Science.gov

Sample records for copper selenides

  1. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    SciTech Connect

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  2. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    SciTech Connect

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  3. Oxidation Mechanism of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  4. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Copper gallium indium selenide. 721.10391 Section...Chemical Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance...chemical substance identified as copper gallium indium selenide (PMN...

  5. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Copper gallium indium selenide. 721.10391 Section...Chemical Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance...chemical substance identified as copper gallium indium selenide (PMN...

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Copper gallium indium selenide. 721.10391 Section...Chemical Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance...chemical substance identified as copper gallium indium selenide (PMN...

  7. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  8. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  9. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  10. Deposition of copper selenide thin films and nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Yunxiang; Afzaal, Mohammad; Malik, Mohammad A.; O'Brien, Paul

    2006-12-01

    A new method is reported for the growth of copper selenide thin films and nanoparticles using copper acetylacetonate and trioctylphosphine selenide. Aerosol-assisted chemical vapor deposition experiments lead to successful deposition of tetragonal Cu 2Se films. In contrast, hexadecylamine capped nanoparticles are composed of cubic Cu 2-xSe. The deposited materials are optically and structurally characterized. The results of this comprehensive study are described and discussed.

  11. [Type here] Copper Indium Selenide (CIS) Solar Cell

    E-print Network

    Hochberg, Michael

    they are a thin film technology they can be less costly than Si cells. This WAVESol panel from Ascent Solar has. This ThinFilm panel from Silicon Solar Inc., has a 7.2V DC and a short circuit current of 200mA (1.44 watts[Type here] Copper Indium Selenide (CIS) Solar Cell CIS cells are made with a thin layer of CuInSe2

  12. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals

    PubMed Central

    2015-01-01

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn2+ and Cd2+) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu2–xSe) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core–shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu+ ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu2–xSe samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature. PMID:26140622

  13. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect

    Urmila, K. S. Asokan, T. Namitha Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  14. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    PubMed

    Güzeldir, Betül; Sa?lam, Mustafa

    2015-11-01

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (?0, ??) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices. PMID:26037495

  15. Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes.

    PubMed

    Li, Wenhua; Zamani, Reza; Ibáñez, Maria; Cadavid, Doris; Shavel, Alexey; Morante, Joan Ramon; Arbiol, Jordi; Cabot, Andreu

    2013-03-27

    Morphology is a key parameter in the design of novel nanocrystals and nanomaterials with controlled functional properties. Here, we demonstrate the potential of foreign metal ions to tune the morphology of colloidal semiconductor nanoparticles. We illustrate the underlying mechanism by preparing copper selenide nanocubes in the presence of Al ions. We further characterize the plasmonic properties of the obtained nanocrystals and demonstrate their potential as a platform to produce cubic nanoparticles with different composition by cation exchange. PMID:23470030

  16. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  17. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    SciTech Connect

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Leisch, Jennifer; Taylor, Matthew; Stanbery, Billy J.

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  18. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    PubMed

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se?t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%. PMID:24267336

  19. Nanoscale self-assembly of high-efficiency copper indium gallium selenide photovoltaic thin films

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2009-08-01

    We demonstrate photovoltaic integrated circuits (PVIC) with high-quality large-grain Copper Indium Gallium Selenide (CIGS) obtained with the unique combination of low-cost ink-based or Physical Vapor Deposition (PVD) based nanoengineered precursor thin films and a reactive transfer printing method. Reactive transfer is a two-stage process relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an electrostatic field while heat is applied. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. High quality CIGS with large grains on the order of several microns, and of preferred crystallographic orientation, are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% have been achieved using this method. When atmospheric pressure deposition of inks is utilized for the precursor films, the approach additionally provides further reduced capital equipment cost, lower thermal budget, and higher throughput.

  20. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583?gL(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219?gL(-1). From OPV, copper (14?gL(-1)), zinc (87?gL(-1)) and silver (78?gL(-1)) leached. Zebrafish embryos were exposed until 120h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. PMID:26615488

  1. Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers.

    PubMed

    Kim, Jae-Yup; Yang, Jiwoong; Yu, Jung Ho; Baek, Woonhyuk; Lee, Chul-Ho; Son, Hae Jung; Hyeon, Taeghwan; Ko, Min Jae

    2015-11-24

    Copper-indium-selenide (CISe) quantum dots (QDs) are a promising alternative to the toxic cadmium- and lead-chalcogenide QDs generally used in photovoltaics due to their low toxicity, narrow band gap, and high absorption coefficient. Here, we demonstrate that the photovoltaic performance of CISe QD-sensitized solar cells (QDSCs) can be greatly enhanced simply by optimizing the thickness of ZnS overlayers on the QD-sensitized TiO2 electrodes. By roughly doubling the thickness of the overlayers compared to the conventional one, conversion efficiency is enhanced by about 40%. Impedance studies reveal that the thick ZnS overlayers do not affect the energetic characteristics of the photoanode, yet enhance the kinetic characteristics, leading to more efficient photovoltaic performance. In particular, both interfacial electron recombination with the electrolyte and nonradiative recombination associated with QDs are significantly reduced. As a result, our best cell yields a conversion efficiency of 8.10% under standard solar illumination, a record high for heavy metal-free QD solar cells to date. PMID:26431392

  2. Liquid precursor for deposition of copper selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  3. Formation of selenide, sulfide or mixed selenide-sulfide films on metal or metal coated substrates

    DOEpatents

    Eser, Erten; Fields, Shannon

    2012-05-01

    A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.

  4. Magnetometer uses bismuth-selenide

    NASA Technical Reports Server (NTRS)

    Woollman, J. A.; Spain, I. L.; Beale, H.

    1972-01-01

    Characteristics of bismuth-selenide magnetometer are described. Advantages of bismuth-selenide magnetometer over standard magnetometers are stressed. Thermal stability of bismuth-selenide magnetometer is analyzed. Linearity of output versus magnetic field over wide range of temperatures is reported.

  5. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 ?m, 1.00 ?m and 2.00 ?m increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  6. Development of the data base for a degradation model of a selenide RTG. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1977-01-01

    The paper is concerned with the evaluation of the materials used in a selenide radioisotope thermoelectric generator (RTG). These materials are composed of n-type gadolinium selenide and n-type copper selenide. A three-fold evaluation approach is being used: (1) the study of the rate of change of the thermal conductivity of the material, (2) the investigation of the long-term stability of the material's Seebeck voltage and electrical resistivity under current and temperature gradient conditions, and (3) determination of the physical behavior and compatibility of the material with surrounding insulation at elevated temperatures. Programmatically, the third category of characteristic evaluation is being emphasized.

  7. COPPER

    EPA Science Inventory

    The report is a review of current knowledge of the distribution of copper in the environment and living things. Metabolism and the effects of copper in the biosphere are also considered. Copper compounds are common and widely distributed in nature. They are also extensively mined...

  8. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  9. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  10. Crystal chemistry and self-lubricating properties of monochalcogenides gallium selenide and tin selenide

    SciTech Connect

    Erdemir, A.

    1993-02-01

    This paper describes the fundamentals of the crystal chemistry and self-lubricating mechanisms of two monochalcogenides; tin selenide and gallium selenide. Specifically, it enumerates their inter-atomic array and bond structure in crystalline states, and correlates this fundamental knowledge with their self-lubricating capacity. Friction tests assessing the self-lubricating performance of gallium and tin selenides were carried out on a pin-on-disk machine. Specifically, large crystalline pieces of gallium selenide and tin selenide were cut and cleaved into flat squares and subsequently rubbed against the sapphire balls. In another case, the fine powders (particle size {approx} 50--100 {mu}m) of gallium selenide and tin selenide were manually fed into the sliding interfaces of 440C pins and 440C disks. For the specific test conditions explored, it was found that the friction coefficients of the sapphire/gallium selenide and sapphire/tin selenide pairs were {approx} 0.23 and {approx} 0.35, respectively. The friction coefficients of 440C pin/440C disk test pairs with gallium selenide and tin selenide powders were on the orders of {approx} 0.22 and {approx} 0.38, respectively. For comparison, a number of parallel friction tests were performed with MoS{sub 2} powders and compacts and the results of these tests were also reported. The friction data together with the crystal-chemical knowledge and the electron microscopic evidence supported the conclusion that the lubricity and self-lubricating mechanisms of these solids are closely related to their crystal chemistry and the nature of interlayer bonding.

  11. Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

    PubMed Central

    2014-01-01

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (?20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2–xSeyS1–y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV–vis–NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps. PMID:25050455

  12. The electrochemical oxidation of organic selenides and selenoxides

    SciTech Connect

    Ryan, M.D.; Yau, J.; Hack, M.

    1997-06-01

    The electrochemical oxidation of alkyl and aryl selenides was investigated in acetonitrile. The oxidation of diphenyl selenide and di(4-methylphenyl) selenide led primarily to the formation of their respective selenoxides, which were identified by exhaustive coulometric oxidation and {sup 1}H and {sup 13}C analysis of the products. The selenoxide itself was not observed in the cyclic voltammetry of the selenide for two reasons: first, the protonation of the selenoxide by the acid formed from the reaction of water with the cation radical and second, the formation of a selenoxide hydrate. The formation of the hydrate with diphenyl selenoxide was verified by isolation of the dimethoxy derivative. In addition to the selenoxide, selenonium compounds, formed by the coupling of the oxidized material, were also observed. The alkyl selenides were generally oxidized at a lower potential than the aryl selenides. This trend is different from the sulfur analogues, where the aryl sulfides are easier to oxidize than their alkyl counterparts. As a result, the difference in their redox potentials is relatively small. These differences may occur because the oxidation of aryl sulfides is more likely to take place on the aromatic ring, which leads to a greater yield of the coupled products (about 100%) when compared to the selenide analogue.

  13. Characterization of cadmium selenide electrodeposited from diethylene glycol solution containing tri-n-butylphosphine selenide

    SciTech Connect

    Sanders, B.W.; Cocivera, M.

    1987-05-01

    Thin film cadmium selenide has been prepared by a new electrochemical process in which the film is deposited at the cathode from a nonaqueous solution containing tri-n-butylphosphine selenide as the selenium source. The films are found to be less dense than those prepared using selenosulfite ion. The as-deposited films appear free of cracks and pinholes when deposited on titanium, but cracks develop when the films are annealed. A stoichiometric composition is obtained for the film over a 0.4V potential range. Power conversion efficiencies for films prepared under a variety of conditions range from 1.0 to 4.2% for surface areas ca. 1.0 cm/sup 2/. The presence of large concentrations of chloride ion in the deposition solution seems to have little effect on the composition or photoresponse of the film. Diethylene glycol appears to be a better solvent than propylene carbonate for this deposition process.

  14. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    SciTech Connect

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  15. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors

    NASA Astrophysics Data System (ADS)

    Fellowes, J. W.; Pattrick, R. A. D.; Lloyd, J. R.; Charnock, J. M.; Coker, V. S.; Mosselmans, J. F. W.; Weng, T.-C.; Pearce, C. I.

    2013-04-01

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of SeIV by Veillonella atypica and compared directly against borohydride-reduced SeIV for the production of glutathione-stabilized CdSe and ?-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, ‘green’ synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  16. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe{sub 2}

    SciTech Connect

    Pavan Kumar, V.; Varadaraju, U.V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu{sub 1+x}Mn{sub 1?x}Se{sub 2}, (x=0?0.75) a new quaternary layered selenide, are reported. NaCuMnSe{sub 2} crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn{sup 2+} by Cu{sup 2+} is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075. - Graphical abstract: Crystal structure of NaCuMnSe{sub 2}. - Highlights: • A new quaternary layered selenide NaCuMnSe{sub 2} is synthesized. • All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. • Conduction mechanism transforms from thermally activated behavior to 2D variable range hopping with increase in copper concentration.

  17. Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide

    NASA Astrophysics Data System (ADS)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Jayasimhadri, M.; Singh, Niraj Kumar; Sharma, Sakshi; Haranath, D.; Srivastava, A. K.; Dhar, Ajay

    2015-06-01

    We report the thermoelectric properties of nanostructured Cu-deficient Cu2Se, which was synthesized by high energy ball milling followed by spark plasma sintering. Our method obtained a significant enhancement in the thermoelectric figure of merit (ZT), i.e., ~1.4 at 973 K, which was ~30% higher than its bulk counterpart. This enhancement in the thermoelectric performance was due mainly to a significant reduction in the lattice thermal conductivity, which was attributed to enhanced phonon scattering at various length scales by nanoscale defects as well as abundant nanograin boundaries. The nanoscale defects were characterized by transmission electron microscopy of the nanostructured Cu2-xSe samples, which formed the basis of the ZT enhancement.

  18. Gallium Selenide DOI: 10.1002/anie.201409743

    E-print Network

    Geohegan, David B.

    , there has been growing interest in 2D bilayer crystals in which the two layers are not only conventionally and Stackings of Two- Dimensional Bilayer Gallium Selenide Crystals** Xufan Li, Leonardo Basile, Mina Yoon and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures

  19. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.

  20. The stability domain of the selenide kesterite photovoltaic materials and NMR investigation of the Cu/Zn disorder in Cu2ZnSnSe4 (CZTSe).

    PubMed

    Choubrac, Léo; Lafond, Alain; Paris, Michaël; Guillot-Deudon, Catherine; Jobic, Stéphane

    2015-06-21

    Bulk compounds, prepared via the ceramic route, related to Cu2ZnSnSe4 (CZTSe), a material considered for use in photovoltaic devices, were investigated using NMR spectroscopy, electron-probe microanalyses and X-ray diffraction. These materials adopt the kesterite structure regardless of the Cu and Zn contents. It is also shown that the stability domain of the copper-poor quaternary phases is wider for selenide derivatives than for sulphides. Finally, the Cu/Zn disorder level in CZTSe is found to be higher when the samples are quenched, which is reminiscent of the behaviour of the parent sulphide compounds CZTS. PMID:25990030

  1. Electron beam assisted synthesis of cadmium selenide nanomaterials

    SciTech Connect

    Rath, M. C.; Guleria, A.; Singh, S.; Singh, A. K.; Adhikari, S.; Sarkar, S. K.

    2013-02-05

    Cadmium selenide nanomaterials of various shapes and sizes have been synthesized in different condensed media through electron beam irradiation using a 7 MeV linear accelerator. The microstructures in different media as well as the presence of capping reagents play a crucial role in the formation of nanomaterials of different shapes and sizes. Their optical properties could be efficiently tuned by controlling the synthetic parameters.

  2. The unexpected properties of alkali metal iron selenide superconductors

    SciTech Connect

    Dagotto, Elbio R

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  3. New quinternary selenides: Syntheses, characterizations, and electronic structure calculations

    SciTech Connect

    Chung, Ming-Yan; Lee, Chi-Shen

    2013-06-01

    Five quinternary selenides, Sr?.??Y?.??Ge?.??Sb?.??Se? (I), Sr?.??La?.??Ge?.??Sb?.??Se? (II), Sr?.??La?.??Sn?.??Bi?.??Se? (III), Ba?.?? La?.?? Sn?.??Sb?.??Se? (IV), and Ba?.?? La?.??Sn?.??Bi?.??Se? (V), were synthesized by solid-state reaction in fused silica tubes. These compounds are isostructural and crystallize in the Sr?GeSb?Se? structural-type, which belongs to the orthorhombic space group Pnma (no. 62). Three structural units, 1?[MSe?], 1?[M?Se??] (M=Tt, Pn) and M´ (M´=groups II and III element), comprise the entire one-dimensional structure, separated by M´. Measurements of electronic resistivity and diffused reflectance suggest that IV and V have semiconducting properties. Electronic structure calculations confirm the site preferences of Sr/La element discovered by crystal structure refinement. - Graphical abstract: Quinternary selenides Ae?.??M?.??Tt?.??Pn?.??Se? (Ae, M, Tt, Pn=Sr/Ba, Y/La, Ge/Sn, Sb/Bi) were synthesized and their site preferences were characterized by single-crystal X-ray diffraction and electronic structure calculation. Highlights: • Five new quinternary selenides were synthesized and characterized. • Structural units, 1?[MSe?] and 1?[M?Se??] (M=Tt, Pn), construct the one-dimensional structure. • Calculations of electronic structure confirm site preference of Sr/La sites.

  4. A new wide band gap thermoelectric quaternary selenide Cu2MgSnSe4

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, V.; Guilmeau, Emmanuel; Raveau, Bernard; Caignaert, Vincent; Varadaraju, U. V.

    2015-10-01

    Cu2MgSnSe4 based compounds composed of high earth abundant elements have been identified to exhibit good thermoelectric performance in the mid-temperature range. The pristine phase shows a band gap of 1.7 eV, which is slightly higher than similar ternary and quaternary copper based stannite compounds. Cu2MgSnSe4 crystallizes in the tetragonal I 4 ¯ 2m space group. Substitution of In at Sn site tends to decrease the tetragonal distortion toward the cubic symmetry. The electrical and thermal transport properties of Cu and In-doped Cu2MgSnSe4 in the temperature range of 300 K-700 K are studied. The substitution of In3+ for Sn4+ and Cu2+ for Mg2+ induces charge carriers as holes, which in turn lead to improvement in thermoelectric efficiency. The role of mass fluctuations and structural disorder in the evolution of the thermal conductivity of the doped selenides is discussed. A maximum ZT of 0.42 is attained for Cu2MgSn0.925In0.075Se4 around 700 K, and this value is comparable to that of Cu2ZnSnSe4.

  5. Double-Diffusive Convection During Growth of Halides and Selenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of several materials such as mercurous chloride, mercurous bromide, mercurous iodide, lead chloride lead bromide, lead iodide, thallium arsenic selenide, gallium selenide, zince sulfide zinc selenide and several crystals into devices. We have used both Bridgman and physical vapor transport (PVT) crystal growth methods. In the past have examined PVT growth numerically for conditions where the boundary of the enclosure is subjected to a nonlinear thermal profile. Since past few months we have been working on binary and ternary materials such as selenoiodides, doped zinc sulfides and mercurous chloro bromide and mercurous bromoiodides. In the doped and ternary materials thermal and solutal convection play extremely important role during the growth. Very commonly striations and banding is observed. Our experiments have indicated that even in highly purified source materials, homogeneity in 1-g environment is very difficult. Some of our previous numerical studies have indicated that gravity level less than 10-4 (?-g) helps in controlling the thermosolutal convection. We will discuss the ground based growth results of HgClxBr(1-x) and ZnSe growth results for the mm thick to large cm size crystals. These results will be compared with our microgravity experiments performed with this class of materials. For both HgCl-HgBr and ZnS-ZnSe the lattice parameters of the mixtures obey Vagard's law in the studied composition range. The study demonstrates that properties are very anisotropic with crystal orientation, and performance achievement requires extremely careful fabrication to utilize highest figure of merit. In addition, some parameters such as crystal growth fabrication, processing time, resolution, field of view and efficiency will be described based on novel solid solution materials. It was predicted that very similar to the pure compounds solid solutions also have very large anisotropy, and very precise oriented and homogeneous bulk and thin film crystals is required to achieve maximum performance of laser or imagers. Some of the parameters controlling the homogeneity su

  6. Fractal simulation of the resistivity and capacitance of arsenic selenide

    SciTech Connect

    Balkhanov, V. K. Bashkuev, Yu. B.

    2010-03-15

    The temperature dependences of the ac resistivity R and ac capacitance C of arsenic selenide were measured more than four decades ago [V. I. Kruglov and L. P. Strakhov, in Problems of Solid State Electronics, Vol. 2 (Leningrad Univ., Leningrad, 1968)]. According to these measurements, the frequency dependences are R {proportional_to} {omega}{sup -0.80{+-}0.01} and {Delta}C {proportional_to} {omega}{sup -0.120{+-}0.006} ({omega} is the circular frequency and {Delta}C is measured from the temperature-independent value C{sub 0}). According to fractal-geometry methods, R {proportional_to} {omega}{sup 1-3/h} and {Delta}C {proportional_to} {omega}{sup -2+3/h}, where h is the walk dimension of the electric current in arsenic selenide. Comparison of the experimental and theoretical results indicates that the walk dimensions calculated from the frequency dependences of resistivity and capacitance are h{sub R} = 1.67 {+-} 0.02 and h{sub C} = 1.60 {+-} 0.08, which are in agreement with each other within the measurement errors. The fractal dimension of the distribution of conducting sections is D = 1/h = 0.6. Since D < 1, the conducting sections are spatially separated and form a Cantor set.

  7. Development of silver sensitized germanium selenide photoresist by reactive sputter etching in SF6

    NASA Astrophysics Data System (ADS)

    Huggett, P. G.; Frick, K.; Lehmann, H. W.

    1983-04-01

    Silver sensitized germanium selenide/polymer bilevel resist system has been used to pattern structures in SiO2 on silicon. Using reactive sputter etching in an SF6 plasma for developing germanium selenide gives superior results compared to CF4 or CHF3 in terms of sensitivity; 500:1, contrast; 7, and sensitivity; 50 mJ/cm2 at 436 nm. By this method 1-? lines and spaces and 1-? contact holes have been defined in germanium selenide. These have been transferred into polymer and SiO2 using standard reactive sputter etching with O2 and CHF3, respectively.

  8. Optical and structural characterization of nickel selenide nanoparticles synthesized by simple methods

    NASA Astrophysics Data System (ADS)

    Moloto, N.; Moloto, M. J.; Coville, N. J.; Sinha Ray, S.

    2009-07-01

    A series of nickel selenide (NiSe 2, NiSe and Ni 3Se 4) nanoparticles have been synthesized by three different methods, i.e. the single-source precursor (method 1), the thermolysis of trioctylphosphine selenide (TOPSe) and nickel chloride in hexadecylamine (method 2) as well as the reaction of nickel chloride and selenium using sodium borohydride as a reducing agent in methanol and in water (method 3). The optical properties of nickel selenide synthesized from all the methods showed good nanometric characteristics with an observed blue-shift in absorption band-edge from bulk nickel selenide. The structural characteristics varied with the methods employed, with method 1 producing 10 nm spherical NiSe 2 particles, method 2 star-shaped NiSe particles, while method 3 produced hexagonal NiSe nanoparticles in methanol and rod-shaped Ni 3Se 4 particles in water.

  9. Chromium-doped zinc selenide gain media: From synthesis to pulsed mid-infrared laser operation

    E-print Network

    Demirbas, Umit

    This paper provides an overview of the experimental work performed in our research group on the synthesis, spectroscopic investigation, and laser characterization of chromium-doped zinc selenide (Cr[superscript 2+]:ZnSe). ...

  10. Growth of zinc selenide crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto /n11/ seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  11. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    SciTech Connect

    Balitskii, O.A.; Demchenko, P.Yu.; Mijowska, E.; Cendrowski, K.

    2013-02-15

    Highlights: ? Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ? Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ? Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ? They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuning their spectral characteristics to higher energy solar photons.

  12. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Jie; Ying, Tian-Ping; Wang, Gang; Jin, Shi-Feng; Zhang, Han; Lin, Zhi-Ping; Chen, Xiao-Long

    2015-11-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322211and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100), Beijing Nova Program of China (Grant No. 2011096), and K. C. Wong Education Foundation, Hong Kong, China.

  13. An unusual fluorescence evolution of cadmium selenide (CdSe) nanoparticles generated from a cadmium oxide/trioctylphosphine selenide/trioctylphosphine heterogeneous system

    NASA Astrophysics Data System (ADS)

    Yang, Zhiqiang; Cingarapu, Sreeram; Klabunde, Kenneth J.

    2009-02-01

    In this Letter, we present a novel way to synthesize cadmium selenide (CdSe) nanoparticles from a heterogeneous system only containing cadmium oxide, trioctylphosphine, and trioctylphosphine selenide. Due to the relatively slow reaction rate in this system, an unusual fluorescence evolution, i.e., the blue-shift of the fluorescence peak during the early reaction stages, was surprisingly observed in a long time period (up to 3 h). The reason for this interesting phenomenon is preliminarily attributed to the gradual removal of the surface-related defects or traps when the particle size increases slowly.

  14. Studies of compounds related to copper indium gallium selenide solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Haiping

    Crystals of Cu(In1-xGax)3Se 5 were grown by the horizontal and vertical Bridgman methods. A non-contact carbon coating was used to avoid the adhesion between Cu(In1-x Gax)3Se5 ingots and the inner ampoule walls. The composition along and across the as grown ingots with different starting Ga contents was analyzed and the results were interpreted by the established pseudobinary phase diagrams. Results of XRD confirmed that the lattice constants of the Cu(In1-xGax)3Se 5 crystals varied linearly with the Ga content. Results of X-ray Laue back-reflection showed that the Cu(In1-xGax) 3Se5 ingots contained large single crystal regions. Hall effect measurements carried out on the grown samples revealed that the Cu(In 1-xGax)3Se5 crystals were highly resistive with rather low carrier concentrations. The morphology of as-grown or cleaved sample surfaces of the Cu(In1-xGax) 3Se5 ingots were also studied under optical microscope and SEM. Metallic Na was, for the first time, introduced into Cu(In1-x Gax)3Se5 compounds to observe the doping effects. The introduction of Na increased the electron concentration significantly for CuIn3Se5 samples (x = 0) but did not show a significant effect on Cu(In1-xGax) 3Se5 samples with x > 0. The increase in electron concentration in the CuIn3Se5 samples after the Na diffusion could be explained by defect generation related to Se and In sites. Crystals of CuInSe2 were also grown by the horizontal Bridgman method for the first time with the addition of metallic sodium. Degradation in crystalline quality and a change of conductivity type from p- to n-type were observed in ingots grown from melts containing more than 0.25 at. % Na. Experiments of Na diffusion were also carried out on CuInSe 2 crystals in a sealed glass ampoule to observe the doping effect. Hot probe measurements indicated that the sodium-treated CuInSe2 samples changed from p-type to n-type. MIS devices were fabricated on the Na-treated CuIn3Se 5 material for electrical characterization. Dark current density-voltage characteristics and differential capacitance-voltage characteristics of the MIS devices were measured at room temperature. An energy band diagram of the MIS devices has been constructed based on the band lineup data reported in the literature. The current transport mechanism was examined and a dominant multi-step tunneling process was proposed. Samples of Cu(In1-xGax)3Se 5 with x ? 0.5 were found to be strongly photoconductive over the wavelength range from 700 to 1100 nm even at room temperature. It was observed that the sensitivity of photoconductivity was greatly influenced by surface preparation conditions. Chemically etched samples showed the highest photoconductivity, believed to be due to the reduced surface recombination velocity. Capacitance measurements were carried out to investigate the interface and bulk properties of ZnO/CdS/Cu(In1-xGax)Se 2 solar cells. Results from the steady state C-V measurements showed evidence of interface or surface states, especially for the samples without annealing. DLTS technique was used to determine the deep levels in Cu(In 1-xGax)Se2 crystals with Ga content varying from 0 to 1. Different deep levels for holes with different DLTS spectra were found in the Cu(In1-xGax)Se2 crystals, with different Ga contents. The present results showed that the Ga content has an important effect on the formation of deep levels in Cu(In1-x Gax)Se2 crystals.

  15. Structure-fluctuation-induced abnormal thermoelectric properties in semiconductor copper selenide

    SciTech Connect

    Liu, Huili; Shi, Xun; Kirkham, Melanie J; Wang, Hsin; Li, Qiang; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2013-01-01

    Thermoelectric effects and related technologies have attracted a great interest due to the world-wide energy harvesting. Thermoelectricity has usually been considered in the context of stable material phases. Here we report that the fluctuation of structures during the second-order phase transition in Cu2Se semiconductor breaks the conventional trends of thermoelectric transports in normal phases, leading to a critically phase-transition-enhanced thermoelectric figure of merit zT above unity at 400K, a three times larger value than for the normal phases. Dynamic structural transformations introduce intensive fluctuations and extreme complexity, which enhance the carrier entropy and thus the thermopower, and strongly scatter carriers and phonons as well to make their transports behave critically.

  16. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    PubMed

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV). PMID:26000570

  17. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.

    PubMed

    Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A

    2013-09-25

    The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process. PMID:23957691

  18. Study of electrical properties of polycrystalline materials based on indium and copper selenides under high pressure

    NASA Astrophysics Data System (ADS)

    Melnikova, N. V.; Kurochka, K. V.; Zaikova, V. E.; Tebenkov, A. V.; Babushkin, A. N.

    2015-11-01

    This paper discusses the influence of high pressures (up to 50 GPa) on the electrical properties of the polycrystalline materials (InSe)x(CuAsSe2)1-x, x = 0.05 and 0.5. It was found that, for each compound, features in the pressure dependence of all the physical parameters of interest occur in the same pressure intervals, which can be due to structural transitions and a change in the electron structure.

  19. Copper indium gallium (di)selenide: Electronic activities of grain boundaries and solar cell fabrication studies

    NASA Astrophysics Data System (ADS)

    Erkan, Mehmet Eray

    This dissertation is composed of three studies related to chalcopyrite solar cells. The first study is on electronic activities of grain boundaries (GBs) in CuInSe2 (CIS). Despite being polycrystalline, chalcopyrite thin film solar cells have reached record power conversion efficiencies. This is against the classical understanding on the effect of GBs in semiconductor materials. Because GBs are expected to be recombination centers and barriers against the carrier flow, reducing the device efficiency. Therefore, a complete understanding on the electronic behavior of chalcopyrite GBs is missing. Moreover, the high efficiency chalcopyrite solar cells are grown with Na impurities which positively affect the performance of the solar cell, so-called sodium effect. Research on chalcopyrite GBs has been coupled with the effect of Na impurities, because Na has been found segregated at the GBs. The study presented in this dissertation was performed on GBs in a Na-free CIS. It is important to study the GBs in a Na-free chalcopyrite to avoid any uncontrolled effects of Na segregation at the GBs, for instance a possible Na-related secondary phase formation which would affect the conclusions drawn on the natural behavior of chalcopyrite GBs. In addition, it is known that Sigma3 GBs in chalcopyrite solar cells are abundant; therefore, it is meaningful to investigate the differences between Sigma3 and non-Sigma3 GBs. For this purpose, Sigma3, close to Sigma3 and Sigma9 GBs in a Bridgman-grown multicrystalline Na-free CIS wafer were identified by electron backscatter diffraction and their electronic properties were investigated by Kelvin probe force microscope and cathodoluminescence in scanning electron microscope. It is shown that the Sigma3 GB is neutral and it does not behave as a recombination center, whereas once the geometry of a GB deviates from the Sigma3 geometry, such as close to Sigma3 and Sigma9 GBs, the GB becomes charged and behaves as a recombination center. This result was concluded to be due to the increase in the amount of defects at the GB that introduce midgap states as the Sigma value increases. Our results indicate that the surprising high performance seen in the polycrystalline chalcopyrite solar cells is possibly due to the abundance of electrically inactive Sigma3 GBs in this material. To investigate the effect of Na on CIS GBs, projected work includes the characterization of Sigma3 and non-Sigma3 GBs in CIS wafers grown with increasing Na concentration. Consequently, it will be possible to answer the following questions on the impact of sodium-effect on GBs: Is there a certain Na concentration for Na to affect the GB electrical properties and how does it affect both Sigma3 and non-Sigma3 GBs? In the second study, the use of selenoamide instead of direct use of H2Se for atmospheric pressure selenization reaction is proposed and its feasibility is shown by fabricating CIS solar cells with up to 1.6% power conversion efficiency. In addition, observed In and Ga segregation towards the bottom of the CIS and CIGS thin films, respectively, are investigated through phase transformations occurring during the selenization and systematically designed annealing processes. The third study is on the effect of flow type on the growth kinetics of CdS thin films deposited by chemical bath deposition. CdS thin films are deposited on glass substrates under turbulent and laminar flow conditions only by changing the substrate's alignment with respect to the bottom of the beaker in unstirred bath. It is shown that the flow condition of the bath does not change the optical and structural properties of CdS; however, deposition under laminar flow is explained to be diffusion-limited, whereas it is feed-limited under turbulent flow.

