referring to the potential revenues in its transportation. Much to the chagrin of the railroads, however, few endeavors to mine this new market have panned out. The MSW disposal problem is most acute in the Northeast, where numerous urban landfills were due to close early this year. Unfortunately, large-scale mass movement of MSW by railroads in the Northeast have failed to materialize. At least one railroad in the West is actively transporting MSW via rail. On April 1, 1991, the Union Pacific (UP) began transporting MSW in double stack containers from Seattle, Wash., to a landfill in Arlington, Ore. Working with Washington Waste Systems, the UP upgraded part of its trackage and dedicated space and equipment to serve that city's disposal needs.

  19. ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE MINES ABOVE AT THE RIDGELINE AND TO THE RIGHT WAS CONVEYED TO THIS AREA AND DUMPED INTO THE SHAFT AT CENTER. THIS SHAFT OPENS INTO THE ADIT AT BOTTOM CENTER. THERE IS ANOTHER SHAFT OPENING INTO THE ADIT JUST ABOVE THE ADIT BEHIND THE STONE WALL. THE ORE WAS LOADED INTO TRAM CARS INSIDE THE ADIT AND CONVEYED ON TRACKS TO THE TRESTLE LEADING TO THE PRIMARY ORE BIN AT THE TRAM TERMINAL. TRACKS CAN BE SEEN LEADING FROM THE ADIT AND TO THE LEFT. THE ORE WAS THEN DUMPED INTO A CHUTE AT THE END OF THE TRESTLE CARRYING IT INTO THE ORE BIN AT THE TRAM TERMINAL(SEE CHUTE ON CA-291-30). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  20. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia

    NASA Astrophysics Data System (ADS)

    Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.

    2013-12-01

    As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine

  1. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the

  2. Metal-residence sites in mine tailings in the Magdalena District, New Mexico, USA

    SciTech Connect

    Larocque, A.C.L.; Chapin, C.E.; Laughlin, A.W.; Hickmott, D.

    1996-05-01

    Mineralization in the Kelly Mining Camp is hosted by the Mississippian Kelly Limestone and comprises Zn-Pb skarn, replacement, and vein deposits related to Tertiary intrusive activity. The ore consists of primary (hypogene) sulfide mineralization which has been oxidized near surface to form secondary (supergene) mineralization. A zone of secondary sulfide-enrichment separates the sulfide and oxide ores. Mine tailings in the camp contain primary sulfide, oxide and gangue minerals, secondary (supergene) minerals formed during weathering of the primary ore, and tertiary minerals formed by alteration of hypogene and supergene assemblages after deposition in the tailings impoundment.

  3. Leaching of Calcareous Bornite Ore in Ammoniacal Solution Containing Ammonium Persulfate

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-xiong; Yin, Zhou-lan; Chen, Yi-guang; Xiong, Li-zhi

    2014-12-01

    The leaching process of copper from calcareous bornite ore using ammonium persulfate as an oxidant in ammoniacal solution was investigated. The effects of stirring speed, temperature, initial concentration of ammonia and ammonium persulfate, and liquid-to-solid (L/S) ratio on the extraction percentage of copper from bornite ore were studied. The results show that the optimum leaching conditions for bornite ore with a maximum extraction of copper 88.9 pct are temperature 313.15 K (40 °C), reaction time 4 hours, stirring speed 600 r /min, L/S ratio 7/1 cm3/g, initial concentration of ammonia 2.0 mol/dm3, and ammonium persulfate 3.0 mol/dm3.

  4. Mortality among sulfide ore miners

    SciTech Connect

    Ahlman, K.; Koskela, R.S.; Kuikka, P.; Koponen, M.; Annanmaeki, M. )

    1991-01-01

    Lung cancer mortality was studied during 1965-1985 in Outokumpu township in North Karelia, where an old copper mine was located. Age-specific lung cancer death rates (1968-1985) were higher among the male population of Outokumpu than among the North Karelian male population of the same age excluding the Outokumpu district (p less than .01). Of all 106 persons who died from lung cancer during 1965-1985 in Outokumpu township, 47 were miners of the old mine, 39 of whom had worked there for at least three years and been heavily exposed to radon daughters and silica dust. The study cohort consisted of 597 miners first employed between 1954 and 1973 by a new copper mine and a zinc mine, and employed there for at least 3 years. The period of follow-up was 1954-1986. The number of person-years was 14,782. The total number of deaths was 102; the expected number was 72.8 based on the general male population and 97.8 based on the mortality of the male population of North Karelia. The excess mortality among miners was due mainly to ischemic heart disease (IHD); 44 were observed, the expected number was 22.1, based on the general male population, and the North Karelian expected number was 31.2 (p less than .05). Of the 44 miners who died from IHD, 20 were drillers or chargers exposed to nitroglycerin in dynamite charges, but also to several simultaneous stress factors including PAHs, noise, vibration, heavy work, accident risk, and working alone. Altogether 16 tumors were observed in the cohort. Ten of these were lung cancers, the expected number being 4.3. Miners who had died from lung cancer were 35-64 years old, and had entered mining work between 1954 and 1960. Five of the ten lung cancer cases came from the zinc mine (1.7 expected). Three of them were conductors of diesel-powered ore trains.

  5. 77 FR 1080 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Copper Flat Mine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... 36. Mining, ore processing, and related activities would occur on both private land and public domain... methods. The pit would eventually widen to approximately 2,500 by 2,500 feet and deepen to 900 feet. Ore... east of the pit. At this facility, the ore would be crushed and ground and copper and...

  6. Utilization of gold tailings as an additive in Portland cement.

    PubMed

    Celik, Ozlem; Elbeyli, Iffet Yakar; Piskin, Sabriye

    2006-06-01

    Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values. PMID:16784164

  7. Ferride geochemistry of Swedish precambrian iron ores

    NASA Astrophysics Data System (ADS)

    Loberg, B. E. H.; Horndahl, A.-K.

    1983-10-01

    Chemical analysis for major and trace elements have been performed on 30 Swedish Precambrian iron ores and on some from Iran and Chile. The Swedish ores consist of apatite iron ores, quartz-banded iron ores, skarn and limestone iron ores from the two main ore districts of Sweden, the Bergslagen and the Norrbotten province. Some Swedish titaniferous iron ores were also included in the investigation. The trace element data show that the Swedish ores can be subdivided into two major groups: 1. orthomagmatic and exhalative, 2. sedimentary. Within group 1 the titaniferous iron ores are distinguished by their high Ti-contents. From the ferride contents of the Kiruna apatite iron ores, the ores are considered to be mobilization products of skarn iron ores from the Norbotten province.

