Science.gov

Sample records for copperii schiff-base complexes

  1. Coordination chemistry, thermodynamics and DFT calculations of copper(II) NNOS Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro

    2014-12-01

    Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2";-aminoethane), (1-methyl-2";-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature ?eff values for the complexes are 1.71-1.80 B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1 M (NaClO4), at 25?C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.

  2. Copper(II) complexes of coumarin-derived Schiff bases and their anti-Candida activity.

    PubMed

    Creaven, Bernadette S; Devereux, Michael; Karcz, Dariusz; Kellett, Andrew; McCann, Malachy; Noble, Andy; Walsh, Maureen

    2009-09-01

    The condensation of 7-amino-4-methyl-coumarin (1) with a number of substituted salicylaldehydes yielded a series of Schiff bases (2a-2k) in good yields. Subsequent reaction of these ligands with copper(II) acetate yielded Cu(II) complexes (3a-3k) and some were characterised using X-ray crystallography. All of the free ligands and their metal complexes were tested for their anti-Candida activity. A number of the ligands and complexes exhibited anti-Candida activity comparable to that of the commercially available antifungal drugs, ketoconazole and Amphotericin B. PMID:19631386

  3. A new copper(II) Schiff base complex containing asymmetrical tetradentate N2O2 Schiff base ligand: Synthesis, characterization, crystal structure and DFT study

    NASA Astrophysics Data System (ADS)

    Grivani, Gholamhossein; Baghan, Sara Husseinzadeh; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Tahmasebi, Vida; Eigner, Vclav; Duek, Michal

    2015-02-01

    A new copper (II) Schiff base complex, CuL1, was prepared from the reaction of asymmetrical Schiff base ligand of L1 and Cu(OAC)2 (L1 = salicylidene imino-ethylimino-pentan-2-one). The Schiff base ligand, L1, and its copper (II) complex, CuL1, have been characterized by elemental analysis (CHN) and FT-IR and UV-vis spectroscopy. In addition, 1H NMR was employed for characterization of the ligand. Thermogrametric analysis of the CuL1 reveals its thermal stability and its decomposition pattern shows that it is finally decomposed to the copper oxide (CuO). The crystal structure of CuL1 was determined by the single crystal X-ray analysis. The CuL1 complex crystallizes in the monoclinic system, with space group P21/n and distorted square planar coordination around the metal ion. The Schiff base ligand of L1 acts as a chelating ligand and coordinates via two nitrogen and two oxygen atoms to the copper (II) ion with C1 symmetry. The structure of the CuL1 complex was also studied theoretically at different levels of DFT and basis sets. According to calculated results the Csbnd O bond length of the salicylate fragment is slightly higher than that in the acetylacetonate fragment of ligand, which could be interpreted by resonance increasing between phenyl and chelated rings in ligand in relative to the acetylacetonate fragment.

  4. Synthesis, structure and biological activity of cobalt(II) and copper(II) complexes of valine-derived schiff bases.

    PubMed

    Lv, Jian; Liu, Tingting; Cai, Sulan; Wang, Xin; Liu, Lei; Wang, Yongmei

    2006-11-01

    We have synthesized two cobalt(II) 2 and copper(II) 3 complexes of valine-derived Schiff bases. The obtained complexes were characterized by elemental analysis, FT-IR and X-ray diffraction. Biological studies of complexes 2 and 3 had been carried out in vitro for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi. Compound 3 was proven to be a broad spectrum agent, showed a significant inhibition of the growth of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, Micrococcus luteus), and pathogenic fungi (Candida spp., Cryptococcus neoformans, Rhodothece glutinis, Saccharomyces cerevisia, Aspergillus spp., Rhizopus nigricans) tested and a moderate activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris and Enterobacter aerogenes) tested. The in vitro cytotoxicity of compound 3 was evaluated using hemolytic assay, in which the compound 3 was found to be non-toxic to human erythrocytes even at a concentration of 500mug/mL. PMID:16965817

  5. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges

    NASA Astrophysics Data System (ADS)

    Bahaffi, Saleh O.; Abdel Aziz, Ayman A.; El-Naggar, Maher M.

    2012-08-01

    A novel series of four copper(II) complexes were synthesized by thermal reaction of copper acetate salt with symmetrical tetradentate Schiff bases, N,N'bis(o-vanillin)4,5-dimethyl-l,2-phenylenediamine (H2L1), N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L2), N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylenediamine (H2L3) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L4), respectively. All the new synthesized complexes were characterized by using of microanalysis, FT-IR, UV-Vis, magnetic measurements, ESR, and conductance measurements, respectively. The data revealed that all the Schiff bases (H2L1-4) coordinate in their deprotonated forms and behave as tetradentate NOON coordinated ligands. Moreover, their copper(II) complexes have square planar geometry with general formula [CuL1-4]. The binding of the complexes with calf thymus DNA (CT-DNA) was investigated by UV-Vis spectrophotometry, fluorescence quenching and viscosity measurements. The results indicated that the complexes bind to CT-DNA through an intercalative mode. From the biological activity view, the copper(II) complexes and their parent ligands were screened for their in vitro antibacterial activity against the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosai by well diffusion method. The complexes showed an increased activity in comparison to some standard drugs.

  6. Synthesis, Spectral, and Biological Properties of Copper(II) Complexes of Thiosemicarbazones of Schiff Bases Derived from 4-Aminoantipyrine and Aromatic Aldehydes

    PubMed Central

    Agarwal, Ram K.; Singh, Lakshman; Sharma, Deepak Kumar

    2006-01-01

    We have synthesized a novel series of Schiff bases by condensation of 4-aminoantipyrine and various aromatic aldehydes followed by reaction with thiosemicarbazide. These thiosemicarbazones are potential ligands toward transition metal ions. The reaction of copper(II) salts with 4[N-(benzalidene)amino]antipyrinethiosemicarbazone (BAAPTS), 4[N-(4?-methoxybenzalidene) amino] antipyrinethiosemicarbozone (MBAAPTS), 4[N-(4?-dimethylamino benzalidene) amino] antipyrinethiosemicarbazone (DABAAPTS), and 4[N-(cinnamalidene) amino] antipyrinethiosemicarbazone (CAAPTS) resulted in the formation of solid complexes with the general composition CuX2 (H2O)(L)(X = Cl, Br,NO3,NCS, or CH3COO; L = BAAPTS, MBAAPTS, DABAAPTS, or CAAPTS). These complexes were characterized through elemental analysis, molecular weight, electrical conductance, infrared, electronic spectra, and magnetic susceptibilities at room temperature. Copper(II) complexes with BAAPTS and MBAAPTS were screened for antibacterial and antifungal properties and have exhibited potential activity. Thermal stabilities of two representative complexes were also investigated. PMID:17497009

  7. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO4] and [Cu. L. A] where L is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and A is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  8. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    NASA Astrophysics Data System (ADS)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  9. Synthesis and structure elucidation of a copper(II) Schiff-base complex: in vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies.

    PubMed

    Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K

    2014-11-01

    New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H?L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. PMID:25222146

  10. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: Effect of acid/base, oxidant, surfactant and morphology

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Mathur, Pavan

    2015-02-01

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the ?-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3- bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency.

  11. Interaction of copper(II) complex of compartmental Schiff base ligand N, N'-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Farvid, Shokouh S.; Gharagozlou, Mehrnaz

    2007-03-01

    Circular dichroism (CD) spectroscopy, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the interaction between copper(II) complex of compartmental Schiff base ligand (L), N, N'-bis(3-hydroxysalicylidene)ethylenediamine, and bovine serum albumin (BSA) in 0.1 mol dm -3 phosphate buffer solution adjusted to physiological pH 7.0 containing 20% (w/w) dimethylsulfoxide at room temperature. CD spectra show that the interaction of the copper(II) complex with BSA leads to changes in the ?-helical content of BSA and therefore changes in secondary structure of the protein with the slight red shift (2 nm) in CD spectra. From the voltammetric data, i.e. changes in limiting current with addition of BSA, the binding constant ( K) of the interaction of copper(II) complex with BSA was found to be 1.96 10 4 dm 3 mol -1. From the shifts in potential with the addition of BSA, the equilibrium constant ratio ( K2/ K1) for the binding of the oxidized Cu IIL ( K1) and reduced Cu IL ( K2) species to BSA was found to be 3.77, which shows that the reduced form Cu IL is bound more strongly to BSA than the oxidized form Cu IIL.

  12. Synthesis, characterization, crystal structure and antimicrobial activity of copper(II) complexes with the Schiff base derived from 2-hydroxy-4-methoxybenzaldehyde.

    PubMed

    Pahon?u, Elena; Ilie?, Diana-Carolina; Shova, Sergiu; Paraschivescu, Codru?a; Badea, Mihaela; Gulea, Aurelian; Ro?u, Tudor

    2015-01-01

    A novel Schiff base, ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl)methylene-amino]benzoate (HL), was prepared and structurally characterized on the basis of elemental analyses, (1)H NMR, (13)C NMR, UV-Vis and IR spectral data. Six new copper(II) complexes, [Cu(L)(NO3)(H2O)2] (1), [Cu(L)2] (2), [Cu(L)(OAc)] (3), [Cu2 (L)2Cl2(H2O)4] (4), [Cu(L)(ClO4)(H2O)] (5) and [Cu2(L2S)(ClO4)(H2O)]ClO4H2O (6) have been synthesized. The characterization of the newly formed compounds was done by IR, UV-Vis, EPR, FAB mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The crystal structures of Schiff base and the complex [Cu2(L2S)(ClO4)(H2O)]ClO4H2O (6) have been determined by single crystal X-ray diffraction studies. Both copper atoms display a distorted octahedral coordination type [O4NS]. This coordination is ensured by three phenol oxygen, two of which being related to the -oxo-bridge, the nitrogen atoms of the azomethine group and the sulfur atoms that come from the polydentate ligand. The in vitro antimicrobial activity against Escherichia coli ATCC 25922, Salmonella enteritidis, Staphylococcus aureus ATCC 25923, Enterococcus and Candida albicans strains was studied and compared with that of free ligand. The complexes 1, 2, 5 showed a better antimicrobial activity than the Schiff base against the tested microorganisms. PMID:25849802

  13. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 ?g mL -1 for calf thymus DNA (CT-DNA), 0.10-36 ?g mL -1 for yeast DNA and 0.01-10.01 ?g mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  14. Structure-Activity Relationships for Some Diamine, Triamine and Schiff Base Derivatives and Their Copper(II) Complexes

    PubMed Central

    Bolos, C. A.; Nikolov, G. St.; Ekateriniadou, L.; Kortsaris, A.; Kyriakidis, D. A.

    1998-01-01

    Ethylenediamine (en), putrescine (pu), diethylenetriamine (dien), dipropylenetriamine (dpta), spermidine (spmd) and their CuII compounds as well as the Schiff bases with 2-furaldehyde (dienOO), 2- thiophenecarboxaldehyde (dienSS) and pyrrole-2-carboxaldehyde (dienNN) of dien and that of dpta with 2- thiophenecarboxaldehyde (dptaSS), were prepared and characterised. They were tested against Bacillus substilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Proteus vulgaris and Xanthomonas campestris as antibacterial reagents, the highest activity being exhibited by Cu(dptaSS)(NO3)2 complex, which acts as antibiotic. In the antiproliferative tests (vs. T47D,L929 and BHK21/c13 cell lines) the best results were obtained with Cu(dptaSS)2+ and Cu(dienSS)2+. Electronic structure calculations gave for dptaSS and dienSS the higher negative charges on the N atoms. The counter-ions (Br-, NO3- and SO42-) play an important role by modulating the reagent's selectivity versus the bacteria [Gram(+) or Gram(-)], but they have no effect on the antiproliferative activity. PMID:18475868

  15. Four-coordinate nickel(II) and copper(II) complex based ONO tridentate Schiff base ligands: synthesis, molecular structure, electrochemical, linear and nonlinear properties, and computational study.

    PubMed

    Novoa, Nstor; Roisnel, Thierry; Hamon, Paul; Kahlal, Samia; Manzur, Carolina; Ngo, Hoang Minh; Ledoux-Rak, Isabelle; Saillard, Jean-Yves; Carrillo, David; Hamon, Jean-Ren

    2015-11-01

    We report the synthesis, characterization, crystal structures, nonlinear-optical (NLO) properties, and density functional theory (DFT) calculations of nickel(ii) and copper(ii) complex based ONO tridentate Schiff base ligands: two mononuclear compounds, [Ni(An-ONO)(NC5H5)] (5) and [Cu(An-ONO)(4-NC5H4C(CH3)3)] (6), and two heterobimetallic species, [M(Fc-ONO)(NC5H5)] (M = Ni, 7; Cu, 8), where An-ONOH2 (3) and Fc-ONOH2 (4) are the 1?:?1 condensation products of 2-aminophenol and p-anisoylacetone and ferrocenoylacetone, respectively. These compounds were characterised by microanalysis, FT-IR and X-ray crystallography in the solid state and in solution by UV-vis and (1)H and (13)C NMR spectroscopy. The crystal structures of 3-5, 7 and 8 have been determined and show for Schiff base complexes 5, 7 and 8 a four-coordinated square-planar environment for nickel and copper ions. The electrochemical behavior of all derivatives 3-8 was investigated by cyclic voltammetry in dichloromethane, and discussed on the basis of DFT-computed electronic structures of the neutral and oxidized forms of the compounds. The second-order NLO responses of 3-8 have been determined by harmonic light scattering measurements using a 10(-2) M solution of dichloromethane and working with a 1.91 ?m incident wavelength, giving rather high ?1.91 values of 350 and 290 10(-30) esu for the mononuclear species 5 and 6, respectively. The assignment and the nature of the electronic transitions observed in the UV-vis spectra were analyzed using time-dependent (TD) DFT calculations. They are dominated by LMCT, MLCT and ?-?* transitions. PMID:26412689

  16. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6.

    PubMed

    Mukherjee, Tirtha; Costa Pessoa, Joo; Kumar, Amit; Sarkar, Asit R

    2013-02-21

    Three new complexes of Cu(II) and Ni(II), [Cu(II)(H(2)pydmedpt)](2+)2Cl(-) (1), [Ni(II)(H(2)pydmedpt)](2+)2Cl(-) (2) and [Ni(II)(pydmedpt)(OH)](-)K(+) (3) of the Schiff base ligand [H(2)pydmedpt](2+)2Cl(-) were synthesized by the in situ reaction of pyridoxal (pyd), a vitamer of vitamin B(6), N,N-bis[3-aminopropyl]methylamine (medpt) and copper(II) acetate or nickel(II) acetate, respectively. The molecular structures of 1 and 2 were determined by single crystal X-ray diffraction studies. The structure of 3 in the solid state was inferred by elemental analysis, diffuse reflectance spectrum, variable temperature magnetic moment studies and DFT calculations. The binding of the Schiff base ligand to the metal centers involves two phenolato oxygens, two imine nitrogens and one amine nitrogen. The coordination geometry around Cu in 1 is distorted square pyramidal and that around the Ni atom in 2 is intermediate between square-pyramidal and trigonal-bipyramidal. In the crystals the compounds form supramolecular one dimensional chain structures stabilized by hydrogen bonding and ?-? stacking interactions. Variable temperature magnetic moment data of 2 indicate the presence of a momomeric high spin Ni(II) centre in the complex. The solid state diffuse reflectance spectrum, conductance and elemental analysis suggest that 3 is a Ni(II) complex with a tetragonally distorted octahedral field, the sixth position being occupied by the oxygen atom of a hydroxyl group. The variable temperature magnetic moment of 3 indicates the presence of a ferromagnetic dinuclear species (29.2%) along with the major monomeric species, the intra-dimer exchange term J value being 14.3 cm(-1). The competitive binding of 1 and 2 with DNA was studied in the concentration range 40 to 400 ?M, the apparent binding constants being K = 2.9 10(3) and 6.7 10(3) M(-1), respectively. Human Serum Albumin (HSA) binding studies were carried out at concentrations of 800-1000 ?M and 400-500 ?M for the complexes and HSA, respectively, in PBS buffer at pH 7.4. Complex 1 binds to HSA, while no binding is observed in case of 2, instead, the complex hydrolyses under the experimental conditions used and the resulting Ni(2+) ions bind with HSA. PMID:23223610

  17. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(ii) complexes.

    PubMed

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Koch, Biplob; Guedes da Silva, M Ftima C; Pombeiro, Armando J L

    2015-11-18

    A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of with Cu(NO3)22.5H2O led to the corresponding copper(ii) complexes [Cu(L)(NO3)] . All the compounds were characterized by conventional analytical techniques and, for and , also by single-crystal X-ray analysis. The interactions of complexes with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (Kb) are in the range of 3.5 10(5) M(-1)-3.2 10(5) M(-1). Complexes effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of > > , which is also in accord with the calculated LUMOcomplex energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of has also been evaluated by a reactive oxygen species (ROS) generation study. PMID:26523453

  18. Synthesis, characterization, and tyrosinase biomimetic catalytic activity of copper(II) complexes with schiff base ligands derived from α-diketones with 2-methyl-3-amino-(3 H)-quinazolin-4-one

    NASA Astrophysics Data System (ADS)

    Ramadan, Abd El-Motaleb M.; Ibrahim, Mohamed M.; Shaban, Shaban Y.

    2011-12-01

    A template condensation of α-diketones (biacetyl, benzile and 2,3-pentanedione) with 2-methyl-3-amino-(3 H)-quinazolin-4-one (AMQ) in the presence of CuX 2 (X = Cl -, Br -, NO3- or ClO4-) resulted in the formation of tetradentate Schiff base copper(II) complexes of the type [CuLX]X and [CuL]X 2. Structural characterization of the complex species was achieved by several physicochemical methods, namely elemental analysis, electronic spectra, IR, ESR, molar conductivity, thermal analysis (TAG & DTG), and magnetic moment measurements. The stereochemistry, the nature of the metal chelates, and the catalytic reactivity are markedly dependent upon the type of counter anions and the ligand substituent within the carbonyl moiety. A square planar monomeric structure is proposed for the perchlorate, nitrate, and bromide complexes, in which the counter anions are loosely bonded to copper(II) ion. For the chloride complexes, the molar conductivities and the spectral data indicated that they have square-pyramidal environments around copper(II) center. The reported copper(II) complexes exhibit promising tyrosinase catalytic activity towards the hydroxylation of phenol followed by the aerobic oxidation of the resulting catechol. A linear correlation almost exists between the catalytic reactivity and the Lewis-acidity of the central copper(II) ion created by the donating properties of the parent ligand. The steric considerations could be accounted to clarify the difference in the catalytic activity of these functional models.

  19. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes.

    PubMed

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H and (13)C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]4H2O, [(HL)Fe2Cl4(H2O)3]EtOH, [(HL)Fe2(ox)Cl2(H2O)3]2H2O, [(L)M2(OAc)(H2O)m]nH2O; M=Co, Ni or Cu, m=4, 0 and n=2, 3, [(HL)Cu2Cl]Cl6H2O and [(L)(UO2)2(OAc)(H2O)3]6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.3410(4) and 2.510(4) M(-1), respectively. PMID:23988527

  20. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  1. Synthesis and characterization of a copper(II) complex of a ONN donor Schiff base ligand derived from pyridoxal and 2-(pyrid-2-yl)ethylamine - A novel pyridoxal based fluorescent probe

    NASA Astrophysics Data System (ADS)

    Mandal, Senjuti; Modak, Ritwik; Goswami, Sanchita

    2013-04-01

    The title complex, Cu(LH)Cl2 is the first copper(II) complex with a Schiff base derived from pyridoxal and 2-(pyrid-2-yl)ethylamine. The central metal lies in a distorted square pyramidal environment with basal plane occupied by the tridentate ONN donor ligand and a Cl atom. The apical position is occupied by another Cl atom. The existence of two different kinds of H-bonds stabilize the network that propagates as parallel layers along crystallographic b axis. The compound exhibits an irreversible CuII/CuI couple in DMF. As pyridoxal containing moieties are fluorescent in nature, its potential as a fluorescent probe is cultivated. Copper(II) ion effectively quenches the fluorescence of HL and the association constant for Cu(II) was estimated to be 10.8 × 104 M-1 in methanol by the linear Benesi-Hildebrand equation.

  2. Synthesis, characterization and X-ray crystal structures of Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes derived from an asymmetric bidentate Schiff-base ligand at ambient temperature

    NASA Astrophysics Data System (ADS)

    Khorshidifard, Mahsa; Amiri Rudbari, Hadi; Kazemi-Delikani, Zahra; Mirkhani, Valiollah; Azadbakht, Reza

    2015-02-01

    An asymmetric bidentate Schiff-base ligand (HL: 2-((allylimino)methyl)phenol) was prepared from reaction of salicylaldehyde and Allylamine. Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes, VOL2, CoL3, CuL2 and ZnL2 were synthesized from the reaction of VO(acac)2, CoCl2·6H2O, CuCl2·2H2O and Zn(NO3)2·6H2O with the bidentate Schiff base ligand (HL: 2-allyliminomethyl-phenol) in methanol at ambient temperature. The ligand and its metal complexes were characterized by elemental analysis (CHN), FT-IR spectroscopy. In addition, 1H and 13C NMR techniques were employed for characterization of the ligand (HL) and diamagnetic complex ZnL2. The molecular structures of all complexes were determined by single crystal X-ray diffraction technique. In the ZnL2 and CuL2 complexes, the metal ion is coordinated by two nitrogen and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. In the Vanadium(IV) complex, VOL2, the vanadium center in this structure has a distorted tetragonal pyramidal N2O3 coordination sphere and for Cobalt(III) complex, CoL3, the CoIII ion is six coordinated by three bidentate Schiff base ligands in a distorted octahedral environment.

  3. Fluorescent mixed ligand copper(II) complexes of anthracene-appended Schiff bases: studies on DNA binding, nuclease activity and cytotoxicity.

    PubMed

    Jaividhya, Paramasivam; Ganeshpandian, Mani; Dhivya, Rajkumar; Akbarsha, Mohammad Abdulkadher; Palaniandavar, Mallayan

    2015-07-14

    A series of mixed ligand copper(ii) complexes of the type [Cu(L)(phen)(ACN)](ClO4)21-5, where L is a bidentate Schiff base ligand (N(1)-(anthracen-10-ylmethylene)-N(2)-methylethane-1,2-diamine (L1), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-dimethylethane-1,2-diamine (L2), N(1)-(anthracen-10-yl-methylene)-N(2)-ethylethane-1,2-diamine (L3), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-diethylethane-1,2-diamine (L4) and N(1)-(anthracen-10-ylmethylene)-N(3)-methylpropane-1,3-diamine (L5)) and phen is 1,10-phenanthroline, have been synthesized and characterized by spectral and analytical methods. The X-ray crystal structure of 5 reveals that the coordination geometry around Cu(ii) is square pyramidal distorted trigonal bipyramidal (?, 0.76). The corners of the trigonal plane of the geometry are occupied by the N2 nitrogen atom of phen, the N4 nitrogen atom of L5 and the N5 nitrogen of acetonitrile while the N1 nitrogen of phen and the N3 nitrogen of L5 occupy the axial positions with an N1-Cu1-N3 bond angle of 176.0(3). All the complexes display a ligand field band (600-705 nm) and three less intense anthracene-based bands (345-395 nm) in solution. The Kb values calculated from absorption spectral titration of the complexes (???*, 250-265 nm) with Calf Thymus (CT) DNA vary in the order 5 > 4 > 3 > 2 > 1. The fluorescence intensity of the complexes (520-525 nm) decreases upon incremental addition of CT DNA, which reveals the involvement of phen rather than the appended anthracene ring in partial DNA intercalation with the DNA base stack. The extent of quenching is in agreement with the DNA binding affinities and the relative increase in the viscosity of DNA upon binding to the complexes as well. Thus 5 interacts with DNA more strongly than 4 on account of the stronger involvement in hydrophobic DNA interaction of the anthracenyl moiety, which is facilitated by the propylene ligand backbone with chair conformation. The ability of complexes (100 ?M) to cleave DNA (pUC19 DNA) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.1 in the absence of a reducing agent or light varies in the order 5 > 4 > 3 > 2 > 1, which is in conformity with their DNA binding affinities. Interestingly, cytotoxicity studies on the MCF-7 human breast cancer cell line show that the IC50 value of 5 is less than that of cisplatin for the same cell line, revealing that it can act as an effective cytotoxic drug in a time-dependent manner. PMID:26076117

  4. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes

    NASA Astrophysics Data System (ADS)

    Yang, Jianjie; Shi, Rufei; Zhou, Pei; Qiu, Qiming; Li, Hui

    2016-02-01

    Asymmetric Schiff bases, due to its asymmetric structure, can be used as asymmetric catalyst, antibacterial, and mimic molecules during simulate biological processes, etc. In recent years, research on synthesis and properties of asymmetric Schiff bases have become an increase interest of chemists. This review summarizes asymmetric Schiff bases derived from diaminomaleonitrile (DAMN) and DAMN-based asymmetric Schiff bases metal complexes. Applications of DAMN-based asymmetric Schiff bases are also discussed in this review.

  5. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  6. A Schiff base and its copper(II) complex as a highly selective chemodosimeter for mercury(II) involving preferential hydrolysis of aldimine over an ester group.

    PubMed

    Kumar, Ashish; Dubey, Mrigendra; Pandey, Rampal; Gupta, Rakesh Kumar; Kumar, Amit; Kalita, Alok Ch; Pandey, Daya Shankar

    2014-05-19

    The syntheses of a new Schiff base, diethyl-5-(2-hydroxybenzylidene)aminoisophthalate (HL), and a copper complex, [Cu(L2)] (1), imparting L(-), have been described. Both the ligand HL and complex 1 have been thoroughly characterized by elemental analyses, electrospray ionization mass spectrometry, FT-IR, NMR ((1)H and (13)C), electronic absorption, and emission spectral studies and their structures determined by X-ray single-crystal analyses. Distinctive chemodosimetric behavior of HL and 1 toward Hg(2+) has been established by UV/vis, emission, and mass spectral studies. Comparative studies further revealed that the chemodosimetric response solely originates from selective hydrolysis of the aldimine moiety over the ester group and 1 exhibited greater selectivity toward Hg(2+) relative to HL while the sensitivity order is reversed. Further, these followed different hydrolytic pathways but ended up with the same product analyzed for diethyl-5-aminoisophthalate (DEA). Hg(2+)-induced displacement of Cu(2+) and subsequent hydrolysis of the -HC?N- moiety in 1 affirmed the identity of the actual species undergoing hydrolysis as HL. The occurrence of Cu(2+) displacement and Hg(2+) detection via hydrolytic transformation has been supported by various physicochemical studies. PMID:24773423

  7. Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: Synthesis, structural characterization, and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Geeta, B.; Shravankumar, K.; Reddy, P. Muralidhar; Ravikrishna, E.; Sarangapani, M.; Reddy, K. Krishna; Ravinder, V.

    2010-11-01

    A binucleating new Schiff-base ligand with a phenylene spacer, afforded by the condensation of glycyl-glycine and o-phthalaldehyde has been served as an octadentate N 4O 4 ligand in designing some binuclear complexes of cobalt(II), nickel(II), copper(II), and palladium(II). The binding manner of the ligand to the metal and the composition and geometry of the metal complexes were examined by elemental analysis, conductivity measurements, magnetic moments, IR, 1H, 13C NMR, ESR and electronic spectroscopies, and TGA measurements. There are two different coordination/chelation environments present around two metal centers of each binuclear complex. The composition of the complexes in the coordination sphere was found to be [M 2(L)(H 2O) 4] (where M = Co(II) and Ni(II)) and [M 2(L)] (where M = Cu(II) and Pd(II)). In the case of Cu(II) complexes, ESR spectra provided further information to confirm the binuclear structure and the presence of magnetic interactions. All the above metal complexes have shown moderate to good antibacterial activity against Gram-positive and Gram-negative bacteria.

  8. Experimental and theoretical investigation of a novel mononuclear copper(II) azido compound with tridentate (NNO) Schiff base

    NASA Astrophysics Data System (ADS)

    Karahan, Ahmet; Karabulut, Sedat; Dal, Hakan; Kurtaran, Raif; Leszczynski, Jerzy

    2015-08-01

    The tridentate (NNO) Schiff base (HL), has been prepared by the condensation of 2-(aminomethyl)pyridine with 5-chloro-salicylaldehyde. The mononuclear [N-(2-pyridylmethyl)-3-chloro-salicylaldiminato] (azido) copper(II) complex of general formula [Cu(L)(N3)] (1) has been synthesized by the treatment of HL and CuCl2·2H2O with sodium azide. The ligand and complex have been investigated by various methods including IR, TG-DTA and X-ray diffraction techniques. The complex crystallizes in monoclinic space group P21/c, with unit cell dimensions a = 6.7369(4), b = 11.6058(8), c = 17.1379(11) Å, β = 93.823(2)°. The distorted square-planar Cu(II) ion in complex is chelated by one imino N, one phenolic O and one pyridine N atoms of Schiff base ligand and one N atom of azide ion. The electrochemical behavior of the mononuclear copper azido complex was studied with cyclic voltammetry. Tautomer stability of the ligand and the complex has been determined by molecular modeling techniques. It has been concluded that the HL is more stable than its tautomeric form (THL) both as ligand and complex structures.

  9. Ternary Dinuclear Copper(II) Complexes of a Reduced Schiff Base Ligand with Diimine Coligands: DNA Binding, Cytotoxic Cell Apoptosis, and Apoptotic Mechanism.

    PubMed

    Yu, Hao; Yang, Yong; Li, Qiaoyu; Ma, Tieliang; Xu, Jun; Zhu, Taofeng; Xie, Jing; Zhu, Wenjiao; Cao, Zhihong; Dong, Kun; Huang, Jiancui; Jia, Lei

    2016-03-01

    A serial of mixed-ligand Cu(II) complexes of the type [Cu(phens)(H2 PDILeu)]H2 O (1-4) containing phens as 2,2'-bipyridyl (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4) have been isolated and characterized. The interaction of the complexes with calf-thymus DNA has been explored by physical methods to propose modes of DNA binding of the complexes, which indicate that 4 interacts with DNA more strongly than all of the other complexes through intercalation interaction. Furthermore, cell apoptosis was detected by AnnexinV/PI flow cytometry and TUNEL assay and by Western blotting to detect the protein expression of p53, Bax, and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells, which was accompanied with upregulation of the expression of p53 and Bax, while Bcl-2 decreased. PMID:26427013

  10. Syntheses, crystal structure and biological evaluation of Schiff bases and copper complexes derived from 4-formylpyrazolone

    NASA Astrophysics Data System (ADS)

    Joseph, V. A.; Pandya, J. H.; Jadeja, R. N.