  20. Enzymatic methylation of sulfide, selenide, and organic thiols by Tetrahymena thermophila.

    PubMed Central

    Drotar, A; Fall, L R; Mishalanie, E A; Tavernier, J E; Fall, R

    1987-01-01

    Cell extracts from the ciliate Tetrahymena thermophila catalyzed the S-adenosylmethionine-dependent methylation of sulfide. The product of the reaction, methanethiol, was detected by a radiometric assay and by a gas-chromatographic assay coupled to a sulfur-selective chemiluminescence detector. Extracts also catalyzed the methylation of selenide, and the product was shown by gas chromatography-mass spectrometry to be methaneselenol. The sulfide and selenide methyltransferase activities copurified with the aromatic thiol methyltransferase previously characterized from this organism (A.-M. Drotar and R. Fall, Pestic. Biochem. Physiol. 25:396-406, 1986), but heat inactivation experiments suggested the involvement of distinct sulfide and selenide methyltransferases. Short-term toxicity tests were carried out for sulfide, selenide, and their methylated derivatives; the monomethylated forms were somewhat more toxic than the nonmethylated or dimethylated compounds. Cell suspensions of T. thermophila exposed to sulfide, methanethiol, or their selenium analogs emitted methylated derivatives into the headspace. These results suggest that this freshwater protozoan is capable of the stepwise methylation of sulfide and selenide, leading to the release of volatile methylated sulfur or selenium gases. PMID:3674871

  1. Enzymatic methylation of sulfide, selenide, and organic thiols by Tetrahymena thermophila

    SciTech Connect

    Drotar, A.; Fall, L.R.; Mishalanie, E.A.; Tavernier, J.E.; Fall, R.

    1987-09-01

    Cell extracts from the ciliate Tetrahymena thermophila catalyzed the S-adenosylmethionine-dependent methylation of sulfide. The product of the reaction, methanethiol, was detected by a radiometric assay and by a gas-chromatographic assay coupled to a sulfur-selective chemiluminescence detector. Extracts also catalyzed the methylation of selenide, and the product was shown by gas chromatography-mass spectrometry to be methaneselenol. The sulfide and selenide methyltransferase activities copurified with the aromatic thiol methyltransferase previously characterized from this organism, but heat inactivation experiments suggested the involvement of distinct sulfide and selenide methyltransferases. Short-term toxicity tests were carried out for sulfide, selenide, and their methylated derivatives; the monomethylated forms were somewhat more toxic than the nonmethylated or dimethylated compounds. Cell suspensions of T. thermophila exposed to sulfide, methanethiol, or their selenium analogs emitted methylated derivatives into the headspace. These results suggest that this freshwater protozoan is capable of the stepwise methylation of sulfide and selenide, leading to the release of volatile methylated sulfur or selenium gases.

  2. Journal of Electron Spectroscopy and Related Phenomena 104 (1999) 99107 XPS and EELS study of the bismuth selenide

    E-print Network

    Soares, Edmar Avellar

    1999-01-01

    of the bismuth selenide *V.B. Nascimento, V.E. de Carvalho , R. Paniago, E.A. Soares, L.O. Ladeira, H.D. Pfannes of Hall effect devices. Bismuth selenide, an weaker Se ­Se interaction. The bonds inside these important

  3. Superconducting properties of sulfur-doped iron selenide

    NASA Astrophysics Data System (ADS)

    Abdel-Hafiez, Mahmoud; Zhang, Yuan-Yuan; Cao, Zi-Yu; Duan, Chun-Gang; Karapetrov, G.; Pudalov, V. M.; Vlasenko, V. A.; Sadakov, A. V.; Knyazev, D. A.; Romanova, T. A.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.; Chen, Xiao-Jia

    2015-04-01

    The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For simulating the similar effect by changing the chemical composition due to S doping, we investigate the superconducting properties of high-quality single crystals of FeSe1 -xSx (x =0 , 0.04, 0.09, and 0.11) using magnetization, resistivity, the London penetration depth, and low temperature specific heat measurements. We show that the introduction of S to FeSe enhances the superconducting transition temperature Tc, anisotropy, upper critical field Hc 2, and critical current density Jc. The upper critical field Hc 2(T ) and its anisotropy are strongly temperature dependent, indicating a multiband superconductivity in this system. Through the measurements and analysis of the London penetration depth ?a b(T ) and specific heat, we show clear evidence for strong coupling two-gap s -wave superconductivity. The temperature dependence of ?a b(T ) calculated from the lower critical field and electronic specific heat can be well described by using a two-band model with s -wave-like gaps. We find that a d wave and single-gap BCS theory under the weak-coupling approach cannot describe our experiments. The change of specific heat induced by the magnetic field can be understood only in terms of multiband superconductivity.

  4. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide.

    PubMed

    Lee, Yeseul; Lo, Shih-Han; Chen, Changqiang; Sun, Hui; Chung, Duck-Young; Chasapis, Thomas C; Uher, Ctirad; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2014-01-01

    Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800?K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23-27??W?cm(-1)?K(-2) at temperatures above 400?K. The addition of small amounts (~0.25?mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. The corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity. PMID:24784991

  5. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide

    NASA Astrophysics Data System (ADS)

    Lee, Yeseul; Lo, Shih-Han; Chen, Changqiang; Sun, Hui; Chung, Duck-Young; Chasapis, Thomas C.; Uher, Ctirad; Dravid, Vinayak P.; Kanatzidis, Mercouri G.

    2014-05-01

    Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800?K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23-27??W?cm-1?K-2 at temperatures above 400?K. The addition of small amounts (~0.25?mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. The corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.

  6. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.

    PubMed

    Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin

    2014-04-22

    Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors. PMID:24601530

  7. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium

    SciTech Connect

    Ohta, Yuki; Suzuki, Kazuo T.

    2008-01-15

    All nutritional selenium sources are transformed into the assumed common intermediate selenide for the syntheses of selenoproteins for utilization and/or of selenosugar for excretion. Methylselenol [monomethylselenide, MMSe] is the assumed intermediate leading to other methylated metabolites, dimethylselenide (DMSe) and trimethylselenonium (TMSe) for excretion, and also to the intermediate selenide from methylselenocysteine and methylseleninic acid (MSA). Here, related methylation and demethylation reactions were studied in vitro by providing chemically reactive starting substrates ({sup 76}Se-selenide, {sup 77}Se-MMSe and {sup 82}Se-DMSe) which were prepared in situ by the reduction of the corresponding labeled proximate precursors ({sup 76}Se-selenite, {sup 77}Se-MSA and {sup 82}Se-dimethylselenoxide (DMSeO), respectively) with glutathione, the three substrates being incubated simultaneously in rat organ supernatants and homogenates. The resulting chemically labile reaction products were detected simultaneously by speciation analysis with HPLC-ICP-MS after converting the products and un-reacted substrates to the corresponding oxidized derivatives (selenite, MSA and DMSeO). The time-related changes in selenium isotope profiles showed that demethylation of MMSe to selenide was efficient but that of DMSe to MMSe was negligible, whereas methylation of selenide to MMSe, and MMSe to DMSe were efficient, and that of DMSe to TMSe occurred less efficiently. The present methylation and demethylation reactions on equilibrium between selenide, MMSe and DMSe without producing selenosugar and selenoproteins indicated that DMSe rather than TMSe is produced as the end product, suggesting that DMSe is to be excreted more abundantly than TMSe. Organ-dependent differences in the methylation and demethylation reactions were characterized for the liver, kidney and lung.

  8. Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.

    NASA Technical Reports Server (NTRS)

    Sigai, A. G.; Wiedemeier, H.

    1972-01-01

    Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.

  9. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell (Los Alamos, NM); Meek, Thomas T. (Knoxville, TN); Blake, Rodger D. (Santa Fe, NM)

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  10. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell (Los Alamos, NM); Meek, Thomas T. (Knoxville, TN); Blake, Rodger D. (Santa Fe, NM)

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  11. Copper Test

    MedlinePLUS

    ... contaminate the sample with an external source of copper. Talk to the health practitioner and/or the laboratory that will perform ... about necessary precautions. If a urine or blood copper test result is higher than expected, the health practitioner may have the test repeated with a ...

  12. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  13. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong

    2013-03-15

    Highlights: ? Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ? The fabricated white LEDs show good white balance. ? CdSe QDs present well green to yellow band luminescence. ? CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  14. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide

    E-print Network

    Zhang, Qinyong

    By adding aluminium (Al) into lead selenide (PbSe), we successfully prepared n-type PbSe thermoelectric materials with a figure-of-merit (ZT) of 1.3 at 850 K. Such a high ZT is achieved by a combination of high Seebeck ...

  15. Recovery of Silver and Gold from Copper Anode Slimes

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu

    2015-02-01

    Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

  16. Recovery of Silver and Gold from Copper Anode Slimes

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu

    2014-09-01

    Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

  17. Theory of two-magnon Raman scattering in alkaline iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Zhang, A. M.; Xu, T. F.; Wu, W. C.

    2014-11-01

    Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the ?{5}×?{5} antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both Ag and Bg channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm-1 are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,±?) and (±?,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe1.6+xSe6 superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.

  18. Potassium silver tin selenide, K2Ag2Sn2Se6

    E-print Network

    Li, Jing

    Potassium silver tin selenide, K2Ag2Sn2Se6 Hongyou Guo,a * Zenghe Li,a Lin Yang,a Ping Wang-dimensional chain structure consisting of K+ cations and one-dimensional [Ag2Sn2Se6]2À anions. The chain is constructed by edge- sharing bitetrahedral [Sn2Se6] units connected in a 1:2 ratio via linear Ag+ ions

  19. Copper cyanide

    Integrated Risk Information System (IRIS)

    Copper cyanide ; CASRN 544 - 92 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  20. Copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.

  1. COPPER AND BRAIN FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

  2. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  3. Solid Solution, Mass Transport, and Crystal Growth Studies of Cadmium Iron Selenide.

    NASA Astrophysics Data System (ADS)

    Huang, Xuejun

    Cadmium iron selenide, a semimagnetic semiconductor, has been investigated. Solid solubilities of iron in CdSe were determined at temperatures between 650^ circC and 1100^circC, using the X-ray diffraction Debye-Scherrer powder technique. The solubility limits of Fe in CdSe increase with the temperatures to reach a maximum of about 19.5 mole % FeSe_ {1.24} at 925^circ C, and then decrease with further increasing temperature. Solidification phenomena of the Cd-Fe-Se solid solutions were observed employing optical microscopy, which reveals a typical divorced, eutectic type, nonequilibrium solidification. The combination of the X-ray diffraction and the microscopic investigations yielded a pseudo-binary, eutectic type phase diagram of the Cd-Fe-Se system. Partial pressures of the major vapor species in the Cd-Fe-Se physical and the Cd-Fe-Se-Iodine chemical vapor transport systems were calculated. The partial pressure of gaseous iron species of the PVT system may be neglected compared to those of Cd and Se_2^ecies. This suggests that cadmium iron selenide crystals cannot be grown by the PVT method. For the PVT experiments, using the as-synthesized (CdSe)_ {0.90}(FeSe_{1.24})_{0.10 } source materials, crystals with compositions of 6-8 mole % FeSe_{1.24} were grown at a source temperature of 1000^ circC and a DeltaT of 12^circC. These result are contradictory to the thermodynamic predictions, and were further investigated employing specially purified source materials. Iron contents in the crystals grown in these experiments are close to zero. The transport of iron in the initial mass transport experiments may be due to the chemical impurities (most likely the metal chlorides) in the as-synthesized source materials. Mass transport experiments of the Cd-Fe-Se-Iodine CVT system were performed as a function of source temperatures, the degrees of undercooling (DeltaT), and initial iodine pressures. Promising parameters for the growth of cadmium iron selenide single crystals by the CVT method, e.g., the source temperatures of 800-850 ^circC, initial iodine pressures of 0.5-1.0 atm, and DeltaT of 10 -20^circC, were established. Mass fluxes of cadmium iron selenide were computed using a one -dimensional diffusion equation. The overall trends of the computed mass flux as a function of growth conditions are consistent with the experimental results. However, differences between the theoretical and experimental mass fluxes may be due to the uncertainties of the thermochemical data used and the approximations made in these estimations. Single crystals of cadmium iron selenide with compositions of 6.5-8.5 mole % FeSe_{1.24 } and of about 5 mm edge lengths were successfully grown from the (CdSe)_{0.90 }(FeSe_{1.24})_{0.10} source materials by the CVT method. Compositions of various portions of the bulk crystals are nearly constant along its axis within the error limits, indicating that the crystals possess reasonable compositional uniformity. The indices of the crystal surfaces were obtained by the X -ray diffraction Laue method. The (0001) and (1011) planes usually developed as the natural facets on the surfaces, and (1010) and(1120) as the cleavage planes. A promising chemical etchant for cadmium iron selenide crystals was developed, consisting of about 20 vol. % concentrated HNO_3, 60 vol. % glacial CH _3COOH, and 20 vol. % concentrated H _2SO_4 acids. Etch pit densities of the grown crystals are in the range of 5times10 ^4-rm5times10^5/cm ^2..

  4. Dissimilatory Reduction of Elemental Selenium to Selenide in Sediments and Anaerobic Cultures of Selenium Respiring Bacteria

    NASA Astrophysics Data System (ADS)

    Herbel, M. J.; Switzer-Blum, J.; Oremland, R. S.

    2001-12-01

    Selenium contaminated environments often contain elemental Se (Se0) in their sediments that originates from dissimilatory reduction of Se oxyanions. The forms of Se in sedimentary rocks similarly contain high proportions of Se0, but much of the Se is also in the form of metal selenides, Se-2. It is not clear if the occurrence of these selenides is due to microbial reduction of Se0, or some other biological or chemical process. In this investigation we examined the possibility that bacterial respiratory reduction of Se0 to Se-2 could explain the presence of the latter species in sedimentary rocks. We conducted incubations of anoxic sediment slurries amended with different forms of Se0. High levels of Se0 (mM) were added to San Francisco Bay sediments in order to enhance the detection of soluble HSe-, which was precipitated with Cu2+ then redissolved and quantified by ICP-MS. Concentrations of HSe- were highest in live samples amended with red amorphous Se0 formed by either microbial reduction of Se+4 ("biogenic Se0") or by chemical oxidation of H2Se(g) ("chem. Se0"); very little HSe- was formed in those amended with black crystalline Se0, indicating the general lack of reactivity of this allotrope. Controls poisoned with 10% formalin did not produce HSe- from additions of chem. Se0. Reduction of both forms of red amorphous Se0 to HSe- occurred vigorously in growing cultures of Bacillus selenitireducens, an anaerobic halophile previously isolated from sediments of Mono Lake, CA. Up to 73% and 68% of red amorphous, biogenic Se0 or chem. Se0, respectively, was reduced to HSe- during growth of B. selenitireducens, (incubation time ~ 200 hrs): oxidation of lactate to acetate as well as cell density increases indicated that a dissimilatory reduction pathway was likely. Reduction was most enhanced when cells were previously grown on elemental sulfur or Se+4. In contrast to the growth experiments, washed cell suspensions of B. selenitireducens exhibited no HSe- production when amended with red amorphous or black Se0; however, they could convert up to 34% of added Se+4 to HSe- after its complete reduction to Se0 first occurred. These findings indicate that reduction of Se0 in sediments to HSe- or metal selenides is a bacterial dissimilatory processes, that explains the presence of selenides in some sedimentary rocks.

  5. Tin U --centers formed through nuclear transformations in vitreous arsenic sulfides and selenides

    NASA Astrophysics Data System (ADS)

    Bordovsky, G. A.; Kozhokar', M. Yu.; Marchenko, A. V.; Naletko, A. S.; Seregin, P. P.

    2012-07-01

    It has been shown using the Mössbauer emission spectroscopy for isotope 119Sn that impurity tin atoms formed after the radioactive decay of 119Sb atoms in vitreous arsenic sulfide and selenide are localized in arsenic sites and play the role of two-electron centers with negative correlation energy. The most of daughter 119 m Sn atoms formed after the radioactive decay of the 119 m Te atoms in glasses are arranged in chalcogen sites; they are electrically inactive. Considerable recoil energy of daughter atoms in the case of decay of 119 m Te leads to the appearance of 119 m Sn atoms shifted from chalcogen sites.

  6. Compositional changes of the first sharp diffraction peak in binary selenide glasses

    SciTech Connect

    Bychkov, E.; Benmore, C.J.; Price, D.L.

    2005-11-01

    Compositional changes of the first sharp diffraction peak (FSDP) in the measured structure factor have been studied for several binary selenide glasses using pulsed-neutron and high-energy x-ray diffraction techniques. The observed variations in the FSDP (factor of 10 in the amplitude and {approx_equal}0.5 A{sup -1} in the peak position) reflect multiple aspects in the glass network on both the short- and intermediate-range scales and are also correlated with macroscopic properties. An empirical relation has been discovered relating the compositional dependence of the FSDP position to the local coordination number of the guest atom.

  7. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2015-01-01

    We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with s± symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave vectors. An accurate description of this competition and an inclusion of band-structure and Stoner parameter renormalization effects lead to a value of the coupling constant for an s±-symmetric gap which can produce a superconducting transition temperature consistent with experimental measurements.

  8. Ovonic switching in tin selenide thin films. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.

    1974-01-01

    Amorphous tin selenide thin films which possess Ovonic switching properties were fabricated using vacuum deposition techniques. Results obtained indicate that memory type Ovonic switching does occur in these films the energy density required for switching from a high impedance to a low impedance state is dependent on the spacing between the electrodes of the device. The switching is also function of the magnitude of the applied voltage pulse. A completely automated computer controlled testing procedure was developed which allows precise control over the shape of the applied voltage switching pulse. A survey of previous experimental and theoretical work in the area of Ovonic switching is also presented.

  9. Copper in diet

    MedlinePLUS

    Copper is an essential trace mineral present in all body tissues. ... Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron Manganese, Molybdenium, Nickel, Silicon, Vanadium, ...

  10. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30?% and 4.63?% for Co0.85 Se, 7.85?% and 4.37?% for Ni0.85 Se, 6.43?% and 4.24?% for Cu0.50 Se, 7.64?% and 5.05?% for FeSe, and 9.22?% and 5.90?% for Ru0.33 Se in comparison with 6.18?% and 3.56?% for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. PMID:25358619

  11. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    SciTech Connect

    Ali, Zulfiqar; Cao, Chuanbao Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed; Butt, Sajid

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ?0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  12. Electrical Switching and Phase Transformation in Silver Selenide Nanowires David T. Schoen, Chong Xie, and Yi Cui*

    E-print Network

    Cui, Yi

    , California 94305 Received November 22, 2006; E-mail: yicui@stanford.edu Resistance switching in solid, they may offer the potential to study in depth the fundamental processes involved in resistance switchingElectrical Switching and Phase Transformation in Silver Selenide Nanowires David T. Schoen, Chong

  13. Detection of mycobacterial DNA by a specific and simple lateral flow assay incorporating cadmium selenide quantum dots.

    PubMed

    Cimaglia, Fabio; Liandris, Emmanouil; Gazouli, Maria; Sechi, Leonardo; Chiesa, Maurizio; De Lorenzis, Enrico; Andreadou, Margarita; Taka, Styliani; Mataragka, Antonia; Ikonomopoulos, John

    2015-12-01

    Cadmium selenide quantum dots have been incorporated to a lateral flow assay for the specific and very simple detection of different mycobacterial DNA targets within only a few minutes, bypassing the complexity of conventional DNA hybridization assays. The method extends our previous work on protein detection using an identical procedure. PMID:26070989

  14. An Selenide-Based Approach to Photochemical Cleavage of Peptide and Protein Backbones at Engineered Backbone Esters

    PubMed Central

    Eastwood, Amy L.; Blum, Angela P.; Zacharias, Niki M.; Dougherty, Dennis A.

    2010-01-01

    A strategy for photochemical cleavage of peptide and protein backbones is described, which is based on a selenide-mediated cleavage of a backbone ester moiety. Studies in model systems establish the viability of the chemistry and suggest the method could be a valuable tool for chemical biology studies of proteins. PMID:19902952

  15. Mechanical stabilities and nonlinear properties of monolayer Gallium selenide under tension

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Xia, Suxia; Hou, Bin; Gao, Tao; Zhang, Ru

    2015-05-01

    The mechanical stabilities and nonlinear properties of monolayer Gallium selenide (GaSe) under tension are investigated by using density functional theory (DFT). The ultimate stresses and ultimate strains and the structure evolutions of monolayer GaSe under armchair (AC), zigzag (ZZ) and equiaxial (EQ) tensions are predicted. A thermodynamically rigorous continuum description of nonlinear elastic response is given by expanding the elastic strain energy density in a Taylor series in Lagrangian strain truncated after the fifth-order term. Fourteen nonzero independent elastic constants are determined by least-square fit to the DFT calculations. Pressure-dependent elastic constants (Cij(P)) and pressure derivatives of Cij (P) (C'ij) are also calculated. Calculated values of ultimate stresses and strains and the in-plane Young's modulus are all positive. It proves that monolayer GaSe is mechanically stable.

  16. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

    PubMed Central

    Zeljkovic, Ilija; Scipioni, Kane L.; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-01-01

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor. PMID:25814140

  17. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

    NASA Astrophysics Data System (ADS)

    Zeljkovic, Ilija; Scipioni, Kane L.; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R.; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-03-01

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.

  18. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide.

    PubMed

    Zeljkovic, Ilija; Scipioni, Kane L; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-01-01

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor. PMID:25814140

  19. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    SciTech Connect

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-21

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  20. Resonance enhancement of nonlinear photoluminescence in gallium selenide and related compounds

    SciTech Connect

    Angermann, Ch; Karich, P; Kador, Lothar; Allakhverdiev, K R; Baykara, T; Salaev, E Yu

    2012-05-31

    Maker fringe experiments on the layered chalcogenide semiconductor gallium selenide (GaSe) with weak cw diode lasers are presented. It is demonstrated that nonlinear photoluminescence emitted by this material and by the similar compound GaSe{sub 0.9}S{sub 0.1} under illumination with a 632.8-nm He - Ne laser shows very strong resonance enhancement upon heating when the absorption edge and exciton levels are shifted towards the laser line. The photoluminescence appears to be strongest when the energy level of the direct exciton, which emits it, is resonant with the photon energy of the laser. The previously observed enhancement of the photoluminescence by electric fields is interpreted in this context.

  1. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    SciTech Connect

    Jacob, Rajani Philip, Rachel Reena Nazer, Sheeba Abraham, Anitha Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-28

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ?1.78eV with high absorption coefficient ?10{sup 6}/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80–330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ?2.6?m and the films showed good photo response.

  2. Synthesis and characterization of lead selenide nanocrystal quantum dots and wires.

    PubMed

    Seo, Weonsik; Yun, Ju-Hyung; Park, Yun Chang; Han, Chang-Soo; Lee, Jihye; Jeong, Sohee

    2011-05-01

    Lead chalcogenide nanocrystalline materials offer possibilities of improving the efficiency of various optoelectric/thermoelectric applications, especially in solar cells, by generating more carriers with incoming photons, or by extending the bandgap toward the infra-red region. In this work, we suggest the synthetic approach of creating extended PbSe structures which shows better performances when incorporated into an electric device. Firstly, we synthesized monodisperse cubic-structured single-crystalline lead selenide nanocrystal quantum dots using lead acetate and oleic acid in non-coordinating solvent without additional surfactants. Also, single-crystal cubic PbSe nanowires were synthesized in a mixture of surfactants such as trioctylphosphine and phenyl ether. Morphologies of wires and dots were precisely controlled via reaction temperature and the surface ligands. Phenyl ether was found to facilitate the oriented attachment. Further, current-voltage characteristics of drop-casted 2D arrays of nanocrystalline materials were examined. PMID:21780455

  3. M-lines characterization of selenide and telluride thick films for mid-infrared interferometry.

    PubMed

    Labadie, Lucas; Vigreux-Bercovici, Caroline; Pradel, Annie; Kern, Pierre; Arezki, Brahim; Broquin, Jean-Emmanuel

    2006-09-01

    Nulling interferometry is an astronomical technique that requires to combine extremely flat wavefronts to achieve a deep rejection ratio in order to detect Earth-like planets in the mid-infrared band [5 - 20 microm]. Similarly to what is done in the near-infrared, high spatial filtering of the incoming beams can be achieved using single-mode waveguides operating in the mid-infrared. An appreciable reduction of the instrumental complexity is also possible using integrated optics (IO) devices in this spectral range. The lack of single-mode guided optics in the mid-infrared has motivated the present technological study to demonstrate the feasibility of dielectric waveguides functioning at longer wavelengths. We propose to use selenide and telluride components to pursue the development of more complex IO functions. PMID:19529223

  4. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2015-03-01

    We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with s +/- -symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave vectors. An accurate description of this competition and an inclusion of band structure and Stoner parameter renormalization effects lead to a value of the coupling constant for an s +/- symmetric gap which can produce a superconducting transition temperature consistent with experimental measurements. This work was supported by NSF Grant No. DMR10-1006184 and by DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the DOE at NERSC.

  5. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.

    PubMed

    Hébert, S; Berthebaud, D; Daou, R; Bréard, Y; Pelloquin, D; Guilmeau, E; Gascoin, F; Lebedev, O; Maignan, A

    2016-01-13

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of 'rattlers'…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites). PMID:26642835

  6. The growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Elmer E.; Rosenberger, Franz E.; Cheng, Hai-Yuin

    1990-01-01

    Growth and characterization studies will be performed on zinc selenide single crystals. The high temperature outgassing behavior of the silica ampoule material will be studied in order to develop a cleaning and bake-out procedure that will minimize the amount of impurities introduced into the vapor from the ampoule materials and in particular during the seal-off procedure. The outgassing behavior of the ZnSe starting material will be studied during high vacuum refinement at elevated temperatures in order to develop a temperature pressure program that will optimize the removal of impurities while minimizing a shift in stoichiometry due to preferred evaporation of the higher fugacity component. The mass spectrometer system was completed, and after calibration, will be used to perform the above tasks. The system and its operation is described in detail.

  7. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    NASA Astrophysics Data System (ADS)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6?m and the films showed good photo response.

  8. Chalcogenide clusters of copper and silver from silylated chalcogenide sources.

    PubMed

    Fuhr, Olaf; Dehnen, Stefanie; Fenske, Dieter

    2013-02-21

    This review summarizes the rich structural variety of copper and silver chalcogenide clusters with protecting ligand shells of phosphane and/or organic ligands that were generated starting out from silylated chalcogenide sources. This route turned out to be fairly selective and thus allows for the isolation of uniform, polynuclear to nanosized cluster molecules that can consist of only a few or up to hundreds of metal atoms, being bridged by the chalcogen atoms. However, all of these clusters are only kinetically stable with respect to the formation of the binary coinage metal chalcogen phases, but do not collapse into the solid M(2)E materials owing to the protection by bulky ligands on the surface. Upon a more detailed analysis of the development of the structural properties with the cluster size, one recognizes differences for the particular M/E combinations: whereas copper chalcogenide and silver selenide clusters show a clear tendency to approach structural patterns of the Cu(2)E bulk, most obvious for the Cu/Se combination, this is not visible for silver sulfide clusters, even not at the largest species with 490 silver and 302 sulfur atoms. Besides the discussion on the structures of title compounds, the review presents insight into the bonding properties, reactivity, thermal and photophysical properties. The latter can be interpreted in terms of the quantum confinement effect, thus demonstrating the clusters to be understood as intermediates between mononuclear complexes and binary bulk phases. PMID:22918377

  9. SIMS study of effect of Cr adhesion layer on the thermal stability of silver selenide thin films on Si

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Tyagi, A. K.; Balamurugan, A. K.; Varma, Shikha; Kasiviswanathan, S.

    2008-04-01

    Effect of heat treatment on silver selenide films grown from diffusion-reaction of Ag and Se films on Cr-buffered Si substrates was investigated up to 400 °C. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS) were used to characterize the films. XRD patterns of the films showed stress assisted change in preferential orientation of the films upon annealing: the films annealed at 200 °C exhibited a strong orientation along (2 0 0) plane, which changed to (0 1 3) after annealing at 300 and 400 °C. Dynamic SIMS measurements showed that Cr is confined to the interface and that there is no diffusion of Cr into silver selenide.

  10. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  11. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy

    NASA Astrophysics Data System (ADS)

    Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan

    2013-06-01

    Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy.

  12. Development of bismuth tellurium selenide nanoparticles for thermoelectric applications via a chemical synthetic process

    SciTech Connect

    Kim, Cham; Department of Chemical Engineering, Pohang University of Science and Technology , San 31 Hyoja-dong, Pohang 790-784 ; Kim, Dong Hwan; Han, Yoon Soo; Chung, Jong Shik; Park, SangHa; Park, Soonheum; Kim, Hoyoung

    2011-03-15

    Research highlights: {yields} We synthesized a Bi{sub 2}Te{sub y}Se{sub 3-y} nano-compound via a chemical synthetic process. {yields} The compound was sintered to achieve an average grain size of about 300 nm. {yields} The resulting sintered body showed very low thermal conductivity. It is likely caused by the vigorous phonon scattering of the nano-sized grains. -- Abstract: Bismuth tellurium selenide (Bi{sub 2}Te{sub y}Se{sub 3-y}) nanoparticles for thermoelectric applications are successfully prepared via a water-based chemical reaction under atmospheric conditions. The nanostructured compound is prepared using a complexing agent (ethylenediaminetetraacetic acid) and a reducing agent (ascorbic acid) to stabilize the bismuth precursor (Bi(NO{sub 3}){sub 3}) in water and to favor the reaction with reduced sources of tellurium and selenium. The resulting powder is smaller than ca. 100 nm and has a crystalline structure corresponding to the rhombohedral Bi{sub 2}Te{sub 2.7}Se{sub 0.3}. The nanocrystalline powder is sintered via a spark plasma sintering process to obtain a sintered body composed of nano-sized grains. Important transport properties of the sintered body are measured to calculate its most important characteristic, the thermoelectric performance. The results demonstrate a relationship between the nanostructure of the sintered body and its thermal conductivity.