  8. SUBAQUEOUS DISPOSAL OF MILL TAILINGS

    SciTech Connect

    Neeraj K. Mendiratta; Roe-Hoan Yoon; Paul Richardson

    1999-09-03

    A study of mill tailings and sulfide minerals was carried out in order to understand their behavior under subaqueous conditions. A series of electrochemical experiments, namely, cyclic voltammetry, electrochemical impedance spectroscopy and galvanic coupling tests were carried out in artificial seawater and in pH 6.8 buffer solutions with chloride and ferric salts. Two mill tailings samples, one from the Kensington Mine, Alaska, and the other from the Holden Mine, Washington, were studied along with pyrite, galena, chalcopyrite and copper-activated sphalerite. SEM analysis of mill tailings revealed absence of sulfide minerals from the Kensington Mine mill tailings, whereas the Holden Mine mill tailings contained approximately 8% pyrite and 1% sphalerite. In order to conduct electrochemical tests, carbon matrix composite (CMC) electrodes of mill tailings, pyrite and galena were prepared and their feasibility was established by conducting a series of cyclic voltammetry tests. The cyclic voltammetry experiments carried out in artificial seawater and pH 6.8 buffer with chloride salts showed that chloride ions play an important role in the redox processes of sulfide minerals. For pyrite and galena, peaks were observed for the formation of chloride complexes, whereas pitting behavior was observed for the CMC electrodes of the Kensington Mine mill tailings. The electrochemical impedance spectroscopy conducted in artificial seawater provided with the Nyquist plots of pyrite and galena. The Nyquist plots of pyrite and galena exhibited an inert range of potential indicating a slower rate of leaching of sulfide minerals in marine environments. The galvanic coupling experiments were carried out to study the oxidation of sulfide minerals in the absence of oxygen. It was shown that in the absence of oxygen, ferric (Fe3+) ions might oxidize the sulfide minerals, thereby releasing undesirable oxidation products in the marine environment. The source of Fe{sup 3{minus}} ions may be

  9. 2. VIEW OF EAST TAILING DAM (FOREGROUND), LOOKING EAST SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF EAST TAILING DAM (FOREGROUND), LOOKING EAST SOUTHEAST UP WASH TOWARD ORE BIN, OVERBURDEN, ADITS, AND ROAD SHOWN IN CA-290-1. MILL SITE IS UP AND TO THE RIGHT OF THIS VIEW. STANDARD FIFTY-GALLON DRUM IN FOREGROUND GIVES SCALE OF WALL. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  10. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise

    USGS Publications Warehouse

    Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.

    1979-01-01

    Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.

  11. Can I Trust ORE Reports?

    ERIC Educational Resources Information Center

    Feedback, 1984

    1984-01-01

    This issue of FEEDBACK, a newsletter produced by the the Austin Independent School District Office of Research and Evaluation (ORE), illustrates the accuracy, validity, and fairness of ORE reports. The independence of the reports is explained. Internal and external quality controls are used to ensure reliability and accuracy of the reports.…

  12. Physical, chemical and antimicrobial characterization of copper-bearing material

    NASA Astrophysics Data System (ADS)

    Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan

    2010-12-01

    Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.

  13. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  14. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    NASA Astrophysics Data System (ADS)

    Vikentyev, I. V.

    2015-07-01

    particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

  15. 54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ADDITION ON LEFT WITH BASE OF EXHAUST STACK, PORTION OF TOPPLED STACK ON LOWER RIGHT IN VIEW, AND UPPER TAILINGS POND BEYOND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. Evidence for extreme partitioning of copper into a magmatic vapor phase

    SciTech Connect

    Lowenstern, J.B.; Mahood, G.A. ); Rivers, M.L.; Sutton, S.R. )

    1991-06-07

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.

  17. Evidence for extreme partitioning of copper into a magmatic vapor phase.

    PubMed

    Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R

    1991-06-01

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits. PMID:17772911

  18. The Application of Modern Techniques and Measurement Devices for Identification of Copper Ore Types and Their Properties / Wykorzystanie nowoczesnych technik i urządzeń pomiarowych do identyfikacji typów rud miedzi i ich właściwości

    NASA Astrophysics Data System (ADS)

    Krawczykowska, Aldona; Trybalski, Kazimierz; Krawczykowski, Damian

    2013-06-01

    The paper concerns the application of modern methods and research techniques for investigations of copper ore properties. It presents the procedure and tools which, when put together, can constitute a source of information on properties of different products of processing and, simultaneously, can be used in the process control and optimization. The copper ore of one of the branches of the KHGM Polska Miedz plc was investigated. The ore samples represented each of the three lithological types occurring in the Polish deposits, i.e. carbonate, shale and sandstone ores. The paper presents the results of microscopic analyses, image analysis of scanning photographs and application procedures of the obtained information for the identification of ore types (application of neuron networks to the recognition of lithological compositions). The present publication will present sample results of modelling of classification identifying two types of ores, i.e. carbonate-shale and sandstone. Summing up the predictions of ore type fractions in respective mixtures for the considered problem of classification it can be stated that the prediction results are good and confirm the lithological predominance of certain ore types in the investigated mixtures. The experimental part comprised the determination of mineralogical and lithological composition of ores (optical microscope) and also elemental composition in the microareas of analysed samples (scanning microscope). Next, the image analysis was performed and subsequently the models classifying the ore types were made. W rudzie miedzi przerabianej w zakładach wzbogacania O/ZWR KGHM Polska Miedź S.A. można wyróżnić trzy typy litologiczne: rudę węglanową, łupkową i piaskowcową. Typy te różnią się właściwościami między innymi takimi jak: rodzaj i zawartość minerałów miedzi, rodzaj minerałów nieużytecznych, zawartość miedzi, twardość i podatność na rozdrabnianie, ale także wielkością i kształtem ziaren

  19. Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1986-01-01

    Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…

  20. Reinforcement core facilitates O-ring installation

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Reinforcement core holds O-ring in place within a structure while adjacent parts are being assembled. The core in the O-ring adds circumferential rigidity to the O-ring material. This inner core does not appreciably affect the sectional elasticity or gland-sealing characteristics of the O-ring.

