Science.gov

Sample records for copper selenides

  1. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J. (Lakewood, CO); Miedaner, Alexander (Boulder, CO); Van Hest, Maikel (Lakewood, CO); Ginley, David S. (Evergreen, CO); Nekuda, Jennifer A. (Lakewood, CO)

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  2. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  3. Oxidation Mechanism of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  4. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  5. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  7. Aqueous preparation of surfactant-free copper selenide nanowires.

    PubMed

    Chen, Xinqi; Li, Zhen; Yang, Jianping; Sun, Qiao; Dou, Shixue

    2015-03-15

    Uniform surfactant-free copper selenide (Cu2-xSe) nanowires were prepared via an aqueous route. The effects of reaction parameters such as Cu/Se precursor ratio, Se/NaOH ratio, and reaction time on the formation of nanowires were comprehensively investigated. The results show that Cu2-xSe nanowires were formed through the assembling of CuSe nanoplates, accompanied by their self-redox reactions. The resultant Cu2-xSe nanowires were explored as a potential thermoelectric candidate in comparison with commercial copper selenide powder. Both synthetic and commercial samples have a similar performance and their figures of merit are 0.29 and 0.38 at 750K, respectively. PMID:25527088

  8. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals

    PubMed Central

    2015-01-01

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn2+ and Cd2+) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu2–xSe) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core–shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu+ ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu2–xSe samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature. PMID:26140622

  9. Copper-indium-selenide quantum dot-sensitized solar cells.

    PubMed

    Yang, Jiwoong; Kim, Jae-Yup; Yu, Jung Ho; Ahn, Tae-Young; Lee, Hyunjae; Choi, Tae-Seok; Kim, Young-Woon; Joo, Jin; Ko, Min Jae; Hyeon, Taeghwan

    2013-12-21

    We present a new synthetic process of near infrared (NIR)-absorbing copper-indium-selenide (CISe) quantum dots (QDs) and their applications to efficient and completely heavy-metal-free QD-sensitized solar cells (QDSCs). Lewis acid-base reaction of metal iodides and selenocarbamate enabled us to produce chalcopyrite-structured CISe QDs with controlled sizes and compositions. Furthermore, gram-scale production of CISe QDs was achieved with a high reaction yield of ~73%, which is important for the commercialization of low-cost photovoltaic (PV) devices. By changing the size and composition, electronic band alignment of CISe QDs could be finely tuned to optimize the energetics of the effective light absorption and injection of electrons into the TiO2 conduction band (CB). These energy-band-engineered QDs were applied to QDSCs, and the quantum-confinement effect on the PV performances was clearly demonstrated. Our best cell yielded a conversion efficiency of 4.30% under AM1.5G one sun illumination, which is comparable to the performance of the best solar cells based on toxic lead chalcogenide or cadmium chalcogenide QDs. PMID:24177572

  10. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect

    Urmila, K. S. Asokan, T. Namitha Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  11. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    PubMed

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-01

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices. PMID:26037495

  12. The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films

    SciTech Connect

    Peranantham, P.; Jeyachandran, Y.L.; Viswanathan, C.; Praveena, N.N.; Chitra, P.C.; Mangalaraj, D. . E-mail: dmraj800@yahoo.com; Narayandass, Sa. K.

    2007-08-15

    Copper selenide and indium telluride thin films were prepared by a vacuum evaporation technique. The as-deposited films were annealed in a vacuum at different temperatures and the influence on composition, structure and optical properties of copper selenide and indium telluride films was investigated using energy dispersive X-ray analysis, X-ray diffraction, scanning electron microscopy and optical transmission measurements. From the compositional analysis, the as-deposited copper selenide and indium telluride films which were annealed at 473 and 523 K, respectively, were found to possess the nearly stoichiometric composition of CuSe and InTe phases. However, the films annealed at 673 K showed the composition of Cu{sub 2}Se and In{sub 4}Te{sub 3} phases. The structural parameters such as, particle size and strain were determined using X-ray diffractograms of the films. Optical transmittance measurements indicated the existence of direct and indirect transitions in copper selenide films and an indirect allowed transition in indium telluride films.

  13. Passive laser Q switches made of glass doped with oxidised nanoparticles of copper selenide

    SciTech Connect

    Yumashev, K V

    2000-01-31

    Passive Q switching of Nd{sup 3+}:YAG ({lambda} = 1060 nm) and YAlO{sub 3}:Nd{sup 3+} (1340 nm) lasers, as well as of an Er{sup 3+} (1540 nm) glass laser was realised by using glass doped with oxidised nanoparticles of copper selenide. Nonlinear optical properties of the nanoparticles (radius of 25 nm) in a glass matrix were studied by the picosecond absorption spectroscopy technique. (control of laser radiation parameters)

  14. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  15. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOEpatents

    Curtis, Calvin J. (Lakewood, CO); Miedaner, Alexander (Boulder, CO); van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David S. (Evergreen, CO); Leisch, Jennifer (Denver, CO); Taylor, Matthew (West Simsbury, CT); Stanbery, Billy J. (Austin, TX)

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  16. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    PubMed

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se?t-Se is shifted to temperatures higher than 100C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%. PMID:24267336

  17. Investigation of copper indium gallium selenide material growth by selenization of metallic precursors

    NASA Astrophysics Data System (ADS)

    Han, Junfeng; Liao, Cheng; Jiang, Tao; Xie, Huamu; Zhao, Kui; Besland, M.-P.

    2013-11-01

    We report a study of copper indium gallium selenide (CIGS) thin film growth in the annealing process at temperature range from 120 °C to 600 °C. Thin films were prepared by sputtering metal precursors and subsequent selenization process. Surface morphologies of thin films were observed by using high resolution field emission scanning electron microscopy (FESEM). Phases in quaternary systems Cu-In-Ga-Se were investigated by X-ray diffraction (XRD). Evolution of crystalline structure in the film surface was studied by Raman spectra. A possible reaction path from metallic precursors to a single CIGS phase was obtained by merging all results of SEM, XRD and Raman. Above 210 °C, selenium reacted with Cu and In to form binary selenide. CuSe crystalline platelets were observed clearly in the film surfaces. When temperature was reaching 380 °C, Cu2-xSe and InSe reacted with excess Se to form CuInSe2 (CIS) and contributed to the grain growth. Above 410 °C, Ga-rich phase was detected in the films. With increased temperature, Ga diffused into CIS crystalline lattices. Finally, at 600 °C, a single phase of Cu-In-Ga-Se quaternary system was formed. A large number of triangular and hexagonal structures were observed in the film due to a re-crystalline process at a high annealing temperature.

  18. Specific features of photoluminescence properties of copper-doped cadmium selenide quantum dots

    SciTech Connect

    Tselikov, G. I.; Dorofeev, S. G.; Tananaev, P. N.; Timoshenko, V. Yu.

    2011-09-15

    The effect of doping with copper on the photoluminescence properties of cadmium selenide quantum dots 4 nm in dimension is studied. The quenching of the excitonic photoluminescence band related to the quantum dots and the appearance of an impurity photoluminescence band in the near-infrared region are observed after doping of the quantum dots with copper. It is established that, on doping of the quantum dots, the photoluminescence kinetics undergoes substantial changes. The photoluminescence kinetics of the undoped quantum dots is adequately described by a sum of exponential relaxation relations, whereas the photoluminescence kinetics experimentally observed in the region of the impurity band of the copper-doped samples follows stretched exponential decay, with the average lifetimes 0.3-0.6 {mu}s at the photon energies in the range of 1.47-1.82 eV. The experimentally observed changes in the photoluminescence properties are attributed to transformation of radiative centers in the quantum dots when doped with copper atoms.

  19. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.

    PubMed

    Jeon, Jong-Ok; Lee, Kee Doo; Seul Oh, Lee; Seo, Se-Won; Lee, Doh-Kwon; Kim, Honggon; Jeong, Jeung-hyun; Ko, Min Jae; Kim, BongSoo; Son, Hae Jung; Kim, Jin Young

    2014-04-01

    Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4 ; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se atmosphere at temperatures ranging from 400 C to 600 C. The crystallization of CZTSe starts at 400 C and is completed at 500 C, while crystal growth continues at higher temperatures. Owing to compromises between enhanced crystallinity and poor physical properties, CZTSe thin films annealed at 550 C exhibit the best and most-stable device performances, reaching up to 8.0 % active efficiency; among the highest efficiencies for CZTSe thin-film solar cells prepared by electrodeposition. Further analysis of the electronic properties and a comparison with another state-of-the-art device prepared from a hydrazine-based solution, suggests that the conversion efficiency can be further improved by optimizing parameters such as film thickness, antireflection coating, MoSe2 formation, and p-n junction properties. PMID:24692285

  20. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals

    PubMed Central

    2013-01-01

    We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9–10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50–60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting. PMID:24748721

  1. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583μgL(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219μgL(-1). From OPV, copper (14μgL(-1)), zinc (87μgL(-1)) and silver (78μgL(-1)) leached. Zebrafish embryos were exposed until 120h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. PMID:26615488

  2. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    PubMed

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C. PMID:25180569

  3. Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers.

    PubMed

    Kim, Jae-Yup; Yang, Jiwoong; Yu, Jung Ho; Baek, Woonhyuk; Lee, Chul-Ho; Son, Hae Jung; Hyeon, Taeghwan; Ko, Min Jae

    2015-11-24

    Copper-indium-selenide (CISe) quantum dots (QDs) are a promising alternative to the toxic cadmium- and lead-chalcogenide QDs generally used in photovoltaics due to their low toxicity, narrow band gap, and high absorption coefficient. Here, we demonstrate that the photovoltaic performance of CISe QD-sensitized solar cells (QDSCs) can be greatly enhanced simply by optimizing the thickness of ZnS overlayers on the QD-sensitized TiO2 electrodes. By roughly doubling the thickness of the overlayers compared to the conventional one, conversion efficiency is enhanced by about 40%. Impedance studies reveal that the thick ZnS overlayers do not affect the energetic characteristics of the photoanode, yet enhance the kinetic characteristics, leading to more efficient photovoltaic performance. In particular, both interfacial electron recombination with the electrolyte and nonradiative recombination associated with QDs are significantly reduced. As a result, our best cell yields a conversion efficiency of 8.10% under standard solar illumination, a record high for heavy metal-free QD solar cells to date. PMID:26431392

  4. Liquid precursor for deposition of copper selenide and method of preparing the same

    SciTech Connect

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  5. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    PubMed

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process. PMID:24922252

  6. Formation of selenide, sulfide or mixed selenide-sulfide films on metal or metal coated substrates

    DOEpatents

    Eser, Erten; Fields, Shannon

    2012-05-01

    A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.

  7. Fabrication of selenide segmented elements

    SciTech Connect

    Elsner, N.B.; Chin, J.; Reynolds, G.H.

    1980-03-01

    Processes are described for the fabrication of P- and N-type elements with high-efficiency selenide segments. Bonded hot and cold caps were attached to these elements with techniques based on processes developed in successful TRANSIT and Ring converter programs. An iron barrier was introduced in the segmented P-type element between the (Cu,Ag)/sub 2/Se and (Bi,Sb)/sub 2/Te/sub 3/ layers. This was made necessary by the known degradation in thermoelectric properties of (Bi,Sb)/sub 2/Te/sub 3/ contaminated with copper. Zero current thermal gradient tests of the segmented P-type element show the iron barrier successfully prevents copper contamination of the (Bi,Sb)/sub 2/Te/sub 3/.

  8. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  9. Magnetometer uses bismuth-selenide

    NASA Technical Reports Server (NTRS)

    Woollman, J. A.; Spain, I. L.; Beale, H.

    1972-01-01

    Characteristics of bismuth-selenide magnetometer are described. Advantages of bismuth-selenide magnetometer over standard magnetometers are stressed. Thermal stability of bismuth-selenide magnetometer is analyzed. Linearity of output versus magnetic field over wide range of temperatures is reported.

  10. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 ?m, 1.00 ?m and 2.00 ?m increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  11. Selenide retention by mackinawite.

    PubMed

    Finck, N; Dardenne, K; Bosbach, D; Geckeis, H

    2012-09-18

    The isotope (79)Se may be of great concern with regard to the safe disposal of nuclear wastes in deep geological repositories due to its long half-life and potential mobility in the geosphere. The Se mobility is controlled by the oxidation state: the oxidized species (Se(IV)) and (Se(VI)) are highly mobile, whereas the reduced species (Se(0) and Se(-II)) form low soluble solids. The mobility of this trace pollutant can be greatly reduced by interacting with the various barriers of the repository. Numerous studies report on the oxidized species retention by mineral phases, but only very scarce studies report on the selenide (Se(-II)) retention. In the present study, the selenide retention by coprecipitation with and by adsorption on mackinawite (FeS) was investigated. XRD and SEM analyses of the samples reveal no significant influence of Se on the mackinawite precipitate morphology and structure. Samples from coprecipitation and from adsorption are characterized at the molecular scale by a multi-edge X-ray absorption spectroscopy (XAS) investigation. In the coprecipitation experiment, all elements (S, Fe, and Se) are in a low ionic oxidation state and the EXAFS data strongly point to selenium located in a mackinawite-like sulfide environment. By contacting selenide ions with FeS in suspension, part of Se is located in an environment similar to that found in the coprecipitation experiment. The explanation is a dynamical dissolution-recrystallization mechanism of the highly reactive mackinawite. This is the first experimental study to report on selenide incorporation in iron monosulfide by a multi-edge XAS approach. PMID:22900520

  12. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    SciTech Connect

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van; Xu, M.; Vroon, Z.; Belt, R. van de; Buskens, P. E-mail: buskens@dwi.rwth-aachen.de

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  13. Development of the data base for a degradation model of a selenide RTG. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1977-01-01

    The paper is concerned with the evaluation of the materials used in a selenide radioisotope thermoelectric generator (RTG). These materials are composed of n-type gadolinium selenide and n-type copper selenide. A three-fold evaluation approach is being used: (1) the study of the rate of change of the thermal conductivity of the material, (2) the investigation of the long-term stability of the material's Seebeck voltage and electrical resistivity under current and temperature gradient conditions, and (3) determination of the physical behavior and compatibility of the material with surrounding insulation at elevated temperatures. Programmatically, the third category of characteristic evaluation is being emphasized.

  14. Advanced selenide thermoelectric development program. Final report

    SciTech Connect

    Seetoo, W.R.

    1981-07-20

    The primary objective of this work was to demonstrate that copper silver selenide and TAGS could be segmented. The hot junction temperature was planned to be 725/sup 0/C with the segmentation temperature at 400/sup 0/C, both temperatures were selected to prevent excessive sublimation from the hot ends of the segments, respectively. The program was planned as a cooperative effort between General Atomic company and Teledyne Energy Systems. Accordingly, General Atomic synthesized the CuAgSe that was used to fabricate the test hardware that was ultimately delivered to General Atomic for testing. Both the CuAgSe and TAGS were hot pressed in an argon atmosphere then the segments were furnace-bonded to each other. A secondary objective was to produce CuAgSe powder by rapid solidification.

  15. COPPER

    EPA Science Inventory

    The report is a review of current knowledge of the distribution of copper in the environment and living things. Metabolism and the effects of copper in the biosphere are also considered. Copper compounds are common and widely distributed in nature. They are also extensively mined...

  16. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  17. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  18. Crystal chemistry and self-lubricating properties of monochalcogenides gallium selenide and tin selenide

    SciTech Connect

    Erdemir, A.

    1993-02-01

    This paper describes the fundamentals of the crystal chemistry and self-lubricating mechanisms of two monochalcogenides; tin selenide and gallium selenide. Specifically, it enumerates their inter-atomic array and bond structure in crystalline states, and correlates this fundamental knowledge with their self-lubricating capacity. Friction tests assessing the self-lubricating performance of gallium and tin selenides were carried out on a pin-on-disk machine. Specifically, large crystalline pieces of gallium selenide and tin selenide were cut and cleaved into flat squares and subsequently rubbed against the sapphire balls. In another case, the fine powders (particle size {approx} 50--100 {mu}m) of gallium selenide and tin selenide were manually fed into the sliding interfaces of 440C pins and 440C disks. For the specific test conditions explored, it was found that the friction coefficients of the sapphire/gallium selenide and sapphire/tin selenide pairs were {approx} 0.23 and {approx} 0.35, respectively. The friction coefficients of 440C pin/440C disk test pairs with gallium selenide and tin selenide powders were on the orders of {approx} 0.22 and {approx} 0.38, respectively. For comparison, a number of parallel friction tests were performed with MoS{sub 2} powders and compacts and the results of these tests were also reported. The friction data together with the crystal-chemical knowledge and the electron microscopic evidence supported the conclusion that the lubricity and self-lubricating mechanisms of these solids are closely related to their crystal chemistry and the nature of interlayer bonding.

  19. Novel nonlinear transmission of porphyrin complexes containing rhenium selenide clusters

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhu, X.; Tu, X.; Zheng, Z.; Norwood, R.; Steeves, D.; Kimball, B.; Peyghambarian, N.

    2010-02-01

    Nonlinear transmission is found to be significantly enhanced by introducing heavy metal atoms on the periphery of macrocycle porphyrin complexes via rhenium selenide clusters that are coordinated to four pyridyl groups. Experiments on 5, 10, 15, 20-tetra(4-pyridyl) porphyrin (H2TPyP), CuTPyP, [Re6(μ3-Se)8(PEt3)5]4(H2TPyP)(SbF6)8 (abbreviated as P5H2TPyP), and [Re6(μ3-Se)8(PEt3)5]4Cu(TPyP)(SbF6)8 (abbreviated as CuP5TPyP) using 10 ns laser pulses at 523 nm show that, in contrast to CuTPyP and P5H2TPyP, which are saturable absorbers at a low fluence of 1-100 mJ/cm2 and become nonlinear absorbers with a threshold larger than 1000 mJ/cm2 at high fluence, CuP5TPyP exhibits an excellent nonlinear transmission performance with a threshold as low as 20 mJ/cm2. A bulky rhenium selenide cluster was coordinated to pyridyl groups in tetrapyridyl porphyrin. The modified copper (II) porphyrin complex CuP5TPyP has strong nonlinear absorption at 523 nm and synergistic interaction between CuTPyP and P5H2TPyP is one of possible mechanisms.

  20. Electronic and magnetic properties of orthorhombic iron selenide

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  1. Synthesis and characterization of luminescent cadmium selenide/zinc selenide/zinc sulfide cholinomimetic quantum dots

    NASA Astrophysics Data System (ADS)

    Ggout, Claire; McAtee, Maria L.; Bennett, Nichole M.; Viranga Tillekeratne, L. M.; Kirchhoff, Jon R.

    2012-07-01

    Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by 1H and 31P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy.Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by 1H and 31P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy. Electronic supplementary information (ESI) available: NMR spectra supporting the synthesis of the HC-15 QDs are available. See DOI: 10.1039/c2nr30713h

  2. Indium selenides: structural characteristics, synthesis and their thermoelectric performances.

    PubMed

    Han, Guang; Chen, Zhi-Gang; Drennan, John; Zou, Jin

    2014-07-23

    Indium selenides have attracted extensive attention in high-efficiency thermoelectrics for waste heat energy conversion due to their extraordinary and tunable electrical and thermal properties. This Review aims to provide a thorough summary of the structural characteristics (e.g. crystal structures, phase transformations, and structural vacancies) and synthetic methods (e.g. bulk materials, thin films, and nanostructures) of various indium selenides, and then summarize the recent progress on exploring indium selenides as high-efficiency thermoelectric materials. By highlighting challenges and opportunities in the end, this Review intends to shine some light on the possible approaches for thermoelectric performance enhancement of indium selenides, which should open up an opportunity for applying indium selenides in the next-generation thermoelectric devices. PMID:24729463

  3. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.

    PubMed

    Lesnyak, Vladimir; George, Chandramohan; Genovese, Alessandro; Prato, Mirko; Casu, Alberto; Ayyappan, S; Scarpellini, Alice; Manna, Liberato

    2014-08-26

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (?20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sulfide (Cu2-xSeyS1-y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2-xSeyS1-y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV-vis-NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps. PMID:25050455

  4. The electrochemical oxidation of organic selenides and selenoxides

    SciTech Connect

    Ryan, M.D.; Yau, J.; Hack, M.

    1997-06-01

    The electrochemical oxidation of alkyl and aryl selenides was investigated in acetonitrile. The oxidation of diphenyl selenide and di(4-methylphenyl) selenide led primarily to the formation of their respective selenoxides, which were identified by exhaustive coulometric oxidation and {sup 1}H and {sup 13}C analysis of the products. The selenoxide itself was not observed in the cyclic voltammetry of the selenide for two reasons: first, the protonation of the selenoxide by the acid formed from the reaction of water with the cation radical and second, the formation of a selenoxide hydrate. The formation of the hydrate with diphenyl selenoxide was verified by isolation of the dimethoxy derivative. In addition to the selenoxide, selenonium compounds, formed by the coupling of the oxidized material, were also observed. The alkyl selenides were generally oxidized at a lower potential than the aryl selenides. This trend is different from the sulfur analogues, where the aryl sulfides are easier to oxidize than their alkyl counterparts. As a result, the difference in their redox potentials is relatively small. These differences may occur because the oxidation of aryl sulfides is more likely to take place on the aromatic ring, which leads to a greater yield of the coupled products (about 100%) when compared to the selenide analogue.

  5. Limiting pump intensity for sulfur-doped gallium selenide crystals

    NASA Astrophysics Data System (ADS)

    Guo, J.; Li, D.-J.; Xie, J.-J.; Zhang, L.-M.; Feng, Z.-S.; Andreev, Yu M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Shaiduko, A. V.; Svetlichnyi, V. A.

    2014-05-01

    High optical quality undoped and sulfur-doped gallium selenide crystals were grown from melts by the modified vertical Bridgman method. Detailed study of the damage produced under femtosecond pulse exposure has shown that evaluation of the damage threshold by visual control is unfounded. Black matter spots produced on crystal surfaces do not noticeably decrease either its transparency or its frequency conversion efficiency as opposed to real damage identified as caked well-cohesive gallium structures. For the first time it was demonstrated that optimally sulfur-doped gallium selenide crystal possesses the highest resistivity to optical emission (about four times higher in comparison with undoped gallium?selenide).

  6. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors

    NASA Astrophysics Data System (ADS)

    Fellowes, J. W.; Pattrick, R. A. D.; Lloyd, J. R.; Charnock, J. M.; Coker, V. S.; Mosselmans, J. F. W.; Weng, T.-C.; Pearce, C. I.

    2013-04-01

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of SeIV by Veillonella atypica and compared directly against borohydride-reduced SeIV for the production of glutathione-stabilized CdSe and ?-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, green synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  7. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    SciTech Connect

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  8. Preparation and Characterization of Silver Selenide Thin Film

    NASA Astrophysics Data System (ADS)

    Chandrasekar, L. Bruno; Vijayalakshmi, R.; Rajeswari, B.; Chandramohan, R.; Arivazhagan, G.; Packiaseeli, S. Arulmozhi

    2014-12-01

    Silver selenide, a phase-changing chalcogenide material, is prepared using electro deposition method for various molarities. X-ray diffraction studies show the cubic lattice of the material. The micro-structural properties such as grain size, strain, dislocation density, and texture coefficient are examined. The lattice constant is calculated using Nelson-Relay function. Morphological studies are done and uniform distributions of grains are observed. High purities of thin films are confirmed by energy dispersive X-ray analysis. The band gap is calculated using UV-vis spectroscopy and photoluminescence technique, and hence, the Stokes's effect is observed in silver selenide thin films. It is the first time that the lattice constant and the Urbach energy for various molarities in the case of silver selenide thin films are reported.

  9. Preparation and Characterization of Silver Selenide Thin Film

    NASA Astrophysics Data System (ADS)

    Chandrasekar, L. Bruno; Vijayalakshmi, R.; Rajeswari, B.; Chandramohan, R.; Arivazhagan, G.; Packiaseeli, S. Arulmozhi

    2014-09-01

    Silver selenide, a phase-changing chalcogenide material, is prepared using electro deposition method for various molarities. X-ray diffraction studies show the cubic lattice of the material. The micro-structural properties such as grain size, strain, dislocation density, and texture coefficient are examined. The lattice constant is calculated using Nelson-Relay function. Morphological studies are done and uniform distributions of grains are observed. High purities of thin films are confirmed by energy dispersive X-ray analysis. The band gap is calculated using UV-vis spectroscopy and photoluminescence technique, and hence, the Stokes's effect is observed in silver selenide thin films. It is the first time that the lattice constant and the Urbach energy for various molarities in the case of silver selenide thin films are reported.

  10. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe{sub 2}

    SciTech Connect

    Pavan Kumar, V.; Varadaraju, U.V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu{sub 1+x}Mn{sub 1?x}Se{sub 2}, (x=0?0.75) a new quaternary layered selenide, are reported. NaCuMnSe{sub 2} crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 , c=7.1253 ). The isovalent substitution of Mn{sup 2+} by Cu{sup 2+} is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075. - Graphical abstract: Crystal structure of NaCuMnSe{sub 2}. - Highlights: A new quaternary layered selenide NaCuMnSe{sub 2} is synthesized. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Conduction mechanism transforms from thermally activated behavior to 2D variable range hopping with increase in copper concentration.

  11. Ovonic type switching in tin selenide thin films

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.; Mclennan, W. D.

    1975-01-01

    Amorphous tin selenide thin films which possess Ovonic type switching properties are fabricated using vacuum deposition techniques. The devices are fabricated in a planar configuration and consist of amorphous tin selenide deposited over silver contacts. Results obtained indicate that Ovonic type memory switching does occur in these films with the energy density required for switching from a high impedance to a low impedance state being dependent on the spacing between the electrodes of the device. There is also a strong implication that the switching is a function of the magnitude of the applied voltage pulse.

  12. Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide

    NASA Astrophysics Data System (ADS)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Jayasimhadri, M.; Singh, Niraj Kumar; Sharma, Sakshi; Haranath, D.; Srivastava, A. K.; Dhar, Ajay

    2015-06-01

    We report the thermoelectric properties of nanostructured Cu-deficient Cu2Se, which was synthesized by high energy ball milling followed by spark plasma sintering. Our method obtained a significant enhancement in the thermoelectric figure of merit (ZT), i.e., ~1.4 at 973 K, which was ~30% higher than its bulk counterpart. This enhancement in the thermoelectric performance was due mainly to a significant reduction in the lattice thermal conductivity, which was attributed to enhanced phonon scattering at various length scales by nanoscale defects as well as abundant nanograin boundaries. The nanoscale defects were characterized by transmission electron microscopy of the nanostructured Cu2-xSe samples, which formed the basis of the ZT enhancement.

  13. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.

  14. Keeping Track of the Selenide zoo. A Combined Optical Microscopy - EPMA Study of Complex Selenides

    NASA Astrophysics Data System (ADS)

    Schlothauer, T.; Renno, A. D.; Heide, G.

    2007-12-01

    Hunting for new mineral phases is a fascinating scientific activity. This kind of research not only serves the replenishment of mineralogy textbooks with new mineral names but also the industry with new potential semiconductors, laser crystals and other 'high-tech phases'. Chemical analyses using the electron microprobe are an essential intermediate step in the course of the description of a new mineral. The study of a great number of different Cu-Pb-Ag-As-Hg-Tl-Sb-Bi-Cd selenides from the former uranium deposit Schlema-Alberode (Saxony) in the German part of the Erzgebirge represented a twofold challenge to us. The complex genetic and age relations of the ore minerals and gangue minerals entailed the development of very complex microstructures in a tight space. Typical features are symplectitic intergrowths, exsolutions, fine lamellae, zoned crystals and the development of pseudo- and paramorphs. Altogether we found 34 different selenide, sulfide and arsenide minerals, including 6 dimorpheous phases. Many of these minerals are indistinguishable by electron-optical methods used during different stages of the study. Dimorpheous minerals like bellidoite and berzelianite are as much indistinguishable like intergrowths of the minerals berzelianite, mgriite and lollingite using backscattered and secondary electron images. Optical microscopy is the key to overcome these problems. We show that the step-by-step combination of polarized light microscopy, phase contrast microscopy and differential interference contrast microscopy using transmitted and reflected light allowed a secure discrimination of the different minerals and unknown phases. 16 elements are incorporated into these phases either as main, minor or trace elements. A multitude of overlapping peaks, potenzial fluorescence effects caused by adjacent phases and different matrices in the minerals demanded the development of several specific methods optimized for the analysis of Pb-Se-, Cu-Tl-Se-, Cu-Fe-Zn-As-Se-, Hg-Pb-Ag-Se-, and arsenide phases. The electron microprobe studies will be followed by EBSD, TEM and crystal structure determination by X-ray diffraction using ultra-small amounts of material taken with the help of a New Wave micromill.

  15. The stability domain of the selenide kesterite photovoltaic materials and NMR investigation of the Cu/Zn disorder in Cu2ZnSnSe4 (CZTSe).

    PubMed

    Choubrac, Lo; Lafond, Alain; Paris, Michal; Guillot-Deudon, Catherine; Jobic, Stphane

    2015-06-21

    Bulk compounds, prepared via the ceramic route, related to Cu2ZnSnSe4 (CZTSe), a material considered for use in photovoltaic devices, were investigated using NMR spectroscopy, electron-probe microanalyses and X-ray diffraction. These materials adopt the kesterite structure regardless of the Cu and Zn contents. It is also shown that the stability domain of the copper-poor quaternary phases is wider for selenide derivatives than for sulphides. Finally, the Cu/Zn disorder level in CZTSe is found to be higher when the samples are quenched, which is reminiscent of the behaviour of the parent sulphide compounds CZTS. PMID:25990030

  16. Electron beam assisted synthesis of cadmium selenide nanomaterials

    SciTech Connect

    Rath, M. C.; Guleria, A.; Singh, S.; Singh, A. K.; Adhikari, S.; Sarkar, S. K.

    2013-02-05

    Cadmium selenide nanomaterials of various shapes and sizes have been synthesized in different condensed media through electron beam irradiation using a 7 MeV linear accelerator. The microstructures in different media as well as the presence of capping reagents play a crucial role in the formation of nanomaterials of different shapes and sizes. Their optical properties could be efficiently tuned by controlling the synthetic parameters.

  17. The unexpected properties of alkali metal iron selenide superconductors

    SciTech Connect

    Dagotto, Elbio R

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  18. Colloquium: The unexpected properties of alkali metal iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio

    2013-04-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2-ySe2 (A=alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the iron-based superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  19. A new wide band gap thermoelectric quaternary selenide Cu2MgSnSe4

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, V.; Guilmeau, Emmanuel; Raveau, Bernard; Caignaert, Vincent; Varadaraju, U. V.

    2015-10-01

    Cu2MgSnSe4 based compounds composed of high earth abundant elements have been identified to exhibit good thermoelectric performance in the mid-temperature range. The pristine phase shows a band gap of 1.7 eV, which is slightly higher than similar ternary and quaternary copper based stannite compounds. Cu2MgSnSe4 crystallizes in the tetragonal I 4 2m space group. Substitution of In at Sn site tends to decrease the tetragonal distortion toward the cubic symmetry. The electrical and thermal transport properties of Cu and In-doped Cu2MgSnSe4 in the temperature range of 300 K-700 K are studied. The substitution of In3+ for Sn4+ and Cu2+ for Mg2+ induces charge carriers as holes, which in turn lead to improvement in thermoelectric efficiency. The role of mass fluctuations and structural disorder in the evolution of the thermal conductivity of the doped selenides is discussed. A maximum ZT of 0.42 is attained for Cu2MgSn0.925In0.075Se4 around 700 K, and this value is comparable to that of Cu2ZnSnSe4.

  20. New quinternary selenides: Syntheses, characterizations, and electronic structure calculations

    SciTech Connect

    Chung, Ming-Yan; Lee, Chi-Shen

    2013-06-01

    Five quinternary selenides, Sr₂.₆₃Y₀.₃₇Ge₀.₆₃Sb₂.₃₇Se₈ (I), Sr₂.₆₃La₀.₃₇Ge₀.₆₃Sb₂.₃₇Se₈ (II), Sr₂.₇₁La₀.₂₉Sn₀.₇₇Bi₂.₂₃Se₈ (III), Ba₂.₆₇ La₀.₃₃ Sn₀.₆₇Sb₂.₃₃Se₈ (IV), and Ba₂.₆₇ La₀.₃₃Sn₀.₆₇Bi₂.₃₃Se₈ (V), were synthesized by solid-state reaction in fused silica tubes. These compounds are isostructural and crystallize in the Sr₃GeSb₂Se₈ structural-type, which belongs to the orthorhombic space group Pnma (no. 62). Three structural units, 1[MSe₃], 1[M₄Se₁₀] (M=Tt, Pn) and M´ (M´=groups II and III element), comprise the entire one-dimensional structure, separated by M´. Measurements of electronic resistivity and diffused reflectance suggest that IV and V have semiconducting properties. Electronic structure calculations confirm the site preferences of Sr/La element discovered by crystal structure refinement. - Graphical abstract: Quinternary selenides Ae₂.₆₇M₀.₃₃Tt₀.₆₇Pn₂.₃₃Se₈ (Ae, M, Tt, Pn=Sr/Ba, Y/La, Ge/Sn, Sb/Bi) were synthesized and their site preferences were characterized by single-crystal X-ray diffraction and electronic structure calculation. Highlights: • Five new quinternary selenides were synthesized and characterized. • Structural units, 1[MSe₃] and 1[M₄Se₁₀] (M=Tt, Pn), construct the one-dimensional structure. • Calculations of electronic structure confirm site preference of Sr/La sites.

  1. Cadmium selenide nanocrystals as white-light phosphors

    NASA Astrophysics Data System (ADS)

    Gosnell, Jonathan D.; Schreuder, Michael A.; Bowers, Michael J., II; Rosenthal, Sandra J.; Weiss, Sharon M.

    2006-08-01

    Recently, there has been great interest in developing direct white-light phosphors for solid state lighting. Current commercial white light emitting diodes (LEDs) rely on complicated fabrication methods to produce white light. Utilizing magic-sized, white-light emitting cadmium selenide (CdSe) nanocrystals as a direct white-light phosphor eliminates the need for complex doping schemes and deposition techniques. Herein we report preliminary data representing the first elementary steps in designing and optimizing device architectures for building high-quality, highly efficient white-light emitting LEDs for solid state lighting.

  2. Cold pressed cadmium selenide photoanodes for electrochemical solar cells

    NASA Astrophysics Data System (ADS)

    Mackintosh, A.; Wessel, S.; El Guibaly, F.; Colbow, K.

    1983-06-01

    Cold pressing of cadmium selenide powder was investigated as a technique for producing photoanodes for electrochemical solar cells. Physical properties such as density, resistivity and surface morphology were determined and related to solar cell performance via wavelength response, quantum efficiency and white light current-voltage characteristics. The spectral response indicated a bandgap of 1.7 eV. Pellets pressed at higher pressure showed an improved quantum efficiency. Pressures above 69 MPa produced fractures in the pellets. Conversion efficiencies under white light (tungsten halide lamp) at 100 mW/sq cm were on the order of 1.5 percent.

  3. Cadmium sulfide/copper selenide cell research. Copper selenide-based thin film solar cells. First quarterly technical progress report, June 1-September 1, 1980

    SciTech Connect

    Mickelsen, R.A.; Stewart, J.M.; Chen, W.S.

    1980-01-01

    The objective of this program is to investigate the use of Cu/sub 2-x/Se to produce low cost, high efficiency photovoltaic solar cells. The goal is to: (1) develop a polycrystalline thin film photovoltaic device capable of 10% conversion efficiency, and (2) demonstrate feasibility of large scale production at a cost of approximately $0.30/watt. The Cu/sub 2-x/Se films are produced by coevaporation of Cu and Se from separate, individually controlled vapor sources onto heated glass substrates. This method gives greater composition controllability and is readily adaptable to large scale production efforts. Two quartz crystal microbalances are used to separately monitor the Cu and Se deposition rates. The structural, electrical, and optical properties of the Cu/sub 2-x/Se films have been measured for deposits made on 250/sup 0/C substrates. The optical absorption measurements shows the material having an indirect band gap of 1.4 ev and a direct gap of 2.2 ev. These values are for stoichiometric indices in the range of 0.17 less than or equal to x less than or equal to 0.26. Hall and conductivity measurements give hole mobilities in the range of 3-7 cm/sup 2//Vsec and hole densities of the order of 4 x 10/sup 22/ cm/sup -3/. For deposits made on substrate at 160/sup 0/C, the mobility is in the range of 3 to 10 cm/sup 2//Vsec and hole densities on the order of 10/sup 19/ to 10/sup 21/ cm/sup -3/ for 0.1 less than or equal to x less than or equal to 0.3. To date, the best cell has photovoltaic characteristics of J/sub sc/ = 11.6 mA/cm/sup 2/, V/sub oc/ = 460 mV, F.F. = 0.62 and eta = 3.3% as tested under simulated AM1 illumination.

  4. Cadmium sulfide/copper selenide cell research copper selenide-based thin film solar cells. Second quarterly technical progress report, September 1, 1980-December 1, 1980

    SciTech Connect

    Sauve', S.P.; Mickelsen, R.A.; Stewart, J.M.; Chen, W.S.