  13. Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends

    PubMed Central

    2014-01-01

    Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3?,7?-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. PMID:24490650

  14. Photoluminescence properties of cadmium-selenide quantum dots embedded in a liquid-crystal polymer matrix

    SciTech Connect

    Tselikov, G. I. Timoshenko, V. Yu.; Plenge, J.; Ruehl, E.; Shatalova, A. M.; Shandryuk, G. A.; Merekalov, A. S.; Tal'roze, R. V.

    2013-05-15

    The photoluminescence properties of cadmium-selenide (CdSe) quantum dots with an average size of {approx}3 nm, embedded in a liquid-crystal polymer matrix are studied. It was found that an increase in the quantum-dot concentration results in modification of the intrinsic (exciton) photoluminescence spectrum in the range 500-600 nm and a nonmonotonic change in its intensity. Time-resolved measurements show the biexponential decay of the photoluminescence intensity with various ratios of fast and slow components depending on the quantum-dot concentration. In this case, the characteristic lifetimes of exciton photoluminescence are 5-10 and 35-50 ns for the fast and slow components, respectively, which is much shorter than the times for colloidal CdSe quantum dots of the same size. The observed features of the photoluminescence spectra and kinetics are explained by the effects of light reabsorption, energy transfer from quantum dots to the liquid-crystal polymer matrix, and the effect of the electronic states at the CdSe/(liquid crystal) interface.

  15. Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-k dielectric stack

    SciTech Connect

    Lin, Chi-Chou; Kuo, Yue

    2014-02-28

    Metal-oxide-semiconductor capacitors made of the nanocrystalline cadmium selenide nc-CdSe embedded Zr-doped HfO{sub 2} high-k stack on the p-type silicon wafer have been fabricated and studied for their charge trapping, detrapping, and retention characteristics. Both holes and electrons can be trapped to the nanocrystal-embedded dielectric stack depending on the polarity of the applied gate voltage. With the same magnitude of applied gate voltage, the sample can trap more holes than electrons. A small amount of holes are loosely trapped at the nc-CdSe/high-k interface and the remaining holes are strongly trapped to the bulk nanocrystalline CdSe site. Charges trapped to the nanocrystals caused the Coulomb blockade effect in the leakage current vs. voltage curve, which is not observed in the control sample. The addition of the nanocrystals to the dielectric film changed the defect density and the physical thickness, which are reflected on the leakage current and the breakdown voltage. More than half of the originally trapped holes can be retained in the embedded nanocrystals for more than 10 yr. The nanocrystalline CdSe embedded high-k stack is a useful gate dielectric for this nonvolatile memory device.

  16. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy

    PubMed Central

    Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan

    2013-01-01

    Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy. PMID:23770650

  17. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect

    Gupta, Vinay; Department of Physics, University of California, Santa Barbara, California 93106 ; Upreti, Tanvi; Chand, Suresh

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7?-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b?]dithiophene-2,6-diyl) bis(6-fluoro-4-(5?-hexyl-[2,2?-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc})?=?5.45?mA/cm{sup 2}, open circuit voltage (V{sub oc})?=?0.727?V, and fill factor (FF)?=?51%, and a power conversion efficiency?=?2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  18. Biokinetics and in vivo distribution behaviours of silica-coated cadmium selenide quantum dots.

    PubMed

    Vibin, M; Vinayakan, R; John, Annie; Raji, V; Rejiya, C S; Abraham, Annie

    2011-08-01

    Recently, quantum dots derived from trace elements like cadmium and selenium have attracted widespread interest in biology and medicine. They are rapidly being used as novel tools for both diagnostic and therapeutic purposes. In this report, we evaluated the distribution of silica-coated cadmium selenide (CdSe) quantum dots (QDs) following intravenous injection into male Swiss albino mice as a model system for determining tissue localization using in vivo fluorescence and ex vivo elemental analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). Trioctylphosphine oxide-capped CdSe quantum dots were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane (APS) as silica precursor. ICP-OES was used to measure the cadmium content to indicate the concentration of QDs in blood, organs and excretion samples collected at predetermined time intervals. Meanwhile, the distribution and aggregation state of QDs in tissues were also investigated in cryosections of the organs by fluorescence microscopy. We have demonstrated that the liver and kidney were the main target organs for QDs. Our systematic investigation clearly shows that most of the QDs were metabolized in the liver and excreted via faeces and urine in vivo. A fraction of free QDs, maintaining their original form, could be filtered by glomerular capillaries and excreted via urine as small molecules within 5 days. PMID:20645133

  19. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F. (Pleasanton, CA); Page, Ralph H. (San Ramon, CA); DeLoach, Laura D. (Manteca, CA); Payne, Stephen A. (Castro Valley, CA)

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  20. Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals

    SciTech Connect

    Li, Xufan; Basile Carrasco, Leonardo A; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-01-01

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0 or 60 interlayer rotations. The commensurate stacking configurations (AA and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. The combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  1. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  2. Growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.

  3. Dry autoclaving for the nanofabrication of sulfides, selenides, borides, phosphides, nitrides, carbides, and oxides.

    PubMed

    Pol, Vilas G; Pol, Swati V; Gedanken, Aharon

    2011-03-11

    This review compiles various nanostructures fabricated by a distinct "dry autoclaving" approach, where the chemical reactions are carried out without solvents; above the dissociation temperature of the chemical precursor(s) at elevated temperature in a closed reactor. The diversity to fabricate carbides (SiC, Mo(2) C, WC), oxides (VOx-C, ZnO, Eu(2) O(3) , Fe(3) O(4) , MoO(2) ), hexaborides (LaB(6) , CeB(6) , NdB(6) , SmB(6) , EuB(6) , GdB(6) ), nitrides (TiN, NbN, TaN), phosphides (PtP(2) , WP), sulfides (ZnS, FeS/C, SnS/C, WS(2) , WS(2) /C), and selenides (Zn(1-x) Mn(x) Se/C, Cd(1-x) Mn(x) Se/C), with various shapes and sizes is accounted with plausible applications. This unique single-step, solvent-free synthetic process opens up a new route in the growing nanomaterials science; owing to its considerable advantages on the existing approaches. PMID:20803759

  4. Spray pyrolytic deposition and characterization of lanthanum selenide (La 2Se 3) thin films

    NASA Astrophysics Data System (ADS)

    Bagde, G. D.; Sartale, S. D.; Lokhande, C. D.

    2003-05-01

    The versatile spray pyrolysis technique was employed to prepare thin films of lanthanum selenide (La 2Se 3) on glass and fluorine doped tin oxide (FTO) coated glass substrates under optimized conditions. The deposition temperature was 250 °C. The X-ray studies reveal that the films are polycrystalline with single La 2Se 3 phase. The estimated optical band gap was found to be 2.6 eV. The dielectric properties such as dielectric constant and dielectric loss of the films deposited on FTO coated glass substrates were measured with FTO-La 2Se 3-Ag structure as a function of frequency and the results are reported. At room temperature dielectric constant and dielectric loss for 1 kHz frequency were found to be 6.2 and 0.048, respectively. The room temperature electrical resistivity was of the order of 10 5 ? cm. The La 2Se 3 films are found to be n-type semiconductor.

  5. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence. PMID:26370776

  6. High adherence copper plating process

    DOEpatents

    Nignardot, Henry (Tesuque, NM)

    1993-01-01

    A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

  7. Lab Tracker and Copper Calculator

    MedlinePLUS

    ... Calculator WDA Publications Copper Connection Newsletter Stories Lab Tracker and Copper Calculator Serum Copper (mcg/dl) Ceruloplasmin ( ... Schilsky, we are pleased to offer the Lab Tracker in two convenient formats. We recommend that you ...

  8. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  9. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L. (Baton Rouge, LA); Kanazirev, Vladislav (Sofia, BG)

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  10. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  11. Copper Delivery by Metallochaperone Proteins

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Copper is an essential element in all living organisms, serving as a cofactor for many important proteins and enzymes. Metallochaperone proteins deliver copper ions to specific physiological partners by direct protein-protein interactions. The Atx1-like chaperones transfer copper to intracellular copper transporters, and the CCS chaperones shuttle copper to copper,zinc superoxide dismutase. Crystallographic studies of these two copper chaperone families have provided insights into metal binding and target recognition by metallochaperones and have led to detailed molecular models for the copper transfer mechanism.

  12. Redox control of GPx catalytic activity through mediating self-assembly of Fmoc-phenylalanine selenide into switchable supramolecular architectures.

    PubMed

    Huang, Zupeng; Luo, Quan; Guan, Shuwen; Gao, Jianxiong; Wang, Yongguo; Zhang, Bo; Wang, Liang; Xu, Jiayun; Dong, Zeyuan; Liu, Junqiu

    2014-12-28

    Artificial enzymes capable of achieving tunable catalytic activity through stimuli control of enzymatic structure transition are of significance in biosensor and biomedicine research. Herein we report a novel smart glutathione peroxidise (GPx) mimic with modulatory catalytic activity based on redox-induced supramolecular self-assembly. First, an amphiphilic Fmoc-phenylalanine-based selenide was designed and synthesized, which can self-assemble into nanospheres (NSs) in aqueous solution. The NSs demonstrate extremely low GPx activity. Upon the oxidation of hydroperoxides (ROOH), the selenide can be quickly transformed into the selenoxide form. The change of the molecular structure induces complete morphology transition of the self-assemblies from NSs to nanotubes (NTs), resulting in great enhancement in the GPx catalytic activity. Under the reduction of GSH, the selenoxide can be further reversibly reduced back into the selenide; therefore the reversible switch between the NSs and NTs can be successfully accomplished. The relationship between the catalytic activity and enzymatic structure was also investigated. The dual response nature makes this mimic play roles of both a sensor and a GPx enzyme at the same time, which can auto-detect the signal of ROOH and then auto-change its activity to achieve quick or slow/no scavenging of ROOH. The dynamic balance of ROOH is vital in organisms, in which an appropriate amount of ROOH does benefit to the metabolism, whereas surplus ROOH can cause oxidative damage of the cell instead and this smart mimic is of remarkable significance. We expect that such a mimic can be developed into an effective antioxidant drug and provide a new platform for the construction of intelligent artificial enzymes with multiple desirable properties. PMID:25366375

  13. Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy

    PubMed Central

    Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Rodriguez, Raul D.; Hartmann, Susanne; Zahn, Dietrich R. T.; Honkanen, Seppo; Norwood, Robert A.; Peyghambarian, N.; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha

    2015-01-01

    Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390?nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes. PMID:25989113

  14. Vacancies Ordered in Screw Form (VOSF) and Layered Indium Selenide Thin Film Deposition by Laser Back Ablation

    SciTech Connect

    Beck, Kenneth M.; Wiley, William R.; Venkatasubramanian, Eswaranand; Ohuchi, Fumio S.

    2009-09-30

    Indium selenide thin films are important due to their applications in non-volatile memory and solar cells. In this work, we present an initial study of a new application of deposition-site selective laser back ablation (LBA) for making thin films of In2Se3. In-vacuo annealing and subsequent characterization of the films by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that control of substrate temperature during deposition and post-deposition annealing temperature is critical in determining the phase and composition of the films. The initial laser fluence and target film thickness determine the amount of material deposited onto the substrate.

  15. COPPER RESEARCH UPDATE

    EPA Science Inventory

    This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...

  16. Structural and topological control on physical properties of arsenic selenide glasses.

    PubMed

    Kaseman, Derrick C; Hung, Ivan; Gan, Zhehong; Aitken, Bruce; Currie, Steven; Sen, Sabyasachi

    2014-02-27

    The structures of Ge-doped arsenic selenide glasses with Se contents varying between 25 and 90 at. % are studied using a combination of high-resolution, two-dimensional (77)Se nuclear magnetic resonance (NMR) and Raman spectroscopy. The results indicate that, in contrast to the conventional wisdom, the compositional evolution of the structural connectivity in Se-excess glasses does not follow the chain-crossing model, and chemical order is likely violated with the formation of a small but significant fraction of As-As bonds. The addition of As to Se results in a nearly random cross-linking of Se chains by AsSe3 pyramids, and a highly chemically ordered network consisting primarily of corner-shared AsSe3 pyramids is formed at the stoichiometric composition. Further increase in As content, up to 40 at. % Se, results in the formation of a significant fraction of As4Se3 molecules with As-As homopolar bonds, and consequently the connectivity and packing efficiency of the network decrease and anharmonic interactions increase. Finally, in the highly As-rich region with <40 at. % Se, the relative concentration of the As4Se3 molecules decreases rapidly and large clusters of As atoms connected via Se-Se-As and As-Se-As linkages dominate. These three composition regions with distinct structural characteristics and the corresponding mixing entropy of the Se environments are reflected in the appearance of multiple extrema in the compositional variation of a wide range of physical properties of these glasses, including density, glass transition temperature, thermal expansivity, and fragility. PMID:24490990

  17. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared.

    PubMed

    Klein, C A; Miller, R P; Stierwalt, D L

    1994-07-01

    Chemically vapor-deposited zinc selenide exhibits outstanding properties in the infrared and has been established as a prime material for transmissive optics applications. Here we present and discuss data relating to the surface and the bulk absorption forward-looking infrared- (FLIR-) grade chemically vapor-deposited ZnSe, at wavelengths (2-20 µm) and temperatures (100-500 K) of current interest.

    This investigation is based on both spectral emittance measurements and infrared transmission spectroscopy performed in the context of a systems development program. Surface effects can be detected at wavelengths of up to 14 µm and usually predominate at wavelengths of less than 8 µm. Fractional surface absorptions are temperature independent from approximately 200 to 400 K and can be fitted to a Fourier series, at wavelengths ranging from 3.5 to 13.5 µm. The bulk absorption coefficient (?v) is strongly dependent on temperature as well as wavelength, but it can be approximated by a bivariate polynomial expressin that yields recommended values. At wavelengths ? ? 10 µm, ?v decreases with increasing temperature; it is shown that a wavelength-independent Debye-Waller factor provides a correct description of the temperature dependence, thus pointing to infrared-active localized modes. At wavelengths ? ? 14 µm, ?v increases with temperature and exhibits temperature dependencies (T(1.7), T(2.6)) that reflect three- and four-phonon summation processes. Finally, an analysis of the temperature dependence of ?v at 10.6 µm demonstrates that the intrinsic lattice dynamical contribution to bulk absorption at this wavelength should be close to 4 × 10(-4) cm(-1), in accord with the results of earlier laser calorimetry tests performed on exceptionally pure laser-grade chemically vapor-deposited ZnSe.

    PMID:20935788

  18. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  19. Reduction of selenate to selenide by sulfate-respiring bacteria: experiments with cell suspensions and estuarine sediments. [Desulfovibrio desulfuricans

    SciTech Connect

    Zehr, J.P.; Oremland, R.S.

    1987-06-01

    Washed cell suspensions of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of (/sup 75/Se)selenate to (/sup 75/Se)selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was greater than or equal to0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace quantities of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed.

  20. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  1. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments

    USGS Publications Warehouse

    Zehr, J.P.; Oremland, R.S.

    1987-01-01

    Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed.

  2. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating out radioactive contamination, the copper cable was coated with a surrogate contaminant. The demonstration took place at the Bonneville County Technology Center in Idaho Falls, Idaho.

  3. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  4. Copper as a biocidal tool.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2005-01-01

    Copper ions, either alone or in copper complexes, have been used to disinfect liquids, solids and human tissue for centuries. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide as well as an anti-bacterial and anti-fouling agent. Copper also displays potent anti-viral activity. This article reviews (i) the biocidal properties of copper; (ii) the possible mechanisms by which copper is toxic to microorganisms; and (iii) the systems by which many microorganisms resist high concentrations of heavy metals, with an emphasis on copper. PMID:16101497

  5. Soft chemical control of superconductivity in lithium iron selenide hydroxides Li(1-x)Fe(x)(OH)Fe(1-y)Se.

    PubMed

    Sun, Hualei; Woodruff, Daniel N; Cassidy, Simon J; Allcroft, Genevieve M; Sedlmaier, Stefan J; Thompson, Amber L; Bingham, Paul A; Forder, Susan D; Cartenet, Simon; Mary, Nicolas; Ramos, Silvia; Foronda, Francesca R; Williams, Benjamin H; Li, Xiaodong; Blundell, Stephen J; Clarke, Simon J

    2015-02-16

    Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li(1-x)Fe(x)(OH)Fe(1-y)Se (x ? 0.2; 0.02 < y < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (y < 0.05) and when the iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li(1-x)Fe(x)(OH) reservoir layer to fill vacancies in the selenide layer. PMID:25613347

  6. Targeting copper in cancer therapy: 'Copper That Cancer'.

    PubMed

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents. PMID:26313539

  7. Volatility of copper

    SciTech Connect

    Palmer, D.A.; Simonson, J.M.; Joyce, D.B.

    1996-08-01

    The relevant aqueous thermodynamics of copper and its oxides are evaluated and summarized with emphasis on solubility, hydrolysis, and complexation. The solubilities of metallic copper, solid cuprous and cupric oxides in steam measured by Pocock and Stewart in 1963 are discussed and the latter data are fitted in the form of established empirical equations and compared to other existing results. No other sources of data were found for the solubility of copper and cupric oxide in steam and even these data are very limited. Discussion of corresponding available solubility data on both oxide phases in liquid water is given. The possible effects of complexing agents are considered. A brief discussion is provided of the role of surface adsorption in determining the fate of dissolved copper in the boiler. 37 refs., 5 figs., 3 tabs.

  8. Drinking Water Problems: Copper 

    E-print Network

    Dozier, Monty; McFarland, Mark L.; Lesikar, Bruce J.

    2006-01-25

    an alternative drink- ing-water supply such as bottled water. Treatment options for reducing copper concentrations in water include (1) reverse osmosis, (2) distillation or (3) ion exchange. Reverse osmosis and distillation treatment options typically are point...

  9. Thermal expansion of copper

    SciTech Connect

    Wang, K.; Reeber, R.R.

    1996-04-01

    The product of thermal expansion, bulk modulus, and volume, {alpha}{sub v}K{sub T}V, is the partial temperature derivative of the work done by thermal pressure. For copper this thermodynamic product resembles a specific heat (C{sub v}) curve and approaches a constant at high temperature. A recently developed model utilizes available data for this parameter and recommends new copper thermal expansion values from 0 K to the melting point.

  10. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    SciTech Connect

    Kruckeberg, A.L.; Wu, L. )

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population, and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.

  11. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper...CERTIFICATION Drugs § 73.1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper...Identity. (1) The color additive potassium sodium copper chlorophyllin is...

  12. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper...CERTIFICATION Drugs § 73.1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper...Identity. (1) The color additive potassium sodium copper chlorophyllin is...

  13. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper...CERTIFICATION Cosmetics § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper...specifications. The color additive potassium sodium copper chlorophyllin shall...

  14. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper...CERTIFICATION Cosmetics § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper...specifications. The color additive potassium sodium copper chlorophyllin shall...

  15. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper...CERTIFICATION Cosmetics § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper...specifications. The color additive potassium sodium copper chlorophyllin shall...

  16. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper...CERTIFICATION Cosmetics § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper...specifications. The color additive potassium sodium copper chlorophyllin shall...

  17. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper...CERTIFICATION Drugs § 73.1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper...Identity. (1) The color additive potassium sodium copper chlorophyllin is...

  18. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper...CERTIFICATION Cosmetics § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper...specifications. The color additive potassium sodium copper chlorophyllin shall...

  19. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper...CERTIFICATION Drugs § 73.1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper...Identity. (1) The color additive potassium sodium copper chlorophyllin is...

  20. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper...CERTIFICATION Drugs § 73.1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper...Identity. (1) The color additive potassium sodium copper chlorophyllin is...

  1. Disordered Fe vacancies and superconductivity in potassium-intercalated iron selenide (K2-x Fe4+y Se5)

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Han; Chen, Ta-Kun; Chang, Chung-Chieh; Hsu, Chia-Hao; Lee, Yung-Chi; Wang, Ming-Jye; Wu, Phillip M.; Wu, Maw-Kuen

    2015-07-01

    In the high-T c potassium-intercalated FeSe, there has been significant debate regarding what the exact parent compound is. Here we show that the Fe-vacancy ordered K2Fe4Se5 is the magnetic, Mott insulating parent compound of the superconducting state. Non-superconducting K2Fe4Se5 becomes a superconductor after high-temperature annealing, and the overall picture indicates that superconductivity in K2-x Fe4+y Se5 originates from the Fe-vacancy order-to-disorder transition. Thus, the long-pending question as to whether magnetic and superconducting state are competing or cooperating for cuprate superconductors may also apply to the Fe-chalcogenide superconductors. It is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly to the superconducting cuprates.

  2. Electrical Transport and Grain Growth in Solution-Cast, Chloride-Terminated Cadmium Selenide Nanocrystal Thin Films

    PubMed Central

    2015-01-01

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (?150 °C), (2) irreversible particle fusion (200–300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl–, while films with 3 atom % Cl– resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5–5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm2/(Vs) and on/off ratios of 105 with less than 0.5 V hysteresis in threshold voltage without the addition of indium. PMID:24960255

  3. Copper Proteins and Oxygen

    PubMed Central

    Frieden, Earl; Osaki, Shigemasa; Kobayashi, Hiroshi

    1965-01-01

    A comprehensive survey of the interaction of the copper proteins and oxygen is presented including a correlation of structure, function, and other properties of the known copper oxidases and of hemocyanin. The origin of their blue color and the structure of copper complexes and copper proteins are related to the oxidation state of copper ion and relevant electronic transitions probably arising from the formation of charge transfer complexes. The oxygen reactions of hemocyanin, ceruloplasmin, and cytochrome oxidase show half-saturation values far below the other Cu enzymes. The formation of hydrogen peroxide as a reaction product is associated with the presence of one Cu atom per oxidase molecule or catalytic system. Water is the corresponding product of the other Cu oxidases with four or more Cu atoms per molecule, except for monoamine oxidase. Mechanisms for the oxidase action of the two and four electron transfer Cu oxidases and tyrosinase are proposed. These reactions account for the number, the oxidation-reduction potential, and the oxidation state of Cu in the resting enzyme, the cyclical change from Cu(II) to Cu(I), the diatomic nature of O2, the sequence of the oxidation and reduction reactions, and other salient features. The catalytic reactions involved in the oxidation of ascorbic acid by plant ascorbate oxidase, ceruloplasmin, and Cu(II) are compared. Finally the substrate specificity, inhibitory control, and the detailed mechanism of the oxidase activity of ceruloplasmin are summarized. PMID:4285728

  4. Critical behaviour of the curved region near 111-facet edge of equilibrium shape cuprous selenide large single crystals

    NASA Astrophysics Data System (ADS)

    Gladi?, Jadranko; Vu?i?, Zlatko; Lovri?, Davorin

    2002-07-01

    Several millimetres large spherical cuprous selenide single crystals with well developed (1 1 1) facets grown at about 30 K below the roughening temperature ( TR?830 K) and rapidly cooled to room temperature were used to test the universality and value of critical exponent describing the surface profile behaviour near the facet edge. Enlarged photographs (52.5 times) of part of the crystal profile were digitised with resulting spatial resolution of 0.1904±0.0001 ?m. After FFT low pass filtering, the position of crystal silhouette edge was determined as the loci of the extremes in the first derivative of each image row intensity profile. For assumed critical dependence z= A( x- x0) ?, the inverse logarithmic derivative applied to crystal profile data points disclosed the extent of intervals of different behaviour, giving independently the respective indicative values of fitting parameters ? and x0. In three distinct regions non-linear Levenberg-Marquardt fitting was applied to original data sets. In the region farthest away from the facet, the behaviour is well described by ??2.5 or by Andreev formula z= A( x0- x) 2+ B( x0- x) 4. In the stepped region, for ?=13.98-17.12° (tilt angle relative to facet plane), the critical exponent ?=1.499±0.003 is found, in agreement with Pokrovsky-Talapov universality class predicted value of ?= {3}/{2}. The step interaction energy, step free energy and facet free energy ratios obtained from data fitting parameters only, are compared to published values for 4He, Si and Pb single crystals. The behaviour in the immediate vicinity of the facet edge is discussed in the light of dynamics features recently observed on different single crystals during growth (cuprous selenide, 4He) and equilibration (Pb).

  5. Copper and copper-nickel alloys as zebra mussel antifoulants

    SciTech Connect

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K.

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  6. 24-hour urine copper test

    MedlinePLUS

    The 24-hour urine copper test measures the amount of copper in a urine sample. ... A 24-hour urine sample is needed. On day 1, urinate into the toilet when you get up in the morning. Afterwards, collect ...

  7. High adherence copper plating process

    DOEpatents

    Nignardot, H.

    1993-09-21

    A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.

  8. Acid copper sulfate plating bath: Control of chloride and copper

    SciTech Connect

    Borhani, K.J.

    1992-08-01

    Plated-through holes in high-reliability printed wiring boards require a ductile copper plate of uniform consistency. The level of control of the chemical constituents in the electroplating solutions dictates the physical properties of the copper plate. To improve the control of the chemical bath constituents, in-situ methods for electrochemically determining copper and chloride in acid copper sulfate baths were developed. A solid-state ion-selective electrode was used for the chloride ion and proved to be more reproducible than conventional silver chloride turbidimetric methods. The use of a copper solid-state ion-selective electrode in-situ was also successful in this application.

  9. Brazing copper to dispersion-strengthened copper

    SciTech Connect

    Ryding, D.G.; Allen, D.; Lee, R.

    1996-08-01

    The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail that has been possible to date. The beam is produced by using third-generation insertion devices in a 7 GeV electron/positron storage ring that is 1100 meters in circumference. The heat load from these intense high power devices is very high and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm{sup 2}. Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop{reg_sign}, a dispersion strengthened copper, is the desired material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  10. Oxygen removal from blister copper by copper oxide formation

    NASA Astrophysics Data System (ADS)

    Coursol, Pascal; Davis, Boyd; Roy, Alain; Lebel, Martin

    2005-07-01

    In this study, an alternative approach is proposed to remove oxygen from blister copper through copper oxide formation. The addition of fluxes promotes both the copper oxide formation and oxygen reduction in molten copper. Fundamental aspects of this proposed process are described in this article. Three different fluxes (Na2O-SiO2, CaO-Na2O, and FeO-Na2O-SiO2) were tested at the laboratory scale. This work showed encouraging results with oxygen in copper being reduced to industrial specifications without the conventional hydrocarbon reduction step. This approach could be used industrially to remove oxygen from blister copper prior to anode casting and points to a new concept in deoxygenation of copper.

  11. Creative Copper Crests

    ERIC Educational Resources Information Center

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  12. Copper leaching from chalcopyrite concentrates

    NASA Astrophysics Data System (ADS)

    Wang, Shijie

    2005-07-01

    Chalcopyrite (CuFeS2) is one of the most abundant copper-bearing minerals, which accounts for approximately 70 percent of the world’s known copper reserves. For more than 30 years, a significant number of processes have been developed to leach copper from chalcopyrite concentrates. These processes recover copper via hydrometallurgical leaching of the copper component of chalcopyrite concentrates, followed by solvent extraction and electrowinning. A number of demonstration plant operations have been conducted, but as of this writing none of the processes have become completely commercially operational.

  13. Presenilin Promotes Dietary Copper Uptake

    PubMed Central

    Southon, Adam; Greenough, Mark A.; Ganio, George; Bush, Ashley I.; Burke, Richard; Camakaris, James

    2013-01-01

    Dietary copper is essential for multicellular organisms. Copper is redox active and required as a cofactor for enzymes such as the antioxidant Superoxide Dismutase 1 (SOD1). Copper dyshomeostasis has been implicated in Alzheimer’s disease. Mutations in the presenilin genes encoding PS1 and PS2 are major causes of early-onset familial Alzheimer’s disease. PS1 and PS2 are required for efficient copper uptake in mammalian systems. Here we demonstrate a conserved role for presenilin in dietary copper uptake in the fly Drosophila melanogaster. Ubiquitous RNA interference-mediated knockdown of the single Drosophila presenilin (PSN) gene is lethal. However, PSN knockdown in the midgut produces viable flies. These flies have reduced copper levels and are more tolerant to excess dietary copper. Expression of a copper-responsive EYFP construct was also lower in the midgut of these larvae, indicative of reduced dietary copper uptake. SOD activity was reduced by midgut PSN knockdown, and these flies were sensitive to the superoxide-inducing chemical paraquat. These data support presenilin being needed for dietary copper uptake in the gut and so impacting on SOD activity and tolerance to oxidative stress. These results are consistent with previous studies of mammalian presenilins, supporting a conserved role for these proteins in mediating copper uptake. PMID:23667524

  14. The pitting corrosion of copper

    SciTech Connect

    Edwards, M. . Dept. of Civil Engineering); Ferguson, J.F. . Dept. of Civil Engineering); Reiber, S.H. )

    1994-07-01

    Some current theories of copper pitting are contradicted by practical experience. Although it has been theorized that chloride initiates copper pitting attack, simple experiments show that the presence of chloride ion actually tends to decrease the likelihood that pitting will occur. In contrast, sulfate plays no role in pitting theory, yet sulfate has consistently demonstrated a propensity to initiate and propagate copper pitting. New theories are required to reconcile pitting theory and practical observation in order to allow the rational mitigation of copper pitting problems. In addition, the presence of natural organic matter (NOM) in water supplies prevents or inhibits certain copper corrosion problems. As a result, recent efforts to remove NOM as a means of controlling disinfection by-products may lead to increased copper corrosion problems.

  15. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design.

    PubMed

    Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domínguez-Álvarez, Enrique; Kie?-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus

    2015-01-01

    Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant. PMID:26263963

  16. Growth and thermoelectric properties of multilayer thin film of bismuth telluride and indium selenide via rf magnetron sputtering.

    PubMed

    Kim, Hyo-Jung; Kim, Kwang-Chon; Choi, Won Chel; Kim, Jin-Sang; Kim, Young-Hwan; Kim, Seong Il; Park, Chan

    2012-04-01

    A bismuth telluride (BT)/indium selenide (IS) multilayer film was deposited at room temperature by rf magnetron sputtering on a sapphire substrate in order to investigate how the multilayered structure affects the microstructure and thermoelectric properties. The effect of annealing at different temperatures was also studied. The results were compared with those from a BT film with the same thickness. A TEM study showed that the interface between the BT and IS layers became vague as the annealing temperature increased, and the BT layer crystallized while the IS layer did not. The presence of thin IS layers can help to limit the evaporation of Te from the BT/IS multilayer film, thus increasing the amount of Bi2Te3 phase in the multilayer film as compared with that of the BT film. An abrupt increase in the Seebeck coefficient of the multilayer film was observed when annealed at 300 degrees C, and the resistivity of the annealed multilayer film was high compared to that of the BT film. This result can also be explained by the proposed role of the IS layer, which limits the evaporation of Te at high temperature. The highest power factor of -3.9 x 10(-6) W/K2 cm was obtained at room temperature from the multilayer film annealed at 300 degrees C. PMID:22849183

  17. Temperature anomaly of the coefficient of ultrasonic absorption by electrons of hybridized states of cobalt impurities in mercury selenide

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, I. V.; Okulov, V. I.; Gudkov, V. V.; Mayakin, V. Yu.; Sarychev, M. N.; Andriichuk, M. D.; Paranchich, L. D.