    2015-02-01

    Two new pyrazolone based Schiff base ligands 4-((2,4-dimethylphenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-ME] and 4-((3,4-difluorophenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-F] were synthesized. Using these Schiff base ligands two new Copper(II) complexes, [Cu(PTPMP-ME)2] (1) and [Cu(PTPMP-F)2] (2) were synthesized. The ligands and their copper complexes were characterized by IR, 1H NMR, mass, UV-Visible spectroscopy, molar conductivity and magnetic measurement. The molecular geometry of Schiff base ligand PTPMP-ME and copper complexes were determined by single-crystal X-ray analysis. On the basis of single crystal X-ray analysis and spectroscopic techniques, square planar geometry of the complexes was proposed. The Schiff base ligands and their metal complexes were tested for antimicrobial activity against Gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis and Gram-negative bacteria; Escherichia coli and Pseudomonas aeruginosa.

  11. Synthesis and crystal structure of the dinuclear copper(II) Schiff base complex μ-hydroxido-μ-chlorido-bis{[bis(trans-2-nitrocinnamaldehyde)ethylenediamine]chloridocopper(II)} dichloromethane sesquisolvate.

    PubMed

    Barati, Kazem; Clegg, William; Habibi, Mohammad Hossein; Harrington, Ross W; Lalegani, Arash; Montazerozohori, Morteza

    2016-03-01

    Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N'-bis(trans-2-nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1'E,2E,2'E)-N,N'-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ-chlorido-μ-hydroxido-bis(chlorido{(1E,1'E,2E,2'E)-N,N'-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]-κ(2)N,N'}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four-membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two Cu(II) atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five-coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring-stacking interactions supported by C-H...Cl interactions with solvent molecules; a further ring-stacking interaction exists between the two Schiff base ligands of each molecule. PMID:26942435

  12. Relation between Magnetic, Spectroscopic and Structural Properties of Binuclear Copper(II) Complexes of Pentadentate Schiff-base Ligand, Semi-empirical and ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Elerman, Y.; Kara, H.; Elmali, A.

    2003-06-01

    The synthesis and characterization of [Cu2(L1)(3,5 prz)] (L1=1,3-Bis(2-hydroxy-3,5-chlorosalicylideneamino) propan-2-ol) 1 and of [Cu2(L2)(3,5 prz)] (L2=1,3-Bis(2-hydroxy-bromosalicylideneamino) propan-2-ol) 2 are reported. The compounds were studied by elemental analysis, infrared and electronic spectra. The structure of the Cu2(L1)(3,5 prz)] complex was determined by x-ray diffraction. The magnetochemical characteristics of these compounds were determined by temperaturedependent magnetic susceptibility measurements, revealing their antiferromagnetic coupling. The superexchange coupling constants are 210 cm-1 for 1 and 440 cm-1 for 2. The difference in the magnitude of the coupling constants was explained by the metal-ligand orbital overlaps and confirmed by ab-initio restricted Hartree-Fock (RHF) calculations. In order to determine the nature of the frontier orbitals, Extended Hckel Molecular Orbital (EHMO) calculations are also reported.

  13. Magnetostructural studies on ferromagnetically coupled copper(II) cubanes of Schiff-base ligands.

    PubMed

    Mukherjee, Arindam; Raghunathan, Rajamani; Saha, Manas K; Nethaji, Munirathinam; Ramasesha, Suryanarayanasastry; Chakravarty, Akhil R

    2005-05-01

    Three cubane copper(II) clusters, namely [Cu(4)(HL')4] (1), [Cu4L2(OH)2] (2), and [Cu4L2(OMe)2] (3), of two pentadentate Schiff-base ligands N,N'-(2-hydroxypropane-1,3-diyl)bis(acetylacetoneimine) (H3L') and N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) (H3L), are prepared, structurally characterized by X-ray crystallography, and their variable-temperature magnetic properties studied. Complex 1 has a metal-to-ligand stoichiometry of 1:1 and it crystallizes in the cubic space group P43n with a structure that consists of a tetranuclear core with metal centers linked by a mu(3)-alkoxo oxygen atom to form a cubic arrangement of the metal and oxygen atoms. Each ligand displays a tridentate binding mode which means that a total of eight pendant binding sites remain per cubane molecule. Complexes [Cu4L2(OH)2] (2) and [Cu4L2(OMe)2] (3) crystallize in the orthorhombic space group Pccn and have a cubane structure that is formed by the self-assembly of two {Cu2L}+ units. The variable-temperature magnetic susceptibility data in the range 300-18 K show ferromagnetic exchange interactions in the complexes. Along with the ferromagnetic exchange pathway, there is also a weak antiferromagnetic exchange between the copper centers. The theoretical fitting of the magnetic data gives the following parameters: J1 = 38.5 and J2 = -18 cm(-1) for 1 with a triplet (S = 1) ground state and quintet (S = 2) lowest excited state; J1 = 14.7 and J2 = -18.4 cm(-1) for 2 with a triplet ground state and singlet (S = 0) lowest excited state; and J1 = 33.3 and J2 = -15.6 cm(-1) for 3 with a triplet ground state and quintet lowest excited state, where J1 and J2 are two different exchange pathways in the cubane {Cu4O4} core. The crystal structures of 2 * 6 H2O and 3 * 2 H2O * THF show the presence of channels containing the lattice solvent molecules. PMID:15770710

  14. Synthesis, characterization and antibacterial activity of a tridentate Schiff base derived from cephalothin and sulfadiazine, and its transition metal complexes.

    PubMed

    Anacona, J R; Noriega, Natiana; Camus, Juan

    2015-02-25

    Metal(II) coordination compounds of a cephalothin Schiff base (H2L) derived from the condensation of cephalothin antibiotic with sulfadiazine were synthesized. The Schiff base ligand, mononuclear [ML(H2O)3] (M(II)=Mn,Co,Ni,Zn) complexes and magnetically diluted dinuclear copper(II) complex [CuL(H2O)3]2 were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and (1)H NMR spectral studies. The cephalothin Schiff base ligand H2L behaves as a dianionic tridentate NOO chelating agent. The biological applications of complexes have been studied on two bacteria strains (Escherichia coli and Staphylococcus aureus) by agar diffusion disc method. PMID:25194315

  15. Synthesis, characterization and antibacterial activity of a tridentate Schiff base derived from cephalothin and sulfadiazine, and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Anacona, J. R.; Noriega, Natiana; Camus, Juan

    2015-02-01

    Metal(II) coordination compounds of a cephalothin Schiff base (H2L) derived from the condensation of cephalothin antibiotic with sulfadiazine were synthesized. The Schiff base ligand, mononuclear [ML(H2O)3] (M(II) = Mn, Co, Ni, Zn) complexes and magnetically diluted dinuclear copper(II) complex [CuL(H2O)3]2 were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and 1H NMR spectral studies. The cephalothin Schiff base ligand H2L behaves as a dianionic tridentate NOO chelating agent. The biological applications of complexes have been studied on two bacteria strains (Escherichia coli and Staphylococcus aureus) by agar diffusion disc method.

  16. Synthesis, characterization and antibacterial activity of a Schiff base derived from cephalexin and sulphathiazole and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Anacona, J. R.; Rodriguez, Juan Luis; Camus, Juan

    2014-08-01

    Metal(II) coordination compounds of a cephalexin Schiff base (HL) derived from the condensation of cephalexin antibiotic with sulphathiazole were synthesized. The Schiff base ligand, mononuclear [ML(OAc)(H2O)2] (M(II) = Mn, Co, Ni, Zn) complexes and magnetically diluted trinuclear copper(II) complex [Cu3L(OH)5] were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and 1H NMR spectral studies. The analytical and molar conductance values indicated that the acetate ions coordinate to the metal ions. The Schiff base ligand HL behaves as a monoanionic tridentate NNO and tetradentate NNOO chelating agent in the mono and trinuclear complexes respectively.

  17. Synthesis and Characterization with Antineoplastic, Biochemical, Cytotoxic, and Antimicrobial Studies of Schiff Base Cu(II) Ion Complexes

    PubMed Central

    Haque, M. M.; Kudrat-E-Zahan, Md.; Banu, Laila Arjuman; Islam, Md. Shariful; Islam, M. S.

    2015-01-01

    Copper(II) complexes containing two Schiff base ligands derived from 2-hydroxybenzaldehyde with 2-aminophenol and 3-aminophenol have been synthesized and characterized by means of analytical, magnetic, and spectroscopic methods. Bacteria, fungus, Entamoeba histolytica, and antineoplastic activities of the synthesized complexes have been determined by monitoring the parameters cell growth inhibition, survival time of tumour mice, time-body relation, causing of intraperitoneal cells and macrophages, alkaline phosphatase activity, hematological effect, and biopsy of tumour. PMID:26294901

  18. Synthesis and Spectral Characterization of 14- and 16-membered tetraazamacrocyclic Schiff base ligands and their transition metal complexes and a comparative study of interaction of calf thymus DNA with copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Khan, Tahir Ali; Naseem, Sultana; Khan, Shahper N.; Khan, Asad U.; Shakir, Mohammad

    2009-08-01

    14 and 16 membered Schiff base macrocyclic ligands, 7,14-dimethyl-5,12-di(N-amino)-2-methylphenyl-1,4,8,11-tetraaza-cyclotetradecane-4,7,11,14-tetraene (L 1) and 8,16-dimethyl-6,14-di(N-amino)-2-methylphenyl-1,5,9,13-tetraaza-cyclohexadecane-5,8,13,16-tetraene (L 2) were synthesized by condensation reaction between 2'-methyleacetoacetanilide and aliphatic diamines. The metal complexes of the types, [ML 1](NO 3) 2 and [ML 2(NO 3) 2] [M = Co(II), Ni(II), Cu(II) and Zn(II)] were prepared by interaction of ligands, L 1 or L 2 with hydrated metal(II) nitrates. The ligands and their complexes were characterized by elemental analysis, IR, 1H and 13C NMR, EPR, UV-Vis spectroscopy, magnetic susceptibility, conductivity measurements and ESI-mass spectral studies. The results of elemental analyses, ESI-mass and conductivity measurements confirmed the stoichiometry of ligands and their complexes while the characteristic absorption bands and resonance peaks in IR and NMR spectra confirmed the formation of ligand frameworks around the metal ions. The square planar geometry for complexes derived from ligand L 1 and octahedral environment for complexes derived from ligand L 2 with distortion in Cu(II) complex have been confirmed on the basis of results of electronic and electron spin resonance spectral studies and magnetic moment measurements. Absorption and fluorescence spectral studies revealed different binding mode for complex, [CuL 1](NO 3) 2 as compared with [CuL 2(NO 3) 2] on interaction with calf thymus DNA.

  19. Syntheses, crystal structure, spectroscopic and photoluminescence studies of mononuclear copper(II), manganese(II), cadmium(II), and a 1D polymeric Cu(II) complexes with a pyrimidine derived Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Ray, Sangita; Konar, Saugata; Jana, Atanu; Das, Kinsuk; Dhara, Anamika; Chatterjee, Sudipta; Kar, Susanta Kumar

    2014-01-01

    The complexation behaviour of Schiff base ligand 2-((2-(4,6-dimethylpyrimidin-2-yl)hydrazono)methyl)phenol [HL] towards different metal centres is reported by the syntheses and characterization of three mononuclear Cu(II), Mn(II) and Cd(II) complexes, [Cu(L)(H2O)2](NO3)(H2O) (1), [Mn(L)2](CH3OH) (2), [Cd(L)2](CH3OH) (3) and a 1D polymeric Cu(II) complex, [Cu(L)(ClO4)(C2N2O2H)]n(CH3OH) (4) respectively. In the complexes 1-4 the deprotonated uninegative tridentate ligand serves as NNO donor where one pyrimidine ring N, the azomethine N and the salicyl hydroxyl oxygen atoms are coordinatively active. The complex 1 has almost square pyramidal geometry [? = 0.2081] whereas the metal centres maintain distorted octahedral geometry in the remaining three complexes 2-4. All the complexes are characterized by X-ray crystallography. The Cd(II) complex has considerable fluorescence while the rest of the complexes and the ligand molecule are fluorescent silent.

  20. Synthesis, spectroscopy, electrochemistry and thermogravimetry of copper(II) tridentate Schiff base complexes, theoretical study of the structures of compounds and kinetic study of the tautomerism reactions by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Kianfar, Ali Hossein; Ramazani, Shapour; Fath, Roghaye Hashemi; Roushani, Mahmoud

    2013-03-01

    Attempts to spectroscopic and structural study of copper complexes, some Cu(II) Schiff base complexes were synthesized and characterized by means of electronic, IR, 1HNMR spectra and elemental analysis. The thermal analyses of the complexes were investigated and the first order kinetic parameters were derived for them. The cyclic voltammetric studies in acetonitrile were proposed a monomeric structure for complexes. The structures of compounds were determined by ab initio calculations. In the solid state, the ligands exist as keto-amine/enol-imine tautomeric forms with an intramolecular hydrogen bond (Nsbnd H⋯O) between amine and carbonyl group. The kinetic studies of the tautomerism and equilibrium constant of the reactions were calculated using transition state theory. The optimized molecular geometry and atomic charges were calculated using MP2 method with 6-31G(d) basis set for H, C, N and O atoms and LANL2DZ for the Cu atom. The results suggested that, in the complexes, Cu(II) ion is in pseudo square-planar NO3 coordination geometry. Also the bond lengths and angles were studied and compared.

  1. Metal complexes of ONO donor Schiff base ligand as a new class of bioactive compounds; Synthesis, characterization and biological evolution

    NASA Astrophysics Data System (ADS)

    Kumar Naik, K. H.; Selvaraj, S.; Naik, Nagaraja

    2014-10-01

    Present work reviews that, the synthesis of (E)-N";-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide [L] ligand and their metal complexes. The colored complexes were prepared of type [M2+L]X2, where M2+ = Mn, Co, Ni, Cu, Sr and Cd, L = (7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide, X = Cl-. Ligand derived from the condensation of 8-formyl-7-hydroxy-4-methylcoumarin and benzohydrazide in the molar ratio 1:1 and in the molar ratio 1:2 for metal complexes have been prepared. The chelation of the ligand to metal ions occurs through the both oxygen groups, as well as the nitrogen atoms of the azomethine group of the ligand. Reactions of the Schiff base ligand with Manganese(II), Cobalt(II), Nickel(II), Copper(II), Strontium(II), and Cadmium(II) afforded the corresponding metal complexes. The structures of the obtained ligand and their respective metal complexes were elucidated by infra-red, elemental analysis, Double beam UV-visible spectra, conductometric measurements, magnetic susceptibility measurements and also thermochemical studies. The metal complex exhibits octahedral coordination geometrical arrangement. Schiff base ligand and their metal complexes were tested against antioxidants, antidiabetic and antimicrobial activities have been studied. The Schiff base metal complexes emerges effective ?-glucosidase inhibitory activity than free Schiff base ligand.

  2. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  3. Designed synthesis of copper(II) and nickel(II) complexes with a tridentate N2O donor Schiff base: Modulation of crystalline architectures through Csbnd H⋯? and anion⋯? interactions

    NASA Astrophysics Data System (ADS)

    Das, Mithun; Chattopadhyay, Shouvik

    2013-11-01

    Two copper(II) complexes, Cu(L1)Cl (1), Cu(L1)NCS (3) and two nickel(II) complexes Ni(L1)Cl (2), Ni(L1)NCS (4), where HL1 = 1-[(2-diethylamino-ethylimino)-methyl]-naphthalen-2-ol act as tridentate N2O donor ligand, have been prepared and characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. The geometry of the central metal ion in each of the four complexes is square planar. The existence of Csbnd H⋯? interactions in 2 gives rise to one dimensional chain structure. Complex 3 shows two Csbnd H⋯? interactions and one anion⋯? interactions which leads to a two dimensional layer structure. Each mononuclear unit of 4 has two Csbnd H⋯? interactions along b axis to form a double strand one dimensional array of the molecules in crystal packing.

  4. Amidino-containing Schiff base copper(II) and iron(III) chelates as a thrombin inhibitor.

    PubMed

    Toyota, Eiko; Sekizaki, Haruo; Takahashi, Yu-u; Itoh, Kunihiko; Tanizawa, Kazutaka

    2005-01-01

    Four series of Schiff base copper(II) and iron(III) chelates were synthesized from 4-formyl-3-hydroxybenzamidine or 3-formyl-4-hydroxybenzamidine and various L- or D-amino acids. Their inhibitory activities for bovine alpha-thrombin (abbreviated as thrombin) were determined. The most potent thrombin inhibitor in this series is copper(II) chelate (1g') derived from 4-formyl-3-hydroxybenzamidine and D-Trp. Its Ki value, 2.7x10(-8) M, is comparable to that of Argatroban (MD-805), which is a clinically used compound. The iron(III) chelates derived from 4-formyl-3-hydroxybenzamidine and hydrophobic L-amino acids (Val, Ile, Leu, Phe, Trp, Met) also exhibited higher inhibitory potency. It appears that coordination geometry composed of metal ion, amidino group, amino acid side chain is well accommodated to the thrombin active site. From the Ki values of Schiff base metal chelates for thrombin, the structure-activity relationships between the chelates and active site of thrombin were discussed. PMID:15635223

  5. Chemistry and applications of organotin(IV) complexes of Schiff bases.

    PubMed

    Nath, Mala; Saini, Pramendra K

    2011-07-21

    Schiff bases are the most widely used versatile ligands, able to coordinate many elements and to stabilize them in various oxidation states. Recently, this class of compounds has been employed as models for biological systems, and in control of stereochemistry in six-coordinate transition metal complexes. Recently, the chemistry of organotin(IV) complexes of Schiff bases has also stemmed from their antitumour, antimicrobial, antinematicidal, anti-insecticidal and anti-inflammatory activities. Furthermore, organotin(IV) complexes of Schiff bases present a wide variety of interesting structural possibilities. Both aliphatic and aromatic Schiff bases in their neutral and deprotonated forms have been used to yield adducts and chelates with variable stoichiometry and different modes of coordination. This critical review (>155 references) focuses upon the chemistry and biological applications of organotin(IV) complexes of Schiff bases reported in the past 15 years. Thermal behavior of these complexes is also discussed. PMID:21494719

  6. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3,5-dibromosalicylaldehyde.

    PubMed

    Cui, Yongming; Dong, Xiongwei; Li, Yuguang; Li, Zuowen; Chen, Wu

    2012-12-01

    Eleven mononuclear copper(II), nickel(II), zinc(II) and cobalt(II) complexes of Schiff base ligands derived from 3,5-dibromosalicylaldehyde/3,5-dichlorosalicylaldehyde were synthesized and determined by single crystal X-ray analysis. The crystal structures of complexes 1, 2, 4, 5, 6, 8 and 11 present the square-planar coordination geometry at the metal center and complexes 7, 9 and 10 show the distorted tetrahedral geometry. While one copper center in 3 has a square-planar geometry, the other copper is slightly distorted square-planar. The inhibitory activities of all the obtained complexes were tested in vitro against jack bean urease. It was found that Schiff base copper(II) complexes 1, 3, 5, 8 and 11 showed strong urease inhibitory activities (IC(50) = 1.51-3.52 ?M) compared with acetohydroxamic acid (IC(50) = 62.52 ?M), which was a positive reference. Their structure-activity relationships were further discussed. PMID:23142672

  7. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  8. Newer mixed ligand Schiff base complexes from aquo-N-(2?-hydroxy acetophenone) glycinatocopper(II) as synthon: DFT, antimicrobial activity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2014-02-01

    Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2?-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]H2O, L = N-(2?-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2? hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.

  9. Reversible Formation and Transmetalation of Schiff-Base Complexes in Subcomponent Self-Assembly Reactions.

    PubMed

    Lewing, Dennis; Koppetz, Hannah; Hahn, F Ekkehardt

    2015-08-01

    Dinuclear complexes [Zn2(NS,NS)2] 3 and [Ni2(NS,NS)2] 6 bearing Schiff-base ligands featuring two NS donor groups were obtained in subcomponent self-assembly reactions using nickel or zinc as template metals. Several transmetalation reactions starting from 3 or 6 yielded the complexes [Pd2(NS,NS)2] 4 and [Co2(NS,NS)2] 5, and their molecular structures were determined by X-ray diffraction. Starting from the mononuclear complex [Ni(NS/NOH)2] 9 featuring a coordinated NS Schiff base and a free NOH Schiff base, completely reversible thermodynamically controlled imine bond formation was observed leading to complex [Ni2(NS,NS)2] 6 and the free Schiff -base ligand NOH,NOH 10. PMID:26161894

  10. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  11. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and

  12. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  13. Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.; Ammar, Reda A. A.; Chinnathambi, Arunachalam

    2015-05-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been synthesized [L = 4-pyridin-2-yl-methylene amino-4H-1,2,4-triazole-3-thiol]. The elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (SNN). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.34-10.46 ?-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tridentate ligand coordinated through deprotonated thiolic sulfur, azomethine nitrogen and pyridine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coast-Redfern, Horowitz-Metzger (HM), Piloyan-Novikova (PN) and Broido's equations. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 C and ionic strength 0.10 M potassium nitrate. Both the Schiff's base ligand and its complexes have been screened for antibacterial activities.

  14. Mn(II) and Cu(II) complexes of a bidentate Schiff's base ligand: Spectral, thermal, molecular modelling and mycological studies

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Tyagi, Prateek

    2014-01-01

    Complexes of manganese(II) and copper(II) of general composition M(L)2X2 have been synthesized [L = 2-acetyl thiophene thiosemicarbazone and X = Cl- and NO3-]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a bidentate manner. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Mn(II) and tetragonal geometry for Cu(II) complexes. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modelling the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31g(d,p) basis set. The mycological studies of the compounds were examined against the plant pathogenic fungi i.e. Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium odum.

  15. Synthesis, molecular modeling and spectroscopic characterization of nickel(II), copper(II), complexes of new 16-membered mixed-donor macrocyclic schiff base ligand incorporating a pendant alcohol function.

    PubMed

    Chandra, Sulekh; Ruchi; Qanungo, Kushal; Sharma, Saroj K

    2011-09-01

    Complexes of Cu(II) and Ni(II) of the composition [M(L)X] [where M=Ni(II), Cu(II) and X=Cl-, NO3-, CH3COO-] were synthesized with 1,5-dioxo-9,10-diaza-3,ol-tribenzo-(7,6,10,11,14,15) peptadecane, a N2O2 macrocyclic ligand. The complexes were characterized by elemental analysis, molar conductance measurements, UV-vis, IR, 1H NMR, 13C NMR, EPR and molecular modeling studies. All the complexes are non-electrolyte in nature. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and a tetragonal geometry for Cu(II) complexes. PMID:21689978

  16. Infrared and DNA-binding on ultraviolet and fluorescence spectra of new copper and zinc complexes with a naringenin Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    Li, Yan-hua; Wang, Bao-dui; Yang, Zheng-yin

    2007-06-01

    A naringenin Schiff-base ligand (H 3L) and its copper(II) and zinc(II) complexes have been synthesized and characterized by elemental analyses, molar conductivities, 1H NMR, IR spectra, UV spectra and thermal analyses. The DNA-binding properties of the Cu(II) and Zn(II) complexes have been investigated by fluorescence spectroscopy, ultraviolet spectroscopy and by viscosity measurements. The results indicate that complexes and ligand may bind to DNA by intercalation modes, but the binding affinity of the complexes is much higher than that of the ligand.

  17. Synthesis, potentiometric and antimicrobial studies on metal complexes of isoxazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Prashanthi, Y.; Kiranmai, K.; Subhashini, N. J. P.; Shivaraj

    2008-06-01

    The metal complexes of Cu(II), Ni(II) and Co(II) with Schiff bases of 3-(2-hydroxy-3-ethoxybenzylideneamino)-5-methyl isoxazole [HEBMI] and 3-(2-hydroxy-5-nitrobenzylidene amino)-5-methyl isoxazole [HNBMI] which were obtained by the condensation of 3-amino-5-methyl isoxazole with substituted salicylaldehydes have been synthesized. Schiff bases and their complexes have been characterized on the basis of elemental analysis, magnetic moments, molar conductivity, thermal analysis and spectral (IR, UV, NMR and Mass) studies. The spectral data show that these ligands act in a monovalent bidentate fashion, co-ordinating through phenolic oxygen and azomethine nitrogen atoms. Chelates of Co(II), Ni(II) appear to be octahedral and Cu(II) appears to be distorted octahedral. To investigate the relationship between formation constants of binary complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in aqueous solution at 30 1 C and at 0.1 M KNO 3 ionic strength and discussed. Antimicrobial activities of the Schiff bases and their complexes were screened. The structure-activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability constants. It is observed that the activity enhances upon complexation and the order of activity is in accordance with stability order of metal ions.

  18. Synthesis, spectral, thermal and magnetic studies of Mn(II), Ni(II) and Cu(II) complexes with some benzopyran-4-one Schiff bases

    NASA Astrophysics Data System (ADS)

    El-Ansary, Aida L.; Abdel-Fattah, Hussein M.; Abdel-Kader, Nora S.

    2011-08-01

    The Schiff bases of N 2O 2 dibasic ligands, H 2La and H 2Lb are prepared by the condensation of ethylenediamine (a) and trimethylenediamine (b) with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one. Also tetra basic ligands, H 4La and H 4Lb are prepared by the condensation of aliphatic amines (a) and (b) with 6-formyl-5,7-dihydroxy-2-methylbenzopyran-4-one. New complexes of H 4La and H 4Lb with metal ions Mn(II), Ni(II) and Cu(II) are synthesized, in addition Mn(II) complexes with ligands H 2La and H 2Lb are also synthesized. Elemental and thermal analyses, infrared, ultraviolet-visible as well as conductivity and magnetic susceptibility measurements are used to elucidate the structure of the newly prepared metal complexes. The structures of copper(II) complexes are also assigned based upon ESR spectra study. All the complexes separated with the stoichiometric ratio (1:1) (M:L) except Mn-H 4La and Mn-H 4Lb with (2:1) (M:L) molar ratio. In metal chelates of the type 1:1 (M:L), the Schiff bases behave as a dinegative N 2O 2 tetradentate ligands. Moreover in 2:1 (M:L) complexes, the Schiff base molecules act as mono negative bidentate ligand and binuclear complex is then formed. The Schiff bases were assayed by the disc diffusion method for antibacterial activity against Staphylococcus aureus and Escherichia coli. The antifungal activity of the Schiff bases was also evaluated against the fungi Aspergillus flavus and Candida albicans.

  19. Mononuclear Ru(III) Schiff base complexes: Synthesis, spectral, redox, catalytic and biological activity studies

    NASA Astrophysics Data System (ADS)

    Priya, N. Padma; Arunachalam, S.; Manimaran, A.; Muthupriya, D.; Jayabalakrishnan, C.

    2009-04-01

    An octahedral ruthenium(III) Schiff base complexes of the type [RuX(EPh 3)(L)] (where, X = Cl/Br; E = As/P; L = dianion of the Schiff bases derived from acetoacetanilide with o-phenylenediamine and salicylaldehyde/ o-hydroxyacetophenone/ o-vanillin/2-hydroxy-1-naphthaldehyde) have been synthesized from the reactions of equimolar reactions of [RuX 3(EPh 3) 3] and Schiff bases in benzene. The new Ru(III) Schiff base complexes have been characterized by elemental analyses, FT-IR, electronic, 1H NMR and 13C NMR spectra, EPR spectral studies, powder X-ray diffraction (XRD) and electrochemical studies. The new complexes were found to be effective catalysts for aryl-aryl coupling and the oxidation of alcohols into their corresponding carbonyl compounds, respectively, using molecular oxygen atmosphere at ambient temperature. Further, the new Ru(III) Schiff base complexes were screened for their antibacterial activity against Pseudomonas aeruginosa, Vibrio cholera, Salomonella typhi and Staphylococcus aureaus.

  20. Ni(II) complexes with Schiff bases derived from amino sugars.

    PubMed

    Costamagna, Juan; Lillo, Luis E; Matsuhiro, Betty; Noseda, Miguel D; Villagrn, Manuel

    2003-07-22

    It was found by 1H and 13C NMR spectroscopy that the Schiff base, 2-deoxy-2-(2-hydroxybenzaldimino)-D-glucopyranose exhibits enol-imine-keto-amine and anomeric equilibria in methanolic, and in dimethyl sulfoxide solutions. The reaction of the Schiff base with nickel acetate gave the bidentate, mononuclear Ni(II) complex that was characterized by spectroscopic methods and by cyclic voltammetry. The coordination of the Schiff base to the metal is through the enol-imine tautomeric form, and the anomeric equilibrium remains in dimethyl sulfoxide solutions. This complex was also obtained by reaction of D-glucosamine with Ni(II) salicylaldehydate. The same reaction was employed for the synthesis of bis-N-[2-deoxy-D-galactopyranosyl-2-(2-hydroxybenzaldiminate)]Ni(II). The small paramagnetic shifts of the 1H NMR resonances of the complexes suggest that paramagnetic species are present in low proportions. PMID:12860424

  1. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  2. Antimicrobial activity and spectral, magnetic and thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety.

    PubMed

    Al-Sha'alan, Nora H

    2007-01-01

    A series of new copper(II), cobalt(II), nickel(II), manganese(II), iron(III), and uranyl(VI) complexes of the Schiff base hydrazone 7-chloro-4-(benzylidene-hydrazo)quinoline (HL) were prepared and characterized. The Schiff base behaves as a monobasic bidentate ligand. Mononuclear complexes with the general composition [ML2(Cl)m(H2O)2(OEt)n] x xEtOH (M = Cu(II), Co(II), Ni(II), Mn(II), Fe(III) or UO2(VI); m and n = 0-1; x = 1-3) were obtained in the presence of Li(OH) as a deprotonating agent. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, infrared, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry was suggested for all the complexes except the Cu(II) and UO2(VI) ones. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, while the UO2(VI) complex displays its favored heptacoordination. The Schiff base ligand, HL, and its complexes were tested against one strain gram +ve bacteria (Staphylococcus aureus), gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The prepared metal complexes exhibited higher antibacterial activities than the parent ligand and their biopotency is discussed. PMID:17873842

  3. Triorganotin(IV) complexes with biologically potent schiff bases: infrared, ?Sn spectral characteristics and antimicrobial applications.