    1980-01-01

    The objective of this program is to investigate the use of Cu/sub 2-x/Se to produce low cost, high efficiency photovoltaic solar cells. The Cu/sub 2-x/Se films are produced by coevaporation of Cu and Se from separate, individually controlled vapor sources onto heated glass substrates. This method gives greater composition controllability and is readily adaptable to large scale production efforts. Two quartz crystal microbalances are used to separately monitor the Cu and Se deposition rates. The structural, electrical, and optical properties of the Cu/sub 2-x/Se films have been measured for deposits made on 250/sup 0/C substrates. The optical absorption measurements show the material having an indirect band gap of 1.4 eV and a direct gap of 2.2 eV. These values are for stoichiometric indices in the range of 0.17 less than or equal to x less than or equal to 0.26. Hall and conductivity measurements give hole mobilities in the range of 3 to 7 cm/sup 2//Vsec and hole densities of the order of 4 x 10/sup 22/ cm/sup -3/. For deposits made on substrate at 160/sup 0/C, the mobility is in the range of 3 to 10 cm/sup 2//Vsec and hole densities on the order of 10/sup 18/ to 10/sup 21/ cm/sup -3/ for 0.1 less than or equal to x less than or equal to 0.3. To date, the best cell has photovoltaic characteristics of J/sub sc/ = 11.6 mA/cm/sup 2/, V/sub oc/ = 460 mV, F.F. = 0.62 and eta = 3.3% when tested under simulated AM1 illumination. In an effort to improve cell performance, low resistance CdS was used. Cell performance degraded considerably with the low resistance CdS resulting in substantially lower values for both V/sub oc/ and I/sub sc/. It is believed in part that this difficulty can be traced to pinhole defects in the ITO electrode. When the low resistance CdS is deposited on ITO, regions in the CdS appear to be high in Cd where pinholes in the ITO were observed.

  5. Fractal simulation of the resistivity and capacitance of arsenic selenide

    SciTech Connect

    Balkhanov, V. K. Bashkuev, Yu. B.

    2010-03-15

    The temperature dependences of the ac resistivity R and ac capacitance C of arsenic selenide were measured more than four decades ago [V. I. Kruglov and L. P. Strakhov, in Problems of Solid State Electronics, Vol. 2 (Leningrad Univ., Leningrad, 1968)]. According to these measurements, the frequency dependences are R {proportional_to} {omega}{sup -0.80{+-}0.01} and {Delta}C {proportional_to} {omega}{sup -0.120{+-}0.006} ({omega} is the circular frequency and {Delta}C is measured from the temperature-independent value C{sub 0}). According to fractal-geometry methods, R {proportional_to} {omega}{sup 1-3/h} and {Delta}C {proportional_to} {omega}{sup -2+3/h}, where h is the walk dimension of the electric current in arsenic selenide. Comparison of the experimental and theoretical results indicates that the walk dimensions calculated from the frequency dependences of resistivity and capacitance are h{sub R} = 1.67 {+-} 0.02 and h{sub C} = 1.60 {+-} 0.08, which are in agreement with each other within the measurement errors. The fractal dimension of the distribution of conducting sections is D = 1/h = 0.6. Since D < 1, the conducting sections are spatially separated and form a Cantor set.

  6. Development of silver sensitized germanium selenide photoresist by reactive sputter etching in SF6

    NASA Astrophysics Data System (ADS)

    Huggett, P. G.; Frick, K.; Lehmann, H. W.

    1983-04-01

    Silver sensitized germanium selenide/polymer bilevel resist system has been used to pattern structures in SiO2 on silicon. Using reactive sputter etching in an SF6 plasma for developing germanium selenide gives superior results compared to CF4 or CHF3 in terms of sensitivity; 500:1, contrast; 7, and sensitivity; 50 mJ/cm2 at 436 nm. By this method 1-? lines and spaces and 1-? contact holes have been defined in germanium selenide. These have been transferred into polymer and SiO2 using standard reactive sputter etching with O2 and CHF3, respectively.

  7. Optical and structural characterization of nickel selenide nanoparticles synthesized by simple methods

    NASA Astrophysics Data System (ADS)

    Moloto, N.; Moloto, M. J.; Coville, N. J.; Sinha Ray, S.

    2009-07-01

    A series of nickel selenide (NiSe 2, NiSe and Ni 3Se 4) nanoparticles have been synthesized by three different methods, i.e. the single-source precursor (method 1), the thermolysis of trioctylphosphine selenide (TOPSe) and nickel chloride in hexadecylamine (method 2) as well as the reaction of nickel chloride and selenium using sodium borohydride as a reducing agent in methanol and in water (method 3). The optical properties of nickel selenide synthesized from all the methods showed good nanometric characteristics with an observed blue-shift in absorption band-edge from bulk nickel selenide. The structural characteristics varied with the methods employed, with method 1 producing 10 nm spherical NiSe 2 particles, method 2 star-shaped NiSe particles, while method 3 produced hexagonal NiSe nanoparticles in methanol and rod-shaped Ni 3Se 4 particles in water.

  8. Photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides

    PubMed Central

    Kobiki, Yohsuke; Kawaguchi, Shin-ichi; Ohe, Takashi

    2013-01-01

    Summary A novel method of photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides has been developed. Although the arylation reactions with triarylbismuthines are usually catalyzed by transition-metal complexes, the present arylation of diaryl diselenides with triarylbismuthines proceeds upon photoirradiation in the absence of transition-metal catalysts. A variety of unsymmetrical diaryl selenides can be conveniently prepared by using this arylation method. PMID:23843906

  9. Growth of zinc selenide crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto /n11/ seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  10. Superconductivity in two-leg ladder iron selenides

    NASA Astrophysics Data System (ADS)

    Lv, Weicheng; Dagotto, Elbio; Martins, George

    2013-03-01

    Recently, evidence of superconductivity has been discovered in the single-layer potassium-doped iron selenide that consists of weakly coupled two-leg iron ladders (Wei Li et al., arXiv:1210.4619). Using a self-consistent mean-field approximation, we analyze the pairing symmetry and structure of the multi-orbital t- J model defined in these two-leg ladder systems. Similar to the case of the iron pnictides, a modified s-wave pairing state is stabilized by the next-nearest-neighbor superexchange J2. The presence of competing states will be discussed. Our result demonstrates the potential importance of the local magnetic couplings in iron-based superconductors.

  11. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    SciTech Connect

    Balitskii, O.A.; Demchenko, P.Yu.; Mijowska, E.; Cendrowski, K.

    2013-02-15

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuning their spectral characteristics to higher energy solar photons.

  12. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Jie; Ying, Tian-Ping; Wang, Gang; Jin, Shi-Feng; Zhang, Han; Lin, Zhi-Ping; Chen, Xiao-Long

    2015-11-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration. Project supported by the National Natural Science Foundation of China (Grant Nos.51322211and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB07020100), Beijing Nova Program of China (Grant No.2011096), and K. C. Wong Education Foundation, Hong Kong, China.

  13. Thermal lensing in silver gallium selenide parametric oscillator crystals.

    PubMed

    Marquardt, C L; Cooper, D G; Budni, P A; Knights, M G; Schepler, K L; Dedomenico, R; Catella, G C

    1994-05-20

    We performed an experimental investigation of thermal lensing in silver gallium selenide (AgGaSe(2)) optical parametric oscillator crystals pumped by a 2-m laser at ambient temperature. We determined an empirical expression for the effective thermal focusing power in terms of the pump power, beam diameter, crystal length, and absorption coefficient. This relation may be used to estimate average power limitations in designing AgGaSe(2) optical parametric oscillators. We also demonstrated an 18% slope efficiency from a 2-m pumped AgGaSe(2) optical parametric oscillator operated at 77 K, at which temperature thermal lensing is substantially reduced because of an increase in the thermal conductivity and a decrease in the thermal index gradient dn/dT. Cryogenic cooling may provide an additional option for scaling up the average power capability of a 2-m pumped AgGaSe(2) optical parametric oscillator. PMID:20885687

  14. Temperature dependent photoconduction in atomically thin Layers of Indium Selenide

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujoy; Wasala, Milinda; Zhang, Jie; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Talapatra, Saikat

    2015-03-01

    We will report on the photo response in few-layers of thin Indium Selenide (InSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Temperature dependent (20 K -300K) photoconductivity measurements investigated using a continuous laser of ? = 658nm (E =1.88eV), over a broad range of illuminating laser power, P (0.1 ?W

  15. Formation and Reactivity of Organo-Functionalized Tin Selenide Clusters.

    PubMed

    Rinn, Niklas; Euner, Jens P; Kaschuba, Willy; Xie, Xiulan; Dehnen, Stefanie

    2016-02-01

    Reactions of R(1) SnCl3 (R(1) =CMe2 CH2 C(O)Me) with (SiMe3 )2 Se yield a series of organo-functionalized tin selenide clusters, [(SnR(1) )2 SeCl4 ] (1), [(SnR(1) )2 Se2 Cl2 ] (2), [(SnR(1) )3 Se4 Cl] (3), and [(SnR(1) )4 Se6 ] (4), depending on the solvent and ratio of the reactants used. NMR experiments clearly suggest a stepwise formation of 1 through 4 by subsequent condensation steps with the concomitant release of Me3 SiCl. Furthermore, addition of hydrazines to the keto-functionalized clusters leads to the formation of hydrazone derivatives, [(Sn2 (?-R(3) )(?-Se)Cl4 ] (5, R(3) =[CMe2 CH2 CMe(NH)]2 ), [(SnR(2) )3 Se4 Cl] (6, R(2) =CMe2 CH2 C(NNH2 )Me), [(SnR(4) )3 Se4 ][SnCl3 ] (7, R(4) =CMe2 CH2 C(NNHPh)Me), [(SnR(2) )4 Se6 ] (8), and [(SnR(4) )4 Se6 ] (9). Upon treatment of 4 with [Cu(PPh3 )3 Cl] and excess (SiMe3 )2 Se, the cluster fragments to form [(R(1) Sn)2 Se2 (CuPPh3 )2 Se2 ] (10), the first discrete Sn/Se/Cu cluster compound reported in the literature. The derivatization reactions indicate fundamental differences between organotin sulfide and organotin selenide chemistry. PMID:26809118

  16. Double-Diffusive Convection During Growth of Halides and Selenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of several materials such as mercurous chloride, mercurous bromide, mercurous iodide, lead chloride lead bromide, lead iodide, thallium arsenic selenide, gallium selenide, zince sulfide zinc selenide and several crystals into devices. We have used both Bridgman and physical vapor transport (PVT) crystal growth methods. In the past have examined PVT growth numerically for conditions where the boundary of the enclosure is subjected to a nonlinear thermal profile. Since past few months we have been working on binary and ternary materials such as selenoiodides, doped zinc sulfides and mercurous chloro bromide and mercurous bromoiodides. In the doped and ternary materials thermal and solutal convection play extremely important role during the growth. Very commonly striations and banding is observed. Our experiments have indicated that even in highly purified source materials, homogeneity in 1-g environment is very difficult. Some of our previous numerical studies have indicated that gravity level less than 10-4 (?-g) helps in controlling the thermosolutal convection. We will discuss the ground based growth results of HgClxBr(1-x) and ZnSe growth results for the mm thick to large cm size crystals. These results will be compared with our microgravity experiments performed with this class of materials. For both HgCl-HgBr and ZnS-ZnSe the lattice parameters of the mixtures obey Vagard's law in the studied composition range. The study demonstrates that properties are very anisotropic with crystal orientation, and performance achievement requires extremely careful fabrication to utilize highest figure of merit. In addition, some parameters such as crystal growth fabrication, processing time, resolution, field of view and efficiency will be described based on novel solid solution materials. It was predicted that very similar to the pure compounds solid solutions also have very large anisotropy, and very precise oriented and homogeneous bulk and thin film crystals is required to achieve maximum performance of laser or imagers. Some of the parameters controlling the homogeneity such as thermos-solutal convection driven forces can be controlled in microgravity environments to utilize the benefits of these unique materials.

  17. Impact of secondary barriers on copper-indium-gallium-selenide solar-cell operation

    NASA Astrophysics Data System (ADS)

    Pudov, Alexei O.

    Thin-film solar cells based on CuInSe2 (CIS) absorber with a band gap of Eg = 1.0 eV and also based on CuIn1-x GaxSe2 (CIGS) alloy absorbers with a band-gap range of Eg = 1.0--1.67 eV are investigated in this work. Intermediate "buffer" semiconductor layers in p-n junctions of CIGS solar cells often improve photodiode properties of the devices. The primary goal of the thesis is to study secondary barriers in the conduction band at the buffer/absorber interface, which may limit current transport and thus reduce the efficiency of the solar cells. The secondary goal is to explore alternative wide-bandgap buffers in CIGS cell structures. CIGS cells with standard CdS buffer layers, and alternative ZnS(O,OH) and InS(O,OH) buffer layers were studied. CdS/CuIn1-xGaxSe2 solar cells with variable Ga content have a range of conduction-band offsets (DeltaEc) in the junction from moderately positive (spike offsets) in CdS/CuInSe2 to moderately negative (cliff offsets) in CdS/CuGaSe 2. Moderate conduction-band spikes in CdS/CIS and low-Ga CdS/CIGS are expected to cause distortions in diode current-voltage (J-V) curves of such solar cells under "red" illumination (hnu < Eg(buffer)); no J-V distortions are expected for high-Ga CdS/CIGS with cliff offsets. These predictions were confirmed in experiments: the distortions were absent for cells with Eg above 1.2--1.3 eV, at which CdS/CIGS DeltaE c is near zero. Experiments and numerical simulations showed that one approach to reduce secondary barriers and J-V distortions in low-Ga high-spike cells is to thin the buffer layer(s). Blue photons (hnu above Eg(buffer)) in the solar spectrum induce photoconductivity in the otherwise compensated buffers, which also results in lowering of the secondary barriers. It was shown that CIGS cells with CdS, InS(O,OH), and ZnS(O,OH) buffers have a similar response to "blue" photons: J-V distortion, if present under red light, is reduced or entirely disappears with blue-light exposure within minutes. The distortion re-appearance without blue light is the order of a thousand times slower. Using wider-gap buffers, such as InS(O,OH) and ZnS(O,OH), was shown to produce higher photocurrents in solar cells. This photocurrent improvement is a central direction in the effort of further increasing efficiencies of thin-film solar cells.

  18. Electrical influence of sodium in Bridgman-grown copper indium selenide

    NASA Astrophysics Data System (ADS)

    Myers, Hadley Franklin

    Sodium is well known to improve the performance of thin-film, polycrystalline CuInSe2-based photovoltaic devices. This has led to extensive research on the effects of this element on the polycrystalline material, with the ultimate objective of identifying the mechanism by which Na acts on the cells. However, much less research has been done on the effects of sodium on the monocrystalline form of this material. Such research could help to differentiate bulk from grain-boundary effects, as well as to identify reactions between the Na and the compound itself, or the individual elements within the compound. Therefore, in the present work, Na was added in varying quantities to quartz ampoules containing Cu, In and Se, in the atomic ratios of 1:1:2. The ampoules were evacuated and sealed before being put through a vertical-Bridgman procedure, resulting in ingots containing large, cm-size crystals. Electrical measurements on the ingot material revealed p-type conductivity for all material grown with stoichiometric proportions of the starting elements, without Na, but n-type conductivity for material grown with Na above a certain critical value. It was discovered that this critical value of Na increased when excess Se, above stoichiometry, was also included in the ampoules. Further experiments confirmed the mechanism responsible for the conductivity type change to be a reaction between the Na and Se, in a 2:1 atomic ratio, corresponding to the chemical formula Na2Se, which starved the CuInSe2 of its share of selenium, rendering it Se-deficient and therefore n-type. Other effects of Na on the material are identified, including no detection of sodium within the ternary itself. As well, some photovoltaic cells were made, the best of which achieved an efficiency of 8.8 %.

  19. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    PubMed

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV). PMID:26000570

  20. Study of electrical properties of polycrystalline materials based on indium and copper selenides under high pressure

    NASA Astrophysics Data System (ADS)

    Melnikova, N. V.; Kurochka, K. V.; Zaikova, V. E.; Tebenkov, A. V.; Babushkin, A. N.

    2015-11-01

    This paper discusses the influence of high pressures (up to 50 GPa) on the electrical properties of the polycrystalline materials (InSe)x(CuAsSe2)1-x, x = 0.05 and 0.5. It was found that, for each compound, features in the pressure dependence of all the physical parameters of interest occur in the same pressure intervals, which can be due to structural transitions and a change in the electron structure.

  1. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.

    PubMed

    Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A

    2013-09-25

    The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process. PMID:23957691

  2. Copper indium gallium (di)selenide: Electronic activities of grain boundaries and solar cell fabrication studies

    NASA Astrophysics Data System (ADS)

    Erkan, Mehmet Eray

    This dissertation is composed of three studies related to chalcopyrite solar cells. The first study is on electronic activities of grain boundaries (GBs) in CuInSe2 (CIS). Despite being polycrystalline, chalcopyrite thin film solar cells have reached record power conversion efficiencies. This is against the classical understanding on the effect of GBs in semiconductor materials. Because GBs are expected to be recombination centers and barriers against the carrier flow, reducing the device efficiency. Therefore, a complete understanding on the electronic behavior of chalcopyrite GBs is missing. Moreover, the high efficiency chalcopyrite solar cells are grown with Na impurities which positively affect the performance of the solar cell, so-called sodium effect. Research on chalcopyrite GBs has been coupled with the effect of Na impurities, because Na has been found segregated at the GBs. The study presented in this dissertation was performed on GBs in a Na-free CIS. It is important to study the GBs in a Na-free chalcopyrite to avoid any uncontrolled effects of Na segregation at the GBs, for instance a possible Na-related secondary phase formation which would affect the conclusions drawn on the natural behavior of chalcopyrite GBs. In addition, it is known that Sigma3 GBs in chalcopyrite solar cells are abundant; therefore, it is meaningful to investigate the differences between Sigma3 and non-Sigma3 GBs. For this purpose, Sigma3, close to Sigma3 and Sigma9 GBs in a Bridgman-grown multicrystalline Na-free CIS wafer were identified by electron backscatter diffraction and their electronic properties were investigated by Kelvin probe force microscope and cathodoluminescence in scanning electron microscope. It is shown that the Sigma3 GB is neutral and it does not behave as a recombination center, whereas once the geometry of a GB deviates from the Sigma3 geometry, such as close to Sigma3 and Sigma9 GBs, the GB becomes charged and behaves as a recombination center. This result was concluded to be due to the increase in the amount of defects at the GB that introduce midgap states as the Sigma value increases. Our results indicate that the surprising high performance seen in the polycrystalline chalcopyrite solar cells is possibly due to the abundance of electrically inactive Sigma3 GBs in this material. To investigate the effect of Na on CIS GBs, projected work includes the characterization of Sigma3 and non-Sigma3 GBs in CIS wafers grown with increasing Na concentration. Consequently, it will be possible to answer the following questions on the impact of sodium-effect on GBs: Is there a certain Na concentration for Na to affect the GB electrical properties and how does it affect both Sigma3 and non-Sigma3 GBs? In the second study, the use of selenoamide instead of direct use of H2Se for atmospheric pressure selenization reaction is proposed and its feasibility is shown by fabricating CIS solar cells with up to 1.6% power conversion efficiency. In addition, observed In and Ga segregation towards the bottom of the CIS and CIGS thin films, respectively, are investigated through phase transformations occurring during the selenization and systematically designed annealing processes. The third study is on the effect of flow type on the growth kinetics of CdS thin films deposited by chemical bath deposition. CdS thin films are deposited on glass substrates under turbulent and laminar flow conditions only by changing the substrate's alignment with respect to the bottom of the beaker in unstirred bath. It is shown that the flow condition of the bath does not change the optical and structural properties of CdS; however, deposition under laminar flow is explained to be diffusion-limited, whereas it is feed-limited under turbulent flow.

  3. Enzymatic methylation of sulfide, selenide, and organic thiols by Tetrahymena thermophila

    SciTech Connect

    Drotar, A.; Fall, L.R.; Mishalanie, E.A.; Tavernier, J.E.; Fall, R.

    1987-09-01

    Cell extracts from the ciliate Tetrahymena thermophila catalyzed the S-adenosylmethionine-dependent methylation of sulfide. The product of the reaction, methanethiol, was detected by a radiometric assay and by a gas-chromatographic assay coupled to a sulfur-selective chemiluminescence detector. Extracts also catalyzed the methylation of selenide, and the product was shown by gas chromatography-mass spectrometry to be methaneselenol. The sulfide and selenide methyltransferase activities copurified with the aromatic thiol methyltransferase previously characterized from this organism, but heat inactivation experiments suggested the involvement of distinct sulfide and selenide methyltransferases. Short-term toxicity tests were carried out for sulfide, selenide, and their methylated derivatives; the monomethylated forms were somewhat more toxic than the nonmethylated or dimethylated compounds. Cell suspensions of T. thermophila exposed to sulfide, methanethiol, or their selenium analogs emitted methylated derivatives into the headspace. These results suggest that this freshwater protozoan is capable of the stepwise methylation of sulfide and selenide, leading to the release of volatile methylated sulfur or selenium gases.

  4. Superconducting properties of sulfur-doped iron selenide

    NASA Astrophysics Data System (ADS)

    Abdel-Hafiez, Mahmoud; Zhang, Yuan-Yuan; Cao, Zi-Yu; Duan, Chun-Gang; Karapetrov, G.; Pudalov, V. M.; Vlasenko, V. A.; Sadakov, A. V.; Knyazev, D. A.; Romanova, T. A.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.; Chen, Xiao-Jia

    2015-04-01

    The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For simulating the similar effect by changing the chemical composition due to S doping, we investigate the superconducting properties of high-quality single crystals of FeSe1 -xSx (x =0 , 0.04, 0.09, and 0.11) using magnetization, resistivity, the London penetration depth, and low temperature specific heat measurements. We show that the introduction of S to FeSe enhances the superconducting transition temperature Tc, anisotropy, upper critical field Hc 2, and critical current density Jc. The upper critical field Hc 2(T ) and its anisotropy are strongly temperature dependent, indicating a multiband superconductivity in this system. Through the measurements and analysis of the London penetration depth ?a b(T ) and specific heat, we show clear evidence for strong coupling two-gap s -wave superconductivity. The temperature dependence of ?a b(T ) calculated from the lower critical field and electronic specific heat can be well described by using a two-band model with s -wave-like gaps. We find that a d wave and single-gap BCS theory under the weak-coupling approach cannot describe our experiments. The change of specific heat induced by the magnetic field can be understood only in terms of multiband superconductivity.

  5. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons.

    PubMed

    Tang, Hao; Wang, Xiaomeng; Xiong, Yucheng; Zhao, Yang; Zhang, Yin; Zhang, Yan; Yang, Juekuan; Xu, Dongyan

    2015-04-21

    Bismuth selenide (Bi2Se3) nanoribbons have attracted tremendous research interest recently to study the properties of topologically protected surface states that enable new opportunities to enhance the thermoelectric performance. However, the thermoelectric characterization of individual Bi2Se3 nanoribbons is rare due to the technological challenges in the measurements. One challenge is to ensure good contacts between the nanoribbon and electrodes in order to determine the thermal and electrical properties accurately. In this work, we report the thermoelectric characterization of individual Bi2Se3 nanoribbons via a suspended microdevice method. Through careful measurements, we have demonstrated that contact thermal resistance is negligible after the electron-beam-induced deposition (EBID) of platinum/carbon (Pt/C) composites at the contacts between the nanoribbon and electrodes. It is shown that the thermal conductivity of the Bi2Se3 nanoribbons is less than 50% of the bulk value over the whole measurement temperature range, which can be attributed to enhanced phonon boundary scattering. Our results indicate that intrinsic Bi2Se3 nanoribbons prepared in this work are highly doped n-type semiconductors, and therefore the Fermi level should be in the conduction band and no topological transport behavior can be observed in the intrinsic system. PMID:25798738

  6. Copper Test

    MedlinePLUS

    ... Copper testing is primarily used to help diagnose Wilson disease , a rare inherited disorder that can lead ... unbound) blood copper test is also ordered. If Wilson disease is suspected, genetic testing may be performed ...

  7. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.

    PubMed

    Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin

    2014-04-22

    Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors. PMID:24601530

  8. Raman scattering in lead selenide films at a low excitation level

    NASA Astrophysics Data System (ADS)

    Kuzivanov, M. O.; Zimin, S. P.; Fedorov, A. V.; Baranov, A. V.

    2015-12-01

    Raman scattering spectra of epitaxial lead selenide films were measured at low (0.06 mW/?m2) excitation power densities to ensure the absence of photo- and thermal modifications of the film material. It is shown that observed transitions correspond to overtones or combinational tones of PbSe phonon modes implying a high quality of crystalline structure of the material for which the first order Raman effect is prohibited. An increase in incident excitation density leads to the appearance of transitions related to lead oxides, which masks characteristic spectral features of lead selenide.

  9. Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.

    NASA Technical Reports Server (NTRS)

    Sigai, A. G.; Wiedemeier, H.

    1972-01-01

    Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.

  10. Versatile chromium-doped zinc selenide infrared laser sources

    NASA Astrophysics Data System (ADS)

    Berry, Patrick A.

    The atmospheric transmission windows of 2-5 and 8-12 mum, coupled with organic and other chemical absorption lines occurring throughout this middle-infrared (mid-IR) wavelength region give rise to a wide variety of medical, scientific, commercial and military applications. Communications, remote sensing, IR countermeasures, laser surgery and non-invasive imaging are just a few of the drivers of high-power solid-state mid-IR laser development. These laser sources must be versatile enough to operate in a variety of temporal modes from continuous wave (CW) all the way to ultrashort pulse while still being widely tunable for wavelength agility. All of this is required at ever increasing power output levels while conforming to size, weight and power consumption limitations under harsh operating environmental conditions. Chromium-doped zinc selenide (Cr2+:ZnSe) lasers operating in the 2-3 mum region are excellent candidates to help fill these vital roles. As a transition-metal doped II-VI chalcogenide, Cr2+:ZnSe has a number of positive advantages over existing laser sources. Development and power scaling of these lasers however, has been hampered by thermal issues which have so far limited the ability of these lasers to be applied to systems-level development. This work presents research into the nature and mitigation of these critical thermal issues in development of versatile Cr2+:ZnSe laser sources. Advanced models for thermal and laser performance are developed and used to design optimally configured laser systems. Among other advances for this material, >10 W CW output from a Cr2+:ZnSe oscillator and master-oscillator / power amplifier systems producing multi-watt, widely tunable power levels are demonstrated.

  11. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong

    2013-03-15

    Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  12. Preparation of cadmium selenide colloidal quantum dots in non-coordinating solvent octadecene

    NASA Astrophysics Data System (ADS)

    Mazing, D. S.; Brovko, A. M.; Matyushkin, L. B.; Aleksandrova, O. A.; Moshnikov, V. A.

    2015-12-01

    Nearly monodisperse cadmium selenide quantum dots (QDs) were synthesized in non-coordinating solvent octadecene through phosphine-free method using oleic acid as surfactant. Selenium powder suspension in octadecene obtained by ultrasound processing was used as one of precursor solutions. Influence of multiple selenium precursor injections on nanocrystal growth process was investigated. Nanoparticles were characterized by means of absorption and photoluminescence spectroscopies.

  13. Influence of ionized radiation on anisotropy of electric properties of indium selenide

    NASA Astrophysics Data System (ADS)

    Askerov, K. A.; Gadzhieva, V. I.

    2005-06-01

    Formation and distribution of radiating defects as well as behaviour of mobility in monocrystalline samples of indium selenide with electron concentration 51014-11016 cm-3 have been investigated at an irradiation by gamma-quanta (with doze 107 and 108 R) and electrons with energy 25 MeV (with fluence 1015 e/cm2).

  14. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  15. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  16. Dispersion strengthened copper

    SciTech Connect

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1988-12-05

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  17. New group 11 complexes with metal-selenium bonds of methyldiphenylphosphane selenide: a solid state, solution and theoretical investigation.

    PubMed

    Pop, Alexandra; Silvestru, Anca; Gimeno, M Concepcin; Laguna, Antonio; Kulcsar, Monika; Arca, Massimiliano; Lippolis, Vito; Pintus, Anna

    2011-12-14

    Reactions between methyldiphenylphosphane selenide, SePPh(2)Me, and different group 11 metal starting materials {CuCl, [CuNO(3)(PPh(3))(2)], AgOTf, [AgOTf(PPh(3))] (OTf = OSO(2)CF(3)), [AuCl(tht)], [Au(C(6)F(5))(tht)] and [Au(C(6)F(5))(3)(tht)] (tht = tetrahydrothiophene)} were performed in order to obtain several new species with metal-selenium bonds. The new complexes [CuCl(SePPh(2)Me)] (1), [AgOTf(SePPh(2)Me)] (2), [AuCl(SePPh(2)Me)] (5), [Au(C(6)F(5))(SePPh(2)Me)] (6) and [Au(C(6)F(5))(3)(SePPh(2)Me)] (7) were isolated and structurally characterized in solution by multinuclear NMR spectroscopy ((1)H, (31)P, (77)Se and (19)F where appropriate). Solid products were isolated also from the reactions between SePPh(2)Me and [CuNO(3)(PPh(3))(2)] or [AgOTf(PPh(3))], respectively. NMR experiments, including low temperature (1)H and (31)P NMR, revealed for them a dynamic behaviour in solution, involving the transfer of selenium from PPh(2)Me to PPh(3). In case of the isolated silver(i) containing solid an equilibrium between, respectively, monomeric [AgOTf(PPh(3))(SePPh(2)Me)] (3) and [AgOTf(PPh(2)Me)(SePPh(3))] (4), and dimeric [Ag(PPh(3))(?-SePPh(2)Me)](2)(OTf)(2) (3a) and [Ag(PPh(2)Me)(?-SePPh(3))](2)(OTf)(2) (4a) species was observed in solution. In case of the isolated copper(i) containing solid the NMR studies brought no clear evidence for a similar behaviour, but it can not be excluded in a first stage of the reaction. However the transfer of selenium between the two triorganophosphanes takes place also in this case, but the NMR spectra suggest that the final reaction mixture contains the free triorganophospane selenides SePPh(2)Me and SePPh(3) as well as the complex species [CuNO(3)(PPh(3))(2)], [CuNO(3)(PPh(2)Me)(2)] and [CuNO(3)(PPh(3))(PPh(2)Me)] in equilibrium. Single-crystal X-ray diffraction studies revealed monomeric structures for the gold(I) 6 and gold(III) 7 complexes. In case of compound 6 weak aurophilic gold(I)gold(I) contacts were also observed in the crystal. DFT calculations were performed in order to understand the solution behaviour of the silver(I) and copper(I) species containing both P(III) and P(V) ligands, to verify the stability of possible dimeric species and to account for the aurophilic interactions found for 6. In addition, the nature of the electronic transitions involved in the absorption/emission processes observed for 6 and 7 in the solid state were also investigated by means of TD-DFT calculations. PMID:21993712

  18. Theory of two-magnon Raman scattering in alkaline iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Zhang, A. M.; Xu, T. F.; Wu, W. C.

    2014-11-01

    Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the ?{5}?{5} antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both Ag and Bg channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm-1 are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,?) and (?,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe1.6+xSe6 superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.

  19. Syntheses of sulfides and selenides through direct oxidative functionalization of C(sp3)-H bond.

    PubMed

    Du, Bingnan; Jin, Bo; Sun, Peipei

    2014-06-01

    A new protocol for C-S and C-Se bond formation by the direct functionalization of the C(sp(3))-H bond of alkanes under metal-free conditions was developed. Using (t)BuOO(t)Bu as the oxidant, the reaction of disulfides or diselenides with alkanes gave sulfides or selenides in moderate to good yields. The method was very simple and atom-economical. PMID:24835082

  20. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  1. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    PubMed

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. PMID:26852288

  2. Copper cyanide

    Integrated Risk Information System (IRIS)

    Copper cyanide ; CASRN 544 - 92 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  3. Pairing strength and symmetries of 122 iron selenides in comparison with iron pnictides

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab

    2012-02-01

    High temperature superconductivity with comparable transition temperatures has been observed in the vicinity of an antiferromagnetic phase, in both 122-alkaline iron selenides and 122-iron pnictides. In contrast to iron pnictides, where the parent state is an antiferromagnetic semimetal, the parent state of 122-iron selenides is a large moment, antiferromagnetic insulator. This provides a clear indication of strong electronic correlations. The 122-selenides possess only electron pockets, while the pnictides have both hole and electron pockets. In addition, the observed block spin magnetic order in 122-selenides can not be explained by Fermi surface nesting. At the same time, the comparable Tc suggests a commonality in the underlying mechanism for superconductivity in the two classes of materials. Motivated by these observations and considerations, we present a comparative strong coupling analysis of the pairing strength and symmetries in these two classes of materials [1,2]. The analysis of appropriate five orbital t-J1-J2 models, reveals a similar pairing phase diagram for both materials, with A1g s(x^2y^2) and B1g d(x^2-y^2) as two dominant pairing channels. The pairing amplitudes in both materials are of comparable strength, making it natural for a comparable maximum Tc . In contrast to the pnictides case, an A1g s(x^2+y^2) state is not competitive, making the dominant pairing channels fully gapped. We also discuss the magnetism of the vacancy-ordered insulating 122 iron selenides [3], showing that the observed block-spin state occurs over a wide parameter range. The predicted magnetic excitation spectrum has been verified by inelastic neutron scattering experiments. Our study also reveals some commonality with the magnetism of the parent iron pnictides [4].[4pt] Work was done in collaboration with Rong Yu, Predrag Nikolic, Jian-Xin Zhu, Qimiao Si and Elihu Abrahams. [4pt] [1] Rong Yu, Pallab Goswami, Qimiao Si, Predrag Nikolic, and Jian-Xin Zhu, ``Pairing strength and symmetries of 122 iron selenides in comparison with iron pnictides,'' to be published; arXiv:1103.3259. [0pt] [2] Pallab Goswami et al, ``Superconductivity in Multi-orbital t-J1-J2 Model and its Implications for Iron Pnictides,'' Europhys. Lett. 91, 37006 (2010).[0pt] [3] Rong Yu, Pallab Goswami, and Qimiao Si, ``The magnetic phase diagram of an extended J1-J2 model on a modulated square lattice and its implications for the antiferromagnetic phase of KyFexSe2,'' Phys. Rev. B 84, 094451 (2011). [0pt] [4] Pallab Goswami et al, ``Spin Dynamics of a J1-J2 Antiferromagnet and its Implications for Iron Pnictides,'' Phys. Rev. B 84, 155108 (2011).

  4. Selenide and telluride glasses for mid-infrared bio-sensing

    NASA Astrophysics Data System (ADS)

    Cui, Shuo; Chahal, Radwan; Shpotyuk, Yaroslav; Boussard, Catherine; Lucas, Jacques; Charpentier, Frederic; Tariel, Hugues; Loral, Olivier; Nazabal, Virginie; Sire, Olivier; Monbet, Valrie; Yang, Zhiyong; Lucas, Pierre; Bureau, Bruno

    2014-02-01

    Fiber Evanescent Wave Spectroscopy (FEWS) is an efficient way to collect optical spectra in situ, in real time and even, hopefully, in vivo. Thanks to selenide glass fibers, it is possible to get such spectra over the whole mid-infrared range from 2 to 12 ?m. This working window gives access to the fundamental vibration band of most of biological molecules. Moreover selenide glasses are stable and easy to handle, and it is possible to shape the fiber and create a tapered sensing head to drastically increase the sensitivity. Within the past decades, numerous multi-disciplinary studies have been conducted in collaboration with the City Hospital of Rennes. Clinical trials have provided very promising results in biology and medicine which have led to the creation in 2011 of the DIAFIR Company dedicated to the commercialization of fiber-based infrared biosensors. In addition, new glasses based on tellurium only have been recently developed, initially in the framework of the Darwin mission led by the European Space Agency (ESA). These glasses transmit light further into the far-infrared and could also be very useful for medical applications in the near future. Indeed, they permit to reach the vibrational bands of biomolecules laying from 12 to 16 ?m where selenide glasses do not transmit light anymore. However, while Se is a very good glass former, telluride glasses tend to crystallize easily due to the metallic nature of Te bonds. Hence, further work is under way to stabilize the glass composition for fibers drawing and to lower the optical losses for improving their sensitivity as bio-sensors.

  5. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst.

    PubMed

    Xu, Kun; Ding, Hui; Jia, Kaicheng; Lu, Xiuli; Chen, Pengzuo; Zhou, Tianpei; Cheng, Han; Liu, Si; Wu, Changzheng; Xie, Yi

    2016-01-01

    Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires. PMID:26695560

  6. White-Light Emission from Magic-Sized Cadmium Selenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Bowers, Michael; McBride, James; Rosenthal, Sandra

    2006-03-01

    Magic-sized cadmium selenide (CdSe) nanocrystals have been pyrolytically synthesized. These ultra-small nanocrystals exhibit broadband emission (420 -710 nm) that covers most of the visible spectrum while not suffering from self absorption. This behavior is a direct result of the extremely narrow size distribution and unusually large Stokes shift (40-50 nm). The intrinsic properties of these ultra-small nanocrystals make them an ideal material for applications in solid state lighting^ and also the perfect platform to study the molecule-to-nanocrystal transition.

  7. White-light emission from magic-sized cadmium selenide nanocrystals.

    PubMed

    Bowers, Michael J; McBride, James R; Rosenthal, Sandra J

    2005-11-01

    Magic-sized cadmium selenide (CdSe) nanocrystals have been pyrolytically synthesized. These ultra-small nanocrystals exhibit broadband emission (420-710 nm) that covers most of the visible spectrum while not suffering from self absorption. This behavior is a direct result of the extremely narrow size distribution and unusually large Stokes shift (40-50 nm). The intrinsic properties of these ultra-small nanocrystals make them an ideal material for applications in solid state lighting and also the perfect platform to study the molecule-to-nanocrystal transition. PMID:16262395

  8. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2015-01-01

    We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with s symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave vectors. An accurate description of this competition and an inclusion of band-structure and Stoner parameter renormalization effects lead to a value of the coupling constant for an s-symmetric gap which can produce a superconducting transition temperature consistent with experimental measurements.

  9. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide.

    PubMed

    McDaniel, Sean A; Lancaster, Adam; Evans, Jonathan W; Kar, Ajoy K; Cook, Gary

    2016-02-22

    We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides. PMID:26907008

  10. Ovonic switching in tin selenide thin films. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.

    1974-01-01

    Amorphous tin selenide thin films which possess Ovonic switching properties were fabricated using vacuum deposition techniques. Results obtained indicate that memory type Ovonic switching does occur in these films the energy density required for switching from a high impedance to a low impedance state is dependent on the spacing between the electrodes of the device. The switching is also function of the magnitude of the applied voltage pulse. A completely automated computer controlled testing procedure was developed which allows precise control over the shape of the applied voltage switching pulse. A survey of previous experimental and theoretical work in the area of Ovonic switching is also presented.