    2015-05-01

    The effects of the interaction of ultrasound with donor d electrons of cobalt impurity atoms at low concentrations in mercury selenide crystals have been investigated. The temperature dependences of the electronic contribution to the absorption coefficient at a frequency of 53 MHz in crystals with cobalt concentrations from 1018 to 1020 cm-3 and in the undoped crystal have been observed experimentally. It has been found that crystals with impurities are characterized by an anomalous nonmonotonic temperature dependence of the absorption coefficient of the slow transverse wave in a narrow temperature range near 10 K. A smooth monotonic temperature dependence has been observed for longitudinal and fast transverse waves. Based on the developed theoretical interpretation, it has been established that the anomaly in the temperature dependence of the absorption coefficient of a slow transverse wave is associated with the hybridization of impurity d states in the conduction band of the crystal. A comparison of the theoretical and experimental dependences has made it possible to determine the parameters characterizing the hybridized electronic states.

  18. Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties

    PubMed Central

    Sun, Liping; Lin, Zhiqin; Peng, Jian; Weng, Jian; Huang, Yizhong; Luo, Zhengqian

    2014-01-01

    Bismuth selenide (Bi2Se3), a new topological insulator, has attracted much attention in recent years owing to its relatively simple band structure and large bulk band gap. Compared to bulk, few-layer Bi2Se3 is recently considered as a highly promising material. Here, we use a liquid-phase exfoliation method to prepare few-layer Bi2Se3 in N-methyl-2-pyrrolidone or chitosan acetic solution. The resulted few-layer Bi2Se3 dispersion demonstrates an interesting absorption in the visible light region, which is different from bulk Bi2Se3 without any absorption in this region. The absorption spectrum of few-layer Bi2Se3 depends on its size and layer number. At the same time, the nonlinear and saturable absorption of few-layer Bi2Se3 thin film in near infrared is also characterized well and further exploited to generate laser pulses by a passive Q-switching technique. Stable Q-switched operation is achieved with a lower pump threshold of 9.3?mW at 974?nm, pulse energy of 39.8?nJ and a wide range of pulse-repetition-rate from 6.2 to 40.1?kHz. Therefore, the few-layer Bi2Se3 may excite a potential applications in laser photonics and optoelectronic devices. PMID:24762534

  19. Investigation of reaction mechanisms of bismuth tellurium selenide nanomaterials for simple reaction manipulation causing effective adjustment of thermoelectric properties.

    PubMed

    Kim, Cham; Kim, Dong Hwan; Kim, Jong Tae; Han, Yoon Soo; Kim, Hoyoung

    2014-01-22

    We synthesized ternary n-type bismuth tellurium selenide nanomaterials for thermoelectric applications via a water-based chemical reaction under an atmospheric environment. In this work, bismuth nitrate was employed as a bismuth precursor and was hydrolyzed to form bismuth hydroxide in an aqueous solution. Ascorbic acid was used to dissolve the bismuth hydroxide and give a reactive bismuth source (Bi(3+) ions) that was able to react with anion sources (Te(2-)/Se(2-) ions). Ascorbic acid played a role in reducing bismuth hydroxide to an unreactive bismuth source (bismuth particles, Bi(0)). We confirmed that ascorbic acid dissolved or reduced bismuth hydroxide depending on the solution pH. Because either Bi(3+) ions or bismuth particles were generated depending on the pH, the nanomaterial stoichiometry was pH dependent. Nanomaterials prepared at various pH levels were individually sintered using a spark plasma sintering process to measure their thermoelectric transport properties (i.e., carrier concentration, electrical resistivity, Seebeck coefficient, and thermal conductivity). We observed how the transport properties were affected through adjustment of the pH of the reaction and found an appropriate pH for optimizing the transport properties, which resulted in enhancement of the thermoelectric performance. PMID:24372342

  20. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton (12833 S. 82nd Ct., Palos Park, IL 60464); Sinha, Shome N. (5748 Drexel, 2A, Chicago, IL 60637)

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  1. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  2. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  3. Entrainment behavior of copper and copper matte in copper smelting operations

    NASA Astrophysics Data System (ADS)

    Ip, S. W.; Toguri, J. M.

    1992-06-01

    In copper smelting, the loss of copper to the slag due to entrainment is largely influenced by the flotation of copper metal and/or matte in the slag phase. To evaluate this behavior, the surface tension of copper as a function of temperature and oxygen pressure and the interfacial tension of the copper-iron matte-slag system as a function of matte grade were measured. From the surface and interfacial tension values, the spreading and flotation coefficients of the copper, matte, and slag system were calculated. Ternary interfacial energy diagrams were also con-structed using these data. It is shown that matte droplets containing higher than 32 mass pct Cu will not form a film on rising gas bubbles when they collide in the slag phase. However, matte droplets will attach to gas bubbles upon collision and thus can be floated over the entire range of matte composition. Spreading of copper on bubbles is not possible at oxygen pressures between 10-12 and 10-8 atm. Flotation of copper by gas bubble in slag is possible at oxygen pressure higher than 10-9 atm. However, it is feasible for rising matte droplets (attached to rising bubble) to trap and float copper irrespective of the matte grade.

  4. Copper and zinc recycling from copper alloys` spent pickling solutions

    SciTech Connect

    Roman-Moguel, G.J.; Plascencia, G.; Perez, J.

    1995-12-31

    The precipitation of copper and zinc as cements from a copper alloys` spent pickling solution has been studied at laboratory and pilot scale, with the objective of designing an economic process to recover both metals and render a solution to be either recycled to the pickling process or treated in a standard fashion and produce a non-hazardous sludge. The sulfuric acid spent pickling solution already containing copper and zinc was used first to dissolve another solid residue originated in the copper alloys foundry to neutralize part of the acidity. The resulting enriched solution was treated separately with two reductants: sodium borohydride and iron powder varying pH and excess of reductant under constant agitation. Under the best conditions, precipitation of over 95 percent of zinc and copper was achieved together with the reduction of lead and cadmium contents respectively. A process for the combined residues treatment is proposed.

  5. Lead and Copper Control 101

    EPA Science Inventory

    This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...

  6. Copper deficiency mimicking myelodysplastic syndrome

    PubMed Central

    Dalal, Neil; Hooberman, Arthur; Mariani, Rachel; Sirota, Ronald; Lestingi, Timothy

    2015-01-01

    Key Clinical Message Copper deficiency is a rare cause of pancytopenia that may be mistaken for myelodysplastic syndrome. Cytoplasmic vacuolization in erythroid and myeloid precursors is found on bone marrow examination. Patients with a history of abdominal surgery who present with anemia and neutropenia with dysplastic changes should have copper levels checked. PMID:25984314

  7. Antinociceptive effect of butyl (2-phenylethynyl) selenide on formalin test in mice: Evidences for the involvement of serotonergic and adenosinergic systems.

    PubMed

    Luchese, Cristiane; Prigol, Marina; Acker, Carmine Inês; Nogueira, Cristina Wayne

    2010-10-10

    The present study investigated the effect of per oral (p.o.) administration of butyl (2-phenylethynyl) selenide (1-50mg/kg) on formalin-induced nociception in mice. The involvement of serotonergic, adenosinergic, muscarinic cholinergic and opioid mechanisms in the antinociceptive effect was also investigated. Butyl (2-phenylethynyl) selenide inhibited both neurogenic (at doses equal or higher than 10mg/kg) and inflammatory (at doses equal or higher than 25mg/kg) phases of the nociception caused by intraplantar (i.pl.) injection of 2.5% formalin solution (20 microl), with ID(50) values of 36.7 (29.28-46.0) and 20.37 (15.74-26.36) mg/kg, respectively. This compound reduced the formalin-induced paw oedema formation (55 + or - 4%) at doses equal or higher than 25mg/kg. The antinociceptive effect of compound (25mg/kg, p.o.) was reversed by ondansetron (0.5mg/kg, a 5-HT(3) receptor antagonist) and caffeine (3mg/kg, a nonselective adenosine receptor antagonist), but not by atropine (0.1mg/kg, a non selective muscarinic antagonist), WAY100635 (0.1mg/kg, a selective 5-HT(1A) receptor antagonist), ritanserin (1mg/kg, a 5-HT(2) receptor antagonist) and naloxone (1mg/kg, a non selective opioid receptor antagonist). These results indicate that butyl (2-phenylethynyl) selenide produced antinociception in the formalin test through mechanisms that involve an interaction with serotonergic (5-HT(3)) and adenosinergic systems. PMID:20621089

  8. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system.

    PubMed

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-11

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ?7 nm, which exhibited a quantum yield of ?75% as compared to rhodamine 6 G dye(®). As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ?0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco's Modified Eagle Media(®) (DMEM) and Minimum Essential Media(®) (MEM), as compared to the Roswell Park Memorial Institute(®) (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 ?M. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact. PMID:24960126

  9. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system

    NASA Astrophysics Data System (ADS)

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-01

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ˜7 nm, which exhibited a quantum yield of ˜75% as compared to rhodamine 6 G dye®. As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ˜0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco’s Modified Eagle Media® (DMEM) and Minimum Essential Media® (MEM), as compared to the Roswell Park Memorial Institute® (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 ?M. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact.

  10. Theoretical investigation of electronic states and spectroscopic properties of tellurium selenide molecule employing relativistic effective core potentials.

    PubMed

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2014-04-24

    Ab initio based relativistic configuration interaction calculations have been performed to study the electronic states and spectroscopic properties of tellurium selenide (TeSe) - the heaviest heteronuclear diatomic group 16-16 molecule. Potential energy curves of several spin-excluded (?-S) electronic states of TeSe have been constructed and spectroscopic constants of low-lying bound ?-S states within 3.85 eV are reported in the first stage of calculations. The X(3)?(-), a(1)? and b(1)?(+) are found as the ground, first excited and second excited state, respectively, at the ?-S level and all these three states are mainly dominated by …?(4)?(*2) configuration. The computed ground state dissociation energy is in very good agreement with the experimental results. In the next stage of calculations, effects of spin-orbit coupling on the potential energy curves and spectroscopic properties of the species are investigated in details and compared with the existing experimental results. After inclusion of spin-orbit coupling the X(3)(1)?(-)(0(+)) is found as the ground-state spin component of TeSe. The computed spin-orbit splitting between two components of X(3)?(-) state is 1285 cm(-1). Also, significant amount of spin-orbit splitting are found between spin-orbit components (?-components) of several other excited states. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from configuration interaction wave functions. The spin-allowed transition B(3)?(-)-X(3)?(-) and spin-forbidden transition b(1)?(+)(0(+))-X(3)(1)?(-)(0(+)) are found to be the strongest in their respective categories. Electric dipole moments of all the bound ?-S states along with those of the two ?-components of X(3)?(-) are also calculated in the present study. PMID:24509540

  11. Fabrication and material characterization of copper and copper-CNT micropillars

    NASA Astrophysics Data System (ADS)

    Ghanbari, S.; Darabi, J.

    2015-07-01

    In this work, copper micropillars and copper-carbon nanotube (CNT) composite micropillars were fabricated by incorporating an electrodeposition technique with a xurography process. In order to disperse carbon nanotubes in copper-CNT micropillars, various amounts of CNTs were added to the electroplating bath. Surface morphology and phase characterization of copper micropillars and copper-CNT composite micropillars were analyzed by optical microscopy and x-ray diffraction. In addition, the corrosion resistance (Rp) of a bare copper substrate, copper micropillars, and optimum copper-CNT micropillars were studied by electrochemical impedance spectroscopy (EIS) technique in a 3.5 wt.% sodium chloride. Experimental results yielded a corrosion resistance of 200 ? cm2 for the bare copper substrate, 400 ? cm2 for copper micropillars, and 2550 ? cm2 for copper-CNT micropillars, indicating a significantly higher corrosion resistance for copper-CNT micropillars due to a lower chemical reactivity and refinement of crystal structure of copper in micropillars.

  12. Independent Evolution of Heavy Metal-Associated Domains in Copper Chaperones and Copper-Transporting ATPases

    E-print Network

    Jordan, King

    proteins that bind intracellular copper (Cu) and deliver it to Cu-dependent enzymes such as cytochrome -- Copper poisoning -- Wilson disease -- Menkes disease -- Mercury-binding protein Introduction Copper (CuIndependent Evolution of Heavy Metal-Associated Domains in Copper Chaperones and Copper

  13. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  14. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  15. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation...Materials Other Than by Welding § 192.279 Copper pipe. Copper pipe may not be threaded except that copper pipe...

  16. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation...Materials Other Than by Welding § 192.279 Copper pipe. Copper pipe may not be threaded except that copper pipe...

  17. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation...of Materials Other Than by Welding § 192.279 Copper pipe. Copper pipe may not be threaded except that copper...

  18. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation...of Materials Other Than by Welding § 192.279 Copper pipe. Copper pipe may not be threaded except that copper...

  19. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation...of Materials Other Than by Welding § 192.279 Copper pipe. Copper pipe may not be threaded except that copper...

  20. NID Copper Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  1. 2-Pyridyl selenolates of antimony and bismuth: Synthesis, characterization, structures and their use as single source molecular precursor for the preparation of metal selenide nanostructures and thin films.

    PubMed

    Sharma, Rakesh K; Kedarnath, G; Jain, Vimal K; Wadawale, Amey; Nalliath, Manoj; Pillai, C G S; Vishwanadh, B

    2010-10-01

    Reactions of SbCl(3) and BiCl(3) with M'Se-C(5)H(3)(R-3)N (M' = Li or Na; R = H or Me) gave homoleptic selenolate complexes of the general formula [M{Se-C(5)H(3)(R-3)N}(3)] (M = Sb or Bi). The complexes were characterized by elemental analysis, UV-vis and NMR ((1)H, (13)C and (77)Se) spectroscopy. The single crystal X-ray analysis of [M{Se-C(5)H(3)(Me-3)N}(3)].nH(2)O (M/n = Sb/1.5 and Bi/0.5) revealed that the antimony complex adopts a trigonal pyramidal configuration with monodentate selenolate ligands while the bismuth analogue acquires a distorted square pyramidal configuration defined by two chelating and one monodentate selenolate groups. Pyrolysis of [M{Se-C(5)H(3)(Me-3)N}(3)] either in a furnace or in hexadecylamine (HDA) at different temperatures gave a variety of M(2)Se(3) nanostructures. Thin films of metal selenides have also been deposited on glass substrate by aerosol-assisted chemical vapor deposition (AACVD). Both nanostructures and thin films of metal selenides were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). PMID:20714620

  2. Tin sulfide and selenide clusters soluble in organic solvents with the core structures of Sn4S6 and Sn4Se6.

    PubMed

    Zhong, Mingdong; Yang, Zhi; Yi, Yafei; Zhang, Dongxiang; Sun, Kening; Roesky, Herbert W; Yang, Ying

    2015-11-18

    Reactions of LSnCl () (L = N(2,6-iPr2C6H3)(SiMe3)) with sulfur and selenium, respectively under mild conditions yielded two tin chalcogenide clusters. Surprisingly the tin atoms of the L4Sn4S6 () and L4Sn4Se6 () clusters are oxidized from Sn(ii) of the precursor to Sn(iv) of the products under concomitant reduction of elemental sulfur and selenium to sulfide and selenide, respectively. The released chlorine radicals from the precursor LSnCl () react under oxidative addition with another LSnCl molecule to yield the side product LSnCl3 (). The soluble nature of clusters and in organic solvents is a unique property of this class of compounds and makes them suitable for reactions in organic solvents. Compounds and were characterized by single crystal X-ray diffraction and multinuclear NMR investigations. Furthermore in ROP polymerization, the two products show high catalytic activity. For the first time a tin selenide compound functions in ROP catalysis. PMID:26406383

  3. Spray pyrolysis of tin selenide thin-film semiconductors: the effect of selenium concentration on the properties of the thin films

    NASA Astrophysics Data System (ADS)

    Fadavieslam, M. R.; Bagheri-Mohagheghi, M. M.

    2013-08-01

    Thin films of tin selenide (SnxSey) with an atomic ratio of , 1 and 1.5 were prepared on a glass substrate at T = 470°C using a spray pyrolysis technique. The initial materials for the preparation of the thin films were an alcoholic solution consisting of tin chloride (SnCl4· 5H2O) and selenide acide (H2SeO3). The prepared thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy, scanning tunneling microscopy, scanning helium ion microscopy, and UV-vis spectroscopy. The photoconductivity and thermoelectric effects of the SnxSey thin films were then studied. The SnxSey thin films had a polycrystalline structure with an almost uniform surface and cluster type growth. The increasing atomic ratio of r in the films, the optical gap, photosensitivity and Seebeck coefficient were changed from 1.6 to 1.37 eV, 0.01 to 0.31 and -26.2 to -42.7 mV/K (at T = 350 K), respectively. In addition, the XRD patterns indicated intensity peaks in r = 1 that corresponded to the increase in the SnSe and SnSe2 phases.

  4. NMR Study in the Iron-Selenide Rb0:74Fe1:6Se2: Determination of the Superconducting Phase as Iron Vacancy-Free Rb0:3Fe2Se2

    E-print Network

    Paris-Sud 11, Université de

    NMR Study in the Iron-Selenide Rb0:74Fe1:6Se2: Determination of the Superconducting Phase as Iron magnetic resonance (NMR) experiments on Rb0:74Fe1:6Se2 reveal clearly distinct spectra originating from a majority antiferromagnetic (AF) and a minority metallic-superconducting (SC) phase. The very narrow NMR

  5. Majorana Electroformed Copper Mechanical Analysis

    SciTech Connect

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  6. Recent advances in copper radiopharmaceuticals.

    PubMed

    Hao, Guiyang; Singh, Ajay N; Oz, Orhan K; Sun, Xiankai

    2011-04-01

    Copper has five radioisotopes ((60)Cu, (61)Cu, (62)Cu, (64)Cu, and (67)Cu) that can be used in copper radiopharmaceuticals. These radioisotopes decay by mixed emissions of ?+, ?-, and ? with a wide range of half-lives from 9.74 min ((62)Cu) to 2.58 d ((67)Cu), which enable the design and synthesis of a variety of radiopharmaceuticals for different biomedical applications in diagnostic and therapeutic nuclear medicine. However, due to the availability and production cost, the research efforts in copper radiopharmaceuticals are mainly focused on the use of (64)Cu (t(1/2) = 12.7 h; 17.4% ?+, 43% EC, 39% ?-), a radioisotope with low positron energy (E ?+max = 0.656 MeV) that is ideal for positron emission tomography (PET) imaging quantification and ?- emissions along with Auger electron for radiotherapy. Driven by the ever-increasing availability of preclinical and clinical PET scanners, a considerable interest has been seen in the development of novel copper radiopharmaceuticals in the past decade for a variety of diseases as represented by PET imaging of cancer. To avoid unnecessary literature redundancy, this review focuses on the unrepresented research aspects of copper chemistry (e.g. electrochemistry) and their uses in the evaluation of novel nuclear imaging probe design and recent advances in the field towards the practical use of copper radiopharmaceuticals. PMID:22191650

  7. a Study of Volatile Precursors for the Growth of Cadmium Sulphide and Cadmium Selenide by Metal Organic Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Beer, Michael P.

    Available from UMI in association with The British Library. The wide-band-gap semiconductors, cadmium sulphide and cadmium selenide, may be grown by Metal Organic Chemical Vapour Deposition (MOCVD). This method typically involves the reaction of gaseous streams of Me_2 Cd and H_2Y (Y = S, Se) over a heated substrate (usually gallium arsenide) on which the desired compound is grown as an epitaxial layer. Unfortunately, the precursors start to react in the cold zone of the reactor, that is before they reach the heated substrate. This problem is known as prereaction. The problem of prereaction is partially reduced by the use of adducts of dimethyl cadmium in place of the free dialkyl compound although the mechanism by which such adducts block prereaction is unknown. Accordingly, a study of adducts of dimethyl cadmium was undertaken with a view to determining their properties in all phases. The adduct of Me_2Cd with 2,2^ '-bipyridyl was found to be monomeric in the solid state while that with 1,4-dioxane, a volatile compound used for prereaction reduction, was found to be polymeric. A study of adducts in the gas phase using mass spectrometry and gas phase Fourier transform infrared spectroscopy gave no evidence to suggest there is any gas phase association between 1,4-dioxane and dimethyl cadmium. With the 2,2 ^'-bipyridyl adduct some evidence for partial retention of coordinate bonds upon sublimation was obtained. The solid adduct of Me _2Cd with N,N,N^' ,N^'-tetramethylethylenediamine (TMEDA) was prepared as it was hoped that the flexibility of the aliphatic Lewis base would permit the formation of an adduct containing strong co-ordinate bonds which would remain intact upon sublimation. Using gas phase electron diffraction, the structure of the adduct of Me_2Cd and TMEDA was determined. It was shown to exist in the gas phase purely as the associated monomeric species. The adduct was then employed for the growth of CdS and CdSe in an industrial MOCVD apparatus. The possibility of the occurrence of surface initiated processes leading to prereaction was considered. We examined the sulphur containing molecules ethylene sulphide and propylene sulphide with a view to their replacing H_2S in the MOCVD growth of CdS. These precursors were seen to allow the growth of CdS at the relatively low temperature of 350^circ C and there was no evidence of prereaction.(Abstract shortened by UMI.).

  8. NID Copper Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  9. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO); Davis, John W. (Ballwin, MO)

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  10. High copper alloys for dental amalgam.

    PubMed

    Beech, D R

    1982-09-01

    The nature, physical properties and clinical performance of amalgams made from alloys containing copper in excess of 6 per cent by weight are reviewed. There are two basic types of high copper alloy: (a) mixtures of 'spherical' silver/copper or silver/tin/copper particles with low copper low copper lathe-cut or 'spherical' and (b) single composition silver/tin/copper spherical or lathe-cut particles. Copper contents range from 8.5 per cent to 30 per cent. In amalgams made from high copper alloys the soft corrodible gamma 2 (Sn7Hg) phase is reduced or eliminated by preferential formation of the eta (Cu6Sn5) phase. Improved clinical performance (less marginal breakdown) has been related to low creep, little or no gamma 2 phase and the presence of zinc. The possible roles played by these factors in the mechanism of marginal breakdown are discussed. Physical properties are not a reliable guide to the clinical performance of amalgams. Although high copper amalgams as a group show 'superior' physical properties and clinical performance to low copper amalgams, a high copper content does not necessarily mean improved clinical performance. Indeed, certain well-manipulated low copper amalgams can show clinical results comparable with some high copper amalgams, but not as good as the best high copper amalgams. In most clinical studies the silver/copper plus lathe-cut (dispersed phase) alloys and some of the single composition high copper alloys show the greatest clinical durability. The most significant factor in clinical performance is the choice of alloy. PMID:6958652

  11. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This substance...

  12. Plasma dynamic synthesis of ultradispersed copper oxides

    NASA Astrophysics Data System (ADS)

    Shanenkova, Yu; Sivkov, A.; Saygash, A.; Shanenkov, I.

    2015-10-01

    Copper oxide is necessary material for production of superconductors. The issue of obtaining high purity and nanosides CuO is actual. This article shows the results on the obtaining of nanodispersed copper oxide by plasma dynamic method in system based on coaxial magneto plasma accelerator with copper electrodes. Such analyses of ultradispersed synthesized products as X-Ray diffractometry, IR-spectroscopy and thermal analysis were carried out. According to XRD such phases as copper Cu, copper oxide (I) Cu2O, copper oxide (II) CuO, and copper hydroxide hydrate Cu(OH)2·H2O were identified in the product. It was found that with the gradual heating of the initial product up to 800 °C the phase content changed dramatically in terms of enhancing copper oxide phase (up to 97%).

  13. Reliability of copper interconnects in integrated circuits

    E-print Network

    Choi, Zung-Sun

    2007-01-01

    As dimensions shrink and current densities increase, the reliability of metal interconnects becomes a serious concern. In copper interconnects, the dominant diffusion path is along the interface between the copper and the ...

  14. Thermotransport in liquid aluminum-copper alloys

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A thermotransport study was made on a series of liquid aluminum-copper alloys which contained from trace amounts to 33 weight percent copper. The samples in the form of narrow capillaries were held in known temperature gradient of thermotransport apparatus until the stationary state was reached. The samples were analyzed for the concentration of copper along the length. Copper was observed to migrate to the colder regions in all the samples. The heat of transport, Q*, was determined for each composition from a plot of concentration of copper versus reciprocal absolute temperature. The value of Q* is the highest at trace amounts of copper (4850 cal/gm-atom), but decreases with increasing concentration of copper and levels off to 2550 cal/gm-atom at about 25 weight percent copper. The results are explained on the basis of electron-solute interaction and a gas model of diffusion.

  15. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This...

  16. Diamine ligands in copper-catalyzed reactions

    E-print Network

    Surry, David S.

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands ...

  17. Placental copper transport in the brindled mouse

    SciTech Connect

    Garnica, A.; Bates, J.

    1986-03-01

    Pregnant brindled (brin) mice were injected at 16 or 19 days gestation with 2 doses of CuCl/sub 2/ 6 mcg/g/dose, separated by 12 h, and sacrificed 6 h after the second. The copper conc. in placenta (P) and kidneys (K) of uninjected (UI) brin mice were higher than in UI controls, while conc. in liver (L) and fetal carcass (F) were lower. After injection (I), placental copper conc. increased while the carcass conc. remained unchanged. Brin mouse is a model for the human inborn error of copper metabolism, Menkes syndrome, which is characterized by signs of copper deficiency. These data indicate that metabolism of copper in brin fetus is abnormal, but depressed fetal copper levels cannot be corrected by acute copper dosing because of the sequestration of copper in placenta.

  18. Boron-deoxidized copper withstands brazing temperatures

    NASA Technical Reports Server (NTRS)

    Schmidt, E. H.

    1966-01-01

    Boron-deoxidized high-conductivity copper is used for fabrication of heat transfer components that are brazed in a hydrogen atmosphere. This copper has high strength and ductility at elevated temperatures and does not exhibit massive intergranular failure.

  19. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity...Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  20. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity...Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  1. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity...Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  2. Exploration Into Copper Catalyzed and Copper-less Click Reactions with Re(CO)3 Complexes

    E-print Network

    Collins, Gary S.

    Exploration Into Copper Catalyzed and Copper-less Click Reactions with Re(CO)3 Complexes Nicholas that combines a alkyne and an oxime to generate a isoxazole cycloaddtion product. Compared to the copper and then proceeding with the typical copper(I) catalyzed "click" reaction procedure, while the other approach involves

  3. Laser sintering of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Zenou, Michael; Ermak, Oleg; Saar, Amir; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits.

  4. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  5. Textured carbon surfaces on copper by sputtering

    NASA Technical Reports Server (NTRS)

    Curren, A. N. (inventor); Jensen, K. A. (inventor); Roman, R. F. (inventor)

    1986-01-01

    A very thin layer of highly textured carbon is applied to a copper surface by a triode sputtering process. A carbon target and a copper substrate are simultaneously exposed to an argon plasma in a vacuum chamber. The resulting carbon surface is characterized by a dense, random array of needle like spires or peaks which extend perpendicularly from the copper surface. The coated copper is especially useful for electrode plates in multistage depressed collectors.

  6. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Copper gluconate. 582.5260 Section 582.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This substance...

  7. Copper toxicity in aquaculture: A practical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate is used as a therapeutant for various applications in aquaculture. There is a great deal of information on the toxicity of copper, especially in low-alkalinity waters; however, much of this information is fragmented, and a comprehensive guide of copper toxicity and safe concentration...

  8. Measuring bioavailable copper using anodic stripping voltammetry

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1996-11-01

    Since speciation can affect bioavailability and toxicity of copper in aquatic systems, accurate predictions of effects of bioavailable forms require detection and/or measurement of these forms. To develop an approach for measurement of bioavailable copper, a copper sulfate solution was used in 10-d aqueous and sediment toxicity tests with Hyalella azteca Saussure. These tests encompassed ranges of pH, alkalinity, hardness, and conductivity. Changes in copper speciation were measured using atomic absorption spectroscopy (AA) for dissolved copper and differential pulse anodic stripping voltammetry (DPASV) for labile copper, and concentrations were evaluated relative to amphipod survival. Ten-day LC50s based on AA-measured aqueous copper concentrations ranged from 42 to 142 {micro}g Cu/L, and LC50s based on DPASV-measured copper concentrations ranged from 17.4 to 24.8 {micro}g Cu/L. In 10-d tests using copper-amended sediments with diverse characteristics and AA-measured copper concentrations spanning an order of magnitude, total copper concentrations were not predictive of sediment toxicity, but H. azteca survival was explained by DPASV measurements that varied by {le}4%. In order to make defensible estimates of the potential risk of metals in sediments or water, it is essential to identify the fraction of total metal that is bioavailable. In these experiments, DPASV was useful for measuring bioavailable copper in aqueous and sediment tests with H. azteca.

  9. Copper Sequestration Using Local Waste Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairies utilize copper sulfate foot baths to control hoof infections. Typical solutions are 5 or 10% copper sulfate (pH ~6), equal to 12,500 or 25,000 parts per million copper, respectively. When spent, hoof bath solutions are usually disposed of in waste lagoons and subsequently utilized for irri...

  10. THE EVOLUTION OF SYNTHETICALLY PRECIPITATED COPPER SOLIDS

    EPA Science Inventory

    The objective of this study was to explore the effect of water quality, particularly chloride and sulfate, on copper mineral formation. Copper-sulfate and chloride compounds are often found on the surface of copper pipes in drinking water distribution systems. When attempting to ...

  11. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    SciTech Connect

    Brookhaven Lab - Fulvia Pilat

    2009-06-09

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  12. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    ScienceCinema

    Brookhaven Lab - Fulvia Pilat

    2010-01-08

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  13. Joining of alumina via copper/niobium/copper interlayers

    SciTech Connect

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.; Glaeser, Andreas M.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.

  14. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, Frederick A. (Ames, IA); Verhoeven, John D. (Ames, IA); Gibson, Edwin D. (Ames, IA)

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  15. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.

  16. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...introduction of pollutants into treatment works which are publicly owned resulting from the production of copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and (b) copper...

  17. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...introduction of pollutants into treatment works which are publicly owned resulting from the production of copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and (b) copper...

  18. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...introduction of pollutants into treatment works which are publicly owned resulting from the production of copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and (b) copper...

  19. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...introduction of pollutants into treatment works which are publicly owned resulting from the production of copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and (b) copper...

  20. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...introduction of pollutants into treatment works which are publicly owned resulting from the production of copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and (b) copper...

  1. CopperCore Service Integration

    ERIC Educational Resources Information Center

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob

    2007-01-01

    In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…

  2. Adrift on the Copper River

    USGS Multimedia Gallery

    Snow drifts in early May at the mouth of the Copper River.  Just a mile or two away from here, at the same elevation, there was no snow. Shown are Woods Hole (MA) scientists Andrew Schroth (left) and Kevin Kroeger (right)....

  3. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  4. Status of Copper Sulfate - 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish - February 2004. This includes human intestinal microflora issues,...