    PubMed

    Rehman, W; Khan, J; Muhammad, B; Shah, S W H; Rashid, R

    2012-05-01

    This review paper has attempted information specific to the title compound. This survey of the literature data provides useful information about the design and stabilities of the triorganotin with biologically active ligands. Up to now, considerable efforts have been made to synthesize and characterize triorganotin(IV) schiff base complexes with the general formulae R3ML [R = organic group, M: Sn and L: schiff base] and many studies have been focused in order to understand bioassay results. Users with an interest in this substance are strongly encouraged for future research that this is still a very open field. PMID:22303951

  4. Studies on synthesis, characterization, DNA interaction and cytotoxicity of ruthenium(II) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Raja, Gunasekaran; Butcher, Ray. J.; Jayabalakrishnan, Chinnasamy

    The synthesis and characterization of three hexa-coordinated ruthenium(II) Schiff base complexes of the type [RuCl(CO)(B)L] (B = PPh3/AsPh3/py and L = monobasic tridentate Schiff base ligand derived by the condensation of salicylaldehyde with 4-aminoantipyrine) are reported. IR, electronic, NMR and mass spectral data of the complexes are discussed. An octahedral geometry has been tentatively proposed for all the complexes. DNA binding properties of the ligand and its ruthenium(II) complexes have been investigated by electronic absorption spectroscopy. Two of the complexes were tested for DNA cleavage property. Finally, in vitro study of the cytotoxicity of the ligand and the complex [RuCl(CO)(PPh3)L] on HeLa were tested. The IC50 value for the ligand and the complex were 52.3 and 31.6 ?m respectively.

  5. Synthesis, fluorescence study and biological evaluation of three Zn(II) complexes with Paeonol Schiff base

    NASA Astrophysics Data System (ADS)

    Qin, Dong-dong; Yang, Zheng-yin; Qi, Gao-fei

    2009-10-01

    The synthesis of three Paeonol Schiff base ligand and their Zn(II) complexes are reported. The complexes were fully characterized by IR, 1H NMR, elemental analysis and molar conductivity. The experiment results show the three Zn(II) complexes can emit bright fluorescence at room temperature in DMF solution and solid state. The fluorescence quantum yields ( ?) of three Schiff base ligands and their Zn(II) complexes were calculated using quinine sulfate as the reference with a known ?R of 0.546 in 1.0N sulfuric acid. Furthermore, in order to develop these Zn(II) complexes' biological value, the antioxidant activities against hydroxyl radicals (OH rad ) were evaluated. The results show the three complexes possess excellent ability to scavenge hydroxyl radicals.

  6. Docking of ethanamine Schiff base imines & metal (II) complexes, cytotoxicity & DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Sujarani, S.; Ramu, A.

    2015-01-01

    The present study deals with a series of biologically and stereo chemically important novel transition metal (II) Schiff base chelates. The Cu (II), Co (II), Mn (II) and Ni (II) ions containing complexes were synthesized by using diphenylethanamine and 2-hydroxy/2, 4-dihydroxy/2-hydroxy-4-methoxybenzaldehydes. The synthesized complexes were characterized using micro analytical, IR, NMR, ESI-Mass, UV-Visible, cyclic voltammetry and the EPR spectroscopic techniques. The spectral data evidenced the action of ligands as a neutral bidentate Schiff bases, coordinating through azomethine nitrogen and oxygen atom of hydroxyl group. The interaction studies revealed the groove binding nature of complexes with CT-DNA. The ligand and synthesized metal complexes showed cytotoxicity against cancerous cells. The strong binding affinity of the imine and metal complexes was also confirmed by molecular docking studies.

  7. Synthesis and Fluorescence Properties of Eu(3+), Tb(3+) Complexes with Schiff Base Derivatives.

    PubMed

    Liu, Yanhong; Kong, Weihua; Yang, Zehui; Dai, Ming; Shi, Ling; Guo, Dongcai

    2016-03-01

    Novel Schiff base ligands derived from N'-benzylidene-benzohydrazide (substituted by -H, -CH3, -OCH3, -Cl) and 2-chloro-N-phenylacetamide were synthesized. The solid complexes of rare earth (Eu, Tb) nitrate with these Schiff base ligands were synthesized and characterized by elemental analysis, EDTA titrimetric analysis, thermal analysis, infrared spectra and UV-Vis spectra analysis. The fluorescence properties of rare earth (Eu, Tb) complexes in solid were studied. Under the excitation of ultraviolet light, these complexes exhibited characteristic emission of europium and terbium ions. The results showed that the ligand favored energy transfer to the emitting energy of Eu and Tb ions. Effects of different ligands on the fluorescence intensity of rare earth (Eu, Tb) complexes had been discussed. The electrochemical properties of rare earth (Eu, Tb) complexes were also investigated. PMID:26658796

  8. Transition Metal(II) Complexes with Cefotaxime-Derived Schiff Base: Synthesis, Characterization, and Antimicrobial Studies

    PubMed Central

    Amzoiu, Emilia; Spnu, Cezar Ionu?

    2014-01-01

    New [ML2(H2O)2] complexes, where M?=?Co(II), Ni(II), Cu(II), and Zn(II) while L corresponds to the Schiff base ligand, were synthesized by condensation of cefotaxime with salicylaldehyde in situ in the presence of divalent metal salts in ethanolic medium. The complexes were characterized by elemental analyses, conductance, and magnetic measurements, as well as by IR and UV-Vis spectroscopy. The low values of the molar conductance indicate nonelectrolyte type of complexes. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for Co(II), Ni(II), and Zn(II) complexes while a tetragonal geometry for Cu(II) complex. Molecular structure of the Schiff base ligand and its complexes were studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. All the synthesized complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains revealed that the metal complexes possess superior antibacterial activity than the Schiff base. PMID:24688454

  9. Synthesis and spectral characterization of ternary mixed-vanadyl ?-diketonate complexes with Schiff bases

    NASA Astrophysics Data System (ADS)

    Baranwal, Balram Prasad; Tripathi, Kiran; Singh, Alok Kumar; Tripathi, Saurabh

    2012-06-01

    A new method to synthesize some mononuclear ternary oxovanadium(IV) complexes of the general formula [VO(?-dike)(SB)] (where H?-dike = acetylacetone; benzoylacetone or dibenzoylmethane, HSB = Schiff bases) has been explored by stepwise substitutions of acetylacetonate ion of VO(acac)2 with Schiff bases. The substituted acetylacetone could be fractionated out with p-xylene as an azeotrope. The complexes were characterized by elemental analyses, molecular weight determinations, spectral (electronic, infrared, 1H NMR, EPR and powder XRD) studies, magnetic susceptibility measurements and cyclic voltammetry. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bidentate chelating nature of ?-diketones and Schiff base anions in the complexes was established by infrared and NMR spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. The EPR spectra illustrated coupling of the unpaired electron with 51V nucleus (I = 7/2). Cyclic voltammograms of all the complexes displayed two-step oxidation processes. The oxidation peak potential corresponded to the quasireversible one-electron oxidation process of the metal center, yielding V(V) species. Transmission electron microscopy (TEM) indicated spherical particles of 200 nm diameter. The synthesized complexes are mixed-ligand complexes showing a considerable hydrolytic stability in which vanadium is having coordination number 5. A square pyramidal geometry around vanadium has been assigned in all the complexes.

  10. Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes

    PubMed Central

    Neelakantan, M. A.; Esakkiammal, M.; Mariappan, S. S.; Dharmaraja, J.; Jeyakumar, T.

    2010-01-01

    Some new mixed ligand complexes (1-5) of type ML'B (M(II)=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HL'= o-vanillidene-2-aminobenzothiazole; B= 1,10-phenanthroline) and Schiff base metal complexes of types (ML2") (6-10) and (M2L") (11-15) (HL"= o-vanillidene-2-amino-N-(2-pyridyl)-benzene sulfonamide) were synthesized and characterized by elemental analysis and spectral (IR, 1H NMR and 13C NMR) studies. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria, fungi and yeast. The metal complexes show more potent activities compared with Schiff base ligands. PMID:20838526

  11. Synthesis, characterization and biocidal activities of some schiff base metal complexes.

    PubMed

    Neelakantan, M A; Esakkiammal, M; Mariappan, S S; Dharmaraja, J; Jeyakumar, T

    2010-03-01

    Some new mixed ligand complexes (1-5) of type ML'B (M(II)=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HL'= o-vanillidene-2-aminobenzothiazole; B= 1,10-phenanthroline) and Schiff base metal complexes of types (ML(2)") (6-10) and (M(2)L") (11-15) (HL"= o-vanillidene-2-amino-N-(2-pyridyl)-benzene sulfonamide) were synthesized and characterized by elemental analysis and spectral (IR, (1)H NMR and (13)C NMR) studies. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria, fungi and yeast. The metal complexes show more potent activities compared with Schiff base ligands. PMID:20838526

  12. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Aslanta?, Mehmet; Kendi, Engin; Demir, Necmettin; ?abik, Ali E.; Tmer, Mehmet; Kertmen, Metin

    2009-10-01

    In this study, the Schiff base ligand trans-N,N'-bis[(2,4-dichlorophenyl) methylidene] cyclohexane-1,2-diamine (L) and its copper(II), nickel(II) and palladium(II) transition metal complexes were prepared and characterized by the analytical and spectroscopic methods. The 1H( 13C) NMR spectra of the ligand and its diamagnetic complexes were recorded in DMSO-d 6 solvent and obtained data confirm that the nitrogen atoms of the imine groups coordinated to the metal ions. Electrochemical properties of the ligand and its metal complexes were investigated in the DMF solvent at the 100 and 250 mV s -1 scan rates. The ligand and metal complexes showed both reversible and irreversible processes at these scan rates. The single crystal of the ligand (L) was obtained from MeOH solution, and its crystal structure was determined by X-ray diffraction. The C-H⋯Cl hydrogen bonding interactions in the molecule were seen which increase the stability of the crystal structure. The antimicrobial activity studies of the ligand and its metal complexes were carried out by using the various bacteria and fungi.

  13. In vitro anticancer activities of Schiff base and its lanthanum complex.

    PubMed

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-15

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L(1))2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L(1)), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2M ratio with ligands L(1) and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L(2)) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, (1)H/(13)C NMR, thermogravimetric, XRD, and SEM analysis. PMID:26619196

  14. Tuning cobalt(III) Schiff base complexes as activated protein inhibitors.

    PubMed

    Heffern, Marie C; Reichova, Viktorie; Coomes, Joseph L; Harney, Allison S; Bajema, Elizabeth A; Meade, Thomas J

    2015-09-21

    Cobalt(III) Schiff base complexes ([Co(acacen)(L)2](+), where L = NH3) inhibit histidine-containing proteins through dissociative exchange of the labile axial ligands (L). This work investigates axial ligand exchange dynamics of [Co(acacen)(L)2](+) complexes toward the development of protein inhibitors that are activated by external triggers such as light irradiation. We sought to investigate ligand exchange dynamics to design a Co(III) complex that is substitutionally inert under normal physiological conditions for selective activation. Fluorescent imidazoles (C3Im) were prepared as axial ligands in [Co(acacen)(L)2](+) to produce complexes (CoC3Im) that could report on ligand exchange and, thus, complex stability. These fluorescent imidazole reporters guided the design of a new dinuclear Co(III) Schiff base complex containing bridging diimidazole ligands, which exhibits enhanced stability to ligand exchange with competing imidazoles and to hydrolysis within a biologically relevant pH range. These studies inform the design of biocompatible Co(III) Schiff base complexes that can be selectively activated for protein inhibition with spatial and temporal specificity. PMID:26331337

  15. In vitro anticancer activities of Schiff base and its lanthanum complex

    NASA Astrophysics Data System (ADS)

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-01

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L1)2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L1), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2 M ratio with ligands L1 and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L2) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, 1H/13C NMR, thermogravimetric, XRD, and SEM analysis.

  16. Hydrogen evolution catalyzed by a cobalt complex containing an asymmetric Schiff-base ligand.

    PubMed

    Armstrong, Jessica E; Crossland, Patrick M; Frank, Mariah A; Van Dongen, Matthew J; McNamara, William R

    2016-04-01

    A cobalt(iii) complex containing an asymmetric Schiff-base ligand has been found to be active for proton reduction. Catalysis occurs at -1.2 V vs. Fc(+)/Fc (0.56 V vs. NHE), resulting in an overpotential of 350 mV. Additionally, the complex is active with a turnover frequency of 420 s(-1). An enhancement in activity is observed upon addition of water. PMID:26948148

  17. A dinuclear cadmium(II) Schiff base thiocyanato complex: crystal structure and fluorescence.

    PubMed

    Shit, Shyamapada; Sankolli, Ravish; Guru Row, Tayur N

    2014-01-01

    A new dinuclear cadmium(II) complex, [Cd(L)(NCS)]2 (1) has been synthesized using a potentially tetradentate Schiff base ligand HL, 2-((E)-(2-(diethylamino)ethylimino)methyl)-6-methoxyphenol, obtained by the condensation of 2-diethylaminoethylamine and o-vanillin, and characterized by different physicochemical techniques. Crystal structure of the title complex was unambiguously established by single crystal X-ray diffraction which reveals that metal centers are connected by bridging phenolato and chelating methoxy oxygen atoms of the coordinating Schiff bases and embedded in severely distorted octahedral geometries. Fluorescence properties of the ligand and its complex, studied at room temperature indicate that later may serve as strong fluorescent emitter. PMID:24664327

  18. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S.

    2015-06-01

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, 1H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a = 7.032(2) Ǻ, b = 9.479(3) Ǻ, c = 12.425(4) Ǻ, α = 101.636(3)°, β = 99.633(3)°, γ = 94.040(3)°, V = 795.0(4) Ǻ3, Z = 2, F(0 0 0) = 352, Dc = 1.405 mg/m3, μ = 0.099 mm-1, R = 0.0378, and wR = 0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active.

  19. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes.

    PubMed

    Shiju, C; Arish, D; Bhuvanesh, N; Kumaresan, S

    2015-06-15

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, (1)H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a=7.032(2)?, b=9.479(3)?, c=12.425(4)?, ?=101.636(3), ?=99.633(3), ?=94.040(3), V=795.0(4)?(3), Z=2, F(000)=352, Dc=1.405 mg/m(3), ?=0.099 mm(-1), R=0.0378, and wR=0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active. PMID:25782179

  20. Cationic schiff base amphiphiles and their metal complexes: Surface and biocidal activities against bacteria and fungi.

    PubMed

    Negm, N A; Zaki, M F; Salem, M A I

    2010-05-01

    A series of cationic surfactants containing schiff base groups was synthesized by condensation of four fatty amines namely: dodecyl, tetradecyl, hexadecyl and octadecyl amine and 4-diethyl aminobenzaldehyde (1-4), as well as their metal complexes with divalent transition metal ions including Co, Cu and Mn (5-16). The surface activities of the synthesized surfactants were influenced by their chemical structures and the type of the transition metals. The biological activity measurements of the parent cationic schiff bases showed high efficacy against Gram positive and Gram negative bacterial strains and fungi. While on complexation, the biocidal activity was increased remarkably. The biocidal activity of the tested compounds against sulfur reducing bacteria showed promising results in the field of biocide applications. PMID:20167455

  1. Novel polymer anchored Cr(III) Schiff base complexes: synthesis, characterization and antimicrobial properties.

    PubMed

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and (1)H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH). PMID:22622060

  2. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  3. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    NASA Astrophysics Data System (ADS)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(?-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  4. Synthesis and spectral studies of metal complexes of a Schiff base derived from (2-amino-5-chlorophenyl)phenyl methanone.

    PubMed

    Mini, S; Sadasivan, V; Meena, S S; Bhatt, Pramod

    2015-12-01

    Some new complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Fe(III) with the Schiff base 5-chloro-2-(furan-2-yl methylamino)phenyl)phenyl methanone has been synthesized and characterized by elemental analysis, spectroscopic data including FT-IR, (1)H NMR, Electronic, ESI mass, Mssbauer & ESR. It has been found that the Schiff base behaves as a neutral bidentate N, O donor which chelates with the metal ions in 1:2 stoichiometry. Magnetic moment and electrolytic conductance data confirms this. The Schiff base and selected complexes were screened for antimicrobial activity. The complexes and the Schiff base were subjected to antioxidant study. The antitumor activity of Co(II) complex was tested by MTT assay. The result indicates the viability of the complex against tested cell lines. PMID:26163782

  5. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole.

    PubMed

    Song, Wen-Ji; Cheng, Jian-Ping; Jiang, Dong-Hua; Guo, Li; Cai, Meng-Fei; Yang, Hu-Bin; Lin, Qiu-Yue

    2014-01-01

    Two novel copper(II) complexes with Schiff base of benzimidazole [Cu(L)Cl]2CH3OH have been synthesized. HL(1) (N-(benzimidazol-2-ymethyl)-5-chlorosalicylideneimine, C15H11ClN3O) and HL(2) (N-(benzimidazol-2-ymethyl)-salicylideneimine, C15H12N3O) are ligands of complex (1) and complex (2), respectively. The complexes were characterized by elemental analysis, IR, UV-Vis, TGA and X-ray diffraction. Within the complexes, Cu(II) ions were four coordinated by two nitrogen atom of azomethine and imine, one phenolic oxygen atom from HL and one chloride atom. A distorted quadrilateral structure was formed. Complex (1) crystallized in the triclinic crystal system. Results showed that ?-? stacking effect occurred due to the existence of aromatic ring from Schiff base and hydrogen bonding between methanol and adjacent atoms. The DNA binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra and viscosity measurements. Results indicated that complexes bound to DNA via partial intercalation mode. The DNA binding constants Kb/(L mol(-1)) were 1.8110(4) (1), 1.3710(4) (2), 6.2710(3) (HL(1)) and 3.1410(3) (HL(2)) at 298 K. The title complexes could quench the emission intensities of EB-DNA system significantly. The results of agarose gel electrophoresis indicated complex (1) could cleave supercoiled DNA through the oxidative mechanism. The inhibition ratios revealed that complex (1) and HL(1) had strong antiproliferative activities against human breast cancer cells (MCF-7) lines and human colorectal cancer cells (COLO205) lines in vitro. The antiproliferative activities of complex (1) against MCF-7 lines (IC50=16.91.5 ?mol L(-1)) and against COLO205 lines (IC50=16.53.4 ?mol L(-1)) is much stronger than that of HL(1), which had the potential to develop anti-cancer drug. PMID:24220672

  6. Oxidation of benzoin catalyzed by oxovanadium(IV) schiff base complexes

    PubMed Central

    2013-01-01

    Background The oxidative transformation of benzoin to benzil has been accomplished by the use of a wide variety of reagents or catalysts and different reaction procedures. The conventional oxidizing agents yielded mainly benzaldehyde or/and benzoic acid and only a trace amount of benzil. The limits of practical utilization of these reagents involves the use of stoichiometric amounts of corrosive acids or toxic metallic reagents, which in turn produce undesirable waste materials and required high reaction temperatures. In recent years, vanadium complexes have attracted much attention for their potential utility as catalysts for various types of reactions. Results Active and selective catalytic systems of new unsymmetrical oxovanadium(IV) Schiff base complexes for the oxidation of benzoin is reported. The Schiff base ligands are derived between 2-aminoethanol and 2-hydroxy-1-naphthaldehyde (H2L1) or 3-ethoxy salicylaldehyde (H2L3); and 2-aminophenol and 3-ethoxysalicylaldehyde (H2L2) or 2-hydroxy-1-naphthaldehyde (H2L4). The unsymmetrical Schiff bases behave as tridentate dibasic ONO donor ligands. Reaction of these Schiff base ligands with oxovanadyl sulphate afforded the mononuclear oxovanadium(IV) complexes (VIVOLx.H2O), which are characterized by various physico-chemical techniques. The catalytic oxidation activities of these complexes for benzoin were evaluated using H2O2 as an oxidant. The best reaction conditions are obtained by considering the effect of solvent, reaction time and temperature. Under the optimized reaction conditions, VOL4 catalyst showed high conversion (>99%) with excellent selectivity to benzil (~100%) in a shorter reaction time compared to the other catalysts considered. Conclusion Four tridentate ONO type Schiff base ligands were synthesized. Complexation of these ligands with vanadyl(IV) sulphate leads to the formation of new oxovanadium(IV) complexes of type VIVOL.H2O. Elemental analyses and spectral data of the free ligands and their oxovanadium(IV) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. Oxovanadium complexes were screened for the oxidation of benzoin to benzil using H2O2 as oxidant. The effect of time, solvent and temperature were optimized to obtain maximum yield. The catalytic activity results demonstrate that these catalytic systems are both highly active and selective for the oxidation of benzoin under mild reaction conditions. PMID:23294561

  7. One-dimensional organic photoconductive nanoribbons built on Zn-Schiff base complex

    SciTech Connect

    Liu Li; Shao Mingwang; Wang Xiuhua

    2010-03-15

    One-dimensional organic nanoribbons built on N-p-nitrophenylsalicylaldimine zinc complex were synthesized via a facile solvothermal route. The scanning electron microscope images revealed that the as-synthesized products were ribbon-like with width mainly of 300-600 nm, thickness of about 50 nm, and length of up to tens of micrometers. Fourier transform infrared spectrum was employed to characterize the structure. Ultraviolet-visible absorption and photoluminescence spectra showed that the products had good photoluminescent property and exhibited blue emission. The conductivity of a bundle of nanoribbons was also measured, which showed that the Schiff base zinc nanoribbons had good photoconductive property. This work might enrich the organic photoconductive materials and be applicable in light-controlled micro-devices or nano-devices in the future. - Graphical abstract: The Schiff base zinc nanoribbons nanowires exhibited good photoresponse under an incandescent lamp, which indicated their potential application as organic semiconductive or photoconductive nanodevices in the future.

  8. Synthesis, crystal structure and complexing properties of calix[4]pyrrole 10?,20?-disubstituted Schiff bases and urea derivatives

    NASA Astrophysics Data System (ADS)

    Han, Ying; Sun, Juan-Juan; Wang, Gen-Liang; Yan, Chao-Guo

    2015-03-01

    10?,20?-di(4-aminophenyl)calix[4]pyrroles were synthesized from the acid catalyzed cyclization of dialkyldipyrromethanes with p-nitroacetophenone and sequential hydrogenation of nitro group, which in turn reacted with several aromatic aldehydes and pyridinecarboxaldehydes as well as isocyanates to give a series of calix[4]pyrrole 10?,20?-disubstituted Schiff base and urea derivatives. The crystal structures of the newly-formed calix[4]pyrrole Schiff bases were successfully determined by X-ray diffraction. The complexing property of calix[4]pyrrole Schiff bases for transition metal ions was also investigated with UV-Vis spectroscopy.

  9. Charge-transfer complexes of pyrimidine Schiff bases with aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Issa, Yousry M.; El Ansary, A. L.; Sherif, O. E.; Hassib, H. B.

    2011-08-01

    Charge-transfer (CT) complexes of pyrimidine Schiff bases, derived from condensation of 2-aminopyrimidine and substituted benzaldehydes, with some aromatic polynitro compounds were prepared and investigated using IR, UV, visible and 1H NMR spectroscopy. For all solid complexes, the main interaction between the donor and acceptor molecules takes place through the ?-?* interaction. Strong and some weak acidic acceptors, in addition interact through proton transfer from the acceptor molecule to the basic centre of the electron donor. Also, an n-?* transition was detected in some complexes.

  10. Charge-transfer complexes of pyrimidine Schiff bases with aromatic nitro compounds.

    PubMed

    Issa, Yousry M; el-Ansary, A L; Sherif, O E; Hassib, H B

    2011-08-01

    Charge-transfer (CT) complexes of pyrimidine Schiff bases, derived from condensation of 2-aminopyrimidine and substituted benzaldehydes, with some aromatic polynitro compounds were prepared and investigated using IR, UV, visible and (1)H NMR spectroscopy. For all solid complexes, the main interaction between the donor and acceptor molecules takes place through the ?-?* interaction. Strong and some weak acidic acceptors, in addition interact through proton transfer from the acceptor molecule to the basic centre of the electron donor. Also, an n-?* transition was detected in some complexes. PMID:21531169

  11. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    SciTech Connect

    Lekshmy, R. K. E-mail: tharapradeepkumar@yahoo.com; Thara, G. S. E-mail: tharapradeepkumar@yahoo.com

    2014-10-15

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  12. A study of in vitro antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand

    PubMed Central

    Al Momani, Waleed Mahmoud; Taha, Ziyad Ahmed; Ajlouni, Abdulaziz Mahmoud; Shaqra, Qasem Mohammad Abu; Al Zouby, Muaz

    2013-01-01

    Objective To establish the antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand L. Methods (N, N?-bis (1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. The antimicrobial activity of the resultant Ln (III) complexes was investigated using agar well diffusion and micro-broth dilution techniques; the latter was used to establish the minimum inhibitory concentrations for each compound investigated. Results Most of Ln (III) complexes were found to exhibit antibacterial activities against a number of pathogenic bacteria with MICs ranging between 1.95-250.00 g/mL. Staphylococcus aureus was the most susceptible bacterial species to [LaL(NO3)2(H2O)](NO3) complex while Shigella dysenteriae and Escherichia coli required a relatively higher MIC (250 g/mL). The complexes La (III) and Pr (III) were effective inhibitors against Staphylococcus aureus, whereas Sm (III) complex was effective against Serratia marcescens. On the other hand, Gd (III), La (III) and Nd (III) were found to be more potent inhibitors against Pseudomonas aeruginosa than two of commonly used antibiotics. The remaining Ln (III) complexes showed no remarkable activity as compared to the two standard drugs used. Conclusions Tetradentate Schiff base ligand L and its complexes could be a potential antibacterial compounds after further investigation. PMID:23646299

  13. Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II)

    PubMed Central

    Joseyphus, R. Selwin

    2008-01-01

    Two Schiff base ligands L1 and L2 were obtained by the condensation of glycylglycine respectively with imidazole-2-carboxaldehyde and indole-3-carboxaldehyde and their complexes with Zn(II) were prepared and characterized by microanalytical, conductivity measurement, IR, UV-Vis., XRD and SEM. The molar conductance measurement indicates that the Zn(II) complexes are 1 : 1 electrolytes. The IR data demonstrate the tetradentate binding of L1 and tridentate binding of L2. The XRD data show that Zn(II) complexes with L1 and L2 have the crystallite sizes of 53 and 61 nm respectively. The surface morphology of the complexes was studied using SEM. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by the disc diffusion method. A comparative study of inhibition values of the Schiff base ligands and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. Zinc ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. PMID:23990740

  14. Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

    PubMed Central

    Sakthivel, A.; Rajasekaran, K.

    2007-01-01

    New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 g/ml. PMID:24015086

  15. Synthetic, structural and biological properties of binuclear complexes with some Schiff bases.

    PubMed

    Patil, Raju M

    2007-01-01

    The complexes of Co(II), Ni(II) and Cu(II) with N,N'-bis-[5-X-salicylidene]-4,4'-diaminodibenzyl, abbreviated as H2-XSalPDADB (X = -H, -CH3, -Br) have been synthesized and investigated by elemental analysis, electrical conductance, magnetic, spectral and thermal studies. The molar conductivity data indicate that the complexes are non-electrolytes. Analytical data support 1:1 (M:L) stoichiometry. The reflectance spectra along with the magnetic data suggest pseudo-tetrahedral geometry for the complexes. The Schiff bases function as tetradentate ligands coordinating through ON-NO donor system. Substitution in the phenyl ring of the complexes produces shift in the azomethine v(C=N) stretching vibrational frequency, which is related to the Hammett's substituent perameter (sigma). The 1H-NMR data reveal that all Schiff bases exist in enol-iminic form. Various ESR parameters for copper complexes have been calculated. The compounds have been screened for their biological activities. PMID:18536160

  16. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  17. Synthesis and characterization of chromium(III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol

    NASA Astrophysics Data System (ADS)

    Praveen Kumar, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Muthamizh, S.; Narayanan, V.

    2015-03-01

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  18. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: Synthesis, characterization and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-01

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L1), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L2) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L4). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L3) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, 1H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1 M (NaClO4), at 25 C in dimethylformamide (DMF) as a solvent.

  19. Synthesis, Structural, and Biological Studies of Some Schiff Bases and Their Metal Complexes

    PubMed Central

    Mishra, A. P.; Soni, Monika

    2008-01-01

    New bidentate or tridentate Schiff bases and their VO(II) and Co(II) complexes formed by the condensation of methyl isobutyl ketone with nicotinamide (mna)/2-amino-4-chlorophenol (map) and 2-hydroxy acetophenone with nicotinamide (han)/isoniazide (hai). Physicochemical characterization has been carried out to determine the structure of the complexes. The FAB mass and thermal data show degradation pattern of the complexes. XRD analysis reveals that all the studied complexes crystallize as tetragonal crystal system. Some of the complexes have been screened for their antimicrobial activity by the well diffusion technique using DMSO as solvent on different species of pathogenic bacteria/fungi, that is, E. coli, S. aureus, S. fecalis, A. niger, T. polysporum, and their antimicrobial potency have been discussed. It has been found that all the complexes are antimicrobially active and show higher activity than the free ligand. Metal chelation affects significantly the antimicrobial/bioactive behavior of the organic ligands. PMID:18670613

  20. Crystal structures of transition metal complexes with an asymmetrical tridentate Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    Tang, Bei-bei; Sun, Xiao-ping; Liu, Gui-lei; Li, Hui

    2010-12-01

    The asymmetrical tridentate Schiff base ( H 2L = (E)-N'-(2-hydroxybenzylidene)-4-hydroxybenzohydrazide) has been designed and synthesized. The four transition metal complexes with this ligand [Cu(HL)(NO 3)](H 2O) ( 1), [Zn 2(HL) 2(bipy)(H 2O) 2](NO 3) 2 ( 2), [Cu(HL)(H 2O)] 2(NO 3) 2 ( 3) and [Cu(HL)(Me 2NCO)] 2 ( 4) have been studied. The unsaturated coordination site of metal ion in complexes 1 and 2 is occupied by secondary ligand of nitrate and 4,4'-bipyridine. The crystal structure of complex 1 exhibits supramolecular framework with homochirality. Complexes 3 and 4 are dinuclear complexes bridged by the phenol oxygen atoms and the fifth coordination is occupied by H 2O molecular and DMF anion respectively. Hydrogen bonding and ?-? stacking exist in all four complexes to construct supramolecular architecture.