  11. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Sung; Kim, Inho; Gullapalli, Sravani; Wong, Michael S.; Jabbour, Ghassan E.

    2011-11-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  12. Influence of penetrating radiation on the spectral characteristics of indium selenide doped by silver and germanium

    NASA Astrophysics Data System (ADS)

    Askerov, K. A.; Abasova, A. Z.; Isayev, F. K.

    2003-09-01

    In present report the spectral and integrated photosensitivity before and after the influence of gamma-quanta in an interval of dozes 104-108 R and pulse neutrons of fluence 1012-1014 cm-2 on indium selenide single crystals doped by silver and germanium atoms have been investigated. The irradiation of InSe:Ag by gamma-quanta up to 105 R doze does not result in appreciable changes of photosensitivity of fundamental absorption and the sensitivity in short-wave region appreciably decreases. The further increase of the gamma-quanta doze up to 108 R changes photosensitivity only on 15-20%.

  13. Copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.

  14. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  15. COPPER AND BRAIN FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

  16. Turkey liver xanthine dehydrogenase. Reactivation of the cyanide-inactivated enzyme by sulphide and by selenide

    PubMed Central

    Cleere, William F.; Coughlan, Michael P.

    1974-01-01

    1. Turkey liver xanthine dehydrogenase engaged in catalysing the oxidation of xanthine by dichlorophenol–indophenol was progressively inactivated by methanol. This inactivation was reversible by NAD+. 2. Reaction with arsenite and with cyanide, in each case first-order with respect to enzyme, resulted in characteristic alterations in the visible absorption spectrum of the enzyme. The rate of spectral change on reaction with either agent paralleled the rate of loss of enzyme activity. 3. Cyanide inactivation was accompanied by elimination from the enzyme of sulphur as thiocyanate. Partial restoration of activity was effected by incubation with sulphide or with selenide. The results suggest that turkey liver xanthine dehydrogenase, like milk xanthine oxidase (Massey & Edmonson, 1970), contains at the active centre a cyanolysable persulphide group essential to catalytic activity and that selenium may replace sulphur in this group to give an active enzyme. 4. Incubation of the native enzyme with sulphide or with selenide resulted in the rapid loss of half of the xanthine-oxidizing activity, apparently by disrupting the molybdenum and (Fe/S)II loci. This may indicate non-equivalence of the intramolecular electron-transfer systems. PMID:4462558

  17. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. PMID:25358619

  18. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    SciTech Connect

    Ali, Zulfiqar; Cao, Chuanbao Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed; Butt, Sajid

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  19. Characterization of nanostructured iron selenide thin films grown by chemical route at room temperature

    SciTech Connect

    Ubale, A.U.; Sakhare, Y.S.; Belkedkar, M.R.; Singh, Arvind

    2013-02-15

    Highlights: ► Nanostructured FeSe thin films were successfully synthesized at room temperature by CBD method. ► The XRD and EDAX characterization confirms nanocrystalline nature of FeSe. ► The SEM and AFM show microporous morphology with nanorods and nanoplates of FeSe. -- Abstract: Iron selenide thin films have been deposited onto glass substrates by using chemical bath deposition technique. Structural characterization of iron selenide thin films was carried out by means of X-ray diffraction and Fourier transforms infrared spectrum. The morphological characterization of FeSe thin film was carried out using scanning electron microscopy and atomic force microscopy, which revealed porous grain morphology of FeSe with some nano rectangular rods and plates grown on it. The as-deposited thin films exhibited optical band gap energy 2.60 eV. The as deposited FeSe thin films are semiconducting in nature with p-type electrical conductivity. The room temperature electrical resistivity is of the order of 1.1 × 10{sup 5} Ω-cm with activation energy 0.26 and 0.95 eV, respectively, in low and high temperature region.

  20. Optical and electronic properties of layer-by-layer and composite polyaniline-cadmium selenide quantum dot films

    NASA Astrophysics Data System (ADS)

    Ayub, Ambreen; Shakoor, Abdul; Elahi, Asmat; Rizvi, Tasneem Zahra

    2015-08-01

    Two organic-inorganic hybrid films of intrinsically conducting polymer; polyaniline and cadmium selenide quantum dots were prepared. One by layer-by-layer deposition of polyaniline and cadmium selenide films on PEDOT-PSS/ITO coated glass substrate (ITO/PEDOT-PSS/PANI/CdSe) and other by depositing polyaniline-cadmium selenide quantum dots composite film on the same substrate (ITO/PEDOT-PSS/PANI-CdSe) using spin coating technique. Pure polyaniline, cadmium selenide quantum dots and their composites thus obtained were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV/VIS/NIR absorption spectroscopy. The surface morphologies were studied by Scanning Electron Microscopy (SEM). The diode performance parameters were compared and contrasted for the two devices obtained by different deposition routes. J-V characteristics of these devices showed a rectifying contact with Al metal, however with variation in performance parameters like barrier height, ideality factor and reverse saturation current the ITO/PEDOT-PSS/PANI-CdSe/Al device exhibited better diode performance as compared to ITO/PEDOT-PSS/PANI/CdSe/Al device.

  1. Methyl phenyl selenide causes heme biosynthesis impairment and its toxicity is not modified by dimethyl sulphoxide in vivo.

    PubMed

    Folmer, Vanderlei; Farina, Marcelo; Maciel, Evelise N; Nogueira, Cristina W; Zeni, Gilson; Emanuelli, Tatiana; Rocha, Joo B T

    2004-11-01

    Organoselenium compounds can cause anemia in mice, possibly as a consequence of impairment of the heme biosynthesis pathway. Such compounds can inhibit the sulfhydryl-containing enzyme delta-aminolevulinate dehydratase (delta-ALA-D), which is involved in the heme biosynthetic pathway, leading to a decrease in the syntheses of hemoglobin, cytochromes and other heme-proteins. Methyl phenyl selenide (CH3SePh) has chemopreventive activity against cancer in rodents, raising the possibility of therapeutic use of this compound by humans. Treatment with methyl phenyl selenide (500 micromol/kg/day, 30 days) inhibited the delta-aminolevulinate dehydratase activity in adult male mice. Furthermore, the exposure to methyl phenyl selenide caused an increase in the liver/body weight ratio and a decrease in the hemoglobin content when compared to the control animals. The vehicle used (DMSO or corn oil) did not affect any of the analyzed parameters or the selenide effects towards these parameters. In summary, results presented here support that delta-aminolevulinate dehydratase is a potential target to CH3SePh, leading to an impairment of hemoglobin content, a heme biosynthetic endpoint. PMID:15573470

  2. Methylselenol Formed by Spontaneous Methylation of Selenide Is a Superior Selenium Substrate to the Thioredoxin and Glutaredoxin Systems

    PubMed Central

    Gandin, Valentina; Misra, Sougat; Tisato, Francesco; Marzano, Cristina; Rigobello, Maria Pia; Kumar, Sushil; Björnstedt, Mikael

    2012-01-01

    Naturally occurring selenium compounds like selenite and selenodiglutathione are metabolized to selenide in plants and animals. This highly reactive form of selenium can undergo methylation and form monomethylated and multimethylated species. These redox active selenium metabolites are of particular biological and pharmacological interest since they are potent inducers of apoptosis in cancer cells. The mammalian thioredoxin and glutaredoxin systems efficiently reduce selenite and selenodiglutathione to selenide. The reactions are non-stoichiometric aerobically due to redox cycling of selenide with oxygen and thiols. Using LDI-MS, we identified that the addition of S-adenosylmethionine (SAM) to the reactions formed methylselenol. This metabolite was a superior substrate to both the thioredoxin and glutaredoxin systems increasing the velocities of the nonstoichiometric redox cycles three-fold. In vitro cell experiments demonstrated that the presence of SAM increased the cytotoxicity of selenite and selenodiglutathione, which could neither be explained by altered selenium uptake nor impaired extra-cellular redox environment, previously shown to be highly important to selenite uptake and cytotoxicity. Our data suggest that selenide and SAM react spontaneously forming methylselenol, a highly nucleophilic and cytotoxic agent, with important physiological and pharmacological implications for the highly interesting anticancer effects of selenium. PMID:23226364

  3. Chemical Bath Deposited Zinc Sulfide Buffer Layers for Copper Indium Gallium Sulfur-selenide Solar Cells and Device Analysis

    SciTech Connect

    Kundu, Sambhu N.; Olsen, Larry C.

    2005-01-03

    Cd free CIGSS thin film solar cell structures with a MgF2/TCO/CGD-ZnS/CIGSS/Mo/SLG structure have been fabricated using chemical bath deposited (CBD)-ZnS buffer layers and high quality CIGSS absorber layers supplied from Shell Solar Industries. The use of CBD-ZnS, which is a higher band gap materials than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm2) efficiency of 13.3%. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer materials for improving device performance.

  4. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    SciTech Connect

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-21

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  5. Simulations of silver-doped germanium-selenide glasses and their response to radiation

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Drabold, David A.

    2014-10-01

    Chalcogenide glasses doped with silver have many applications including their use as a novel radiation sensor. In this paper, we undertake the first atomistic simulation of radiation damage and healing in silver-doped Germanium-selenide glass. We jointly employ empirical potentials and ab initio methods to create and characterize new structural models and to show that they are in accord with many experimental observations. Next, we simulate a thermal spike and track the evolution of the radiation damage and its eventual healing by application of a simulated annealing process. The silver network is strongly affected by the rearrangements, and its connectivity (and thus contribution to the electrical conductivity) change rapidly in time. The electronic structure of the material after annealing is essentially identical to that of the initial structure.

  6. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.

    PubMed

    Hbert, S; Berthebaud, D; Daou, R; Brard, Y; Pelloquin, D; Guilmeau, E; Gascoin, F; Lebedev, O; Maignan, A

    2016-01-13

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of 'rattlers') could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites). PMID:26642835

  7. A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles

    NASA Astrophysics Data System (ADS)

    Oluwafemi, S. O.; Revaprasadu, N.; Ramirez, A. J.

    2008-06-01

    A novel, facile one-pot synthetic route to highly water dispersible and potentially biocompatible CdSe nanoparticles is reported. The monodispersed CdSe particles are passivated by cysteine, with water being the solvent. This route involves the reaction of selenium powder with sodium borohydride to produce selenide ions, followed by the addition of a cadmium salt and L-cysteine ethyl ester hydrochloride. The nanoparticles formed show quantum confinement fluorescing in the blue region. Fourier transform infrared spectroscopy study shows that CdSe nanoparticles are capped through mercapto group of the amino acid cysteine whilst its free amino and carboxylate groups make it amenable to bioconjugation establishing the possibility of using these as fluorescent biomarkers. High-resolution transmission electron spectroscopy images of these materials show well-defined, crystalline nanosized particles. Energy dispersive spectroscopy spectra confirm the presence of the corresponding elements.

  8. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    SciTech Connect

    Jacob, Rajani Philip, Rachel Reena Nazer, Sheeba Abraham, Anitha Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-28

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ?1.78eV with high absorption coefficient ?10{sup 6}/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ?2.6?m and the films showed good photo response.

  9. Novel chemical synthetic route and characterization of zinc selenide thin films

    NASA Astrophysics Data System (ADS)

    Hankare, P. P.; Chate, P. A.; Delekar, S. D.; Asabe, M. R.; Mulla, I. S.

    2006-11-01

    Zinc selenide (ZnSe) thin film have been deposited using chemical bath method on non-conducting glass substrate in a tartarate bath containing zinc sulfate, ammonia, hydrazine hydrate, sodium selenosulfate in an aqueous alkaline medium at 333 K. The deposition parameter of the ZnSe thin film is interpreted in the present investigation. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption, electrical measurements, atomic absorption spectroscopy (AAS). The ZnSe thin layers grown with polycrystalline zinc blende system along with some amorphous phase present in ZnSe film. The direct optical band gap Eg for the film was found to be 2.81 eV and electrical conductivity in the order of 10-8(? cm)-1 with n-type conduction mechanism.

  10. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors.

    PubMed

    Otto, Tyler; Miller, Chris; Tolentino, Jason; Liu, Yao; Law, Matt; Yu, Dong

    2013-08-14

    We report a scanning photocurrent microscopy (SPCM) study of colloidal lead selenide (PbSe) quantum dot (QD) thin film field-effect transistors (FETs). PbSe QDs are chemically treated with sodium sulfide (Na2S) and coated with amorphous alumina (a-Al2O3) by atomic layer deposition (ALD) to obtain high mobility, air-stable FETs with a strongly gate-dependent conductivity. SPCM reveals a long photocurrent decay length of 1.7 ?m at moderately positive gate bias that decreases to below 0.5 ?m at large positive gate voltage and all negative gate voltages. After excluding other possible mechanisms including thermoelectric effects, a thick depletion width, and fringing electric fields, we conclude from photocurrent lifetime measurements that the diffusion of a small fraction of long-lived carriers accounts for the long photocurrent decay length. The long minority carrier lifetime is attributed to charge traps for majority carriers. PMID:23802707

  11. The effect of structural dimensionality on the electrocatalytic properties of the nickel selenide phase.

    PubMed

    Kukunuri, Suresh; Krishnan, M Reshma; Sampath, S

    2015-09-28

    Nickel selenide (NiSe) nanostructures possessing different morphologies of wires, spheres and hexagons are synthesized by varying the selenium precursors, selenourea, selenium dioxide (SeO2) and potassium selenocyanate (KSeCN), respectively, and are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and scanning electron microscopy techniques. Electrical measurements of a single nanowire and a hexagon carried out on devices fabricated by the focused ion beam (FIB) technique depict the semiconducting nature of NiSe and its ability to act as a visible light photodetector. The three different morphologies are used as catalysts for hydrogen evolution (HER), oxygen reduction (ORR) and glucose oxidation reactions. The wire morphology is found to be better than that of spheres and hexagons for all the reactions. Among the reactions studied, NiSe is found to be good for HER and glucose oxidation while ORR seems to terminate at the peroxide stage. PMID:26291172

  12. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    NASA Astrophysics Data System (ADS)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.

  13. The growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Elmer E.; Rosenberger, Franz E.; Cheng, Hai-Yuin

    1990-01-01

    Growth and characterization studies will be performed on zinc selenide single crystals. The high temperature outgassing behavior of the silica ampoule material will be studied in order to develop a cleaning and bake-out procedure that will minimize the amount of impurities introduced into the vapor from the ampoule materials and in particular during the seal-off procedure. The outgassing behavior of the ZnSe starting material will be studied during high vacuum refinement at elevated temperatures in order to develop a temperature pressure program that will optimize the removal of impurities while minimizing a shift in stoichiometry due to preferred evaporation of the higher fugacity component. The mass spectrometer system was completed, and after calibration, will be used to perform the above tasks. The system and its operation is described in detail.

  14. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2015-03-01

    We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with s +/- -symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave vectors. An accurate description of this competition and an inclusion of band structure and Stoner parameter renormalization effects lead to a value of the coupling constant for an s +/- symmetric gap which can produce a superconducting transition temperature consistent with experimental measurements. This work was supported by NSF Grant No. DMR10-1006184 and by DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the DOE at NERSC.

  15. Simulations of silver-doped germanium-selenide glasses and their response to radiation

    PubMed Central

    2014-01-01

    Chalcogenide glasses doped with silver have many applications including their use as a novel radiation sensor. In this paper, we undertake the first atomistic simulation of radiation damage and healing in silver-doped Germanium-selenide glass. We jointly employ empirical potentials and ab initio methods to create and characterize new structural models and to show that they are in accord with many experimental observations. Next, we simulate a thermal spike and track the evolution of the radiation damage and its eventual healing by application of a simulated annealing process. The silver network is strongly affected by the rearrangements, and its connectivity (and thus contribution to the electrical conductivity) change rapidly in time. The electronic structure of the material after annealing is essentially identical to that of the initial structure. PMID:25426005

  16. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals.

    PubMed

    Li, Xufan; Basile, Leonardo; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo, Juan C; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-02-23

    Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA' and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals. PMID:25611050

  17. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    NASA Astrophysics Data System (ADS)

    Hbert, S.; Berthebaud, D.; Daou, R.; Brard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A.

    2016-01-01

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of rattlers) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  18. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

    NASA Astrophysics Data System (ADS)

    Zeljkovic, Ilija; Scipioni, Kane L.; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R.; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-03-01

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.

  19. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide.

    PubMed

    Zeljkovic, Ilija; Scipioni, Kane L; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-01-01

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor. PMID:25814140

  20. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

    PubMed Central

    Zeljkovic, Ilija; Scipioni, Kane L.; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-01-01

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor. PMID:25814140

  1. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.

    PubMed

    Huang, Yu-Ting; Huang, Chun-Wei; Chen, Jui-Yuan; Ting, Yi-Hsin; Lu, Kuo-Chang; Chueh, Yu-Lun; Wu, Wen-Wei

    2014-09-23

    Phase change random access memory (PCRAM) has been extensively investigated for its potential applications in next-generation nonvolatile memory. In this study, indium(III) selenide (In2Se3) was selected due to its high resistivity ratio and lower programming current. Au/In2Se3-nanowire/Au phase change memory devices were fabricated and measured systematically in an in situ transmission electron microscope to perform a RESET/SET process under pulsed and dc voltage swept mode, respectively. During the switching, we observed the dynamic evolution of the phase transformation process. The switching behavior resulted from crystalline/amorphous change and revealed that a long pulse width would induce the amorphous or polycrystalline state by different pulse amplitudes, supporting the improvement of the writing speed, retention, and endurance of PCRAM. PMID:25133955

  2. Silica encapsulation of thiol-stabilized lead selenide (PbSe) quantum dots in aqueous solution

    PubMed Central

    Primera-Pedrozo, Oliva M.; Ates, Mehmet; Arslan, Zikri

    2013-01-01

    Silica encapsulation of lead selenide quantum dots (PbSe QDs) in aqueous solution is reported. Thioglycolic acid (TGA) stabilized PbSe QDs were modified with 3-mercaptopropyl trimethoxysilane (MPS) through vigorous stirring in water for 1824 h in alkaline solution (pH 10.410.6). Silica shell was developed by controlled deposition and precipitation of silicates from sodium silicate solution onto MPS modified QDs surfaces. TEM images showed multiple PbSe QDs encapsulated in silica shell. The size of PbSe-SiO2 core-shell nanocrystals was estimated to be 2530 nm by TEM. Elemental compositions (Pb, Se and Si) were investigated by EDX analysis. The purified colloids of PbSe-SiO2 QDs were stable for months when kept at 4 C. PMID:23729944

  3. Silica encapsulation of thiol-stabilized lead selenide (PbSe) quantum dots in aqueous solution.

    PubMed

    Primera-Pedrozo, Oliva M; Ates, Mehmet; Arslan, Zikri

    2013-07-01

    Silica encapsulation of lead selenide quantum dots (PbSe QDs) in aqueous solution is reported. Thioglycolic acid (TGA) stabilized PbSe QDs were modified with 3-mercaptopropyl trimethoxysilane (MPS) through vigorous stirring in water for 18-24 h in alkaline solution (pH 10.4-10.6). Silica shell was developed by controlled deposition and precipitation of silicates from sodium silicate solution onto MPS modified QDs surfaces. TEM images showed multiple PbSe QDs encapsulated in silica shell. The size of PbSe-SiO2 core-shell nanocrystals was estimated to be 25-30 nm by TEM. Elemental compositions (Pb, Se and Si) were investigated by EDX analysis. The purified colloids of PbSe-SiO2 QDs were stable for months when kept at 4 C. PMID:23729944

  4. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    PubMed

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-01

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs. PMID:25185939

  5. Mechanical stabilities and nonlinear properties of monolayer Gallium selenide under tension

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Xia, Suxia; Hou, Bin; Gao, Tao; Zhang, Ru

    2015-05-01

    The mechanical stabilities and nonlinear properties of monolayer Gallium selenide (GaSe) under tension are investigated by using density functional theory (DFT). The ultimate stresses and ultimate strains and the structure evolutions of monolayer GaSe under armchair (AC), zigzag (ZZ) and equiaxial (EQ) tensions are predicted. A thermodynamically rigorous continuum description of nonlinear elastic response is given by expanding the elastic strain energy density in a Taylor series in Lagrangian strain truncated after the fifth-order term. Fourteen nonzero independent elastic constants are determined by least-square fit to the DFT calculations. Pressure-dependent elastic constants (Cij(P)) and pressure derivatives of Cij (P) (C'ij) are also calculated. Calculated values of ultimate stresses and strains and the in-plane Young's modulus are all positive. It proves that monolayer GaSe is mechanically stable.

  6. Resonance enhancement of nonlinear photoluminescence in gallium selenide and related compounds

    SciTech Connect

    Angermann, Ch; Karich, P; Kador, Lothar; Allakhverdiev, K R; Baykara, T; Salaev, E Yu

    2012-05-31

    Maker fringe experiments on the layered chalcogenide semiconductor gallium selenide (GaSe) with weak cw diode lasers are presented. It is demonstrated that nonlinear photoluminescence emitted by this material and by the similar compound GaSe{sub 0.9}S{sub 0.1} under illumination with a 632.8-nm He - Ne laser shows very strong resonance enhancement upon heating when the absorption edge and exciton levels are shifted towards the laser line. The photoluminescence appears to be strongest when the energy level of the direct exciton, which emits it, is resonant with the photon energy of the laser. The previously observed enhancement of the photoluminescence by electric fields is interpreted in this context.

  7. Counter electrodes from binary ruthenium selenide alloys for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Pinjiang; Cai, Hongyuan; Tang, Qunwei; He, Benlin; Lin, Lin

    2014-12-01

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its merits on clean, cost-effectiveness, relatively high efficiency, and easy fabrication. However, the reduction of fabrication cost without sacrifice of power conversion efficiencies of the DSSCs is a golden rule for their commercialization. Here we design a new binary ruthenium selenide (Ru-Se) alloy counter electrodes (CEs) by a low-temperature hydrothermal reduction method. The electrochemical behaviors are evaluated by cyclic voltammogram, electrochemical impedance, and Tafel measurements, giving an optimized Ru/Se molar ratio of 1:1. The DSSC device with RuSe alloy CE achieves a power conversion efficiency of 7.15%, which is higher than 5.79% from Pt-only CE based DSSC. The new concept, easy process along with promising results provide a new approach for reducing cost but enhancing photovoltaic performances of DSSCs.

  8. Atomic layer epitaxial growth studies of ZnSe using dimethylzinc and hydrogen selenide

    NASA Astrophysics Data System (ADS)

    Bhat, Ishwara; Akram, Salman

    1994-04-01

    Atomic layer epitaxial (ALE) growth studies of ZnSe were carried out in a low pressure horizontal metalorganic vapor phase epitaxial (MOVPE) reactor. Growth was carried out by alternately exposing the GaAs substrate to hydrogen selenide (H 2Se) and dimethylzinc (DMZn) using flow modulation epitaxy (FME). It was found that at a susceptor temperature of 200°C and above, the adsorption of either of the reactants is extremely small and hence self-limiting monolayer growth does not take place. Significant deposition of ZnSe took place on the reactor wall in front of the susceptor as well. A hot wall reactor with colder susceptor configuration was used to prevent deposition on the reactor walls and also to confirm the growth model proposed.

  9. Copper and copper proteins in Parkinson's disease.

    PubMed

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  10. Disorders of copper transport.

    PubMed

    Cox, D W

    1999-01-01

    Copper is an essential component of a number of important enzymes. Efficient systems have developed for providing sufficient copper for essential functions, while eliminating excess to avoid tissue toxicity. Copper transport is disrupted in two human diseases: Wilson disease and Menkes disease. Both have defects in copper transporting membrane proteins. Many other proteins are involved in copper transport. Some of these proteins have been identified through a study of the similar copper pathway in yeast. This suggests other copper transport diseases are yet to be discovered. Molecular diagnosis holds promise for reliable diagnosis of patients. Testing of flanking markers is a reliable way to detect presymptomatic sibs of a definite patient. PMID:10746345

  11. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-10-01

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I-/I3- redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I-/I3- redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs. Electronic supplementary information (ESI) available: Schematic diagram, repeated J-V curves, CV curves of Ni0.85Se electrode at various scan rates, relationship between peak current density and square root of scan rates. See DOI: 10.1039/c4nr03900a

  12. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-01

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (NiaCubCdcCedIneYf)Sex/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently. PMID:26777131

  13. Lab Tracker and Copper Calculator

    MedlinePLUS

    ... Copper Calculator WDA Publications Copper Connection Newsletter Stories Lab Tracker and Copper Calculator Serum Copper (mcg/dl) ... Michael Schilsky, we are pleased to offer the Lab Tracker in two convenient formats. We recommend that ...

  14. Chalcogenide clusters of copper and silver from silylated chalcogenide sources.

    PubMed

    Fuhr, Olaf; Dehnen, Stefanie; Fenske, Dieter

    2013-02-21

    This review summarizes the rich structural variety of copper and silver chalcogenide clusters with protecting ligand shells of phosphane and/or organic ligands that were generated starting out from silylated chalcogenide sources. This route turned out to be fairly selective and thus allows for the isolation of uniform, polynuclear to nanosized cluster molecules that can consist of only a few or up to hundreds of metal atoms, being bridged by the chalcogen atoms. However, all of these clusters are only kinetically stable with respect to the formation of the binary coinage metal chalcogen phases, but do not collapse into the solid M(2)E materials owing to the protection by bulky ligands on the surface. Upon a more detailed analysis of the development of the structural properties with the cluster size, one recognizes differences for the particular M/E combinations: whereas copper chalcogenide and silver selenide clusters show a clear tendency to approach structural patterns of the Cu(2)E bulk, most obvious for the Cu/Se combination, this is not visible for silver sulfide clusters, even not at the largest species with 490 silver and 302 sulfur atoms. Besides the discussion on the structures of title compounds, the review presents insight into the bonding properties, reactivity, thermal and photophysical properties. The latter can be interpreted in terms of the quantum confinement effect, thus demonstrating the clusters to be understood as intermediates between mononuclear complexes and binary bulk phases. PMID:22918377

  15. Synthesis, crystal growth and characterization of phosphides, selenides, sulfides and oxides

    NASA Astrophysics Data System (ADS)

    Feng, Chun-Min

    The desire to build smaller, faster, inexpensive electronics has prompted researchers to exploit electron "spin" in transistors. Spin in semiconductors offers a pathway towards integration of storage and processing in a single material. These "spintronic" transistors could be highly energy-efficient and perform more computations than traditional transistors in a smaller space. In addition, in optoelectronic applications, lasers and light-emitting diodes that take advantage of electron spin could increase the data-carrying capacity of light. But one of the key hurdles in this emerging field is that the magnetic and semiconducting materials needed to make a spintronic device are notoriously incompatible. We have focused on different oxides, phosphides and sulfides to study crystal growth and properties of spintronics. We have reported the synthesis of pure ZnO and Mn substituted ZnO crystals from sodium hydroxide and potassium hydroxide flux for the first time. Various oxides, including boron oxide (B2O3), vanadium oxide (V2O5), tungsten oxide (WO3) and molybdenum oxide (MoO3), were also used for crystal growth. A non-uniform distribution of Mn substitution was found in ZnO single crystals, and 3 at.% Mn concentration was identified. In addition, polycrystalline Mn-substituted ZnO powder samples exhibited solubility of Mn in the ZnO lattice. SQUID magnetic properties investigation of Mn-substituted polycrystalline samples indicated paramagnetism down to 5 K. We have also investigated phosphides, selenides, and sulfides for spintronic applications, based on the well-studied spintronic material, gallium arsenide (GaAs), with a Curie temperature of 110K. GaAs has the zincblende structure with Ga in tetrahedral coordination. ZnSiP2, CdSiP2, KGaS 2 and KGaSe2 have metal atoms in tetrahedral coordination with no localized spin. Localized spin will be present if transition metals are substituted in. The synthesis of single phase ZnSiP2 and CdSiP 2 were grown from two different heat treatments. Also, potassium gallium selenide (KGaSe2) and potassium gallium sulfide (KGaS2) were reported. Temperature dependence susceptibility data revealed a ferromagnetic transition near 300 K followed by an antiferromagnetic transition near 50 K. Hysteresis loops at room temperature were present in all Mn substituted samples. Magnetic properties of Mn substituted samples are comparable with the crystalline MnP sample; they remain unidentified in X-ray diffraction data.

  16. Copper-tantalum alloy

    SciTech Connect

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  17. On copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.

  18. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  19. Development of bismuth tellurium selenide nanoparticles for thermoelectric applications via a chemical synthetic process

    SciTech Connect

    Kim, Cham; Department of Chemical Engineering, Pohang University of Science and Technology , San 31 Hyoja-dong, Pohang 790-784 ; Kim, Dong Hwan; Han, Yoon Soo; Chung, Jong Shik; Park, SangHa; Park, Soonheum; Kim, Hoyoung

    2011-03-15

    Research highlights: {yields} We synthesized a Bi{sub 2}Te{sub y}Se{sub 3-y} nano-compound via a chemical synthetic process. {yields} The compound was sintered to achieve an average grain size of about 300 nm. {yields} The resulting sintered body showed very low thermal conductivity. It is likely caused by the vigorous phonon scattering of the nano-sized grains. -- Abstract: Bismuth tellurium selenide (Bi{sub 2}Te{sub y}Se{sub 3-y}) nanoparticles for thermoelectric applications are successfully prepared via a water-based chemical reaction under atmospheric conditions. The nanostructured compound is prepared using a complexing agent (ethylenediaminetetraacetic acid) and a reducing agent (ascorbic acid) to stabilize the bismuth precursor (Bi(NO{sub 3}){sub 3}) in water and to favor the reaction with reduced sources of tellurium and selenium. The resulting powder is smaller than ca. 100 nm and has a crystalline structure corresponding to the rhombohedral Bi{sub 2}Te{sub 2.7}Se{sub 0.3}. The nanocrystalline powder is sintered via a spark plasma sintering process to obtain a sintered body composed of nano-sized grains. Important transport properties of the sintered body are measured to calculate its most important characteristic, the thermoelectric performance. The results demonstrate a relationship between the nanostructure of the sintered body and its thermal conductivity.

  20. Solution Assembly of Hybrid Poly (3-hexyl thiophene) and Cadmium Selenide Nanowires

    NASA Astrophysics Data System (ADS)

    Bokel, Felicia; Pentzer, Emily; Emrick, Todd; Hayward, Ryan

    2012-02-01

    Optimizing morphology of self-assembled systems containing both electron carrying (n-type) and hole carrying (p-type) materials holds promise for the fabrication of improved devices, such as solar cells. In this talk, two routes to formation of hybrid p-n composite fibrils consisting of crystalline p-type poly(3-hexyl thiophene) (P3HT) nanowires with n-type cadmium selenide (CdSe) quantum dots and nanorods into well-defined structures will be discussed. The first method involves co-crystallization of freely soluble P3HT and P3HT-functionalized CdSe nanorods to form crystalline hybrid nanowires upon addition of a marginal solvent. Transmission electron microscopy reveals that nanorods preferentially orient parallel to and flank the sides of fibers. In a second route to forming hybrid materials, chain-end functionalized P3HT is crystallized into fibrillar nanowires. Introduction of nanoparticles promotes binding at the fibril edge, forming parallel composite pathways or ``superhighways.'' These assembly approaches represent efficient means to organization of conjugated polymers and semiconducting nanostructures, thus offering new opportunities for optoelectronic device design.

  1. Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-k dielectric stack

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chou; Kuo, Yue

    2014-02-01

    Metal-oxide-semiconductor capacitors made of the nanocrystalline cadmium selenide nc-CdSe embedded Zr-doped HfO2 high-k stack on the p-type silicon wafer have been fabricated and studied for their charge trapping, detrapping, and retention characteristics. Both holes and electrons can be trapped to the nanocrystal-embedded dielectric stack depending on the polarity of the applied gate voltage. With the same magnitude of applied gate voltage, the sample can trap more holes than electrons. A small amount of holes are loosely trapped at the nc-CdSe/high-k interface and the remaining holes are strongly trapped to the bulk nanocrystalline CdSe site. Charges trapped to the nanocrystals caused the Coulomb blockade effect in the leakage current vs. voltage curve, which is not observed in the control sample. The addition of the nanocrystals to the dielectric film changed the defect density and the physical thickness, which are reflected on the leakage current and the breakdown voltage. More than half of the originally trapped holes can be retained in the embedded nanocrystals for more than 10 yr. The nanocrystalline CdSe embedded high-k stack is a useful gate dielectric for this nonvolatile memory device.

  2. Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals

    DOE PAGESBeta

    Li, Xufan; Yoon, Mina; Puretzky, Alexander A; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-01-01

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0 or 60 interlayer rotations. The commensurate stacking configurations (AA and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. The combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less

  3. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence. PMID:26370776

  4. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  5. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  6. Multifunctional Bismuth Selenide Nanocomposites for Antitumor Thermo-Chemotherapy and Imaging.

    PubMed

    Li, Zhenglin; Hu, Ying; Howard, Kenneth A; Jiang, Tingting; Fan, Xuelei; Miao, Zhaohua; Sun, Ye; Besenbacher, Flemming; Yu, Miao

    2016-01-26

    To integrate real-time monitoring and therapeutic functions into a single nanoagent, we have designed and synthesized a drug-delivery platform based on a polydopamine(PDA)/human serum albumin (HSA)/doxorubicin (DOX) coated bismuth selenide (Bi2Se3) nanoparticle (NP). The resultant product exhibits high stability and biocompatibility both in vitro and in vivo. In addition to the excellent capability for both X-ray computed tomography (CT) and infrared thermal imaging, the NPs possess strong near-infrared (NIR) absorbance, and high capability and stability of photothermal conversion for efficient photothermal therapy (PTT) applications. Furthermore, a bimodal on-demand pH/photothermal-sensitive drug release has been achieved, resulting in a significant chemotherapeutic effect. Most importantly, the tumor-growth inhibition ratio achieved from thermo-chemotherapy of the Bi2Se3@PDA/DOX/HSA NPs was 92.6%, in comparison to the chemotherapy (27.8%) or PTT (73.6%) alone, showing a superior synergistic therapeutic effect. In addition, there is no noticeable toxicity induced by the NPs in vivo. This multifunctional platform is, therefore, promising for effective, safe and precise antitumor treatment and may stimulate interest in further exploration of drug loading on Bi2Se3 and other competent PTT agents combined with in situ imaging for biomedical applications. PMID:26655250

  7. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy

    PubMed Central

    Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan

    2013-01-01

    Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy. PMID:23770650

  8. Synthesis and optoelectrical properties of f-graphene/cadmium selenide hybrid system

    NASA Astrophysics Data System (ADS)

    Babkair, Saeed Salem; Azam, Ameer; Singh, Kuldeep; Dhawan, Sundeep Kumar; Khan, Mohd Taukeer

    2015-01-01

    The present work demonstrates the synthesis of a hybrid accepter material containing amino-functionalized graphene oxide (GO) and an inorganic semiconducting material, cadmium selenide (CdSe). First, amino-functionalized graphene was synthesized and then nanocrystals (NCs) of CdSe were in situ grown in the functionalized-(GO) matrix named f-GCdSe. Structural studies such as x-ray diffraction, and a scanning electron microscopic were employed to investigate the growth of CdSe NCs in the graphene matrix. To understand the charge generation and transfer process at the donor/acceptor interface, the absorption, photoluminescence (PL), and transient absorption spectroscopic (TAS) studies have been carried out in poly(3-hexylthiophene) (P3HT)/f-GCdSe thin films. PL quenching in P3HT/f-GCdSe thin film suggests that charge transfer takes place at the donor/acceptor interface. TAS shows higher optical density and long lived free carriers for P3HT/f-GCdSe thin film. These results suggest that f-GCdSe is an excellent electron-acceptor material for organic photovoltaic devices.

  9. Growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.

  10. Strong orientation dependence of electronic properties of Antimony Selenide (Sb2Se3) nanostructures

    NASA Astrophysics Data System (ADS)

    Vadapoo, Rajasekarakumar; Krishnan, Sridevi; Yilmaz, Hulusi; Marin, Carlos

    2015-03-01

    Antimony Selenide has applications in thermoelectric, photovoltaic and optical storage. Recently, it was demonstrated that bulk material under high pressure becomes a topological insulator and further undergoes insulator to metal to superconducting transitions. The Sb2 Se3 nanostructures reported so far exhibit direct bandgaps, whereas the bulk has an indirect gap. Considering different crystallographic orientations of synthesized nanostructures and the anisotropic nature of its structure, we have studied the influence of orientation on their electronic behavior. Using first principle methods, we explore the stability of nanowires in different orientations and its influence on electronic structure. We find confinement effects for the narrower nanostructures, whereas the [001] orientation showed a reduced bandgap. This anomalous behavior is discussed considering that bandgap reduction could be attributed to recent experimental findings of a insulator-metal transition, which is related to topological quantum transition. The surface reconstructions show similarities to the distortion of polyhedras occurring in bulk Sb2 Se3 under high pressure, which are related to the insulator-metal transition and superconductivity at 8.0 K.