  5. Subclinical copper accumulation in llamas.

    PubMed Central

    Weaver, D M; Tyler, J W; Marion, R S; Casteel, S W; Loiacono, C M; Turk, J R

    1999-01-01

    A 9-year-old, intact male llama with mild ataxia and generalized malaise of 1 month's duration was euthanized following clinical evaluation. Excessive liver copper concentrations were found in the llama and also in clinically normal herdmates. This case documents multiple animals with increased hepatic stores from standard diets and mineral supplements. PMID:10367160

  6. COPPER CORROSION AND SOLUBILITY RESEARCH

    EPA Science Inventory

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  7. Status of copper sulfate - 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish – February 2004. This includes human intestinal microflora issues,...

  8. Crystallization of copper metaphosphate glass

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  9. Tetraphenylphosphonium copper(I) dicyanamide.

    SciTech Connect

    Schlueter, J. A.; Geiser, U.; Materials Science Division

    2007-01-01

    In the title compound, {l_brace}(C{sub 24}H{sub 20}P)[Cu(C{sub 2}N{sub 3}){sub 2}]{r_brace}{sub n}, the copper(I) dicyanamide anion forms a distorted three-dimensional single diamondoid network. Templating tetraphenylphosphonium cations reside within the cavities of the polymeric anion.

  10. Copper sulfate: Liquid or crystals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate experiments were conducted to evaluate copper toxicity to channel catfish and free-swimming Ichthyophthirius multifiliis or Ich (the stage of Ich that can be treated); the compounds we used were CuSO4 crystals and a non-chelated liquid CuSO4 product. In 96 hr tests conducted in aquaria...

  11. Status of copper sulfate - 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate will be presented. Various aspects of these technical sections will be open for discussion. The update will include information and dates for both the initial labe...

  12. Thermal stability of copper precipitates in silicon

    SciTech Connect

    McHugo, Scott A.; Flink, C.

    2000-11-27

    The dissolution of copper precipitates in Czochralski silicon has been studied with synchrotron-based x-ray fluorescence. Copper has been introduced and allowed to precipitate at oxygen precipitates and growth-related stacking faults. The dissolution of copper precipitates is monitored after low-temperature anneals. This study is designed to determine whether copper can be released from these precipitation sites at low temperatures such that contamination and subsequent device degradation of an integrated circuit device could occur. Our results demonstrate copper dissolution back into the silicon matrix at temperatures as low as 360{sup o}C.

  13. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO)

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  14. Copper economy in Chlamydomonas: prioritized allocation and reallocation of copper to respiration vs. photosynthesis.

    PubMed

    Kropat, Janette; Gallaher, Sean D; Urzica, Eugen I; Nakamoto, Stacie S; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z; Merchant, Sabeeha S

    2015-03-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  15. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    PubMed Central

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  16. Synthesis of the nickel selenophosphinates [Ni(Se(2)PR(2))(2)] (R = (i)Pr, (t)Bu and Ph) and their use as single source precursors for the deposition of nickel phosphide or nickel selenide nanoparticles.

    PubMed

    Maneeprakorn, Weerakanya; Nguyen, Chinh Q; Malik, Mohammad A; O'Brien, Paul; Raftery, James

    2009-03-28

    Nickel phosphide (Ni(2)P and Ni(12)P(5)) or nickel selenide (NiSe) nanoparticles were prepared from the single molecule precursor, dialkyldiselenophosphinato nickel(II), [Ni(Se(2)PR(2))(2)] (R = (i)Pr, (t)Bu and Ph) by thermolysis in trioctylphosphine oxide (TOPO) or hexadecylamine (HDA). The chemical composition of these nanoparticles depends on the precursors, capping agents, and reaction temperature. PMID:19274288

  17. Identification of copper-copper and copper-hydrogen complexes in silicon

    SciTech Connect

    Yarykin, N. A.; Weber, J.

    2013-02-15

    The centers formed in silicon as a result of interaction between the substitutional copper impurity (Cu{sub s}) and interstitial copper (Cu{sub i}) or hydrogen (H) atoms, which are mobile at room temperature, are investigated in this study using the deep-level transient spectroscopy (DLTS) technique. It is shown that a well-known photoluminescence center, which includes four copper atoms, is formed from Cu{sub s} via the subsequent addition of Cu{sub i}. Both intermediate complexes (Cu{sub s}-Cu{sub i} and Cu{sub s}-2Cu{sub i}) are identified by their deep levels in the lower half of the band gap. It is found that Cu{sub s} atoms form complexes with one, two, and three hydrogen atoms, with Cu{sub s}-H and Cu{sub s}-2H being electrically active. It is noted that the addition of either hydrogen or copper has a similar effect on the deep-level structure of Cu{sub s}.

  18. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species have adapted on such stress. The aim of this study is to investigate the behaviour of copper in plants and to assess its potential effect on the surrounding environment. To detect copper in biological samples electrochemical methods were employed particularly differential pulse voltammetry (DPV). Copper gave signals at 0.02 V measured by DPV. The obtained calibration dependence was linear (R2 = 0.995). Further, this method was utilized for determination of copper in real soil samples obtained from previously mentioned heavy-metal-polluted mining area. The content varied within range from tens to hundreds of mg of copper per kg of the soil. Moreover, we focused on investigation of copper influence on seedlings of Norway spruce. The seedlings were treated with copper (0, 0.1, 10 and 100 mM) for four weeks. We observed anatomical-morphological changes and other biochemical parameters in plants. We determined that seedlings synthesized more than 48 % protective thiols (glutathione and phytochelatins) compared to control ones. We investigated copper distribution in plant tissues by diphenylcarbazide staining. We found out that copper is highly accumulated in parenchymal stalk cells. In needles, change in auto-fluorescence of parenchymal cells of mesoderm similarly to endodermis cells. Besides, we analyzed samples of plants from the polluted area (spruce, pin, birch). The data obtained well correlated with previously mentioned. Acknowledgement The work on this experiment was supported by grant: INCHEMBIOL MSM0021622412.

  19. Reactivity studies of plasma-synthesized aluminum trifluoride and electrochemical synthesis of non-stoichiometric silver selenide nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hajime, Evan Koon Lun Yuuji

    A high surface area aluminum trifluoride material ("plasma-AIF3 ") has previously been synthesized in our laboratory by decomposition of zeolitic precursors in fluorine-containing, low-temperature plasmas. The characterization of the halogen exchange reactivity of this unique fluoride material is presented in Part 1 of the dissertation. A gas flow reactor was designed and built to study the isothermal and temperature-dependent halogen exchange activity of plasma-AIF3, with comparisons being made to the well-known halogen exchange catalyst beta-AIF3. Isothermal experiments showed that plasma-AIF3 is an active halogen exchange catalyst for the dismutation of dichlorodifluoromethane, while temperature-programmed reaction (TPR) experiments revealed a lower temperature onset of activity with plasma-AIF3 when compared to beta-AIF3. The existence of two distinct active sites for halogen exchange on aluminum fluoride is proposed, with sites characteristic of plasma-AIF3 and R-AIF3 having lower and higher temperature onsets of activity, respectively. TPR data for hydrated plasma-AIF3 showed a significant attenuation of the lower temperature active sites, while the higher temperature site remained relatively unchanged in activity. Temperature-programmed X-ray diffraction of plasma-AIF3 revealed the existence of beta-AIF 3 crystallites at temperatures between 225 and 500°C, thus rationalizing the existence of the higher temperature active site (associated with beta-AIF 3) in plasma-AIF3 during heating. Plasma-AIF3 also displayed a high affinity for crystalline hydrate formation with extended exposure to moist air, and TPR experiments performed on commercially available AIF3·3H2O produced plots similar in shape and features when compared to plasma-AIF3. The thermal transformation processes of the trihydrate suggest the origin of the lower temperature active site to be associated with an amorphous bulk AIF3 structure. Part 2 of the dissertation summarizes the current efforts made toward the template-assisted electrodeposition of Ag2+deltaSe nanowire arrays for fundamental and exploratory studies of the magnetoresistance in non-stoichiometric silver chalcogenides. Silver selenide can be difficult to electrodeposit due in part to the highly facile plating of silver metal from aqueous solutions. A new electrodeposition solution is proposed, containing AgNO3 and SeCl4 as the metal precursors, dimethyl sulfoxide (DMSO) as the solvent and tetrabutylammonium chloride (TBACl) as a supporting electrolyte. The electrodeposition of Ag2Se from this solution and a previously reported solution using NaNO3 as supporting electrolyte was investigated using cyclic voltammetry and X-ray diffraction analysis of electrodeposited thin films. Cyclic voltammograms of solutions containing only AgNO3 and TBACl in DMSO showed one redox couple corresponding to the deposition and stripping of Ag metal, while the NaNO3-based solution showed an additional redox couple believed to involve the generation of negatively-charged Ag nanoparticles. Thin film electrodeposition of Ag metal from DMSO-based solutions produced non-dendritic deposits, and may be a useful alternative bath solvent for the silver plating industry. Solutions containing only SeCl 4 and TBACl in DMSO were studied by cyclic voltammetry, and revealed important potential ranges within which elemental Se is stable with respect to oxidation and reduction. The proposed mixed-metal electrodeposition solution was also analyzed with cyclic voltammetry, and the reductive formation of Ag2Se was found to occur at potentials between -0.55 V and -0.70 V (vs. Pt/0.1 M Nal, 0.05 M I2 (DMSO)). Using the results from the electroanalysis of the electrodeposition solutions, nanowire arrays of Ag2+deltaSe were successfully grown by electrodeposition into porous alumina membranes at room temperature (22°C) using an applied voltage of -0.70 V (vs. Pt/0.1 M Nal, 0.05 M I2 (DMSO)). Scanning electron microscopy showed smooth and continuous nanowires of 50 and 100 nm diameters and up to lengths of 25 mum. Electro

  20. Metallic Copper as an Antimicrobial Surface?

    PubMed Central

    Grass, Gregor; Rensing, Christopher; Solioz, Marc

    2011-01-01

    Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term “contact killing” has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed. PMID:21193661

  1. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus

    SciTech Connect

    Harwood-Sears, V.; Gordon, A.S. )

    1990-05-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuPB2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experiments in which chloramphenicol was added to cultures indicated that there was de novo synthesis of these proteins in response to copper. When supernatants were separated by gel permeation chromatography, CuBP1 and CuPB2 coeluted with a copper-induced peak in copper-binding activity. CuBP1 and CuBP2 from whole supernatants were concentrated and partially purified by using a copper-charged immobilized metal ion affinity chromatography column, confirming the affinity of these proteins for copper. A comparison of cell pellets and supernatants demonstrated that CuBP1 was more concentrated in supernatants than in cells. Our data are consistent with a model for a novel mechanism of copper detoxification in which excretion of copper-binding protein is induced by copper.

  2. Copper disinfection ban causes storm.

    PubMed

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK. PMID:23763088

  3. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure copper levels in plasma, serum, and urine. Measurements of copper are used in the diagnosis and treatment...

  4. Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum

    SciTech Connect

    Frardi, F.X.; Failla, M.L.; Falkinham, J.O. III

    1987-08-01

    A copper-tolerant Mycobacterium scrofulaceum strain was able to remove copper from culture medium by sulfate-dependent precipitation as copper sulfide. Such precipitation of copper sulfide was not observed in a derivative that lacks a 173-kilobase plasmid. In addition, the plasmid-carrying strain has a sulfate-independent copper resistance mechanism.

  5. Semiempirical dynamic phase diagrams of nanocrystalline products during copper (II)

    E-print Network

    because of wide spread applications as a pure metal as well as its compounds. Ultra-fine copper particlesSemiempirical dynamic phase diagrams of nanocrystalline products during copper (II) acetylacetonate was proposed. Prevailing role of copper dimers in the processes of copper and copper (I) oxide particle growth

  6. Synthesis, crystal structure and electronic properties of the new iron selenide Ba{sub 9}Fe{sub 4}Se{sub 16}

    SciTech Connect

    Berthebaud, David Preethi Meher, K.R.S.; Pelloquin, Denis; Maignan, Antoine

    2014-03-15

    The new ternary selenide Ba{sub 9}Fe{sub 4}Se{sub 16} has been synthesized from the reaction of appropriate amounts of elements at high temperature in a silica sealed tube. The compound crystallizes in the tetragonal space group I4{sub 1}/a with a=10.0068(3) Å and c=35.6415(9) Å, Z=4. It is an isostructural compound to the sulfide ?-Ba{sub 9}Fe{sub 4}S{sub 15}, which is a high temperature polymorph of ?-Ba{sub 9}Fe{sub 4}Se{sub 15} that belongs to the indefinitely adaptive phases series Ba{sub 3}Fe{sub 1+x}S{sub 5}, 0?x?1. X-ray powder diffraction and TEM analyses of the synthesized compound were used to determine the phase composition and the structure. The crystal structure can be viewed as overlapping sections along the c axis. Those sections are formed by the coordination polyhedra around barium atoms which can be described as trigonal prisms and bidisphenoids. Within the sections formed by barium polyhedra, isolated pairs of edge sharing FeSe{sub 4} tetrahedra are found. Magnetic measurements performed on Ba{sub 9}Fe{sub 4}Se{sub 16} indicate an antiferromagnetic behavior with Néel temperature of ?13 K. Possible influence of air exposure on the magnetic properties is also discussed here. The electric measurements show an insulating behavior below 160 K and the dielectric permittivity and loss tangent at the lowest frequency measured reveal a change of slope very close to T{sub N}. However no magneto dielectric effect was evidenced for magnetic fields of up to 3 T. Activation energy, E{sub A}=0.18 eV, was extracted from the AC conductivity plot in the temperature range of 160–300 K. -- Graphical abstract: Experimental electron diffraction (ED) patterns of Ba{sub 9}Fe{sub 4}Se{sub 16} recorded along a-[010]. Highlights: • A new iron selenide material. • A structure resolution by combination of XRD and TEM. • Magnetic properties of the new compound Ba{sub 9}Fe{sub 4}Se{sub 16} are discussed.

  7. "Pulling the plug" on cellular copper: The role of mitochondria in copper export Scot C. Leary a,

    E-print Network

    Leary, Scot

    and the regulation of cellular copper homeostasis. © 2008 Elsevier B.V. All rights reserved. 1. Cellular copper distribution and homeostasis Copper ions are cofactors for a number of metalloenzymes and, as such that chelate copper in biologically inert complexes. 1.1. Copper homeostasis: lesson learned from unicellular

  8. The Fission Yeast Copper-sensing Transcription Factor Cuf1 Regulates the Copper Transporter Gene Expression through an

    E-print Network

    Labbé, Simon

    The Fission Yeast Copper-sensing Transcription Factor Cuf1 Regulates the Copper Transporter Gene of copper transport is essential for copper homeostasis and growth in yeast. Analysis of regulatory regions in the promoter of the ctr4 copper transporter gene in fission yeast Schizosaccharomyces pombe re- veals

  9. Copper(I) and copper(II) complexes of an ethylene cross-bridged cyclam

    E-print Network

    Hubin, Tim

    Copper(I) and copper(II) complexes of an ethylene cross-bridged cyclam Timothy J. Hubin,a Nathaniel and crystal structures of (4,11-dibenzyl- 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane- 4 N)copper(I) hexa)- copper(II) bis(hexa¯uorophosphate), [Cu(C2H3N)(C26H38- N4)](PF6)2, are described. The CuI ion

  10. Pressure leaching las cruces copper ore

    NASA Astrophysics Data System (ADS)

    Berezowsky, R. M.; Xue, T.; Collins, M. J.; Makwana, M.; Barton-Jones, I.; Southgate, M.; Maclean, J. K.

    1999-12-01

    A hydrometallurgical process was developed for treating the Las Cruces massive sulfide-ore deposit located near Seville, Spain. A two-stage countercurrent leach process, consisting of an atmospheric leach and a pressure leach, was developed to effectively leach copper from the copper-bearing minerals and to generate a solution suitable for the subsequent solvent-extraction and copper-electrowinning operations. The results of batch and continuous miniplant tests are presented.

  11. Copper chloride cathode for a secondary battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (inventor); Distefano, Salvador (inventor); Nagasubramanian, Ganesan (inventor); Bankston, Clyde P. (inventor)

    1990-01-01

    Higher energy and power densities are achieved in a secondary battery based on molten sodium and a solid, ceramic separator such as a beta alumina and a molten catholyte such as sodium tetrachloroaluminate and a copper chloride cathode. The higher cell voltage of copper chloride provides higher energy densities and the higher power density results from increased conductivity resulting from formation of copper as discharge proceeds.

  12. Effects of copper speciation on aquatic ecosystems

    SciTech Connect

    Harrison, F.L.

    1983-03-01

    The kinds and quantities of copper species present in influent and effluent waters were determined in samples collected from power stations located adjacent to marine, estuarine, and freshwater ecosystems. Copper concentration and speciation differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small and, at those sites where measurements of chemical form were taken, most of the copper was in bound (complexed) species. During startup of water circulation through cooling systems and during changeover from an open- to a closed-cycle operation, however, copper was high in concentration. The size, chemical form, and duration of the copper pulse released during startup and changeover differed with factors such as the interval between shutdown and startup, preconditioning of the condenser tubing, and hydrodynamic conditions. The effect of copper speciation on copper toxicity was evaluated. The responses to different chemical forms of copper differed with species and life stage. Some primary producers and early life stages of higher trophic organisms are sensitive to low levels of labile copper. Sublethal effects of copper on bluegills were assessed in populations living in the intake and discharge zones of a station adjacent to a fresh-water impoundment. These populations showed structural abnormalities and reduced reproductive capacity. Tissue analyses showed elevated copper concentrations in the livers. Liver metalloproteins were separated and quantified. The results indicated that metal detoxification systems in the bluegills were saturated and copper was present in some metalloprotein pools in levels that may result in impairment of metabolic functions.

  13. CNC Machining Of The Complex Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Popan, Ioan Alexandru; Balc, Nicolae; Popan, Alina

    2015-07-01

    This paper presents the machining process of the complex copper electrodes. Machining of the complex shapes in copper is difficult because this material is soft and sticky. This research presents the main steps for processing those copper electrodes at a high dimensional accuracy and a good surface quality. Special tooling solutions are required for this machining process and optimal process parameters have been found for the accurate CNC equipment, using smart CAD/CAM software.

  14. Electrochemical synthesis of highly crystalline copper nanowires

    SciTech Connect

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-05-15

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits.

  15. Copper Nanoparticles in Click Chemistry.

    PubMed

    Alonso, Francisco; Moglie, Yanina; Radivoy, Gabriel

    2015-09-15

    The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide-alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10-30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very effective in the multicomponent and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in water from organic halides as azido precursors; magnetically recoverable CuNPs (3.0 ± 0.8 nm) supported on MagSilica could be alternatively used for the same purpose under similar conditions. Incorporation of an aromatic substituent at the 1-position of the triazole could be accomplished using the same CuNPs/C catalytic system starting from aryldiazonium salts or anilines as azido precursors. CuNPs/C in water also catalyzed the regioselective double-click synthesis of ?-hydroxy-1,2,3-triazoles from epoxides. Furthermore, alkenes could be also used as azido precursors through a one-pot CuNPs/C-catalyzed azidosulfenylation-CuAAC sequential protocol, providing ?-methylsulfanyl-1,2,3-triazoles in a stereo- and regioselective manner. In all types of reaction studied, CuNPs/C exhibited better behavior than some commercial copper catalysts with regard to the metal loading, reaction time, yield, and recyclability. Therefore, the results of this study also highlight the utility of nanosized copper in click chemistry compared with bulk copper sources. PMID:26332570

  16. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  17. SURVIVAL AND IMMUNE RESPONSE OF COHO SALMON EXPOSED TO COPPER

    EPA Science Inventory

    Vaccination with Vibrio anguillarum by oral administration during copper exposure and intraperitoneal injection prior to copper exposure was employed to investigate the effects of copper upon survival and the immune response of juvenile coho salmon (Oncorhynchus kisutch). Followi...

  18. Evaluations of bioavailable copper in amended wetland sediments

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1994-12-31

    Copper sulfate was added to the water column of six of twelve wetland mesocosms. In successive 10d experiments using invertebrates Hyalella azteca and Chironomus tentans, sediment toxicity and copper bioavailability were examined in sediments collected monthly from wetlands amended with copper sulfate, untreated wetlands, and control sediments. Evaluations included examinations of temporal changes in toxicity, bioavailability of aqueous and sediment associated copper, and comparison of organism responses to copper. In some cases copper remained acutely toxic over the 6 month study period, however, total copper concentrations in sediment had no relation to bioavailable copper. The relationship of copper speciation to bioavailability was discerned by measuring total copper (AA), labile copper (ASV) and copper ion activity (ISE) during these sediment toxicity experiments.

  19. Using modified strong copper extractants to treat sulfidic ores

    NASA Astrophysics Data System (ADS)

    Maes, Charles; Tinkler, Owen; Moore, Tony; Swart, Ron

    2003-07-01

    This article summarizes the evolution of modified strong copper extractants, focusing on the fairly recent requirement to effectively extract copper from high-concentration aqueous feeds derived from the hydrometallurgical processing of sulfidic copper ores.

  20. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Sodium copper chlorophyllin. 73.125 ...CERTIFICATION Foods § 73.125 Sodium copper chlorophyllin. (a) Identity. (1) The color additive sodium copper chlorophyllin is a...

  1. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Sodium copper chlorophyllin. 73.125 ...CERTIFICATION Foods § 73.125 Sodium copper chlorophyllin. (a) Identity. (1) The color additive sodium copper chlorophyllin is a...

  2. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Sodium copper chlorophyllin. 73.125 ...CERTIFICATION Foods § 73.125 Sodium copper chlorophyllin. (a) Identity. (1) The color additive sodium copper chlorophyllin is a...

  3. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Sodium copper chlorophyllin. 73.125 ...CERTIFICATION Foods § 73.125 Sodium copper chlorophyllin. (a) Identity. (1) The color additive sodium copper chlorophyllin is a...

  4. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Sodium copper chlorophyllin. 73.125 ...CERTIFICATION Foods § 73.125 Sodium copper chlorophyllin. (a) Identity. (1) The color additive sodium copper chlorophyllin is a...

  5. 49 CFR 192.377 - Service lines: Copper.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation...and Service Lines § 192.377 Service lines: Copper. Each copper service line installed within a building must be...

  6. 49 CFR 192.377 - Service lines: Copper.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation...and Service Lines § 192.377 Service lines: Copper. Each copper service line installed within a building must be...

  7. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Copper-bearing fluxing material. 10.98...Provisions Fluxing Material § 10.98 Copper-bearing fluxing material. ...contain by weight not over 15 percent copper. (b) [Reserved] (c)...

  8. ORIGINAL ARTICLE Alteration of benthic communities associated with copper

    E-print Network

    Levin, Lisa

    ORIGINAL ARTICLE Alteration of benthic communities associated with copper contamination linked; copper contamination; diversity; macrofauna; marina; recreational boats; San Diego Bay sediment.1111/maec.12054 Abstract Although copper (Cu) is an essential element for life, leaching from boat paint can

  9. 49 CFR 192.377 - Service lines: Copper.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation...and Service Lines § 192.377 Service lines: Copper. Each copper service line installed within a building must be...

  10. 49 CFR 192.377 - Service lines: Copper.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation...and Service Lines § 192.377 Service lines: Copper. Each copper service line installed within a building must be...

  11. 49 CFR 192.377 - Service lines: Copper.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation...and Service Lines § 192.377 Service lines: Copper. Each copper service line installed within a building must be...

  12. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Copper-bearing fluxing material. 10.98...Provisions Fluxing Material § 10.98 Copper-bearing fluxing material. ...contain by weight not over 15 percent copper. (b) [Reserved] (c)...

  13. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Copper-bearing fluxing material. 10.98...Provisions Fluxing Material § 10.98 Copper-bearing fluxing material. ...contain by weight not over 15 percent copper. (b) [Reserved] (c)...

  14. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Copper-bearing fluxing material. 10.98...Provisions Fluxing Material § 10.98 Copper-bearing fluxing material. ...contain by weight not over 15 percent copper. (b) [Reserved] (c)...

  15. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Copper-bearing fluxing material. 10.98...Provisions Fluxing Material § 10.98 Copper-bearing fluxing material. ...contain by weight not over 15 percent copper. (b) [Reserved] (c)...

  16. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Test Systems § 862.1190 Copper test system. (a) Identification. A copper test system is a device intended to measure copper...hereditary disease primarily of the liver and nervous system). Test results are also used in...

  17. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Test Systems § 862.1190 Copper test system. (a) Identification. A copper test system is a device intended to measure copper...hereditary disease primarily of the liver and nervous system). Test results are also used in...

  18. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  19. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  20. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    PubMed

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills. PMID:25710599

  1. Syntheses, crystal structures, and resistivities of the two new ternary uranium selenides, Er3USe8 and Yb3USe8

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Mesbah, Adel; Beard, Jessica C.; Malliakas, Christos D.; Ibers, James A.

    2016-01-01

    Two new ternary lanthanide (Ln) uranium selenides, Er3USe8 and Yb3USe8, were synthesized at 1198 K using NaI as a flux. Single-crystal X-ray studies show these two compounds to be isostructural and to crystallize in space group D2h 11 -Pbcm of the orthorhombic crystal system. The Ln and U atoms are disordered on the same crystallographic site in these crystal structures. Each Ln/U atom is coordinated to eight Se atoms in a bicapped trigonal prism, and sharing of these (Ln/U)Se8 units creates a three-dimensional network. Se2 atoms are connected to each other to form infinite one-dimensional chains along the c axis. In these chains, the two Se atoms are separated by about 2.74 Å, a distance intermediate to those of a Se-Se single bond and a van der Waals interaction. Temperature-dependent resistivity measurements show that Er3USe8 and Yb3USe8 are semiconductors with activation energies of 0.08(1) and 0.17(1) eV, respectively.

  2. Synthesis, characterization and electrochemical characterization of lead selenide sub-micron particles capped with a benzoate ligand and prepared at different temperatures

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Weyshla A.; Colón, Jadiel; Guzmán, Roger; Rivera, Harry; Santiago-Berríos, Mitk'El B.

    2014-09-01

    Semiconductor materials offer several potential benefits as active elements in the development of harvesting-energy conversion technologies. In particular, lead selenide (PbSe) semiconductors have been used and proposed to design solar energy harvesting devices, IR sensors, FET devices, etc. Lead salts have drawn particular attention from the applied and fundamental research communities due to their exceptionally strong quantum confinement effects. Several syntheses of PbSe have been proposed using long chain surfactants to allow the formation of particles and nanoparticles. Here we present a synthesis using benzoic acid as the capping ligand in ambient atmosphere. Although the particles are not in nanometric size, we compare the crystal structure (using x-ray powder diffraction data), the near infrared and mid-infrared absorption properties of PbSe using oleic acid as the capping ligand with PbSe using benzoic acid as the capping ligand. The new synthetized particles were shown to have similar crystal structure and absorb light in the near infrared region at 1410 nm. We also performed cyclic voltammetry of these particles drop-casted in the surface of a glassy carbon electrode. The particles showed electrochemical behavior with an oxidation peak near (-402 ± 5 mV) versus Ag/AgCl reference electrode. The particles seem to form a polymeric film at the surface of a glassy carbon electrode.

  3. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  4. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds. PMID:22214286

  5. Synthesis of Copper/Copper-Oxide Nanoparticles: Optical and Structural Characterizations

    SciTech Connect

    Swarnkar, R. K.; Singh, S. C.; Gopal, R.

    2009-06-29

    In the present study, we have synthesized copper/copper-oxide nanoparticles by laser ablation of copper metal in aqueous solution of sodium dodecyl sulfate. The focused output of 1064 nm wavelength of pulsed Nd:YAG laser is used for ablation. The synthesized nanoparticles are characterized by UV-visible absorption, X-ray diffraction, transmission electron microscopy and Raman spectroscopy techniques. The synthesis of copper/copper oxide nanoparticles are confirmed by XRD and Raman studies. The possible mechanism of nanoparticle formation is also discussed.

  6. Acid copper sulfate plating bath: Control of chloride and copper. Final report

    SciTech Connect

    Borhani, K.J.

    1992-08-01

    Plated-through holes in high-reliability printed wiring boards require a ductile copper plate of uniform consistency. The level of control of the chemical constituents in the electroplating solutions dictates the physical properties of the copper plate. To improve the control of the chemical bath constituents, in-situ methods for electrochemically determining copper and chloride in acid copper sulfate baths were developed. A solid-state ion-selective electrode was used for the chloride ion and proved to be more reproducible than conventional silver chloride turbidimetric methods. The use of a copper solid-state ion-selective electrode in-situ was also successful in this application.

  7. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    NASA Astrophysics Data System (ADS)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  8. National Park Service Interpretation Center looking south Kennecott Copper ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    National Park Service Interpretation Center looking south - Kennecott Copper Corporation, NPS Interpretation Building, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  9. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  10. Increased blood and urine copper after residential exposure to copper naphthenate

    SciTech Connect

    Bluhm, R.E.; Welch, L.; Branch, R.A. )

    1992-01-01

    Despite widespread industrial use of copper naphthenate, there are no reports of the relationship of copper naphthenate and copper absorption in humans or animals. We report a family of three individuals who lived in a home where copper naphthenate was sprayed on the inner foundation. Subsequently, these individuals developed non-specific complaints. In two of these individuals, serum copper levels were elevated when first measured months after copper naphthenate was sprayed in the home. A gradual decline over several years in urine and serum copper levels was observed in the individual who maintained follow-up. It is not known if symptoms reflected exposure to naphthenate, the solvent vehicle, volatilized copper, or the stress of exposure to a malodorous compound perceived as toxic. Exposure to copper naphthenate may be another cause of an elevated serum and urine copper level but the interpretation of these levels as normal' or toxic' requires additional study for clarification. This report suggests the need for further study of the absorption and relative toxicity of copper naphthenate.

  11. COPPER PITTING AND PINHOLE LEAK RESEARCH STUDY

    EPA Science Inventory

    Localized copper corrosion or pitting is a significant problem at many water utilities across the United States. Copper pinhole leak problems resulting from extensive pitting are widely under reported. Given the sensitive nature of the problem, extent of damage possible, costs o...

  12. Comparing Two Different Types of Anaerobic Copper

    E-print Network

    Gu, Tingyue

    Comparing Two Different Types of Anaerobic Copper Biocorrosion by Sulfate- and Nitrate MIC mechanisms of copper by sulfate-re- ducing bacteria and nitrate-reducing bacteria. It is said of elemental metal such as elemental iron (Fell), Microbes such as sulfate-reducing bacLeria (SRn) utilize Fell

  13. NON-UNIFORM COPPER CORROSION: RESEARCH UPDATE

    EPA Science Inventory

    Pinhole leaks due to copper pitting corrosion are a major cause of home plumbing failure. This study documents cases of copper pitting corrosion found in homes supplied by Butler County Environmental Services in Ohio. SEM. XRD, and optical microscopy were used to document pit s...