  1. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  2. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine.

    PubMed

    Nitha, L P; Aswathy, R; Mathews, Niecy Elsa; Kumari, B Sindhu; Mohanan, K

    2014-01-24

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, (1)HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X=Cl, OAc; ISAP=2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria. PMID:24051284

  3. Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa Eldin H.; Abd El-Aziz, Dina M.; Abd El-Zaher, Eman H.; Ali, Elham A.

    2011-09-01

    N-(thiophen-2-ylmethylene)benzo[ d]thiazol-2-amine Schiff base (L) derived from 2-aminobenzothiazole and 2-thiophenecarboxaldehyde was synthesized and characterized using elemental analysis, IR, mass spectra, 1H NMR and UV-vis spectra. Its complexes with Cu(II), Fe(III), Ni(II) and Zn(II) were prepared and isolated as solid products and characterized by elemental and thermal analyses, spectral techniques as well as magnetic susceptibility. The IR spectra showed that the Schiff base under investigation behaves as bidentate ligand. The UV-vis spectra and magnetic moment data suggested octahedral geometry around Cu(II) and Fe(III) and tetrahedral geometry around Ni(II) and Zn(II). In view of the biological activity of the Schiff base and its complexes, it has been observed that the antimicrobial activity of the Schiff base increased on complexation with the metal ion. In vitro antitumor activity assayed against five human tumor cell lines furnished the significant toxicities of the Schiff base and its complexes.

  4. Biological and Spectral Studies of Newly Synthesized Triazole Schiff Bases and Their Si(IV), Sn(IV) Complexes

    PubMed Central

    Singh, Kiran; Puri, Parvesh; Kumar, Yogender; Sharma, Chetan; Aneja, Kamal Rai

    2011-01-01

    The Schiff bases HL1-3 have been prepared by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-3-methyl/propyl/isopropyl-s-triazole, respectively. Organosilicon(IV) and organotin(IV) complexes of formulae (CH3)2MCl(L1-3), (CH3)2M(L1-3)2 were synthesized from the reaction of (CH3)2MCl2 and the Schiff bases in 1?:?1 and 1?:?2 molar ratio, where M = Si and Sn. The synthesized Schiff bases and their metal complexes have been characterized with the aid of various physicochemical techniques like elemental analyses, molar conductance, UV, IR, 1H, 13C, 29Si, and 119Sn NMR spectroscopy. Based on these studies, the trigonal bipyramidal and octahedral geometries have been proposed for these complexes. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi. PMID:21826133

  5. Biological and Spectral Studies of Newly Synthesized Triazole Schiff Bases and Their Si(IV), Sn(IV) Complexes.

    PubMed

    Singh, Kiran; Puri, Parvesh; Kumar, Yogender; Sharma, Chetan; Aneja, Kamal Rai

    2011-01-01

    The Schiff bases HL(1-3) have been prepared by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-3-methyl/propyl/isopropyl-s-triazole, respectively. Organosilicon(IV) and organotin(IV) complexes of formulae (CH(3))(2)MCl(L(1-3)), (CH(3))(2)M(L(1-3))(2) were synthesized from the reaction of (CH(3))(2)MCl(2) and the Schiff bases in 1?:?1 and 1?:?2 molar ratio, where M = Si and Sn. The synthesized Schiff bases and their metal complexes have been characterized with the aid of various physicochemical techniques like elemental analyses, molar conductance, UV, IR, (1)H, (13)C, (29)Si, and (119)Sn NMR spectroscopy. Based on these studies, the trigonal bipyramidal and octahedral geometries have been proposed for these complexes. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi. PMID:21826133

  6. Coordination properties of hydralazine Schiff base. Synthesis and equilibrium studies of some metal ion complexes

    NASA Astrophysics Data System (ADS)

    Shoukry, Azza A.; Shoukry, Mohamed M.

    2008-08-01

    In the present study, a new ligand is prepared by condensation of hydralazine (1-Hydralazinophthalazine) with 2-butanon-3-oxime. The acid-base equilibria of the schiff-base and the complex formation equilibria with the metal ions as Cu(II), Ni(II), Co(II), Cd(II), Mn(II) and Zn(II) are investigated potentiometrically. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated. The effect of metal ion properties as atomic number, ionic radius, electronegativity and ionization potential are investigated. The isolated solid complexes are characterized by conventional chemical and physical methods. The potential coordination sites are assigned using the i.r. and 1H NMR spectra. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies.

  7. Preparation, spectral studies, theoretical, electrochemical and antibacterial investigation of a new Schiff base and its some metal complexes

    NASA Astrophysics Data System (ADS)

    Ilhan, S.; Baykara, H.; Seyitoglu, M. S.; Levent, A.; zdemir, S.; Dndar, A.; ztomsuk, A.; Cornejo, M. H.

    2014-10-01

    A new Schiff base ligand, 1,6-Bis(2-(5-bromo-2-hydroxybenzylideneamino)-4-chlorophenoxy)hexane was synthesized. Some Schiff metal complexes of the new Schiff base were prepared by the reaction of some metal salts and the Schiff base. The complexes are non-electrolytes as shown by their molar conductivities (?M). The structures of metal complexes are proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, mass spectra and thermal gravimetric analysis. In addition theoretical 1H NMR, HOMO-LUMO studies of the ligand; antimicrobial and cyclic voltammetric studies of the compounds were also carried out. In this study antioxidant and antibacterial activities of the compounds were examined via in vitro methods.

  8. Spectroscopic and density functional theory investigation of novel Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Hassan, Walid M. I.; Zayed, Ehab M.; Elkholy, Asmaa K.; Moustafa, H.; Mohamed, Gehad G.

    2013-02-01

    Novel Schiff base (H2L, 1,2-bis[(2-(2-mercaptophenylimino)methyl)phenoxy] ethane) derived from condensation of bisaldehyde and 2-aminothiophenol was prepared in a molar ratio 1:2. The ligand and its metal complexes are fully characterized with analytical and spectroscopic techniques. The metal complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Th(IV) have been prepared and characterized by elemental analyses, IR and 1H-NMR spectroscopy, thermal and magnetic measurements. The results suggested that the Schiff base is a bivalent anion with hexadentate OONNSS donors derived from the etheric oxygen (O, O'), azomethine nitrogen (N, N') and thiophenolic sulphur (S, S'). The formulae of the complexes were found to be [ML]xH2O (M = Mn(II) (x = 0), Co(II) (x = 1), Ni(II), (x = 1), Cu(II) (x = 2) and Zn(II) (x = 0)) and [ML]nCl (M = Cr(III) (n = 1), Fe(III) (n = 1) and Th(IV) (n = 2)). The thermogravimetric analysis of the complexes shows metal oxide remaining as the final product at 700-1000 C. Density functional theory at the B3LYP/6-31G* level of theory was used to investigate molecular geometry, Mulliken atomic charges and energetics. The synclinal-conformer was found to be responsible for complex formation. The calculation showed that ligand has weak field. Structural deformation and the dihedral angles rotation during complexation were investigated. The binding energy of each complex was calculated. The calculated results are in good agreement with experimental data.

  9. Sn(IV) Schiff base complexes: triplet photosensitizers for photoredox reactions.

    PubMed

    Grusenmeyer, Tod A; King, Albert W; Mague, Joel T; Rack, Jeffrey J; Schmehl, Russell H

    2014-12-21

    We present the synthesis and characterization of a series of four fluorescent Sn(iv) Schiff base complexes, which also possess long-lived triplet excited states. The complexes absorb visible light (λmax = 420 to 462 nm) and the optical properties are easily tunable without laborious synthetic elaboration. The triplet excited states are not luminescent, but can be observed and followed using nanosecond transient absorption spectroscopy. The lifetimes of the triplet excited states are on the order of 500 μs-10 ms in PMMA matrices. The triplet state energies were estimated via energy transfer reactions with a series of organic triplet acceptors. In addition, the photoexcited complexes react with electron donors and acceptors in solution. These results demonstrate the potential for the development of photosensitizers based on main group elements with high spin orbit coupling constants. PMID:25043697

  10. Derivatives of phosphate Schiff base transition metal complexes: synthesis, studies and biological activity

    NASA Astrophysics Data System (ADS)

    El-Wahab, Z. H. Abd; El-Sarrag, M. R.

    2004-01-01

    We report the synthesis and structural characterization of series of tetra- and hexacoordinate metal chelate complexes of phosphate Schiff base ligands having the general composition LMX nH 2O and L 2MX n (L=phosphate Schiff base ligand; M=Ag +, Mn 2+, Cu 2+, Zn 2+, Cd 2+, Hg 2+, or Fe 3+ and X=NO 3-, Br - or Cl -). The structure of the prepared compounds was investigated using elemental analysis, IR, 1H and 31P NMR, UV-vis, mass spectra, solid reflectance, magnetic susceptibility and conductance measurements as well as conductometric titration. In all the complexes studied, the ligands act as a chelate ligand with coordination involving the phosphate?O-atom and the azomethine?N-atom. IR, solid reflectance spectra and magnetic moment measurement are used to infer the structure and to illustrate the coordination capacity of ligand. IR spectra show the presence of coordinated nitrate and water molecule, the magnetic moments of all complexes show normal magnetic behavior and the electronic spectra of the metal complexes indicate a tetra- and octahedral structure for Mn 2+, octahedral structure of Fe 3+ and both square-planar and distorted octahedral structure for Cu 2+ complexes. Antimicrobial activity of the ligands and their complexes were tested using the disc diffusion method and the chosen strains include Staphylococcus aureus, Pseudomonas aereuguinosa, Klebsiella penumoniae, Escherichia coli, Microsporum canis, Trichophyton mentagrophyte and Trichophyton rubrum. Some known antibiotics are included for the sake of comparison and the chosen antibiotic are Amikacin, Doxycllin, Augmantin, Sulperazon, Unasyn, Septrin, Cefobid, Ampicillin, Nitrofurantion, Traivid and Erythromycin.

  11. Synthesis and characterization of taurine Schiff base derivatives and their Cu(II) complexes: crystal and molecular structure of 5-NO/sub 2/ salicylaldimine ethylene sulfonic acid complex of Cu(II)

    SciTech Connect

    Perez-Cesar, M.C.; Soriano-Garcia, M.; Toscano, R.A.; Gomez-Lara, J.

    1986-04-01

    Spectroscopic analysis of eight copper(II) complexes of Schiff bases derived from taurine and eight different salicylaldehydes and naphthaldehydes are reported. X-ray structural analysis of the copper(II) complex of the 5-NO/sub 2/-salicylaldehyde imine of taurine (5-NO/sub 2/-salicylaldimine ethylene sulfonic acid) as the tetra n-butylammonium salt (Cu(C/sub 9/H/sub 8/N/sub 2/O/sub 6/S)/sub 2/)/sup 2 -/2((C/sub 4/H/sub 9/)/sub 4/N)/sup +/ (CUTAUTBA) has been carried out. The space group is P anti 1, with a = 8.761(4), b = 10.410(3), c = 16.528(4) A, ..cap alpha.. = 77.85(3), ..beta.. = 86.53(4), ..gamma.. = 79.15(3)/sup 0/, and Z = 1. The structure was solved by the heavy-atom method and refined by least-squares techniques to an R factor of 0.068 for 2807 observed reflections. The CUTAU cation is centrosymmetric, with the Cu atom sitting on a crystallographic center of symmetry. The copper atom has a square-planar environment, coordinated by the potentially tridentate Schiff base only through the imino nitrogen and the phenolate oxygen with the deprotonated sulfonic group directed away from the coordination sphere of the Cu(II).

  12. PM3 semi-empirical IR spectra simulations for metal complexes of schiff bases of sulfa drugs

    NASA Astrophysics Data System (ADS)

    Topacli, C.; Topacli, A.

    2003-06-01

    The molecular structures and infrared spectra of Co, Ni, Cu and Zn complexes of two schiff base ligands, viz N-( o-vanillinidene)sulfanilamide ( oVSaH) and N-( o-vanillinidene)sulfamerazine ( oVSmrzH) are studied in detail by PM3 method. It has been shown that the proposed structures for the compounds derived from microanalytical, magnetic and various spectral data were consistent with the IR spectra simulated by PM3 method. Coordination effects on ν(CN) and ν(C-O) modes in the schiff base ligands are in close agreement with the observed results.

  13. Towards dipyrrins: oxidation and metalation of acyclic and macrocyclic Schiff-base dipyrromethanes.

    PubMed

    Pankhurst, James R; Cadenbach, Thomas; Betz, Daniel; Finn, Colin; Love, Jason B

    2015-02-01

    Oxidation of acyclic Schiff-base dipyrromethanes cleanly results in dipyrrins, whereas the macrocyclic 'Pacman' analogues either decompose or form new dinuclear copper(ii) complexes that are inert to ligand oxidation; the unhindered hydrogen substituent at the meso-carbon allows new structural motifs to form. PMID:25563854

  14. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    PubMed Central

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultravioletvisible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms. PMID:24070648

  15. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  16. Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diamino-propane.

    PubMed

    Emara, Adel A A; Saleh, Akila A; Adly, Omima M I

    2007-11-01

    The bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) serves as precursor for the formation of different Schiff base ligands, which are either di- or tetra-basic with two symmetrical sets of either O2N or N2O tridentate chelating sites. The condensation of 4,6-diacetylresorcinol with 3-amino-1-propanol (3-AP) or 1,3-diaminopropane (DAP), yields the corresponding hexadentate Schiff base ligands, abbreviated as H4La and H2Lb, respectively. The structures of these ligands were elucidated by elemental analyses, IR, mass, 1H NMR and electronic spectra. Reaction of the Schiff base ligands with copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded the corresponding transition metal complexes. A variety of binuclear complexes for the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The structures of the newly prepared complexes were identified by elemental analyses, infrared, electronic, mass, 1H NMR and ESR spectra as well as magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The bonding sites are the azomethine and amino nitrogen atoms, and phenolic and alcoholic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement. PMID:17321197

  17. Structural and biological behaviors of some nonionic Schiff-base amphiphiles and their Cu(II) and Fe(III) metal complexes.

    PubMed

    Negm, Nabel A; Zaki, Mohamed F

    2008-07-15

    Novel series of nonionic Schiff bases was synthesized and characterized using microelemental analysis, FTIR and (1)H NMR spectra. These Schiff bases and their complexes with Cu and Fe have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Pseudomonas aureus, Candida albi, Bacillus subtilis and Escherichia coli and their fungicidal activity against Aspcrgillus niger and Aspcrgillus flavus. The results of the biocidal activities showed high potent action of the synthesized Schiff bases towards both bacteria and fungi. Furthermore, complexation of these Schiff bases by Cu(II) and Fe(III) show the metal complexes to be more antibacterial and antifungal than the Schiff bases. The results were correlated to the surface activity and the transition metal type. The mode of action of these complexes was discussed. PMID:18325743

  18. A novel 1D chain of azido bridged copper(II) with a salen-type di-Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Biswas, Saptarshi; Ghosh, Ashutosh

    2012-07-01

    One new complex of Cu(II), [(CuL)2Cu3(N3)6]n (1) has been synthesized by reacting the "ligand complex", [CuL] with copper acetate and sodium azide (NaN3) in methanol-water where the di-Schiff base ligand H2L = N,N'-bis(α-methylsalicylidene)-1,3-propanediamine. The X-ray single crystal structural analysis shows that complex 1 consists of an incomplete face-sharing double cube of four Cu(II) ions with the formula of [(CuL)2Cu2(N3)2]2+ which are connected by [Cu(N3)4]2- unit to form a novel 1D chain.

  19. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2?:?3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  20. Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N,O-chelating Schiff's base ligand incorporating azo and sulfonamide Moieties

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Bayoumi, Hoda A.; Ammar, Yousry A.; Aldhlmani, Sharah A.

    2013-03-01

    Chromium(III), Manganese(II), Cobalt(II), nickel(II), copper(II) and cadmium(II) complexes of 4-[4-hydroxy-3-(phenyliminomethyl)-phenylazo]benzenesulfonamide, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Dimeric complexes are obtained with 2:2 molar ratio except chromium(III) complex is monomeric which is obtained with 1:1 molar ratios. The IR spectra of the prepared complexes were suggested that the Schiff base ligand(HL) behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. Thermal studies suggest a mechanism for degradation of HL and its metal complexes as function of temperature supporting the chelation modes. Also, the activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of HL and its metal complexes were calculated. The pathogenic activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024) as Gram positive bacteria, Klebsiella pneumonia (RCMB 010093), Shigella flexneri (RCMB 0100542), as Gram negative bacteria and Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035) as fungus strain, and the results are discussed.

  1. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al Momani, Waleed; Al-Ghzawi, Abeer A.

    2011-10-01

    A tetradentate Schiff base ligand L (N,N'-bis(1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. New eight lanthanide metal complexes [Ln L(NO 3) 2(H 2O) x](NO 3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, x = 0 for Nd, Sm, 1 for La, Gd, Pr, Nd, Dy, and 2 for Tb} were prepared. The characterization and nature of bonding of these complexes were elucidated by elemental analysis, spectral analysis ( 1H NMR, FT-IR, UV-vis), molar conductivity measurements, luminescence spectra and thermogravimetric studies. Analytical and spectral data revealed that the ligand L coordinates to the central Ln(III) ions by its two imine nitrogen atoms and two phenolic oxygen atoms with 1:1 stoichiometry. Under the excitation with 329 nm at room temperature, Tb and Dy complexes exhibited characteristic luminescence of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of Ln(III) complexes found to exhibit antibacterial activities against a number of pathogenic bacteria. We found that the antioxident activity of Ln(III) complexes on DPPH rad is concentration dependent and higher than that of the free ligand L.

  2. Synthesis, molecular structure, and properties of a neutral Schiff base phenolic complex of magnesium

    SciTech Connect

    Polyakov, V.R.; Sharma, V.; Crankshaw, C.L.; Piwnica-Worms, D.

    1998-09-07

    Multidrug resistance (MDR) in cancer mediated by the MDR1 P-glycoprotein (Pgp), a 140--180 kDa plasma membrane protein, renders chemotherapeutic treatment ineffective by pumping a variety of natural product cytotoxic agents and xenobiotic compounds out of cancer cells. Pgp has been a major target for synthesis and development of both therapeutic antagonists that block its transport function and diagnostic radiopharmaceuticals that are transported by the protein for use in functional imaging of Pgp transport activity in tumors in vivo. Most, but not all, compounds that interact with Pgp are hydrophobic and cationic at physiological pH. To further understand the Pgp targeting properties, the authors sought to directly evaluate the effect of charge of the complex on Pgp interactions. This could be done by comparing the cytotoxicity profile of a neutral complex to that of an identical, but positively charged, complex in both drug-sensitive and multidrug-resistant cancer cells. Thus, a neutral analogue of the Ga(III) and Fe(III) complexes was desired. Herein the authors describe the synthesis and structure of a novel neutral Schiff base Mg complex and evaluate its cytotoxic potency in human drug-sensitive KB-3-1 and multi-drug-resistant KB-8-5 tumor cells.

  3. Redox, thermodynamic and spectroscopic of some transition metal complexes containing heterocyclic Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abu-Hussen, Azza A. A.; Linert, Wolfgang

    2009-09-01

    Complexes of two series of Schiff base ligands, H 2L a and H 2L b derived from the reaction of 2,6-diacetyl pyridine with semicarbazide, H 2L a and thiosemicarbazide, H 2L b, with the metal ions, Co(II), Ni(II), Cu(II), VO(IV) and UO 2(VI) have been prepared. The ligands are characterized by elemental analysis, IR, UV-vis and 1H NMR. The structures of the complexes are investigated with the IR, UV-vis, X-band ESR spectra, 1H NMR and thermal gravimetric analysis as well as conductivity and magnetic moment measurements. The IR-spectra reveal the presence of variable modes of chelation for the investigated ligands. A variety of binuclear or mononuclear complexes were obtained with the two ligands in tri-, tetra or pentadentate forms. The bonding sites are the pyridine nitrogen, two azomethine nitrogen atoms and ketonic oxygen in case of H 2L a or sulphur atoms in case of H 2L b. The Coats-Redfern equation has been used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. Cyclic voltammograms of Co(II) and Ni(II) show quasi-reversible peaks. The redox properties and the nature of the electro-active species of the complexes have been characterized.

  4. Experimental and theoretical spectroscopic study and structural determination of nickel(II) tridentate Schiff base complexes.

    PubMed

    Kianfar, Ali Hossein; Farrokhpour, Hossein; Dehghani, Parin; Khavasi, Hamid Reza

    2015-11-01

    Some new complexes of [NiL(PR3)] (where L=(E)-1-[(2-amino-5-nitrophenyl)iminio-methyl]naphthalene-2-olate (L(1)), (E)-1-[(2-hydroxiphenyl)iminio-methyl]naphthalene-2-olate (L(2)), R=Bu and Ph) containing tridentate ONN and ONO Schiff bases were synthesized and characterized by IR, UV-Vis, (1)H-NMR spectroscopy and elemental analysis. The geometry of [NiL(1)(PBu3)] and [NiL(2)(PBu3)] complexes were determined by X-ray crystallography. It was indicated that the complexes have a square planar structure and four coordinates in the solid state. Theoretical calculations were also performed to optimize the structures of the ligands and complexes in the gas phase and ethanol solvent, separately to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of the complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. PMID:26051644

  5. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies

    NASA Astrophysics Data System (ADS)

    Omar, M. M.; Mohamed, Gehad G.; Ibrahim, Amr A.

    2009-07-01

    Novel Schiff base (HL) ligand is prepared via condensation of 4-aminoantipyrine and 2-aminobenzoic acid. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TGA, DrTGA and DTA). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a uninegatively tridentate manner with NNO donor sites of the azomethine N, amino N and deprotonated caroxylic-O. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia Coli, Pseudomonas aeruginosa, Staphylococcus Pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.

  6. Synthesis, characterization, biological and catalytic applications of transition metal complexes derived from Schiff base.

    PubMed

    Bushra Begum, A; Rekha, N D; Vasantha Kumar, B C; Lakshmi Ranganatha, V; Khanum, Shaukath Ara

    2014-08-01

    A novel series of Cu(II), Ni(II), Zn(II), Co(II), and Cd(II) complexes have been synthesized from the Schiff base. Structural features were determined by analytical and spectral techniques like IR, (1)H NMR, UV-vis, elemental analysis, molar electric conductibility, magnetic susceptibility and thermal studies. The complexes are found to be soluble in dimethylformamide and dimethylsulfoxide. Molar conductance values in dimethylformamide indicate the non-electrolytic nature of the complexes. Binding of synthesized complexes with calf thymus DNA (CT DNA) was studied. There is significant binding of DNA in lanes 2, 3, and 5. Lanes 4 and 6 are showing more florescence when compared to the control indicating that these molecules are strongly bound to the DNA by inserting themselves between the two stacked base pairs and exhibiting their original property of fluorescence. Angiogenesis study has revealed that the compounds B-2, B-4 and B-5 have potent antitumor efficacy and activation of antiangiogenesis could be one of the possible underlying mechanisms of tumor inhibition. PMID:24915881

  7. Coordination geometry around copper in a Schiff-base trinuclear copper complex using EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaur, Abhijeet; Shrivastava, B. D.; Gaur, D. C.; Prasad, J.; Srivastava, K.; Jha, S. N.; Bhattacharyya, D.; Poswal, A.

    2012-05-01

    In the present investigation, we have studied extended X-ray absorption fine structure (EXAFS) spectra of a trinuclear Schiff-base copper complex tetraaqua-di-?3-(N-salicylidene-DL-glutamato)-tricopper(II)heptahydrate, [Cu3(C12H10NO5)2 (H2O)4]. 7H2O, in which three metal sites are present. One metal site is square-pyramidal (4+1) and other two similar metal sites are tetragonally distorted octahedral (4+2). EXAFS has been recorded at the K-edge of copper in the complex at the dispersive EXAFS beamline at 2 GeV Indus-2 synchrotron source at RRCAT, Indore, India. The analysis of EXAFS spectra of multinuclear metal complexes pose some problems due to the presence of many absorbing atoms, even when the absorbing atoms may be of the same element. Hence, using the available crystal structure of the complex, theoretical models have been generated for the different copper sites separately, which are then fitted to the experimental EXAFS data. The two coordination geometries around the copper sites have been determined. The contributions of the different copper sites to the experimental spectrum have been estimated. The structural parameters, which include bond-lengths, coordination numbers and thermal disorders, for the two types of copper sites have been reported. Further, copper has been found to be in +2 oxidation state at these metal sites.

  8. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: a comparative approach.

    PubMed

    Raman, N; Sakthivel, A; Pravin, N

    2014-05-01

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 10(2) to 10(5) indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical. PMID:24566120

  9. Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation

    PubMed Central

    Sumathi, R. B.; Halli, M. B.

    2014-01-01

    A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. PMID:24592203

  10. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  11. Mononuclear and tetranuclear Fe(III) complexes with two different types of N, O donor Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Sutradhar, Manas; Roy Barman, Tannistha; Drew, Michael G. B.; Rentschler, Eva

    2013-06-01

    A mononuclear Fe(III) complex of a tetradentate N2O2 donor Schiff base ligand derived from 3-ethoxysalicaldehyde and ethylenediamine has been reported. In addition two tetranuclear Fe(III) complexes with discrete Fe4III(μ4-O) cores have been synthesized and characterized using two Schiff base ligands (H2L1-2) derived from two different aromatic acid hydrazides and diacetyl monoxime. The mononuclear Fe(III) and one of the tetranuclear Fe(III) complexes have been structurally characterized by single-crystal X-ray crystallography. The mononuclear complex has a highly distorted octahedral geometry. The tetranuclear Fe(III) complexes are found to be rare examples with discrete neutral alkoxido-oxido clusters with Fe4III(μ4-O) cores.

  12. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A.

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1?:?1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H, 13C, and 29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands. PMID:23983671

  13. Syntheses, structures, and magnetic properties of homodinuclear lanthanide complexes based on dinucleating Schiff base ligands.

    PubMed

    Gao, Feng; Yang, Feng-Lei; Zhu, Guang-Zhou; Zhao, Yue

    2015-11-18

    The first two families of homodinuclear lanthanide(iii) complexes, formulated as [(LOEt)2Ln2(L1)] and [(LOEt)2Ln2(L2)] (Ln(3+) = Dy(3+), Tb(3+), Ho(3+), Gd(3+), and Y(3+); L1(4-) = 2,2',2'',2'''-[1,2,4,5-benzenetetrayltetrakis(nitrilomethylidyne)]tetrakisphenolate; L2(4-) = 2,2',2'',2'''-[[1,1'-biphenyl]-3,3',4,4'-tetrayltetrakis(nitrilomethylidyne)]tetrakis(4-chlorophenolate); LOEt(-) = (?(5)-cyclopentadienyl)tris(diethylphosphito-p)cobaltate(iii)), were successfully synthesized based on Klui's tripodal building block NaLOEt and two dinucleating Schiff base ligands, and , respectively. Single-crystal X-ray analyses show that these lanthanide complexes have two seven-coordinated metal binding sites, linked to each other with a phenyl or biphenyl bridge. Variable temperature dc magnetic measurements reveal the weakly antiferromagnetic coupling between paramagnetic lanthanide ions, while ac magnetic data exhibit the field-induced relaxation of magnetization for the corresponding Dy2 complexes and . A further magnetic dilution study for suggests that the slow magnetic relaxation originates from the single-ion magnetic behaviour of Dy(3+) ions. PMID:26537229

  14. New platinum and ruthenium Schiff base complexes for water splitting reactions.

    PubMed

    Wang, Chuanjun; Chen, Yong; Fu, Wen-Fu

    2015-08-28

    New platinum(ii) and ruthenium(ii) mononuclear complexes with naphthalene-based Schiff base ligands L1 (H2-selnaph) and L2 (H2-selnaph-COOH) were synthesized: Pt-selnaph (), Pt-selnaph-COOH (), Ru-selnaph(4-picoline)2 (), and Ru-selnaph(isoquinoline)2 (). The complexes were characterized by NMR spectroscopy, matrix-assisted laser desorption/ionization time-of-flight spectrometry, and elemental analysis, and their electrochemical and photophysical properties were investigated. The luminescent complexes and were used as photosensitizers for visible-light driven hydrogen production reactions in the presence of sacrificial electron donor triethylamine and cocatalyst precursor K2PtCl4 aqueous solution. When complex was attached to the surface of TiO2 by a carboxyl group, enhanced hydrogen photogeneration was achieved compared with complex alone, with turnover numbers of about 84 after 12 h irradiation. Calculations based on electrochemical and spectroscopic data also confirmed the feasibility of electron injection through the carboxyl group of complex into the conduction band of TiO2 for hydrogen production reactions. Complexes and were found to be efficient stable water oxidation (NH4)2Ce(NO3)6-driven catalysts with a first-order reaction behavior. A turnover frequency of 5.34 min(-1) was achieved for complex , while complex exhibited an enhanced turnover frequency of 11.9 min(-1) in pH 1.0 aqueous solution. Turnover numbers up to 1400 and 2060 were obtained after 6.5 h of reaction for and , respectively. Unique mechanistic information for water splitting is also presented through electrochemical, spectroscopic and ESI-MS high-valent ruthenium-oxo intermediate investigations. PMID:26205430

  15. Theoretical spectroscopic study of seven zinc(II) complex with macrocyclic Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Kariper, Sultan Erkan; Sayin, Tuba Alagz; Karaka?, Duran

    2014-12-01

    Seven zinc complexes, which are [ZnL1]2+, [ZnL2]2+, [ZnL3]2+, [ZnL4]2+, [ZnL5]2+, [ZnL6]2+ and [ZnL7]2+, are studied as theoretically. Structural parameters, vibration frequencies, electronic absorption spectra and 1H and 13C NMR spectra are obtained for Zn(II) complexes of macrocyclic penta and heptaaza Schiff-base ligand. Vibration spectra of Zn(II) complexes are studied by using Density Functional Theory (DFT) calculations at the B3LYP/LANL2DZ. The UV-VIS and NMR spectra of the zinc complexes are obtained by using Time Dependent-Density Functional Theory (TD-DFT) method and Giao method, respectively. The agreements are found between experimental data of [ZnL5]2+, [ZnL6]2+ and [ZnL7]2+ complex ions and their calculated results. The geometries of complexes are found as distorted pentagonal planar for [ZnL1]2+, [ZnL2]2+ and [ZnL3]2+ complex ions, distorted tetrahedral for [ZnL4]2+ complex ion and distorted pentagonal bipyramidal for [ZnL5]2+, [ZnL6]2+ and [ZnL7]2+ complex ions. Ranking of biological activity is determined by using quantum chemical parameters and this ranking is found as: [ZnL7]2+ > [ZnL6]2+ > [ZnL5]2+ > [ZnL3]2+ > [ZnL2]2+ > [ZnL1]2+.