  11. Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends

    PubMed Central

    2014-01-01

    Hybrid nanocrystalpolymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3?,7?-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymernanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organicnanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. PMID:24490650

  12. Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals

    SciTech Connect

    Li, Xufan; Basile Carrasco, Leonardo A; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-01-01

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0 or 60 interlayer rotations. The commensurate stacking configurations (AA and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. The combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  13. Phase separation and magnetic order in K-doped iron selenide superconductor

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ding, Hao; Deng, Peng; Chang, Kai; Song, Canli; He, Ke; Wang, Lili; Ma, Xucun; Hu, Jiang-Ping; Chen, Xi; Xue, Qi-Kun

    2012-02-01

    The newly discovered alkali-doped iron selenide superconductors not only reach a superconducting transition temperature as high as 32K, but also exhibit unique characteristics that are absent from other iron-based superconductors, such as antiferromagnetically ordered insulating phases, extremely high Nel transition temperatures and the presence of Fe vacancies and ordering. These features have generated considerable excitement as well as confusion, regarding the delicate interplay between Fe vacancies, magnetism and superconductivity. Here we report on molecular beam epitaxy growth of high-quality KxFe2-ySe2 thin films and in situ low-temperature scanning tunnelling microscope measurement of their atomic and electronic structures. We demonstrate that a KxFe2-ySe2 sample contains two distinct phases: an insulating phase with well-defined order of Fe vacancies, and a superconducting KFe2Se2 phase containing no Fe vacancies. An individual Fe vacancy can locally destroy superconductivity in a similar way to a magnetic impurity in conventional superconductors. Measurement of the magnetic-field dependence of the Fe-vacancy-induced bound states reveals a magnetically related bipartite order in the tetragonal iron lattice. These findings elucidate the existing controversies on this new superconductor and provide atomistic information on the interplay between magnetism and superconductivity in iron-based superconductors.

  14. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy

    NASA Astrophysics Data System (ADS)

    Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan

    2013-06-01

    Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy.

  15. Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-k dielectric stack

    SciTech Connect

    Lin, Chi-Chou; Kuo, Yue

    2014-02-28

    Metal-oxide-semiconductor capacitors made of the nanocrystalline cadmium selenide nc-CdSe embedded Zr-doped HfO{sub 2} high-k stack on the p-type silicon wafer have been fabricated and studied for their charge trapping, detrapping, and retention characteristics. Both holes and electrons can be trapped to the nanocrystal-embedded dielectric stack depending on the polarity of the applied gate voltage. With the same magnitude of applied gate voltage, the sample can trap more holes than electrons. A small amount of holes are loosely trapped at the nc-CdSe/high-k interface and the remaining holes are strongly trapped to the bulk nanocrystalline CdSe site. Charges trapped to the nanocrystals caused the Coulomb blockade effect in the leakage current vs. voltage curve, which is not observed in the control sample. The addition of the nanocrystals to the dielectric film changed the defect density and the physical thickness, which are reflected on the leakage current and the breakdown voltage. More than half of the originally trapped holes can be retained in the embedded nanocrystals for more than 10 yr. The nanocrystalline CdSe embedded high-k stack is a useful gate dielectric for this nonvolatile memory device.

  16. Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes

    NASA Astrophysics Data System (ADS)

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Zhao, Zhiyuan; Zhu, Ling; Yu, Liangmin

    2015-06-01

    High power conversion efficiency and cost-effectiveness are two persistent objectives for dye-sensitized solar cell (DSSC). Electricity generation from either front or rear side of a bifacial DSSC has been considered as a facile avenue of bringing down the cost of solar-to-electric conversion. Therefore, the fabrication of a transparent counter electrode (CE) with a high electrocatalytic activity is a prerequisite to realize this goal. We present here the feasibility of utilizing transparent cobalt selenide (Co-Se) binary alloy counter electrode for bifacial DSSC application, in which binary Co-Se alloy electrode is synthesized by a mild solution strategy and the cell device is irradiated by either front or rear side. Due to the high optical transparency, charge-transfer ability, and electrocatalytic activity, maximum front and rear efficiencies of 8.30% and 4.63% are recorded under simulated air mass 1.5 (AM1.5) irradiation, respectively. The impressive efficiency along with fast start-up, multiple start capability, and simple preparation highlights the potential application of cost-effective and transparent Co-Se alloy CE in robust bifacial DSSCs.

  17. Superconductivity in a new layered nickel selenide CsNi2Se2

    NASA Astrophysics Data System (ADS)

    Chen, Huimin; Yang, Jinhu; Cao, Chao; Li, Lin; Su, Qiping; Chen, Bin; Wang, Hangdong; Mao, Qianhui; Xu, Binjie; Du, Jianhua; Fang, Minghu

    2016-04-01

    The physical properties of CsNi2Se2 were characterized by electrical resistivity, magnetization and specific heat measurements. We found that the stoichiometric CsNi2Se2 compound undergoes a superconducting transition at T c = 2.7 K. A large Sommerfeld coefficient {γ }n (∼77.90 mJ/mol K‑2) was obtained from the normal state electronic specific heat. However, the Kadowaki–Woods ratio of CsNi2Se2 was estimated to be about 0.041 × 10{}-5μ {{Ω }}cm(mol K2/mJ)2, indicating the absence of strong electron–electron correlations. In the superconducting state, we found that the zero-field electronic specific heat data, C es(T) (0.5 K ≤slant T < 2.7 K), can be fitted well with a two-gap BCS model, indicating the multi-gap feature of CsNi2Se2. The comparison with the density functional theory (DFT) calculations suggested that the large {γ }n in these nickel selenide superconductors may be related to the large density of states (DOS) at the Fermi surface.

  18. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect

    Gupta, Vinay; Department of Physics, University of California, Santa Barbara, California 93106 ; Upreti, Tanvi; Chand, Suresh

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  19. Structural and optical characterizations of chemically deposited cadmium selenide thin films

    SciTech Connect

    Khomane, A.S.

    2011-10-15

    Highlights: {yields} CdSe thin films deposited first time using formic acid as a complexing agent. {yields} The deposited thin films were characterized by XRD, SEM, UV-vis-NIR and electrical techniques. {yields} X-ray diffraction analysis shows presence of zinc blende crystal structure. -- Abstract: Synthesis of cadmium selenide thin films by CBD method has been presented. The deposited film samples were subjected to XRD, SEM, UV-vis-NIR and TEP characterization. X-ray diffraction analysis showed that CdSe film sample crystallized in zinc blende or cubic phase structure. SEM studies reveal that the grains are spherical in shape and uniformly distributed all over the surface of the substrates. The optical band gap energy of as deposited film sample was found to be in the order of 1.8 eV. The electrical conductivity of the film sample was found to be 10{sup -6} ({Omega} cm){sup -1} with n-type of conduction mechanism.

  20. Spray pyrolytic deposition and characterization of lanthanum selenide (La 2Se 3) thin films

    NASA Astrophysics Data System (ADS)

    Bagde, G. D.; Sartale, S. D.; Lokhande, C. D.

    2003-05-01

    The versatile spray pyrolysis technique was employed to prepare thin films of lanthanum selenide (La 2Se 3) on glass and fluorine doped tin oxide (FTO) coated glass substrates under optimized conditions. The deposition temperature was 250 C. The X-ray studies reveal that the films are polycrystalline with single La 2Se 3 phase. The estimated optical band gap was found to be 2.6 eV. The dielectric properties such as dielectric constant and dielectric loss of the films deposited on FTO coated glass substrates were measured with FTO-La 2Se 3-Ag structure as a function of frequency and the results are reported. At room temperature dielectric constant and dielectric loss for 1 kHz frequency were found to be 6.2 and 0.048, respectively. The room temperature electrical resistivity was of the order of 10 5 ? cm. The La 2Se 3 films are found to be n-type semiconductor.

  1. Photoluminescence properties of cadmium-selenide quantum dots embedded in a liquid-crystal polymer matrix

    SciTech Connect

    Tselikov, G. I. Timoshenko, V. Yu.; Plenge, J.; Ruehl, E.; Shatalova, A. M.; Shandryuk, G. A.; Merekalov, A. S.; Tal'roze, R. V.

    2013-05-15

    The photoluminescence properties of cadmium-selenide (CdSe) quantum dots with an average size of {approx}3 nm, embedded in a liquid-crystal polymer matrix are studied. It was found that an increase in the quantum-dot concentration results in modification of the intrinsic (exciton) photoluminescence spectrum in the range 500-600 nm and a nonmonotonic change in its intensity. Time-resolved measurements show the biexponential decay of the photoluminescence intensity with various ratios of fast and slow components depending on the quantum-dot concentration. In this case, the characteristic lifetimes of exciton photoluminescence are 5-10 and 35-50 ns for the fast and slow components, respectively, which is much shorter than the times for colloidal CdSe quantum dots of the same size. The observed features of the photoluminescence spectra and kinetics are explained by the effects of light reabsorption, energy transfer from quantum dots to the liquid-crystal polymer matrix, and the effect of the electronic states at the CdSe/(liquid crystal) interface.

  2. Analysis of corrosion processes at the surface of diamond-like carbon protected zinc selenide waveguides.

    PubMed

    Janotta, Markus; Rudolph, Douglas; Kueng, Angelika; Kranz, Christine; Voraberger, Hannes-Stefan; Waldhauser, Wolfgang; Mizaikoff, Boris

    2004-09-28

    A detailed surface analytical study on the corrosion behavior of unprotected and diamond-like carbon (DLC)-coated mid-infrared (MIR) waveguides used in remote sensing applications at strongly oxidizing conditions is presented. High-quality DLC films, with a thickness of 100 nm serving as MIR-transparent corrosion barrier, have been produced at the surface of zinc selenide (ZnSe) attenuated total reflection waveguides via pulsed laser deposition techniques. IR microscopy and atomic force microscopy are applied to investigate the chemical inertness of DLC-based membranes against aqueous solutions of hydrogen peroxide. These stability studies show that uncoated ZnSe waveguides are subject to severe chemical surface modifications, while DLC-protected waveguides maintain their optical properties and chemical integrity. In situ studies on the corrosion behavior by a recently developed approach combining scanning electrochemical microscopy (SECM) with Au/Hg amalgam ultramicroelectrodes in a scanning stripping voltammetry experiment provides additional insight into the mechanisms of the corrosion process. It is demonstrated that the combination of surface analytical techniques and, in particular, the innovative application of SECM with amalgam electrodes provides superior information on corrosion processes at the surface of optical waveguides. This detailed study confirms the efficiency of protective DLC coatings deposited onto IR-transparent optical waveguides, rendering this novel concept ideal for sensing applications in harsh environments. PMID:15379485

  3. Fluorescence lifetime imaging microscopy and polar-plot analysis of gallium selenide crystals

    NASA Astrophysics Data System (ADS)

    Zahner, S.; Kador, L.; Allakhverdiev, K. R.; Salaev, E. Yu.; Huseyino?lu, M. F.

    2014-01-01

    Crystals of the layered chalcogenide semiconductor gallium selenide (GaSe) were studied with fluorescence lifetime imaging microscopy in the frequency domain, the excitation source being a cw frequency-doubled Nd:YAG laser modulated between 25 and 50 MHz. The non-zero photoluminescence (PL) lifetime leads to a change of the relative modulation amplitude (m) and a phase lag (?) of the luminescence with respect to the excitation. The data were analyzed with the polar-plot (or phasor) approach by plotting m sin? versus mcos?. Data points of different spots on the sample show strong inhomogeneities and form looping structures in the polar plot. Moreover, they extend distinctly outside the characteristic semi-circle. The latter point is due to the nearly quadratic variation of the PL signal with excitation intensity, whereas the looping structures indicate the presence of energy transfer processes between (at least) two different emitting states. The analysis of the data shows that the same exciton state(s) are involved in both absorption and PL emission of GaSe.

  4. 197Au Mssbauer study of copper refinery anode slimes

    NASA Astrophysics Data System (ADS)

    Sawicki, J. A.; Dutrizac, J. E.; Friedl, J.; Wagner, F. E.; Chen, T. T.

    1993-06-01

    Copper refinery anode slimes are abundantly produced during the electrolytic refining of copper. Although the slimes contain significant and economically recoverable amounts of gold and silver, the chemical state of the gold has not been fully identified. In the present work, the chemical form of gold in a copper anode, in a raw slime, and in slimes treated by different leaching procedures has been investigated by Mssbauer spectroscopy with the 77.3 keV ?-rays of197Au. The Mssbauer spectrum of the anode is typical of a dilute Au:Cu alloy. The spectrum of the raw slime consists of two components, namely, a single, rather broad line with an isomer shift (IS) of about -0.3 mm/s relative to a Pt metal source and a quadrupole doublet with an IS of + 1.2 mm/s and a quadrupole splitting of 5.0 mm/s. The single line component can be attributed to a gold-rich alloy, with an approximate composition of Au60Ag{n40} or Au80Cu20 if it is a binary alloy, or to a ternary Au-Ag-Cu alloy of appropriate composition. The parameters of the quadrupole doublet match those of Ag3AuSe2 (fischesserite) or related Ag2-xAuxSe compounds. In these compounds, the gold atoms are coordinated by two selenium atoms in a linear arrangement, as is typical for Au(I). It was found that the ratio between the concentrations of the metallic phase and the selenide strongly depends on the leaching conditions. The measurement of the Lamb-Mssbauer factor of fischesserite is also reported.

  5. Redox control of GPx catalytic activity through mediating self-assembly of Fmoc-phenylalanine selenide into switchable supramolecular architectures.

    PubMed

    Huang, Zupeng; Luo, Quan; Guan, Shuwen; Gao, Jianxiong; Wang, Yongguo; Zhang, Bo; Wang, Liang; Xu, Jiayun; Dong, Zeyuan; Liu, Junqiu

    2014-12-28

    Artificial enzymes capable of achieving tunable catalytic activity through stimuli control of enzymatic structure transition are of significance in biosensor and biomedicine research. Herein we report a novel smart glutathione peroxidise (GPx) mimic with modulatory catalytic activity based on redox-induced supramolecular self-assembly. First, an amphiphilic Fmoc-phenylalanine-based selenide was designed and synthesized, which can self-assemble into nanospheres (NSs) in aqueous solution. The NSs demonstrate extremely low GPx activity. Upon the oxidation of hydroperoxides (ROOH), the selenide can be quickly transformed into the selenoxide form. The change of the molecular structure induces complete morphology transition of the self-assemblies from NSs to nanotubes (NTs), resulting in great enhancement in the GPx catalytic activity. Under the reduction of GSH, the selenoxide can be further reversibly reduced back into the selenide; therefore the reversible switch between the NSs and NTs can be successfully accomplished. The relationship between the catalytic activity and enzymatic structure was also investigated. The dual response nature makes this mimic play roles of both a sensor and a GPx enzyme at the same time, which can auto-detect the signal of ROOH and then auto-change its activity to achieve quick or slow/no scavenging of ROOH. The dynamic balance of ROOH is vital in organisms, in which an appropriate amount of ROOH does benefit to the metabolism, whereas surplus ROOH can cause oxidative damage of the cell instead and this smart mimic is of remarkable significance. We expect that such a mimic can be developed into an effective antioxidant drug and provide a new platform for the construction of intelligent artificial enzymes with multiple desirable properties. PMID:25366375

  6. Simulation of thermo-optic coupling in the thermally anisotropic gallium selenide crystal for second harmonic generation

    NASA Astrophysics Data System (ADS)

    Chao, Zhang Wen; An, Ye Hong; Andreev, Yu M.; Grechin, S. G.; Lanskii, G. V.

    2014-07-01

    A second harmonic generation model of space-time thermo-optic coupling was proposed in thermal anisotropic nonlinear crystals, where an iterative approach was used to approximate the temperature anisotropy. The coupling process was simulated with the aid of derived analytical formulas in a gallium selenide crystal, pumped by a pulsed carbon dioxide laser. The intensities of the fundamental and harmonic beams, conversion efficiencies and temperature distributions were demonstrated during the evolution processes. The results showed that a compensation for the phase mismatch induced by the thermal effect can mitigate the reduction of conversion efficiency better than temperature control.

  7. Vacancies Ordered in Screw Form (VOSF) and Layered Indium Selenide Thin Film Deposition by Laser Back Ablation

    SciTech Connect

    Beck, Kenneth M.; Wiley, William R.; Venkatasubramanian, Eswaranand; Ohuchi, Fumio S.

    2009-09-30

    Indium selenide thin films are important due to their applications in non-volatile memory and solar cells. In this work, we present an initial study of a new application of deposition-site selective laser back ablation (LBA) for making thin films of In2Se3. In-vacuo annealing and subsequent characterization of the films by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that control of substrate temperature during deposition and post-deposition annealing temperature is critical in determining the phase and composition of the films. The initial laser fluence and target film thickness determine the amount of material deposited onto the substrate.

  8. Structural and physical properties of mercury-iron selenide layers and quantum wells

    NASA Astrophysics Data System (ADS)

    Schikora, D.; Widmer, Th.; Lischka, K.; Schfer, P.; Machel, G.; Luther, S.; von Ortenberg, M.

    1995-10-01

    Epitaxial layers and single quantum wells (SQW's) of Fermi-level pinned mercury-iron selenide (HgSe:Fe) have been grown by molecular-beam epitaxy on ZnTe buffer layers and characterized by in situ reflection high-energy electron-diffraction (RHEED) and high-field magnetospectroscopy investigations. The onset of strain relaxation at the critical thickness has been determined by time-dependent intensity-profile analysis of different reflexes in the RHEED pattern. In spite of the small mismatch and the very low growth temperature, a growth-mode transition from a two-dimensional-to-three-dimensional (2D-to-3D) Stranski-Krastanov growth mode has been identified, which coincides exactly with the critical thickness equilibrium value of about 61 nm predicted by the Matthews-Blakeslee theory. Due to this mechanism, the surface roughness transition region is extended and the onset of plastic relaxation is delayed up to a thickness of about 280 nm. Hall-effect measurements have been performed to determine the iron concentration in the HgSe layers below and above the Fermi-level pinning threshold concentration. With increasing iron concentration both a pronounced increase of the mobility and decrease of the Dingle temperature have been found in the layers. This agrees well with the present available data from HgSe:Fe bulk crystals and also with the values predicted by the short-range correlation model. However, the maximum carrier mobility of about 2.7105 cm-3 measured in a 1.5-?m-thick HgSe:Fe layer indicates that long-range correlations also have to be considered in the transport mechanism of mercury-iron selenide. HgSe:Fe SQW's grown in the strained-layer region below the equilibrium critical thickness have been analyzed by Shubnikov-de Haas (SdH) measurements and Hall-effect measurements in magnetic fields up to 50 T. The existence of a two-dimensional electron system (Q2D) in the SQW has been confirmed by the cosine dependence of the SdH oscillation period. The subband splitting in the SQW in dependence of the quantum-well width has been investigated by Hall-resistance measurements. One subband has been identified experimentally in a 12-nm HgSe:Fe quantum well, whereas for high magnetic fields at least two subbands are measured in the 25-nm structures. The Landau-level splitting has been simulated using the Pidgeon-Brown model. In this way the subband splitting and the spin splitting observed experimentally can be explained. The broadening of the localized iron level has been determined from simulation curves.

  9. Parallel molecular dynamics simulations of pressure-induced structural transformations in cadmium selenide nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas Jabari Ouma

    Parallel molecular dynamics (MD) simulations are performed to investigate pressure-induced solid-to-solid structural phase transformations in cadmium selenide (CdSe) nanorods. The effects of the size and shape of nanorods on different aspects of structural phase transformations are studied. Simulations are based on interatomic potentials validated extensively by experiments. Simulations range from 105 to 106 atoms. These simulations are enabled by highly scalable algorithms executed on massively parallel Beowulf computing architectures. Pressure-induced structural transformations are studied using a hydrostatic pressure medium simulated by atoms interacting via Lennard-Jones potential. Four single-crystal CdSe nanorods, each 44A in diameter but varying in length, in the range between 44A and 600A, are studied independently in two sets of simulations. The first simulation is the downstroke simulation, where each rod is embedded in the pressure medium and subjected to increasing pressure during which it undergoes a forward transformation from a 4-fold coordinated wurtzite (WZ) crystal structure to a 6-fold coordinated rocksalt (RS) crystal structure. In the second so-called upstroke simulation, the pressure on the rods is decreased and a reverse transformation from 6-fold RS to a 4-fold coordinated phase is observed. The transformation pressure in the forward transformation depends on the nanorod size, with longer rods transforming at lower pressures close to the bulk transformation pressure. Spatially-resolved structural analyses, including pair-distributions, atomic-coordinations and bond-angle distributions, indicate nucleation begins at the surface of nanorods and spreads inward. The transformation results in a single RS domain, in agreement with experiments. The microscopic mechanism for transformation is observed to be the same as for bulk CdSe. A nanorod size dependency is also found in reverse structural transformations, with longer nanorods transforming more readily than smaller ones. Nucleation initiates at the center of the rod and grows outward.

  10. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared.

    PubMed

    Klein, C A; Miller, R P; Stierwalt, D L

    1994-07-01

    Chemically vapor-deposited zinc selenide exhibits outstanding properties in the infrared and has been established as a prime material for transmissive optics applications. Here we present and discuss data relating to the surface and the bulk absorption forward-looking infrared- (FLIR-) grade chemically vapor-deposited ZnSe, at wavelengths (2-20 m) and temperatures (100-500 K) of current interest.

    This investigation is based on both spectral emittance measurements and infrared transmission spectroscopy performed in the context of a systems development program. Surface effects can be detected at wavelengths of up to 14 m and usually predominate at wavelengths of less than 8 m. Fractional surface absorptions are temperature independent from approximately 200 to 400 K and can be fitted to a Fourier series, at wavelengths ranging from 3.5 to 13.5 m. The bulk absorption coefficient (?v) is strongly dependent on temperature as well as wavelength, but it can be approximated by a bivariate polynomial expressin that yields recommended values. At wavelengths ? ? 10 m, ?v decreases with increasing temperature; it is shown that a wavelength-independent Debye-Waller factor provides a correct description of the temperature dependence, thus pointing to infrared-active localized modes. At wavelengths ? ? 14 m, ?v increases with temperature and exhibits temperature dependencies (T(1.7), T(2.6)) that reflect three- and four-phonon summation processes. Finally, an analysis of the temperature dependence of ?v at 10.6 m demonstrates that the intrinsic lattice dynamical contribution to bulk absorption at this wavelength should be close to 4 10(-4) cm(-1), in accord with the results of earlier laser calorimetry tests performed on exceptionally pure laser-grade chemically vapor-deposited ZnSe.

    PMID:20935788

  11. High adherence copper plating process

    DOEpatents

    Nignardot, Henry

    1993-01-01

    A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

  12. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L. (Baton Rouge, LA); Kanazirev, Vladislav (Sofia, BG)

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  13. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  14. Reduction of selenate to selenide by sulfate-respiring bacteria: experiments with cell suspensions and estuarine sediments. [Desulfovibrio desulfuricans

    SciTech Connect

    Zehr, J.P.; Oremland, R.S.

    1987-06-01

    Washed cell suspensions of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of (/sup 75/Se)selenate to (/sup 75/Se)selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was greater than or equal to0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace quantities of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed.

  15. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  16. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments

    USGS Publications Warehouse

    Zehr, J.P.; Oremland, R.S.

    1987-01-01

    Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed.

  17. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  18. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  19. Copper Delivery by Metallochaperone Proteins

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Copper is an essential element in all living organisms, serving as a cofactor for many important proteins and enzymes. Metallochaperone proteins deliver copper ions to specific physiological partners by direct protein-protein interactions. The Atx1-like chaperones transfer copper to intracellular copper transporters, and the CCS chaperones shuttle copper to copper,zinc superoxide dismutase. Crystallographic studies of these two copper chaperone families have provided insights into metal binding and target recognition by metallochaperones and have led to detailed molecular models for the copper transfer mechanism.

  20. COPPER RESEARCH UPDATE

    EPA Science Inventory

    This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...

  1. A surface and interface study of aluminum selenide on silicon: Growth and characterization of thin films

    NASA Astrophysics Data System (ADS)

    Adams, Jonathan A.

    The first growth of aluminum selenide on silicon is reported. A thin AlSe layer was formed on Si(111) by molecular beam epitaxy from a stoichiometric Al2Se3 evaporative source. The structural and electronic properties of the interface were investigated using angle-resolved valence and core-level photoelectron spectroscopy and diffraction. The AlSe-Si interface forms a bilayer structure similar to GaSe-terminated Si, however, the temperatures for bilayer formation and for Se re-evaporation from the film are higher for AlSe than for GaSe. In addition, the valence band structure shows that the AlSe bilayer termination electronically passivates the bulk Si with all interface states within the bulk Si bands. The passivated nature of the AlSe-terminated Si(11) surface make this a good candidate substrate for growth of quantum dots or other heteroepitaxy. To test their chemical stability, AlSe-terminated Si(111) and GaSe-terminated Si(111) have been exposed to a variety of atmospheric constituents. The resulting surfaces were investigated by photoelectron spectroscopy to examine changes, if any, in the local chemical environment of atomic constituents. The GaSe-terminated Si substrates were largely unaffected by the exposures, and physisorbed contaminants were easily removed by mild annealing. AlSe-terminated Si reacted with both pure O2 and atmosphere, and the clean bilayer surface was not recoverable. The differences in chemical stability show that GaSe would be more suitable than AlSe as a substrate for further heteroepitaxy (e.g. quantum dot formation) under a wide range of growth conditions; despite having lower temperature stability. We have also produced epitaxial thin films of Al2Se3 on Si(111). Higher flux rates of Al2Se3 are necessary to grow Al2Se3 bulk films on silicon than to form the interface bilayer. Photoemission spectroscopy was used to examine films of graded thickness, and the evolution of chemical environment and electronic structure with increasing film thickness was observed. Intermediate-thickness film characteristics are compared to those of the bilayer interface and of bulk Al2Se3. Also, we have measured the valence electronic structure of "thick" thin films of Al2Se3 grown on Si(111). With increasing thickness above the interface bilayer, the thin films show rapid development of bulk-like features, including the 3x3 vacancy ordering.

  2. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    PubMed Central

    Rodriguez-Torres, Marcos R.; Velez, Christian; Zayas, Beatriz; Rivera, Osvaldo; Arslan, Zikri; Gonzalez-Vega, Maxine N.; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo

    2015-01-01

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd2+]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate the intracellular uptake of TGA-CdSe QDs reveal that the TGA-CdSe QDs were uniformly distributed within the cytosolic side of cell membranes. Our results also suggest that under controlled conditions, direct water-soluble TGA-CdSe QDs can be potentially employed for bio-imaging colo-205 cancer cells with minimal adverse effects. PMID:26949369

  3. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  4. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating out radioactive contamination, the copper cable was coated with a surrogate contaminant. The demonstration took place at the Bonneville County Technology Center in Idaho Falls, Idaho.

  5. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  6. Copper as a biocidal tool.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2005-01-01

    Copper ions, either alone or in copper complexes, have been used to disinfect liquids, solids and human tissue for centuries. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide as well as an anti-bacterial and anti-fouling agent. Copper also displays potent anti-viral activity. This article reviews (i) the biocidal properties of copper; (ii) the possible mechanisms by which copper is toxic to microorganisms; and (iii) the systems by which many microorganisms resist high concentrations of heavy metals, with an emphasis on copper. PMID:16101497

  7. Targeting copper in cancer therapy: 'Copper That Cancer'.

    PubMed

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents. PMID:26313539

  8. Disordered Fe vacancies and superconductivity in potassium-intercalated iron selenide (K2-x Fe4+y Se5)

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Han; Chen, Ta-Kun; Chang, Chung-Chieh; Hsu, Chia-Hao; Lee, Yung-Chi; Wang, Ming-Jye; Wu, Phillip M.; Wu, Maw-Kuen

    2015-07-01

    In the high-T c potassium-intercalated FeSe, there has been significant debate regarding what the exact parent compound is. Here we show that the Fe-vacancy ordered K2Fe4Se5 is the magnetic, Mott insulating parent compound of the superconducting state. Non-superconducting K2Fe4Se5 becomes a superconductor after high-temperature annealing, and the overall picture indicates that superconductivity in K2-x Fe4+y Se5 originates from the Fe-vacancy order-to-disorder transition. Thus, the long-pending question as to whether magnetic and superconducting state are competing or cooperating for cuprate superconductors may also apply to the Fe-chalcogenide superconductors. It is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly to the superconducting cuprates.

  9. Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy

    PubMed Central

    Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Rodriguez, Raul D.; Hartmann, Susanne; Zahn, Dietrich R. T.; Honkanen, Seppo; Norwood, Robert A.; Peyghambarian, N.; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha

    2015-01-01

    Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390 nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes. PMID:25989113

  10. Observation of Low-Temperature Softening of Transverse Elastic Modulus Due to Cobalt Impurities in Mercury Selenide

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, Irina V.; Okulov, Vsevolod I.; Gudkov, Vladimir V.; Sarychev, Maksim N.; Medvedev, Kirill A.; Andriichuk, Myroslav D.; Paranchich, Lidiya D.

    2015-12-01

    Influence on elastic moduli of donor electron d-states of cobalt impurities has been investigated in mercury selenide crystals. Experiments have been carried out at the frequency of 53 MHz in the temperature interval of 1.3-100 K. Softening of the (C_{11} - C_{12})/2 modulus below 10 K has been observed in the impurity crystals in contrast with the (C_{11} + C_{12} + 2C_{44})/2 and C_{44} moduli those have exhibited hardening at cooling typical for dielectric and semiconductor crystals. The softening of the elastic modulus has been interpreted as manifestation of hybridization of the impurity d-states in the conduction band of the crystal. Comparison of theoretical calculations with experimental data has been proved to be in good agreement and has made it possible to determine the parameters characterizing the hybridized electron states.

  11. Electrical Transport and Grain Growth in Solution-Cast, Chloride-Terminated Cadmium Selenide Nanocrystal Thin Films

    PubMed Central

    2015-01-01

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (?150 C), (2) irreversible particle fusion (200300 C), and (3) ripening of the grains to >5 nm domains (>200 C). Grain growth occurs at 200 C in films with 8 atom % Cl, while films with 3 atom % Cl resist growth until 300 C. Fused nanocrystalline thin films (grain size = 4.55.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm2/(Vs) and on/off ratios of 105 with less than 0.5 V hysteresis in threshold voltage without the addition of indium. PMID:24960255

  12. Volatility of copper

    SciTech Connect

    Palmer, D.A.; Simonson, J.M.; Joyce, D.B.

    1996-08-01

    The relevant aqueous thermodynamics of copper and its oxides are evaluated and summarized with emphasis on solubility, hydrolysis, and complexation. The solubilities of metallic copper, solid cuprous and cupric oxides in steam measured by Pocock and Stewart in 1963 are discussed and the latter data are fitted in the form of established empirical equations and compared to other existing results. No other sources of data were found for the solubility of copper and cupric oxide in steam and even these data are very limited. Discussion of corresponding available solubility data on both oxide phases in liquid water is given. The possible effects of complexing agents are considered. A brief discussion is provided of the role of surface adsorption in determining the fate of dissolved copper in the boiler. 37 refs., 5 figs., 3 tabs.

  13. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    SciTech Connect

    Kruckeberg, A.L.; Wu, L. )

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population, and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.

  14. Physical and structural properties of Chevrel-phase selenides Mo 3Se 4 and RE xMo 6Se 8: Crystal growth and mutual solubility

    NASA Astrophysics Data System (ADS)

    Le Berre, F.; Maho, F.; Peña, O.; Horyń, R.; Wojakowski, A.

    1995-02-01

    We present the synthesis and superconducting behaviours of the Chevrel-phase selenides series RE xMo 6Se 8 ( x > 0.5; RE  La, Ce, Ho, Yb). X-ray diffraction, lattice parameters and Tc variations clearly show that no solid solution exists between the binary and the appropriate ternary compounds despite of their isostructural character. Preliminary results obtained on single crystals of ternary compounds are also presented and discussed for comparison.

  15. Bacterial Killing by Dry Metallic Copper Surfaces?

    PubMed Central

    Santo, Christophe Esprito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene. PMID:21148701

  16. Crystal and electronic structures of two new iron selenides: Ba4Fe3Se10 and BaFe2Se4

    NASA Astrophysics Data System (ADS)

    Berthebaud, David; Perez, Olivier; Tobola, Janusz; Pelloquin, Denis; Maignan, Antoine

    2015-10-01

    The new ternary selenides, Ba4Fe3Se10 and BaFe2Se4, were synthesized from a reaction of appropriate amounts of elements at high temperature in a silica sealed tube, and their structures were resolved using X-ray single crystal diffraction. BaFe2Se4 crystallizes in the tetragonal space group I4/m with a=8.008(9) and c=5.483(3) as cell parameters. It is a new compound with a structure isotypical to the sulfide BaFe2S4 which belongs to the infinitely adaptive structures series Ba1+xFe2S4. The second compound, Ba4Fe3Se10, crystallizes in the monoclinic space group P21/n with a=8.8593(1) , b=8.8073(1) , c=12.2724(1) and ?=109.037(6) as cell parameters. It exhibits an original structure with a new type of iron selenide polyhedra. These data were consistent with the powder X-ray diffraction and TEM analyses. Their electronic structures point towards metallicity and electronic correlations for both selenides.

  17. Copper and copper-nickel alloys as zebra mussel antifoulants

    SciTech Connect

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K.

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  18. Preparation of high purity copper fluoride by fluorinating copper hydroxyfluoride

    NASA Technical Reports Server (NTRS)

    King, R. B.; Lundquist, J. R.

    1969-01-01

    Copper fluoride containing no more than 50 ppm of any contaminating element was prepared by the fluorination of copper hydroxyfluoride. The impurity content was obtained by spark source mass spectrometry. High purity copper fluoride is needed as a cathode material for high energy density batteries.

  19. 24-hour urine copper test

    MedlinePLUS

    The 24-hour urine copper test measures the amount of copper in a urine sample. ... A 24-hour urine sample is needed. On day 1, urinate into the toilet when you get up in the morning. Afterwards, collect ...

  20. High adherence copper plating process

    DOEpatents

    Nignardot, H.

    1993-09-21

    A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.

  1. SOURCES OF COPPER AIR EMISSIONS

    EPA Science Inventory

    The report gives results of a study to update estimates of atmospheric emissions of copper and copper compounds in the U.S. Source categories evaluated included: metallic minerals, primary copper smelters, iron and steel making, combustion, municipal incineration, secondary coppe...

  2. Brazing copper to dispersion-strengthened copper

    SciTech Connect

    Ryding, D.G.; Allen, D.; Lee, R.

    1996-08-01

    The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail that has been possible to date. The beam is produced by using third-generation insertion devices in a 7 GeV electron/positron storage ring that is 1100 meters in circumference. The heat load from these intense high power devices is very high and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm{sup 2}. Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop{reg_sign}, a dispersion strengthened copper, is the desired material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  3. Interaction of a copper oxide particle with copper in drawing

    NASA Astrophysics Data System (ADS)

    Loginov, Yu. N.; Demakov, S. L.; Illarionov, A. G.; Ivanova, M. A.

    2012-11-01

    The forming of copper near a copper oxide particle is determined during multiple-pass drawing. The interaction of the copper oxide particle with copper is studied by the calculation of the state of stress in a finite element formulation and using scanning electron microscopy data. The results obtained demonstrate that pores appear around copper oxide particles when strain accumulates in multiple-pass drawing machines. The pore length increases with the accumulated strain, which can result in breaks of a wire in a highly cold-worked state.

  4. Simulation of a thin film solar cell based on copper zinc tin sulfo-selenide Cu2ZnSn(S,Se)4

    NASA Astrophysics Data System (ADS)

    Benmir, Abdelkader; Aida, Mohamed Salah

    2016-03-01

    The aim of this work is to do a simulation of a Cu2ZnSn(S,Se)4 thin film photovoltaic solar cell to link the characteristics of this cell with the materials parameters in order to improve its performances. It is found that, the cell performances are almost invariables while the thickness of the buffer layer is equal to or less than the space charge zone width of its side. But, as soon as it exceeds this width, a slight reduction in these performances is observed. However, the absorber layer thickness must have a value at least equal to the space charge region width of its side and at most equal to the sum of this space charge region width and the electrons diffusion length. An optimum value of the absorber band gap around 1.5 eV is obtained. This value is the compromise between the decreases of the short circuit current density and the increases of the open circuit voltage with the increases of the gap. This leads to a maximum cell efficiency of 12.1%.

  5. Oxygen removal from blister copper by copper oxide formation

    NASA Astrophysics Data System (ADS)

    Coursol, Pascal; Davis, Boyd; Roy, Alain; Lebel, Martin

    2005-07-01

    In this study, an alternative approach is proposed to remove oxygen from blister copper through copper oxide formation. The addition of fluxes promotes both the copper oxide formation and oxygen reduction in molten copper. Fundamental aspects of this proposed process are described in this article. Three different fluxes (Na2O-SiO2, CaO-Na2O, and FeO-Na2O-SiO2) were tested at the laboratory scale. This work showed encouraging results with oxygen in copper being reduced to industrial specifications without the conventional hydrocarbon reduction step. This approach could be used industrially to remove oxygen from blister copper prior to anode casting and points to a new concept in deoxygenation of copper.

  6. Type Zero Copper Proteins

    PubMed Central

    Lancaster, Kyle M.; DeBeer George, Serena; Yokoyama, Keiko; Richards, John H.; Gray, Harry B.

    2009-01-01

    Copper proteins play key roles in biological processes such as electron transfer and dioxygen activation; the active site of each of these proteins is classified as either type 1, 2, or 3, depending on its optical and electron paramagnetic resonance properties. We have built a new type of site that we call type zero copper by incorporating leucine, isoleucine, or phenylalanine in place of methionine at position 121 in C112D Pseudomonas aeruginosa azurin. X-ray crystallographic analysis shows that these sites adopt distorted tetrahedral geometries, with an unusually short Cu-O(G45 carbonyl) bond (2.352.55 ). Relatively weak absorption near 800 nm and narrow parallel hyperfine splittings in EPR spectra are the spectroscopic signatures of type zero copper. Copper K-edge x-ray absorption spectra suggest elevated Cu(II) 4p character in the d-electron ground state. Cyclic voltammetric experiments demonstrate that the electron transfer reactivities of type zero azurins are enhanced relative to that of the corresponding type 2 (C112D) protein. PMID:20305734

  7. Creative Copper Crests

    ERIC Educational Resources Information Center

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.