  14. Fetal polyol metabolism in copper deficiency

    SciTech Connect

    Fields, M.; Lewis, C.G.; Beal, T. )

    1989-02-09

    Since pregnant rats consuming fructose, copper deficient diets fail to give birth, the relationship between maternal copper deficiency, polyol metabolism and fetal mortality was investigated. Forty Sprague-Dawley rats were fed from conception one of the following diets: fructose, copper deficient; fructose, copper adequate; starch, copper deficient or starch, copper adequate. The deficient diets contained 0.6 ug Cu and the adequate 6.0 ug Cu/g diet. Pregnancy was terminated at day 19 of gestation. Glucose, sorbitol and fructose were measured in maternal blood, placenta and fetal liver. Fructose consumption during pregnancy resulted in higher levels of fructose and sorbitol in maternal blood when compared to starch. In the fructose dietary groups, the placenta and fetal liver contained extremely high levels of glucose, fructose and sorbitol compared to the corresponding metabolites from the starch dietary groups. Copper deficiency further elevated fructose and sorbitol concentrations in the placenta and fetal liver respectively. Since high tissue levels of glucose, fructose and sorbitol have been shown to have deleterious effects on cellular metabolism, these data suggest that when fructose was fed during pregnancy the combination of an aberration of carbohydrate metabolism with copper deficiency could be responsible for the pathology and mortality of the developing fetus.

  15. Lead and Copper Control 101-slides

    EPA Science Inventory

    This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...

  16. Common Sense Copper and RF Guns

    SciTech Connect

    Mulhollan, G.

    2005-01-18

    The purpose of this document is to gather together both fundamental information on copper and on the cleaning and operation of copper in RF gun structures. While incomplete, this is a living document and will be added to and updated as necessary.

  17. Application of INKORAM-75 copper corrosion inhibitor

    NASA Astrophysics Data System (ADS)

    Galanin, A. V.; Fedorov, A. I.; Kucherenko, O. V.; Gromov, A. F.

    2014-02-01

    Treatment of cooling water with INKORAM-75 copper corrosion inhibitor is applied for reducing corrosion processes in the copper-containing alloy of which turbine condensers are made. The results obtained from industrial trial of the INKORAM-75 inhibitor in the service cooling water system of the Novovoronezh NPP Units 3 and 4 are presented.

  18. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  19. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  20. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  1. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  2. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  3. Copper metallization of stainless steels. Final report

    SciTech Connect

    Rosenblum, B.Z.

    1994-09-01

    Stainless steel plates were vacuum metallized with pure copper films 0.004 inch thick. Prior to metallization the surfaces were cleaned with EPA-approved detergents. A thin layer of chromium was sputtered for improved adhesion followed by sputtering of the copper. Results showed excellent adhesion of the sputtered films to the substrates.

  4. A Bright Future for copper electrowinning

    NASA Astrophysics Data System (ADS)

    Moats, Michael; Free, Michael

    2007-10-01

    Over the past 40 years, the copper mining industry has undergone a dramatic shift toward hydrometallurgical extraction of copper at the mine site. This has increased the importance of recovering high-purity copper by electrowinning. High-purity cathode production was achieved by implementing numerous technologies including superior lead-alloy anodes, improved cathode handling and/or stainless steel blanks, better electrolyte control, and advanced tankhouse automation. In the future, it is projected that tankhouses will produce high-quality copper at lower costs using technologies that could include dimensionally stable anodes, alternative anode reactions, innovative cell designs, novel electrolyte circulation systems, and more. This paper reviews existing commercial copper electrowinning technologies and discusses advances that need to be made to implement future technologies.

  5. Copper accumulation in channel catfish (Ictalurus punctatus) exposed to water borne copper sulfate

    SciTech Connect

    Hobbs, M.; Griffin, B.; Schlenk, D.; Kadlubar, F.; Brand, C.D.

    1995-12-31

    Liver and axial muscle of channel catfish (Ictalurus punctatus) was analyzed for residual copper after exposure to water borne copper sulfate. Copper sulfate was continuously introduced into well water in three fiber glass tanks to achieve 1.7 mg/L, 2.7 mg/L and 3.6 mg/L copper sulfate concentrations in exposure waters. Milli-Q quality water was metered into a fourth tank at the same rate for unexposed fish. Actual levels of copper in exposure waters were determined by daily sampling and analysis by graphite furnace atomic absorption spectrophotometry (GFAA). Tissue samples were taken from six fish from each of the exposed and unexposed tanks at two-week intervals, Samples were collected until tissue analysis indicated an equilibrium had been established between the uptake and elimination in both the muscle and liver tissue. Elimination was followed until a clear rate of deputation could be established. Samples were digested in nitric acid in a micro wave digestor and analyzed by GFAA. Results of tissue analysis will be presented to demonstrate bioaccumulation and the effect of copper concentration, length of copper exposure, and gender on copper uptake, establishment of tissue:environmental copper equilibrium, and rate of copper elimination following exposure.

  6. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  7. Redox control of copper homeostasis in cyanobacteria

    PubMed Central

    López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J.

    2012-01-01

    Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen. PMID:23073008

  8. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  9. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  10. Bioinorganic Chemical Modeling of Dioxygen-Activating Copper Proteins.

    ERIC Educational Resources Information Center

    Karlin, Kenneth D.; Gultneh, Yilma

    1985-01-01

    Discusses studies done in modeling the copper centers in the proteins hemocyanin (a dioxygen carrier), tyrosinase, and dopamine beta-hydroxylase. Copper proteins, model approach in copper bioinorganic chemistry, characterization of reversible oxygen carriers and dioxygen-metal complexes, a copper mono-oxygenase model reaction, and other topics are…

  11. Ctr6, a Vacuolar Membrane Copper Transporter in Schizosaccharomyces pombe*

    E-print Network

    Labbé, Simon

    membrane protein that can trimerize. Moreover, we show that Ctr6 harbors a putative copper-binding Met- XCtr6, a Vacuolar Membrane Copper Transporter in Schizosaccharomyces pombe* Received for publication for the transport of copper. This involves transporters that me- diate the passage of copper across biological mem

  12. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  13. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  14. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  15. Scheduling copper applications and management of greasy spot

    E-print Network

    Ma, Lena

    Scheduling copper applications and management of greasy spot and alternaria brown spot M. Dewdney1 #12;Purpose of the Scheduler ·To improve timing of copper sprays over the calendar-based spray unnecessary copper sprays ·To reduce management costs ·To reduce the environmental impact of copper

  16. THE IMPACT OF ORTHOPHOSPHATE ON COPPER CORROSION AND CHLORINE DEMAND

    EPA Science Inventory

    In 1991, EPA promulgated the Lead and Copper Rule, which established a copper action level of 1.3 mg/L in a 1-liter, first-draw sample collected from the consumer’s tap. Excessive corrosion of copper can lead to elevated copper levels at the consumer's tap, and in some cases, can...

  17. Technical Reference on Hydrogen Compatibility of Materials Copper Alloys

    E-print Network

    Siefert, Chris

    by hydrogen [2-4]. Hydrogen reduces copper oxide forming water but can also react with oxygen in solution. The diffusivity and solubility of hydrogen in copper is very low, thus equilibrium hydrogen saturation in copper takes exceptionally long times as in stainless steels. Copper with oxygen inclusions is embrittled

  18. Planktonic microbial community responses to added copper.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Sargos, Denis; Lenain, Jean-François; Deluchat, Véronique; Ngayila, Nadine; Baudu, Michel; Amblard, Christian

    2007-07-20

    It is generally agreed that autotrophic organisms and especially phytoplanktonic species can be harmed by copper through its effect on photosystem. However, the impact of copper on other components of the pelagic food web, such as the microbial loop (autotrophic and heterotrophic picoplankton, pigmented and non-pigmented flagellates and ciliates) has received little attention. Indoor experiments were conducted to evaluate the direct and indirect effects of copper, supplied in the range of concentrations used to control cyanobacteria growth in ponds, on non-targeted organisms of natural microbial loop communities sampled in spring and summer. Two copper concentrations were tested (80microgL(-1) and 160microgL(-1) final concentrations), set, respectively, below and above the ligand binding capacity of the water samples. Both caused a significant decrease in the biomass and diversity of pigmented organisms (picophytoplankton and pigmented flagellates). Conversely, the heterotrophic bacterioplankton and the heterotrophic flagellates did not seem to be directly affected by either copper treatment in terms of biomass or diversity, according to the descriptor chosen. The ciliate biomass was significantly reduced with increasing copper concentrations, but differences in sensitivity appeared between spring and summer communities. Potential mixotrophic and nanoplanktorivorous ciliates appeared to be more sensitive to copper treatments than bacterivorous ciliates, suggesting a stronger direct and (or) indirect effect of copper on the former. Copper sulphate treatments had a significant restructuring effect on the microbial loop communities, resulting in a dominance of heterotrophic bacterioplankton among microbial microorganisms 27 days after the beginning of the treatment. The spring microbial communities exhibited a greater sensitivity than the summer communities with respect to their initial compositions. PMID:17582517

  19. Structural, magnetic, and electronic properties of iron selenide Fe6-7Se8 nanoparticles obtained by thermal decomposition in high-temperature organic solvents.

    PubMed

    Lyubutin, I S; Lin, Chun-Rong; Funtov, K O; Dmitrieva, T V; Starchikov, S S; Siao, Yu-Jhan; Chen, Mei-Li

    2014-07-28

    Iron selenide nanoparticles with the NiAs-like crystal structure were synthesized by thermal decomposition of iron chloride and selenium powder in a high-temperature organic solvent. Depending on the time of the compound processing at 340?°C, the nanocrystals with monoclinic (M)-Fe3Se4 or hexagonal (H)-Fe7Se8 structures as well as a mixture of these two phases can be obtained. The magnetic behavior of the monoclinic and hexagonal phases is very different. The applied-field and temperature dependences of magnetization reveal a complicated transformation between ferrimagnetic (FRM) and antiferromagnetic (AFM) structures, which can be related to the spin rotation process connected with the redistribution of cation vacancies. From XRD and Mössbauer data, the 3c type superstructure of vacancy ordering was found in the hexagonal Fe7Se8. Redistribution of vacancies in Fe7Se8 from random to ordered leads to the transformation of the magnetic structure from FRM to AFM. The Mössbauer data indicate that vacancies in the monoclinic Fe3Se4 prefer to appear near the Fe(3+) ions and stimulate the magnetic transition with the rotation of the Fe(3+) magnetic moments. Unusually high coercive force Hc was found in both (H) and (M) nanocrystals with the highest ("giant") value of about 25 kOe in monoclinic Fe3Se4. This is explained by the strong surface magnetic anisotropy which is essentially larger than the core anisotropy. Such a large coercivity is rare for materials without rare earth or noble metal elements, and the Fe3Se4-based compounds can be the low-cost, nontoxic alternative materials for advanced magnets. In addition, an unusual effect of "switching" of magnetization in a field of 10 kOe was found in the Fe3Se4 nanoparticles below 280 K, which can be important for applications. PMID:25084934

  20. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification.

    PubMed

    Huang, Ke-Jing; Shuai, Hong-Lei; Zhang, Ji-Zong

    2016-03-15

    A highly sensitive and ultrasensitive electrochemical aptasensor for platelet-derived growth factor BB (PDGF-BB) detection is fabricated based on layered molybdenum selenide-graphene (MoSe2-Gr) composites and Exonuclease III (Exo III)-aided signal amplification. MoSe2-Gr is prepared by a simple hydrothermal method and used as a promising sensing platform. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity is limited on the duplex DNAs with more than 4 mismatched terminal bases at 3' ends. Herein, aptamer and complementary DNA (cDNA) sequences are designed with four thymine bases on 3' ends. In the presence of target protein, the aptamer associates with it and facilitates the formation of duplex DNA between cDNA and signal DNA. The duplex DNA then is digested by Exo III and releases cDNA, which hybridizes with signal DNA to perform a new cleavage process. Nevertheless, in the absence of target protein, the aptamer hybridizes with cDNA will inhibit the Exo III-assisted nucleotides cleavage. The signal DNA then hybridizes with capture DNA on the electrode. Subsequently, horse radish peroxidase is fixed on electrode by avidin-biotin reaction and then catalyzes hydrogen peroxide and hydroquinone to produce electrochemical response. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, providing a quantitative measure of target protein with a broad detection range of 0.0001-1nM and a detection limit of 20fM. PMID:26386905

  1. Effect of the Concentration on the X-ray Luminescence Efficiency of a Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Solution

    NASA Astrophysics Data System (ADS)

    Valais, I.; Michail, C.; Nikolopoulos, D.; Fountzoula, C.; Bakas, A.; Yannakopoulos, P.; Fountos, G.; Panayiotakis, G.; Kandarakis, I.

    2015-09-01

    In the current study preliminary results on the luminescence efficiency (LE) of toluene dissolved Cadmium Selenide/Zinc Sulfide (CdSe/ZnS, Sigma-Aldrich, Lumidot 694622) quantum dot samples (QDs) after exposure to X-rays of variable radiation flux are shown. The distinctive influence of the weight over volume (w/v) concentration of the samples in LE was investigated. The light emission of the QDs was additionally measured after UV irradiation. The distribution of the emitted light was symmetrical with a maximum at 590 nm. The w/v concentration of the QDs varied between 7.1×10-5 mg/mL to 28.4×10-5 mg/mL. The samples were handled in a cubic 12.5×12.5×45mm3 quartz cuvette. Each sample was excited under X-ray irradiation, in the energy range from 50 to 130 kVp using a BMI General Medical Merate tube with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. The X-ray LE, induced by the 28.4×10-5 mg/mL QDs found higher, however, the distinction was vague in the highly concentrated samples. The maximum efficiency was obtained at the 90 kVp for QDs with 21.3×10-5 mg/mL w/v concentration. In the high energy range (120-130 kVp) all concentration levels exhibited comparable X-ray induced LE. The luminescence properties of the investigated QDs appear promising for X-ray detection applications.

  2. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  3. Copper: Toxicological relevance and mechanisms

    PubMed Central

    Gaetke, Lisa M.; Chow-Johnson, Hannah S.; Chow, Ching K.

    2015-01-01

    Copper (Cu) is a vital mineral essential for many biological processes. The vast majority of all Cu in healthy humans is associated with enzyme prosthetic groups or bound to proteins. Cu homeostasis is tightly regulated through a complex system of Cu transporters and chaperone proteins. Excess or toxicity of Cu, which is associated with the pathogenesis of hepatic disorder, neurodegenerative changes and other disease conditions, can occur when Cu homeostasis is disrupted. The capacity to initiate oxidative damage is most commonly attributed to Cu-induced cellular toxicity. Recently, altered cellular events, including lipid metabolism, gene expression, alpha-synuclein aggregation, activation of acidic sphingomyelinase and release of ceramide, and temporal and spatial distribution of Cu in hepatocytes, as well as Cu-protein interaction in the nerve system, have been suggested to play a role in Cu toxicity. However, whether these changes are independent of, or secondary to, an altered cellular redox state of Cu remain to be elucidated. PMID:25199685

  4. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  5. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  6. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  7. In situ deposits of copper and copper oxide containing condensation polyimide films

    NASA Technical Reports Server (NTRS)

    Porta, G. M.; Taylor, L. T.

    1987-01-01

    Novel copper-polyimide composites have been synthesized via simultaneous thermal decomposition of solid solutions of bis (trifluoroacetylacetonato) copper (II) and thermal cyclodehydration of polyimide acid. In contrast to conventional filled polymer composites which are prepared by dispersion of particles or fibers in a polymer matrix this study has yielded in general uniform Cu or CuO dispersions of very small particle size that reside near the film surface that was exposed to the atmosphere during curing. The nature of the copper deposit, the thickness of the copper deposit, and the polyimide overlayer which bonds the copper to the polymer substrate depend on the curing atmosphere used. A variety of analytical surface methods along with thermogravimetric analysis and variable temperature (surface and volume) electrical resistivity measurements have been used to characterize these thin, flexible copper doped polyimide films.

  8. Use of Copper in Marine Aquaculture and Aquarium Roy P. E. Yanong2

    E-print Network

    Hill, Jeffrey E.

    " copper sulfate (CuSO4 ·5H2 O; i.e., cop- per sulfate pentahydrate), the most commonly used form of copper" copper sulfate (more properly known as "copper sulfate pentahydrate" because it is attached to 5 water molecules). When copper sulfate is dissolved into water, copper sulfate splits into separate copper (Cu2

  9. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  10. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    PubMed

    Björkbacka, Åsa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO?). Both H2O2 and HO? are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO? are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper. PMID:26287519

  11. Liver copper concentrations in cull cattle in the UK: are cattle being copper loaded?

    PubMed

    Kendall, N R; Holmes-Pavord, H R; Bone, P A; Ander, E L; Young, S D

    2015-11-14

    With the release of the Department for the Environment, Food and Rural Affairs/Advisory Committee on Animal Feed Guidance Note for Supplementing Copper to Bovines it was noted that the current copper status of the national herd was not known. Liver samples were recovered from 510 cull cattle at a single abattoir across a period of three days. The samples were wet-ashed and liver copper concentrations determined by inductively coupled plasma mass spectrometry analysis. Breed, age and previous location information were obtained from the British Cattle Movement Service. Dairy breeds had higher liver copper concentrations than beef breeds. Holstein-Friesian and 'other' dairy breeds had 38.3 per cent and 40 per cent of cattle above the Animal Health and Veterinary Laboratories Agency (AHVLA) reference range (8000?µmol/kg dry matter), respectively, whereas only 16.9 per cent of animals in the combined beef breeds exceeded this value. It was found that underlying topsoil copper concentration was not related to liver copper content and that age of the animal also had little effect on liver concentration. In conclusion, over 50 per cent of the liver samples tested had greater-than-normal concentrations of copper with almost 40 per cent of the female dairy cattle having liver copper concentrations above the AHVLA reference range, indicating that a significant proportion of the UK herd is at risk of chronic copper toxicity. PMID:26489996

  12. Liver copper concentrations in cull cattle in the UK: are cattle being copper loaded?

    PubMed Central

    Kendall, N. R.; Holmes-Pavord, H. R.; Bone, P. A.; Ander, E. L.; Young, S. D.

    2015-01-01

    With the release of the Department for the Environment, Food and Rural Affairs/Advisory Committee on Animal Feed Guidance Note for Supplementing Copper to Bovines it was noted that the current copper status of the national herd was not known. Liver samples were recovered from 510 cull cattle at a single abattoir across a period of three days. The samples were wet-ashed and liver copper concentrations determined by inductively coupled plasma mass spectrometry analysis. Breed, age and previous location information were obtained from the British Cattle Movement Service. Dairy breeds had higher liver copper concentrations than beef breeds. Holstein-Friesian and ‘other’ dairy breeds had 38.3 per cent and 40 per cent of cattle above the Animal Health and Veterinary Laboratories Agency (AHVLA) reference range (8000?µmol/kg dry matter), respectively, whereas only 16.9 per cent of animals in the combined beef breeds exceeded this value. It was found that underlying topsoil copper concentration was not related to liver copper content and that age of the animal also had little effect on liver concentration. In conclusion, over 50 per cent of the liver samples tested had greater-than-normal concentrations of copper with almost 40 per cent of the female dairy cattle having liver copper concentrations above the AHVLA reference range, indicating that a significant proportion of the UK herd is at risk of chronic copper toxicity. PMID:26489996

  13. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ? 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties. PMID:26332445

  14. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION...specifications. The color additive copper powder shall conform...amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture...

  15. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION...specifications. The color additive copper powder shall conform...amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture...

  16. Electrolytic remediation of chromated copper arsenate wastes

    E-print Network

    Stern, Heather A. G. (Heather Ann Ganung)

    2006-01-01

    While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

  17. Modification of Phenolic Oximes for Copper Extraction 

    E-print Network

    Forgan, Ross Stewart

    2008-01-01

    The thesis deals with the modification of salicylaldoxime-based reagents used in hydrometallurgical extraction, addressing rational ligand design to tune copper(II) extractant strengths and also the development of reagents ...

  18. Copper-Catalyzed Trifluoromethylation of Unactivated Olefins

    E-print Network

    Parsons, Andrew T.

    Activating the inactive: A copper-catalyzed allylic trifluoromethylation of unactivated terminal olefins proceeds under mild conditions to produce linear allylic trifluoromethylated products with high E/Z selectivity (see ...

  19. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger antibacterial activity than copper vermiculite against E. coli. With 200 ppm exfoliated copper vermiculite in bacteria suspension (4.68 ppm of metal copper), the reduction of viable bacteria are 99.8% at 1 hour, and >99.9% at 2 hours. With 10 ppm exfoliated copper vermiculite in bacteria dilution (0.234 ppm of copper atoms), the reduction of viable E. coli reached 98.7% at 1 hour, and >95.6% at 2 hours. Molds have the potential to cause health problems, such as allergic reactions, irritations, and mycotoxins, and damage to buildings, historic relics, properties, etc. Since copper has better antifungal property, an initial antifungal activity of copper vermiculite was evaluated in this study. Fat-free milk was used to develop molds in the test samples by saturated samples. Incubated at 36°C for 48 hours, all of the surfaces of untreated control samples, including micron-sized vermiculite, exfoliated vermiculite, bentonite, and kaolin, have been covered by thick mold layers. However, there were no mold showed on copper vermiculite and exfoliated copper vermiculite. Even after the incubation was lasted for 10 days, copper vermiculite and exfoliated copper vermiculite did not show any mold on the surface. These results exhibited copper vermiculite has excellent antifungal activities against mold. Stability of copper ions in copper vermiculite was measured by aqueous leaching process. Copper vermiculite and exfoliated copper vermiculite were put into distilled water in a ratio of 2.0g/100ml, and then implemented leaching processes by continuously shaking (leaching) and statically storing (soaking) for desired periods of time, respectively. According to the analytic result by inductively coupled plasma spectroscopy (ICP), the major metals released were copper, magnesium, iron, silicon, and aluminum. The release rate of copper depends on the environmental conditions. Under the dynamic leaching condition, all the major elements had shown linear leaching rates, and slowly increases along with the leaching time. Copper concentration in 1 hour leached solutions had suffi

  20. Copper staves in the blast furnace

    SciTech Connect

    Helenbrook, R.G.; Kowalski, W.; Grosspietsch, K.H.; Hille, H.

    1996-08-01

    Operational data for stave cooling systems for two German blast furnaces show good correlation with predicted thermal results. Copper staves have been installed in blast furnaces in the zones exposed to the highest thermal loads. The good operational results achieved confirm the choice of copper staves in the areas of maximum heat load. Both temperature measurements and predictions establish that the MAN GHH copper staves do not experience large temperature fluctuations and that the hot face temperatures will be below 250 F. This suggests that the copper staves maintain a more stable accretion layer than the cast iron staves. Contrary to initial expectations, heat flux to the copper staves is 50% lower than that to cast iron staves. The more stable accretion layer acts as an excellent insulator for the stave and greatly reduces the number of times the hot face of the stave is exposed to the blast furnace process and should result in a more stable furnace operation. In the future, it may be unnecessary to use high quality, expensive refractories in front of copper staves because of the highly stable accretion layer that appears to rapidly form due to the lower operating temperature of the staves. There is a balance of application regions for cast iron and copper staves that minimizes the capital cost of a blast furnace reline and provides an integrated cooling system with multiple campaign life potential. Cast iron staves are proven cooling elements that are capable of multiple campaign life in areas of the blast furnace which do not experience extreme heat loads. Copper staves are proving to be an effective and reliable blast furnace cooling element that are subject to virtually no wear and are projected to have a longer campaign service life in the areas of highest thermal load in the blast furnace.

  1. Diamine Ligands in Copper-Catalyzed Reactions

    PubMed Central

    Surry, David S.

    2012-01-01

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands has been important in these advances and in this review we discuss these systems, including the choice of reaction conditions and applications in the synthesis of pharmaceuticals, natural products and designed materials. PMID:22384310

  2. Sorption of copper by vegetated copper-mine tailings

    NASA Astrophysics Data System (ADS)

    de Coninck, A.; Karam, A.; Jaouich, A.

    2009-04-01

    The lixiviation of copper (Cu) from vegetated mine tailings may present an environmental risk because of the potential adverse effects it may pose to ground and surface water around mines. However, bonding of Cu to mine tailings can limit transfer to surrounding water. The main objective of the present study is to assess Cu sorption by cultivated Cu-mine tailings containing calcite (pH 7.7) as influenced by commercial peat moss-shrimp waste compost (PSC) and chelating solution. Fresh tailing and tailing that had been used in pot experiments were tested and compared. Samples (0.50 g) of tailings were equilibrated with 20 cm3 of 0.01 M CaCl2 solution containing 100 mg Cu dm-3, as CuCl2, for 72 h at room temperature. After equilibration period, the samples were centrifuged and filtered. Concentration of Cu in the equilibrium solution was measured by atomic absorption spectrophotometry. The sorption coefficient (Ks) was used to interpret the sorption data. The sorption experiment was replicated two times. Compost was the most effective organic amendment in enhancing Cu sorption. The Ks values were positively and significantly correlated with organic matter content and Cu associated with the organic fraction of tailing samples. The mineralogy and organic matter content can influence the sorption capacity of Cu-mine tailings. Calcite-containing mine tailings amended with PSC can be used to sorb Cu from chloride solutions.

  3. Cobalt distribution during copper matte smelting

    NASA Astrophysics Data System (ADS)

    Kho, T. S.; Swinbourne, D. R.; Lehner, T.

    2006-04-01

    Many smelter operators subscribe to the “precautionary principle” and wish to understand the behavior of the metals and impurities during smelting, especially how they distribute between product and waste phases and whether these phases lead to environmental, health, or safety issues. In copper smelting, copper and other elements are partitioned between copper matte, iron silicate slag, and possibly the waste gas. Many copper concentrates contain small amounts of cobalt, a metal of considerable value but also of some environmental interest. In this work, the matte/slag distribution ratio (weight percent) of cobalt between copper matte (55 wt pct) and iron silicate slag was thermodynamically modeled and predicted to be approximately 5. Experiments were performed using synthetic matte and slag at 1250 °C under a low oxygen partial pressure and the distribution ratio was found to be 4.3, while between industrial matte and slag, the ratio was found to be 1.8. Both values are acceptably close to each other and to the predicted value, given the errors inherent in such measurements. The implications of these results for increasingly sustainable copper production are discussed.

  4. Method for providing uranium with a protective copper coating

    SciTech Connect

    Jones, E.; Waldrop, F.B.

    1981-08-25

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electrodeposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  5. Method for providing uranium with a protective copper coating

    SciTech Connect

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  6. Putting copper into action: copper-impregnated products with potent biocidal activities.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2004-11-01

    Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria. PMID:15345689

  7. Vitrification of copper flotation waste.

    PubMed

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-01

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit. PMID:17064848

  8. Heme/copper terminal oxidases

    SciTech Connect

    Ferguson-Miller, S.; Babcock, G.T.

    1996-11-01

    Spatially well-organized electron-transfer reactions in a series of membrane-bound redox proteins form the basis for energy conservation in both photosynthesis and respiration. The membrane-bound nature of the electron-transfer processes is critical, as the free energy made available in exergonic redox chemistry is used to generate transmembrane proton concentration and electrostatic potential gradients. These gradients are subsequently used to drive ATP formation, which provides the immediate energy source for constructive cellular processes. The terminal heme/copper oxidases in respiratory electron-transfer chains illustrate a number of the thermodynamic and structural principles that have driven the development of respiration. This class of enzyme reduces dioxygen to water, thus clearing the respiratory system of low-energy electrons so that sustained electron transfer and free-energy transduction can occur. By using dioxygen as the oxidizing substrate, free-energy production per electron through the chain is substantial, owing to the high reduction potential of O{sub 2} (0.815 V at pH 7). 122 refs.

  9. The Copper Balance of Cities

    PubMed Central

    Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-wen; Brunner, Paul H

    2014-01-01

    Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. PMID:25866460

  10. Phototunable Magnetism in Copper Octacyanomolybdate

    PubMed Central

    Ohara, Jun

    2014-01-01

    We introduce copper molybdenum cyanides of general formula Cu2[Mo(CN)8]·nH2O, which can serve as optofunctional magnetic devices. Their ground states generally stay paramagnetic down to temperatures of the K order but exhibit a spontaneous magnetization upon photoirradiation usually below a few tens of K. To interest us still further, such a ferromagnetic stateinduced by blue-laser irradiation is demagnetized step by step through further application of red or near-infrared laser pulses. We solve this intriguing photomagnetism. The ground-state properties are fully revealed by means of a group-theoretical technique. Taking account of experimental observations, we simulate applying pump laser pulses to a likely ground state and successfully reproduce both the magnetization and demagnetization dynamics. We monitor the photorelaxation process through angle-resolved photoemission spectroscopy. Electrons are fully itinerant in any of the photoinduced steady states, forming a striking contrast to the initial equilibrium state of atomic aspect. The fully demagnetized final steady state looks completely different from the initial paramagnetism but bears good analogy to one of the possible ground states available with the Coulomb repulsion on Cu sites suppressed. PMID:24895661

  11. Molecular mechanisms of copper homeostasis.

    PubMed

    Lalioti, Vasiliki; Muruais, Gemma; Tsuchiya, Yo; Pulido, Diego; Sandoval, Ignacio V

    2009-01-01

    The transition metal copper (Cu) is an essential trace element for all biota. Its redox properties bestow Cu with capabilities that are simultaneously essential and potentially damaging to the cell. Free Cu is virtually absent in the cell. The descriptions of the structural and functional organization of the metallothioneins, Cu-chaperones and P-type ATPases as well as of the mechanisms that regulate their distribution and functioning in the cell have enormously advanced our understanding of the Cu homeostasis and metabolism in the last decade. Cu is stored by metallothioneins and distributed by specialized chaperones to specific cell targets that make use of its redox properties. Transfer of Cu to newly synthesized cuproenzymes and Cu disposal is performed by the individual or concerted actions of the P-type ATPases ATP7A and ATP7B expressed in tissues. In mammalians liver is the major captor, distributor and excreter of Cu. Mutations in the P-type ATPases that interfere with their functioning and traffic are cause of the life-threatening Wilson (ATP7B) and Menkes (ATP7A) diseases. PMID:19482593

  12. Metal (copper) segregation in magmas

    NASA Astrophysics Data System (ADS)

    Vigneresse, Jean-Louis; Truche, Laurent; Chattaraj, Pratim K.

    2014-11-01

    Before precipitating to form porphyry-type deposits, metals are transported and concentrated into magmas. Ultimately, they can enter crystalline phases or segregate into the volatile phase. In both cases, partition coefficients determine the partitioning according to the ambient physico-chemical conditions. Metal partitioning between the melt and the magmatic volatile phase (MVP) is driven by their solubility. In this study, Cu has been selected as a test for metal segregation. We evaluate qualitatively the metal's behavior with respect to the melt or to the MVP by comparing the difference in chemical potential and polarizability between the fluid phase and dissolved copper compound. Maps of polarizability are drawn after computing the chemical reactivity parameters (electrophilicity, hardness, and polarizability) for various silicate melts; a synthetic fluid phase with water, CO2, S18 compounds and halogens; and Cu-compounds as a test metal. Cu-compounds show a better affinity with the fluid phase, enhanced by the presence of S in its reduced form. It explains how Cu could segregate into the fluid phase at the magmatic stage before being enriched by diffusion or melt/vapor partitioning, leading to late hydrothermal precipitation. The method should therefore be considered as a model for understanding the behavior of other metals and their segregation during the magmatic stage.