  16. Synthesis, characterization and experimental, theoretical, electrochemical, antioxidant and antibacterial study of a new Schiff base and its complexes.

    PubMed

    Baykara, Haci; Ilhan, Salih; Levent, Abdulkadir; Salih Seyitoglu, M; Özdemir, Sadin; Okumuş, Veysi; Öztomsuk, Abdussamet; Cornejo, Mauricio

    2014-09-15

    A new Schiff base ligand was synthesized by reaction of salicylaldehyde with 1,6-bis(4-chloro-2-aminophenoxy)hexane. Then the Schiff base complexes were synthesized by metal salts and the Schiff base. The metal to ligand ratio of metal complexes was found to be 1:1. The Cu(II) complex is proposed to be square planar and the Co(II), Ni(II), Mn(II) and Zn(II) complexes are proposed to be tetrahedral geometry. The Ti(III) and V(III) complexes are proposed to be a capped octahedron in which a seventh ligand has been added to triangular face. The complexes are non-electrolytes as shown by their molar conductivities (ΛM). The structure of metal complexes is proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, Mass Spectra and thermal gravimetric analysis. In addition antimicrobial and antioxidant studies, cyclic voltammetry of the complexes, theoretical 1H NMR and HOMO-LUMO energy calculations of the new di-functional ligand were done. PMID:24792202

  17. Synthesis, characterization and experimental, theoretical, electrochemical, antioxidant and antibacterial study of a new Schiff base and its complexes

    NASA Astrophysics Data System (ADS)

    Baykara, Haci; Ilhan, Salih; Levent, Abdulkadir; Salih Seyitoglu, M.; zdemir, Sadin; Okumu?, Veysi; ztomsuk, Abdussamet; Cornejo, Mauricio

    2014-09-01

    A new Schiff base ligand was synthesized by reaction of salicylaldehyde with 1,6-bis(4-chloro-2-aminophenoxy)hexane. Then the Schiff base complexes were synthesized by metal salts and the Schiff base. The metal to ligand ratio of metal complexes was found to be 1:1. The Cu(II) complex is proposed to be square planar and the Co(II), Ni(II), Mn(II) and Zn(II) complexes are proposed to be tetrahedral geometry. The Ti(III) and V(III) complexes are proposed to be a capped octahedron in which a seventh ligand has been added to triangular face. The complexes are non-electrolytes as shown by their molar conductivities (?M). The structure of metal complexes is proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, Mass Spectra and thermal gravimetric analysis. In addition antimicrobial and antioxidant studies, cyclic voltammetry of the complexes, theoretical 1H NMR and HOMO-LUMO energy calculations of the new di-functional ligand were done.

  18. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    SciTech Connect

    Mini, S. Sadasivan, V.; Meena, S. S. Bhatt, Pramod

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  19. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha

    2015-01-01

    Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with various uninegative tridentate ligands derived from isatin monohydrazone with 2-hydroxynapthaldehyde/substituted salicylaldehyde and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized and characterized by elemental analysis, conductometric studies, magnetic susceptibility and spectroscopic techniques (IR, UV-VIS, NMR, mass and ESR). On the basis of these characterizations, it was revealed that Schiff base ligands existed as monobasic tridentate ONO bonded to metal ion through oxygen of carbonyl group, azomethine nitrogen and deprotonated hydroxyl oxygen and heterocyclic nitrogen base 8-hydroxyquinoline existed as monobasic bidentate ON bonded through oxygen of hydroxyl group and nitrogen of quinoline ring with octahedral or distorted octahedral geometry around metal ion. All the compounds have been tested in vitro against various pathogenic Gram positive bacteria, Gram negative bacteria and fungi using different concentrations (25, 50, 100, 200 ?g/mL) of ligands and their complexes. Comparative study of antimicrobial activity of ligands, and their mixed complexes indicated that complexes exhibit enhanced activity as compared to free ligands and copper(II) Cu(LIV)(Q)?H2O complex was found to be most potent antimicrobial agent.

  20. Selective Anion Binding by a Cofacial Binuclear Zinc Complex of a Schiff-Base Pyrrole Macrocycle

    PubMed Central

    Devoille, Aline M. J.; Richardson, Patricia; Bill, Nathan; Sessler, Jonathan L.; Love, Jason B.

    2011-01-01

    The synthesis of the new cofacial binuclear zinc complex [Zn2(L)] of a Schiff-base pyrrole macrocycle is reported. It was discovered that the binuclear microenvironment between the two metals of [Zn2(L)] is suited for the encapsulation of anions, leading to the formation of [K(THF)6][Zn2(?-Cl)(L)].2THF and [Bun4N][Zn2(?-OH)(L)] which were characterized by X-ray crystallography. Unusually obtuse Zn-X-Zn angles (X=Cl: 150.54(9) and OH: 157.4(3)) illustrate the weak character of these interactions and the importance of the cleft pre-organization to stabilize the host. In the absence of added anion, aggregation of [Zn2(L)] was inferred and investigated by successive dilutions and by the addition of coordinating solvents to [Zn2(L)] solutions using NMR spectroscopy as well as isothermal microcalorimetry (ITC). On anion addition, evidence for de-aggregation of [Zn2(L)], combined with the formation of the 1:1 host-guest complex, was observed by NMR spectroscopy and ITC titrations. Furthermore, [Zn2(L)] binds to Cl? selectively in THF as deduced from the ITC analyses, while other halides induce only de-aggregation. These conclusions were reinforced by DFT calculations, which indicated that the binding energies of OH? and Cl? were significantly greater than for the other halides. PMID:21391550

  1. Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. A.; Zaitone, S. A.; Ammar, A. M.; Sallam, S. A.

    2016-03-01

    A series of Cr3+ complexes with Schiff-bases of metformin with each of salicylaldehyde (HL1); 2,3-dihydroxybenzaldehyde (H2L2); 2,4-dihydroxybenzaldehyde (H2L3); 2,5-dihydroxybenzaldehyde (H2L4); 3,4-dihydroxybenzaldehyde (H2L5) and 2-hydroxynaphthaldehyde (HL6) were synthesized by template reaction. The new compounds were characterized through elemental analysis, conductivity and magnetic moment measurements, IR, UV-Vis., NMR and mass spectroscopy. The complexes have octahedral structure with μ value of hexacoordinated chromium ion. TGA, DTG and DTA analysis confirm the proposed stereochemistry and a mechanism for thermal decomposition was proposed. Thermodynamic parameters are calculated for the second and third decomposition steps. [CrL4Cl(H2O)2].3H2O and [CrL5Cl(H2O)2].2½H2O were able to produce significant decreases in the blood glucose level.

  2. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(ii) Schiff base complexes.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Svoboda, Ingrid; Bo?a, Roman; Trvn?ek, Zden?k

    2015-05-28

    A series of pentacoordinate Ni(ii) complexes of the general formula [Ni(L5)] () with various pentadentate Schiff base ligands H2L5 (originating in a condensation of aromatic ortho-hydroxy-aldehydes and aliphatic triamines) was synthesized and characterized by X-ray structure analysis and magnetometry. The alternations of substituents on the H2L parent ligand resulted in the complexes with the geometry varying between the square-pyramid and trigonal-bipyramid. In the compounds whose chromophore geometry is closer to a trigonal-bipyramid, a large and negative uniaxial anisotropy (D = -64 cm(-1)) was identified. Moreover, the simple linear expression for the axial zero-field splitting (ZFS) parameter, D/cm(-1) = 32.7(4.8) - 151(10)?, was proposed, where ? (in degrees) stands for the Addison parameter. The results of magnetic analysis were also supported by ab initio CASSCF/NEVPT2 calculations of the ZFS splitting parameters D and E, and g tensors. Despite large and negative D-values of the reported compounds, slow relaxation of magnetization was not observed either in zero or non-zero static magnetic field, thus no single-molecule magnetic behaviour was detected. PMID:25919125

  3. Novel Organotin(IV) Schiff Base Complexes with Histidine Derivatives: Synthesis, Characterization, and Biological Activity.

    PubMed

    Garza-Ortiz, Ariadna; Camacho-Camacho, Carlos; Sainz-Espues, Teresita; Rojas-Oviedo, Irma; Gutirrez-Lucas, Luis Ral; Gutierrez Carrillo, Atilano; Vera Ramirez, Marco A

    2013-01-01

    Five novel tin Schiff base complexes with histidine analogues (derived from the condensation reaction between L-histidine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) have been synthesized and characterized. Characterization has been completed by IR and high-resolution mass spectroscopy, 1D and 2D solution NMR ((1)H, (13)C??and (119)Sn), as well as solid state (119)Sn NMR. The spectroscopic evidence shows two types of structures: a trigonal bipyramidal stereochemistry with the tin atom coordinated to five donating atoms (two oxygen atoms, one nitrogen atom, and two carbon atoms belonging to the alkyl moieties), where one molecule of ligand is coordinated in a three dentate fashion. The second structure is spectroscopically described as a tetrahedral tin complex with four donating atoms (one oxygen atom coordinated to the metal and three carbon atoms belonging to the alkyl or aryl substituents), with one molecule of ligand attached. The antimicrobial activity of the tin compounds has been tested against the growth of bacteria in vitro to assess their bactericidal properties. While pentacoordinated compounds 1, 2, and 3 are described as moderate effective to noneffective drugs against both Gram-positive and Gram-negative bacteria, tetracoordinated tin(IV) compounds 4 and 5 are considered as moderate effective and most effective compounds, respectively, against the methicillin-resistant Staphylococcus aureus strains (Gram-positive). PMID:23864839

  4. Novel Organotin(IV) Schiff Base Complexes with Histidine Derivatives: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Garza-Ortiz, Ariadna; Camacho-Camacho, Carlos; Sainz-Espues, Teresita; Rojas-Oviedo, Irma; Gutirrez-Lucas, Luis Ral; Gutierrez Carrillo, Atilano; Vera Ramirez, Marco A.

    2013-01-01

    Five novel tin Schiff base complexes with histidine analogues (derived from the condensation reaction between L-histidine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) have been synthesized and characterized. Characterization has been completed by IR and high-resolution mass spectroscopy, 1D and 2D solution NMR (1H, 13C??and 119Sn), as well as solid state 119Sn NMR. The spectroscopic evidence shows two types of structures: a trigonal bipyramidal stereochemistry with the tin atom coordinated to five donating atoms (two oxygen atoms, one nitrogen atom, and two carbon atoms belonging to the alkyl moieties), where one molecule of ligand is coordinated in a three dentate fashion. The second structure is spectroscopically described as a tetrahedral tin complex with four donating atoms (one oxygen atom coordinated to the metal and three carbon atoms belonging to the alkyl or aryl substituents), with one molecule of ligand attached. The antimicrobial activity of the tin compounds has been tested against the growth of bacteria in vitro to assess their bactericidal properties. While pentacoordinated compounds 1, 2, and 3 are described as moderate effective to noneffective drugs against both Gram-positive and Gram-negative bacteria, tetracoordinated tin(IV) compounds 4 and 5 are considered as moderate effective and most effective compounds, respectively, against the methicillin-resistant Staphylococcus aureus strains (Gram-positive). PMID:23864839

  5. Theoretical studies of organotin(IV) complexes derived from ONO-donor type schiff base ligands.

    PubMed

    ?irikci, Gkhan; Anc?n, Nilgn Atanal; zta?, Selma Gl

    2015-09-01

    In this work a molecular modeling study was carried out based on a series of organotin(IV) derivatives which were complexed with ONO-Donor type Schiff base ligands to build up a statistical data pool for researchers. For this purpose, various properties of the selected complexes such as energies, band gaps, chemical reactivity descriptors, polarizabilities, geometric parameters, (1)H-NMR, (13)C-NMR chemical shifting values were obtained through density functional theory using B3LYP, CAM-B3LYP, TPSSTPSS, TPSSh, HCTH, wB97XD, and MN12SX functionals. Empirical dispersion corrections were incorporated for some functionals and solvent effects were also taken into account through applying polarizable continuum model (PCM). (1)H-NMR, (13)C-NMR chemical shifts were calculated via linear regression analysis using either gauge invariant atomic orbital (GIAO) or continuous set of gauge transformations (CSGT) methods. While structural properties were being explored, quantitative effects of utilized functionals and empirical dispersion corrections over calculated properties were shown in detail. PMID:26245450

  6. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones

    SciTech Connect

    Bozell, J.J.; Hames, B.R.; Dimmel, D.R.

    1995-04-21

    Para-substituted phenolics, serving as models for lignin (a renewable source of carbon), are oxidized to the corresponding benzoquinone with oxygen in the presence of catalytic amounts of Co-Schiff base complexes. The reaction products observed depend on the structure of the catalyst. The 5-coordinate catalysts (pyridine)[bis(salicylidene)ethylenediamine]cobalt[(pyr)Co(salen)]and[bis(salicylideneamino)ethylamine]cobalt [Co(n-Me salpr)] convert syringyl alcohol (3,5-dimethoxy-4-hydroxybenzyl alcohol) to 2,6-dimethoxybenzoquinone in high yield. In contrast, syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) is unreactive toward these catalysts. However, the 4-coordinate Co(salen) converts syringaldehyde to 2,6-dimethoxybenzoiquinone in 72% isolated yield. Phenols bearing a single methoxy group on the ring are unreactive toward any catalyst in MeOH. However, vanillyl alcohol (3-methoxy-4-hydroxybenzyl alcohol) is converted to 2-methoxybenzo-quinone with Co(N-Me salpr) and oxygen in 43% yield in CH{sub 2}Cl{sub 2} and 58% yield in CH{sub 2}Cl{sub 2} in the presence of 1% CuCl{sub 2}. The success of the oxidations appears to be related to the ease of removal of the phenolic hydrogen by the Co/O{sub 2} complex. Competitive deactivation of the catalyst occurs with substrates of lower reactivity. 84 tabs.

  7. Synthesis and spectroscopic characterization of cationic mononuclear oxovanadium(IV) complexes with tetradentate Schiff bases as ligands

    NASA Astrophysics Data System (ADS)

    Gangadharmath, Umesh B.; Revankar, Vidyanand K.; Mahale, Vinayak B.

    2002-10-01

    New tetradentate Schiff-base oxovanadium(IV) complexes [VOL']SO 4 (where L'=tetradentate ligands derived from 2,4-dihydroxy 5-acetyl acetophenone and substituted diamines) were prepared and characterized by physico-chemical techniques. All the complexes are monomeric in nature and a square-pyramidal geometry is proposed. Various ligand-field and molecular-orbital parameters have been calculated.

  8. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes.

    PubMed

    Ceyhan, Gkhan; elik, Cumali; Uru?, Serhan; Demirta?, ?brahim; Elmasta?, Mahfuz; Tmer, Mehmet

    2011-10-15

    In this study, two Schiff base ligands (HL(1) and HL(2)) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated. PMID:21752697

  9. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  10. Exploring the distribution of copper-Schiff base complex covalently anchored onto the surface of mesoporous MCM 41 silica

    SciTech Connect

    Singh, Udayshankar G. . E-mail: usingh@engr.ucsb.edu; Williams, Ruth T. . E-mail: r.t.williams@open.ac.uk; Hallam, Keith R. . E-mail: k.r.hallam@bristol.ac.uk; Allen, Geoffrey C. . E-mail: g.c.allen@bristol.ac.uk

    2005-11-15

    A series of copper-Schiff base MCM 41 materials, synthesized by post-synthetic grafting, was studied by X-ray photoelectron spectroscopy (XPS) and nitrogen sorption (77 K) to explore distribution of the copper-Schiff base complex immobilized on the porous Si-MCM 41. Additional information on the physico-chemical properties of the functionalized materials was obtained by powder X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), CHN microanalysis, FTIR spectroscopy, {sup 29}Si and {sup 13}C CP MAS NMR spectroscopy. The effect of copper-Schiff base complex loading and reaction times on the surface properties of Si-MCM 41 (surface area and pore parameters) in addition to its distribution within the Si-MCM 41 was explored by nitrogen sorption and XPS coupled with argon etching. Argon etching of a surface to a depth of 45 A confirmed that the copper-Schiff base complex was distributed both on the external surface (pore end) and within the pores of Si-MCM 41. The amount of complex located in the pores at this depth was about one-third of the amount detected on the external surface of MCM 41. Nitrogen sorption isotherms measured at 77 K confirmed the reduction in total pore volume and surface area was the result of pore narrowing of Si-MCM 41 following grafting of complex in the 8 h samples. A significant decrease in surface area and pore volume for the 20 h sample (longer reaction time), with the highest copper loading (0.65 mmol g{sup -1}), confirmed pore blocking in this material. The uneven distribution of the copper complex between the external and internal surface of Si-MCM 41 was attributed to the bulky nature of the complex, which restricted access to the pores.

  11. A one-dimensional azido-bridged manganese(III) complex with bidentate Schiff base: Crystal structure and magnetic properties

    SciTech Connect

    Li Wei; Li Zongwei; Li Licun Liao Daizheng; Jiang Zonghui

    2007-10-15

    The synthesis, structural characterization, and magnetic behavior of a novel one-dimensional azido-bridged manganese(III) complex of formula [Mn(L){sub 2}N{sub 3}] (1) is reported, where HL is the bidentate Schiff base obtained from the condensation of salicylaldehyde with 4-methoxy aniline. Complex 1 crystallizes in the monoclinic system, space group P2{sub 1}/n, with a=11.743(4) A, b=24.986(9) A, c=13.081(5) A, {beta}=95.387(7){sup o} and Z=2. The complex is of one-dimensional chain structure with single end-to-end azido bridges and the manganese(III) ion has an elongated octahedral geometry. Magnetic studies show that the weak antiferromagnetic interaction is mediated by the single end-to-end azido bridge with the exchange parameter J=-5.84 cm{sup -1}. - Graphical abstract: A novel azido-bridged manganese(III) complex with bidentate Schiff base ligands has been prepared and characterized structurally and magnetically. The complex is of one-dimensional chain structure with single end-to-end azido bridges in axial positions. Two bidentate Schiff base ligands coordinate in the equatorial mode. The magnetic measurements show that the complex exhibits weak antiferromagnetic interaction.

  12. The resonance Raman profile of a nickel Schiff base complex at 10 K

    NASA Astrophysics Data System (ADS)

    Datta, M.; Brown, D. H.; Smith, W. E.

    The resonance Raman profile for the Schiff-base complex N,N'-bis(salicyladehyde)- o-diaminobenzene nickel (II) has been measured at 290 and 10 K and the main peaks assigned. A broad fluorescence with a maximum at ca. 672 nm reduced the sensitivity of some measurements at room temperature but at 10 K this band had shifted sufficiently to enable definitive Raman spectra to be recorded over the entire range of exciting lines used. A second sharper fluorescence was observed and in this case, the band position was dependent on the exciting line, occurring about 7.4 nm from it. More bands were observed in the resonance profile at 10 K than at room temperature, and two electronic transitions which were not resolved in the electronic spectra at either temperature were characterized. The lowest-energy electronic transitions are charge-transfer transitions between a ground state, which is largely composed of phenyl ring and oxygen orbitals and an excited state, composed mainly of oxygen and nickel orbitals. The electronic spectrum in the visible region is assigned on the basis of the resonance profile.

  13. Efficient red electroluminescent devices with sterically hindered phosphorescent platinum(II) Schiff base complexes and iridium complex codopant.

    PubMed

    Zhou, Liang; Kwong, Chun-Lam; Kwok, Chi-Chung; Cheng, Gang; Zhang, Hongjie; Che, Chi-Ming

    2014-10-01

    Sterically hindered platinum(II) Schiff base complexes were prepared. Complex 4, which displays red emission with a quantum yield of 0.29 in a thin film and a self-quenching rate constant of 110(-7) dm(3) mol(-1) ?s(-1), was used to fabricate organic light-emitting diodes with single or double emissive layers (EMLs). An iridium(III) complex with a wide band gap was codoped into the electron-dominant EML to act as a deep electron trapper, and red-light-emitting devices with the highest current, power, and external quantum efficiencies of 20.43?cd?A(-1) 18.33?Lm?W(-1), and 11.7%, respectively, were fabricated. A high current efficiency and EQE of up to 14.69?cd?A(-1) and 8.3%, respectively, were achieved at a high brightness of 1000?cd?m(-2). The significant delay of efficiency roll-off is attributed to the bulky 3D structure of the norbornene moiety at the periphery of the Schiff base ligand of 4 and to the new device design strategy. The fabricated device had a projected lifetime (LT50) of 18,000?h. PMID:25145872

  14. Metal-Based Biologically Active Compounds: Synthesis, Spectral, and Antimicrobial Studies of Cobalt, Nickel, Copper, and Zinc Complexes of Triazole-Derived Schiff Bases

    PubMed Central

    Singh, Kiran; Kumar, Yogender; Puri, Parvesh; Sharma, Chetan; Aneja, Kamal Rai

    2011-01-01

    A series of cobalt, nickel, copper, and zinc complexes of bidentate Schiff bases derived from the condensation reaction of 4-amino-5-mercapto-3-methyl/ethyl-1,2,4-triazole with 2,4-dichlorobenzaldehyde were synthesized and tested as antimicrobial agents. The synthesized Schiff bases and their metal complexes were characterized with the aid of elemental analyses, magnetic moment measurements, spectroscopic and thermogravimetric techniques. The presence of coordinated water in metal complexes was supported by infrared and thermal gravimetric studies. A square planar geometry was suggested for Cu(II) and octahedral geometry proposed for Co(II), Ni(II), and Zn(II) complexes. The Schiff bases and their metal complexes have been screened for antibacterial (Pseudomonas aeruginosa, Bacillus subtilis) and antifungal activities (Aspergillus niger, A. flavus). The metal complexes exhibited significantly enhanced antibacterial and antifungal activity as compared to their simple Schiff bases. PMID:22216017

  15. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine.

    PubMed

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and ?-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance ((1)H, (13)C, and (119)Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands. PMID:25525422

  16. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and α-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H, 13C, and 119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands. PMID:25525422

  17. Synthesis and characterization of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based azo-linked Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Johnson Raja, S.

    2012-12-01

    Azo-Schiff-base complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, mass spectra, molar conductance, magnetic susceptibility measurement, electron spin resonance (EPR), CV, fluorescence, NLO and SEM. The conductance data indicate the nonelectrolytic nature of the complexes, except VO(II) complex which is electrolytic in nature. On the basis of electronic spectra and magnetic susceptibility octahedral geometry has been proposed for the complexes. The EPR spectra of copper and oxovanadium complexes in DMSO at 300 and 77 K were recorded and its salient features are reported. The redox behavior of the copper(II) complex was studied using cyclic voltammetry. The in vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella enterica typhi, Bacillus subtilis and Candida strains was studied and compared with that of free ligand by well-diffusion technique. The azo Schiff base exhibited fluorescence properties originating from intraligand (π-π∗) transitions and metal-mediated enhancement is observed on complexation and so the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. On the basis of the optimized structures, the second-order nonlinear optical properties (NLO) are calculated by using second-harmonic generation (SHG) and also the surface morphology of the complexes was studied by SEM.

  18. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated the with inhibition of proteasomal activity

    PubMed Central

    ZHANG, XIA; BI, CAIFENG; FAN, YUHUA; CUI, QIUZHI; CHEN, DI; XIAO, YAN; DOU, Q. PING

    2013-01-01

    Schiff bases have been intensively investigated due to their antibacterial and antitumor properties. Copper is a cofactor essential for the tumor angiogenesis processes, whereas other transition metals are not. Consistently, high serum or tissue levels of copper were found in many types of human cancer including breast, prostate, colon, lung, and brain, supporting the idea that copper could be used as a novel selective target for cancer therapies. In the current study we hypothesize that a synthetic taurine Schiff base copper complex (Compound 1) could suppress tumor cell growth via the direct inhibition of proteasome activity. Compound 1 potently inhibits the activity of purified 20S and 26S proteasome in human breast cancer MDA-MB-231 and leukemia Jurkat T cells. Inhibition of tumor cellular proteasomal activity by Compound 1 results in the accumulation of ubiquitinated protein and the proteasome target proteins p27 and Bax, followed by the induction of apoptosis. Our results strongly suggest that taurine Schiff base copper complexes, as potent proteasome inhibitors, have great potential to be developed into novel anticancer drugs. PMID:18949390

  19. Comparative Study of Aluminum Complexes Bearing N,O- and N,S-Schiff Base in Ring-Opening Polymerization of ?-Caprolactone and l-Lactide.

    PubMed

    Chang, Meng-Chih; Lu, Wei-Yi; Chang, Heng-Yi; Lai, Yi-Chun; Chiang, Michael Y; Chen, Hsing-Yin; Chen, Hsuan-Ying

    2015-12-01

    A series of Al complexes bearing Schiff base and thio-Schiff base ligands were synthesized, and their application for the ring-opening polymerization of ?-caprolactone (CL) and l-lactide (LA) was studied. It was found that steric effects of the ligands caused higher polymerization rate and most importantly the Al complexes with N,S-Schiff base showed significantly higher polymerization rate than Al complexes with N,O-Schiff base (5-12-fold for CL polymerization and 2-7-fold for LA polymerization). The reaction mechanism of CL polymerization was investigated by density functional theory (DFT). The calculations predicted a lower activation energy for a process involved with an Al complex bearing an N,S-Schiff base ligand (17.6 kcal/mol) than for that of an Al complex bearing an N,O-Schiff base ligand (19.0 kcal/mol), and this magnitude of activation energy reduction is comparable to the magnitude of rate enhancement observed in the experiment. The reduction of activation energy was attributed to the catalyst-substrate destabilization effect. Using a sulfur-containing ligand to decrease the activation energy in the ring-opening polymerization process may be a new strategy to design a new Al complex with high catalytic activity. PMID:26593231

  20. Synthesis, characterization, DNA binding, DNA cleavage and antimicrobial studies of Schiff base ligand and its metal complexes.

    PubMed

    Mendu, Padmaja; Kumari, C Gyana; Ragi, Rajesh

    2015-03-01

    A series of Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) complexes have been synthesized from the Schiff base ligand L. The Schiff base ligand 4-chloro-2-((4-oxo-4H-chromen-3yl) methylene amino) benzoic acid (L) has been synthesized by the reaction between chromone-3-carbaldehyde and 4-chloro-2-amino benzoic acid. The nature of bonding and geometry of the transition metal complexes as well as ligand L have been deduced from elemental analysis, FT-IR, UV-vis, (1)H NMR, (13)C NMR, ESR spectral studies, mass, magnetic susceptibility and molar conductance measurements. The complexes are found to have ML2 composition and are neutral in DMSO. Based on elemental, conductance and spectral studies, six-coordinated geometry was assigned for these complexes. The ligand L acts as tridentate and coordinates through nitrogen atom of azomethine group, hydroxyl of the carboxyl group and oxygen atom of keto group of ?-pyrone ring. The interaction of Cu(II) complex with CT-DNA was carried out by UV-vis, fluorescence titrations and viscosity measurements. The complex binds to DNA through intercalative binding mode. The nuclease activity of the above metal complexes shows that Cu(II) and Co(II) complexes cleave DNA through redox chemistry. The biological activity of the ligand and its complexes have been studied on four bacteria E. coli, B. subtilis, pseudomonas and Edwardella and two fungi penicillium and trichoderma by well disc and fusion method and found that the metal complexes are more active than the free Schiff base ligand. PMID:25663196

  1. Synthesis, spectroscopic characterization, molecular modeling and potentiometric studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane-Schiff base

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.

    2014-08-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)(H2O)2]·2H2O have been synthesized [L = N,N";-bis(2-hydroxybenzylidene)-1,1-diaminobutane]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR, SEM, EDX, thermal and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a tetradentate manner. The molar conductance of the complexes in fresh solution of DMSO lies in the range of 7.46-9.13 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen and azomethine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The molecular parameters of the ligand and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been calculated. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M sodium perchlorate.

  2. Structurally diverse copper complexes bearing NNO-tridentate Schiff-base derivatives as efficient catalysts for copolymerization of carbon dioxide and cyclohexene oxide.