  1. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  2. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  3. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  4. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. PMID:25602329

  5. Tail biting in pigs.

    PubMed

    Schrøder-Petersen, D L; Simonsen, H B

    2001-11-01

    One of the costly and welfare-reducing problems in modern pig production is tail biting. Tail biting is an abnormal behaviour, characterized by one pig's dental manipulation of another pig's tail. Tail biting can be classified into two groups: the pre-injury stage, before any wound on the tail is present, and the injury stage, where the tail is wounded and bleeding. Tail biting in the injury stage will reduce welfare of the bitten pig and the possible spread of infection is a health as well as welfare problem. The pigs that become tail biters may also suffer, because they are frustrated due to living in a stressful environment. This frustration may result in an excessive motivation for biting the tails of pen mates. This review aims to summarize recent research and theories in relation to tail biting. PMID:11681870

  6. Grouting of uranium mill tailings piles

    SciTech Connect

    Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.

    1984-03-01

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10/sup -3/ cm/s to values approaching 10/sup -7/ cm/s using silicate grouts and to 10/sup -8/ cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table.

  7. Biomineralization of metal-containing ores and concentrates.

    PubMed

    Rawlings, Douglas E; Dew, David; du Plessis, Chris

    2003-01-01

    Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert to microbial action, microbes can be used to recover gold from certain types of minerals because as they oxidize the ore, they open its structure, thereby allowing gold-solubilizing chemicals such as cyanide to penetrate the mineral. Here, we review a strongly growing microbially-based metal extraction industry, which uses either rapid stirred-tank or slower irrigation technology to recover metals from an increasing range of minerals using a diversity of microbes that grow at a variety of temperatures. PMID:12480349

  8. In situ exploitation of deep set porphyry ores

    SciTech Connect

    Hard, R.A.; Harvey, W.W.; Lingane, P.J.; Park, W.C.; Redman, M.J.

    1981-09-29

    Disclosed is a method of economically exploiting deep set porphyry ore bodies of the type containing metal values such as sulfidic copper, nickel, or uranium minerals and minerals capable of absorbing copper, uranium, and nickel ions. The method involves establishing communication with the ore body through access and recovery wells and passing fluids sequentially therethrough. If necessary, thief zones of as low as 25 to 50 md in igneous rock of 1 to 5 md are prevented from distorting flow, by the injection of a polymeric solution of macromolecules with molecular weights of the order of 5 million along the entire wellbore, the higher permeability zones initially accepting the majority of the flow and being impaired at a much faster rate than the less permeable zones. In a first stage, the permeability of the leaching interval is stimulated as an ammoniated solution of sodium, potassium, or ammonium nitrate or chloride contacts calcium containing minerals to promote ion exchange, resulting in clay contraction or calcium carbonate dissolution. In a second stage, the leaching interval is primed as calcium ion is displaced with an aqueous solution of ammonium salt, a calcium sulfate scale inhibitor, and oxygen gas. In a third stage, a two-phase lixiviant comprising entrained oxygen containing bubbles and an ammoniacal leach liquor having a pH less than 10.5 and less than 1.0 mole/liter ammonia is passed through the leaching interval to solubilize copper, nickel, uranium, and other metal values.

  9. Extraction procedure testing of solid wastes generated at selected metal ore mines and mills

    NASA Astrophysics Data System (ADS)

    Harty, David M.; Terlecky, P. Michael

    1986-09-01

    Solid waste samples from a reconnaissance study conducted at ore mining and milling sites were subjected to the U.S. Environmental Protection Agency extraction procedure (EP) leaching test Sites visited included mines and mills extracting ores of antimony (Sb), mercury (Hg), vanadium (V), tungsten (W), and nickel (Ni). Samples analyzed included mine wastes, treatment pond solids, tailings, low grade ore, and other solid wastes generated at these facilities Analysis of the leachate from these tests indicates that none of the samples generated leachate in which the concentration of any toxic metal parameter exceeded EPA criteria levels for those metals. By volume, tailings generally constitute the largest amount of solid wastes generated, but these data indicate that with proper management and monitoring, current EPA criteria can be met for tailings and for most solid wastes associated with mining and milling of these metal ores. Long-term studies are needed to determine if leachate characteristics change with time and to assist in development of closure plans and post closure monitoring programs.

  10. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles.

    PubMed

    Dold, Bernhard; Spangenberg, Jorge E

    2005-08-01

    Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments--Piuquenes, Cauquenes, and Salvador No. 1--formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(III) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes, the delta34S(SO4)values ranged from +0.5 per thousand to +2.0 per thousand and from -0.4 per thousand to +1.4 per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta34S(pyrite) = -1.1 per thousand and -0.9 per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8 per thousand to +0.3 per thousand and from +2.2 per thousand to +3.9 per thousand, respectively. At Cauquenes the 34S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (approximately +10.9 per thousand). At El Salvador No. 1, the delta34S(SO4) average value is -0.9 per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum

  11. Uranium mill ore dust characterization

    SciTech Connect

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  12. Thermal enrichment and speciation of copper in rice husk ashes.

    PubMed

    Wei, Yu-Ling; Hu, Ming-Jan; Peng, Yen-Hsun

    2010-12-15

    Copper(II) was considerably enriched in the residual ash via thermal treatment of copper-sorbed rice husk at 700-1100°C for 2h, and the copper speciation was quantitatively determined with X-ray absorption spectroscopy. After the thermal process, the resulting ash only represents by weight 18.7-26.4% of the pre-heated samples. Copper content in the ashes is >7% which is far above the required minimum copper content in copper ores for the copper smelting sector, 0.5%. Crystalline SiO(2) is observed only in the ash generated at 1100°C, with more copper in this ash being available for leaching in acidic solution. It is suggested that this is due to the considerable dissimilarity in crystalline structure between copper compounds and crystalline SiO(2). No chemical reaction between copper and SiO(2) is observed in any ash. In fact, we suggest that the SiO(2) crystalline phase repels copper during the thermal process; this would make it easy to extract copper from the ashes. For copper speciation in the ashes, CuO merely represents 0-12% of the total copper, while Cu(2)O and Cu(0) represent 34-42% and 46-63%, respectively. The lower copper oxidation state would be beneficial for the copper smelting process due to less usage of coke. PMID:20869164

  13. Ore and coal beneficiation method

    SciTech Connect

    Abadi, K.