  13. Copper Recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  14. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Wen, Shu-ming; Deng, Jian-ying; Wu, Dan-dan

    2015-03-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.

  15. Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects

    SciTech Connect

    Pejova, Biljana

    2014-05-01

    Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample. - Graphical abstract: Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: competition between phonon confinement and strain-related effects. - Highlights: • Phonon confinement vs. strain-induced effects in ZnSe 3D QD assemblies were studied. • Shifts of the 1LO band result from an intricate compromise between the two effects. • SO and theoretically forbidden TO modes were accurately assigned. • Phonon relaxation time in as-deposited and annealed samples is 0.38 ps and 0.50 ps. • Both values are significantly smaller than in macrocrystalline ZnSe sample.

  16. Copper-2 Ingestion, Plus Increased Meat Eating Leading to Increased Copper Absorption, Are Major Factors Behind the Current Epidemic of Alzheimer's Disease.

    PubMed

    Brewer, George J

    2015-01-01

    It has become clear that copper toxicity is playing a major role in Alzheimer's disease; but why is the brain copper toxicity with cognition loss in Alzheimer's disease so much different clinically than brain copper toxicity in Wilson's disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer's is at least in part, a copper-2 toxicity disease, while Wilson's is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer's epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure. PMID:26633489

  17. Organic ligands reduce copper toxicity in Pseudomonas syringae

    SciTech Connect

    Azenha, M.; Vasconcelos, M.T.; Cabral, J.P.S.

    1995-03-01

    Pseudomonas syringae cells were exposed to 100 {mu}M copper alone, or to previously equilibrated copper sulfate-ligand solutions. Ligand concentrations were determined experimentally as those that reduced the free copper concentration to 5 {mu}M (determined with a Cu{sup 2+}-selective electrode). These values were in agreement with those calculated by computational equilibrium simulation based on published stability constants. Exposure of P. syringae cells to copper sulfate, chloride, or nitrate resulted in similar high mortality, suggesting that copper was responsible for cell death. Acetate, succinate, proline, lysine, cysteine, and EDTA significantly reduced both the amount of copper bound to the cells and cell death, indicating that not only strong chelating agents but also weak and moderate copper ligands can effectively antagonize copper toxicity. However, cysteine and EDTA were considerably more effective than acetate, succinate, proline, and lysine, indicating that copper toxicity is not simply a function of free copper concentration but depends on the nature of the ligand. The results suggested that a significant fraction of copper bound to acetate, succinate, proline, or lysine was displaced to the bacteria or, alternatively, mixed copper-ligand-cell complexes could be formed. On the contrary, none of these phenomena occurred for the copper complexes with cysteine or EDTA.

  18. Sol-gel-derived percolative copper film

    SciTech Connect

    Szu Sungping Cheng, C.-L.

    2008-10-02

    Cu-SiO{sub 2} films were prepared by the sol-gel method. Two-dimensional fractal copper films were formed after the films were thermally treated in reducing atmosphere. dc resistances of the films decrease 12 orders of magnitude as the content of copper increases from 70 to 80 mol%. During the resistance measurement under argon atmosphere, samples showed a sharp increase or decrease of resistance at a transition temperature which is ascribed to the oxidation of Cu into CuO. The oxidation was also observed in the in situ high temperature X-ray diffraction under vacuum condition. The evolution of the morphology of the films was studied by scanning electron microscopy. As the content of copper increases, the forms of copper particles change from discrete to aggregate then to interconnecting. The coverage coefficients of the copper range from 23 to 55% and the fractal dimensions range from 1.65 to 1.77. The percolation thresholds for the coverage coefficient and the fractal dimension are about 33% and 1.71, respectively, which corresponds to the sample containing 72.5 mol% of Cu.

  19. Effect of zinc on copper and iron bioavailability as influenced by dietary copper and fat source

    SciTech Connect

    Magee, A.C.; Jones, B.P.; Lin, F.; Sinthusek, G.; Frimpong, N.A.; Wu, S.

    1986-03-05

    In a number of experiments, they have observed that liver copper levels of young male rats fed low zinc diets were essentially the same as liver copper levels of rats fed adequate zinc. Liver iron levels of rats fed low zinc diets, however, tended to be markedly higher than liver iron levels of rats fed adequate zinc. Increases in dietary zinc (up to 200 ppm) were generally associated with decreases in liver iron deposition, but had little effect on liver copper deposition. Iron bioavailability appeared to be enhanced when fat sources high in saturated fatty acids were used, and there was evidence that the type of dietary fat influenced the effect of zinc on iron bioavailability. Liver copper deposition, however, did not appear to be markedly affected by the type of dietary fat suggesting that copper bioavailability is less affected by fat source. Increases in dietary copper were associated with increases in liver copper levels and decreases in liver iron levels of rats fed increasing levels of zinc. These data suggest that potential interrelationships between dietary factors not being considered as experimental variables could have significant effects on results and on the interrelationships between dietary variables which are being studied.

  20. Thermal resistance across a copper/Kapton/copper interface at cryogenic temperatures

    SciTech Connect

    Zhao, L.; Phelan, P.E.; Niemann, R.C.; Weber, B.R.

    1997-09-01

    The high-{Tc} superconductor current lead heat intercept connection, which is utilized as a thermal intercept to remove the Joule heat from the upper stage lead to a heat sink operating at 50--77 K, consists of a structure where a 152-{micro}m film is sandwiched between two concentric copper cylinders. The material chosen for the insulating film is Kapton MT, a composite film which has a relatively low thermal resistance, but yet a high voltage standoff capability. Here, the measured thermal conductance of a copper/Kapton MT/copper junction in a flat-plate geometry is compared to the results obtained from the actual heat intercept connection. Increasing the contact pressure reduces the thermal resistance to a minimum value determined by the film conduction resistance. A comparison between the resistance of the copper/Kapton MT/copper junction and a copper/G-10/copper junction demonstrates that the Kapton MT layer yields a lower thermal resistance while still providing adequate electrical isolation.

  1. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    PubMed

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces. PMID:24359256

  2. 40 CFR 421.60 - Applicability: Description of the secondary copper subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary copper subcategory. 421.60 Section 421.60 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Copper Subcategory § 421.60 Applicability: Description of the secondary copper..., processing, and remelting of new and used copper scrap and residues to produce copper metal and copper...

  3. The conflict between copper grounding systems and CP

    SciTech Connect

    Kirkpatrick, E.L.; Shamim, M.

    1999-09-01

    The common bonding of underground ferrous structures to massive copper grounding grids creates problems for corrosion engineers and their attempts to cathodically protect the ferrous structures. Conflicts between copper and ferrous underground systems are discussed and alternatives are presented.

  4. Modeling the fate of copper discharged to San Francisco Bay

    SciTech Connect

    Chen, C.W.; Leva, D.; Olivieri, A.

    1996-10-01

    An existing two-dimensional estuary model was modified to incorporate processes important to the transport and fate of copper in San Francisco Bay. These processes include advection, dispersion, partitioning with suspended particles, settling, and resuspension of adsorbed copper. A systematic calibration of these processes was made. The simulated advection was first shown to match tidal stages, time lag of slack waters, and currents. The model`s dispersion was then calibrated by matching observed total dissolved solids. Finally, the model was calibrated to match total suspended solids, total copper, dissolved copper, and sediment copper. The model simulated the recently observed copper concentration in the bay under current point and nonpoint source loadings. The model predicted that a reduction of copper load in winter storm-water runoff would lower copper concentration in the summer.

  5. Pathogenic adaptations to host-derived antibacterial copper

    PubMed Central

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  6. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Medical Devices § 74.3045 copper. (a) Identity. The color additive is... with respect to the medical device in which copper is used. (d) Labeling. The label of the...

  7. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The color additive sodium copper chlorophyllin is a green to black powder prepared from chlorophyll by saponification and replacement of magnesium by copper. Chlorophyll is extracted from alfalfa (Medicago...

  8. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) The color additive sodium copper chlorophyllin is a green to black powder prepared from chlorophyll by saponification and replacement of magnesium by copper. Chlorophyll is extracted from alfalfa (Medicago...

  9. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) The color additive sodium copper chlorophyllin is a green to black powder prepared from chlorophyll by saponification and replacement of magnesium by copper. Chlorophyll is extracted from alfalfa (Medicago...

  10. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The color additive sodium copper chlorophyllin is a green to black powder prepared from chlorophyll by saponification and replacement of magnesium by copper. Chlorophyll is extracted from alfalfa (Medicago...

  11. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) The color additive sodium copper chlorophyllin is a green to black powder prepared from chlorophyll by saponification and replacement of magnesium by copper. Chlorophyll is extracted from alfalfa (Medicago...

  12. Metals in Metal Salts: A Copper Mirror Demonstration

    ERIC Educational Resources Information Center

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  13. Growth Of Single Crystalline Copper Nanowhiskers

    SciTech Connect

    Kolb, Matthias; Richter, Gunther

    2010-11-24

    Nanowhiskers are defect free single crystals with high aspect ratios and as result exhibit superior physical, e.g. mechanical properties. This paper sheds light on the kinetics of copper nanowhisker growth and thickening. Whisker growth was provoked by covering silicon wafers with a thin carbon film and subsequently coating them with copper by molecular beam epitaxy. The whiskers grown were examined by scanning electron microscopy and the length and diameter were measured as a function of the amount of copper deposited. The experiments show that nanowhisker growth follows Ruth and Hirth's growth model. A fit of the model parameters to the acquired data shows that adsorption of atoms on the substrate and on the whisker surface, with subsequent surface diffusion to the whisker tip, delivers by far the greatest portion of material for whisker growth. Additionally, the experiments demonstrate that the crystallographic orientation of the substrate surface greatly influences the growth rate in the early stage of whisker growth.

  14. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.

    PubMed

    Migocka, Magdalena

    2015-10-01

    Copper ATPases (Cu-ATPases) are ubiquitous transmembrane proteins using energy from ATP to transport copper across different biological membranes of prokaryotic and eukaryotic cells. As they belong to the P-ATPase family, Cu-ATPases contain a characteristic catalytic domain with an evolutionarily conserved aspartate residue phosphorylated by ATP to form a phosphoenzyme intermediate, as well as transmembrane helices containing a cation-binding cysteine-proline-cysteine/histidine/serine (CPx) motif for catalytic activation and cation translocation. In addition, most Cu-ATPases possess the N-terminal Cu-binding CxxC motif required for regulation of enzyme activity. In cells, the Cu-ATPases receive copper from soluble chaperones and maintain intracellular copper homeostasis by efflux of copper from the cell or transport of the metal into the intracellular compartments. In addition, copper pumps play an essential role in cuproprotein biosynthesis by the uptake of copper into the cell or delivery of the metal into the chloroplasts and thylakoid lumen or into the lumen of the secretory pathway, where the metal ion is incorporated into copper-dependent enzymes. In the recent years, significant progress has been made toward understanding the function and regulation of Cu-transporting ATPases in archaea, bacteria, yeast, humans, and plants, providing new insights into the specific physiological roles of these essential proteins in various organisms and revealing some conservative regulatory mechanisms of Cu-ATPase activity. In this review, the structural, biochemical, and functional properties of Cu-ATPases from phylogenetically different organisms are summarized and discussed, with particular attention given to the recent insights into the molecular biology of copper pumps in plants. © 2015 IUBMB Life, 67(10):737-745, 2015. PMID:26422816

  15. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-01

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0?200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0?500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ?185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most. PMID:25950624

  16. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.

  17. Minimization of Copper Losses in Copper Smelting Slag During Electric Furnace Treatment

    NASA Astrophysics Data System (ADS)

    Coursol, Pascal; Cardona Valencia, Nubia; Mackey, Phillip; Bell, Stacy; Davis, Boyd

    2012-11-01

    In the quest to achieve the highest metal recovery during the smelting of copper concentrates, this study has evaluated the minimum level of soluble copper in iron-silicate slags. The experimental work was performed under slag-cleaning conditions for different levels of Fe in the matte and for a range of Fe/SiO2 ratios in the slag. All experiments were carried out under conditions where three phases were present (copper-matte-slag), which is the condition typically prevailing in many slag-cleaning electric furnaces. The %Fe in the electric furnace matte was varied between 0.5 wt.% and 11 wt.%, and two different Fe/SiO2 ratios in the slag were used (targeted values were 1.4 and 1.6). All experiments were performed at 1200°C. From thermodynamic considerations, from industrial experience, and from the results obtained in this study, the minimum soluble copper content in the electric furnace slag is expected to be near 0.55 wt.% Cu. This level does not account for a portion of the copper present as mechanically entrained matte/metal droplets. Taking this into account, the current authors believe an overall copper level in discard slag between 0.7 wt.% and 0.8 wt.% can be obtained with optimal operating conditions. For these conditions, the copper losses in the slag are roughly 75% as dissolved copper and 25% as entrained matte and copper. Such conditions include operating the electric furnace at metallic copper saturation, maintaining the %Fe in the electric furnace matte between 6 wt.% and 9 wt.%, not exceeding a slag temperature of 1250°C, and controlling the Fe/SiO2 ratio in the smelting furnace slag at ?1.5. In addition, magnetite reduction needs to be performed efficiently during the slag-cleaning cycle so as to maintain a total magnetite content of ?7 wt.% in the discard slag. The authors further consider that under exceptionally well-controlled conditions, a copper content in electric furnace discard slag between 0.55 wt.% and 0.7 wt.% can be obtained, by minimizing entrained matte and copper solubility in the discard slag.

  18. Studies on copper alloys containing chromium on the copper side phase diagram

    NASA Technical Reports Server (NTRS)

    Doi, T.

    1984-01-01

    Specimens were prepared from vacuum melted alloys of high purity vacuum melted copper and electrolytic chromium. The liquidus and eutectic point were determined by thermal analysis. The eutectic temperature is 1974.8 F and its composition is 1.28 wt% of chromium. The determination of solid solubility of chromium in copper was made by microscopic observation and electrical resistivity measurement. The solubility of chromium in solid copper is 0.6 wt% at 1050 F, 0.4 wt% at 1000 F, 0.25 wt% at 950 F, 0.17 wt% at 900 F, and 0.30 wt% at 840 F.

  19. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake.

    PubMed

    Zimnicka, Adriana M; Ivy, Kristin; Kaplan, Jack H

    2011-03-01

    Copper is an essential micronutrient in humans and is required for a wide range of physiological processes, including neurotransmitter biosynthesis, oxidative metabolism, protection against reactive oxygen species, and angiogenesis. The first step in the acquisition of dietary copper is absorption from the intestinal lumen. The major human high-affinity copper uptake protein, human copper transporter hCTR1, was recently shown to be at the basolateral or blood side of both intestinal and renal epithelial cell lines and thus does not play a direct role in this initial step. We sought to functionally identify the major transport pathways available for the absorption of dietary copper across the apical intestinal membrane using Caco2 cells, a well-established model for human enterocytes. The initial rate of apical copper uptake into confluent monolayers of Caco2 cells is greatly elevated if amino acids and serum proteins are removed from the growth media. Uptake from buffered saline solutions at neutral pH (but not at lower pH) is inhibited by either d- or l-histidine, unaltered by the removal of sodium ions, and inhibited by ?90% when chloride ions are replaced by gluconate or sulfate. Chloride-dependent copper uptake occurs with Cu(II) or Cu(I), although Cu(I) uptake is not inhibited by histidine, nor by silver ions. A well-characterized inhibitor of anion exchange systems, DIDS, inhibited apical copper uptake by 60-70%, while the addition of Mn(II) or Fe(II), competitive substrates for the divalent metal transporter DMT1, had no effect on copper uptake. We propose that anion exchangers play an unexpected role in copper absorption, utilizing copper-chloride complexes as pseudo-substrates. This pathway is also observed in mouse embryonic fibroblasts, human embryonic kidney cells, and Cos-7 cells. The special environment of low pH, low concentration of protein, and protonation of amino acids in the early intestinal lumen make this pathway especially important in dietary copper acquisition. PMID:21191107

  20. Tetraalkoxyaluminates of nickel(II), copper(II), and copper(I).

    PubMed

    Veith, Michael; Valtchev, Kroum; Huch, Volker

    2008-02-01

    The syntheses and structural details of tetraisopropoxyaluminates and tetra-tert-butoxyaluminates of nickel(II), copper(I), and copper(II) are reported. Within the nickel series, either Ni[Al(OiPr)4]2.2HOiPr, with nickel(II) in a distorted octahedral oxygen environment, or Ni[Al(OiPr)4]2.py, with nickel(II) in a square-pyramidal O4N coordination sphere, or Ni[(iPrO)(tBuO)3Al]2, with Ni(II) in a quasi-tetrahedral oxygen coordination, has been obtained. Another isolated complex is Ni[(iPrO)3AlOAl(OiPr)3].3py (with nickel(II) being sixfold-coordinated), which may also be described as a "NiO" species trapped by two Al(OiPr)3 Lewis acid-base systems stabilized at nickel by three pyridine donors. Copper(I) compounds have been isolated in three forms: [(iPrO)4Al]Cu.2py, [(tBuO)4Al]Cu.2py, and Cu2[(tBuO)4Al]2. In all of these compounds, the aluminate moiety behaves as a bidentate unit, creating a tetrahedrally distorted N2O2 copper environment in the pyridine adducts. In the base-free copper(I) tert-butoxyaluminate, a dicopper dumbbell [Cu-Cu 2.687(1) A] is present with two oxygen contacts on each of the copper atoms. Copper(II) alkoxyaluminates have been characterized either as Cu[(tBuO)4Al]2, {Cu(iPrO)[(iPrO)4Al]}2, and Cu[(tBuO)3(iPrO)Al]2 (copper being tetracoordinated by oxygen) or as [(iPrO)4Al]2Cu.py (pentacoordinated copper similar to the nickel derivative). Finally, a copper(II) hydroxyaluminate has been isolated, displaying pentacoordinate copper (O4N coordination sphere) by dimerization, with the formula {[(tBuO)4Al]Cu(OH).py}2. The formation of all of these isolated products is not always straightforward because some of these compounds in solution are subject to decomposition or are involved in equilibria. Besides NMR [copper(I) compounds], UV absorptions and magnetic moments are used to characterize the compounds. PMID:18186626

  1. Mineral resource of the month: copper

    USGS Publications Warehouse

    U.S. Geological Survey

    2011-01-01

    The article provides information on copper and its various uses. It was the first metal used by humans and is considered as one of the materials that played an important role in the development of civilization. It is a major industrial metal because of its low cost, availability, electrical conductivity, high ductility and thermal conductivity. Copper has long been used in the circuitry of electronics and the distribution of electricity and is now being used in silicon-based computer chips, solar and wind power generation, and coinage.

  2. 6,000 years of copper smelting : Center for the Study of Copper Smelting in Ancient Societies

    E-print Network

    Steinberg, Marc J. (Marc Jonathan), 1969-

    2000-01-01

    In 1959 professor of archeology Beno Rothenberg began investigating the production of copper in the Sinai desert and Aravah region of southern Israel. He discovered over 650 previously unknown ancient copper mining and ...

  3. 49 CFR 192.377 - Service lines: Copper.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.377 Service lines: Copper. Each copper service line installed within a building must be...

  4. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false copper. 74.3045 Section 74.3045 Food and Drugs... ADDITIVES SUBJECT TO CERTIFICATION Medical Devices § 74.3045 copper. (a) Identity. The color additive is copper (CAS Reg. No. 147-14-8) having the structure shown in Colour Index No. 74160. (b)...

  5. Copper: Its Environmental Impacts. AIO Red Paper #22.

    ERIC Educational Resources Information Center

    Boutis, Elizabeth; Jantzen, Jonathan Landis, Ed.

    Although copper is a widespread and useful metal, the process of mining and refining copper can have severe detrimental impacts on humans, plants, and animals. The most serious impacts from copper production are the release of sulphur dioxide and other air pollutants and the poisoning of water supplies. These impacts occur in both the mining and…

  6. RHOA SIGNAL TRANSDUCTION: EFFECTS OF MATERNAL COPPER DEFICIENCY ON PROGENY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Maternal copper deficiency during pregnancy and lactation impairs development of the cardiovascular system.Maternal copper deficiency induces reduction in CCO activity in neonatal cardiac mitochondria, pointing to developmental alterations. Effects of maternal copper deficiency on RhoA s...

  7. Parameters for good welding of copper to nickel

    NASA Technical Reports Server (NTRS)

    Hall, L. G.

    1969-01-01

    Quality in welding copper leads to nickel bus wires is obtained by the mass of nickel exceeding that of copper. Welding range 2ncreases proportionately with the increase in the nickel-to-copper mass ratio up to 4-to-1.

  8. Long-Term Effects of Orthophosphate Treatment on Copper Concentration

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical “cupric hydroxide” copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility, and in initial field monitoring for the LCR from Tier 1 soldered copper sites,...

  9. LONG-TERM IMPACTS OF ORTHOPHOSPHATE TREATMENT ON COPPER LEVELS

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical “cupric hydroxide” copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility and in initial field monitoring for the LCR from Tier 1 soldered copper sites,...

  10. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure...

  11. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure...

  12. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure...

  13. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure...

  14. ENVIRONMENTAL FATE AND ECOLOGICAL IMPACT OF COPPER HYDROXIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper, applied in the form of copper hydroxide, is a widely used fungicide/bactericide for control of plant diseases. Copper has been shown to have adverse effects on aquatic organisms including a reduction in macroinvertebrate survival and structural and functional effects on fish nervous systems....

  15. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure...

  16. Release of Micronized Copper Particles from Pressure Treated Wood Products

    EPA Science Inventory

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the parti...

  17. LONG-TERM IMPACTS OF ORTHOPHOSPHATE TREATMENT ON COPPER

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical "cupric hydroxide" copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility and in initial field monitoring for the LCR from Tier 1 soldered copper sites, c...

  18. THE SOLUBILITY AND SURFACE CHEMISTRY OF FRESHLY PRECIPITATED COPPER SOLIDS

    EPA Science Inventory

    Since the implementation of the United States Environmental Protection Agency’s Lead and Copper Rule (LCR) in 1991, a great deal of research has been conducted on copper corrosion and the leaching of copper from materials in drinking water distribution systems. While important p...

  19. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Design of copper pipe. 192.125 Section 192.125 Transportation...PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper pipe used in mains must...

  20. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125 Transportation...PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper pipe used in mains must...

  1. Dynamic Multibody Protein Interactions Suggest Versatile Pathways for Copper Trafficking

    E-print Network

    Chen, Peng

    Dynamic Multibody Protein Interactions Suggest Versatile Pathways for Copper Trafficking Aaron M, the human copper chaperone Hah1 delivers Cu+ to the Wilson's Disease Protein (WDP) via weak and dynamic, the copper chaperone, Hah1, specifically delivers Cu+ via weak and dynamic protein interactions to two

  2. The electrochemical characteristics of blue copper protein monolayers on gold

    E-print Network

    Tuscia, Università Degli Studi Della

    The electrochemical characteristics of blue copper protein monolayers on gold L. Andolfi a , D blue copper proteins, Pseu- domonas aeruginosa azurin and Populus nigra plastocyanin, in order Elsevier B.V. All rights reserved. Keywords: Plastocyanin; Azurin; Protein monolayer; Self-assembly; Copper

  3. THE SOLUBILITY AND SURFACE CHEMISTRY OF FRESHLY PRECIPITATED COPPER SOLIDS

    EPA Science Inventory

    Since the implementation of the United States Environmental Protection Agency’s Lead and Copper Rule (LCR) in 1991, a great deal of research has been conducted on copper corrosion and the leaching of copper from materials in drinking water distribution systems. While important...

  4. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Design of copper pipe. 192.125 Section 192.125 Transportation...STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper pipe used in mains must have a minimum wall...

  5. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Design of copper pipe. 192.125 Section 192.125 Transportation...STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper pipe used in mains must have a minimum wall...

  6. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Design of copper pipe. 192.125 Section 192.125 Transportation...STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper pipe used in mains must have a minimum wall...

  7. Copper deficiency in a herd of captive muskoxen.

    PubMed

    Blakley, B R; Tedesco, S C; Flood, P F

    1998-05-01

    At necropsy, a mature muskox cow was found to have exceedingly low serum and liver copper concentrations of 4.8 = mumol/L and 0.02 mmol/kg, respectively. Serum copper levels were also low in remaining members of the herd but returned to normal after parenteral treatment with calcium copper edetate. PMID:9592616

  8. IN-HOUSE CORROSION RESEARCH EMPHASIZING LEAD, COPPER AND IRON

    EPA Science Inventory

    Lead and copper are directly regulated via the "Lead and Copper Rule;" however, water suppliers must balance all water treatment processes in order to simultaneously comply with all regulations. Specific research needs for copper and lead chemistry still exist, as applications o...

  9. Tantalum-copper alloy and method for making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1983-06-01

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  10. The Yeast Fre1p/Fre2p Cupric Reductases Facilitate Copper Uptake and Are Regulated by the Copper-modulated Mac1p Activator*

    E-print Network

    Alexandraki, Despina

    to blood involving the plasma glycoprotein ceruloplasmin, a copper-binding protein with ferrous oxidaseThe Yeast Fre1p/Fre2p Cupric Reductases Facilitate Copper Uptake and Are Regulated by the Copper are functionally significant for copper uptake, as monitored by the accumulation of the copper-regulated CUP1

  11. Effect of Severe Plastic Deformation and Subsequent Heat Treatment on Hardness and Electrical Conductivity of Oxygen-Free High Conductivity (OFHC) Copper, Commercial Pure Copper, and Copper Chromium Alloy 

    E-print Network

    Kao, Yi-Tang

    2014-12-15

    Samples of oxygen-free high conductivity (OFHC) copper (C101), commercially pure copper (C110), and copper chromium alloy (C182) were subjected to severe plastic deformation (SPD) using equal-channel angular extrusion (ECAE) to determine the effect...

  12. Syntheses, structures, and optical properties of the indium/germanium selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4}

    SciTech Connect

    Ward, Matthew D.; Pozzi, Eric A.; Van Duyne, Richard P.; Ibers, James A.

    2014-04-01

    The three solid-state indium/germanium selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4} have been synthesized at 1173 K. The structure of Cs{sub 4}In{sub 8}GeSe{sub 16} is a three-dimensional framework whereas those of CsInSe{sub 2} and CsInGeSe{sub 4} comprise sheets separated by Cs cations. Both Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} display In/Ge disorder. From optical absorption measurements these compounds have band gaps of 2.20 and 2.32 eV, respectively. All three compounds are charge balanced. - Graphical abstract: Structure of Cs{sub 4}In{sub 8}GeSe{sub 16}. - Highlights: • The solid-state In/Ge selenides Cs{sub 4}In{sub 8}GeSe{sub 16}, CsInSe{sub 2}, and CsInGeSe{sub 4} have been synthesized. • Both Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} display In/Ge disorder. • Cs{sub 4}In{sub 8}GeSe{sub 16} and CsInGeSe{sub 4} have band gaps of 2.20 eV and 2.32 eV, respectively.

  13. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by... of the chlorophyll is dehydrated alfalfa. (2) Color additive mixtures for drug use made...

  14. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by... of the chlorophyll is dehydrated alfalfa. (2) Color additive mixtures for drug use made...

  15. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by... of the chlorophyll is dehydrated alfalfa. (2) Color additive mixtures for drug use made...

  16. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by... of the chlorophyll is dehydrated alfalfa. (2) Color additive mixtures for drug use made...

  17. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by... of the chlorophyll is dehydrated alfalfa. (2) Color additive mixtures for drug use made...

  18. Physiological plasticity of Dictyota kunthii (Phaeophyceae) to copper excess.

    PubMed

    Sordet, C; Contreras-Porcia, L; Lovazzano, C; Goulitquer, S; Andrade, S; Potin, P; Correa, J A

    2014-05-01

    The brown alga Dictyota kunthii is one of the dominant species in the coastal areas of northern Chile affected by copper enrichment due to accumulated mining wastes. To assess its physiological plasticity in handling copper-mediated oxidative stress, 4-days copper exposure (ca. 100 ?g/L) experiments were conducted with individuals from a copper impacted area and compared with the responses of plants from a non-impacted site. Several biochemical parameters were then evaluated and compared between populations. Results showed that individuals from the copper-impacted population normally displayed higher levels of copper content and antioxidant enzymes activity (catalase (CAT), ascorbate peroxidase (AP), dehydroascorbate reductase (DHAR), glutathione peroxidase (GP) and peroxiredoxins (PRX)). After copper exposure, antioxidant enzyme activity increased significantly in plants from the two selected sites. In addition, we found that copper-mediated oxidative stress was associated with a reduction of glutathione reductase (GR) activity. Moreover, metabolic profiling of extracellular metabolites from both populations showed a significant change after plants were exposed to copper excess in comparison with controls, strongly suggesting a copper-induced release of metabolites. The copper-binding capacity of those exudates was determined by anodic stripping voltammetry (ASV) and revealed an increased ligand capacity of the medium with plants exposed to copper excess. Results indicated that D. kunthii, regardless their origin, counteracts copper excess by various mechanisms, including metal accumulation, activation of CAT, AP, DHAR, GP and PRX, and an induced release of Cu binding compounds. Thus, plasticity in copper tolerance in D. kunthii seems constitutive, and the occurrence of a copper-tolerant ecotype seems unlikely. PMID:24704518

  19. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    PubMed

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-12-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively. PMID:25191877

  20. Copper deficiency decreases plasma homocysteine in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to determine the effects of copper deficiency on key aspects of homocysteine metabolism that involve methionine recycling and transsulfuration. Male weanling Sprague-Dawley rats were fed AIN-93-G-based diets containing <1 or approximately 6 mg Cu/kg. After 6 wk (experim...

  1. Placenta Copper Transport Proteins in Preeclampsia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...

  2. Simplified Fabrication of Helical Copper Antennas

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    2006-01-01

    A simplified technique has been devised for fabricating helical antennas for use in experiments on radio-frequency generation and acceleration of plasmas. These antennas are typically made of copper (for electrical conductivity) and must have a specific helical shape and precise diameter.

  3. Antistatic Polycarbonate/Copper Oxide Composite

    NASA Technical Reports Server (NTRS)

    Kovich, Michael; Rowland, George R., Jr.

    2003-01-01

    A composite material consisting of polycarbonate filled with copper oxide has been found to be suitable as an antistatic material. This material was developed to satisfy a requirement for an antistatic material that has a mass density less than that of aluminum and that exhibits an acceptably low level of outgassing in a vacuum.

  4. Metal Nitride Diffusion Barriers for Copper Interconnects 

    E-print Network

    Araujo, Roy A.

    2010-01-14

    of copper into silicon, which is primarily through grain boundaries. This dissertation reports the processing of high quality stoichiometric thin films of TiN, TaN and HfN, and studies their Cu diffusion barrier properties. Epitaxial metastable cubic TaN (B1...