  8. Creative Copper Crests

    ERIC Educational Resources Information Center

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  9. Pharmacokinetics, Antitumor and Cardioprotective Effects of Liposome-Encapsulated Phenylaminoethyl Selenide in Human Prostate Cancer Rodent Models

    PubMed Central

    Kang, Jeong Yeon; Eggert, Mathew; Mouli, Shravanthi; Aljuffali, Ibrahim; Fu, Xiaoyu; Nie, Ben; Sheil, Amy; Waddey, Kendall; Oldham, Charlie D.; May, Sheldon W.; Amin, Rajesh; Arnold, Robert D.

    2014-01-01

    Purpose Cardiotoxicity associated with the use of doxorubicin (DOX), and other chemotherapeutics, limits their clinical potential. This study determined the pharmacokinetics and antitumor and cardioprotective activity of free and liposome encapsulated phenyl-2-aminoethyl-selenide (PAESe). Methods The pharmacokinetics of free PAESe and PAESe encapsulated in liposomes (SSL-PAESe) were determined in rats using liquid chromatography tandem mass-spectrometry. The antitumor and cardioprotective effects were determined in a mouse xenograft model of human prostate (PC-3) cancer and cardiomyocytes (H9C2). Results The encapsulation of PAESe in liposomes increased the circulation half-life and area under the drug concentration time profile, and decreased total systemic clearance significantly compared to free PAESe. Free- and SSL-PAESe improved survival, decreased weight-loss and prevented cardiac hypertrophy significantly in tumor bearing and healthy mice following treatment with DOX at 5 and 12.5 mg/kg. In vitro studies revealed PAESe treatment altered formation of reactive oxygen species (ROS), cardiac hypertrophy and gene expression, i.e., atrial natriuretic peptide and myosin heavy chain complex beta, in H9C2 cells. Conclusions Treatment with free and SSL-PAESe exhibited antitumor activity in a prostate xenograft model and mitigated DOX-mediated cardiotoxicity. PMID:25158648

  10. Growth and thermoelectric properties of multilayer thin film of bismuth telluride and indium selenide via rf magnetron sputtering.

    PubMed

    Kim, Hyo-Jung; Kim, Kwang-Chon; Choi, Won Chel; Kim, Jin-Sang; Kim, Young-Hwan; Kim, Seong Il; Park, Chan

    2012-04-01

    A bismuth telluride (BT)/indium selenide (IS) multilayer film was deposited at room temperature by rf magnetron sputtering on a sapphire substrate in order to investigate how the multilayered structure affects the microstructure and thermoelectric properties. The effect of annealing at different temperatures was also studied. The results were compared with those from a BT film with the same thickness. A TEM study showed that the interface between the BT and IS layers became vague as the annealing temperature increased, and the BT layer crystallized while the IS layer did not. The presence of thin IS layers can help to limit the evaporation of Te from the BT/IS multilayer film, thus increasing the amount of Bi2Te3 phase in the multilayer film as compared with that of the BT film. An abrupt increase in the Seebeck coefficient of the multilayer film was observed when annealed at 300 degrees C, and the resistivity of the annealed multilayer film was high compared to that of the BT film. This result can also be explained by the proposed role of the IS layer, which limits the evaporation of Te at high temperature. The highest power factor of -3.9 x 10(-6) W/K2 cm was obtained at room temperature from the multilayer film annealed at 300 degrees C. PMID:22849183

  11. Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties

    PubMed Central

    Sun, Liping; Lin, Zhiqin; Peng, Jian; Weng, Jian; Huang, Yizhong; Luo, Zhengqian

    2014-01-01

    Bismuth selenide (Bi2Se3), a new topological insulator, has attracted much attention in recent years owing to its relatively simple band structure and large bulk band gap. Compared to bulk, few-layer Bi2Se3 is recently considered as a highly promising material. Here, we use a liquid-phase exfoliation method to prepare few-layer Bi2Se3 in N-methyl-2-pyrrolidone or chitosan acetic solution. The resulted few-layer Bi2Se3 dispersion demonstrates an interesting absorption in the visible light region, which is different from bulk Bi2Se3 without any absorption in this region. The absorption spectrum of few-layer Bi2Se3 depends on its size and layer number. At the same time, the nonlinear and saturable absorption of few-layer Bi2Se3 thin film in near infrared is also characterized well and further exploited to generate laser pulses by a passive Q-switching technique. Stable Q-switched operation is achieved with a lower pump threshold of 9.3?mW at 974?nm, pulse energy of 39.8?nJ and a wide range of pulse-repetition-rate from 6.2 to 40.1?kHz. Therefore, the few-layer Bi2Se3 may excite a potential applications in laser photonics and optoelectronic devices. PMID:24762534

  12. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    PubMed

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 ?M to 245 ?M for Guanine and 0.083 ?M to 291 ?M for Adenine with detection limits of 0.055 ?M Guanine and 0.028 ?M of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions. PMID:26369099

  13. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Bin Bin; Wang, Ye Feng; Wang, Xue Qing; Zeng, Jing Hui

    2016-04-01

    Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  14. Effect of an iodine-containing additive on the composition, structure, and morphology of chemically deposited lead selenide films

    NASA Astrophysics Data System (ADS)

    Smirnova, Z. I.; Bakanov, V. M.; Maskaeva, L. N.; Markov, V. F.; Voronin, V. I.

    2014-12-01

    The effect of an ammonium iodide additive on the elemental and phase compositions, structural parameters, and surface morphology of lead selenide films synthesized by chemical deposition from aqueous solutions has been studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis. It has been established that the obtained PbSe films have a multiphase structure. The iodine content of the films is directly proportional to the NH4I concentration in the reaction mixture and increases linearly with an increase in this concentration to 0.25 mol/L. No individual iodine-containing phases have been detected in the film structure. However, the introduction of iodine leads to an increase in the PbSe phase lattice parameter from 6.11 to 6.16 and to a decrease in the crystal grain size to 20 nm. It has been found that there is a correlation between the grain size, lattice parameter, and ammonium iodide concentration in the reaction mixture, which can be explained by changes in the film growth mechanism at the initial growth steps.

  15. Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2

    PubMed Central

    Katase, Takayoshi; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2014-01-01

    A1xFe2ySe2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Nel transition temperatures. However, control of carrier doping into the parent AFM insulators has been difficult due to their intrinsic phase separation. Here, we fabricated an Fe-vacancy-ordered TlFe1.6Se2 insulating epitaxial film with an atomically flat surface and examined its electrostatic carrier doping using an electric double-layer transistor (EDLT) structure with an ionic liquid gate. The positive gate voltage gave a conductance modulation of three orders of magnitude at 25 K, and further induced and manipulated a phase transition; i.e., delocalized carrier generation by electrostatic doping is the origin of the phase transition. This is the first demonstration, to the authors' knowledge, of an EDLT using a Mott insulator iron selenide channel and opens a way to explore high Tc superconductivity in iron-based layered materials, where carrier doping by conventional chemical means is difficult. PMID:24591598

  16. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design.

    PubMed

    Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domnguez-lvarez, Enrique; Kie?-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus

    2015-01-01

    Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant. PMID:26263963

  17. Solvothermal synthesis, deposition and characterization of cadmium selenide (CdSe) thin films by thermal evaporation technique

    NASA Astrophysics Data System (ADS)

    Shyju, T. S.; Anandhi, S.; Indirajith, R.; Gopalakrishnan, R.

    2011-12-01

    Nanocrystalline compound semiconductor Cadmium Selenide was synthesized by the solvothermal method using Cd(NO 3) 2.4H 2O and Se metal granules. The synthesized nanocrystalline CdSe particles were subjected to vacuum annealing at 450 °C to maintain the hexagonal phase. The as synthesized and annealed powders were analyzed using XRD, SEM, EDX and DTA. The X-ray diffraction pattern of the as synthesized powder shows cubic phase, whereas the 450 °C annealed CdSe powder exhibits hexagonal phase. The annealed nanocrystalline CdSe was pelletized using hydraulic pressure of 5 ton and used to deposit thin films at different substrate temperature like Room Temperature (RT), 150, 250, 350 and 450 °C by thermal evaporation using glass as substrate. The deposited films were subjected to XRD, SEM, EDX, UV-vis, Photoluminescence, Raman Spectroscopy and Hall Effect measurement to study their properties. The thickness of the films was measured with thickness profilometer. The thermally deposited CdSe films exhibit the hexagonal structure with n-type conductivity.

  18. Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties

    NASA Astrophysics Data System (ADS)

    Sun, Liping; Lin, Zhiqin; Peng, Jian; Weng, Jian; Huang, Yizhong; Luo, Zhengqian

    2014-04-01

    Bismuth selenide (Bi2Se3), a new topological insulator, has attracted much attention in recent years owing to its relatively simple band structure and large bulk band gap. Compared to bulk, few-layer Bi2Se3 is recently considered as a highly promising material. Here, we use a liquid-phase exfoliation method to prepare few-layer Bi2Se3 in N-methyl-2-pyrrolidone or chitosan acetic solution. The resulted few-layer Bi2Se3 dispersion demonstrates an interesting absorption in the visible light region, which is different from bulk Bi2Se3 without any absorption in this region. The absorption spectrum of few-layer Bi2Se3 depends on its size and layer number. At the same time, the nonlinear and saturable absorption of few-layer Bi2Se3 thin film in near infrared is also characterized well and further exploited to generate laser pulses by a passive Q-switching technique. Stable Q-switched operation is achieved with a lower pump threshold of 9.3 mW at 974 nm, pulse energy of 39.8 nJ and a wide range of pulse-repetition-rate from 6.2 to 40.1 kHz. Therefore, the few-layer Bi2Se3 may excite a potential applications in laser photonics and optoelectronic devices.

  19. Investigation of reaction mechanisms of bismuth tellurium selenide nanomaterials for simple reaction manipulation causing effective adjustment of thermoelectric properties.

    PubMed

    Kim, Cham; Kim, Dong Hwan; Kim, Jong Tae; Han, Yoon Soo; Kim, Hoyoung

    2014-01-22

    We synthesized ternary n-type bismuth tellurium selenide nanomaterials for thermoelectric applications via a water-based chemical reaction under an atmospheric environment. In this work, bismuth nitrate was employed as a bismuth precursor and was hydrolyzed to form bismuth hydroxide in an aqueous solution. Ascorbic acid was used to dissolve the bismuth hydroxide and give a reactive bismuth source (Bi(3+) ions) that was able to react with anion sources (Te(2-)/Se(2-) ions). Ascorbic acid played a role in reducing bismuth hydroxide to an unreactive bismuth source (bismuth particles, Bi(0)). We confirmed that ascorbic acid dissolved or reduced bismuth hydroxide depending on the solution pH. Because either Bi(3+) ions or bismuth particles were generated depending on the pH, the nanomaterial stoichiometry was pH dependent. Nanomaterials prepared at various pH levels were individually sintered using a spark plasma sintering process to measure their thermoelectric transport properties (i.e., carrier concentration, electrical resistivity, Seebeck coefficient, and thermal conductivity). We observed how the transport properties were affected through adjustment of the pH of the reaction and found an appropriate pH for optimizing the transport properties, which resulted in enhancement of the thermoelectric performance. PMID:24372342

  20. Multilevel cycle of anthropogenic copper.

    PubMed

    Graedel, T E; van Beers, D; Bertram, M; Fuse, K; Gordon, R B; Gritsinin, A; Kapur, A; Klee, R J; Lifset, R J; Memon, L; Rechberger, H; Spatari, S; Vexler, D

    2004-02-15

    A comprehensive contemporary cycle for stocks and flows of copper is characterized and presented, incorporating information on extraction, processing, fabrication and manufacturing, use, discard, recycling, final disposal, and dissipation. The analysis is performed on an annual basis, ca. 1994, at three discrete governmental unit levels--56 countries or country groups that together comprise essentially all global anthropogenic copper stocks and flows, nine world regions, and the planet as a whole. Cycles for all of these are presented and discussed, and a "best estimate" global copper cycle is constructed to resolve aggregation discrepancies. Among the most interesting results are (1) transformation rates and recycling rates in apparently similar national economies differ by factors of two or more (country level); (2) the discard flows that have the greatest potential for copper recycling are those with low magnitude flows but high copper concentrations--electronics, electrical equipment, and vehicles (regional level); (3) worldwide, about 53% of the copper that was discarded in various forms was recovered and reused or recycled (global level); (4) the highest rate of transfer of discarded copper to repositories is into landfills, but the annual amount of copper deposited in mine tailings is nearly as high (global level); and (5) nearly 30% of copper mining occurred merely to replace copper that was discarded. The results provide a framework for similar studies of other anthropogenic resource cycles as well as a basis for supplementary studies in resource stocks, industrial resource utilization, waste management, industrial economics, and environmental impacts. PMID:14998044

  1. Copper@polypyrrole nanocables

    PubMed Central

    2012-01-01

    A simple hydrothermal redox reaction between microcrystalline CuOHCl and pyrrole leads to the isolation of striking nanostructures formed by polypyrrole-coated copper nanocables. These multicomponent cables that feature single-crystalline face-centered cubic Cu cores (ca. 300 nm wide and up to 200 ?m long) are smoothly coated by conducting polypyrrole, which in addition to its functionality, offers protection against oxidation of the metal core. PMID:23009710

  2. Copper@polypyrrole nanocables

    NASA Astrophysics Data System (ADS)

    Suárez-Guevara, Jullieth; Ayyad, Omar; Gómez-Romero, Pedro

    2012-09-01

    A simple hydrothermal redox reaction between microcrystalline CuOHCl and pyrrole leads to the isolation of striking nanostructures formed by polypyrrole-coated copper nanocables. These multicomponent cables that feature single-crystalline face-centered cubic Cu cores ( ca. 300 nm wide and up to 200 μm long) are smoothly coated by conducting polypyrrole, which in addition to its functionality, offers protection against oxidation of the metal core.

  3. Direct Production of Copper

    NASA Astrophysics Data System (ADS)

    Victorovich, G. S.; Bell, M. C.; Diaz, C. M.; Bell, J. A. E.

    1987-09-01

    The use of commercially pure oxygen in flash smelting a typical chalcopyrite concentrate or a low grade comminuted matte directly to copper produces a large excess of heat. The heat balance is controlled by adjusting the calorific value of the solid feed. A portion of the sulfide material is roasted to produce a calcine which is blended with unroasted material, and the blend is then autogeneously smelted with oxygen and flux directly to copper. Either iron silicate or iron calcareous slags are produced, both being subject to a slag cleaning treatment. Practically all of the sulfur is contained in a continuous stream of SO2 gas, most of which is strong enough for liquefaction. A particularly attractive feature of these technologies is that no radically new metallurgical equipment needs to be developed. The oxygen smelting can be carried out not only in the Inco type flash furnace but in other suitable smelters such as cyclone furnaces. Another major advantage stems from abolishion of the ever-troublesome converter aisle, which is replaced with continuous roasting of a fraction of the copper sulfide feed.

  4. Copper emission during thermal treatment of simulated copper sludge.

    PubMed

    Chou, Jing-Dong; Lin, Chiou-Liang; Hsien, Yi-Lin; Wey, Ming-Yen; Chang, Shih-Hsien

    2012-01-01

    This study evaluates Cu emissions in air-particulate and gas phases during thermal treatment of simulated copper sludge by a rotary kiln. Influences of operating parameters, including treatment temperature (400-700 degrees C), rotary speed (0.89-2.00 rpm) and copper content in sludge (1% to 5% by weight) on copper emissions were investigated. The toxicity characteristic leaching procedure (TCLP) and scanning electron microscopy (SEM) were also conducted to evaluate copper leaching and the surface structure of thermally treated sludge, respectively. The results indicated that (1) low Cu emissions in air-particulate and gas phases were associated with the two operating conditions of 400-500 degrees C at 0.89-1.39 rpm and 600-700 degrees C at 2.00 rpm; (2) temperatures and rotary speeds did not affect gaseous copper emission, except for the operating condition of 400 degrees C at 2.00 rpm; (3) rising copper content of sludge at 600 degrees C and 2.00 rpm increased the particulate copper emission, but not the gaseous copper emission; (5) the TCLP copper leaching concentrations of sludge treated at 400 degrees C were obviously higher than those treated at 500-700 degrees C; however, all of the thermally treated products agreed with the Taiwan EPA TCLP regulations. PMID:22519084

  5. Sealed copper vapor laser assembly

    SciTech Connect

    Alger, T.W.; Benett, W.J.

    1982-06-01

    Improvements in a discharge heated copper vapor laser (CVL) assembly may result in greater long term performance and reliability. This new design incorporates a positive gas seal to allow high-pressure sealed or controlled leak rate operation. High-pressure operation at low buffer-gas leak rates results in a decrease in copper loss rate and, because of this, an improved useful lifetime. A description of materials and construction method for this copper vapor laser assembly is provided.

  6. Superconductivity and magnetism in Chevrel-phase rare-earth molybdenum selenides single crystals REMo 6Se 8 (RE = Gd, Dy).

    NASA Astrophysics Data System (ADS)

    Peña, O.; LeBerre, F.; Sergent, M.; Horyń, R.; Wojakowski, A.

    1994-12-01

    Chevrel phases containing rare-earth atoms (REMo 6X 8; X = S, Se) are model systems which can present at the same time, phenomena of superconductivity and long-range magnetic interactions. We have recently developed a new crystal growth method specific to the selenides series, which was applied to RE = Gd, Dy, Ho, Er and Yb. We present results obtained on single crystals of GdMo 6Se 8 and DyMo 6Se 8. A discussion of the crystal growth method and of the ternary phase relations is done, and results are compared to those obtained for the binary isostructural compound Mo 3Se 4.

  7. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system.

    PubMed

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-11

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ?7 nm, which exhibited a quantum yield of ?75% as compared to rhodamine 6 G dye(). As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ?0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco's Modified Eagle Media() (DMEM) and Minimum Essential Media() (MEM), as compared to the Roswell Park Memorial Institute() (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 ?M. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact. PMID:24960126

  8. Theoretical investigation of electronic states and spectroscopic properties of tellurium selenide molecule employing relativistic effective core potentials.

    PubMed

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2014-04-24

    Ab initio based relativistic configuration interaction calculations have been performed to study the electronic states and spectroscopic properties of tellurium selenide (TeSe) - the heaviest heteronuclear diatomic group 16-16 molecule. Potential energy curves of several spin-excluded (?-S) electronic states of TeSe have been constructed and spectroscopic constants of low-lying bound ?-S states within 3.85 eV are reported in the first stage of calculations. The X(3)?(-), a(1)? and b(1)?(+) are found as the ground, first excited and second excited state, respectively, at the ?-S level and all these three states are mainly dominated by ?(4)?(*2) configuration. The computed ground state dissociation energy is in very good agreement with the experimental results. In the next stage of calculations, effects of spin-orbit coupling on the potential energy curves and spectroscopic properties of the species are investigated in details and compared with the existing experimental results. After inclusion of spin-orbit coupling the X(3)(1)?(-)(0(+)) is found as the ground-state spin component of TeSe. The computed spin-orbit splitting between two components of X(3)?(-) state is 1285 cm(-1). Also, significant amount of spin-orbit splitting are found between spin-orbit components (?-components) of several other excited states. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from configuration interaction wave functions. The spin-allowed transition B(3)?(-)-X(3)?(-) and spin-forbidden transition b(1)?(+)(0(+))-X(3)(1)?(-)(0(+)) are found to be the strongest in their respective categories. Electric dipole moments of all the bound ?-S states along with those of the two ?-components of X(3)?(-) are also calculated in the present study. PMID:24509540

  9. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system

    NASA Astrophysics Data System (ADS)

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-01

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ˜7 nm, which exhibited a quantum yield of ˜75% as compared to rhodamine 6 G dye®. As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ˜0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco’s Modified Eagle Media® (DMEM) and Minimum Essential Media® (MEM), as compared to the Roswell Park Memorial Institute® (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 μM. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact.

  10. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  11. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  12. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton (12833 S. 82nd Ct., Palos Park, IL 60464); Sinha, Shome N. (5748 Drexel, 2A, Chicago, IL 60637)

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  13. Copper and zinc recycling from copper alloys` spent pickling solutions

    SciTech Connect

    Roman-Moguel, G.J.; Plascencia, G.; Perez, J.

    1995-12-31

    The precipitation of copper and zinc as cements from a copper alloys` spent pickling solution has been studied at laboratory and pilot scale, with the objective of designing an economic process to recover both metals and render a solution to be either recycled to the pickling process or treated in a standard fashion and produce a non-hazardous sludge. The sulfuric acid spent pickling solution already containing copper and zinc was used first to dissolve another solid residue originated in the copper alloys foundry to neutralize part of the acidity. The resulting enriched solution was treated separately with two reductants: sodium borohydride and iron powder varying pH and excess of reductant under constant agitation. Under the best conditions, precipitation of over 95 percent of zinc and copper was achieved together with the reduction of lead and cadmium contents respectively. A process for the combined residues treatment is proposed.

  14. Lead and Copper Control 101

    EPA Science Inventory

    This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...

  15. Diagnosis of Copper Transport Disorders

    PubMed Central

    Mller, Lisbeth B.; Hicks, Julia D.; Holmes, Courtney S.; Goldstein, David S.; Brendl, Cornelia; Huppke, Peter; Kaler, Stephen G.

    2011-01-01

    Techniques for the diagnosis of copper transport disorders are increasingly important due to recent recognition of previously unappreciated clinical phenotypes and emerging advances in the treatment of these conditions. Here, we collate the diagnostic approaches and techniques currently employed for biochemical and molecular assessment of at-risk individuals in whom abnormal copper metabolism is suspected. PMID:21735378

  16. Copper deficiency mimicking myelodysplastic syndrome

    PubMed Central

    Dalal, Neil; Hooberman, Arthur; Mariani, Rachel; Sirota, Ronald; Lestingi, Timothy

    2015-01-01

    Key Clinical Message Copper deficiency is a rare cause of pancytopenia that may be mistaken for myelodysplastic syndrome. Cytoplasmic vacuolization in erythroid and myeloid precursors is found on bone marrow examination. Patients with a history of abdominal surgery who present with anemia and neutropenia with dysplastic changes should have copper levels checked. PMID:25984314

  17. Effects of copper(II) and copper oxides on THMs formation in copper pipe.

    PubMed

    Li, Bo; Qu, Jiuhui; Liu, Huijuan; Hu, Chengzhi

    2007-08-01

    Little is known about how the growth of trihalomethanes (THMs) in drinking water is affected in copper pipe. The formation of THMs and chlorine consumption in copper pipe under stagnant flow conditions were investigated. Experiments for the same water held in glass bottles were performed for comparison. Results showed that although THMs levels firstly increased in the presence of chlorine in copper pipe, faster decay of chlorine as compared to the glass bottle affected the rate of THMs formation. The analysis of water phase was supplemented by surface analysis of corrosion scales using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDX). The results showed the scales on the pipe surface mainly consisted of Cu(2)O, CuO and Cu(OH)(2) or CuCO(3). Designed experiments confirmed that the fast depletion of chlorine in copper pipe was mainly due to effect of Cu(2)O, CuO in corrosion scales on copper pipe. Although copper(II) and copper oxides showed effect on THMs formation, the rapid consumption of chlorine due to copper oxide made THM levels lower than that in glass bottles after 4h. The transformations of CF, DCBM and CDBM to BF were accelerated in the presence of copper(II), cupric oxide and cuprous oxide. The effect of pH on THMs formation was influenced by effect of pH on corrosion of copper pipe. When pH was below 7, THMs levels in copper pipe was higher as compared to glass bottle, but lower when pH was above 7. PMID:17363030

  18. Optical Properties of Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalenskii, A. V.; Zvekov, A. A.; Nikitin, A. P.; Anan'eva, M. V.

    2015-12-01

    Spectral dependences of the light extinction, absorption, and scattering efficiency factors of copper nanoparticles attendant to variations of their radii are calculated. A plasmon maximum is observed on the spectral dependence of the extinction efficiency factor for nanoparticle radii 10-60 nm. The maximum of the absorption efficiency factor is shifted toward red wavelengths with increasing radius of copper nanoparticles. Results are interpreted based on the special features of the spectral dependence of the complex copper refractive index. It is shown that the copper nanoparticles with radius of 35 nm placed into a transparent matrix with refractive index of 1.54 (secondary explosive pentaerythritol tetranitrate) possess a very high value of the absorption efficiency factor (2.9) of the second harmonic of a neodymium laser. Our investigations suggest that the copper nanoparticles are perspective material for application in compositions for optical detonator capsules.

  19. Spray pyrolysis of tin selenide thin-film semiconductors: the effect of selenium concentration on the properties of the thin films

    NASA Astrophysics Data System (ADS)

    Fadavieslam, M. R.; Bagheri-Mohagheghi, M. M.

    2013-08-01

    Thin films of tin selenide (SnxSey) with an atomic ratio of , 1 and 1.5 were prepared on a glass substrate at T = 470C using a spray pyrolysis technique. The initial materials for the preparation of the thin films were an alcoholic solution consisting of tin chloride (SnCl4 5H2O) and selenide acide (H2SeO3). The prepared thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy, scanning tunneling microscopy, scanning helium ion microscopy, and UV-vis spectroscopy. The photoconductivity and thermoelectric effects of the SnxSey thin films were then studied. The SnxSey thin films had a polycrystalline structure with an almost uniform surface and cluster type growth. The increasing atomic ratio of r in the films, the optical gap, photosensitivity and Seebeck coefficient were changed from 1.6 to 1.37 eV, 0.01 to 0.31 and -26.2 to -42.7 mV/K (at T = 350 K), respectively. In addition, the XRD patterns indicated intensity peaks in r = 1 that corresponded to the increase in the SnSe and SnSe2 phases.

  20. Tin sulfide and selenide clusters soluble in organic solvents with the core structures of Sn4S6 and Sn4Se6.

    PubMed

    Zhong, Mingdong; Yang, Zhi; Yi, Yafei; Zhang, Dongxiang; Sun, Kening; Roesky, Herbert W; Yang, Ying

    2015-12-14

    Reactions of LSnCl (1) (L = N(2,6-iPr2C6H3)(SiMe3)) with sulfur and selenium, respectively under mild conditions yielded two tin chalcogenide clusters. Surprisingly the tin atoms of the L4Sn4S6 (2) and L4Sn4Se6 (3) clusters are oxidized from Sn(II) of the precursor to Sn(IV) of the products under concomitant reduction of elemental sulfur and selenium to sulfide and selenide, respectively. The released chlorine radicals from the precursor LSnCl (1) react under oxidative addition with another LSnCl molecule to yield the side product LSnCl3 (4). The soluble nature of clusters 2 and 3 in organic solvents is a unique property of this class of compounds and makes them suitable for reactions in organic solvents. Compounds 2 and 3 were characterized by single crystal X-ray diffraction and multinuclear NMR investigations. Furthermore in ROP polymerization, the two products show high catalytic activity. For the first time a tin selenide compound functions in ROP catalysis. PMID:26406383

  1. Fabrication and material characterization of copper and copper-CNT micropillars

    NASA Astrophysics Data System (ADS)

    Ghanbari, S.; Darabi, J.

    2015-07-01

    In this work, copper micropillars and copper-carbon nanotube (CNT) composite micropillars were fabricated by incorporating an electrodeposition technique with a xurography process. In order to disperse carbon nanotubes in copper-CNT micropillars, various amounts of CNTs were added to the electroplating bath. Surface morphology and phase characterization of copper micropillars and copper-CNT composite micropillars were analyzed by optical microscopy and x-ray diffraction. In addition, the corrosion resistance (Rp) of a bare copper substrate, copper micropillars, and optimum copper-CNT micropillars were studied by electrochemical impedance spectroscopy (EIS) technique in a 3.5 wt.% sodium chloride. Experimental results yielded a corrosion resistance of 200 Ω cm2 for the bare copper substrate, 400 Ω cm2 for copper micropillars, and 2550 Ω cm2 for copper-CNT micropillars, indicating a significantly higher corrosion resistance for copper-CNT micropillars due to a lower chemical reactivity and refinement of crystal structure of copper in micropillars.

  2. a Study of Volatile Precursors for the Growth of Cadmium Sulphide and Cadmium Selenide by Metal Organic Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Beer, Michael P.

    Available from UMI in association with The British Library. The wide-band-gap semiconductors, cadmium sulphide and cadmium selenide, may be grown by Metal Organic Chemical Vapour Deposition (MOCVD). This method typically involves the reaction of gaseous streams of Me_2 Cd and H_2Y (Y = S, Se) over a heated substrate (usually gallium arsenide) on which the desired compound is grown as an epitaxial layer. Unfortunately, the precursors start to react in the cold zone of the reactor, that is before they reach the heated substrate. This problem is known as prereaction. The problem of prereaction is partially reduced by the use of adducts of dimethyl cadmium in place of the free dialkyl compound although the mechanism by which such adducts block prereaction is unknown. Accordingly, a study of adducts of dimethyl cadmium was undertaken with a view to determining their properties in all phases. The adduct of Me_2Cd with 2,2^ '-bipyridyl was found to be monomeric in the solid state while that with 1,4-dioxane, a volatile compound used for prereaction reduction, was found to be polymeric. A study of adducts in the gas phase using mass spectrometry and gas phase Fourier transform infrared spectroscopy gave no evidence to suggest there is any gas phase association between 1,4-dioxane and dimethyl cadmium. With the 2,2 ^'-bipyridyl adduct some evidence for partial retention of coordinate bonds upon sublimation was obtained. The solid adduct of Me _2Cd with N,N,N^' ,N^'-tetramethylethylenediamine (TMEDA) was prepared as it was hoped that the flexibility of the aliphatic Lewis base would permit the formation of an adduct containing strong co-ordinate bonds which would remain intact upon sublimation. Using gas phase electron diffraction, the structure of the adduct of Me_2Cd and TMEDA was determined. It was shown to exist in the gas phase purely as the associated monomeric species. The adduct was then employed for the growth of CdS and CdSe in an industrial MOCVD apparatus. The possibility of the occurrence of surface initiated processes leading to prereaction was considered. We examined the sulphur containing molecules ethylene sulphide and propylene sulphide with a view to their replacing H_2S in the MOCVD growth of CdS. These precursors were seen to allow the growth of CdS at the relatively low temperature of 350^circ C and there was no evidence of prereaction.(Abstract shortened by UMI.).

  3. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  4. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  5. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  6. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  7. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  8. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  9. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  10. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  11. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  12. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  13. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate (CH2OH(CHOH)4COO)2Cu, CAS Reg... ingredient is used in food at levels not to exceed current good manufacturing practice. Copper gluconate...

  14. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  15. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  16. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  17. 21 CFR 184.1260 - Copper gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copper gluconate. 184.1260 Section 184.1260 Food... Specific Substances Affirmed as GRAS § 184.1260 Copper gluconate. (a) Copper gluconate (cupric gluconate... practice. Copper gluconate may be used in infant formula in accordance with section 412(g) of the...

  18. NID Copper Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  19. Biosorption of copper by yeasts.

    PubMed

    Junghans, K; Straube, G

    1991-01-01

    The ability to accumulate copper from aqueous solutions was determined with different yeast species. Yeast cells did not show any significant differences in process kinetics. The uptake was very fast and was influenced by environmental factors. The metal-accumulating capacity differed among the tested strains. The yeast Candida tropicalis and Pichia guilliermondii were chosen for extensive research. Cells of the stationary growth phase were able to adsorb a high amount of copper. The uptake capacity decreased with increasing biomass concentration. Copper adsorption obeyed the Freundlich isotherm. Optimal pH range was between 5 and 7. The biomass could be used repeatedly for biosorption after desorption by mineral acids. PMID:1777357

  20. Volume 7. Copper base powder metallurgy

    SciTech Connect

    Taubenblat, P.W.

    1980-01-01

    This book is based on a series of lectures on copper and copper base P/M materials sponsored by the Metal Powder Industries Federation. It covers recent developments in the fields of copper powder metallurgy and offers a comprehensive survey of copper and copper-base P/M materials. It begins with a chapter on the production of copper and copper alloy powders followed by discussions of specific applications of P/M materials in bronzes and bearings, in brasses and nickel silvers, and in electrically conductive parts. Also discussed are iron composition containing copper, copper-based alloys for infiltration of iron and other special copper-base alloys. It concludes with chapters on consolidation, sintering and review of specifications.

  1. Copper artifacts: correlation with source types of copper ores.

    PubMed

    Friedman, A M; Conway, M; Kastner, M; Milsted, J; Metta, D; Fields, P R; Olsen, E

    1966-06-10

    Six out of eight minor chemical elements, determined by spectroscopic and neutron-activation techniques, were found to be critical in computing a probability that a given copper artifact was derived from one of three types of copper ore: native metal, oxidized ore, reduced ore. Two elements, gold and tin, were apparently alloyed deliberately in many artifacts from both the Old World and the New World. PMID:17788029

  2. Copper storage diseases: Menkes, Wilsons, and cancer.

    PubMed

    Daniel, Kenyon G; Harbach, R Hope; Guida, Wayne C; Dou, Q Ping

    2004-09-01

    The trace element copper is vital to the healthy functioning of organisms. Copper is used in a multitude of cellular activities including respiration, angiogenesis, and immune responses. Like other metals, copper homeostasis is a tightly regulated process. Copper is transported from dietary intake through the serum and into cells via a variety of transporters. There are a variety of copper chaperones designed to insure that copper is sequestered from interaction with cellular membranes, proteins, or DNA where its properties can result in oxidative damage. However, there are disease states in which copper transporters crucial to homeostasis are impaired resulting in potentially toxic copper accumulation. Wilsons and Menkes diseases are two such cases. Wilsons disease (hepatolenticular degeneration) is an autosomal recessive disorder resulting in extreme accumulation of copper in the liver with deposits elsewhere in the body. Menkes is characterized by a systemic copper deficiency (different from the liver specificity of Wilsons disease) and is the result of an X-linked recessive mutation in a copper transporter. Uptake of copper is impaired due to inability to remove existing copper from cells primarily in the small intestine. Though the causes are dramatically different, cancer also shares a similar diagnostic in the accumulation of copper in effected tissues. Studies have shown greatly elevated levels of copper in cancer tissues, and some diagnostics and treatments from Wilsons and Menkes diseases, such as copper chelation therapy, have been used in the treatment of cancer. Given the commonality of copper accumulation in these diseases and that common therapies exist between them, it may prove beneficial to study all three diseases in light of copper homeostasis. This review will examine the chemical nature and biological roles of copper, Wilsons and Menkes disease and their therapies, and the use of copper related therapies in cancer. PMID:15358588

  3. Majorana Electroformed Copper Mechanical Analysis

    SciTech Connect

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  4. Occupational genotoxicity among copper smelters.

    PubMed

    De Olivera, Juliana Viégas Duarte; Boufleur, Liana Appel; Dos Santos, Carla Eliete Iochims; Dias, Johnny Ferraz; Squeff, Cíntia Haag; Silva, Guilherme Ruivo Gonçalves; Ianistcki, Martus; Benvegnú, Vinícius Cosmos; Da Silva, Juliana

    2012-10-01

    Occupational exposure in a copper smelting industry may produce various adverse health effects including cancer. Despite a number of well-documented studies reporting an increased risk of cancer among copper smelter workers, the data on genotoxic effects in this industry are scarce. In view of the above, an assessment of DNA damage in peripheral blood leukocytes by Comet assay from copper smelter workers was undertaken. Additionally, the proton-induced X-ray emission (PIXE) analysis was assessed to determine the metal content of samples. The study was conducted with all workers from a copper smelter (males; n = 11), and a control group (n = 11) was recruited. The results of our study showed a significant increase (p < 0.001; Mann-Whitney test) in DNA damage in peripheral blood lymphocytes of smelter workers, compared to the controls (p < 0.001; Mann-Whitney test). No correlation between DNA damage or metal concentration and age mean or time of exposure was found under study. Our findings indicate that copper smelter workers have increased levels of DNA damage in somatic cells, suggesting a potential health risk for the workers. PIXE results show the presence of copper, iron, and other metals. PMID:22042770

  5. NID Copper Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  6. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO); Davis, John W. (Ballwin, MO)

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  7. High copper alloys for dental amalgam.

    PubMed

    Beech, D R

    1982-09-01

    The nature, physical properties and clinical performance of amalgams made from alloys containing copper in excess of 6 per cent by weight are reviewed. There are two basic types of high copper alloy: (a) mixtures of 'spherical' silver/copper or silver/tin/copper particles with low copper low copper lathe-cut or 'spherical' and (b) single composition silver/tin/copper spherical or lathe-cut particles. Copper contents range from 8.5 per cent to 30 per cent. In amalgams made from high copper alloys the soft corrodible gamma 2 (Sn7Hg) phase is reduced or eliminated by preferential formation of the eta (Cu6Sn5) phase. Improved clinical performance (less marginal breakdown) has been related to low creep, little or no gamma 2 phase and the presence of zinc. The possible roles played by these factors in the mechanism of marginal breakdown are discussed. Physical properties are not a reliable guide to the clinical performance of amalgams. Although high copper amalgams as a group show 'superior' physical properties and clinical performance to low copper amalgams, a high copper content does not necessarily mean improved clinical performance. Indeed, certain well-manipulated low copper amalgams can show clinical results comparable with some high copper amalgams, but not as good as the best high copper amalgams. In most clinical studies the silver/copper plus lathe-cut (dispersed phase) alloys and some of the single composition high copper alloys show the greatest clinical durability. The most significant factor in clinical performance is the choice of alloy. PMID:6958652

  8. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    SciTech Connect

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.

  9. Tensile behavior of nanocrystalline copper

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A. |

    1995-11-01

    High density nanocrystalline copper produced by inert gas condensation was tested in tension. Displacements were measured using foil strain gauges, which greatly improved the accuracy of the strain data. The Young`s modulus of nanocrystalline copper was found to be consistent with that of coarse-grained copper. Total elongations of {approx} 1% were observed in samples with grain sizes less than 50 nm, while a sample with a grain size of 110 nm exhibited more than 10% elongation, perhaps signifying a change to a dislocation-based deformation mechanism in the larger-grained material. In addition, tensile tests were performed as a function of strain rate, with a possible trend of decreased strength and increased elongation as the strain rate was decreased.

  10. Placental copper transport in the brindled mouse

    SciTech Connect

    Garnica, A.; Bates, J.