    PubMed

    Tsai, Chen-Yen; Huang, Bor-Hunn; Hsiao, Mon-Wei; Lin, Chu-Chieh; Ko, Bao-Tsan

    2014-05-19

    Structurally diverse copper acetate complexes based on NNO-tridentate Schiff-base ligands were synthesized and characterized as mono-, di-, and trinuclear complexes with respect to varied ancillary ligands. Treatment of the ligand precursors (L(1)-H = 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-4-methylphenol, L(2)-H = 4-chloro-2-(1-((2-(dimethylamino)ethyl)imino)ethyl)phenol, and L(3)-H = 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-5-methylphenol) with Cu(OAc)2H2O (1 equiv) in refluxing ethanol afforded five-coordinate mono- or bimetallic copper complexes ([(L(1))Cu(OAc)(H2O)] (1); [(L(2))Cu(OAc)(H2O)] (2); [(L(3))2Cu2(OAc)2] (3)) in high yields. Dinuclear copper acetate analogue [(L(1))2Cu2(OAc)2] (4) resulted from treatment of L(1)-H as the ligand precursor in refluxing anhydrous MeOH with equimolar proportions of metal acetate salt under a dry nitrogen atmosphere. However, a trinuclear complex, [(L(4))2Cu3(OAc)4] (5), was obtained on utilizing 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-5-methoxyphenol (L(4)-H) as the proligand under the same synthetic route of 1-3; this complex was also synthesized in the reaction of L(4)-H and copper(II) acetate monohydrate in the ratio of 2:3, giving a quantitative yield. All complexes are active catalysts for copolymerization of cyclohexene oxide (CHO) and CO2 without cocatalysts. In particular, dinuclear Cu complex 3 performed satisfactorily to produce polycarbonates with controllable molecular weights and high carbonate linkages. These copper complexes are the first examples that are effective for both CO2/CHO copolymerization and formation of polymers in a controlled fashion. PMID:24802071

  3. Oxo-molybdenum and oxo-tungsten complexes of Schiff bases relevant to molybdoenzymes.

    PubMed

    Lyashenko, Ganna; Saischek, Gerald; Judmaier, Martina E; Volpe, Manuel; Baumgartner, Judith; Belaj, Ferdinand; Jancik, Vojtech; Herbst-Irmer, Regine; Msch-Zanetti, Nadia C

    2009-08-01

    A series of octahedral dioxomolybdenum(VI) complexes of the type [MoO(2)L(2)] {L = 4-Ar-pent-2-en-ol; L(i-Pr2Ph) with Ar = 2,6-diisopropylphenyl (1); L(Me2Ph) with Ar = 2,6-dimethylphenyl (2), L(MePh) with Ar = 2-methylphenyl (3) and with Ar = phenyl (4)} and dioxotungsten(VI) compounds [WO(2)L(2)] {L(i-Pr2Ph) (5); L(Me2Ph) (6) and L(MePh) (7)} with Schiff bases have been synthesized as models for oxotransferases. Spectroscopic characterization in solution shows with the sterically encumbered ligands L(i-Pr2)Ph and L(Me2)Ph isomerically pure products whereas the ligand with only one substituent in ortho position at the aromatic ring L(MePh) revealed a dynamic mixture of three isomers as confirmed by variable temperature NMR spectroscopy. Single crystal X-ray diffraction analyses of compounds 1, 2, and 4 and showed them to be in the N,N-trans conformation consistent with the larger steric demand at nitrogen. Oxygen atom transfer (OAT) properties towards trimethylphosphine were investigated leading to the isolation of two mononuclear molybdenum(IV) compounds [MoO(PMe(3))(L(Me2Ph))(2)] (8) and [MoO(PMe(3))(L(MePh))(2)] (9) as confirmed by spectroscopic and crystallographic means. The kinetics of OAT between complex [MoO(2)(L(Me2Ph))(2)] (2) and PMe(3) was investigated by UV/Vis spectroscopy under pseudo-first-order conditions revealing single-step reactions with Eyring values of DeltaH(double dagger) = +60.79 kJ mol(-1) and DeltaS(double dagger) = -112 J mol(-1) K(-1) and a first-order dependence of phosphine consistent with a slow nucleophilic attack of the phosphine showing the octahedral geometries of this system to be unfavorable for OAT. Compound 1 showed no OAT reactivity towards PMe(3) emphasizing the influence of sterical properties. Furthermore, the reactivity of the reduced compounds [MoO(PMe(3))(L(Me2Ph))(2)] (8) and [MoO(PMe(3))(L(MePh))(2)] (9) towards molecular oxygen was investigated leading, in the case of 8, to the substitution of PMe(3) by O(2) under formation of the peroxo compound [MoO(O(2))(L(Me2Ph))(2)] (10). In contrast, the analogous reaction employing 9 led to oxidation forming the dioxo compound [MoO(2)(L(MePh))(2)] (3). PMID:20449078

  4. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra

    2014-12-01

    Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Frster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.

  5. Synthesis, spectral characterization, molecular modeling and antimicrobial studies of tridentate azo-dye Schiff base metal complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    Nine mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pt(IV) complexes of azo-dye Schiff's base ligand were synthesized and determined by different physical techniques. All the nine metal complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, thermal analysis and 1H NMR, 13C NMR, mass, SEM, TEM, EDX, XRD spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complex which was four coordinate, square planar. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. In molecular modeling the geometries of azo-dye Schiff base ligand HL and its metal (II/III/IV) complexes were fully optimized with respect to the energy using the 6-31G basis set. These ligand and its metal complexes have also been screened for their in vitro antimicrobial activities.

  6. Spectral characterization, electrochemical and anticancer studies on some metal(II) complexes containing tridentate quinoxaline Schiff base

    NASA Astrophysics Data System (ADS)

    Chellaian, Justin Dhanaraj; Johnson, Jijo

    2014-06-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of a tridentate ONO donor Schiff base ligand derived from 3-(2-aminoethylamino)quinoxalin-2(1H)-one were synthesized. The ligand and its metal complexes were characterized using elemental analysis, molar conductance, IR, 1H NMR, mass, magnetic susceptibility, electronic spectra and ESR spectral studies. Electrochemical behavior of the synthesized compounds was studied using cyclic voltammetry. The grain size of the synthesized compounds was determined by powder XRD. The Schiff base and its complexes have been screened for their antimicrobial activities against the bacterial species E. coli, K. pneumoniae, P. aeruginosa and S. aureus; fungal species include, A. niger, and C. albicans by disc diffusion method. The results show that the complexes have higher activity than the free ligand. The interaction of the complexes with calf thymus DNA (CT DNA) has been investigated by electronic absorption method. Furthermore, the DNA cleavage activity of the complexes was studied using agarose gel electrophoresis. In vitro anticancer studies of the ligand and its complexes using MTT assay was also done.

  7. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 ?g/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  8. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K.

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L = 3-Bromoacetophenone thiosemicarbazone and X = CH3COO-, Cl- and NO3-]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of sbnd Cdbnd S group and nitrogen atoms of sbnd Cdbnd N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 ?-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter ? lie in the range 0.19-0.37 which indicated the covalent character in metal ligand ?' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities.

  9. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand.

    PubMed

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L=3-Bromoacetophenone thiosemicarbazone and X=CH3COO(-), Cl(-) and NO3(-)]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of -C=S group and nitrogen atoms of -C=N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 ?(-1) cm(2) mol(-1) indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter ? lie in the range 0.19-0.37 which indicated the covalent character in metal ligand '?' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities. PMID:23727669

  10. Preparation and Characterization of Di-, Tri-, and Tetranuclear Schiff Base Complexes Derived from Diamines and 3,4-Dihydroxybenzaldehyde

    PubMed Central

    Abdulghani, Ahlam Jameel; Khaleel, Asmaa Mohammed Noori

    2013-01-01

    A series of new di-, tri-, and tetranuclear Co(II) and Cu(II) complexes of three new diSchiff base ligands were synthesized by two different methods. The first method involved the synthesis of the three ligands from condensation reaction of 3,4-dihydroxybenzaldehyde (L?H2) with ethylenediamine (en), o-phenylenediamine (o-PD), or 4,5-dimethyl-1,2-phenylendiamine (DMPD) in a mole ratio of 2?:?1 followed by the reaction of the resulting Schiff bases ligands with Cu(II) or Co(II) ions in the presence of 2,2?-bipyridyl (L) to form the di- and trinuclear metal complexes. The second method involved the condensation of the copper complex LCu(II)L? (L = 2,2?-bipyridyl, L? = 4-formylbenzene-1,2-bis(olate)) with en, o-PD, or DMPD in a mole ratio of 2?:?1, respectively, followed by reaction with CuCl2 or Cu(ClO4)2 to form di-, tri-, and tetranuclear copper (II) complexes, respectively. The structures of the ligands and metal complexes were characterized by elemental analyses, NMR, and FTIR spectra. The geometries of metal complexes were suggested according to elemental analysis, electronic spectra, thermal analyses, atomic absorption, and magnetic moments and conductivity measurements. PMID:24453995

  11. Co(II) and Cd(II) complexes derived from heterocyclic Schiff-Bases: synthesis, structural characterisation, and biological activity.

    PubMed

    Ahmed, Riyadh M; Yousif, Enaam I; Al-Jeboori, Mohamad J

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L) and N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L) are reported. Schiff-base ligands L and L were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)?]Cl? (where M = Co(II) or Cd(II), L?=?L or L) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, H, and C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G-) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  12. A theoretical investigation into the luminescent properties of d8-transition-metal complexes with tetradentate Schiff base ligands.

    PubMed

    Tong, Glenna So Ming; Chow, Pui Keong; To, Wai-Pong; Kwok, Wai-Ming; Che, Chi-Ming

    2014-05-19

    A theoretical investigation on the luminescence efficiency of a series of d(8) transition-metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M-salen](n) complexes (salen = N,N'-bis(salicylidene)ethylenediamine; M = Pt, Pd (n = 0); Au (n = +1)) in acetonitrile solutions at room temperature: [Pt-salen] is phosphorescent and [Au-salen](+) is fluorescent, but [Pd-salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron-withdrawing groups at the 4-position of the Schiff base ligand should widen the (3)MLCT-(3)MC gap (MLCT = metal-to-ligand charge transfer and MC = metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding Pd(II) Schiff base complex. Although it is experimentally proven that [Pd-salph-4E] (salph = N,N'-bis(salicylidene)-1,2-phenylenediamine; 4E means an electron-withdrawing substituent at the 4-position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding Pt(II) Schiff base complex, [Pt-salph-4E], is also much less emissive than the unsubstituted analogue, [Pt-salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M-salph-X] (X is a substituent on the salph ligand, M = Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low-frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin-orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well. PMID:24715418

  13. The luminescent properties and toxicity controllability investigation of novel ZnO quantum dots with Schiff base complexes modification.

    PubMed

    Yu, Shi Yong; Jing, Hui; Cao, Zhen; Su, Hai Quan

    2014-05-01

    The Schiff base complexes modified ZnO quantum dots (ZnO-SBC QDs) are successfully synthesized via the reflux and chemical co-precipitation route. For control experiments, we also synthesized the ZnO QDs and amino-modified ZnO QDs (ZnO-NH2 QDs). The structures and morphologies of the samples were characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), FTIR spectroscopy (IR), Fluorescence Spectrometer (FL) and so on. The XRD pattern shows that the three types of QDs possess hexagonal wurtzite structures. The TEM investigation reveals that the as-prepared products have hexagonal morphologies. The plane fringe with 0.26 nm crystalline plane spacing of three types of quantum dots is assigned to the ZnO {002} planes via HR-TEM, which match with the lattice parameter of the hexagonal wurtzite structure of ZnO and also coincide with the data obtained by XRD. By analyzing the fluorescence emission and excitation spectra of ZnO QDs, ZnO-NH2 QDs, ZnO-SBC QDs and Schiff base complexes, we find that the ZnO-SBC QDs still have a perfect fluorescence emission which makes it interesting candidates for luminescence applications such as biochemical sensors and fluorescent labels to mark the cells and DNA. This novel ZnO-SBC QDs under UV irradiation is capable of generating reactive oxygen species by UV irradiation and may be used for the photodynamic therapy. The surface modification with Schiff base complexes makes it difficult to release Zn2+, therefore the toxicity is much more controllable. PMID:24734544

  14. Complexes of trivalent metal ions with potentially heptadentate N{sub 4}O{sub 3} Schiff base and amine phenol ligands of varying rigidity

    SciTech Connect

    Yang, L.W.; Liu, S.; Wong, E.; Rettig, S.J.; Orvig, C.

    1995-04-12

    The synthesis and characterization of several potentially heptadentate N{sub 4}O{sub 3} Schiff bases and amine phenols, as well as a series of their mononuclear and dinuclear complexes with indium and the lanthanides are reported. Schiff bases containing imidazolidine rings were the products of the known condensation reaction of triethylenetetramine with 3 equiv of 5-substituted salicylaldehydes to form H{sub 3}api (5-H-substituent), H{sub 3}Clapi (5-Cl-substituent), or H{sub 3}Brapi (5-Br-substituent); KBH{sub 4} reduction of these Schiff bases gave the appropriate isomeric N{sub 4}O{sub 3} amine phenols H{sub 3}(1,2,4-btt) and H{sub 3}(1,1,4-btt), as well as an acetone adduct, H{sub 3}(1,2,4-ahi). The Schiff bases reacted with 1 equiv of a lanthanide (Ln{sup 3+}) nitrate to produce mononuclear nine-coordinated [Ln(H{sub 3}Xapi)-(NO{sub 3}){sub 3}] complex wherein the ligand adopts a tridentate capping coordination mode, whereas the amine phenols formed mononuclear seven-coordinate complexes with the lanthanides and indium; homodinuclear complexes [LnL]{sub 2} were also obtained with the Schiff bases. The X-ray structures of the Schiff bases H{sub 3}api and H{sub 3}Clapi, the mononuclear amine phenol complexes Yb(1,2,4-btt){center_dot}0.5CH{sub 3}OH and In(1,1,4-btt), and the homodinuclear Schiff base complex [La(Brapi)]{sub 2}{center_dot}2CHCl{sub 3} have been determined.

  15. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Sundararajan, M. L.; Jeyakumar, T.; Anandakumaran, J.; Karpanai Selvan, B.

    2014-10-01

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, 1H NMR, 13C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  16. Modern spectroscopic technique in the characterization of biosensitive macrocyclic Schiff base ligand and its complexes: Inhibitory activity against plantpathogenic fungi

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Akhtar, Jameel; Chand, Dinesh

    2014-01-01

    Complexes of the type [M(L)Cl2], where M = Co(II), Ni(II) and Cu(II) have been synthesized with a macrocyclic Schiff base ligand (1,4,5,7,10,11,12,15-octaaza,5,11,16,18-tetraphenyl, 3,4,12,13-tetramethyl cyclo-octadecane) derived from Schiff base (obtained by the condensation of 4-aminoantipyrine and dibenzoyl methane) and ethylenediamine. The ligand was characterized on the basis of elemental analysis, IR, 1H NMR, EI Mass and molecular modeling studies while the complexes were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, IR, electronic and EPR spectral studies. All the complexes are non-electrolyte in nature. The covalency factor (?) and coefficient factor (?) suggest the covalent nature of the complexes. The ligand and its metal complexes have shown antifungal activity with their LD50 values determined by probit analysis against two economically important fungal plant pathogens i.e. Macrophomina phaseolina and Fusarium solani.

  17. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. PMID:24820326

  18. Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes

    NASA Astrophysics Data System (ADS)

    Abd El-halim, Hanan F.; Omar, M. M.; Mohamed, Gehad G.

    2011-01-01

    Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO 2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ? H*, ? S* and ? G* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi ( Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.

  19. Modern spectroscopic technique in the characterization of biosensitive macrocyclic Schiff base ligand and its complexes: inhibitory activity against plantpathogenic fungi.

    PubMed

    Tyagi, Monika; Chandra, Sulekh; Akhtar, Jameel; Chand, Dinesh

    2014-01-24

    Complexes of the type [M(L)Cl2], where M = Co(II), Ni(II) and Cu(II) have been synthesized with a macrocyclic Schiff base ligand (1,4,5,7,10,11,12,15-octaaza,5,11,16,18-tetraphenyl, 3,4,12,13-tetramethyl cyclo-octadecane) derived from Schiff base (obtained by the condensation of 4-aminoantipyrine and dibenzoyl methane) and ethylenediamine. The ligand was characterized on the basis of elemental analysis, IR, (1)H NMR, EI Mass and molecular modeling studies while the complexes were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, IR, electronic and EPR spectral studies. All the complexes are non-electrolyte in nature. The covalency factor (?) and coefficient factor (?) suggest the covalent nature of the complexes. The ligand and its metal complexes have shown antifungal activity with their LD50 values determined by probit analysis against two economically important fungal plant pathogens i.e. Macrophomina phaseolina and Fusarium solani. PMID:24161868

  20. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations.

    PubMed

    Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B

    2015-06-15

    Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry. PMID:26030801

  1. Fast O2 Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands

    PubMed Central

    Company, Anna; Gmez, Laura; Mas-Ballest, Rubn; Korendovych, Ivan V.; Ribas, Xavi; Poater, Albert; Parella, Teodor; Fontrodona, Xavier; Benet-Buchholz, Jordi; Sol, Miquel; Que, Lawrence; Rybak-Akimova, Elena; Costas, Miquel

    2008-01-01

    A new family of dicopper(I) complexes [CuI2RL](X)2, (R = H, 1X, R = tBu, 2X and R = NO2, 3X, X = CF3SO3, ClO4, SbF6 or BArF, BArF = [B{3,5-(CF3)2-C6H3}4]?), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer have been prepared, characterized, and their reaction with O2 studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid state structures of 1ClO4, 2CF3SO3, 2ClO4 and 3BArFCH3CN have been established by single crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in solution while 2CF3SO3, 2ClO4 and 3BArFCH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes in solution. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(?-O)2(RL)]2+ 1-3(O2) and [CuIII2(?-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(?-O)2 form with respect to the CuII2(?-?2: ?2-peroxo) isomer. The reaction of 1X, X = CF3SO3 and BArF with O2 in acetone has been studied by stopped-flow exhibiting an unexpected very fast reaction rate (k = 3.82(4) 103 M?1s?1, ?H = 4.9 0.5 kJmol?1, ?S = ?148 5 JK?1mol?1), nearly three orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X = CF3SO3 and BArF) is discussed and compared with those associated to selected examples of reported models of O2-processing copper proteins. A synergistic role of the copper ions in O2 binding and activation is clearly established from this analysis. PMID:17500512

  2. pH-metric and spectroscopic properties of new 4-hydroxysalicylidene-2-aminopyrimidine Schiff-base transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ouf, Abd El-Fatah; Ali, Mayada S.; Saad, Eman M.; Mostafa, Sahar I.

    2010-06-01

    The new complexes, cis-[WO 2(Hsap) 2], [Ru(PPh 3) 2(Hsap) 2], [Pd(Hsap)Cl(H 2O)], [Pd(PPh 3) 2(Hsap)]Cl, [Ag(Hsap)(H 2O) 2], [Ni(Hsap)(AcO)(H 2O) 2], [Ni(Hsap) 2] and [Cu(Hsap)Cl(H 2O)] are reported, where H 2sap is 4-hydroxysalicylidene-2-amino pyrimidine Schiff-base. The complexes were characterized by elemental analyses, spectroscopic (IR, NMR, UV-vis, ESR and mass) and physical techniques (conductivity, magnetic and thermal measurements). The Schiff-base H 2sap behaves as a bidentate chelate with the deprotonated 2-hydroxy and azomethine nitrogen centers with the pendant pyrimidine cyclic nitrogen functionality playing no role in coordination. The dissociation constants of H 2sap and the stability constants of the metal complexes have been determined pH-metrically at various temperatures, and the thermodynamic activation parameters (? S*, ? G*, ? H*) calculated.

  3. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H 2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial ( Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  4. Synthesis, spectral characterization, thermal analysis, molecular modeling and antimicrobial activity of new potentially N2O2 azo-dye Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Ammar, Yousry A.; Bayoumi, Hoda A.; Aldhlmani, Sharah A.

    2014-09-01

    The azo-dye Schiff's base of N2O2 dibasic ligand, H2L [N,N?-bis(5-(4-sulfanilamidophenylazosalicylidene)ethylenediamine] was prepared by the condensation of ethylenediamine with [5-(4-sulfanilamidophenylazo-salicylaldehyde] in ethanol. New complexes of with metal ions Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Cd(II), Pt(IV), Fe(III) and Cr(III) are synthesized. Elemental, spectroscopic and thermal analyses as well as conductivity and magnetic susceptibility measurements are used to elucidate the structure of the newly prepared metal complexes. The azo-dye Schiff's base behaves as a di-negative N2O2 tetradentate ligand. The metal complexes exhibited square planar, tetrahedral and octahedral geometrical arrangements, the molar conductivity data indicates that all complexes are neutral. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the Cu(II), Mn(II), Cr(III) and Co(II) complexes were carried out in the range of 30-800 C. The complexes were decomposed in one and two stages of the Cu(II), Mn(II), Cr(III) and Co(II) complexes, respectively. Also, decomposition of the synthesized complexes is related to the Schiff's base characteristics. The thermal decomposition of the studied reactions was first order. The kinetic parameters for the decomposition steps in Cu(II), Mn(II), Cr(III) and Co(II) complexes thermograms have been calculated using Broido's method. In molecular modeling the geometries of azo-dye Schiff base ligand H2L and its metal(II/III/IV) complexes were fully optimized with respect to the energy using the 6-31G basis set. Antimicrobial activities of the azo-dye Schiff's base ligand and its corresponding metal complexes were screened against various organisms. The azo-dye Schiff's base ligand and some of its complexes were found to be biologically inactive.

  5. Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Rajour, Hemant K.; Prakash, Anant

    Schiff bases derived from 2-nitrobenzaldehyde with amino acids (glycine, methionine) and their Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by various physico-chemical techniques. From spectral studies, it has been concluded that the ligands acts as bidentate molecule, coordinates metal through azomethine nitrogen and carboxylate oxygen. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML2 complexes. X-ray powder diffraction helps to determine the cell parameters of the complexes. Molecular structure of the complexes has been optimized by MM2 calculations and suggests a square planar geometry. The ligands and their metal complexes have been tested in vitro against Streptococcus, Staph, Staphylococcus aureus and Escherchia coli bacteria in order to assess their antibacterial potential. The results indicate that the biological activity increases on complexation.

  6. Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine.

    PubMed

    Singh, Bibhesh K; Rajour, Hemant K; Prakash, Anant

    2012-08-01

    Schiff bases derived from 2-nitrobenzaldehyde with amino acids (glycine, methionine) and their Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by various physico-chemical techniques. From spectral studies, it has been concluded that the ligands acts as bidentate molecule, coordinates metal through azomethine nitrogen and carboxylate oxygen. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML(2) complexes. X-ray powder diffraction helps to determine the cell parameters of the complexes. Molecular structure of the complexes has been optimized by MM2 calculations and suggests a square planar geometry. The ligands and their metal complexes have been tested in vitro against Streptococcus, Staph, Staphylococcus aureus and Escherchia coli bacteria in order to assess their antibacterial potential. The results indicate that the biological activity increases on complexation. PMID:22522296

  7. A comparative study of cytotoxicity and interaction with DNA/protein of five transition metal complexes with Schiff base ligands.

    PubMed

    Niu, Meiju; Hong, Min; Chang, Guoliang; Li, Xiao; Li, Zhen

    2015-07-01

    Five transition metal complexes NiL(1)2 (1), CuL(1)2 (2), ZnL(1)2 (3), [MnL(1)2(N3)]nnCH2Cl2 (4), CuL(2)2 (5) {HL(1)=3-{[2-(2-hydroxy-ethoxy)-ethylimino]-methyl}-naphthalen-2-ol, HL(2)=2-{[2-(2-hydroxy-ethoxy)-ethylimino]-methyl}-phenol} have been synthesized and fully characterized. In all of the complexes, the ligands coordinated to the metal ion in a negative fashion via O and N donor atoms. The X-ray structures of nickel complex 1 and copper complexes 2 and 5 are four-coordinated monomers and show slightly distorted square-planar geometry in the vicinity of the central metal atom. Zinc complex 3 exhibits a four-coordinated tetrahedral structure. Differently, manganese complex 4 reveals a six-coordinated octahedral structure, one-dimensional chain is linked by azide in the end-to-end mode. In vitro cytotoxicity of these complexes to various tumor cell lines was assayed by the MTT method. The results showed that most of these metal-Schiff base complexes exhibited enhanced cytotoxicity than Schiff base ligands, which clearly implied a positive synergistic effect. Moreover, these complexes appeared to be selectively active against certain cell lines. The interactions of these metal complexes with CT-DNA were investigated by UV-vis, fluorescence and CD spectroscopy, the results indicated that these complexes are metallointercalators and can interact with CT-DNA. The study of interaction between complexes and BSA indicated that all of the complexes could quench the intrinsic fluorescence of BSA in a static quenching process. PMID:25974907

  8. Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases

    PubMed Central

    Sumrra, Sajjad Hussain; Ambreen, Sabahat; Imran, Muhammad; Danish, Muhammad; Rehmani, Fouzia Sultana

    2014-01-01

    New series of three bidentate N, O donor type Schiff bases (L1)(L3) were prepared by using ethylene-1,2-diamine with 5-methyl furfural, 2-anisaldehyde, and 2-hydroxybenzaldehyde in an equimolar ratio. These ligands were further complexed with Co(II), Cu(II), Ni(II), and Zn(II) metals to produce their new metal complexes having an octahedral geometry. These compounds were characterized on the basis of their physical, spectral, and analytical data. Elemental analysis and spectral data of the uncomplexed ligands and their metal(II) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. All ligands and their metal complexes were screened for antimicrobial activity. The results of antimicrobial activity indicated that metal complexes have significantly higher activity than corresponding ligands. This higher activity might be due to chelation process which reduces the polarity of metal ion by coordinating with ligands. PMID:25147493

  9. Synthesis, spectroscopic characterization and comparative DNA binding studies of Schiff base complexes derived from L-leucine and glyoxal.

    PubMed

    Shakir, Mohammad; Shahid, Nida; Sami, Naushaba; Azam, Mohammad; Khan, Asad U

    2011-11-01

    The mononuclear Schiff base complexes of the type, [ML(CH(3)OH)(2)] [M = Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by template condensation of L-leucine and glyoxal. The complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, Mass, (1)H NMR and (13)C NMR spectra. The UV-vis and magnetic moment data revealed an octahedral geometry around Co(II), Ni(II) ion with distortion around Cu(II) ion complex confirmed by EPR data. The conductivity data show a non-electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that all the complexes exhibit a significant binding to calf thymus DNA. PMID:21807556

  10. Crystal Structure, Cytotoxicity and Interaction with DNA of Zinc (II) Complexes with o-Vanillin Schiff Base Ligands

    PubMed Central

    Niu, Mei-Ju; Li, Zhen; Chang, Guo-Liang; Kong, Xiang-Jin; Hong, Min; Zhang, Qing-fu

    2015-01-01

    Two new zinc complexes, Zn(HL1)2 (1) and [Zn2(H2L2)(OAc)2]2 (2) [H2L1 = Schiff base derived from o-vanillin and (R)-(+)-2-amino-3-phenyl-1-propanol, H3L2 = Schiff base derived from o-vanillin and 2-amino-2-ethyl-1,3-propanediol], have been synthesized and characterized by single crystal X-ray diffraction, elemental analyses, TG analyses, solid fluorescence, IR, UV-Vis and circular dichroism spectra. The structural analysis shows that complex 1 has a right-handed double helical chain along the crystallographic b axis. A homochiral 3D supramolecular architecture has been further constructed by intermolecular C-H··· π, O-H···O and C-H···O interactions. Complex 2 includes two crystallographically independent binuclear zinc molecules. The two binuclear zinc molecules are isostructural. The 2-D sheet supramolecular structure was formed by intermolecular hydrogen bonding interaction. The fluorescence of ligands and complexes in DMF at room temperature are studied. The interactions of two complexes with calf thymus DNA (CT-DNA) are investigated using UV-Vis, CD and fluorescence spectroscopy. The results show that complex 1 exhibits higher interaction with CT-DNA than complex 2. In addition, in vitro cytotoxicity of the complexes towards four kinds of cancerous cell lines (A549, HeLa, HL-60 and K562) were assayed by the MTT method. Investigations on the structures indicated that the chirality and nuclearity of zinc complexes play an important role on cytotoxic activity. PMID:26114437

  11. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes.

    PubMed

    Neelakantan, M A; Rusalraj, F; Dharmaraja, J; Johnsonraja, S; Jeyakumar, T; Sankaranarayana Pillai, M

    2008-12-15

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) l-alanine (ala), l-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N(2)O(2) donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, (1)H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300K and in frozen DMSO (77K) indicate the presence of the unpaired electron in the dx2-y2 orbital. The evaluated metal-ligand bonding parameters showed strong in-plane sigma- and pi-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant. PMID:18656419

  12. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  13. Synthesis, Characterization and Biological Properties of Anions of Bivalent Transition Metal [Co(II) and Ni(II)] Complexes With Acylhydrazine Derived ONO Donor Schiff Bases

    PubMed Central

    Farooq, M. A.; Iqbal, M. S.

    2000-01-01

    Some acylhydrazine derived ONO donor Schiff bases and their Co(II) and Ni(II) complexes have been prepared having the same metal ion (cation) but different anions. These synthesized metal(II) complexes have been characterized on the basis of their elemental analyses, magnetic moment, molar conductance, and IR and electronic spectral data. All of the Schiff base ligands function as tridentates and the deprotonated enolic form is preferred for coordination. In order to evaluate the effect of anions on the bactericidal activity, these synthesized complexes, in comparison to the uncomplexed Schiff bases have been screened against bacterial species., Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the results are reported. PMID:18475936

  14. Homo dinuclear lanthanide(III) complexes of a mesogenic Schiff-base, N, N'-di-(4-decyloxysalicylidene)-1',6'-diaminohexane: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Shakya, Pawan Raj; Singh, Angad Kumar; Rao, T. R.

    2011-09-01

    A mesogenic Schiff-base, N, N'-di-(4-decyloxysalicylidene)-1',6'-diaminohexane, H 2ddsdh (abbreviated as H 2L 2) that exhibits smectic-B ( SmB) mesophase, was synthesized and its structure studied by elemental analysis, mass spectrometry, NMR & IR spectral techniques. The Schiff-base, H 2L 2, upon condensation with hydrated lanthanide(III) nitrates, yields Ln III complexes of the general composition [Ln 2(L 2H 2) 3(NO 3) 4](NO 3) 2, where Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho. IR and NMR spectral data imply a bi-dentate bonding of the Schiff-base in its zwitterionic form (as L 2H 2) to the Ln III ions through two phenolate oxygens. The POM and DSC studies reveal that none of the Ln III complexes exhibits mesomorphism. Fluorescence studies show that the Tb III complex displays characteristic metal-centered fluorescence (solution state).

  15. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides.