    1987-10-27

    This patent describes a method for the separation of iron pyrite from a pulverized mineral ore comprising iron pyrites as a first constituent and a second constituent selected from the group consisting of coal and non-ferrous metal ores by air froth flotation of an aqueous pulp of the pulverized mineral ore. The improvement comprises incorporating in the pulp from about 0.02 to about 1 pound per ton of mineral of a composition comprising hydroxyacetic acid, xanthan gum, sodium silicate, and water wherein the acid content of the composition is from about 0.1 to about 69 percent by weight of the composition, the xanthan gum is from about 0.01 to about 10 percent by weight of the composition; and the ratio by weight of sodium silicate to hydroxyacetic acid is in the range of from about 0 to about 0.5.

  14. Evaluation of feasibility of static tests applied to Küre VMS ore deposits

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Çelik Balci, Nurgül; Şeref Sönmez, M.

    2015-04-01

    Küre volcanogenic massive sulfide (VMS) ore deposits have been mined for its copper content for over centuries. However, there is no published data on AMD around Küre VMS ore deposits. This study investigates the sources of acid producing mechanisms in Küre, using field and laboratorial approaches. Geochemical static tests to predict AMD generation are widely applied to mining sites for assessing potential environmental consequences. However, there are well known limitations of these methods particularly resulting from assumptions used for calculations. To test the feasibility of the methods to predict potential of AMD generation of Küre (VMS) copper deposits, for the first time, acid production and neutralization potential of various mine wastes of Küre (VMS) copper deposits were determined. To test our static test results, in situ and laboratory geochemical data were also obtained from the groundwater discharges from Bakibaba underground mining tunnels. Feasibility study showed that, despite a few inconsistencies, static tests were suitable for predicting generation of AMD around Küre copper mining site and reflected well the site conditions. The current study revealed that pulp density, defined as solid/liquid ratio and used for static tests, is an important limiting factor to predict reliable data for AMD generation. In this study, we also determined surface waters affected by AMD are predicted to have a pH value between 3 and 5, with an average of pH 4. Excessive concentrations of manganese, copper, cobalt and sulfate are also noted with considerable amounts of iron and zinc, which can reach to toxic levels. Moreover, iron and zinc were found to be the controlling the fate of metals by precipitation and co-precipitation, due to their relatively depleted concentrations at redox shifting zones. Key words: Küre pyritic copper ore, Bakibaba mining tunnels, volcanogenic massive sulfide ore deposits, acid production potential, neutralization potential

  15. Application of three-dimensional computer modeling for reservoir and ore-body analysis

    SciTech Connect

    Hamilton, D.E.; Marie, J.L.; Moon, G.M.; Moretti, F.J.; Ryman, W.P.; Didur, R.S.

    1985-02-01

    Three-dimensional computer modeling of reservoirs and ore bodies aids in understanding and exploiting these resources. This modeling tool enables the geologist and engineer to correlate in 3 dimensions, experiment with various geologic interpretations, combine variables to enhance certain geologic attributes, test for reservoir heterogeneities and continuity, select drill sites or perforation zones, determine volumes, plan production, generate geologic parameters for input to flow simulators, calculate tonnages and ore-waste ratios, and test sensitivity of reserves to various ore-grade cutoffs and economic parameters. All applications benefit from the ability to update rapidly the 3-dimensional computer models when new data are collected. Two 3-dimensional computer modeling projects demonstrate these capabilities. The first project involves modeling porosity, permeability, and water saturation in a Malaysian reservoir. The models were used to analyze the relationship between water saturation and porosity and to generate geologic parameters for input to a flow simulator. The second project involves modeling copper, zinc, silver, gold, and specific gravity in a massive sulfide ore body in British Columbia. The 4 metal models were combined into one copper-equivalence model and evaluated for tonnage, stripping ratio, and sensitivity to variations of ore-grade cutoff.

  16. SRB O-ring free response analysis

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1986-01-01

    The free response of viton O-rings were investigated. Two different response mechanisms of viton O-rings are identified and a theoretical representation of the two mechanisms is compared with experimental results for various temperatures.

  17. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  18. Conical O-ring seal

    DOEpatents

    Chalfant, Jr., Gordon G.

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  19. Processing Gold Quarry refractory ores

    NASA Astrophysics Data System (ADS)

    Hausen, D. M.

    1989-04-01

    The Gold Quarry deposit is the largest sediment-hosted gold deposit yet discovered on the Carlin trend in northern Nevada. However, despite the locale's vast reserves, the gold is difficult to extract from portions of the deposit. Detailed, ongoing mineralogical analyses assure proper treatment of the ore.

  20. Conical O-ring seal

    DOEpatents

    Chalfant, G.G. Jr.

    A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  1. In-place leaching of uranium, copper, and evaporites

    SciTech Connect

    Carnahan, T.G.

    1982-11-01

    The purpose of this report is to discuss in-place leaching technology in the United States. Application of in-place leaching to uranium ores has been particularly successful. The sandstone ores are contained above and below by impermeable shales and the uranium ore minerals are easily leached with oxidizing acid or base solutions. Copper is recovered from subgrade rock by dump or in-place leaching acidified ferric sulfate solutions. The leaching solution migrates down through the rock and dissolves copper. The solution is collected from the base of the dumps and copper is recovered by solvent extraction, electrowinning, or by cementation on detinned steel cans. Solution mining of evaporites is being conducted commercially for the extraction of sodium chloride and potassium chloride.

  2. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats. PMID:9587137

  3. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes. PMID:21656137

  4. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    NASA Astrophysics Data System (ADS)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  5. Use of cemented paste backfill in arsenic-rich tailings

    NASA Astrophysics Data System (ADS)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  6. Geochemistry of Mine Waste and Mill Tailings, Meadow Deposits, Streambed Sediment, and General Hydrology and Water Quality for the Frohner Meadows Area, Upper Lump Gulch, Jefferson County, Montana

    USGS Publications Warehouse

    Klein, Terry L.; Cannon, Michael R.; Fey, David L.