    1986-03-01

    Pregnant brindled (brin) mice were injected at 16 or 19 days gestation with 2 doses of CuCl/sub 2/ 6 mcg/g/dose, separated by 12 h, and sacrificed 6 h after the second. The copper conc. in placenta (P) and kidneys (K) of uninjected (UI) brin mice were higher than in UI controls, while conc. in liver (L) and fetal carcass (F) were lower. After injection (I), placental copper conc. increased while the carcass conc. remained unchanged. Brin mouse is a model for the human inborn error of copper metabolism, Menkes syndrome, which is characterized by signs of copper deficiency. These data indicate that metabolism of copper in brin fetus is abnormal, but depressed fetal copper levels cannot be corrected by acute copper dosing because of the sequestration of copper in placenta.

  11. Thermotransport in liquid aluminum-copper alloys

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A thermotransport study was made on a series of liquid aluminum-copper alloys which contained from trace amounts to 33 weight percent copper. The samples in the form of narrow capillaries were held in known temperature gradient of thermotransport apparatus until the stationary state was reached. The samples were analyzed for the concentration of copper along the length. Copper was observed to migrate to the colder regions in all the samples. The heat of transport, Q*, was determined for each composition from a plot of concentration of copper versus reciprocal absolute temperature. The value of Q* is the highest at trace amounts of copper (4850 cal/gm-atom), but decreases with increasing concentration of copper and levels off to 2550 cal/gm-atom at about 25 weight percent copper. The results are explained on the basis of electron-solute interaction and a gas model of diffusion.

  12. Copper tolerance and virulence in bacteria.

    PubMed

    Ladomersky, Erik; Petris, Michael J

    2015-06-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  13. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    ERIC Educational Resources Information Center

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  14. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    PubMed Central

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management. PMID:23762044

  15. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The...

  16. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The...

  17. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The...

  18. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The...

  19. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The...

  20. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  1. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and....1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS Reg. No. 7758-99-8) usually... sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a purity suitable...

  2. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  3. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  4. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  5. Copper content in foods of Java Island and estimation of daily copper intake

    SciTech Connect

    Rivai, I.F.; Suzuki, S.; Koyama, H.; Hyodo, K.; Djuangsih, N.; Soemarwoto, O.

    1988-07-01

    The purpose of this study was first to determine copper content in soil, foodstuff and feces of villagers, and estimate the daily copper intake of the villagers and a guest. The data obtained may help clarify the relationships of copper content in the soil-plant (food)-daily intake-feces in Indonesia. Secondly, the percentage of copper contribution of food groups was calculated to determine the influence of the food patterns of villagers and a guest on daily copper intake. Finally, evaluation was made of daily copper intake of villagers in terms of estimated daily copper requirement by WHO.

  6. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    ScienceCinema

    Brookhaven Lab - Fulvia Pilat

    2010-01-08

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  7. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    SciTech Connect

    Brookhaven Lab - Fulvia Pilat

    2009-06-09

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  8. Joining of alumina via copper/niobium/copper interlayers

    SciTech Connect

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.; Glaeser, Andreas M.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.

  9. Copper accumulation in the crayfish (Orconectes rusticus)

    SciTech Connect

    Evans, M.L.

    1980-06-01

    The purpose of this study was to determine whether or not the crayfish, O. rusticus could fulfill Nehring's (1976) criteria for a good biological monitor of heavy metal pollution. Since there is some evidence that the cupric ion is the most toxic form of aqueous copper, crayfish-accumulated copper was compared to both total and cupric copper in the culture water.

  10. Copper sequestration using local waste products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairies utilize copper sulfate foot baths to control hoof infections. Typical solutions are 5 or 10% copper sulfate (pH ~6), equal to 12,500 or 25,000 parts per million copper, respectively. When spent, hoof bath solutions are usually disposed of in waste lagoons and subsequently utilized for irri...

  11. Measuring bioavailable copper using anodic stripping voltammetry

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1996-11-01

    Since speciation can affect bioavailability and toxicity of copper in aquatic systems, accurate predictions of effects of bioavailable forms require detection and/or measurement of these forms. To develop an approach for measurement of bioavailable copper, a copper sulfate solution was used in 10-d aqueous and sediment toxicity tests with Hyalella azteca Saussure. These tests encompassed ranges of pH, alkalinity, hardness, and conductivity. Changes in copper speciation were measured using atomic absorption spectroscopy (AA) for dissolved copper and differential pulse anodic stripping voltammetry (DPASV) for labile copper, and concentrations were evaluated relative to amphipod survival. Ten-day LC50s based on AA-measured aqueous copper concentrations ranged from 42 to 142 {micro}g Cu/L, and LC50s based on DPASV-measured copper concentrations ranged from 17.4 to 24.8 {micro}g Cu/L. In 10-d tests using copper-amended sediments with diverse characteristics and AA-measured copper concentrations spanning an order of magnitude, total copper concentrations were not predictive of sediment toxicity, but H. azteca survival was explained by DPASV measurements that varied by {le}4%. In order to make defensible estimates of the potential risk of metals in sediments or water, it is essential to identify the fraction of total metal that is bioavailable. In these experiments, DPASV was useful for measuring bioavailable copper in aqueous and sediment tests with H. azteca.

  12. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Copper gluconate. 582.5260 Section 582.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This substance...

  13. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See...

  14. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See...

  15. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Copper gluconate. 582.5260 Section 582.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This substance...

  16. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See...

  17. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Copper gluconate. 582.5260 Section 582.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This substance...

  18. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See...

  19. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Copper gluconate. 582.5260 Section 582.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This substance...

  20. 21 CFR 524.463 - Copper naphthenate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See...

  1. 21 CFR 582.5260 - Copper gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Copper gluconate. 582.5260 Section 582.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5260 Copper gluconate. (a) Product. Copper gluconate. (b) Tolerance. This substance...

  2. Suspect copper toxicity in an alpaca.

    PubMed Central

    Carmalt, J L; Baptiste, K E; Blakley, B

    2001-01-01

    An alpaca presented in lateral recumbency and subsequently died. On necropsy examination the liver showed severe, widespread, periacinar hepatocellular necrosis, staining positive to a rhodamine stain for copper. Hepatic copper concentration was elevated. Copper toxicity in the camelid is difficult to diagnose, since the classical hemolytic crisis is not observed. PMID:11467185

  3. Copper coating specification for the RHIC arcs

    SciTech Connect

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  4. THE EVOLUTION OF SYNTHETICALLY PRECIPITATED COPPER SOLIDS

    EPA Science Inventory

    The objective of this study was to explore the effect of water quality, particularly chloride and sulfate, on copper mineral formation. Copper-sulfate and chloride compounds are often found on the surface of copper pipes in drinking water distribution systems. When attempting to ...

  5. Copper Sequestration Using Local Waste Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairies utilize copper sulfate foot baths to control hoof infections. Typical solutions are 5 or 10% copper sulfate (pH ~6), equal to 12,500 or 25,000 parts per million copper, respectively. When spent, hoof bath solutions are usually disposed of in waste lagoons and subsequently utilized for irri...

  6. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.

  7. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  8. Reactivity studies of plasma-synthesized aluminum trifluoride and electrochemical synthesis of non-stoichiometric silver selenide nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hajime, Evan Koon Lun Yuuji

    A high surface area aluminum trifluoride material ("plasma-AIF3 ") has previously been synthesized in our laboratory by decomposition of zeolitic precursors in fluorine-containing, low-temperature plasmas. The characterization of the halogen exchange reactivity of this unique fluoride material is presented in Part 1 of the dissertation. A gas flow reactor was designed and built to study the isothermal and temperature-dependent halogen exchange activity of plasma-AIF3, with comparisons being made to the well-known halogen exchange catalyst beta-AIF3. Isothermal experiments showed that plasma-AIF3 is an active halogen exchange catalyst for the dismutation of dichlorodifluoromethane, while temperature-programmed reaction (TPR) experiments revealed a lower temperature onset of activity with plasma-AIF3 when compared to beta-AIF3. The existence of two distinct active sites for halogen exchange on aluminum fluoride is proposed, with sites characteristic of plasma-AIF3 and R-AIF3 having lower and higher temperature onsets of activity, respectively. TPR data for hydrated plasma-AIF3 showed a significant attenuation of the lower temperature active sites, while the higher temperature site remained relatively unchanged in activity. Temperature-programmed X-ray diffraction of plasma-AIF3 revealed the existence of beta-AIF 3 crystallites at temperatures between 225 and 500C, thus rationalizing the existence of the higher temperature active site (associated with beta-AIF 3) in plasma-AIF3 during heating. Plasma-AIF3 also displayed a high affinity for crystalline hydrate formation with extended exposure to moist air, and TPR experiments performed on commercially available AIF33H2O produced plots similar in shape and features when compared to plasma-AIF3. The thermal transformation processes of the trihydrate suggest the origin of the lower temperature active site to be associated with an amorphous bulk AIF3 structure. Part 2 of the dissertation summarizes the current efforts made toward the template-assisted electrodeposition of Ag2+deltaSe nanowire arrays for fundamental and exploratory studies of the magnetoresistance in non-stoichiometric silver chalcogenides. Silver selenide can be difficult to electrodeposit due in part to the highly facile plating of silver metal from aqueous solutions. A new electrodeposition solution is proposed, containing AgNO3 and SeCl4 as the metal precursors, dimethyl sulfoxide (DMSO) as the solvent and tetrabutylammonium chloride (TBACl) as a supporting electrolyte. The electrodeposition of Ag2Se from this solution and a previously reported solution using NaNO3 as supporting electrolyte was investigated using cyclic voltammetry and X-ray diffraction analysis of electrodeposited thin films. Cyclic voltammograms of solutions containing only AgNO3 and TBACl in DMSO showed one redox couple corresponding to the deposition and stripping of Ag metal, while the NaNO3-based solution showed an additional redox couple believed to involve the generation of negatively-charged Ag nanoparticles. Thin film electrodeposition of Ag metal from DMSO-based solutions produced non-dendritic deposits, and may be a useful alternative bath solvent for the silver plating industry. Solutions containing only SeCl 4 and TBACl in DMSO were studied by cyclic voltammetry, and revealed important potential ranges within which elemental Se is stable with respect to oxidation and reduction. The proposed mixed-metal electrodeposition solution was also analyzed with cyclic voltammetry, and the reductive formation of Ag2Se was found to occur at potentials between -0.55 V and -0.70 V (vs. Pt/0.1 M Nal, 0.05 M I2 (DMSO)). Using the results from the electroanalysis of the electrodeposition solutions, nanowire arrays of Ag2+deltaSe were successfully grown by electrodeposition into porous alumina membranes at room temperature (22C) using an applied voltage of -0.70 V (vs. Pt/0.1 M Nal, 0.05 M I2 (DMSO)). Scanning electron microscopy showed smooth and continuous nanowires of 50 and 100 nm diameters and up to lengths of 25 mum. Electro

  9. Partitioning of copper among copper-binding proteins in the mussel Mytilus edulis exposed to soluble copper

    SciTech Connect

    Harrison, F.L.; Lam, J.R.

    1983-12-01

    Partitioning of copper among copper-binding proteins was evaluated in digestive glands of Mytilus edulis exposed to soluble copper. Groups of mussels were held in flow-through bioassay systems and exposed to either approx. 1 (control) or 25 ..mu..g Cu/L for as long as 21 weeks. At 3-week intervals, groups of 25 mussels were removed and the digestive glands were analyzed for copper-binding proteins by gel-permeation chromatography and atomic absorption spectrometry. Chronic exposure to copper resulted in increased amounts of copper in the low molecular-weight (LMW) protein fraction, which contains metallothionein-like proteins, and in the high molecular-weight (HMW) protein fraction, which contains metalloenzymes. Concentrations of copper in the LMW protein fraction increased and then appeared to plateau with long exposure times, whereas those in the HMW protein fraction continued to increase with exposure time.

  10. CopperCore Service Integration

    ERIC Educational Resources Information Center

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob

    2007-01-01

    In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will

  11. COPPER CORROSION AND SOLUBILITY RESEARCH

    EPA Science Inventory

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  12. CopperCore Service Integration

    ERIC Educational Resources Information Center

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob

    2007-01-01

    In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…

  13. Adrift on the Copper River

    USGS Multimedia Gallery

    Snow drifts in early May at the mouth of the Copper River.  Just a mile or two away from here, at the same elevation, there was no snow. Shown are Woods Hole (MA) scientists Andrew Schroth (left) and Kevin Kroeger (right)....

  14. Crystallization of copper metaphosphate glass

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  15. Subclinical copper accumulation in llamas.

    PubMed Central

    Weaver, D M; Tyler, J W; Marion, R S; Casteel, S W; Loiacono, C M; Turk, J R

    1999-01-01

    A 9-year-old, intact male llama with mild ataxia and generalized malaise of 1 month's duration was euthanized following clinical evaluation. Excessive liver copper concentrations were found in the llama and also in clinically normal herdmates. This case documents multiple animals with increased hepatic stores from standard diets and mineral supplements. PMID:10367160

  16. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  17. Status of copper sulfate - 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish – February 2004. This includes human intestinal microflora issues,...

  18. Copper sulfate: Liquid or crystals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate experiments were conducted to evaluate copper toxicity to channel catfish and free-swimming Ichthyophthirius multifiliis or Ich (the stage of Ich that can be treated); the compounds we used were CuSO4 crystals and a non-chelated liquid CuSO4 product. In 96 hr tests conducted in aquaria...

  19. Status of copper sulfate - 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate will be presented. Various aspects of these technical sections will be open for discussion. The update will include information and dates for both the initial labe...

  20. Status of Copper Sulfate - 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish - February 2004. This includes human intestinal microflora issues,...

  1. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  2. Tetraphenylphosphonium copper(I) dicyanamide.

    SciTech Connect

    Schlueter, J. A.; Geiser, U.; Materials Science Division

    2007-01-01

    In the title compound, {l_brace}(C{sub 24}H{sub 20}P)[Cu(C{sub 2}N{sub 3}){sub 2}]{r_brace}{sub n}, the copper(I) dicyanamide anion forms a distorted three-dimensional single diamondoid network. Templating tetraphenylphosphonium cations reside within the cavities of the polymeric anion.

  3. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes. PMID:21656137

  4. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO)

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  5. Synthesis, crystal structure and electronic properties of the new iron selenide Ba{sub 9}Fe{sub 4}Se{sub 16}

    SciTech Connect

    Berthebaud, David Preethi Meher, K.R.S.; Pelloquin, Denis; Maignan, Antoine

    2014-03-15

    The new ternary selenide Ba{sub 9}Fe{sub 4}Se{sub 16} has been synthesized from the reaction of appropriate amounts of elements at high temperature in a silica sealed tube. The compound crystallizes in the tetragonal space group I4{sub 1}/a with a=10.0068(3) Å and c=35.6415(9) Å, Z=4. It is an isostructural compound to the sulfide α-Ba{sub 9}Fe{sub 4}S{sub 15}, which is a high temperature polymorph of β-Ba{sub 9}Fe{sub 4}Se{sub 15} that belongs to the indefinitely adaptive phases series Ba{sub 3}Fe{sub 1+x}S{sub 5}, 0≤x≤1. X-ray powder diffraction and TEM analyses of the synthesized compound were used to determine the phase composition and the structure. The crystal structure can be viewed as overlapping sections along the c axis. Those sections are formed by the coordination polyhedra around barium atoms which can be described as trigonal prisms and bidisphenoids. Within the sections formed by barium polyhedra, isolated pairs of edge sharing FeSe{sub 4} tetrahedra are found. Magnetic measurements performed on Ba{sub 9}Fe{sub 4}Se{sub 16} indicate an antiferromagnetic behavior with Néel temperature of ∼13 K. Possible influence of air exposure on the magnetic properties is also discussed here. The electric measurements show an insulating behavior below 160 K and the dielectric permittivity and loss tangent at the lowest frequency measured reveal a change of slope very close to T{sub N}. However no magneto dielectric effect was evidenced for magnetic fields of up to 3 T. Activation energy, E{sub A}=0.18 eV, was extracted from the AC conductivity plot in the temperature range of 160–300 K. -- Graphical abstract: Experimental electron diffraction (ED) patterns of Ba{sub 9}Fe{sub 4}Se{sub 16} recorded along a-[010]. Highlights: • A new iron selenide material. • A structure resolution by combination of XRD and TEM. • Magnetic properties of the new compound Ba{sub 9}Fe{sub 4}Se{sub 16} are discussed.

  6. Identification of copper-copper and copper-hydrogen complexes in silicon

    SciTech Connect

    Yarykin, N. A.; Weber, J.

    2013-02-15

    The centers formed in silicon as a result of interaction between the substitutional copper impurity (Cu{sub s}) and interstitial copper (Cu{sub i}) or hydrogen (H) atoms, which are mobile at room temperature, are investigated in this study using the deep-level transient spectroscopy (DLTS) technique. It is shown that a well-known photoluminescence center, which includes four copper atoms, is formed from Cu{sub s} via the subsequent addition of Cu{sub i}. Both intermediate complexes (Cu{sub s}-Cu{sub i} and Cu{sub s}-2Cu{sub i}) are identified by their deep levels in the lower half of the band gap. It is found that Cu{sub s} atoms form complexes with one, two, and three hydrogen atoms, with Cu{sub s}-H and Cu{sub s}-2H being electrically active. It is noted that the addition of either hydrogen or copper has a similar effect on the deep-level structure of Cu{sub s}.

  7. The copper metallome in prokaryotic cells.

    PubMed

    Rensing, Christopher; McDevitt, Sylvia Franke

    2013-01-01

    As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle. PMID:23595679

  8. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    PubMed Central

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  9. Copper economy in Chlamydomonas: prioritized allocation and reallocation of copper to respiration vs. photosynthesis.

    PubMed

    Kropat, Janette; Gallaher, Sean D; Urzica, Eugen I; Nakamoto, Stacie S; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z; Merchant, Sabeeha S

    2015-03-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  10. Radiation resistance of copper alloys at high exposure levels

    SciTech Connect

    Garner, F.A. ); Zinkle, S.J. )

    1990-08-01

    Copper alloys are currently being considered for high heat flux applications in fusion power devices. A review is presented of the results of two separate series of experiments on the radiation response of copper and copper alloys. One of these involved pure copper and boron-doped copper in the ORR mixed spectrum reactor. The other series included pure copper and a wide array of copper alloys irradiated in the FFTF fast reactor 16 refs., 13 figs.

  11. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species have adapted on such stress. The aim of this study is to investigate the behaviour of copper in plants and to assess its potential effect on the surrounding environment. To detect copper in biological samples electrochemical methods were employed particularly differential pulse voltammetry (DPV). Copper gave signals at 0.02 V measured by DPV. The obtained calibration dependence was linear (R2 = 0.995). Further, this method was utilized for determination of copper in real soil samples obtained from previously mentioned heavy-metal-polluted mining area. The content varied within range from tens to hundreds of mg of copper per kg of the soil. Moreover, we focused on investigation of copper influence on seedlings of Norway spruce. The seedlings were treated with copper (0, 0.1, 10 and 100 mM) for four weeks. We observed anatomical-morphological changes and other biochemical parameters in plants. We determined that seedlings synthesized more than 48 % protective thiols (glutathione and phytochelatins) compared to control ones. We investigated copper distribution in plant tissues by diphenylcarbazide staining. We found out that copper is highly accumulated in parenchymal stalk cells. In needles, change in auto-fluorescence of parenchymal cells of mesoderm similarly to endodermis cells. Besides, we analyzed samples of plants from the polluted area (spruce, pin, birch). The data obtained well correlated with previously mentioned. Acknowledgement The work on this experiment was supported by grant: INCHEMBIOL MSM0021622412.

  12. Electron scattering at copper surfaces

    NASA Astrophysics Data System (ADS)

    Purswani, Jaya Murli

    As interconnects are scaled to smaller dimensions, the resistivity of the copper lines increases above the bulk resistivity due to a phenomena known as the size effect. Three components are known to contribute to the size effect: surface roughness, grain boundary scattering, and surface scattering. Of these, surface roughness and grain boundary scattering have been researched previously, and methods to minimize the resistivity increase due to these mechanisms have been proposed. The focus of this thesis research was to address the issue of surface scattering, which is the least understood component of the size effect. In particular, little is known about the materials and surface structure which lead to completely specular scattering (i.e. no increase in resistivity for thin layers). This research has built on the reported observation of partial specular scattering in both gold and silver films. The most promising layers have been shown to be single crystals. These single crystal films have the added advantage of simplifying the resistivity characterization, as there is no grain boundary component to the resistivity. Thus, particular focus was spent on determining the growth conditions required to produce high quality single crystal copper layers. Epitaxial copper layers were grown on single crystal magnesium oxide substrates with (001)Cu||(001)MgO with [001]Cu ||[001]MgO for samples grown at a substrate temperature T s of 100°C or less. The lattice mismatch between copper and MgO is 14.29%, which is resolved by 7x7 copper unit cells occupying 6x6 MgO cells. The highest crystalline quality was found for those layers grown at Ts = 100°C, while the layers grown at Ts = 40°C demonstrated the smoothest surface and lowest buried interface roughness. Surface morphology was studied through the use of in-situ scanning tunneling microscopy (STM). From these characterizations, the epitaxial copper surfaces have a self-affine surface structure, with a scaling exponent alpha of 0.82+/-0.03, independent of annealing. The mound width increased from 31+/-8 to 39+/-6 nm for increasing layer thickness, d, of 24 and 120 nm, respectively. The heights of the as-deposited mounds were nearly constant, independent of film thickness. In-situ annealing at Ta = 200 and 300°C results in thermodynamically driven mass transport that minimized the surface step density. This resulted in mounds with a larger mound radius and smaller root mean square roughness alpha. The effect was most pronounced on the thinnest layer, d = 24 nm, with the mound radius increasing from 31+/-8 to 70+/-20 nm, and sigma decreasing from 1.3+/-0.1 to 0.74+/-0.08 nm, for the as-deposited and 300°C annealed layers, respectively. Thus annealing resulted in a reduction in the mound aspect ratio when compared to the as-deposited layers. In the best case, terrace widths were increased from 1.5 to 6.3 nm, for the 24-nm-thick as-deposited and 300°C annealed layer, respectively. These terrace widths correspond to terraces which consist of 6 to 25 atoms per step. Further annealing at higher temperatures resulted in rough, partially discontinuous layers, attributed to oxidation of the copper-substrate interface as well as thermodynamically driven copper islanding in order to reduce the interfacial area between the copper and magnesium oxide. Electron transport experiments have shown that resistivity is highly dependent on the crystalline quality of the copper layers. Single crystal copper layers have resistivities that are a minimum of four times smaller than the polycrystalline layers, which is due to the absence of grain boundaries, which act as additional scattering centers. As-deposited copper layers resulted in completely diffuse scattering, which was attributed to the short length scales of atomically smooth terraces. Annealing resulted in layers which were smoother, but all layers exhibited completely diffuse surface scattering with a specularity parameter of p = 0. Low temperature and in-situ electron transport measurements were used in order to determine whether oxidation or surface smoothness is the key constraint to specular scattering. Both experiments show that specular scattering is highly dependent on the atomic level surface perfection, as sheet resistance measurements increased by 10% for copper layers after they were exposed to air or to deposition of a partial monolayer of tantalum, corresponding to Rs values of 0.197--0.216 to 0.214--0.234 O/□, respectively. This increase is unexpected, as conduction should still occur through the copper layer, which has not changed. Thus, the presence of tantalum and/or oxygen causes in an atomic level disturbance in the surface perfection. This disruption results in a switch from partial specular scattering at the top surface to diffuse surface scattering.

  13. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  14. Metallic copper as an antimicrobial surface.

    PubMed

    Grass, Gregor; Rensing, Christopher; Solioz, Marc

    2011-03-01

    Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term "contact killing" has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed. PMID:21193661

  15. Canine Models for Copper Homeostasis Disorders.

    PubMed

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted. PMID:26861285

  16. Copper transfer from Rhus vernicifera laccase.

    PubMed

    Meadows, K A; Morie-Bebel, M M; McMillin, D R

    1991-03-01

    Tree laccase, a multi-copper oxidase, has been studied as a copper donor in conjunction with the demetalated forms of three blue copper proteins. Copper transfer could be observed under reducing conditions in the absence of air. Only about 10% of the total copper in laccase could be transferred regardless of the amount of acceptor present in solution, hence, the laccase is heterogeneous as isolated. Potential sources of the heterogeneity are considered. After transfer, laccase could be partially resolved into copper-deficient and nearly holoprotein fractions that would not donate copper when recombined with acceptor protein. EPR results in conjunction with thiol titrations indicate that there is no net loss of type 1 copper from laccase but that there is loss of type 2 copper as well as a small amount of type 3 copper. Very little transfer is observed when type 2-depleted laccase is used as the donor. Finally, the implications that these results could have in the elucidation of possibly more physiologically relevant processes are briefly summarized. PMID:1647440

  17. Copper sensitivity of Oregon coastal phytoplankton

    SciTech Connect

    Riedel, G.F.

    1983-01-01

    The copper sensitivity of natural populations of Oregon coastal phytoplankton was studied using both additions of ionic copper and Cu-TRIS free ion activity buffers in coastal seawater. Phytoplankton growth rate, taxonomic composition and copper content were examined in treatment additions. The growth rate results suggested that the deficiency of another trace metal increased the apparent toxicity of copper to phytoplankton, especially in TRIS-free ion activity buffered seawater. Laboratory experiments with isolated coastal phytoplankton species indicated that manganese deficiency exacerbated copper toxicity, and that manganese deficiency was induced in TRIS buffered seawater by a TRIS-catalyzed oxidation of Mn. When manganese additions to natural populations were employed inconjunction with ionic copper additions and TRIS-free ion regulated seawater, they showed that ambient manganese concentrations were low enough to shift the onset of copper toxicity to lower copper concentrations. The results suggest that while acute toxicity to phytoplankton by ambient concentrations of copper is unlikely, the interactions of copper and other metals, especially manganese, may influence natural coastal phytoplankton populations in more subtle ways, such as taxonomic composition.

  18. Canine Models for Copper Homeostasis Disorders

    PubMed Central

    Wu, Xiaoyan; Leegwater, Peter A. J.; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted. PMID:26861285

  19. Metallic Copper as an Antimicrobial Surface?

    PubMed Central

    Grass, Gregor; Rensing, Christopher; Solioz, Marc

    2011-01-01

    Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term contact killing has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed. PMID:21193661

  20. Investigations of copper speciation and bioavailability

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1995-12-31

    Speciation, or form in which copper occurs, can effect the bioavailability and therefore, the toxicity of that element. One needs to determine the bioavailable forms of copper in sediment/water effects on organisms. In both water and sediment experiments, physical/chemical factors influencing copper speciation were evaluated and related to organism responses. Ten day aqueous experiments encompassing a range of pH (6.5--8.1), alkalinity (10--70 mg/L as CaCO{sub 3}), hardness (10--70 mg/L as CaCO{sub 3}) and conductivity (30--300 umhos/cm) were conducted using Hyalella azteca. Amphipod survival was evaluated relative to changes in water characteristics and concomitant changes in copper speciation as measured using atomic adsorption spectroscopy (AA) for acid extractable copper, and differential pulse anodic stripping voltammetry (DPASV) for labile copper. Ten day LC50s based on AA measured copper concentrations ranged from 42 to 142 ug/L Cu, and LC50s based on DPASV measured copper concentrations ranged from 17.4--24.8 ug/L Cu. Ten day sediment experiments encompassing a range of sediment pH, organic carbon content, acid volatile sulfides and redox concentrations were also conducted using H. azteca. Overlying water (AA and DPASV) and sediment copper concentrations (AA) were measured and evaluated relative to organism survival. Ten day sediment test LC50s based on DPASV measured copper concentrations in overlying water were 18.5 and 18 ug/L Cu for experiments in sandy and silty sediments, respectively. Organism survival, used as a measure of bioavailable copper, was evaluated in relation to measured copper species concentrations and used to develop guidelines for predicting copper toxicity in freshwater systems.

  1. Syntheses, crystal structures, and resistivities of the two new ternary uranium selenides, Er3USe8 and Yb3USe8

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Mesbah, Adel; Beard, Jessica C.; Malliakas, Christos D.; Ibers, James A.

    2016-01-01

    Two new ternary lanthanide (Ln) uranium selenides, Er3USe8 and Yb3USe8, were synthesized at 1198 K using NaI as a flux. Single-crystal X-ray studies show these two compounds to be isostructural and to crystallize in space group D2h 11 -Pbcm of the orthorhombic crystal system. The Ln and U atoms are disordered on the same crystallographic site in these crystal structures. Each Ln/U atom is coordinated to eight Se atoms in a bicapped trigonal prism, and sharing of these (Ln/U)Se8 units creates a three-dimensional network. Se2 atoms are connected to each other to form infinite one-dimensional chains along the c axis. In these chains, the two Se atoms are separated by about 2.74 Å, a distance intermediate to those of a Se-Se single bond and a van der Waals interaction. Temperature-dependent resistivity measurements show that Er3USe8 and Yb3USe8 are semiconductors with activation energies of 0.08(1) and 0.17(1) eV, respectively.

  2. Synthesis, characterization and electrochemical characterization of lead selenide sub-micron particles capped with a benzoate ligand and prepared at different temperatures

    NASA Astrophysics Data System (ADS)

    Rodrguez-Rodrguez, Weyshla A.; Coln, Jadiel; Guzmn, Roger; Rivera, Harry; Santiago-Berros, Mitk'El B.

    2014-09-01

    Semiconductor materials offer several potential benefits as active elements in the development of harvesting-energy conversion technologies. In particular, lead selenide (PbSe) semiconductors have been used and proposed to design solar energy harvesting devices, IR sensors, FET devices, etc. Lead salts have drawn particular attention from the applied and fundamental research communities due to their exceptionally strong quantum confinement effects. Several syntheses of PbSe have been proposed using long chain surfactants to allow the formation of particles and nanoparticles. Here we present a synthesis using benzoic acid as the capping ligand in ambient atmosphere. Although the particles are not in nanometric size, we compare the crystal structure (using x-ray powder diffraction data), the near infrared and mid-infrared absorption properties of PbSe using oleic acid as the capping ligand with PbSe using benzoic acid as the capping ligand. The new synthetized particles were shown to have similar crystal structure and absorb light in the near infrared region at 1410 nm. We also performed cyclic voltammetry of these particles drop-casted in the surface of a glassy carbon electrode. The particles showed electrochemical behavior with an oxidation peak near (-402 5 mV) versus Ag/AgCl reference electrode. The particles seem to form a polymeric film at the surface of a glassy carbon electrode.

  3. Na3.88Mo15Se19: a novel ternary reduced molybdenum selenide containing Mo6 and Mo9 clusters

    PubMed Central

    Salloum, Diala; Gougeon, Patrick; Gall, Philippe

    2013-01-01

    The structure of tetrasodium pentadecamolybdenum nonadecaselenide, Na3.88Mo15Se19, is isotypic with the In3+xMo15Se19 compounds [Grttner et al. (1979 ?). Acta Cryst. B35, 285292]. It is characterized by two cluster units, Mo6Sei 8Sea 6 and Mo9Sei 11Sea 6 (where i represents inner and a apical atoms), that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2c and have point-group symmetry -3 and -6, respectively. The clusters are interconnected through additional MoSe bonds. In the title compound, the Na+ cations replace the trivalent as well as the monovalent indium atoms present in In3.9Mo15Se19. One Mo, one Se and one Na atom are situated on mirror planes, and two other Se atoms and one Na atom [occupancy 0.628?(14)] are situated on threefold rotation axes. The crystal studied was twinned by merohedry with refined components of 0.4216?(12) and 0.5784?(12). PMID:24098158

  4. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Astrophysics Data System (ADS)

    Patterson, James D.; Li, Wei-Gang

    1995-03-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  5. Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba4Ga4SnSe12: For photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya

    2015-09-01

    Due to huge demand on discovering new materials for energy, we used first-principle calculations to explore the electronic structure and optical properties of a recent quaternary selenide, namely Ba4Ga4SnSe12. The electronic structure and the optical properties of Ba4Ga4SnSe12 were calculated through a reliable approach of Engle Vosko-GGA (EV-GGA). We found that Ba4Ga4SnSe12 has a direct band gap of 2.14 eV positioned at ?. Acquiring the fundamental characteristics of Ba4Ga4SnSe12, we studied the linear optical properties like dielectric function in the energy range of 0-14 eV. From the dielectric function we noticed a weak directional anisotropy for the two components. The absorption spectrum indicates the possibility of greater multiple direct and indirect inter-band transitions in the visible regions and shows similar behavior with experimental spectrum. Ba4Ga4SnSe12 can be used as shielding material from UV radiations. Present study predicts that the Ba4Ga4SnSe12 is promising for photovoltaic applications due to their high absorption of solar radiations and photoconductivity in the visible range.

  6. Ba2AsGaSe5: A New Quaternary Selenide with the Novel [AsGaSe5](4-) Cluster and Interesting Photocatalytic Properties.

    PubMed

    Li, Chao; Li, Xiaoshuang; Huang, Hongwei; Yao, Jiyong; Wu, Yicheng

    2015-10-19

    The new zero-dimensional selenide Ba2AsGaSe5 was synthesized via a solid-state reaction at 900 °C. It belongs to the orthorhombic space group Pnma with a = 12.632(3) Å, b = 8.9726(18) Å, c = 9.2029(18) Å, and Z = 4. In the structure, the As atom adopts trigonal-pyramidal coordination owing to the stereochemically active 4s(2) lone pair electrons and the Ga atom is tetrahedrally coordinated with four Se atoms. The AsSe3 trigonal pyramids share edges with GaSe4 tetrahedra to form novel [AsGaSe5](4-) clusters, which are further separated from each other by Ba(2+) cations. The optical band gap was determined as 1.39 eV according to UV-vis-NIR diffuse reflectance spectroscopy. Interestingly, the photocatalytic behavior investigated by decomposing rhodamine B indicates that the compound displays a 6.5 times higher photocatalytic activity than does P25. PMID:26418301

  7. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of ?att=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to ?-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  8. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  9. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    PubMed

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills. PMID:25710599

  10. Effect of copper additions on the isothermal bainitic transformation in hypereutectoid copper and copper-nickel steels

    SciTech Connect

    Fourlaris, G.; Baker, A.J.; Papadimitriou, G.D.

    1996-12-01

    During the isothermal bainitic transformation in hypereutectoid steels alloyed with copper or copper and nickel, it was found that at all the transformation temperatures studied, the formation of equally copper supersaturated bainitic ferrite and cementite always occurred. This observation implies the formation of bainitic ferrite and cementite from the parent austenite phase without redistribution of the alloying elements, since the solubility of copper in cementite is negligible and very low in bainitic ferrite. By carefully designing suitable tempering treatments, it is possible to produce copper precipitation not only within tempered bainitic ferrite in both types of steel using low tempering temperatures, but also within the tempered bainitic cementite of the copper steel at higher tempering temperatures. The interpretation of these experimental data strongly supports the theory that bainite formation is promoted through a shear controlled type of mechanism.

  11. Copper disinfection ban causes storm.

    PubMed

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK. PMID:23763088

  12. Electronic Structure of Copper Corroles.

    PubMed

    Lemon, Christopher M; Huynh, Michael; Maher, Andrew G; Anderson, Bryce L; Bloch, Eric D; Powers, David C; Nocera, Daniel G

    2016-02-01

    The ground state electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. Computational studies formulate neutral Cu corroles with an antiferromagnetically coupled Cu(II) corrole radical cation ground state. X-ray photoelectron spectroscopy, EPR, and magnetometry support this assignment. For comparison, Cu(II) isocorrole and [TBA][Cu(CF3 )4 ] were studied as authentic Cu(II) and Cu(III) samples, respectively. In addition, the one-electron reduction and one-electron oxidation processes are both ligand-based, demonstrating that the Cu(II) centre is retained in these derivatives. These observations underscore ligand non-innocence in copper corrole complexes. PMID:26836345

  13. Micromachining with copper vapor lasers

    SciTech Connect

    Bergmann, H.W.; Bartl, N.; Mayerhofer, R.

    1996-12-31

    When high quality laser beams are combined with suitable imaging optics and manipulation systems, laser micro machining offers excellent solutions to industrial needs. In this context the presented work was performed to demonstrate the potential of the Copper Vapor Laser (CVL) for upcoming applications. Therefore, a systematic series of laser beam cutting, drilling and milling experiments were carried out using copper sheets of thickness between 0.01 mm and 0.250 mm. In a first step zero-dimensional (holes), one-dimensional (slits) and two-dimensional (contour cuts) structures were generated with depth/width-ratios varying from 1:100 to 10:1 using different processing strategies (focused percussion drilling, mask projection and trepanning). The results have been characterized in terms of the minimal geometrical deviations (quality) and processing speeds achievable.

  14. Chronic poisoning by copper in tap water: I. Copper intoxications with predominantly gastointestinal symptoms.

    PubMed

    Eife, R; Weiss, M; Barros, V; Sigmund, B; Goriup, U; Komb, D; Wolf, W; Kittel, J; Schramel, P; Reiter, K

    1999-06-28

    Copper can induce acute and chronic intoxications in humans. Copper in tap water has caused a series of severe systemic diseases in Germany in recent years (copper induced liver cirrhosis). Besides cirrhosis, another type of disease with predominantly gastrointestinal symptoms has occurred which likewise appeared to be induced by copper in tap water. - In a retrospective investigation we looked for additional indications and proof that chronic copper poisoning has been the cause of the observed gastrointestinal diseases. All patients suffering from this type of disease had copper plumbing in their houses. - The patients (children and adults) suffered from nausea, vomiting, colic, and diarrhoea. In the group of infants, one refused formula milk (prepared with tap water) and the others suffered from persistent restlessness, unexplainable screaming (especially at night) and/or long lasting diaper rash. - We accept the diagnosis of chronic copper intoxication as the cause of the gastrointestinal symptoms when at least one of the following criteria were fulfilled: 1. first manifestation, remission and relapse of the disease depend on intake and a non-intake of water containing copper, respectively. 2. hypercupric state of the patients (i.e. pathological high concentrations of the non-ceruloplasmin-bound copper in serum and/or elevated copper levels in urine) 3. signs of systemic copper intoxication in the same patient 4. signs of systemic copper intoxication or hypercupric states in members of the patient s family or in his neighbourhood (non-relatives) - We found that the disease can even be caused by copper concentrations below the allowed concentration given by the German Guidelines for Drinking Water (Trinkwasserverordnung). - The data prove that copper in drinking water can cause gastrointestinal diseases and not only the better known systemic diseases (i.e. copper induced liver cirrhosis). Copper poisoning must be considered as a possible cause of chronic gastrointestinal diseases in those countries in which copper plumbing is common. PMID:10383875

  15. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus.