    PubMed

    Asadi, Mozaffar; Asadi, Zahra; Torabi, Susan; Lotfi, Najmeh

    2012-08-01

    Four new complexes, [M(Salpyr)] where Salpyr=N,N'-bis(Salicylidene)-2,3- and 3,4-diiminopyridine and M=Co, Cu, Mn, Ni and Zn were synthesized and characterized by (1)H NMR, IR spectroscopy, elemental analysis and UV-vis spectrophotometry. UV-vis spectrophotometric study of the adduct formation of the zinc(II) complexes, [Zn(2,3-Salpyr)] and [Zn(3,4-Salpyr)], as donor with R(2)SnCl(2) (R=methyl, phenyl, n-butyl), PhSnCl(3) and Bu(3)SnCl as acceptors has been investigated in methanol, as solvent. The formation constants and the thermodynamic free energies were measured using UV-vis spectrophotometry. Titration of the organotin chlorides with Zn(II) complexes at various temperatures (T=283-313K) leads to 1:1 adduct formation. The results show that the formation constants were decreased by increasing the temperature. The trend of the reaction of R(n)SnCl(4-n) as acceptors toward given zinc complexes was as follows: PhSnCl3 > Me2SnCl2 > Ph2SnCl2 > Bu2SnCl2 > Bu3SnCl. By considering the formation constants and the ?G of the complex formation for the Schiff base as donor and the M(II) as acceptor, the following conclusion was drawn: the formation constant for a given Schiff base changes according to the following trend: Ni > Cu > Co > Zn > Mn. PMID:22626922

  16. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Torabi, Susan; Lotfi, Najmeh

    Four new complexes, [M(Salpyr)] where Salpyr = N,N'-bis(Salicylidene)-2,3- and 3,4-diiminopyridine and M = Co, Cu, Mn, Ni and Zn were synthesized and characterized by 1H NMR, IR spectroscopy, elemental analysis and UV-vis spectrophotometry. UV-vis spectrophotometric study of the adduct formation of the zinc(II) complexes, [Zn(2,3-Salpyr)] and [Zn(3,4-Salpyr)], as donor with R2SnCl2 (R = methyl, phenyl, n-butyl), PhSnCl3 and Bu3SnCl as acceptors has been investigated in methanol, as solvent. The formation constants and the thermodynamic free energies were measured using UV-vis spectrophotometry. Titration of the organotin chlorides with Zn(II) complexes at various temperatures (T = 283-313 K) leads to 1:1 adduct formation. The results show that the formation constants were decreased by increasing the temperature. The trend of the reaction of RnSnCl4-n as acceptors toward given zinc complexes was as follows: PhSnCl3 > Me2SnCl2 > Ph2SnCl2 > Bu2SnCl2 > Bu3SnCl By considering the formation constants and the ?G of the complex formation for the Schiff base as donor and the M(II) as acceptor, the following conclusion was drawn: the formation constant for a given Schiff base changes according to the following trend: Ni > Cu > Co > Zn > Mn

  17. Metal complexes of a novel Schiff base derived from sulphametrole and varelaldehyde. Synthesis, spectral, thermal characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, M. A.; Abdallah, S. M.

    2010-08-01

    Metal complexes of a novel Schiff base (HL = 3-(4'-ethylazomethinobenzene sulphonamide)-4-methoxy-1,2,5-thiadiazole) derived from condensation of sulphametrole and varelaldehyde are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TG). From the elemental analyses data, 1:1 metal complexes are formed having the general formulae [MCl 3(HL)(H 2O)]3H 2O (M = Cr(III), Fe(III)) and [MCl 2(HL)(H 2O) 2] yH 2O (where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II), y = 0-3). The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied. IR spectra show that HL is coordinated to the metal ions in a neutral bidentate manner with ON donor sites of the enolic sulphonamide- OH and thiodiaza- N. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. All the metal chelates are found to be non-electrolytes. From the magnetic and solid reflectance spectra, the complexes have octahedral structures. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species ( Escherichia coli and Staphylococcus aureus) and fungi ( Candida and Aspergillus flavus). The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species.

  18. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L1-L4), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL1?DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < Cl. We also studied the thermodynamics of formation of the complexes and kinetic aspects of their thermal decomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe > 5-H > 5-Br > 5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL1?DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L1 ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex.

  19. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition.

    PubMed

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L(1)-L(4)), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL(1)?DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeOcomplexes and kinetic aspects of their thermal decomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe>5-H>5-Br>5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL(1)?DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L(1) ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex. PMID:25448962

  20. Synthesis and characterization of metal complexes of Schiff base ligand derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine

    NASA Astrophysics Data System (ADS)

    Selwin Joseyphus, R.; Shiju, C.; Joseph, J.; Justin Dhanaraj, C.; Arish, D.

    2014-12-01

    The Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine were synthesized. These compounds were characterized by elemental analysis, IR, mass, 1H NMR, electronic spectra, magnetic moment, molar conductance, thermal analysis, powder XRD and SEM. The analytical data show that the metal to ligand ratio is 1:1. The IR results show that the ligand acts as a bidentate donor coordinating through the azomethine nitrogen and imidazole nitrogen atoms. From the electronic spectra and magnetic moment value predicts the geometry of the complexes. The surface morphology of the compounds was studied by SEM. The compounds were screened for their antibacterial activity and antifungal activity using Kirby Bayer disc diffusion method. The DNA cleavage and superoxide dismutase activities of the compounds were investigated. The anticancer activities of the complexes have been carried out towards HeLa and HCT116 cancer cells.

  1. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  2. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes.

    PubMed

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-15

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s(-1) scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, (1)H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction. PMID:24681321

  3. Solution combustion synthesis using Schiff-base aluminum complex without fuel and optical property investigations of alumina nanoparticles

    NASA Astrophysics Data System (ADS)

    Salehi, Mehdi; Arabsarhangi, Ehsan

    2015-05-01

    Synthesis of alumina nanomaterials via a solution combustion technique using Schiff base aluminum (III) complex at 820 and 950 C for 4 h was performed successfully. The synthesis procedure was performed using the complex in the absence and presence of urea and glycine as fuel for comparison. The obtained data showed that the procedure without using fuel resulted in a better phase and morphology. To investigate the phase formation, powder X-ray diffraction technique was used. Also, SEM micrographs were used to investigate the morphology of the obtained materials. The optical properties of the obtained materials were studied by FTIR spectra. According to the PXRD data, it was found that with annealing at 950 C, the phase formation of the obtained materials showed cubic crystal structure with cell parameter a = 3.14 for gamma phase. Also, by annealing at 820 C using fuels for 4 h, the main phase was found to be in gamma.

  4. Development of a force field for some copper(II) Schiff-base complexes

    NASA Astrophysics Data System (ADS)

    Subramanian, V.; Shankaranarayanan, C.; Nair, Balachandran Unni; Kanthimathi, M.; Manickkavachagam, R.; Ramasami, T.

    1997-08-01

    Molecular mechanics calculations have been performed on Cu(N,N'-ethylenebis(salicylideneimine)) [ Cu( salen)], Cu(N,N'-propylenebis(salicylideneimine)) [ Cu( salprn)] and Cu(N,N'-butylenebis(salicylideneimine)) [ Cu( salbuen)] after generating a well-balanced force field based on the structural parameters available for Cu(salen) and Cu(salprn). The optimized stretching force constant for Cu?N and Cu?O bond types is 2.25 mdyn/ and the bending force constant corresponding to N?Cu?N, O?Cu?O and O?Cu?N types is 0.5 mdyn/. The stability and structural parameters have been predicted based on the calculations.

  5. Synthesis, crystal structures, and spectral characterization of tetranuclear Mn(II) complex with a new Schiff base ligand and molecular dynamics studies on inhibition properties of such Schiff base

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liu, Zheng; Yuan, Shuai; Liu, Jin

    2013-04-01

    A new Schiff base ligand H2L (3,5-dibromosalicylaldehyde pyridine-2-formyl hydrazone) and a new tetra-nuclear coordination complex [Mn4(L)4(DMF)4] (1) have been synthesized and characterized by spectral method (IR), fluorescence spectra, and elemental analysis. Structural characterization of the complex has been done by single-crystal X-ray diffraction analysis. Structural analysis reveals that the metal centers in complex [Mn4(L)4(DMF)4](1) exhibit distorted tetragonal-bipyramid coordination geometry, and each metal ion is coordinated by two mutually perpendicular Schiff base ligands (H2L) and one solvent DMF. The molecular dynamics (MDs) simulations method was performed to study the adsorption behavior of the H2L molecules on metal surface. The results show that the H2L molecules could adsorb on the metal surface firmly through several reactive sites. The analysis of pair correlation functions indicates that chemical bonds are formed between the oxygen nitrogen atoms of H2L molecules and the Fe atoms of Fe surface. These cause the result that H2L molecules interact with metal surface strongly and therefore have excellent corrosion inhibition performance.

  6. A new MoVI Schiff base complex: methanol[N?-(3-methoxy-2-oxidobenzylidene)benzohydrazidato]dioxidomolybdenum(VI)

    PubMed Central

    Sheikhshoaie, Iran; Langer, Vratislav; Yasrebi, Seyed Ali

    2011-01-01

    In the title benzilidene Schiff base molybdenum(VI) complex, [Mo(C15H12N2O3)O2(CH3OH)], the MoVI ion is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate N?-(3-methoxy-2-oxidobenzylidene)benzohydrazidate (L) Schiff base ligand. The methanol O atom completes the distorted octahedral configuration of the MoVI atom. Strong OH?N hydrogen bonds form a C(5) chain around a 21 screw axis. Weak CHO hydrogen bonds are also present. PMID:21836845

  7. Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived from 5-phenylazo-salicyladehyde and o-amino benzoic acid

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Deen, Ibrahim M.; Ibrahim, Hassan K.; El-Ghool, Samir

    2006-12-01

    Cu(II), Mn(II), Ni(II), and Zn(II) metal complexes with novel heterocyclic Schiff base derived from 5-phenyl azo-salicyladehyde and o-amino benzoic acid have been synthesized and characterized on the basis of elemental analyses, electronic, IR, and 1H NMR spectra, and also by aid of scanning electron microscopy (SEM), X-ray powder diffraction, molar ratio measurements, molar conductivity measurements, and thermogravimetric analyses. It has been found that the Schiff base behaves as neutral tridentate (ONO) ligand forming chelates with 1:1 (metal:ligand) stoichiometry.

  8. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety

    NASA Astrophysics Data System (ADS)

    Justin Dhanaraj, Chellaian; Johnson, Jijo

    2014-01-01

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and 1H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77 K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  9. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 μm.

  10. Synthesis, spectroscopic, cytotoxic aspects and computational study of N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base and some of its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Abd El-Aziz, Dina M.; Etaiw, Safaa Eldin H.; Ali, Elham A.

    2013-09-01

    N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base (L) and its Cu(II), Fe(III), Co(II), Ni(II) and Zn(II) complexes were synthesized and characterized by a set of chemical and spectroscopic measurements using elemental analysis, electrical conductance, mass spectra, magnetic susceptibility and spectral techniques (IR, UV-Vis, 1H NMR). Elemental and mass spectrometric data are consistent with the proposed formula. IR spectra confirm the bidentate nature of the Schiff base ligand. The octahedral geometry around Cu(II), Fe(III), Ni(II) and Zn(II) as well as tetrahedral geometry around Co(II) were suggested by UV-Vis spectra and magnetic moment data. The thermal degradation behavior of the Schiff base and its complexes was investigated by thermogravimetric analysis. The structure of the Schiff base and its transition metal complexes was also theoretically studied using molecular mechanics (MM+). The obtained structures were minimized with a semi-empirical (PM3) method. The in vitro antitumor activity of the synthesized compounds was studied. The Zn-complex exhibits significant decrease in surviving fraction of breast carcinoma (MCF 7), liver carcinoma (HEPG2), colon carcinoma (HCT116) and larynx carcinoma (HEP2) cell lines human cancer.

  11. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Pandey, O. P.; Sengupta, S. K.

    New Zn(II) complexes have been synthesized by the reactions of zinc(II) acetate with Schiff bases derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde, 2-hydroxyacetophenone or indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [ZnL(H 2O) 2], [ZnL'(OAc) 2(H 2O) 2] (L = dianionic Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and 2-hydroxyacetophenone or indoline-2,3-dione; L' = neutral Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde) and they were characterized by FT-IR, 1H NMR, 13C NMR and FAB mass. All these Schiff bases and their complexes have also been screened for their antibacterial activities against Bacillus subtilis, Escherichia coli and antifungal activities against Colletotrichum falcatum, Aspergillus niger, Fusarium oxysporium and Carvularia pallescence by petriplates methods.

  12. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases

    NASA Astrophysics Data System (ADS)

    Kavitha, P.; Saritha, M.; Laxma Reddy, K.

    2013-02-01

    Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.

  13. Antimicrobial efficacy of phenanthrenequinone based Schiff base complexes incorporating methionine amino acid: Structural elucidation and in vitro bio assay

    NASA Astrophysics Data System (ADS)

    Arun, Thesingu Rajan; Raman, Natarajan

    2014-06-01

    This work focuses the synthesis and characterization of few novel mixed ligand Schiff base metal complexes and their biological activities. For deriving the structural aspects, spectral techniques such as FT-IR, UV-Vis., 1H NMR, Raman, EPR and the physicochemical characterizations including elemental analysis, molar conductance and magnetic susceptibility method have been involved. All the complexes adopt square planar geometry. DNA binding ability of these complexes has been explored using diverse techniques viz. UV-Vis. absorption, fluorescence spectroscopy, viscometry and cyclic voltammetry. These studies prove that CT-DNA binding of the complexes follows the intercalation mode. Comparative DNA oxidative cleavage ability of the complexes has been done under ultraviolet photo radiation on pUC19 DNA. In addition, the biocidal action of the complexes has been investigated against few pathogenic bacteria and fungi by disc diffusion method. Importantly, the amylase inhibition activity of Cu(II) complex has been explored. The amylase inhibition property has been found to be increased upon increasing the complex concentration.

  14. Synthesis, spectroscopic (electronic, IR, NMR and ESR) and theoretical studies of transition metal complexes with some unsymmetrical Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Vinod P.; Singh, Shweta; Singh, Divya P.; Tiwari, K.; Mishra, Monika

    2014-01-01

    Two unsymmetrical Schiff bases, glyoxal salicylaldehyde oxalic acid dihydrazone (gsodh) and glyoxal salicylaldehyde malonic acid dihydrazone (gsmdh) and their Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The structures of metal complexes are elucidated on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, electronic, ESR, IR and NMR (1H and 13C) spectral studies. Both ligands show monobasic tetra-dentate behaviour, bonding through CO, two CN and a phenolate group. The electronic spectral studies in solid state indicate a square planar geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complexes. However, Co(II) and Cu(II) complexes adopt octahedral geometry in DMSO solution. The ESR spectra of Cu(II) complexes in DMSO solution at 77 K predict an elongated tetragonal distorted octahedral geometry around metal ion and presence of unpaired electron in d orbital. Further, the structures of ligands and their Ni(II) complexes have been satisfactorily modelled by calculations based on density functional theory (DFT). The electronic spectra of Ni(II) complexes are also analyzed in depth with the help of time dependent-DFT (TD-DFT). The theoretical analyses of electronic structure and molecular orbitals have demonstrated that the high-energy absorption bands are M ? L charge transfer and low energy transitions are d-d transitions.

  15. Enantioselectivity in Ni(II) Schiff-base complexes derived from amino-acids and (S)-o-N-(N-benzylprolyl)aminobenzophenone: molecular structure of several chiral Ni(II) Schiff-base complexes, circular dichroism and molecular mechanics studies.

    PubMed

    Pessoa, J Costa; Correia, I; Galvo, A; Gameiro, A; Felix, V; Fiuza, E

    2005-07-01

    Several Ni(II) complexes derived from (S)-o-N-(N-benzylprolyl)aminobenzophenone ((S)-BBP) and amino acids of general formula [Ni((S)-BBP-L-(or D-)-aa)] were prepared. The crystal and molecular structures of [Ni((S)-BBP-Gly)], [Ni((S)-BBP-L-Ser)] and [Ni((S)-BBP-L-aaIm)](aaIm =L-2-amino-3-(imidazol-1-yl)propanoate were determined by X-ray diffraction analysis. In the three complexes the nickel atoms display a square-planar coordination and the overall structure around the metal indicates that the entire Schiff-base ligands form quite rigid frameworks. Molecular mechanics calculations were carried out for complexes [Ni((S)-BBP-Gly)], [Ni((S)-BBP-Ser)] and [Ni((S)-BBP-aaIm)] containing either the L- or D-amino acid forms, and the factors controlling the stereoselectivity are discussed. Several other [Ni((S)-BBP-L-aa)] complexes are also prepared and their circular dichroism spectra in solution and of the solids dispersed in KBr disks are measured and discussed. In agreement with other studies in solution with similar [Ni((S)-BBP-aa)] complexes, the Cotton effects for the bands with lambda(max) at 520--530 nm are positive when the amino acids have the L-configuration at the alpha-carbon. The same is observed in this work for the solid-state CD spectra of all compounds. PMID:15962053

  16. Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives

    NASA Astrophysics Data System (ADS)

    Amer, Said; El-Wakiel, Nadia; El-Ghamry, Hoda

    2013-10-01

    A series of copper (II) complexes of Schiff bases derived from 7H-2,6-diaminopurine and 4H-3,5-diamino-1,2,4-triazole with 2-pyridinecarbaldehyde, salicylaldehyde, 2,4-dihydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde have been prepared. The donor atoms and the possible geometry of the complexes were investigated by means of elemental and thermal analyses, molar conductance, magnetic moment, UV-Vis, IR, ESR and mass spectra. The ligands behaved as tetradentate, coordinating through the nitrogen atom of the azomethine group and the nearest nitrogen atom to it or oxygen atom of α-hydroxyl group. The results of simultaneous DTA & TGA analyses of the complexes showed the final degradation product for these complexes is CuO. The spectral studies confirmed a four coordinate environment around the metal ion. The obtained results were supported by 3D molecular modeling of complexes using molecular mechanics (MM+) and semiempirical molecular orbital calculations (PM3). These complexes were also tested for their in vitro antimicrobial activities against some bacterial and fungal strains. Complex 2 was investigated for its cyctotoxic effect against human breast cancer (MCF7), liver carcinoma (HEPG2) and colon carcinoma cell lines (HCT116). This compound exhibited a moderate activity against the tested cell lines with IC50 of 10.3, 9.8 and 8.7 μg/ml against MCF7, HCT116 and HEPG2, respectively.

  17. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine

    PubMed Central

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, 1H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (Kb) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 105 L mol−1 and 1.71 to 17.3 × 105 L mol−1 for the ligand L and La (III) complex, respectively, in the temperature range of 298–310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex. PMID:25371657

  18. Synthesis, spectral characterization and DNA bindings of tridentate N2O donor Schiff base metal(II) complexes.

    PubMed

    Kathiresan, Sellamuthu; Anand, Thangavel; Mugesh, Subramanian; Annaraj, Jamespandi

    2015-07-01

    To evaluate the biological preference of synthetic small drugs towards DNA target, new metal based chemotherapeutic agents of Cu(II), Co(II), Ni(II) and Zn(II), 2,4-diiodo-6-((pyridin-2-ylmethylimino)methyl)phenol (L) Schiff base complexes (1, 2, 3 &4) having N,N,O donor system respectively were synthesized and thoroughly characterized. The IR results confirmed the tridentate binding of the ligand with metal centre during complexation and reflects the proposed structure. The density function theory calculations were also used to further investigate the electronic structure and properties of ligand and complexes. The preliminary investigation of herring Sperm (HS-DNA) interaction propensity of complexes 1-4 were carried out in Tris-HCl buffer at pH 7.1 to demonstrate their mode of interactions. The obtained results reveal that these complexes significantly interact with DNA on the grooves, further, this observed mode of interactions was also confirmed by molecular docking evaluations. The complexes 1-4 were also screened for antimicrobial evaluations which demonstrated that their significant activity against various human pathogens. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1 as compared to other complexes. PMID:26000741

  19. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    PubMed Central

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm−1, 28.20 emu g−1, 16.66 emu g−1 and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  20. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-07-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908?S?cm-1, 28.20?emu?g-1, 16.66?emu?g-1 and 3604.79?Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed.

  1. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials.

    PubMed

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm(-1), 28.20 emu g(-1), 16.66 emu g(-1) and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  2. Inhibition of the hemolytic activity caused by Staphylococcus aureus alpha-hemolysin through isatin-Schiff copper(II) complexes.

    PubMed

    Melo, Maria C A; Teixeira, Luciana R; Pol-Fachin, Laercio; Rodrigues, Claudio G

    2016-01-01

    A great number of pathogens secrete pore-forming proteins during infection. Such molecules, from either bacterial or viral origin, are considered important virulence factors, which makes them attractive targets in the study of new therapeutic agents. Thus, the inhibitory activity of isatin-Schiff base copper(II) complexes was evaluated against membrane damage activity of Staphylococcus aureus ?-hemolysin (?-HL). For this purpose, a standard hemolysis assay with rabbit erythrocytes and micromolar concentrations of the compounds was employed. Additionally, planar artificial lipid membranes with a single ?-HL ion channel and molecular docking studies were used to elucidate the molecular mechanism of the complexes. Accordingly, the compounds were observed to possess a significant anti-hemolytic activity, capable of interacting with the constriction region of ?-HL channel and blocking it in a potential dependent manner. Based on these results, it is expected that such isatin-Schiff base Copper(II) complexes may be employed as cotherapeutic agents for the treatment of staphylococcal infections. PMID:26519261

  3. Synthesis, structure, protein binding of Cu(II) complexes with a tridentate NNO Schiff-base ligand.

    PubMed

    Li, Mei; Huang, ShuJuan; Ye, Cheng; Xie, YongRong

    2015-11-01

    Four new Cu(II) complexes (1, 2, 3 and 4) in the presence of different anions (Cl(-), Br(-), I(-) and ClO4(-)) have been prepared by tridentate NNN Schiff-base ligand (N,N-dimethyl-N'-[phenyl(2-pyridyl)methylene]ethane-1,2-diamine) and well characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV-Vis spectroscopy. The interactions of complexes 1-4 with human serum albumin (HSA) have been investigated in Tris-HCl buffer solution at pH 7.4 by spectroscopic methods and a molecular docking technique. Experimental results proved that the four complexes quench the fluorescence of HSA through a static quenching mechanism. Thermodynamic parameters were calculated from Van't Hoff equation. The distance r between the donor (HSA) and acceptor (complexes 1-4) has been obtained by means of Frester resonance energy transfer (FRET). Molecular docking results indicated that the main active binding sites for complexes 1, 2 and 4 are site III in subdomain IB and for complex 3 is site II in subdomain III A. The combination of molecular docking results and fluorescence experimental results indicate that the interaction between 1-4 and HSA are dominated by hydrophobic forces as well as hydrogen bonds. PMID:26056979

  4. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine.

    PubMed

    Shebl, Magdy

    2009-07-15

    A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements. PMID:19345138

  5. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.; Thamaraichelvan, A.

    2011-02-01

    A novel tyramine derived Schiff base, 3-4-dimethoxybenzylidene-4-aminoantipyrinyl-4-aminoethylphenol(L) and a series of its transition metal complexes of the type, ML 2Cl 2 where, M = Cu(II), Ni(II), Co(II) and Zn(II) have been designed and synthesized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding properties of these complexes with calf thymus DNA (CT-DNA) were investigated using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and molecular docking analysis. The results reveal that the metal(II) complexes interact with DNA through minor groove binding. The interaction has also been investigated by gel electrophoresis. Interestingly, it was found that all the complexes could cleave the circular plasmid pUC19 super coiled (SC) DNA efficiently in the presence of AH 2 (ascorbic acid). The complexes showed enhanced antifungal and antibacterial activities compared to the free ligand.

  6. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    NASA Astrophysics Data System (ADS)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  7. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations.

    PubMed

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-14

    Schiff base disulfide ligands (H2L(1-6)) were synthesized from the condensation of cystamine with salicylaldehyde(H2L(1)), 5-chlorosalicylaldehyde(H2L(2)), o-vanillin(H2L(3)), 2-hydroxyacetophenone(H2L(4)), 3-methyl-2-hydroxyacetophenone(H2L(5)), and 2-hydroxy-1-naphthaldehyde(H2L(6)). H2L(1-6) reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L(1-6)]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR ((1)H and (13)C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed. PMID:24747860

  8. Rod shaped oxovanadium(IV) Schiff base complexes: Synthesis, mesomorphism and influence of flexible alkoxy chain lengths

    NASA Astrophysics Data System (ADS)

    Gupta, Bishop Dev; Datta, Chitraniva; Das, Gobinda; Bhattacharjee, Chira R.

    2014-06-01

    A series of oxovanadium(IV) complexes of bidentate [N,O] donor Schiff-base ligands of the type [VO(L)2], [L = N-(4-n-alkoxysalicylaldimine)-4?-octadecyloxyaniline, n = 8, 10, 12, 14, 16 and 18] have been synthesized. The compounds were characterized by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), ultraviolet-visible spectroscopy (UV-Vis), and fast atom bombardment (FAB) mass spectrometry. The mesomorphic behavior of the compounds was studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The ligands and complexes are all thermally stable exhibiting smectic mesomorphism. The ligands 8-OR to16-OR show SmC phase at ?113-118 C and an unidentified SmX phase reminiscent of soft crystal at ?77-91 C whereas the complexes all showed SmA phases. Interestingly the complexes with C10 and C12 alkoxy chain length exhibited additionally SmC phases also. The melting points of the ligands linearly increases whereas mesophase to isotropic transition temperature decreases as a function of increasing carbon chain length of alkoxy arm while no trend was apparently noticeable for the complexes.

  9. Chiral discrimination asserted by enantiomers of Ni (II), Cu (II) and Zn (II) Schiff base complexes in DNA binding, antioxidant and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Khan, Noor-ul Hasan; Pandya, Nirali; Prathap, K. Jeya; Kureshy, Rukhsana Ilays; Abdi, Sayed Hasan Razi; Mishra, Sandhya; Bajaj, Hari Chandra

    2011-10-01

    Chiral Schiff base ligands ( S)-H 2L and ( R)-H 2L and their complexes ( S-Ni-L, R-Ni-L, S-Cu-L, R-Cu-L, S-Zn-L and R-Zn-L) were synthesized, characterized and examined for their DNA binding, antioxidant and antibacterial activities. The complexes showed higher binding affinity to calf thymus DNA with binding constant ranging from 2.0 10 5 to 4.5 10 6 M -1. All the complexes also exhibited remarkable superoxide (56-99%) and hydroxyl scavenging (45-89%) activities as well as antibacterial activities against gram (+) and gram (-) bacteria. However, none of the complexes showed antifungal activity. Conclusively, S enantiomers of the complexes were found to be relatively more efficient for DNA interaction, antioxidant and antibacterial activities than their R enantiomers. This study reveals the possible utilization of chiral Schiff base complexes for pharmaceutical applications.

  10. Cu(II) and Pd(II) complexes of water soluble O-carboxymethyl chitosan Schiff bases: Synthesis, characterization.

    PubMed

    Baran, Talat; Menteş, Ayfer

    2015-08-01

    This study reports the synthesis of two new water soluble O-carboxymethyl chitosan Schiff bases (OCMCS-5 and OCMCS-6a) and their Cu(II) and Pd(II) complexes. Characterizations of these complexes were carried out with FTIR, elemental analysis, (13)C CPMAS, UV-vis, magnetic moment and molar conductivity techniques. The degrees of substitution (DS) for OCMCS-5a and OCMCS-6a were determined to be 0.48 and 0.44 in elemental analysis. The solubility test revealed that OCMCS-5a and OCMCS-6a dissolved thoroughly in water. The surface morphologies of chitosan (CS), OCMCS-5a, OCMCS-6a and their complexes were studied with SEM-EDAX. Thermal stability of the synthesized compounds was evaluated by TG/DTG and their crystallinity values were investigated with powder X-ray diffraction. Cu(II) and Pd(II) contents of the complexes were estimated with ICP-OES. The characterization studies demonstrated that the thermal stability and crystallinity values of the OCMCS-5a and OCMCS-6a were lower than those of CS. PMID:26021275

  11. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria

    NASA Astrophysics Data System (ADS)

    Sobha, S.; Mahalakshmi, R.; Raman, N.

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H2O2. The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands.

  12. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 2-hydroxy-1-naphthaldehyde and 2-oxo-2H-chromene-3-carbohydrazide/6-bromo-2-oxo-2H-chromene-3-carbohydrazide. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV-Vis, 1H NMR, ESR, FAB-mass and fluorescence), magnetic and thermal studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of the complexes was investigated with electrochemical method by using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial ( Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The DNA cleavage is studied by agarose gel electrophoresis method.

  13. Spectral, electrochemical, thermal, DNA binding ability, antioxidant and antibacterial studies of novel Ru(III) Schiff base complexes.

    PubMed

    Abdel Aziz, Ayman A; Elbadawy, Hemmat A

    2014-04-24

    Four new air stable low spin Ru(III) complexes of the type [Ru(L(1-4))(H2O)2]Cl have been synthesized, where L=dianion of the tetradentate Schiff base ligands namely N,N'bis(salicylaldehyde)4,5-dimethy-l,2-phenylendiammine (L(1)H2), N,N'bis(salicylaldehyde)4,5-dichloro 1,2-phenylendiammine (L(2)H2), N,N'bis(o-vanillin)4,5-dimethy-1,2-phenylendiammine (L(3)H2) and N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylendiammine (L(4)H2). The complexes have been fully characterized by elemental analysis, infrared spectroscopy, electronic spectroscopy, magnetic susceptibility and electron spin resonance spectroscopy. Elemental analyses and spectroscopic data have been showed that, the stoichiometries of complexes were 1:1 with an octahedral geometry for all the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. The redox behavior of the complexes has been investigated by the cyclic voltammetric technique. The interaction of these complexes with calf thymus DNA (CT-DNA) was explored by different techniques which revealed that the complexes could bind to CT-DNA through an intercalative mode. Furthermore, the antioxidant activity of the Ru(III) complexes against superoxide and hydroxyl radicals was evaluated by using spectrophotometer methods in vitro. The experiments on antioxidant activity show that the complexes were found to possess potent antioxidant activity. Additionally, as a potential application the antibacterial activity of the complexes was assessed by testing their effect on the growth of various strains of bacteria. PMID:24508879

  14. Novel rhenium(III, IV, and V) tetradentate N2O2 Schiff base mononuclear and dinuclear complexes.

    PubMed

    Rotsch, David A; Reinig, Kimberly M; Weis, Eric M; Taylor, Anna B; Barnes, Charles L; Jurisson, Silvia S

    2013-08-28

    Reaction of (Bu4N)[ReOCl4] with the tetradentate Schiff base ligand ?,?'-[(1,1-dimethylethylene)dinitrilo]di-o-cresol (sal2ibnH2) yields cis-[Re(V)OCl(sal2ibn)], which quickly forms trans-[?-O(Re(V)O(sal2ibn))2] in solution. The dinuclear complex can also be isolated by the addition of base (Et3N) to the reaction mixture. Conversely, the mononuclear complex can be trapped as cis-[Re(V)O(NCS)(sal2ibn)] by addition of (Bu4N)SCN to the reaction mixture. Reduction of cis-[Re(V)O(NCS)sal2ibn] with triphenylphosphine gives the rare trans-[Re(III)(NCS)(PPh3)(sal2ibn)] and unique ?-oxo Re(IV) dimer trans-[?-O(Re(IV)(NCS)(sal2ibn))2]. All of the complexes were characterized by (1)H and (13)C NMR, FT-IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), cyclic voltammetry and single crystal X-ray diffraction. PMID:23824208

  15. Novel Rhenium(III, IV, and V) Tetradentate N2O2 Schiff Base Mononuclear and Dinuclear Complexes

    PubMed Central

    Rotsch, David A.; Reinig, Kimberly M.; Weis, Eric M.; Taylor, Anna B.; Barnes, Charles L.