    2004-01-01

    Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and

  7. Understanding the copper of the Statue of Liberty

    NASA Astrophysics Data System (ADS)

    Welter, Jean-Marie

    2006-05-01

    Pierre-Eugène Secrétan, a French copper industrialist, donated the copper sheets for the construction of the skin of the Statue of Liberty when it was built in 1875 1876. It can be inferred from the history of Secrétan's activities that the sheets were rolled in his plant of Sérifontaine. The impurities found in two samples obtained from the U.S. National Park Service show that different qualities of copper were used. They indicate, by taking also into account the commercial relations of Secrétan, that the copper may possibly have come from Spanish or South/North American ore.

  8. Uranium ore treatment. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the treatment of uranium ores. Emphasis is place upon the primary step within the process, acid leaching. Tailing disposal and proper handling of radioactive materials is also emphasized. Primary treatment procedures include ion-exchange, sulfuric acid leaching, solvent extraction, and sedimentation. Environmental aspects of uranium milling and mining are examined in a related bibliography. (Contains a minimum of 112 citations and includes a subject term index and title list.)

  9. Uranium ore treatment. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the treatment of uranium ores. Emphasis is place upon the primary step within the process, acid leaching. Tailing disposal and proper handling of radioactive materials is also emphasized. Primary treatment procedures include ion-exchange, sulfuric acid leaching, solvent extraction, and sedimentation. Environmental aspects of uranium milling and mining are examined in a related bibliography. (Contains a minimum of 115 citations and includes a subject term index and title list.)

  10. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.

    PubMed

    Johnson, D Barrie

    2014-12-01

    The abilities of acidophilic chemolithotrophic bacteria and archaea to accelerate the oxidative dissolution of sulfide minerals have been harnessed in the development and application of a biotechnology for extracting metals from sulfidic ores and concentrates. Biomining is currently used primarily to leach copper sulfides and as an oxidative pretreatment for refractory gold ores, though it is also used to recover other base metals, such as cobalt, nickel and zinc. Recent developments have included using acidophiles to process electronic wastes, to extract metals from oxidized ores, and to selectively recover metals from process waters and waste streams. This review describes the microorganisms and mechanisms involved in commercial biomining operations, how the technology has developed over the past 50 years, and discusses the challenges and opportunities for mineral biotechnologies in the 21st century. PMID:24794631

  11. The origin of Cu/Au ratios in porphyry-type ore deposits.

    PubMed

    Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A

    2002-06-01

    Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits. PMID:12052953

  12. Geothermal brine well: Mile-deep drill hole may tap ore-bearing magmatic water and rocks Undergoing Metamorphism

    USGS Publications Warehouse

    White, D.E.; Anderson, E.T.; Grubbs, D.K.

    1963-01-01

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  13. Environmental impact of mine tailings in Redi mines, Sindhudurg District, Maharashtra (India).

    PubMed

    Sawant, Arun D; Thakur, Vikas A

    2011-07-01

    Redi mine contains Fe, Mn as major elements, Al, Si as minor elements and also contains traces of Cr, Zn, Pb, Ni, Cu and P. The toxic trace elements present in the ore have also contributed to the contamination of the environment. Various operations of mining, the machinery used, transportation, the metallurgy and kind of waste management practices used are the significant factors of contributing to the nature of tailings of mine. The studies of tailings have revealed that, in addition to elemental contaminations, the operations create acidic environment around the area (pH-6.2 to 6.3 ), as water samples around showed acidic to slightly basic (pH 5.1 to 7.3) nature while soil samples were found acidic to the slightly basic (pH 6.1 to 7.4). In the samples of ore, tailings and soil, the most abundant elements found are Fe, Mn, Si and Al. In water samples, in addition to presence of Fe, Mn, Si, Al, P, significant quantities of Ni, Zn are also found. Ore, tailings and soil samples were analysed by X-Ray Diffraction technique and have shown the presence of goethite, gibbsite, kaolinite, quartz and mica alongwith haematite in the overall composition of ore. PMID:23029934

  14. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  15. Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals-a review.

    PubMed

    Adeleke, Rasheed A

    2014-12-01

    The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed. PMID:25293513

  16. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  17. Rare-earth occurrences in the Pea Ridge tailings

    SciTech Connect

    Vierrether, C.W.; Cornell, W.I.

    1993-01-01

    Tailings from the Pea Ridge iron mine contain significant amounts of apatite, which has rare-earth element values associated with it. In association with the recovery of rare-earth minerals as a secondary resource, the US Bureau of Mines conducted an investigation on the recoverability of the rare-earth minerals from the tailings. The mill tailings were subjected to a phosphate flotation to separate the apatite from other constituents. More than 70-pct recovery of the rare-earth values was achieved. Based on mineralogical characterization and prior analysis of rare-earth-bearing breccia pipe material at Pea Ridge, it is proposed that processing this phosphate concentrate on a vanner table would yield up to a 95-pct recovery of the rare earths in the concentrate, with the apatite reporting to the tailings. Intensive ore microscopy studies of the original tailings to the flotation products led to the identification of monazite, xenotime, and rare-earth-enriched apatite as the major rare-earth-bearing minerals in the tailings.

  18. The copper-cobalt deposits of the Quartzburg district, Grant County, Oregon

    USGS Publications Warehouse

    Vhay, John Stewart

    1960-01-01

    The copper- and cobalt-bearing veins of part of the Quartzburg district are in fracture zones trending about N. 70 degrees E. in folded Permian (?) metavolcanic rocks on the southwest side of a quartz diorite stock. Along many of the veins fine-grained tourmaline and quartz have replaced the country rock. The primary ore minerals are chalcopyrite, glaucodot, safflorite, and cobaltite. The copper- and cobalt-rich parts of the deposits appear to be in separate ore shoots. Gold content is generally higher in the cobalt-bearing parts of the veins than in the copper-rich parts. The Standard mine has developed part of one vein zone. Several other vein zones that crop out may contain as much copper as the Standard vein zone. Further bulldozing and diamond drilling on the surface, and more geologic mapping, sampling, and diamond drilling underground are suggested as means to explore for more ore deposits.

  19. Geology, geochemistry, and geophysics of the Fry Canyon uranium/copper project site, southeastern Utah - Indications of contaminant migration

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.; Horton, Robert J.