    PubMed Central

    Harwood-Sears, V; Gordon, A S

    1990-01-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds which complex and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuBP2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experiments in which chloramphenicol was added to cultures indicated that there was de novo synthesis of these proteins in response to copper. When supernatants were separated by gel permeation chromatography, CuBP1 and CuBP2 coeluted with a copper-induced peak in copper-binding activity. CuBP1 and CuBP2 from whole supernatants were concentrated and partially purified by using a copper-charged immobilized metal ion affinity chromatography column, confirming the affinity of these proteins for copper. A comparison of cell pellets and supernatants demonstrated that CuBP1 was more concentrated in supernatants than in cells. Our data are consistent with a model for a novel mechanism of copper detoxification in which excretion of copper-binding protein is induced by copper. Images PMID:2339887

  16. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    PubMed Central

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuria) experimental station, Bento Gonalves, RS, Brazil (2909?53.92?S and 5131?39.40?W) and 26 were obtained from copper mining waste from Caapava do Sul, RS, Brazil (3029?43.48?S and 53?32?37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L?1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  17. Pulling the plug on cellular copper: The role of mitochondria in copper export

    PubMed Central

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2014-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondrial copper handling with other, extramitochondrial copper trafficking pathways. The recent finding that mitochondrial proteins with established roles in CcO assembly can also effect changes in cellular copper levels by modulating copper efflux from the cell supports a mechanistic link between organellar and cellular copper metabolism. However, the proteins and molecular mechanisms that link trafficking of copper to and from the organelle with other cellular copper trafficking pathways are unknown. This review documents our current understanding of copper trafficking to, and within, the mitochondrion for metallation of CcO and Sod1; the pathways by which the two copper centers in CcO are formed; and, the interconnections between mitochondrial function and the regulation of cellular copper homeostasis. PMID:18522804

  18. The system copper-tellurium

    NASA Astrophysics Data System (ADS)

    Blachnik, R.; Lasocka, M.; Walbrecht, U.

    1983-07-01

    The system copper-tellurium was investigated by DTA, DSC, and X-ray methods. A phase diagram with the phases Cu 2- xTe (33.5-36.2 mole% Te), Cu 3- xTe 2 (40-41 mole%), and CuTe was constructed. In the homogeneity ranges of the nonstoichiometric phases several superstructures were observed. The lattice parameters and d values of some of these phases are given.

  19. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure copper levels in plasma, serum, and urine. Measurements of copper are used in the diagnosis and treatment...

  20. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure copper levels in plasma, serum, and urine. Measurements of copper are used in the diagnosis and treatment...

  1. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure copper levels in plasma, serum, and urine. Measurements of copper are used in the diagnosis and treatment...

  2. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Copper test system. 862.1190 Section 862.1190 Food... Copper test system. (a) Identification. A copper test system is a device intended to measure copper levels in plasma, serum, and urine. Measurements of copper are used in the diagnosis and treatment...

  3. Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum.

    PubMed Central

    Erardi, F X; Failla, M L; Falkinham, J O

    1987-01-01

    A copper-tolerant Mycobacterium scrofulaceum strain was able to remove copper from culture medium by sulfate-dependent precipitation as copper sulfide. Such precipitation of copper sulfide was not observed in a derivative that lacks a 173-kilobase plasmid. In addition, the plasmid-carrying strain has a sulfate-independent copper resistance mechanism. PMID:3662522

  4. CNC Machining Of The Complex Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Popan, Ioan Alexandru; Balc, Nicolae; Popan, Alina

    2015-07-01

    This paper presents the machining process of the complex copper electrodes. Machining of the complex shapes in copper is difficult because this material is soft and sticky. This research presents the main steps for processing those copper electrodes at a high dimensional accuracy and a good surface quality. Special tooling solutions are required for this machining process and optimal process parameters have been found for the accurate CNC equipment, using smart CAD/CAM software.

  5. Electrochemical synthesis of highly crystalline copper nanowires

    SciTech Connect

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-05-15

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits.

  6. Copper chloride cathode for a secondary battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Nagasubramanian, Ganesan (Inventor); Bankston, Clyde P. (Inventor)

    1990-01-01

    Higher energy and power densities are achieved in a secondary battery based on molten sodium and a solid, ceramic separator such as a beta alumina and a molten catholyte such as sodium tetrachloroaluminate and a copper chloride cathode. The higher cell voltage of copper chloride provides higher energy densities and the higher power density results from increased conductivity resulting from formation of copper as discharge proceeds.

  7. Material flows generated by pyromet copper smelting

    USGS Publications Warehouse

    Goonan, T.G.

    2005-01-01

    Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.

  8. Electroforming copper targets for RTNS-II

    SciTech Connect

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-02-06

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described.

  9. [Copper in methane oxidation: a review].

    PubMed

    Su, Yao; Kong, Jiao-Yan; Zhang, Xuan; Xia, Fang-Fang; He, Ruo

    2014-04-01

    Methane bio-oxidation plays an important role in the global methane balance and warming mitigation, while copper has a crucial function in methane bio-oxidation. On one side, copper is known to be a key factor in regulating the expression of the genes encoding the two forms of methane monooxygenases (MMOs) and is the essential metal element of the particulate methane monooxygenase (pMMO). On the other side, the content and fractionation of copper in the environment have great effects on the distribution of methanotrophs and their metabolic capability of methane and non-methane organic compounds, as well as on the copper-specific uptake systems in methanotrophs. Thus, it is meaningful to know the role of copper in methane bio-oxidation for comprehensive understanding of this process and is valuable for guiding the application of methanotrophs in greenhouse gas removal and pollution remediation. In this paper, the roles of copper in methane oxidation were reviewed, including the effect of copper on methanotrophic community structure and activity, the expression and activity of MMOs as well as the copper uptake systems in methanotrophs. The future studies of copper and methane oxidation were also discussed. PMID:25011321

  10. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  11. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  12. Surface structure influences contact killing of bacteria by copper

    PubMed Central

    Zeiger, Marco; Solioz, Marc; Edongué, Hervais; Arzt, Eduard; Schneider, Andreas S

    2014-01-01

    Copper kills bacteria rapidly by a mechanism that is not yet fully resolved. The antibacterial property of copper has raised interest in its use in hospitals, in place of plastic or stainless steel. On the latter surfaces, bacteria can survive for days or even weeks. Copper surfaces could thus provide a powerful accessory measure to curb nosocomial infections. We here investigated the effect of the copper surface structure on the efficiency of contact killing of Escherichia coli, an aspect which so far has received very little attention. It was shown that electroplated copper surfaces killed bacteria more rapidly than either polished copper or native rolled copper. The release of ionic copper was also more rapid from electroplated copper compared to the other materials. Scanning electron microscopy revealed that the bacteria nudged into the grooves between the copper grains of deposited copper. The findings suggest that, in terms of contact killing, more efficient copper surfaces can be engineered. PMID:24740976

  13. SURVIVAL AND IMMUNE RESPONSE OF COHO SALMON EXPOSED TO COPPER

    EPA Science Inventory

    Vaccination with Vibrio anguillarum by oral administration during copper exposure and intraperitoneal injection prior to copper exposure was employed to investigate the effects of copper upon survival and the immune response of juvenile coho salmon (Oncorhynchus kisutch). Followi...

  14. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  15. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  16. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  17. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  18. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  19. Recovering gold from copper concentrate via the HydroCopper process

    NASA Astrophysics Data System (ADS)

    Hyvrinen, Olli; Hmlinen, Matti; Lamberg, Pertti; Liipo, Jussi

    2004-08-01

    HydroCopper technology comprises a chloride-leaching method for copper sulfide concentrates and copper production up to semi-products. As compared with the commonly used sulfate solutions, brine solutions offer aggressiveness and stability of the copper(I) ion and, consequently, a lower energy consumption in leaching. Copper(II) ions and oxygen are used as oxidants. Iron reports to the leaching residue as oxide and sulfur as elemental sulfur. Gold is dissolved and recovered in the third stage of the counter-current leaching when the redox potential reaches higher levels.

  20. Copper: Its trade manufacture, use, and environmental status

    SciTech Connect

    Kundig, K.J.A.; Joseph, G.

    1998-12-31

    Providing a comprehensive overview of the various technical and commercial aspects affecting the role of copper and its use as an engineered material, this book offers representative numerical data collected from industrial sources around the world and also selected from the scientific literature. This book contains more than 270 figures and some 160 tables. Contents include: history of the use of copper; the copper trade; metallurgy and properties of copper and copper alloys; copper products; processing and fabrication; applications of copper and copper alloys; environmental aspects; and an index.

  1. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  2. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    NASA Astrophysics Data System (ADS)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  3. Increased blood and urine copper after residential exposure to copper naphthenate

    SciTech Connect

    Bluhm, R.E.; Welch, L.; Branch, R.A. )

    1992-01-01

    Despite widespread industrial use of copper naphthenate, there are no reports of the relationship of copper naphthenate and copper absorption in humans or animals. We report a family of three individuals who lived in a home where copper naphthenate was sprayed on the inner foundation. Subsequently, these individuals developed non-specific complaints. In two of these individuals, serum copper levels were elevated when first measured months after copper naphthenate was sprayed in the home. A gradual decline over several years in urine and serum copper levels was observed in the individual who maintained follow-up. It is not known if symptoms reflected exposure to naphthenate, the solvent vehicle, volatilized copper, or the stress of exposure to a malodorous compound perceived as toxic. Exposure to copper naphthenate may be another cause of an elevated serum and urine copper level but the interpretation of these levels as normal' or toxic' requires additional study for clarification. This report suggests the need for further study of the absorption and relative toxicity of copper naphthenate.

  4. Initiation of electroless nickel plating on copper, palladium-activated copper, gold, and platinum

    SciTech Connect

    Flis, J.; Duquette, D.J.

    1984-02-01

    The catalytic activity of copper, palladium-activated copper, gold, and platinum for electro-oxidation of hypophosphite and electroless nickel plating was investigated in an ammoniacal solution of pH 8.8 at 50/sup 0/C by potential measurements and linear sweep voltammetry from -0.3 to -0.92V vs. SCE. Early stages of nickel plating on copper-palladium substrates were studied by scanning electron microscopy in conjunction with EDAX. It was found that palladium-activated copper and gold were catalytically active in the entire range of potentials examined; copper was active below -0.6 platinum was not active at all. Small amounts of electrolytically deposited nickel considerably increased the electro-oxidation rate of hypophosphite on copper, gold, and palladium. TEM examinations showed that activation of copper in a PdCl/sub 2//HCl solution resulted in the deposition of palladium in the form of separate patches. Electroless nickel deposition on copper substrates with separate palladium spots took place on copper and palladium independently of each other. The deposition on palladium was faster than that on copper. It was concluded that the activation of copper substrates around palladium spots occurred solely through a spontaneous potential shift, induced by electro-oxidation of hypophosphite on the palladium spots. It was suggested that small amounts of one metal synergistically enhanced the catalytic activity of the other metals.

  5. Effect of the Concentration on the X-ray Luminescence Efficiency of a Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Solution

    NASA Astrophysics Data System (ADS)

    Valais, I.; Michail, C.; Nikolopoulos, D.; Fountzoula, C.; Bakas, A.; Yannakopoulos, P.; Fountos, G.; Panayiotakis, G.; Kandarakis, I.

    2015-09-01

    In the current study preliminary results on the luminescence efficiency (LE) of toluene dissolved Cadmium Selenide/Zinc Sulfide (CdSe/ZnS, Sigma-Aldrich, Lumidot 694622) quantum dot samples (QDs) after exposure to X-rays of variable radiation flux are shown. The distinctive influence of the weight over volume (w/v) concentration of the samples in LE was investigated. The light emission of the QDs was additionally measured after UV irradiation. The distribution of the emitted light was symmetrical with a maximum at 590 nm. The w/v concentration of the QDs varied between 7.1×10-5 mg/mL to 28.4×10-5 mg/mL. The samples were handled in a cubic 12.5×12.5×45mm3 quartz cuvette. Each sample was excited under X-ray irradiation, in the energy range from 50 to 130 kVp using a BMI General Medical Merate tube with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. The X-ray LE, induced by the 28.4×10-5 mg/mL QDs found higher, however, the distinction was vague in the highly concentrated samples. The maximum efficiency was obtained at the 90 kVp for QDs with 21.3×10-5 mg/mL w/v concentration. In the high energy range (120-130 kVp) all concentration levels exhibited comparable X-ray induced LE. The luminescence properties of the investigated QDs appear promising for X-ray detection applications.

  6. Structural, magnetic, and electronic properties of iron selenide Fe6-7Se8 nanoparticles obtained by thermal decomposition in high-temperature organic solvents.

    PubMed

    Lyubutin, I S; Lin, Chun-Rong; Funtov, K O; Dmitrieva, T V; Starchikov, S S; Siao, Yu-Jhan; Chen, Mei-Li

    2014-07-28

    Iron selenide nanoparticles with the NiAs-like crystal structure were synthesized by thermal decomposition of iron chloride and selenium powder in a high-temperature organic solvent. Depending on the time of the compound processing at 340?C, the nanocrystals with monoclinic (M)-Fe3Se4 or hexagonal (H)-Fe7Se8 structures as well as a mixture of these two phases can be obtained. The magnetic behavior of the monoclinic and hexagonal phases is very different. The applied-field and temperature dependences of magnetization reveal a complicated transformation between ferrimagnetic (FRM) and antiferromagnetic (AFM) structures, which can be related to the spin rotation process connected with the redistribution of cation vacancies. From XRD and Mssbauer data, the 3c type superstructure of vacancy ordering was found in the hexagonal Fe7Se8. Redistribution of vacancies in Fe7Se8 from random to ordered leads to the transformation of the magnetic structure from FRM to AFM. The Mssbauer data indicate that vacancies in the monoclinic Fe3Se4 prefer to appear near the Fe(3+) ions and stimulate the magnetic transition with the rotation of the Fe(3+) magnetic moments. Unusually high coercive force Hc was found in both (H) and (M) nanocrystals with the highest ("giant") value of about 25 kOe in monoclinic Fe3Se4. This is explained by the strong surface magnetic anisotropy which is essentially larger than the core anisotropy. Such a large coercivity is rare for materials without rare earth or noble metal elements, and the Fe3Se4-based compounds can be the low-cost, nontoxic alternative materials for advanced magnets. In addition, an unusual effect of "switching" of magnetization in a field of 10 kOe was found in the Fe3Se4 nanoparticles below 280 K, which can be important for applications. PMID:25084934

  7. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  8. Radiolytic synthesis and spectroscopic investigations of cadmium selenide quantum dots grown in cationic surfactant based quaternary water-in-oil microemulsions.

    PubMed

    Singh, S; Guleria, A; Singh, A K; Rath, M C; Adhikari, S; Sarkar, S K

    2013-05-15

    Cadmium selenide (CdSe) quantum dots (QDs) were grown in cationic surfactant cetyltrimethylammonium bromide (CTAB) based water-in-oil microemulsions using high-energy electron beam irradiation. The sizes of the primary QDs were determined from the absorption spectra as well as from high-resolution transmission electron microscope images and were found to be within 3 nm. Effects of experimental parameters, such as w0 (molar ratio of water to surfactant in a microemulsion) values and precursor concentrations on the optical properties of these QDs were investigated in detail. The QDs exhibited broad photoluminescence (PL) in the wavelength region extending from 450 to 750 nm at room temperature. The time-resolved PL showed multiexponential decay and the average lifetime was estimated to be 4.1 ns and the PL decay curve analysis indicated the presence of predominating trap state emission from the as obtained CdSe QDs. The quantum yield exhibited by as-grown QDs was determined to be 2.4%, without involving any postprocessing techniques. However, these QDs possessing ultra small size (?5 nm) were found to exhibit CIE (Commission Internationale d'Eclairage) chromaticity x, y co-ordinates close to (0.36,0.36), which confirms their potential as white light emitters. Besides, their light emitting color tunability can be conveniently achieved just by varying the experimental parameters. Therefore, the present method employing electron beam irradiation, accompanied by various advantages of CTAB based water-in-oil microemulsion as the host matrix, offers a simple and one step method to obtain CdSe QDs possessing potential applications in white light emitting devices. PMID:23489608

  9. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification.

    PubMed

    Huang, Ke-Jing; Shuai, Hong-Lei; Zhang, Ji-Zong

    2016-03-15

    A highly sensitive and ultrasensitive electrochemical aptasensor for platelet-derived growth factor BB (PDGF-BB) detection is fabricated based on layered molybdenum selenide-graphene (MoSe2-Gr) composites and Exonuclease III (Exo III)-aided signal amplification. MoSe2-Gr is prepared by a simple hydrothermal method and used as a promising sensing platform. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity is limited on the duplex DNAs with more than 4 mismatched terminal bases at 3' ends. Herein, aptamer and complementary DNA (cDNA) sequences are designed with four thymine bases on 3' ends. In the presence of target protein, the aptamer associates with it and facilitates the formation of duplex DNA between cDNA and signal DNA. The duplex DNA then is digested by Exo III and releases cDNA, which hybridizes with signal DNA to perform a new cleavage process. Nevertheless, in the absence of target protein, the aptamer hybridizes with cDNA will inhibit the Exo III-assisted nucleotides cleavage. The signal DNA then hybridizes with capture DNA on the electrode. Subsequently, horse radish peroxidase is fixed on electrode by avidin-biotin reaction and then catalyzes hydrogen peroxide and hydroquinone to produce electrochemical response. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, providing a quantitative measure of target protein with a broad detection range of 0.0001-1 nM and a detection limit of 20 fM. PMID:26386905

  10. Mechanical Separation of Metallic Copper from Polymer-Insulated Copper Wire

    SciTech Connect

    Yokoyama, Seiji; Takeuchi, Sakae; Hisyamudin Bin Muhd Nor, Nik

    2011-01-17

    It is very important to recycling of polymer-insulated copper wire to remove copper from the wire without any contamination. A rolling machine and a blender were used to separate and recover the copper wires from a polymer coated cable. In the experiment using a rolling machine, the recovery of copper was improved by an increase in the number of rolling times and by lowering the cable temperature. All of the copper was recovered from a cable of 115 K in temperature. In the other experiment using a blender, the weight of the recovery of copper was increased by shortening the cable length and by increasing the rotary speed of the blender and the treating time. All the copper in a cut cable of 3mm long was recovered from a cable.

  11. Regulation of gemma formation in the copper moss Scopelophila cataractae by environmental copper concentrations.

    PubMed

    Nomura, Toshihisa; Hasezawa, Seiichiro

    2011-09-01

    Considerable attention has recently been focused on the use of hyperaccumulator plants for the phytoremediation of soils contaminated with heavy metals. The moss, Scopelophila cataractae (Mitt.) Broth., is a typical hyperaccumulator that is usually observed only in copper-rich environments and which accumulates high concentrations of copper in its tissues. However, many of the physiological processes and mechanisms for metal hyperaccumulation in S. cataractae remain unknown. To address this issue, we examined the mechanisms regulating gemma formation, which is considered the main strategy by which S. cataractae relocates to new copper-rich areas. From this study we found that treatment of S. cataractae with high concentrations of copper suppressed gemma formation but promoted protonemal growth. The suppressive effect was not observed by treatment with heavy metals other than copper. These results suggest the importance of copper-sensitive asexual reproduction in the unique life strategy of the copper moss, S. cataractae. PMID:21082328

  12. COPPER PITTING AND PINHOLE LEAK RESEARCH STUDY

    EPA Science Inventory

    Localized copper corrosion or pitting is a significant problem at many water utilities across the United States. Copper pinhole leak problems resulting from extensive pitting are widely under reported. Given the sensitive nature of the problem, extent of damage possible, costs o...

  13. Thickness Induced Buckling of bcc Copper Films

    NASA Astrophysics Data System (ADS)

    Ocko, B. M.; Robinson, I. K.; Weinert, M.; Randler, R. J.; Kolb, D. M.

    1999-07-01

    Copper films electrodeposited on Au(100) develop a buckling instability after the 11th layer leading to stripes with a 60-75 period. Analysis of the x-ray diffraction data shows that the entire copper film restructures by forming regions which are locally orthorhombic in a spatially modulated pattern. This distortion is supported by first-principles calculations.

  14. POLLUTION ABATEMENT IN A COPPER WIRE MILL

    EPA Science Inventory

    This Capsule Report shows how water consumption in copper wire mills can be reduced by 90%. The reduction was from 200,000 gallons per day to 20,000 gallons per day by chemical rinsing and water reuse. The sulfuric acid pickle was regenerated and high purity metallic copper recov...

  15. Lead and Copper Control 101-slides

    EPA Science Inventory

    This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...

  16. NON-UNIFORM COPPER CORROSION: RESEARCH UPDATE

    EPA Science Inventory

    Pinhole leaks due to copper pitting corrosion are a major cause of home plumbing failure. This study documents cases of copper pitting corrosion found in homes supplied by Butler County Environmental Services in Ohio. SEM. XRD, and optical microscopy were used to document pit s...

  17. CONTROL OF COPPER SMELTER FUGITIVE EMISSIONS

    EPA Science Inventory

    This report deals with fugitive emissions from copper smelting and with related emission control measures. The study involved evaluation of the controls now used in the copper smelting industry and development of suggestions for alternative control devices and practices. A brief ...

  18. Copper laser diagnostics and kinetics support

    SciTech Connect

    Not Available

    1981-12-01

    In the effort MSNW participated with the LINL copper-Vapor Laser Program by providing a useful plasma diagnostic for interpretation of Copper-vapor laser kinetics. MSNW developed and delivered a pulsed interferometric diagnostic package to LLNL. Moreover MSNW provided personal services at the request and direction of LLL in the implementation of the diagnostic and interpretation of the data.

  19. Recovering selenium from copper refinery slimes

    NASA Astrophysics Data System (ADS)

    Hyvrinen, Olli; Lindroos, Leo; Yll, Erkki

    1989-07-01

    The selenium contained within copper refinery slimes may be recovered advantageously by roasting at about 600C. While roasting in air is inefficient, roasting in a sulfating atmosphere enables practically complete selenium recovery. Based on laboratory tests, a new selenium recovery process was adopted at Outokumpu Copper Refinery. In this process, sulfation is achieved by feeding sulfur dioxide and oxygen into the roasting furnace.

  20. Copper Hydride Catalyzed Reductive Claisen Rearrangements.

    PubMed

    Wong, Kong Ching; Ng, Elvis; Wong, Wing-Tak; Chiu, Pauline

    2016-03-01

    An efficient reductive Claisen rearrangement, catalyzed by in situ generated copper hydride and stoichiometric in diethoxymethylsilane, has been developed. Yields of up to 95 % with good to excellent diastereoselectivities were observed in this reaction. Mechanistic studies showed that the stereospecific rearrangement proceeded via a chair transition state of (E)-silyl ketene acetals as intermediates and not via the copper enolates. PMID:26780971

  1. Common Sense Copper and RF Guns

    SciTech Connect

    Mulhollan, G.

    2005-01-18

    The purpose of this document is to gather together both fundamental information on copper and on the cleaning and operation of copper in RF gun structures. While incomplete, this is a living document and will be added to and updated as necessary.

  2. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  3. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  4. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  5. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  6. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  7. Fetal polyol metabolism in copper deficiency

    SciTech Connect

    Fields, M.; Lewis, C.G.; Beal, T. )

    1989-02-09

    Since pregnant rats consuming fructose, copper deficient diets fail to give birth, the relationship between maternal copper deficiency, polyol metabolism and fetal mortality was investigated. Forty Sprague-Dawley rats were fed from conception one of the following diets: fructose, copper deficient; fructose, copper adequate; starch, copper deficient or starch, copper adequate. The deficient diets contained 0.6 ug Cu and the adequate 6.0 ug Cu/g diet. Pregnancy was terminated at day 19 of gestation. Glucose, sorbitol and fructose were measured in maternal blood, placenta and fetal liver. Fructose consumption during pregnancy resulted in higher levels of fructose and sorbitol in maternal blood when compared to starch. In the fructose dietary groups, the placenta and fetal liver contained extremely high levels of glucose, fructose and sorbitol compared to the corresponding metabolites from the starch dietary groups. Copper deficiency further elevated fructose and sorbitol concentrations in the placenta and fetal liver respectively. Since high tissue levels of glucose, fructose and sorbitol have been shown to have deleterious effects on cellular metabolism, these data suggest that when fructose was fed during pregnancy the combination of an aberration of carbohydrate metabolism with copper deficiency could be responsible for the pathology and mortality of the developing fetus.

  8. Direct joining of CFC to copper

    NASA Astrophysics Data System (ADS)

    Appendino, Pietro; Ferraris, Monica; Casalegno, Valentina; Salvo, Milena; Merola, Mario; Grattarola, Marco

    2004-08-01

    The ITER divertor design foresees the joint between CFC (carbon fibre reinforced carbon composites) as armor material and a Cu alloy in the heat sink. The purpose of this work is to realize a new joining method between CFC and a pure copper interlayer, required to accommodate the thermal expansion mismatch between CFC and the copper alloy. The joining technique is based on the direct copper casting on CFC surface, which was previously modified by direct reaction with a transition metal of the VI B group. The formation of a carbide layer on CFC surface improves the wettability of molten copper on CFC. The process was also successfully applied to join silicon doped CFC to copper. The paper includes the results of the morphological analysis, the mechanical tests on the joined samples and preliminary thermal fatigue tests.

  9. Engineering kinetic barriers in copper metallization

    NASA Astrophysics Data System (ADS)

    Huang, Hanchen; Wei, H. L.; Woo, C. H.; Zhang, X. X.

    2002-12-01

    In metallization processes of integrated circuits, it is desirable to deposit the metal lines (aluminum or copper) fast and at low temperatures. However, the lines (films) usually consist of undesirable columns and voids, because of the absence of sufficient diffusiona direct result of large kinetic barriers. Following the proposal and realization of the three-dimensional Ehrlich-Schwoebel (3D ES) barrier, we present here a method to engineer this kinetic barrier so as to improve quality of deposited copper films. We deposit copper films by magnetron sputtering, characterize the film structure and texture by using the scanning electron microscope and the x-ray diffraction, respectively. Taking indium as surfactant during copper deposition, we have achieved much better density and bottom coverage of copper filled trenches. The characterizations show that the improvement is the result of the 3D ES barrier reduction caused by indium addition. Engineering the 3D ES barrier therefore leads to improved film quality.

  10. Coated Conductor Processing: Copper Stabilizer

    NASA Astrophysics Data System (ADS)

    Floegel-Delor, U.; Riedel, T.; Wippich, D.; Goebel, B.; Rothfeld, R.; Schirrmeister, P.; Werfel, F. N.; Usoskin, A.; Rutt, A.

    We present here a report about a copper stabilizer processing unit and the function on IBAD - HPLD coated conductor properties. A continuous reel - to- reel Cu plating stabilizer manufacturing technology was developed and will be transferred to Bruker HTS. The quality and performance of one- side and double- side 20 ?m Cu layers are evaluated with respect to critical current behavior and conductor joint fabrication. By current pulse plating technology in copper sulphate CuSO4 we have gained to optimize the plating speed to more than 30 m/h by variation the electrical, electrode and solution parameters. With the new 6 m long Cu reel plating unit improved production yield and reproducible Cu stabilizer performance is demonstrated. The non-vacuum deposition unit has a high flexibility in processing a homogeneous Cu stabilizer of thickness of 5 - 50 ?m. Using the Cu layer face -to -face joints with resistances of 10-7 ?cm2 level by standard soldering are becoming routine. We will provide an overall analysis of our construction and results in the PLD Cu - HTS hybrid conductor engineering and processing.

  11. Update on copper oxide superconductors

    SciTech Connect

    Cava, R.J.

    1995-05-01

    The early high-{Tc} superconductors Ba{sub 2}YCu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} remain the most studied for their potential application. The number and variety of new copper oxide superconductors discovered since 1986 is remarkable. Although physicists like to take credit for the superconductivity revolution, it is really a revolution in new materials. New materials of continually increasing complexity have driven the field forward since its beginning. It is no accident that the chemically simplest copper oxide superconductors were discovered first. Higher {Tc} values have been caused by the rapid growth in general knowledge in the material community of the empirical factors necessary for the occurrence of high-{Tc} superconductivity. The growth is based on improving chemical understanding of previous discoveries. The chemical understanding and complexity of cuprate superconductors continue to increase. The appearance in 1993 of mercury-based materials has further raised {Tc} values.

  12. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  13. Effect of chelators on copper metabolism and copper pools in mouse hepatocytes

    SciTech Connect

    McArdle, H.J.; Gross, S.M.; Creaser, I.; Sargeson, A.M.; Danks, D.M.

    1989-04-01

    Disorders of copper storage are usually treated by chelation therapy. It is generally thought that the chelators act by mobilizing copper from the liver, hence allowing excretion in the urine. This paper has examined the effect of chelators on copper uptake and storage in mouse hepatocytes. Penicillamine, a clinically important chelator, does not block the uptake of copper or remove copper from hepatocytes. Two other copper chelators, sar and diamsar, which form very stable and kinetically inert Cu2+ complexes by encapsulating the metal ion in an organic cage, were shown to block copper accumulation by the cells and to remove up to 80% of cell-associated copper. They also removed most (approximately 80%) of the /sup 64/Cu accumulated by the cells in 30 min, but released only a small percentage (less than 20%) of that accumulated over 18 h. The results show that copper in the hepatocyte can be divided into at least two pools, an easily accessible one, and another, not removable even after long-term incubation with any of the chelators. Most of the copper normally found in the cell appeared to be associated with the former pool.

  14. Solubilisation and chemical fixation of copper(ii) in micronized copper treated wood.

    PubMed

    Xue, Wei; Ruddick, John N R; Kennepohl, Pierre

    2016-03-01

    Wood preservatives using micronized particulate copper as the main active ingredient recently introduced in the USA have generated controversies due to their limited intrinsic solubility compared to the conventional soluble copper treatments. Because the availability of soluble copper ions is essential for these preservatives to provide an effective treatment, concerns centered on whether they are able to produce soluble copper when introduced into wood, and the copper fixation mechanism of the treatment is little understood. A combination of Electron Paramagnetic Resonance (EPR) spectroscopy and X-ray Fluorescence (XRF) spectroscopy has been successfully utilized to characterize and quantify solubilized and fixed copper species in micronized copper treated wood, which also contains unreacted particulate copper. On the basis of the experimental results, the fixation mechanism is thought to be triggered by the reaction between the carboxylic acid protons in hemicellulose of wood with the particulate copper, and the quantities of the solubilized and fixed copper species are determined by the availability of these acidic protons. PMID:26819092

  15. Copper accumulation in channel catfish (Ictalurus punctatus) exposed to water borne copper sulfate

    SciTech Connect

    Hobbs, M.; Griffin, B.; Schlenk, D.; Kadlubar, F.; Brand, C.D.

    1995-12-31

    Liver and axial muscle of channel catfish (Ictalurus punctatus) was analyzed for residual copper after exposure to water borne copper sulfate. Copper sulfate was continuously introduced into well water in three fiber glass tanks to achieve 1.7 mg/L, 2.7 mg/L and 3.6 mg/L copper sulfate concentrations in exposure waters. Milli-Q quality water was metered into a fourth tank at the same rate for unexposed fish. Actual levels of copper in exposure waters were determined by daily sampling and analysis by graphite furnace atomic absorption spectrophotometry (GFAA). Tissue samples were taken from six fish from each of the exposed and unexposed tanks at two-week intervals, Samples were collected until tissue analysis indicated an equilibrium had been established between the uptake and elimination in both the muscle and liver tissue. Elimination was followed until a clear rate of deputation could be established. Samples were digested in nitric acid in a micro wave digestor and analyzed by GFAA. Results of tissue analysis will be presented to demonstrate bioaccumulation and the effect of copper concentration, length of copper exposure, and gender on copper uptake, establishment of tissue:environmental copper equilibrium, and rate of copper elimination following exposure.

  16. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  17. Normal macrophage function in copper deficient mice

    SciTech Connect

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-03-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring /sup 14/CO/sub 2/ production from (1-/sup 14/C)-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states.

  18. Electron Percolation In Copper Infiltrated Carbon

    NASA Astrophysics Data System (ADS)

    Krcho, Stanislav

    2015-11-01

    The work describes the dependence of the electrical conductivity of carbon materials infiltrated with copper in a vacuum-pressure autoclave on copper concentration and on the effective pore radius of the carbon skeleton. In comparison with non-infiltrated material the electrical conductivity of copper infiltrated composite increased almost 500 times. If the composite contained less than 7.2 vol% of Cu, a linear dependence of the electrical conductivity upon cupper content was observed. If infiltrated carbon contained more than 7.2 vol% of Cu, the dependence was nonlinear - the curve could be described by a power formula (x - xc)t. This is a typical formula describing the electron percolation process in regions containing higher Cu fraction than the critical one. The maximum measured electrical conductivity was 396 104 ?-1 m-1 for copper concentration 27.6 vol%. Experiments and analysis of the electrical conductivity showed that electron percolation occurred in carbon materials infiltrated by copper when the copper volume exceeded the critical concentration. The analysis also showed a sharp increase of electrical conductivity in composites with copper concentration higher than the threshold, where the effective radius of carbon skeleton pores decreased to 350 nanometres.

  19. Redox control of copper homeostasis in cyanobacteria

    PubMed Central

    López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J.

    2012-01-01

    Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen. PMID:23073008

  20. Bioinorganic Chemical Modeling of Dioxygen-Activating Copper Proteins.

    ERIC Educational Resources Information Center

    Karlin, Kenneth D.; Gultneh, Yilma

    1985-01-01

    Discusses studies done in modeling the copper centers in the proteins hemocyanin (a dioxygen carrier), tyrosinase, and dopamine beta-hydroxylase. Copper proteins, model approach in copper bioinorganic chemistry, characterization of reversible oxygen carriers and dioxygen-metal complexes, a copper mono-oxygenase model reaction, and other topics are

  1. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Lambais, Mrcio Rodrigues; Bortolon, Leandro; de Melo, George Wellington Bastos; Camargo, Flvio Anastcio de Oliveira

    2010-11-01

    Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg? dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg? of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg? of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha? of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas. PMID:20937516

  2. THE IMPACT OF ORTHOPHOSPHATE ON COPPER CORROSION AND CHLORINE DEMAND

    EPA Science Inventory

    In 1991, EPA promulgated the Lead and Copper Rule, which established a copper action level of 1.3 mg/L in a 1-liter, first-draw sample collected from the consumer’s tap. Excessive corrosion of copper can lead to elevated copper levels at the consumer's tap, and in some cases, can...

  3. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  4. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  5. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  6. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  7. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  8. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  9. 19 CFR 10.98 - Copper-bearing fluxing material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Copper-bearing fluxing material. 10.98 Section 10... Material § 10.98 Copper-bearing fluxing material. (a) For the purpose of this section, ores usable as a... copper. (b) (c) There shall be filed in connection with the entry of such copper-bearing ores, either...

  10. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...

  11. THE IMPACT OF ORTHOPHOSPHATE ON COPPER CORROSION AND CHLORINE DEMAND

    EPA Science Inventory

    In 1991, EPA promulgated the Lead and Copper Rule, which established a copper action level of 1.3 mg/L in a 1-liter, first-draw sample collected from the consumers tap. Excessive corrosion of copper can lead to elevated copper levels at the consumer's tap, and in some cases, can...

  12. Bioinorganic Chemical Modeling of Dioxygen-Activating Copper Proteins.

    ERIC Educational Resources Information Center

    Karlin, Kenneth D.; Gultneh, Yilma

    1985-01-01

    Discusses studies done in modeling the copper centers in the proteins hemocyanin (a dioxygen carrier), tyrosinase, and dopamine beta-hydroxylase. Copper proteins, model approach in copper bioinorganic chemistry, characterization of reversible oxygen carriers and dioxygen-metal complexes, a copper mono-oxygenase model reaction, and other topics are…

  13. Copper: Toxicological relevance and mechanisms

    PubMed Central

    Gaetke, Lisa M.; Chow-Johnson, Hannah S.; Chow, Ching K.

    2015-01-01

    Copper (Cu) is a vital mineral essential for many biological processes. The vast majority of all Cu in healthy humans is associated with enzyme prosthetic groups or bound to proteins. Cu homeostasis is tightly regulated through a complex system of Cu transporters and chaperone proteins. Excess or toxicity of Cu, which is associated with the pathogenesis of hepatic disorder, neurodegenerative changes and other disease conditions, can occur when Cu homeostasis is disrupted. The capacity to initiate oxidative damage is most commonly attributed to Cu-induced cellular toxicity. Recently, altered cellular events, including lipid metabolism, gene expression, alpha-synuclein aggregation, activation of acidic sphingomyelinase and release of ceramide, and temporal and spatial distribution of Cu in hepatocytes, as well as Cu-protein interaction in the nerve system, have been suggested to play a role in Cu toxicity. However, whether these changes are independent of, or secondary to, an altered cellular redox state of Cu remain to be elucidated. PMID:25199685

  14. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  15. Copper toxicosis in an Australian child.