  5. Laser micro welding of copper and aluminum

    NASA Astrophysics Data System (ADS)

    Mys, Ihor; Schmidt, Michael

    2006-02-01

    Aluminum combines comparably good thermal and electrical properties with a low price and a low material weight. These properties make aluminum a promising alternative to copper for a large number of electronic applications, especially when manufacturing high volume components. However, a main obstacle for a wide use of this material is the lack of a reliable joining process for the interconnection of copper and aluminum. The reasons for this are a large misalignment in the physical properties and even more a poor metallurgical affinity of both materials that cause high crack sensitivity and the formation of brittle intermetallic phases during fusion welding. This paper presents investigations on laser micro welding of copper and aluminum with the objective to eliminate brittle intermetallic phases in the welding structure. For these purposes a combination of spot welding, a proper beam offset and special filler material are applied. The effect of silver, nickel and tin filler materials in the form of thin foils and coatings in a thickness range 3-100 ?m has been investigated. Use of silver and tin filler materials yields to a considerable improvement of the static and dynamic mechanical stability of welded joints. The analysis of the weld microstructure shows that an application even of small amounts of suitable filler materials helps to avoid critical, very brittle intermetallic phases on the interface between copper and solidified melt in the welded joints.

  6. Characterizations of severely deformed and annealed copper 

    E-print Network

    Haouaoui, Mohammed

    2001-01-01

    . Relatively weak textures are developed during processing of copper 101 via ECAE. The texture after multipass processing via route A is found to be near the {110}. An intermediate rotation of the billet of ±90° during processing is found to produce a...

  7. ENVIRONMENTAL CONSIDERATION FOR EMERGING COPPER WINNING PROCESSES

    EPA Science Inventory

    Fourteen processes for the production of copper were examined to evaluate their potential environmental impact, economics and energy requirements relative to reverberatory smelting as commonly practices in the U.S. Because of limitations in data available for more recent process ...

  8. THE CHEMISTRY OF NEW COPPER PLUMBING

    EPA Science Inventory

    The presence of sulfate, bicarbonate and orthophosphate can change the type of solid present in systems containing cupric ion or cupric hydroxide solids. In some cases, a short term reduction in copper solubility is realized, but over longer periods of time formation of basic cup...

  9. Minnows get columnaris too; copper sulfate works!

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to compare the therapeutic effects of copper sulfate (CuSO4), when delivered in either a flow-through or static system, on the survival of golden shiner (Notemigonus crysoleucas; Fig. 1A) and fathead minnow (Pimephales promelas; Fig. 1B) infected with Flavobacterium columnare (...

  10. A Simulator for Copper Ore Leaching

    SciTech Connect

    Travis, B.

    1999-05-14

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Copper is a strategic metal and the nation needs a secure supply both for industrial use and military needs. However, demand is growing worldwide and is outstripping the ability of the mining industry to keep up. Improved recovery methods are critically needed to maintain the balance of supply and demand. The goal of any process design should be to increase the amount of copper recovered, control movement of acid and other environmentally harmful chemicals, and reduce energy requirements. To achieve these ends, several improvements in current technology are required, the most important of which is a better understanding of, and the ability to quantify, how fluids move through heterogeneous materials in a complex chemical environment. The goal of this project is create a new modeling capability that couples hydrology with copper leaching chemistry . once the model has been verified and validated, we can apply the model to specific problems associated with heap leaching (flow channeling due to non-uniformities in heap structure, precipitation/dissolution reactions, and bacterial action), to understand the causes of inefficiencies, and to design better recovery systems. We also intend to work with representatives of the copper mining industry to write a coordinated plan for further model development and application that will provide economic benefits to the industry and the nation.

  11. Fluidized bed electrowinning of copper. Final report

    SciTech Connect

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  12. Copper-catalyzed trifluoromethylalkynylation of isocyanides.

    PubMed

    Lei, Jian; Wu, Xiaoxing; Zhu, Qiang

    2015-05-15

    The title reaction proceeds with acetylenic triflones and isocyanides under mild conditions using copper as a catalyst. This transformation provides an efficient access to (E)-N-alkyl trifluoromethyl alkynyl ketoimines, which are useful building blocks for the synthesis of CF3-containing N-heterocycles, propargylamines, etc. PMID:25905786

  13. COPPER PITTING CORROSION: A CASE STUDY

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  14. Shock Compression of Monocrystalline Copper: Atomistic Simulations

    E-print Network

    Meyers, Marc A.

    Shock Compression of Monocrystalline Copper: Atomistic Simulations BUYANG CAO, EDUARDO M. BRINGA, and MARC ANDRE´ MEYERS Molecular dynamics (MD) simulations were used to model the effects of shock compression on [001] and [221] monocrystals. We obtained the Hugoniot for both directions, and analyzed

  15. Copper toxicity in aquaculture: A practical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate has been used in aquaculture for many years to control weeds, algae, snails (which carry catfish trematode), and ecto-parasitic organisms in catfish production. Our research has also shown it to be safe and effective to treat fungus on various fish eggs (catfish, hybrid striped bass,...

  16. Alternative Anode Reaction for Copper Electrowinning

    SciTech Connect

    Not Available

    2005-07-01

    This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

  17. A Mathematical model of copper corrosion

    E-print Network

    Fabrizio Clarelli; Barbara De Filippo; Roberto Natalini

    2012-11-29

    A new partial differential model for monitoring and detecting copper corrosion products (mainly brochantite and cuprite) is proposed to provide predictive tools suitable for describing the evolution of damage induced on bronze specimens by sulfur dioxide (SO_2) pollution. This model is characterized by the movement of a double free boundary. Numerical simulations show a nice agreement with experimental result.

  18. Copper deficiency attenuates endothelial nitric oxide release

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attenuation of endothelium-dependent nitric oxide (NO)-mediated vasodilation is a consistent finding in both conduit and resistance vessels during dietary copper deficiency. While the effect is well established, evidence for the mechanism is still circumstantial. This study was designed to deter...

  19. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  20. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  1. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  2. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  3. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  4. Electronic Properties of Rocksalt Copper Monoxide

    NASA Astrophysics Data System (ADS)

    Grant, Paul Michael

    2009-03-01

    Rocksalt copper monoxide, although not yet synthetically realized in bulk form, can be studied computationally as a proxy for the family of layered HTSC copper oxides. We report results for a series of tetragonal CuO rocksalt structures with c/a lattice parameter ratios ranging from 1.0 to 1.5, employing the plane-wave pseudopotential method with exchange/correlation LDA+U. As expected, we obtain a metallic state for U = 0 at all values of c/a given that the nominal valence electron configuration for Cu in copper monoxides is 3d^9 yielding a partially occupied conduction band. However, completely unexpected was our finding similar metallic properties in rocksalt CuO for all physically plausible values of U (up to 10 eV) and c/a between 1.0 to approximately 1.2. Only for c/a > 1.2 do our calculations reveal the opening of a Mott-Hubbard charge-transfer gap. We interpret our results^1 as supporting the original motivations of Bednorz and Mueller that high temperature superconductivity in the layered copper oxide perovskites may begin with their tendency to exhibit Jahn-Teller strong electron-phonon coupling^2. ^1P. M. Grant, J. Phys: CS 129 (2008) 01242. ^2J. G. Bednorz and K. A. Mueller, Rev. Mod. Phys. 60 (1988) 585.

  5. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Copper naphthenate. 524.463 Section 524.463 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463...

  6. [Copper deficiency anemia morphologically mimicking myelodysplastic syndrome].

    PubMed

    Kikuchi, Taku; Mori, Takehiko; Shimizu, Takayuki; Morita, Shinya; Kono, Hidaka; Nakagawa, Ken; Mitsuhasi, Takayuki; Murata, Mitsuru; Okamoto, Shinichiro

    2014-03-01

    A 64-year-old man underwent kidney transplantation for progressive chronic renal failure which had developed 8 years after allogeneic bone marrow transplantation for acute myeloid leukemia. Because of post-operative complications, he had been placed on intravenous hyperalimentation. Three months after the transplantation, anemia rapidly progressed (hemoglobin, 7.9 g/dl). The proportion of reticulocytes was 0.2%, but white blood cell and platelet counts remained within normal ranges. Serum iron, vitamin B12, and folate levels were normal. Bone marrow examination showed the presence of ringed sideroblasts and cytoplasmic vacuoles in a fraction of erythroid cells. Megakaryocytes were adequate in number with normal morphology. Although the findings were consistent with refractory anemia with ringed sideroblasts according to the WHO classification, cytoplasmic vacuolations were also observed in myeloid cells, suggesting copper deficiency. Indeed, serum copper and ceruloplasmin levels were found to be low (33 ?g/dl and 11 mg/dl, respectively), and oral copper supplementation at a daily dose of 1 mg was initiated. There was a prompt increase in reticulocytes, and the hemoglobin level was normalized within one month, in response to this regimen. In progressive anemia cases with ringed sideroblasts in the bone marrow, copper deficiency should be considered in the differential diagnosis. PMID:24681939

  7. Copper hazards to fish, wildlife and invertebrates: a synoptic review

    USGS Publications Warehouse

    Eisler, Ronald

    1998-01-01

    Selective review and synthesis of the technical literature on copper and copper salts in the environment and their effects primarily on fishes, birds, mammals, terrestrial and aquatic invertebrates, and other natural resources. The subtopics include copper sources and uses; chemical and biochemical properties; concentrations of copper in field collections of abiotic materials and living organisms; effects of copper deficiency; lethal and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds and mammals, including effects on survival, growth, reproduction, behavior, metabolism, carcinogenicity, matagenicity, and teratogenicity; proposed criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  8. Superconducting properties of evaporated copper molybdenum sulfide films

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Chi, K. C.; Dillon, R. O.; Bunshah, R. F.; Alterovitz, S. A.

    1978-01-01

    Films of copper molybdenum sulfide were produced by coevaporation. Those that were superconducting contained only the ternary compound and free molybdenum. The range of copper content in the ternary compound was as large as that in polycrystalline material, that is, it includes either phase alone, or a mixture of the two phases of this material. This is in contrast with sputtered materials where copper concentration has been limited to a narrower range. The upper critical field and the critical current were measured as functions of external magnetic field, and found to be similar to those of sputtered copper molybdenum sulfide, when the comparison was made for samples having the same amount of copper.

  9. An Effective Secondary Electron Emission Suppression Treatment For Copper MDC

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N.; Long, Kenwyn J.; Jensen, Kenneth A.; Roman, Robert F.

    1993-01-01

    Untreated oxygen-free, high-conductivity (OFHC) copper, commonly used for MDC electrodes, exhibits relatively high secondary electron emission characteristics. This paper describes a specialized ion-bombardment procedure for texturing copper surfaces which sharply reduces the emission properties relative to untreated copper. The resulting surface is a particle-free, robust, uniformly highly-textured all-metal structure. The use of this process requires no modifications to copper machining, brazing, or other MDC normal fabrication procedures. The flight TWT for a planned NASA deep space probe, the Cassini Mission, will incorporate copper MDC electrodes treated with the method described here.

  10. Fabrication of superhydrophobic copper surface with excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Zhao, Libin; Qiang, Xiaohu; Liu, Yanhua; Sun, Zhiqiang; Wang, Bei

    2015-04-01

    This article presents an effective and facile method for preparing the superhydrophobic copper surface with excellent corrosion resistance. The superhydrophobic copper surfaces were fabricated by oxidizing, heat-treating, and alkyl chains' grafting. The resulting copper plates take on the binary structure which is composed of a great deal of nanosheets and needle-like/rod-like fibers. Just grounded on both the micro- and nanoscale hierarchical surface and the grafted long alkyl chains, the resulting copper plates are endued with the excellent water repellence, while the water contact angle and sliding angle can reach 157.3° and 5°, respectively. As a result, the superhydrophobic copper plates get the outstanding corrosion resistance.

  11. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be involved during erosion of any primary ore body and its ultimate displacement and redeposition as a secondary deposit. Bleached sandstone at the surface may indicate significant ore deposits near the water table.

  12. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    PubMed

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-01

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis. PMID:26154246

  13. Simultaneous Platinum and Copper Ion Attachment to a Human Copper Chaperone Protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Cvitkovic, John; Yu, Corey; Dmitriev, Oleg; Kaminski, George; Bernholc, Jerry

    2015-03-01

    Cisplatin is a potent anti-cancer drug based on a platinum ion. However, its effectiveness is decreased by cellular resistance, which involves cisplatin attaching to copper transport proteins. One of such proteins is Atox1, where cisplatin attaches to the copper binding site. Surprisingly, it was shown that both cisplatin and copper can attach to Atox1 at the same time. To study this double metal ion attachment, we use the KS/FD DFT method, which combines Kohn-Sham DFT with frozen-density DFT to achieve efficient quantum-mechanical description of explicit solvent. Calculations have so far investigated copper ion attachment to CXXC motifs present in Atox1. The addition of the platinum ion and the competition between the two metals is currently being studied. These calculations start from a molecular mechanics (MM) structural model, in which glutathione groups provide additional ligands to the Pt ion. Our goals are to identify possible Cu-Pt structures and to determine whether copper/platinum attachment is competitive, independent, or cooperative. Results will be compared to the 1H, N1 5 -HSQC NMR experiments, in which binding of copper and cisplatin to Atox1 produces distinct secondary chemical shift signatures, allowing for kinetic studies of simultaneous metal binding.

  14. Thermoelectric Properties of Selenides Spinels

    NASA Technical Reports Server (NTRS)

    Snyder, G.; Caillat, T.; Fleurial, J-P.

    2000-01-01

    Many compounds with the spinel structure type have been analyzed for their thermoelectric properties. Published data was used to augment experimental results presented here to select promising thermoelectric spinels.

  15. Response of plasma copper, ceruloplasmin, iron and ions in carp, Cyprinus carpio to waterborne copper ion and nanoparticle exposure.

    PubMed

    Hedayati, Aliakbar; Hoseini, Seyyed Morteza; Hoseinifar, Seyed Hossein

    2016-01-01

    In this study, Cyprinus carpio was exposed to 0.25mgL(-1) copper as either copper sulfate (CuSO4) or copper oxide nanoparticles (nano-Cu), and 25mgL(-1) copper as nano-Cu for 14days. CuSO4 and high concentration of nano-Cu led to a significant increase in plasma total copper levels. Plasma free copper levels increased significantly in all copper-exposed treatments. Except for low concentration of nano-Cu after 7 and 14days, copper exposure generally led to a significant decrease in plasma ceruloplasmin levels. Plasma iron levels increased significantly in CuSO4 (all times) and nano-Cu (7th and 14th days) treatments. A significant elevation in plasma total iron binding capacity (TIBC) was observed after 3days in the fish exposed to low concentration nano-Cu, and after 14days in all copper-exposed treatments. Transferrin saturation (TSA) ratio showed significant increase in CuSO4 (3rd and 7th days) and the high concentration nano-Cu (7th day) treatments. Decrease in plasma chloride (7th and 14th days) and sodium (14th days) was observed in CuSO4 treatment. In conclusion, the results suggest that ionic copper is mainly absorbed via fish gill, whereas, nano-copper are more likely absorbed via gut. Also, data suggest that ionic copper has more adverse effects on the examined plasma biochemical characteristics compared to the equivalent nano-copper concentration, which may be due to the lower copper absorption by fish in the nano-copper suspension. PMID:26408942

  16. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. PMID:24398414

  17. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2015-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  18. Copper deficiency in Tule Elk at Point Reyes, California

    USGS Publications Warehouse

    Gogan, Peter J.P.; Jessup, David A.; Akeson, Mark

    1989-01-01

    Tule elk (Cervus elaphus nannodes) reintroduced to Point Reyes, Calif., in 1978 exhibited gross signs of copper deficiency by June 1979. Copper levels in liver (x=5.9 ppm) and serum (0.42 ppm) of elk in Point Reyes were below levels in adult tule elk from other locations in California (liver, x=80 ppm; serum, x=1.4 ppm). These levels were consistent with documented copper deficiencies in wild and domestic ruminants. Copper serum levels increased in response to copper enriched dietary supplements and declined after the elk stopped eating the supplements. Analysis of plant and soil samples showed both are deficient in copper and normal in molybdenum and sulfur-sulfates. Deficiency in plants and soils at Point Reyes are probably due to low copper levels in the underlying granitic parent material.

  19. Physical, chemical and antimicrobial characterization of copper-bearing material

    NASA Astrophysics Data System (ADS)

    Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan

    2010-12-01

    Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.

  20. Copper toxicity in a New Zealand dairy herd

    PubMed Central

    2014-01-01

    Chronic copper toxicity was diagnosed in a Jersey herd in the Waikato region of New Zealand following an investigation into the deaths of six cattle from a herd of 250 dry cows. Clinical signs and post-mortem examination results were consistent with a hepatopathy, and high concentrations of copper in liver and blood samples of clinically affected animals confirmed copper toxicity. Liver copper concentrations and serum gamma-glutamyl transferase activities were both raised in a group of healthy animals sampled at random from the affected herd, indicating an ongoing risk to the remaining cattle; these animals all had serum copper concentrations within normal limits. Serum samples and liver biopsies were also collected and assayed for copper from animals within two other dairy herds on the same farm; combined results from all three herds showed poor correlation between serum and liver copper concentrations. To reduce liver copper concentrations the affected herd was drenched with 0.5 g ammonium molybdate and 1 g sodium sulphate per cow for five days, and the herd was given no supplementary feed or mineral supplements. Liver biopsies were repeated 44 days after the initial biopsies (approximately 1 month after the end of the drenching program); these showed a significant 37.3% decrease in liver copper concentrations (P <0.02). Also there were no further deaths after the start of the drenching program. Since there was no control group it is impossible to quantify the effect of the drenching program in this case, and dietary changes were also made that would have depleted liver copper stores. Historical analysis of the diet was difficult due to poor record keeping, but multiple sources of copper contributed to a long term copper over supplementation of the herd; the biggest source of copper was a mineral supplement. The farmer perceived this herd to have problems with copper deficiency prior to the diagnosis of copper toxicity, so this case demonstrates the importance of monitoring herd copper status regularly. Also the poor correlation between liver and serum copper concentrations in the three herds sampled demonstrates the importance of using liver copper concentration to assess herd copper status. PMID:25279139

  1. Contrasting the Microstructural and Mechanical Response to Shock Loading of Cold-Rolled Copper with Annealed Copper

    NASA Astrophysics Data System (ADS)

    Higgins, Daniel L.; Pang, Bo; Millett, Jeremy C. F.; Whiteman, Glenn; Jones, Ian P.; Chiu, Yu-Lung

    2015-10-01

    The response of copper to shock loading and cold working is well documented. Both shock loaded and cold-worked annealed copper display a high dislocation density and increased yield strength. However, as of yet no work has been carried out on the microstructure of shock-loaded cold-worked copper. Both annealed and cold-worked copper have been tested using a gas gun to ascertain the effect of shock loading on cold-worked copper. The annealed copper was loaded to a peak pressure of 5 GPa and the cold-worked copper was loaded to peak pressures of 6 and 10 GPa. It was found that the shock-loaded cold-worked copper had a higher hardness than the shock-loaded annealed copper and that the hardness of the cold-worked copper increased with peak shock pressure. Each specimen analyzed displayed different variations on the classic shocked copper microstructure, which was ascribed to the different momentum trapping apparatus used.

  2. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    NASA Astrophysics Data System (ADS)

    Stanojlovi?, Rodoljub D.; Sokolovi?, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  3. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW). PMID:26219270

  4. Magnetic and optical properties of copper-substituted alcohol dehydrogenase: a bisthiolate copper (II) complex.

    PubMed Central

    Farrar, J A; Formicka, G; Zeppezauer, M; Thomson, A J

    1996-01-01

    Replacement of the catalytic Zn(II) in horse liver alcohol dehydrogenase (HLADH) with copper produces a mononuclear Cu(II) chromophore with a ligand set consisting of two cysteine sulphurs, one histidine nitrogen plus one further atom. The fourth ligand to the metal ion and the conformation of the protein may be altered by addition of exogenous ligands and/or the cofactor NADH. Absorbance, CD, low-temperature magnetic CD (MCD) and EPR spectra are presented of copper-substituted HLADH samples in both 'open' and 'closed' conformations and in the presence and absence of the exogenous ligands pyrazole and DMSO. The EPR spectra indicate a strong, predominantly axial field about the copper(II) ion with high copper-thiol (cysteine) covalence. The optical and MCD spectra are interpreted in terms of four d-d transitions to low energy, also reflecting the axial ligand field, and four charge-transfer transitions to copper(II) between 30000 and 16000 cm-1 arising from the two cysteine sulphur atoms which give two pairs of oppositely signed MCD C-terms. These transitions are polarized mainly in the axial plane defined by Cys-46, Cys-174 and His-67. The binary complex formed with pyrazole displays quite different EPR and optical spectra which can be understood in terms of a rotation of the copper hole-orbital away from the axial plane thus decreasing sharply the copper-thiol covalence. The magneto-optical spectra in the presence and absence of DMSO are indistinguishable. PMID:8713071

  5. A Multinuclear Copper(I) Cluster Forms the Dimerization Interface in Copper-Loaded Human Copper Chaperone for Superoxide Dismutase

    SciTech Connect

    Stasser, J.P.; Siluvai, G.S.; Barry, A.N.; Blackburn, N.J.

    2009-06-04

    Copper binding and X-ray aborption spectroscopy studies are reported on untagged human CCS (hCCS; CCS = copper chaperone for superoxide dismutase) isolated using an intein self-cleaving vector and on single and double Cys to Ala mutants of the hCCS MTCQSC and CSC motifs of domains 1 (D1) and 3 (D3), respectively. The results on the wild-type protein confirmed earlier findings on the CCS-MBP (maltose binding protein) constructs, namely, that Cu(I) coordinates to the CXC motif, forming a cluster at the interface of two D3 polypeptides. In contrast to the single Cys to Ser mutations of the CCS-MBP protein (Stasser, J. P., Eisses, J. F., Barry, A. N., Kaplan, J. H., and Blackburn, N. J. (2005) Biochemistry 44, 3143-3152), single Cys to Ala mutations in D3 were sufficient to eliminate cluster formation and significantly reduce CCS activity. Analysis of the intensity of the Cu-Cu cluster interaction in C244A, C246A, and C244/246A variants suggested that the nuclearity of the cluster was greater than 2 and was most consistent with a Cu4S6 adamantane-type species. The relationship among cluster formation, oligomerization, and metal loading was evaluated. The results support a model in which Cu(I) binding converts the apo dimer with a D2-D2 interface to a new dimer connected by cluster formation at two D3 CSC motifs. The predominance of dimer over tetramer in the cluster-containing species strongly suggests that the D2 dimer interface remains open and available for sequestering an SOD1 monomer. This work implicates the copper cluster in the reactive form and adds detail to the cluster nuclearity and how copper loading affects the oligomerization states and reactivity of CCS for its partner SOD1.

  6. Isolation and Characterization of Bacteria Resistant to Metallic Copper Surfaces? †

    PubMed Central

    Espírito Santo, Christophe; Morais, Paula Vasconcelos; Grass, Gregor

    2010-01-01

    Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coins comprise strains that are especially resistant against the toxic properties exerted by dry metallic copper surfaces. The most resistant of 294 isolates were Gram-positive staphylococci and micrococci, Kocuria palustris, and Brachybacterium conglomeratum but also included the proteobacterial species Sphingomonas panni and Pseudomonas oleovorans. Cells of some of these bacterial strains survived on copper surfaces for 48 h or more. Remarkably, when these dry-surface-resistant strains were exposed to moist copper surfaces, resistance levels were close to those of control strains and MICs for copper ions were at or below control strain levels. This suggests that mechanisms conferring resistance against dry metallic copper surfaces in these newly isolated bacterial strains are different from well-characterized copper ion detoxification systems. Furthermore, staphylococci on coins did not exhibit increased levels of resistance to antibiotics, arguing against coselection with copper surface resistance traits. PMID:20048058

  7. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    PubMed Central

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  8. Haemolymph protein composition and copper levels in decapod crustaceans

    NASA Astrophysics Data System (ADS)

    Depledge, M. H.; Bjerregaard, P.

    1989-06-01

    Variations in haemolymph protein composition and concentration, in copper content and copper distribution in the tissue of decapod crustaceans are reviewed. Haemocyanin is the major haemolymph constituent (> 60%); the remaining proteins (in order of concentration) include coagulogen, apohaemocyanin, hormones and antisomes. Moulting, nutritional state, infection, hypoxia and salinity fluctuations are the major factors affecting the relative proportions and total quantities of the haemolymph proteins. With regard to haemocyanin, the changes in concentration during the moult cycle are principally associated with changes in haemolymph volume, rather than with changes in total haemocyanin content due to synthesis or catabolism. The role of the midgut gland in regulating haemolymph copper and haemocyanin concentration has been re-evaluated. More than 50% of the whole body copper load is stored in the haemolymph. In contrast, less than 3% of the copper load resides in the midgut gland. The latter has little potential for regulating haemolymph copper levels, at least in the short term (hours to a few days), though it may be involved in regulating haemocyanin levels over longer periods (weeks to months). The total copper content of the haemolymph remains within a narrow range, except during starvation when levels may decrease. Consequently, variations in the copper content of soft tissues, which constitute only 20% of decapod dry weight, do not significanlty alter whole body copper concentrations. Evidence that copper released following haemocyanin catabolism becomes bound to metallothionein for later use in the resynthesis of haemocyanin is reviewed and found to be inconclusive. The amount of copper that can be stored in this way is trivial compared with the amount of copper required to permit significant changes in haemolymph haemocyanin concentration. Average tissue copper requirements, calculated during the present study, are approx. 4 times higher than previous theoretical estimates.

  9. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    PubMed

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2?m/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9?m/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). PMID:24239277

  10. Influence of NOM on copper corrosion

    SciTech Connect

    Korshin, G.V.; Ferguson, J.F.; Perry, S.A.L.

    1996-07-01

    Natural organic matter (NOM) profoundly affected the corrosion of copper in a moderately alkaline synthetic water. It decreased the rate of corrosion, increased the rate of copper leaching, and dispersed crystalline inorganic corrosion products. The interaction of NOM with corrosion products was modeled using separate phase of malachite and cuprous oxide. The authors concluded that NOM promotes the formation of pits in a certain narrow range of concentrations (0.1--0.2 mg/L in laboratory tests) and suppresses this type of corrosion at higher dosages. At low DOC concentrations, the main interaction between NOM and the surfaces of corroding metal and corrosion products is adsorption. The influence of NOM on corrosion of metals in real distribution systems must be studied in relation to long periods of surface aging, flow rate, concentration and type of oxidants, pH, and alkalinity.

  11. Introducing copper phthalocyanine as a qubit

    NASA Astrophysics Data System (ADS)

    Warner, Marc; Din, Salahud; Gardener, Jules; Morley, Gavin W.; Wu, Wei; Stoneham, Marshall; Fisher, Andrew J.; Heutz, Sandrine; Kay, Christopher W. M.; Aeppli, Gabriel

    2012-02-01

    Quantum information processing (QIP) has been shown to solve certain useful problems faster than its classical counterpart. However finding a physical system upon which to execute these algorithms is a challenging task. One promising implementation is to use an electron spin in a magnetic field as the information bearing quantum system. Numerous options have been proposed along these lines. Here I discuss a new candidate qubit, copper phthalocyanine. The copper atom at the centre of the molecule carries an unpaired electron. Pulsed electron paramagnetic resonance measurements of relaxation times reveal that it has potential for QIP. We measure the spin-lattice and spin-spin relaxation times of this electron and demonstrate single qubit manipulations. Solid-state electronic devices can be built with this low cost material, which is optically active, and offers great opportunities for chemical and physical modification, leading to significant control of magnetic and other properties.

  12. Reverse Taylor Tests on Ultrafine Grained Copper

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Martin, M.; Gregori, F.; Asaro, R. J.; Meyers, M. A.; Thadhani, N. N.

    2006-07-01

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 ?m for the initial sample to less than 0.5 ?m for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models.

  13. Shock Hugoniot of Single Crystal Copper

    SciTech Connect

    Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M; Holmes, N C

    2009-08-28

    The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

  14. Precision micro drilling with copper vapor lasers

    SciTech Connect

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  15. Copper Nanowire Production for Interconnect Applications

    NASA Technical Reports Server (NTRS)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  16. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  17. Frontispiece: Hydrothermal Formation of Calcium Copper Tetrasilicate.

    PubMed

    Johnson-McDaniel, Darrah; Comer, Sara; Kolis, Joseph W; Salguero, Tina T

    2015-12-01

    Crystal Engineering CaCuSi4 O10 is a famous pigment (Egyptian blue), rare mineral (cuprorivaite), and unique near-infrared luminescent material. Now CaCuSi4 O10 can be prepared hydrothermally using conditions vastly different from the historic salt-flux and solid-state routes. But mind the details-too hot a reaction and you get calcium silicate, too cold and you get a porous calcium copper silicate. 350?°C is just right. Additional parameters that strongly influence the hydrothermal chemistry leading to CaCuSi4 O10 include the copper precursor, the mineralizer, and reaction duration. This new synthesis of CaCuSi4 O10 sheds light on the formation of cuprorivaite in select mineral deposits around the world. For more information, see the Communication by T.?T. Salguero and co-workers on page?17560?ff. PMID:26599876

  18. Reactively evaporated films of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Chi, K. C.; Dillon, R. O.; Bunshah, R. F.; Alterovitz, S.; Woollam, J. A.

    1978-01-01

    Films of superconducting Chevrel-phase copper molybdenum sulfide CuxMo6S8 were deposited on sapphire substrates by reactive evaporation using H2S as the reacting gas. Two superconducting temperatures (10.0 K and 5.0 K) of the films were found, corresponding to two different phases with different copper concentrations. All films were superconducting above 4.2 K and contained Chevrel-phase compound as well as free molybdenum. The critical current was measured as a function of applied field. One sample was found to deviate from the scaling law found for co-evaporated or sputtered samples, which possibly indicates a different pinning mechanism or inhomogeneity of the sample.

  19. Reverse Taylor Tests on Ultrafine Grained Copper

    SciTech Connect

    Mishra, A.; Meyers, M. A.; Martin, M.; Thadhani, N. N.; Gregori, F.; Asaro, R. J.

    2006-07-28

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 {mu}m for the initial sample to less than 0.5 {mu}m for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models.

  20. Patterning graphene nanoribbons using copper oxide nanowires

    SciTech Connect

    Sinitskii, Alexander; Tour, James M.

    2012-03-05

    We present a fabrication technique for graphene nanoribbons (GNRs) that employs copper oxide nanowires as the etch masks. We demonstrate that these etch masks have numerous advantages: they can be synthesized simply by heating a copper foil in air, deposited on graphene from a solution, they are inert to oxygen plasma, and can be removed from the substrate by dissolution in mild acids. We fabricated GNRs in the device configuration and tested their electrical properties. Depending on the duration of the plasma etching, GNR devices exhibiting either standard ambipolar electric field effects or p-type transistor behaviors with ON-OFF ratios > 50 can be fabricated. The resulting devices based on narrow GNRs are demonstrated to exhibit promising electronic properties, which can be exploited in studies where GNR devices are required.