    2010-01-01

    The Fry Canyon uranium/copper project site in San Juan County, southeastern Utah, was affected by the historical (1957-68) processing of uranium and copper-uranium ores. Relict uranium tailings and related ponds, and a large copper heap-leach pile at the site represent point sources of uranium and copper to local soils, surface water, and groundwater. This study was designed to establish the nature, extent, and pathways of contaminant dispersion. The methods used in this study are applicable at other sites of uranium mining, milling, or processing. The uranium tailings and associated ponds sit on a bench that is as much as 4.25 meters above the level of the adjacent modern channel of Fry Creek. The copper heap leach pile sits on bedrock just south of this bench. Contaminated groundwater from the ponds and other nearby sites moves downvalley and enters the modern alluvium of adjacent Fry Creek, its surface water, and also a broader, deeper paleochannel that underlies the modern creek channel and adjacent benches and stream terraces. The northern extent of contaminated groundwater is uncertain from geochemical data beyond an area of monitoring wells about 300 meters north of the site. Contaminated surface water extends to the State highway bridge. Some uranium-contaminated groundwater may also enter underlying bedrock of the Permian Cedar Mesa Sandstone along fracture zones. Four dc-resistivity surveys perpendicular to the valley trend were run across the channel and its adjacent stream terraces north of the heap-leach pile and ponds. Two surveys were done in a small field of monitoring wells and two in areas untested by borings to the north of the well field. Bedrock intercepts, salt distribution, and lithologic information from the wells and surface observations in the well field aided interpretation of the geophysical profiles there and allowed interpretation of the two profiles not tested by wells. The geophysical data for the two profiles to the north of the

  20. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    PubMed Central

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575

  1. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China

    SciTech Connect

    Chen Yongqing Zhao Pengda; Chen Jianguo; Liu Jiping

    2001-03-15

    A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. A geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.

  2. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    SciTech Connect

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 ..mu..R/hr, the average background exposure rate for the area, to 140 ..mu..R/hr. The average exposure rate for the tailings and former mill area was 220 ..mu..R/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of /sup 226/Ra in ten holes as a function of depth is presented graphically.

  3. Assessment of the radiological impact of the inactive uranium-mill tailings at Mexican Hat, Utah

    SciTech Connect

    Haywood, F.F.; Goldsmith, W.A.; Ellis, B.S.; Hubbard, H.M. Jr.; Fox, W.F.; Shinpaugh, W.H.

    1980-03-01

    High surface soil concentrations of /sup 226/Ra and high above-ground measurements of gamma-ray intensity in the vicinity of the inactive uranium-mill tailings at Mexican Hat show both wind and water erosion of the tailings. The former mill area, occupied by a trade school at the time of this survey, shows a comparatively high level of contamination, probably from unprocessed ore on the surface of the ore storage area near the location of the former mill buildings. However, the estimated health effect of exposure to gamma rays during a 2000-hr work year in the area represents an increase of 0.1% in the risk of death from cancer. Exposure of less than 600 persons within 1.6 km of the tailings to radon daughters results in an estimated 0.2%/year increase in risk of lung cancer.

  4. MERCURY IN METAL ORE DEPOSITS: AN UNRECOGNIZED, WIDESPREAD SOURCE TO LAKE SUPERIOR SEDIMENTS, CONTRIBUTION #1072

    EPA Science Inventory

    Mining operations have worked the rich mineral resources of the Lake Superior Basin for over 150 years, leaving industrially impacted regions with tailing piles and smelters. In Lake Superior sediments, mercury and copper inventories increase towards shorelines and are highly cor...

  5. A "Tail" Of Two Mines: Determining The Sources Of Lead In Mine Waters Using Pb Isotopes

    NASA Astrophysics Data System (ADS)

    Cousens, B. L.; Allen, D. M.; Lepitre, M. E.; Mortensen, J. K.; Gabites, J. E.; Nugent, M.; Fortin, D.

    2004-12-01

    Acid mine drainage can be a significant environmental problem in regions where mine tailings are exposed to surface water and shallow groundwater flow. Whereas high metal concentrations in surface waters and groundwaters indicate that metals are being mobilized, these data do not uniquely identify the source of the contamination. The isotopic composition of Pb in mine waters is a superb tracer of Pb sources, because the isotopic composition of ore Pb is usually significantly different from that of host rocks, other surficial deposits, and aerosols. We have investigated metal mobility at two abandoned Pb-Zn mines in different geological settings: the sediment-hosted Sullivan Mine in southeastern British Columbia, and the New Calumet Mine of western Quebec that is hosted in metamorphic rocks of the Grenville Province. Ores from both mines have homogeneous Pb isotopic compositions that are much less radiogenic than surrounding host rocks. At Sullivan, the Pb isotopic compositions of water samples define a mixing line between Sullivan ore and at least one other more radiogenic end-member. Water samples with high Pb concentrations (0.002 to 0.3 mg/L) generally are acidic and have Pb isotope ratios equal to Sullivan ore, whereas waters with low Pb contents have near-neutral pH and have variably more radiogenic Pb isotope ratios. Thus not all the waters collected in the study area originate from Sullivan ore or mining operations, as previously thought. The dominant source of ore Pb in mine waters are the waste rock dumps. Based on their isotopic compositions, host shales or aerosols from the local Pb smelter are potential sources of non-Sullivan ore Pb; local glacial tills are an unlikely source due to their heterogeneous Pb isotopic composition. Similarly, at the New Calumet mine, water samples collected in direct contact with either ore at the surface or tailings have high Pb concentrations (up to 0.02 mg/L) and Pb isotope ratios equal to New Calumet Pb-Zn ore. However

  6. Copper artifacts from prehistoric archeological sites in the dakotas

    USGS Publications Warehouse

    Hill, W.E., Jr.; Neuman, R.W.

    1966-01-01

    Abstract. Thirteen archeological specimens were analyzed spectrographically, and within defined limits they were determined to be native copper. Twelve of the specimens show close elemental homogeneity and are believed to be of Lake Superior ore; the origin of the other specimen is devious.

  7. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, Bruce A.; McDowell, W. J.

    1990-01-01

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  8. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, B.A.; McDowell, W.J.

    1987-10-23

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  9. Method for extracting copper, silver and related metals

    SciTech Connect

    Moyer, B.A.; McDowell, W.J.