    PubMed

    Walker, N I

    1999-06-28

    A 20 month old Caucasian child living in rural Australia presented with liver failure after exposure from birth to milk formula made from acidic bore water containing excess copper leached from the copper piping. The liver pathology was identical to that seen in Indian childhood cirrhosis and similar disease in non-Indian children now termed idiopathic copper toxicosis (ICT). The only other Australian case, reported more than 20 years previously, had identical presentation, pathology and circumstances of occurrence. The rarity of ICT in Australia, despite a significant population at risk, and the implications of these cases are discussed. PMID:10383881

  16. Copper leaching, solvent extraction, and electrowinning technology

    SciTech Connect

    Jergensen, G.V. II

    1999-07-01

    This volume recognizes the growing role of solvent extraction and electrowinning technology in the global copper business. This process is an efficient and cost effective way to extract copper. This proceedings documents the present status of the SX-EW business. It represents a substantial body of historical, scientific, engineering, and commercial information regarding the growth and application of the technology. Sections include: the business and technology of SX-EW, theory and practice of copper leaching, theory and practice of tankhouse operations, and theory and practice of solvent extraction.

  17. Copper Delivery to Chloroplast Proteins and its Regulation

    PubMed Central

    Aguirre, Guadalupe; Pilon, Marinus

    2016-01-01

    Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase, but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field. PMID:26793223

  18. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  19. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  20. Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B.

    PubMed

    Mondol, Tanumoy; Åden, Jörgen; Wittung-Stafshede, Pernilla

    2016-02-12

    Protein conformational changes are fundamental to biological reactions. For copper ion transport, the multi-domain protein ATP7B in the Golgi network receives copper from the cytoplasmic copper chaperone Atox1 and, with energy from ATP hydrolysis, moves the metal to the lumen for loading of copper-dependent enzymes. Although anticipated, conformational changes involved in ATP7B's functional cycle remain elusive. Using spectroscopic methods we here demonstrate that the four most N-terminal metal-binding domains in ATP7B, upon stoichiometric copper addition, adopt a more compact arrangement which has a higher thermal stability than in the absence of copper. In contrast to previous reports, no stable complex was found in solution between the metal-binding domains and the nucleotide-binding domain of ATP7B. Metal-dependent movement of the first four metal-binding domains in ATP7B may be a trigger that initiates the overall catalytic cycle. PMID:26797276

  1. Thermodynamic study of solid copper nickel alloys by use of copper beta-alumina

    NASA Astrophysics Data System (ADS)

    Oishi, Toshio; Tagawa, Shinya; Tanegashima, Soichiro

    2005-02-01

    Copper ??-alumina was prepared by ion exchange reactions starting with a sodium ??-alumina. Exchange from sodium ion to copper ion was done by immersing the sample in liquid cuprous chloride. Exchange of Na+ ion in ??-alumina to Cu+ ion was not complete as Na+ ion remained within the ??-alumina. Copper activity in solid copper nickel alloys was measured by electromotive force (EMF) technique incorporating the partially exchanged (Cu+ Na+) ??-alumina as a solid electrolyte for temperatures between 870 and 1300 K. The activities of copper and nickel in the solid solution at these temperatures exhibited positive deviations from Raoult's law. The activity coefficients of copper and nickel at infinite dilution at 973 K were estimated to be 5.55 and 3.71, respectively. Furthermore, the free energies, enthalpies and entropies of mixing were derived from EMF data.

  2. The alteration of copper homeostasis in inflammation induced by lipopolysaccharides.

    PubMed

    Han, Ming; Lin, Zhexuan; Zhang, Yuan

    2013-08-01

    Significant changes of copper homeostasis were triggered by lipopolysaccharides, which result in systemic inflammatory response and contribute to hepatic injury. Administration of lipopolysaccharides resulted in the increase of plasma "free" copper and total copper concentrations, whereas, the decrease of "free" copper and total copper contents in liver tissue. Copper-associated proteins were detected and showed a down-regulation of X-linked inhibitor of apoptosis protein, and up-regulation of copper metabolism domain containing 1 and copper transporter 1. The alteration of these proteins would lower the apoptotic threshold. Meanwhile, the increasing of circulation copper might cause oxidative injury through Fenton reaction and contribute to tissue injury. Our findings underscored the possibility that these changes in systemic copper homeostasis might provide a novel insight of the characteristic of the acute phase of inflammatory response and the underlying influence on tissue injury. PMID:23780468

  3. Copper-Catalyzed Reaction of Trifluoromethylketones with Aldehydes via a Copper Difluoroenolate.

    PubMed

    Doi, Ryohei; Ohashi, Masato; Ogoshi, Sensuke

    2016-01-01

    A copper-catalyzed reaction of easily accessible ?,?,?-trifluoromethylketones with various aldehydes affords difluoro-methylene compounds in the presence of diboron and NaOtBu. The key process of the reaction is the formation of a copper difluoroenolate by 1,2-addition of a borylcopper intermediate to ?,?,?-trifluoromethylketones and subsequent ?-fluoride elimination. Mechanistic studies including the isolation and characterization of a possible anionic copper alkoxide intermediate are also described. PMID:26514445

  4. Analysis of copper flows in China from 1975 to 2010.

    PubMed

    Zhang, Ling; Yang, Jiameng; Cai, Zhijian; Yuan, Zengwei

    2014-04-15

    By applying substance flow analysis (SFA), the paper attempts to illustrate how copper utilization pattern has changed in the anthroposphere of China from 1975 to 2010. An analytical framework is firstly established and the detailed copper cycles of the specific years 1975, 1985, 1995, 2005 and 2010 are then characterized. Major conclusions include the following: (1) Chinese copper industry has made significant progress driven by large domestic copper demand since 1970s, especially after 1990s. Also the structure of copper industry has shifted from a basic industry to a processing industry. The share of secondary copper production in total refined copper has risen from 20% in 1975 to 38% in 2010; (2) the Chinese society has experienced a rapid copper accumulation since 1990s. The annual input flow to use stage jumped from only 334 Gg (that is 0.36 kg per capita copper consumption) in 1975 to 7,916 Gg (5.90 kg per capita) in 2010; (3) a large amount of copper has to be imported to meet the huge demand, mainly involving in copper concentrate, refined copper and copper scrap. And the NIR (Net Import Ratio) of the three was 53.0%, 38.7% and 63.0% in 2010, respectively; (4) domestically produced copper scrap increased from 74.5 Gg in 1975 to 711.2 Gg in 2010. Comparing it with import scrap and domestic new scrap we found that at current stage the in-use stock is still too small to generate high quantities of copper scrap for domestic secondary copper production. (5) Major copper losses occurred through copper Mining, Refining and WM&R, with the Mining exhibited the lowest copper utilization efficiency (CUE) among the three processes, and may have the great potential for increasing copper utilization rate in China. PMID:24530587

  5. Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects

    SciTech Connect

    Pejova, Biljana

    2014-05-01

    Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample. - Graphical abstract: Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: competition between phonon confinement and strain-related effects. - Highlights: • Phonon confinement vs. strain-induced effects in ZnSe 3D QD assemblies were studied. • Shifts of the 1LO band result from an intricate compromise between the two effects. • SO and theoretically forbidden TO modes were accurately assigned. • Phonon relaxation time in as-deposited and annealed samples is 0.38 ps and 0.50 ps. • Both values are significantly smaller than in macrocrystalline ZnSe sample.

  6. Surface chemistry of nanostructures: 1) interactions of mixed monolayers of carboxylic acids on titania, 2) synthesis and immobilization of aqueous cadmium selenide quantum dots

    NASA Astrophysics Data System (ADS)

    Nevins, Jeremy S.

    2011-12-01

    This thesis will focus on (1) characterization of mixed monolayers of thiol-terminated (T) and methyl-terminated (Me) carboxylic acids on nanocrystalline TiO2 thin films, (2) the synthesis of aqueous CdSe quantum dots (QDs), with particular emphasis on the influence of capping-group functionality and reaction conditions on the kinetics and mechanism of particle growth, and (3) attachment of CdSe QDs to TiO2 thin films and their photoelectrochemical performance as a function of surfactant in QD-sensitized solar cells (QDSSCs). Mixed monolayers have been used in many applications, such as chemical sensing, biomolecular recognition, molecular electronics, catalysis, and as building blocks for materials assembly. Mixed monolayers of T and Me on TiO 2 underwent dimerization-induced compositional changes. Me was displaced on the surface by T because of the formation of intermolecular disulfide bonds between thiol groups of T adsorbed to the TiO2 surface. The compositional changes were found to vary as a function of solvent, alkyl chain length of T, steric bulk of adsorbates, and surface-binding and terminal functional groups. The findings illustrate that dimerization and other intermolecular interactions between adsorbates may dramatically influence the composition and terminal functionalization of mixed monolayers. Semiconductor QDs are attractive alternatives to molecular chromophores and bulk semiconductors for light-harvesting applications in photovoltaics and photocatalysis. Aqueous QDs are of particular interest due to their straightforward, cost-effective, and environmentally-benign syntheses. CdSe QDs were synthesized in basic aqueous suspensions at room temperature under ambient conditions by mixing a cadmium precursor, selenide precursor, and one of several carboxylate-functionalized capping groups (cysteinate, mercaptopropionate, and mercaptosuccinate). The photophysical properties of the QDs varied with capping-group functionality, concentration of precursors, and pH of the aqueous reaction mixture. Varying these parameters allowed for systematic control of the kinetics and mechanism of particle growth, as well as the size and size distribution of QDs at equilibrium. Under certain conditions, "magic-sized" clusters (MSCs) of CdSe, rather than regular QDs, were preferentially synthesized. The carboxylated capping groups of aqueous QDs were used as bifunctional linkers, allowing for facile attachment to nanocrystalline TiO2 thin films. Equilibrium binding experiments were performed to quantify the adsorption of regular QDs and MSCs to nanocrystalline TiO2 thin films. Finally, photoelectrochemistry was used to quantify the influence of capping-group functionality on the efficiency of electron injection from adsorbed QDs into TiO2 and the power-conversion efficiency of QDSSCs.

  7. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    PubMed

    Bjrkbacka, sa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO?). Both H2O2 and HO? are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO? are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper. PMID:26287519

  8. Reduction of copper sulphate with elemental iron for preparation of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazim, Muhammad

    Reduction of copper sulphate with elemental iron also known as cementation is a well known process used for the recovery of copper for a long time. In this study, the kinetics of the reaction of copper sulphate with iron wire and iron powder has been investigated. The reaction kinetics was studied as a function of different process parameters such as initial concentration, temperature and pH. In this research work, the effects of the above three parameters were studied for both types of iron substrates. It was found that with the iron wire the reaction obeys first order kinetics with respect to copper concentration whereas with the iron powder the order was found to be 1.5. The initial concentration was found to have considerable effect on the reaction kinetics of copper sulphate with elemental iron. The rate of reaction increases with an increase in the initial copper concentration up to a certain level and then decreases for the case of iron wire. However, for the reaction of copper sulphate with iron powder, the reaction rate decreases with an increase in the initial copper concentration. The effect of temperature on the reaction rate of copper sulphate for both types iron substrates (iron wire and iron powder) has also been studied in the temperature range of 23-54ºC. In both the cases, the reaction rate increases with an increase in temperature according to Arrhenius law. The activation energy for the reactions of copper sulphate with iron wire and iron powder was found to be 25.36 kJ/mol and 26.32 kJ/mol, respectively. The copper cementation reaction was found to be suitable to operate at a pH of 2.5-3 for iron wire and a pH of 3-4 for iron powder considering possible inhibition by copper hydroxyl complex formation at higher pH and the possible excess iron consumption by hydrogen reduction at lower pH. The copper particles were produced by the reduction of copper sulphate with elemental iron. The produced copper particles were obtained in the micro to nano range. Nowadays, nano sized particles has potential applications in different engineering and industrial fields. In this research work, emphasis was given to produce copper nano-particles. The reaction of copper sulphate solution with iron wire was studied in the presence of different organic solvents to verify the size and purity of the produced copper particles. 1-butanol proved to be a competent solvent in producing nearly nano sized copper particles with particles size as small as 165 nanometers in the form of clusters and purity as high as 93.67 weight% of copper. In order to determine the copper particles with the smallest size (nano range) and copper purity to a considerable level, characterization was done with the produced copper particles. For this purpose, the effect of sonication, addition of surfactant and chelation by adding EDTA were studied. It can be concluded that nano size copper particles with size less than 100 nm with copper purity of 100% were produced by reaction of 5% copper sulphate solution in the presence of 2 ml surfactant with iron wire and sonication. These copper nano particles have potential applications as catalysts for different industrial organic reactions. Finally, optimization studies of the process parameters effect on the reaction yield of copper sulphate with both types of iron substrates (wire and powder) were carried out using MATLAB 7.0 software. In this study, the relationship between three process variables namely the initial concentration of copper, temperature and pH of solution with reaction yield of copper cementation reaction was investigated for both the cases. Cubic mixture models were developed by using three levels full factorial design to find out the main effects and interactions of these process variables on the reaction yields of copper. The validity of the cubic mixture regressed models have been verified with high regression coefficients and through normal probability curves for residuals. Finally, response surface methodology was used to determine the optimum operating conditions of the cementation reaction that can provide the maximum yield. Response surface and contour plots were proved to be effective in investigating the optimum process variables for copper yield. The optimum conditions for the reaction of copper sulphate with iron wire as determined by optimization toolbox of MATLAB 7.0 software were an initial copper concentration of 2808 ppm, temperature of 54°C and pH of 2.86 giving a maximum yield of 0.99. On the other hand, the optimum conditions for the reaction of copper sulphate with iron powder as determined by optimization toolbox of MATLAB 7.0 software were an initial copper concentration of 2248 ppm, temperature of 54°C and pH of 3.46 giving maximum yield of 0.90.

  9. Corrosion failures of copper/copper alloy piping in building piping systems

    SciTech Connect

    Hoffmann, R.A.

    1998-12-31

    The focus of this paper is on copper and copper alloys. Next to steel, copper pipe and tubing are the most widely used materials in building water systems. Its usage in these applications is based on its excellent corrosion resistance, high conductivity and excellent formability. This paper presents three separate case histories that deal with copper/copper alloy piping failures in buildings. Two represent failures in which the pipe or tube product was the primary containment boundary, and the third occurred in copper tubes which were part of an evaporator section in a freon chiller. In every case, an unexpected external influence caused the failure. The first case is a copper tube failure from a high-rise hotel in which the tubes acted as expansion loops in the hot water portion of HVAC equipment at the individual guest room. The piping was 6.35 cm copper tubing which split axially and leaked. These failures took place before the facility was in service. The second case involves externally finned and internally enhanced copper tubes used in the evaporator section of a chiller; the tubes failed through extensive corrosion after a winter lay-up following the first season of chiller operation. In the third case, a brass pipe failed through stress corrosion cracking. This pipe was in hot water service, which was an inappropriate usage of this pipe product. The pipe experienced external damage from pipe hangers attached to support other pipes running beneath this hot water pipe.

  10. Liver copper concentrations in cull cattle in the UK: are cattle being copper loaded?

    PubMed Central

    Kendall, N. R.; Holmes-Pavord, H. R.; Bone, P. A.; Ander, E. L.; Young, S. D.

    2015-01-01

    With the release of the Department for the Environment, Food and Rural Affairs/Advisory Committee on Animal Feed Guidance Note for Supplementing Copper to Bovines it was noted that the current copper status of the national herd was not known. Liver samples were recovered from 510 cull cattle at a single abattoir across a period of three days. The samples were wet-ashed and liver copper concentrations determined by inductively coupled plasma mass spectrometry analysis. Breed, age and previous location information were obtained from the British Cattle Movement Service. Dairy breeds had higher liver copper concentrations than beef breeds. Holstein-Friesian and other dairy breeds had 38.3 per cent and 40 per cent of cattle above the Animal Health and Veterinary Laboratories Agency (AHVLA) reference range (8000?mol/kg dry matter), respectively, whereas only 16.9 per cent of animals in the combined beef breeds exceeded this value. It was found that underlying topsoil copper concentration was not related to liver copper content and that age of the animal also had little effect on liver concentration. In conclusion, over 50 per cent of the liver samples tested had greater-than-normal concentrations of copper with almost 40 per cent of the female dairy cattle having liver copper concentrations above the AHVLA reference range, indicating that a significant proportion of the UK herd is at risk of chronic copper toxicity. PMID:26489996

  11. Liver copper concentrations in cull cattle in the UK: are cattle being copper loaded?

    PubMed

    Kendall, N R; Holmes-Pavord, H R; Bone, P A; Ander, E L; Young, S D

    2015-11-14

    With the release of the Department for the Environment, Food and Rural Affairs/Advisory Committee on Animal Feed Guidance Note for Supplementing Copper to Bovines it was noted that the current copper status of the national herd was not known. Liver samples were recovered from 510 cull cattle at a single abattoir across a period of three days. The samples were wet-ashed and liver copper concentrations determined by inductively coupled plasma mass spectrometry analysis. Breed, age and previous location information were obtained from the British Cattle Movement Service. Dairy breeds had higher liver copper concentrations than beef breeds. Holstein-Friesian and 'other' dairy breeds had 38.3 per cent and 40 per cent of cattle above the Animal Health and Veterinary Laboratories Agency (AHVLA) reference range (8000 µmol/kg dry matter), respectively, whereas only 16.9 per cent of animals in the combined beef breeds exceeded this value. It was found that underlying topsoil copper concentration was not related to liver copper content and that age of the animal also had little effect on liver concentration. In conclusion, over 50 per cent of the liver samples tested had greater-than-normal concentrations of copper with almost 40 per cent of the female dairy cattle having liver copper concentrations above the AHVLA reference range, indicating that a significant proportion of the UK herd is at risk of chronic copper toxicity. PMID:26489996

  12. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  13. Characterization of copper nanopowders after natural aging

    NASA Astrophysics Data System (ADS)

    Amelkovich, Yu A.; Nazarenko, O. B.; Sechin, A. I.; Visakh, P. M.

    2015-04-01

    Copper nanopowders after storage under natural conditions can oxidize and change their properties. In this work, the phase composition, morphology and thermal properties of copper nanopowders after natural aging of 10 years were studied. The copper nanopowders were produced by the method of electrical explosion of wires in different gaseous ambient: argon and carbon dioxide. The nanopowders were characterized by X-ray diffraction, thermal analysis, scanning electron microscopy, Fourier transform infrared spectroscopy. The content of copper oxides phases was found to be increased in comparison with freshly synthesized powders. This transformation results in the change of the thermal characteristics of the nanopowders. The effect of the synthesis conditions on the composition and thermal characteristics was shown.

  14. Investigations on Fracture of Collector Copper Lamellas

    NASA Astrophysics Data System (ADS)

    Marsavina, Liviu; Faur, Nicolae; Susan-Resiga, Romeo; Negru, Radu

    The performance of engineering components and structures is strongly influenced by the interaction between design, manufacture and materials. This paper presents the fracture of copper lamellas from a circular collector. The investigated circular collector, having 315 copper lamellas, is one of the main parts of an electric motor. The fracture of the copper lamellas was observed in normal operation. This unexpected fracture required an investigation of the fracture origin, in order to improve the initial design. The numerical results of the Finite Element Analysis on the stress field in the copper lamellas for the operating regimes, and the stress concentration effects are shown. A study of crack initiation, based on Notch Stress Intensity Factor approach was performed in order to estimate if the conditions of crack initiation are meet. Finally a study of crack propagation will present comparatively the numerical obtained crack path against the one observed in-service.

  15. Atom chips on direct bonded copper substrates

    SciTech Connect

    Squires, Matthew B.; Stickney, James A.; Carlson, Evan J.; Baker, Paul M.; Buchwald, Walter R.; Wentzell, Sandra; Miller, Steven M.

    2011-02-15

    We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (>100 {mu}m) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (<8 h) fabrication, and three-dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips is used to magnetically trap laser cooled {sup 87}Rb atoms. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width).

  16. Electroless Copper Deposition: A Sustainable Approach

    NASA Astrophysics Data System (ADS)

    Kutnahorsky, Marika Renee

    A sustainable electroless copper coating process was developed for plating automotive fasteners shaped from AISI 9255 low carbon, high silicon steel. The objective was to minimize the ionic and organic species present in each step of the plating process. A sulfuric acid solution inhibited with quinine was defined to clean the steel prior to plating. The corrosivity of the solution was examined through electrochemical and weight loss measurements to evaluate the efficiency of the cleaning process at high temperatures and high acid concentrations. An electroless copper coating process was then developed using a simple copper sulfate chemistry inhibited with quinine to extend the possible operating window. Finally, benzotriazole was evaluated as a possible anti-oxidant coating. Accelerated thioacetamide corrosion tests were used to evaluate the corrosion inhibition of benzotriazole on copper coatings.

  17. Purity test for copper-plating solutions

    NASA Technical Reports Server (NTRS)

    Mansfeld, F. B.

    1977-01-01

    Electrode configuration can be used to measure extent of impurities in acid-copper plating solution. It can be inserted into any plating tank and will show whether bath is clean or contaminated, within fifteen minutes.

  18. Disturbed Copper Bioavailability in Alzheimer's Disease

    PubMed Central

    Kaden, Daniela; Bush, Ashley I.; Danzeisen, Ruth; Bayer, Thomas A.; Multhaup, Gerd

    2011-01-01

    Recent data from in vitro, animal, and human studies have shed new light on the positive roles of copper in many aspects of AD. Copper promotes the non-amyloidogenic processing of APP and thereby lowers the A? production in cell culture systems, and it increases lifetime and decreases soluble amyloid production in APP transgenic mice. In a clinical trial with Alzheimer patients, the decline of A? levels in CSF, which is a diagnostic marker, is diminished in the verum group (8?mg copper/day), indicating a beneficial effect of the copper treatment. These observations are in line with the benefit of treatment with compounds aimed at normalizing metal levels in the brain, such as PBT2. The data reviewed here demonstrate that there is an apparent disturbance in metal homeostasis in AD. More research is urgently needed to understand how this disturbance can be addressed therapeutically. PMID:22145082

  19. Atom chips on direct bonded copper substrates

    NASA Astrophysics Data System (ADS)

    Squires, Matthew B.; Stickney, James A.; Carlson, Evan J.; Baker, Paul M.; Buchwald, Walter R.; Wentzell, Sandra; Miller, Steven M.

    2011-02-01

    We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (>100 ?m) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (<8 h) fabrication, and three-dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips is used to magnetically trap laser cooled 87Rb atoms. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width).

  20. Copper staves in the blast furnace

    SciTech Connect

    Helenbrook, R.G.; Kowalski, W.; Grosspietsch, K.H.; Hille, H.

    1996-08-01

    Operational data for stave cooling systems for two German blast furnaces show good correlation with predicted thermal results. Copper staves have been installed in blast furnaces in the zones exposed to the highest thermal loads. The good operational results achieved confirm the choice of copper staves in the areas of maximum heat load. Both temperature measurements and predictions establish that the MAN GHH copper staves do not experience large temperature fluctuations and that the hot face temperatures will be below 250 F. This suggests that the copper staves maintain a more stable accretion layer than the cast iron staves. Contrary to initial expectations, heat flux to the copper staves is 50% lower than that to cast iron staves. The more stable accretion layer acts as an excellent insulator for the stave and greatly reduces the number of times the hot face of the stave is exposed to the blast furnace process and should result in a more stable furnace operation. In the future, it may be unnecessary to use high quality, expensive refractories in front of copper staves because of the highly stable accretion layer that appears to rapidly form due to the lower operating temperature of the staves. There is a balance of application regions for cast iron and copper staves that minimizes the capital cost of a blast furnace reline and provides an integrated cooling system with multiple campaign life potential. Cast iron staves are proven cooling elements that are capable of multiple campaign life in areas of the blast furnace which do not experience extreme heat loads. Copper staves are proving to be an effective and reliable blast furnace cooling element that are subject to virtually no wear and are projected to have a longer campaign service life in the areas of highest thermal load in the blast furnace.

  1. Copper mercaptides as sulfur dioxide indicators

    DOEpatents

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  2. Copper Deficiency in Calves in Northcentral Manitoba

    PubMed Central

    Smart, M. E.; Gudmundson, J.; Brockman, R. P.; Cymbaluk, N.; Doige, C.

    1980-01-01

    Four seven month old Simmental calves were examined because of unthriftiness, a persistent cough, stiffness and lameness. The calves had gastrointestinal and pulmonary parasitism. Analysis of the blood copper levels of these calves and of cows and calves on the farm indicated a generalized deficiency. Only the calves affected with parasitism showed signs of clinical copper deficiency. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:7260830

  3. Copper stable isotopes to trace copper behavior in wetland systems.

    PubMed

    Babcsnyi, Izabella; Imfeld, Gwenal; Granet, Mathieu; Chabaux, Franois

    2014-05-20

    Wetlands are reactive zones of the landscape that can sequester metals released by industrial and agricultural activities. Copper (Cu) stable isotope ratios (?(65)Cu) have recently been used as tracers of transport and transformation processes in polluted environments. Here, we used Cu stable isotopes to trace the behavior of Cu in a stormwater wetland receiving runoff from a vineyard catchment (Alsace, France). The Cu loads and stable isotope ratios were determined in the dissolved phase, suspended particulate matter (SPM), wetland sediments, and vegetation. The wetland retained >68% of the dissolved Cu and >92% of the SPM-bound Cu, which represented 84.4% of the total Cu in the runoff. The dissolved Cu became depleted in (65)Cu when passing through the wetland (?(65)Cuinlet-outlet from 0.03 to 0.77), which reflects Cu adsorption to aluminum minerals and organic matter. The ?(65)Cu values varied little in the wetland sediments (0.04 0.10), which stored >96% of the total Cu mass within the wetland. During high-flow conditions, the Cu flowing out of the wetland became isotopically lighter, indicating the mobilization of reduced Cu(I) species from the sediments and Cu reduction within the sediments. Our results demonstrate that the Cu stable isotope ratios may help trace Cu behavior in redox-dynamic environments such as wetlands. PMID:24787375

  4. Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1

    PubMed Central

    Maryon, Edward B.; Molloy, Shannon A.

    2013-01-01

    Copper is an essential micronutrient. Following entry via the human copper transporter 1 (hCTR1), copper is delivered to several copper chaperones, which subsequently transfer the metal to specific targets via protein:protein interactions. It is has been assumed, but not demonstrated, that chaperones acquire copper directly from hCTR1. However, some reports have pointed to an intermediary role for glutathione (GSH), an abundant copper-binding tri-peptide. To address the issue of how transported copper is acquired by the copper chaperones in vivo, we measured the initial rate of 64Cu uptake in cells in which the cellular levels of copper chaperones or GSH were substantially depleted or elevated. Knockdown or overexpression of copper chaperones ATOX1, CCS, or both had no effect on the initial rate of 64Cu entry into HEK293 cells having endogenous or overexpressed hCTR1. In contrast, depleting cellular GSH using l-buthionine-sulfoximine (BSO) caused a 50% decrease in the initial rate of 64Cu entry in HEK293 cells and other cell types. This decrease was reversed by washout of BSO or GSH replenishment with a permeable ester. BSO treatment under our experimental conditions had no significant effects on the viability, ATP levels, or metal content of the cells. Attenuated 64Cu uptake in BSO was not due to oxidation of the cysteine in the putative metal-binding motif (HCH) at the intracellular hCTR1 COOH terminus, because a mutant lacking this motif was fully active, and 64Cu uptake was still reduced by BSO treatment. Our data suggest that GSH plays an important role in copper handling at the entry step. PMID:23426973

  5. Method for providing uranium with a protective copper coating

    DOEpatents

    Waldrop, Forrest B. (Powell, TN); Jones, Edward (Knoxville, TN)

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  6. Copper transporting P-type ATPases and human disease.

    PubMed

    Cox, Diane W; Moore, Steven D P

    2002-10-01

    Copper transporting P-type ATPases, designated ATP7A and ATP7B, play an essential role in mammalian copper balance. Impaired intestinal transport of copper, resulting from mutations in the ATP7A gene, lead to Menkes disease in humans. Defects in a similar gene, the copper transporting ATPase ATP7B, result in Wilson disease. This ATP7B transporter has two functions: transport of copper into the plasma protein ceruloplasmin, and elimination of copper through the bile. Variants of ATP7B can be functionally assayed to identify defects in each of these functions. Tissue expression studies of the copper ATPases and their copper chaperone ATOX1 indicate that there is not complete overlap in expression. Other chaperones may be important for the transport of copper into ATP7A and ATP7B. PMID:12539960

  7. Method for providing uranium with a protective copper coating

    SciTech Connect

    Jones, E.; Waldrop, F.B.

    1981-08-25

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electrodeposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  8. The Copper Balance of Cities

    PubMed Central

    Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-wen; Brunner, Paul H

    2014-01-01

    Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. PMID:25866460

  9. Molecular mechanisms of copper homeostasis.

    PubMed

    Lalioti, Vasiliki; Muruais, Gemma; Tsuchiya, Yo; Pulido, Diego; Sandoval, Ignacio V

    2009-01-01

    The transition metal copper (Cu) is an essential trace element for all biota. Its redox properties bestow Cu with capabilities that are simultaneously essential and potentially damaging to the cell. Free Cu is virtually absent in the cell. The descriptions of the structural and functional organization of the metallothioneins, Cu-chaperones and P-type ATPases as well as of the mechanisms that regulate their distribution and functioning in the cell have enormously advanced our understanding of the Cu homeostasis and metabolism in the last decade. Cu is stored by metallothioneins and distributed by specialized chaperones to specific cell targets that make use of its redox properties. Transfer of Cu to newly synthesized cuproenzymes and Cu disposal is performed by the individual or concerted actions of the P-type ATPases ATP7A and ATP7B expressed in tissues. In mammalians liver is the major captor, distributor and excreter of Cu. Mutations in the P-type ATPases that interfere with their functioning and traffic are cause of the life-threatening Wilson (ATP7B) and Menkes (ATP7A) diseases. PMID:19482593

  10. Metal (copper) segregation in magmas

    NASA Astrophysics Data System (ADS)

    Vigneresse, Jean-Louis; Truche, Laurent; Chattaraj, Pratim K.

    2014-11-01

    Before precipitating to form porphyry-type deposits, metals are transported and concentrated into magmas. Ultimately, they can enter crystalline phases or segregate into the volatile phase. In both cases, partition coefficients determine the partitioning according to the ambient physico-chemical conditions. Metal partitioning between the melt and the magmatic volatile phase (MVP) is driven by their solubility. In this study, Cu has been selected as a test for metal segregation. We evaluate qualitatively the metal's behavior with respect to the melt or to the MVP by comparing the difference in chemical potential and polarizability between the fluid phase and dissolved copper compound. Maps of polarizability are drawn after computing the chemical reactivity parameters (electrophilicity, hardness, and polarizability) for various silicate melts; a synthetic fluid phase with water, CO2, S18 compounds and halogens; and Cu-compounds as a test metal. Cu-compounds show a better affinity with the fluid phase, enhanced by the presence of S in its reduced form. It explains how Cu could segregate into the fluid phase at the magmatic stage before being enriched by diffusion or melt/vapor partitioning, leading to late hydrothermal precipitation. The method should therefore be considered as a model for understanding the behavior of other metals and their segregation during the magmatic stage.

  11. Heme/copper terminal oxidases

    SciTech Connect

    Ferguson-Miller, S.; Babcock, G.T.

    1996-11-01

    Spatially well-organized electron-transfer reactions in a series of membrane-bound redox proteins form the basis for energy conservation in both photosynthesis and respiration. The membrane-bound nature of the electron-transfer processes is critical, as the free energy made available in exergonic redox chemistry is used to generate transmembrane proton concentration and electrostatic potential gradients. These gradients are subsequently used to drive ATP formation, which provides the immediate energy source for constructive cellular processes. The terminal heme/copper oxidases in respiratory electron-transfer chains illustrate a number of the thermodynamic and structural principles that have driven the development of respiration. This class of enzyme reduces dioxygen to water, thus clearing the respiratory system of low-energy electrons so that sustained electron transfer and free-energy transduction can occur. By using dioxygen as the oxidizing substrate, free-energy production per electron through the chain is substantial, owing to the high reduction potential of O{sub 2} (0.815 V at pH 7). 122 refs.

  12. Phototunable Magnetism in Copper Octacyanomolybdate

    PubMed Central

    Ohara, Jun

    2014-01-01

    We introduce copper molybdenum cyanides of general formula Cu2[Mo(CN)8]nH2O, which can serve as optofunctional magnetic devices. Their ground states generally stay paramagnetic down to temperatures of the K order but exhibit a spontaneous magnetization upon photoirradiation usually below a few tens of K. To interest us still further, such a ferromagnetic stateinduced by blue-laser irradiation is demagnetized step by step through further application of red or near-infrared laser pulses. We solve this intriguing photomagnetism. The ground-state properties are fully revealed by means of a group-theoretical technique. Taking account of experimental observations, we simulate applying pump laser pulses to a likely ground state and successfully reproduce both the magnetization and demagnetization dynamics. We monitor the photorelaxation process through angle-resolved photoemission spectroscopy. Electrons are fully itinerant in any of the photoinduced steady states, forming a striking contrast to the initial equilibrium state of atomic aspect. The fully demagnetized final steady state looks completely different from the initial paramagnetism but bears good analogy to one of the possible ground states available with the Coulomb repulsion on Cu sites suppressed. PMID:24895661

  13. Synthesis of the copper chelator TGTA and evaluation of its ability to protect biomolecules from copper induced degradation during copper catalyzed azide-alkyne bioconjugation reactions.

    PubMed

    Ekholm, F S; Pynnnen, H; Vilkman, A; Koponen, J; Helin, J; Satomaa, T

    2016-01-21

    One of the most successful bioconjugation strategies to date is the copper(i)-catalyzed cycloaddition reaction (CuAAC), however, the typically applied reaction conditions have been found to degrade sensitive biomolecules. Herein, we present a water soluble copper chelator which can be utilized to protect biomolecules from copper induced degradation. PMID:26647226

  14. Pyridine-copper(ii) formates for the generation of high conductivity copper films at low temperatures.

    PubMed

    Paquet, C; Lacelle, T; Deore, B; Kell, A J; Liu, X; Korobkov, I; Malenfant, P R L

    2016-02-11

    Pyridine derivatives coordinated to copper(ii) formates are shown to have lower decomposition temperatures than the alkylamine analogues. Using heating profiles compatible with low temperature substrates, deposited inks made from these compounds are transformed into copper traces with a resistivity value of 14 ?? cm when sintered at 135 C in <5 minutes. PMID:26750775

  15. Putting copper into action: copper-impregnated products with potent biocidal activities.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2004-11-01

    Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria. PMID:15345689

  16. Copper intake and health threat by consuming seafood from copper-contaminated coastal environments in Taiwan

    SciTech Connect

    Han, B.C. . School of Public Health); Jeng, W.L.; Hung, T.C. . Inst. of Oceanography); Jeng, M.S. . Inst. of Zoology)

    1994-05-01

    The purpose of this paper is to describe the impact of copper pollution on the main aquaculture coast of Taiwan and the potential risk from eating the green oysters cultured along the polluted coast. The data show that the highest average concentration of copper in oysters was observed in the Erhjin Chi estuary from 1986 to 1990. The copper concentration in both the seawater and the sediment collected along the Erhjin Chi estuary was also the highest in all sampling locations. Copper concentration in oysters collected from Erhjin Chi, Hsiangshan, and Anping from 1988 to 1990 was, respectively, 61, 29, and 22 times higher than that of 10 years ago. The potential frisk from consuming oysters is relatively higher than that of other seafoods due the high bioaccumulation of oysters. The oysters in the Erhjin Chi estuary had an average concentration of copper of 3,075 [+-] 826 [mu]g/g during the past three years (1988--1990). The average copper intake from oysters for an adult with 70 kg body weight was 12.6 mg/d. The estimate indicated that the average copper intake from the oysters for female individuals is 14 times more than that of international limits. Based on the average value, long-term intake of copper through consumption of oysters cultured along the Erhjin Chi estuary be critical, especially for some high-risk groups.

  17. Copper Recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  18. Utilization of Copper Alloys for Marine Applications

    NASA Astrophysics Data System (ADS)

    Drach, Andrew

    Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of copper alloys is investigated through a series of uniaxial tension tests on virgin and weathered (after one-year deployment in the ocean) specimens. The changes in mechanical properties are quantified in terms of differences in Young's modulus, Poisson's ratio, ultimate strength, and ultimate strain. The obtained stress-strain data is used for numerical modeling of the mechanical behavior of chain-link nets. The simulations are compared with the experimental data on stiffness and strength of the nets. The available information on seawater performance of copper alloys (corrosion, biofouling, mechanics) and copper alloy nets (hydrodynamics) is used to develop engineering procedures for marine aquaculture fish cage systems with copper alloy netting. The design, analysis, and fabrication procedures are illustrated on a commercial size gravity-type offshore fish cage deployed in the Pacific Ocean near Isla Italia (Patagonia, Chile). The funding for this work was provided by the International Copper Association. This work was also supported through two UNH Fellowships: CEPS UNH Graduate Fellowship to Outstanding PhD Program Applicants and Dissertation Year Fellowship.

  19. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Wen, Shu-ming; Deng, Jian-ying; Wu, Dan-dan

    2015-03-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.

  20. One-step brazing process to join CFC composites to copper and copper alloy

    NASA Astrophysics Data System (ADS)

    Salvo, Milena; Casalegno, Valentina; Rizzo, Stefano; Smeacetto, Federico; Ferraris, Monica; Merola, Mario

    2008-02-01

    The aim of this work is to develop a new single-step brazing technique to join carbon fibre reinforced carbon composite (CFC) to pure copper (Cu) and copper alloy (CuCrZr) for nuclear fusion applications. In order to increase the wettability of CFC by a copper-based brazing alloy containing no active metal, the composite surface was modified by direct reaction with chromium, which forms a carbide layer and allows a large reduction of the contact angle. After the CFC surface modification, the commercial Gemco alloy (Cu/Ge) was successfully used to braze CFC to pure copper and pure copper to CuCrZr by the same heat treatment. The shear strength of the CFC/Cu joints measured by single lap shear tests at room temperature was (34 4) MPa, comparable to the values obtained by other joining processes and higher than the intrinsic CFC shear strength.