    1990-05-22

    This patent describes a process for selectively extracting precious metal such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  10. The Tail of BPM

    NASA Astrophysics Data System (ADS)

    Kruba, Steve; Meyer, Jim

    Business process management suites (BPMS's) represent one of the fastest growing segments in the software industry as organizations automate their key business processes. As this market matures, it is interesting to compare it to Chris Anderson's 'Long Tail.' Although the 2004 "Long Tail" article in Wired magazine was primarily about the media and entertainment industries, it has since been applied (and perhaps misapplied) to other markets. Analysts describe a "Tail of BPM" market that is, perhaps, several times larger than the traditional BPMS product market. This paper will draw comparisons between the concepts in Anderson's article (and subsequent book) and the BPM solutions market.

  11. Estimating gold-ore mineralization potential within Topolninsk ore field (Gorny Altai)

    NASA Astrophysics Data System (ADS)

    Timkin, T.; Voroshilov, V.; Askanakova, O.; Cherkasova, T.; Chernyshov, A.; Korotchenko, T.

    2015-11-01

    Based on the results of ore and near-ore metasomatite composition analysis, the factors and indicators of gold-ore mineralization potential were proposed. Integration of the obtained data made it possible to outline magmatic, structural, and lithological factors, as well as direct and indirect indicators of gold-ore mineralization. Applying multidimensional analysis inherent to geochemical data, the spatial structure was investigated, as well as the potential mineralization was identified. Based on the developed and newly-identified mineralization, small (up to medium-sized) mineable gold-ore deposits in skarns characterized by complex geological setting was identified.

  12. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  13. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  14. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  15. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  16. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  17. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  18. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  19. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  20. Ore-blending optimization model for sintering process based on characteristics of iron ores

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Li; Oliveira, Dauter; Dai, Yu-Ming; Xu, Jian

    2012-03-01

    An ore-blending optimization model for the sintering process is an intelligent system that includes iron ore characteristics, expert knowledge and material balance. In the present work, 14 indices are proposed to represent chemical composition, granulating properties and high temperature properties of iron ores. After the relationships between iron ore characteristics and sintering performance are established, the "two-step" method and the simplex method are introduced to build the model by distinguishing the calculation of optimized blending proportion of iron ores from that of other sintering materials in order to improve calculation efficiency. The ore-blending optimization model, programmed by Access and Visual Basic, is applied to practical production in steel mills and the results prove that the present model can take advantage of the available iron ore resource with stable sinter yield and quality performance but at a lower cost.

  1. Wagging tail vibration absorber

    NASA Technical Reports Server (NTRS)

    Barclay, R. G.; Humphrey, P. W.

    1969-01-01

    A 750-foot cantilever length of extendible-tape boom (very low stiffness) was considered as the main system to be damped. A number of tail lengths were tried from 20 feet to 80 feet after which 40 feet was investigated further as a desirable compromise between performance and practical lengths. A 40-foot damping tail produced a damping effect on the main boom for the first mode equivalent in decay rate to 3.1 percent of critical damping. In this case the spring-hinge and tail were tuned to the main boom first mode frequency and the hinge damping was set at 30 percent of critical based on the tail properties. With this same setting, damping of the second mode was .4 percent and the third mode .1 percent.

  2. Speciation And Colloid Transport of Arsenic From Mine Tailings

    SciTech Connect

    Slowey, A.J.; Johnson, S.B.; Newville, M.; Brown, G.E., Jr.

    2007-07-13

    In addition to affecting biogeochemical transformations, the speciation of As also influences its transport from tailings at inoperative mines. The speciation of As in tailings from the Sulfur Bank Mercury Mine site in Clear Lake, California (USA) (a hot-spring Hg deposit) and particles mobilized from these tailings have been examined during laboratory-column experiments. Solutions containing two common, plant-derived organic acids (oxalic and citric acid) were pumped at 13 pore volumes d{sup -1} through 25 by 500 mm columns of calcined Hg ore, analogous to the pedogenesis of tailings. Chemical analysis of column effluent indicated that all of the As mobilized was particulate (1.5 mg, or 6% of the total As in the column through 255 pore volumes of leaching). Arsenic speciation was evaluated using X-ray absorption spectroscopy (XAS), indicating the dominance of arsenate [As(V)] sorbed to poorly crystalline Fe(III)-(hydr)oxides and coprecipitated with jarosite [KFe{sub 3}(SO{sub 4}, AsO{sub 4}){sub 2}(OH){sub 6}] with no detectable primary or secondary minerals in the tailings and mobilized particles. Sequential chemical extractions (SCE) of <45 {micro}m mine tailings fractions also suggest that As occurs adsorbed to Fe (hydr)oxides (35%) and coprecipitated within poorly crystalline phases (45%). In addition, SCEs suggest that As is associated with 1 N acid-soluble phases such as carbonate minerals (20%) and within crystalline Fe-(hydr)oxides (10%). The finding that As is transported from these mine tailings dominantly as As(V) adsorbed to Fe (hydr)oxides or coprecipitated within hydroxysulfates such as jarosite suggests that As release from soils and sediments contaminated with tailings will be controlled by either organic acid-promoted dissolution or reductive dissolution of host phases.

  3. Examination of Lipopolysaccharide (O-Antigen) Populations of Thiobacillus ferrooxidans from Two Mine Tailings

    PubMed Central

    Southam, G.; Beveridge, T. J.

    1993-01-01

    Net acid-generating capacities of 39.74 kg of H2SO4 per ton (ca. 0.05 kg/kg) (pH 2.68) for the Lemoine copper mine tailings (closed ca. 8 years ago; located 40 km west of Chibougamau, Quebec, Canada) and 16.07 kg of H2SO4 per ton (ca. 0.02 kg/kg) (pH 3.01) for the Copper Rand tailings (in current use and 50 km distant [east] from those of Lemoine) demonstrate that these sulfide tailings can support populations of acidophilic thiobacilli. Oxidized regions in both tailings environments were readily visible, were extremely acidic (Lemoine, pH 2.36; Copper Rand, pH 3.07), and provided natural isolates for our study. A 10% (wt/vol) oxalic acid treatment, which solubilizes both ferric sulfate and ferric hydroxide precipitates (B. Ramsay, J. Ramsay, M. deTremblay, and C. Chavarie, Geomicrobiol. J. 6:171-177, 1988), enabled the recovery of intact bacterial cells from the tailings material and from liquid synthetic medium for lipopolysaccharide analysis. No viable cells could be cultured after this oxalic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electro-phoretic profiles of lipopolysaccharides extracted from the Lemoine tailings were complex, indicating a heterogeneous population of Thiobacillus ferrooxidans. Six T. ferrooxidans subspecies as identified by lipopolysaccharide analysis (i.e., lipopolysaccharide chemotypes) were eventually isolated from a total of 112 cultures from the Lemoine tailings. Using the same isolate and lipopolysaccharide typing techniques, we identified only a single lipopolysaccharide chemotype from 20 cultures of T. ferrooxidans isolated from the Copper Rand tailings. This homogeneity of lipopolysaccharide chemotype was much different from what was found for the older Lemoine tailings and may reflect a progressive lipopolysaccharide heterogeneity of Thiobacillus isolates as tailings leach and age. Images PMID:16348925

  4. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.

    PubMed

    Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl

    2016-05-01

    Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. PMID:27136172

  5. Investigation of the environmental impacts of naturally occurring radionuclides in the processing of sulfide ores for gold using gamma spectrometry.

    PubMed

    Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C

    2011-09-01

    The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment. PMID:21865616

  6. 25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  7. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  8. Main types of gold ore forming systems and their relationship with the paleogeodynamic settings on the Taimyr Peninsula and the Severnaya Zemlya Archipelago

    NASA Astrophysics Data System (ADS)

    Proskurnin, Vasiliy; Anatoly, Gavrish; Aleksandra, Bagaeva; Petrushkov, Boris; Shneider, Alexey; Saltanov, Vasily; Stepunina, Maria; Proskurnina, Alina

    2014-05-01

    Within the Taimyr - Severnaya Zemlya mineragenic province, the Late Paleozoic - Early Mesozoic Kara rare-metal - gold and Byrrangsky coal-bearing - polymetallic mineragenic areas are distinguished. Main geological commercial types of the Kara mineragenic area include manifestations of gold-quartz, gold sulphide-quartz (proper gold ore), and gold-rare metal, gold-bearing copper-molybdenum-porphyry formations. The Riphean - Vendian subduction - collisional and Late Paleozoic - Early Mesozoic repeated collisional (deuterogenic) ore-forming systems play a leading role in their formation. Regardless of the age and formation features, manifestations of proper gold ore formations are controlled by a common factor, the degree of metamorphism of host rocks - not above the sericite-biotite subfacies of the greenschist facies, and belong to the group of hydrothermal-metasomatic ore forming systems conditioned by alkali-acid differentiation of matter in temperature gradient field with ore concentration in mesozone. Depending on the host Precambrian formations, Kara Late Paleozoic - Early Mesozoic mineragenic area is subdivided into Mininsky-Bolshevistsky flysch-terrigenous carbonaceous zone with manifestation of zonal regional metamorphism of the andalusite-sillimanite type (Arctida passive margin) and Shrenk-Faddey volcanogenic-carbonate-terrigenous carbonaceous zone with ophiolites (accretion prism of Siberia). For the Riphean - Early Vendian endogenous manifestations, the following main types of gold ore forming systems are distinguished: in the passive marginal Mininsky-Bolshevistsky zone - early collisional metamorphic-hydrothermal in terrigenous carbonaceous complexes (Valterovsky, Voskresensky, Litkensky ore zones) and late collisional plutonic-hydrothermal in allochthonous granitoids of S-type (Martovsky-Nikitinsky ore cluster); in the accretionary Shrenck-Faddey zone - subduction-collisional plutonic-metamorphic-hydrothermal (Zhilninsky, Leningradsky ore zones) in

  9. MR imaging of ore for heap bioleaching studies using pure phase encode acquisition methods

    NASA Astrophysics Data System (ADS)

    Fagan, Marijke A.; Sederman, Andrew J.; Johns, Michael L.

    2012-03-01

    Various MRI techniques were considered with respect to imaging of aqueous flow fields in low grade copper ore. Spin echo frequency encoded techniques were shown to produce unacceptable image distortions which led to pure phase encoded techniques being considered. Single point imaging multiple point acquisition (SPI-MPA) and spin echo single point imaging (SESPI) techniques were applied. By direct comparison with X-ray tomographic images, both techniques were found to be able to produce distortion-free images of the ore packings at 2 T. The signal to noise ratios (SNRs) of the SESPI images were found to be superior to SPI-MPA for equal total acquisition times; this was explained based on NMR relaxation measurements. SESPI was also found to produce suitable images for a range of particles sizes, whereas SPI-MPA SNR deteriorated markedly as particles size was reduced. Comparisons on a 4.7 T magnet showed significant signal loss from the SPI-MPA images, the effect of which was accentuated in the case of unsaturated flowing systems. Hence it was concluded that SESPI was the most robust imaging method for the study of copper ore heap leaching hydrology.

  10. Geochemical hosts of solubilized radionuclides in uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.; Bush, C.A.

    1990-01-01

    The solubilization and subsequent resorption of radionuclides by ore components or by reaction products during the milling of uranium ores may have both economic and environmental consequences. Particle-size redistribution of radium during milling has been demonstrated by previous investigators; however, the identification of sorbing components in the tailings has received little experimental attention. In this study, uranium-bearing sandstone ore was milled, on a laboratory scale, with sulfuric acid. At regular intervals, filtrate from this suspension was placed in contact with mixtures of quartz sand and various potential sorbents which occur as gangue in uranium ores; the potential sorbents included clay minerals, iron and aluminum oxides, feldspar, fluorspar, barite, jarosite, coal, and volcanic glass. After equilibration, the quartz sand-sorbent mixtures were separated from the filtrate and radioassayed by gamma-spectrometry to determine the quantities of 238U, 230Th, 226Ra, and 210Pb sorbed, and the radon emanation coefficients. Sorption of 238U was low in all cases, with maximal sorptions of 1-2% by the bentonite- and coal-bearing samples. 230Th sorption also was generally less than 1%; maximal sorption here was observed in the fluorspar-bearing sample and appears to be associated with the formation of gypsum during milling. 226Ra and 210 Pb generally showed higher sorption than the other nuclides - more than 60% of the 26Ra solubilized from the ore was sorbed on the barite-bearing sample. The mechanism (s) for this sorption by a wide variety of substrates is not yet understood. Radon emanation coefficients of the samples ranged from about 5 to 30%, with the coal-bearing samples clearly demonstrating an emanating power higher than any of the other materials. ?? 1990.