    2013-01-01

    Reaction of (Bu4N)[ReOCl4] with the tetradentate Schiff base ligand ?, ?-[(1,1-dimethylethylene)dinitrilo]di-o-cresol (sal2ibnH2) yields cis-[ReVOCl(sal2ibn)], which quickly forms trans-[?-O(ReVO(sal2ibn))2] in solution. The dinuclear complex can also be isolated by the addition of base (Et3N) to the reaction mixture. Conversely, the mononuclear complex can be trapped as cis-[ReVO(NCS)(sal2ibn)] by addition of (Bu4N)SCN to the reaction mixture. Reduction of cis-[ReVO(NCS)sal2ibn] with triphenylphosphine gives the unique trans-[ReIII(NCS)(PPh3)(sal2ibn)] and rare ?-oxo Re(IV) dimer trans-[?-O(ReIV(NCS)(sal2ibn))2]. All of the complexes were characterized by 1H and 13C NMR, FT-IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), cyclic voltammetry and single crystal X-ray diffraction. PMID:23824208

  16. Environmental Dependence of Artifact CD Peaks of Chiral Schiff Base 3d-4f Complexes in Soft Mater PMMA Matrix

    PubMed Central

    Okamoto, Yu; Nidaira, Keisuke; Akitsu, Takashiro

    2011-01-01

    Four chiral Schiff base binuclear 3d-4f complexes (NdNi, NdCu, GdNi, and GdCu) have been prepared and characterized by means of electronic and CD spectra, IR spectra, magnetic measurements, and X-ray crystallography (NdNi). A so-called artifact peak of solid state CD spectra, which was characteristic of oriented molecules without free molecular rotation, appeared at about 470 nm. Magnetic data of the complexes in the solid state (powder) and in PMMA cast films or solutions indicated that only GdCu preserved molecular structures in various matrixes of soft maters. For the first time, we have used the changes of intensity of artifact CD peaks to detect properties of environmental (media solid state (KBr pellets), PMMA cast films, concentration dependence of PMMA in acetone solutions, and pure acetone solution) for chiral 3d-4f complexes (GdCu). Rigid matrix keeping anisotropic orientation exhibited a decrease in the intensity of the artifact CD peak toward negative values. The present results suggest that solid state artifact CD peaks can be affected by environmental viscosity of a soft mater matrix. PMID:22072930

  17. Synthesis, spectroscopic characterization, potentiometric studies, cytotoxic studies and molecular docking studies of DNA binding of transition metal complexes with 1,1-diaminopropane-Schiff base

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; El-Sayed, Badr A.; El-Henawy, Ahmed A.; Ammar, Reda A. A.

    2013-03-01

    A new series of Schiff base transition metal complexes with N,N'-bis(2-hydroxybenzylidene)-1,1-diaminopropane (H2BHBDAP) have been prepared and characterized by elemental analysis, spectroscopic and magnetic measurements. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 C and ionic strength 0.10 M sodium perchlorate. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the Docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity.

  18. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al-Hassan, Khader A.; Hijazi, Ahmed K.; Faiq, Ari B.

    2011-10-01

    Eight new lanthanide metal complexes [Ln L(NO 3) 2]NO 3 {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ( 1H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.

  19. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin.

    PubMed

    Gou, Yi; Zhang, Yao; Qi, Jinxu; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-03-01

    We use Schiff-base salicylaldehyde benzoylhydrazone (HL) as the ligand for copper(II), resulting in the complexes [CuCl(L)]H2O (C1), [CuNO3(L)]H2O (C2) and [CuBr(L)]2 (C3). We characterize the Cu(II) compounds' interactions with human serum albumin (HSA) using fluorescence spectroscopy and molecular docking. These studies revealed that Cu(II) compounds propensity bound to IIA subdomain of HSA possible by hydrophobic interactions and hydrogen bond. Cu(II) compounds produce intracellular reactive oxygen species (ROS) in cancer cells. Complexes of HSA and copper(II) compounds enhance about 2-fold cytotoxicity in cancer cells but do not raise cytotoxicity levels in normal cells in vitro. Compared with C3 alone, HSA-C3 complex promotes HepG2 cell apoptosis and has a stronger capacity to promote cell cycle arrest at the G2/M phase of HepG2. PMID:25573806

  20. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P.

    2011-11-01

    Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV-Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.

  1. Phase transition and vapochromism in molecular assemblies of a polymorphic zinc(II) Schiff-base complex.

    PubMed

    Oliveri, Ivan Pietro; Malandrino, Graziella; Di Bella, Santo

    2014-09-15

    This paper reports for the first time the irreversible thermally induced phase transition, accompanied by color change, and the vapochromic behavior of an amphiphilic, Lewis acidic Zn(II) Schiff-base complex, through detailed X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and optical absorption studies. The unprecedented irreversible phase transition for such kind of complexes is associated with a thermal, lamellar-to-hexagonal columnar structural transition, which involves a different arrangement of each molecular unit within the assembled structure, H- and J-type aggregates, respectively, responsible for the thermochromic behavior. The vapochromism, investigated either in powder samples or in thermally annealed cast films, is related to the formation of 1:1 adducts upon exposure to vapors of strong Lewis bases and implies dramatic optical absorption variations and naked-eye observation of the change in color from red-brown to red. The chemisorption process is fast, completely reversible, reproducible, and selective for amines. The reversible switching of the chemisorption-desorption process in cast films is demonstrated by successive cycles, amine exposure and subsequent heating, by monitoring the substantial optical absorption changes in the visible region. Vapochromism of this material can potentially be used to detect vapors of volatile amines. PMID:25148651

  2. Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(II) complexes.

    PubMed

    Baran, Talat; Mente?, Ayfer; Arslan, Hlya

    2015-01-01

    In this study, mono-imine was synthesized (3a and 4a) via a condensation reaction between 2,4-pentadion and aminobenzoic acid (meta or para) in alcohol (1:1). The second-imine (CS-3a and CS-4a) was obtained as a result of the reaction of the free oxo groups of mono-imine (3a and 4a) with the amino groups on the chitosan (CS). Their structures were characterized with FTIR and (13)C CP-MAS. Then, the water soluble forms of CS-3a and CS-4a were obtained through oxidation of the hydroxide groups on the chitosan to carboxymethyl groups using monochloracetic acid ([O-CMCS-3a] 2H2O and [O-CMCS-4a] 2H2O). Thus, the solubility problem of chitosan in an aqueous media was overcome and Cu(II) complexes could be synthesized more easily. Characterization of the synthesized O-carboxymethyl chitosan Schiff base derivatives and their metal complexes, [O-CMCS-3a-Cu(OAc)2] 2H2O and [O-CMCS-4a-Cu(OAc)2] 2H2O, was conducted using FTIR, UV-Vis, TG/DTA, XRD, SEM, elemental analysis, conductivities and magnetic susceptibility measurements. PMID:25128824

  3. Structure and aggregation properties of a Schiff-base zinc(II) complex derived from cis-1,2-diaminocyclohexane.

    PubMed

    Consiglio, Giuseppe; Oliveri, Ivan Pietro; Punzo, Francesco; Thompson, Amber L; Di Bella, Santo; Failla, Salvatore

    2015-08-01

    This contribution explores the effect of the bridging diamine upon the aggregation properties of a Zn(II) Schiff-base complex, , both in the solid state and in solution. The X-ray structure of , resulting from the harvest of good quality crystals using chloroform and diethyl ether as solvents, shows the presence of a densely packed dimer in the solid state which pentacoordinates two Zn atoms involved in a ?-phenoxo bridge. Detailed studies in solution, through (1)H NMR, DOSY NMR, and optical spectroscopic investigations, indicate the typical aggregation/deaggregation behaviour on switching from non-coordinating to coordinating solvents, in relation to the Lewis acidic character of such Zn(II) complexes. Thus, while in DMSO-d6 both (1)H NMR and DOSY studies suggest the existence of monomeric species, in chloroform solution experimental data support the existence of aggregates. However, unlike our previous studies, (1)H NMR data in chloroform solution indicate the existence of an asymmetric dimer, as observed in the X-ray crystal structure. This further evidences a very rigid backbone of the dimeric aggregate and can be related to the defined stereochemistry of the chelate cis-1,2-diaminocyclohexane bridge. PMID:26103462

  4. Study of the interaction between a new Schiff-base complex and bovine serum albumin by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Yanling; Wu, Fangying

    2010-10-01

    A new Schiff-base compound, N'-(2-hydroxynaphthalenemethylene)-4-(2-hydroxyl naphthalenemethylenamine)benzoylhydrazine ( 1), was synthesized and the interaction between zinc complex ( 1-Zn) and bovine serum albumin (BSA) was investigated by fluorescence and absorption spectroscopies. A marked increase in the fluorescence intensity of 1-Zn was observed at 475 nm upon addition of BSA when excitation wavelength was set at 370 nm in pH 7.4 Tris-HCl buffer solution. Reversely, the intrinsic fluorescence of BSA could be quenched by 1-Zn complex. The quenching mechanism was suggested as static quenching according to the Stern-Volmer equation and the UV-vis absorption spectral change of 1-Zn upon addition of BSA. The binding constants Kb and the number of binding sites n were calculated. The effect of 1-Zn on the conformation of BSA was studied using synchronous fluorescence spectroscopy and three-dimensional fluorescence spectroscopy. In addition, the binding average distance r between the donor (BSA) and acceptor ( 1-Zn) was estimated based on the Frster's non-radiation energy transfer theory.

  5. Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.; Sharma, Deepansh

    2015-05-01

    A series of two biologically active Schiff base ligands L1, L2 have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by 1H NMR, UV-Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  6. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Asker, Mohsen S.; Barakat, Atiat S.; Teleb, Said M.

    2007-05-01

    Four platinum(II) complexes of Schiff bases derived from salicylaldehyde and 2-furaldehyde with o- and p-phenylenediamine were reported and characterized based on their elemental analyses, IR and UV-vis spectroscopy and thermal analyses (TGA). The complexes were found to have the general formula [Pt(L)(H 2O) 2]Cl 2 nH 2O (where n = 0 for complexes 1, 3, 4; n = 1 for complex 2. The data obtained show that Schiff bases were interacted with Pt(II) ions in the neutral form as a bidentate ligand and the oxygens rather than the nitrogens are the most probable coordination sites. Square planar geometrical structure with two coordinated water molecules were proposed for all complexes The free ligands, and their metal complexes were screened for their antimicrobial activities against the following bacterial species: E. coli, B. subtilis, P. aereuguinosa, S. aureus; fungus A. niger, A. fluves; and the yeasts C. albican, S. cervisiea. The activity data show that the platinum(II) complexes are more potent antimicrobials than the parent Schiff base ligands against one or more microorganisms.

  7. Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Sharma, Deepansh

    2015-05-15

    A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. PMID:25706679

  8. Syntheses, crystal structures, spectral study and DFT calculation of three new copper(II) complexes derived from pyridoxal hydrochloride, N,N-dimethylethylenediamine and N,N-diethylethylenediamine

    NASA Astrophysics Data System (ADS)

    Mandal, Senjuti; Naskar, Barnali; Modak, Ritwik; Sikdar, Yeasin; Chatterjee, Sudipta; Biswas, Sujan; Mondal, Tapan Kumar; Modak, Debadrita; Goswami, Sanchita

    2015-05-01

    Two pyridoxal containing Schiff bases obtained by condensation of pyridoxal hydrochloride with N,N-dimethylethylenediamine (HL1) and N,N-diethylethylenediamine (HL2) are used for the syntheses of three new copper (II) complexes [Cu(HL1)(H2O)Cl]Cl (1), [Cu(L1)Cl] (2) and [Cu(L2)Cl] (3). The single crystal X-ray structures of all the three copper(II) complexes are determined. Redox potentials for the mononuclear complexes are measured by cyclic voltammetry experiments. The DFT and TDDFT results have been used to interpret the experimental properties.

  9. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety

    PubMed Central

    Yernale, Nagesh Gunvanthrao; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2014-01-01

    A novel Schiff base ligand N-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR, 1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand (L) behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand (L) and its metal complexes have been screened in vitro for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties for the ligand and its metal complexes against Artemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation. PMID:24729778

  10. Vanadium(V) complex with Schiff-base ligand containing a flexible amino side chain: Synthesis, structure and reactivity.

    PubMed

    Nica, Simona; Rudolph, Manfred; Lippold, Ines; Buchholz, Axel; Görls, Helmar; Plass, Winfried

    2015-06-01

    The Schiff-base ligand (H2salhyhNH3)Cl (1) derived from salicylaldehyde and 6-aminohexanoic acid hydrazide hydrochloride reacts with ammonium metavanadate in methanol solution to yield the dioxidovanadium(V) complex [VO2(salhyhNH3)] (2). The utilized hydrazone ligand contains a flexible and protonated amino side chain. Crystallization from methanol affords complex 2 in the monoclinic space group P21/n, whereas crystallization from a methanol/water mixture 1:1 yields crystals, containing a water molecule of crystallization per two formula units (2⋅1/2H2O), in the orthorhombic space group Pbcn. In both cases the protonated amino group compensates the negative charge on the dioxidovanadium moiety and is involved in an extensive hydrogen bonding network particularly including the oxido groups from neighboring vanadium complexes. The reactivity of complex 2 toward protonation in aqueous solution has been investigated by spectrophotometric titrations and is characterized by two subsequent protonation steps at the hydrazide nitrogen atom of the ligand system and an oxido group leading to the formation of an oxidohydroxidovanadium(V) species with corresponding pKa values of 3.2 and 2.9, respectively. With larger excess of acid the oxidohydroxidovanadium(V) species starts to form the corresponding anhydride. The formation of the anhydride is strongly favored in the presence of methanol. The reaction of complex 2 with hydrogen peroxide in methanol solution leads to the formation of an oxidoperoxidovanadium(V) species, whereas in aqueous solution the addition of one equivalent of acid is required. Complex 2 catalyzes the oxidation of methylphenylsulfane to the corresponding sulfoxide in methanol/dichloromethane mixture using hydrogen peroxide as oxidant at room temperature. PMID:25747149

  11. Synthesis, spectral characterization, catalytic and antibacterial studies of new Ru(III) Schiff base complexes containing chloride/bromide and triphenylphosphine/arsine as co-ligands

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Padma Priya, N.; Jayabalakrishnan, C.; Chinnusamy, V.

    2009-10-01

    A new Ru(III) Schiff base complexes of the type [RuX(EPh 3)L] (X = Cl/Br; E = P/As; L = dianion of the Schiff bases were derived by the condensation of 1,4-diformylbenzene with o-aminobenzoic acid/ o-aminophenol/ o-aminothiophenol in the 1:2 stoichiometric ratio) have been synthesized from the reactions of [RuX 3(EPh 3) 3] with appropriate Schiff base ligands in benzene in the 2:1 stoichiometric ratio. The new complexes have been characterized by analytical, spectral (IR, electronic, 1H, 13C NMR and ESR), magnetic moment and electrochemical studies. An octahedral structure has been tentatively proposed for all these new complexes. All the new complexes have been found to be better catalyst for the oxidation of alcohols using molecular oxygen as co-oxidant at ambient temperature and aryl-aryl coupling reactions. These complexes were also subjected to antibacterial activity studies against Escherichia coli, Aeromonas hydrophilla and Salmonella typhi.

  12. Investigation of the active site at the deuterated Schiff-base complex formed between the coenzyme vitamin B 6 and the primary amine

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hee; Kim, Bo-Ra; Kim, Ho-Tae

    2007-07-01

    The Schiff-base complex ion formed between the vitamin B 6 molecule and the primary amine was investigated by electrospray ionization MS/MS in the gas phase. The two observed fragments at the MS/MS spectrum were different from the normal alkene loss (Onium reaction or McLafferty rearrangement) fragments of immonium ions. The R-CH-ND loss fragment from the 3H/D-deuterated Schiff-base complex ion was observed as one of two fragments in the MS/MS spectrum. The R-CH-ND loss fragment is thought to have originated from the simultaneous effect of a 3-OH functional group and a pyridine ring in the immonium ion.

  13. Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur

    2013-02-01

    New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.

  14. Novel tandem synthesis of bis(?-NN'-tetrazolate) bridged dinuclear nickel(ii) Schiff base complex via [3 + 2] cyclo-addition at ambient condition.

    PubMed

    Das, Mithun; Harms, Klaus; Chattopadhyay, Shouvik

    2014-04-21

    A novel bis(?-NN'-tetrazolate) bridged centrosymmetric dinuclear nickel(ii) Schiff base complex [Ni2(L)2(PTZ)2]2H2O2CH3CN (HL is a tridentate Schiff base, 2-((2-(ethylamino)ethylimino)methyl)-6-methoxyphenol and HPTZ is 5-pyrazinyltetrazole) has been synthesized via [3 + 2] cyclo-addition reaction of 2-cyanopyrazine and sodium azide in presence of nickel(ii) acetate tetrahydrate and HL. The structure of the complex is confirmed by single crystal X-ray diffraction analysis. The combination of H-bonding and C-H? interactions creates a 3(6)-hxl topological supramolecular network. The acetonitrile molecules are encapsulated as a hydrophobic guest within the 2D supramolecular network. PMID:24577138

  15. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Keskio?lu, Eren; Gndzalp, Ayla Balaban; ete, Servet; Hamurcu, Fatma; Erk, Birgl

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  16. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2014-11-01

    Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.

  17. (E)3-2-(1-(2,4-Dihydroxyphenyl)ethyldeneamino)phenyl)-2-methylquinazoline-4(3H)-one Schiff Base and Its Metal Complexes: A New Drug of Choice against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Siddappa, K.; Mane, Sunilkumar B.; Manikprabhu, Deene

    2014-01-01

    The 3-(2-aminophenyl) quinazolin-2-methyl-4(3H)-one and 2,4-dihydroxyacetophenone undergo condensation to afford (E)3-2-(1-(2,4-dihydroxyphenyl)ethyldeneamino)phenyl)-2-methylquinazoline-4(3H)-one Schiff base (DHPEAPMQ). The newly synthesized Schiff base (DHPEAPMQ) and its metal complexes were evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus isolated from the Gulbarga region in India. The Cu(II), Ni(II), and Zn(II) complexes of Schiff base (DHPEAPMQ) showed good antimicrobial activity. So, this could be a new drug of choice. PMID:24733996

  18. Synthesis, structural characterization, electrochemistry and spectroelectrochemistry of dinuclear copper(II) metal complexes stabilized by a tetradentate NOOO salicylaldimine ligands

    NASA Astrophysics Data System (ADS)

    Tas, E.; Onal, I. H.; Yilmaz, I.; Kilic, A.; Durgun, M.

    2009-06-01

    The synthesis, structure, spectroscopic and electro-spectrochemical properties of salicylaldimine Schiff-base ligands (L nH) ( n = 1, 2, and 3) (L 1H = N-[2-amino-8-hydroxyquinoline]-salicylaldimine, L 2H = N-[2-amino-8-hydroxyquinoline]-5-bromosalicylaldimine and L 3H = N-[2-amino-8-hydroxyquinoline]-5-methoxysalicylaldimine), respectively, and their dinuclear copper(II) complexes [Cu 2(L n) 2] are described. Three new dissymmetric tetradentate salicylaldimine ligands containing a donor set of NOOO were prepared by reaction of 2-amino-8-hydroxyquinoline with different salicylaldehydes. The dinuclear copper(II) metal complexes of these ligands were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of Cu(Ac) 2H 2O. The ligands and their copper complexes were characterized by FT-IR, UV-vis, 1H NMR, elemental analysis, molar conductivity, mass spectra and thermal analysis methods in addition to magnetic susceptibility and spectroelectrochemical techniques. The reaction of these ligands in a 1:1 mole ratio with copper(II) acetate afforded dinuclear Cu(II) metal complexes. The room temperature magnetic moments of [Cu 2(L n) 2] complexes are found between 1.12 and 1.28 BM for per Cu(II) molecule.

  19. Synthesis, antimicrobial, antioxidant and molecular docking studies of thiophene based macrocyclic Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-11-01

    The macrocyclic complexes of pharmaceutical importance with trivalent transition metals have been synthesized by [1 + 1] condensation of succinyldihydrazide and thiophenedicarboxaldehyde, via template method, resulting in the formation of the complex [MLX] X2; where L is (C10H10N4O2S), a macrocyclic ligand, M = Cr (III) and Fe (III) and X = Cl-, CH3COO- or NO3- . These complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, ultraviolet, infrared, far infrared, electron spin resonance, mass spectral studies and powder x-ray diffraction analysis. On the basis of all these studies, mononuclear complexes having 1:2 electrolytic nature with a five coordinated square pyramidal geometry have been proposed. Powder diffraction XRD indicates the presence of triclinic crystal system with p bravais lattice for the representative complex. All the metal complexes have also been explored for their in vitro antimicrobial and antioxidant activities.

  20. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes

    NASA Astrophysics Data System (ADS)

    Reddy, P. Muralidhar; Shanker, K.; Srinivas, V.; Krishna, E. Ravi; Rohini, R.; Srikanth, G.; Hu, Anren; Ravinder, V.

    2015-03-01

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies.

  1. Synthesis and characterization of an azo dibenzoic acid Schiff base and its Ni(II), Pb(II), Zn(II) and Cd(II) complexes.

    PubMed

    Kakanejadifard, Ali; Esna-ashari, Fatemeh; Hashemi, Payman; Zabardasti, Abedin

    2013-04-01

    The new Schiff base 4,4'-(1E,1'E)-(3,3'-(1E,1'E)-(pyridine-2,6-diylbis(azan-1-yl-1-ylid ene))bis(methan-1-yl-1-ylidene)bis(4-hydroxy-3,1-phenylene))bis(diazene-2,1-diyl)dibenzoic acid (1) was prepared from the condensation reaction of 2,6-diaminopyridine with 4-((3-formyl-4-hydroxyphenyl)diazenyl)benzoic acid in methanol. The compound 1 is potentially an N, O multidentate chelating ligand which could form stable complexes with metal ions in 1:1 up to 1:3mol ratio of metal to ligand. The 1:1 complexes of Schiff base 1 with Ni(II), Pb(II), Zn(II) and Cd(II) have been synthesized by its condensation reaction with appropriate salts of metal ions. Structures of Schiff base (1) as well as its complexes with abovementioned metal ions were characterized by elemental analysis, mass, IR, UV-vis., (1)H and (13)? NMR spectroscopy. PMID:23376263

  2. Synthesis and characterization of an azo dibenzoic acid Schiff base and its Ni(II), Pb(II), Zn(II) and Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Kakanejadifard, Ali; Esna-ashari, Fatemeh; Hashemi, Payman; Zabardasti, Abedin

    2013-04-01

    The new Schiff base 4,4'-(1E,1'E)-(3,3'-(1E,1'E)-(pyridine-2,6-diylbis(azan-1-yl-1-ylid ene))bis(methan-1-yl-1-ylidene)bis(4-hydroxy-3,1-phenylene))bis(diazene-2,1-diyl)dibenzoic acid (1) was prepared from the condensation reaction of 2,6-diaminopyridine with 4-((3-formyl-4-hydroxyphenyl)diazenyl)benzoic acid in methanol. The compound 1 is potentially an N, O multidentate chelating ligand which could form stable complexes with metal ions in 1:1 up to 1:3 mol ratio of metal to ligand. The 1:1 complexes of Schiff base 1 with Ni(II), Pb(II), Zn(II) and Cd(II) have been synthesized by its condensation reaction with appropriate salts of metal ions. Structures of Schiff base (1) as well as its complexes with abovementioned metal ions were characterized by elemental analysis, mass, IR, UV-vis., 1H and 13С NMR spectroscopy.

  3. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  4. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    PubMed

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]NO3 (1), [CoL(2)(bipy)(N3)]CH3OH (2), [CoL(3)(HL(3))(N3)]NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35?molL(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7?molL(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed. PMID:26712097

  5. Diorganotin(IV) complexes of biologically potent 4(3H)-quinazolinone derived Schiff bases: synthesis, spectroscopic characterization, DNA interaction studies and antimicrobial activity.

    PubMed

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Jayalakshmi, Basvegowda; Revanasiddappa, Hosakere D

    2011-10-15

    Four Schiff base ligands and their corresponding organotin(IV) complexes have been synthesized and characterized by elemental analyses, IR, (1)H NMR, MS and thermal studies. The Schiff bases are obtained by the condensation of 3-amino-2-methyl-4(3H)-quinazolinone with different substituted aldehydes. The elemental analysis data suggest the stoichiometry to be 1:1 ratio formation. Infrared spectral data agreed with the coordination to the central metal ion through imine nitrogen, lactam oxygen and deprotonated phenolic oxygen atoms. All the synthesized compounds have been evaluated for antimicrobial activity against selected species of microorganisms. In addition, DNA binding/cleavage capacity of the compounds was analyzed by absorption spectroscopy, viscosity measurements and gel electrophoresis methods. PMID:21741298

  6. Diorganotin(IV) complexes of biologically potent 4( 3H)-quinazolinone derived Schiff bases: Synthesis, spectroscopic characterization, DNA interaction studies and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Jayalakshmi, Basvegowda; Revanasiddappa, Hosakere D.

    2011-10-01

    Four Schiff base ligands and their corresponding organotin(IV) complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, MS and thermal studies. The Schiff bases are obtained by the condensation of 3-amino-2-methyl-4( 3H)-quinazolinone with different substituted aldehydes. The elemental analysis data suggest the stoichiometry to be 1:1 ratio formation. Infrared spectral data agreed with the coordination to the central metal ion through imine nitrogen, lactam oxygen and deprotonated phenolic oxygen atoms. All the synthesized compounds have been evaluated for antimicrobial activity against selected species of microorganisms. In addition, DNA binding/cleavage capacity of the compounds was analyzed by absorption spectroscopy, viscosity measurements and gel electrophoresis methods.

  7. Ferrocenyl-substituted Schiff base complexes of boron: Synthesis, structural, physico-chemical and biochemical aspects

    NASA Astrophysics Data System (ADS)

    Yadav, Sunita; Singh, R. V.

    2011-01-01

    Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L 1H), 1-acetylferrocenehydrazinecarbothioamide (L 2H) and 1-acetylferrocene carbodithioic acid (L 3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a = 9.9700, b = 15.0000 and c = 7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.

  8. Conservation of Helicity in a Chiral Pyrrol-2-yl Schiff-Base Ligand and Its Transition Metal Complexes.

    PubMed

    Dezhahang, Zahra; Poopari, Mohammad Reza; Cheramy, Joseph; Xu, Yunjie

    2015-05-01

    Tetradentate enantiopure Schiff-base ligand (R,R) and (S,S)-bis(pyrrol-2-ylmethyleneamine)-cyclohexane (H2L) and its five transition metal complexes with Ni(II), Cu(II), Zn(II), Pd(II), and Pt(II) were synthesized. Their structural properties, in particular, the ligand chirality, coordination topology, and the resulting helicity in solution, were investigated by using IR, vibrational circular dichroism (VCD), UV-vis, and electronic circular dichroism (ECD) spectroscopies, complemented with density functional theory calculations. Conformational searches and the associated spectral simulations for the ligands and the complexes were performed at the B3LYP/Gen level. Comparison of the experimental and theoretical IR and VCD spectral signatures of these complexes reveal that the Zn complex takes on a dinuclear, distorted tetrahedral coordination topology around the metal centers, whereas the other four metal complexes adopt the mononuclear, distorted square-planar coordination arrangement in solution. The helicity of all systems studied was identified to be M with the (R,R) ligand and P with the (S,S) ligand, dictated by the ligand chirality and the strong preference for the chair configuration by the cyclohexane moiety. Furthermore, the resulting helicity was found to dominate the ECD spectral features, even though the helicity-determining angles are close to zero for the nearly square-planar metal complexes. The related VCD spectral features are sensitive to both helicity of the complex and the chirality of the ligands, as well as the coordination topology. The simulated ECD spectra for the P and M helicity of the [Zn-(R,R)-L]2 complex shows almost mirror-imaged ECD spectral features, whereas very similar ECD spectra were recently reported for the P- and M-dinuclear Mn complexes with a di-?-oxo dimetal core as a linker. We highlight the advantages of utilizing multiple chiroptical techniques and theoretical spectral simulations to correlate chiroptical spectral features with multiple chirality and helicity elements in the systems. PMID:25871769

  9. Spin crossover in mononuclear and binuclear iron(III) complexes with pentadentate Schiff-base ligands

    NASA Astrophysics Data System (ADS)

    Bo?a, Roman; Fukuda, Yutaka; Gembick, Milan; Herchel, Radovan; Jaro?iak, Rastislav; Linert, Wolfgang; Renz, Franz; Yuzurihara, Jyunko

    2000-07-01

    A series of mononuclear hexacoordinate iron(III) complexes, [Fe( 5L)(py)]BPh 4, and binuclear hexacoordinate iron(III) complexes, [( 5L)Fe(? 2-bpy)Fe( 5L)](BPh 4) 2, has been prepared and their magnetic properties were investigated; the pentadentate ligands were derivatives of 5L=saldptn=N,N'-bis(2-hydroxybenzyliden)-1,7-diamino-4-azaheptane. Temperature variation of the effective magnetic moment for them shows that a spin transition from the low-spin to the high-spin state occurs. The magnetic data were fitted to an Ising-like model appropriate for the mono- and binuclear systems.

  10. A family of dinuclear lanthanide(III) complexes from the use of a tridentate Schiff base.

    PubMed

    Anastasiadis, Nikolaos C; Kalofolias, Dimitris A; Philippidis, Aggelos; Tzani, Sofia; Raptopoulou, Catherine P; Psycharis, Vassilis; Milios, Constantinos J; Escuer, Albert; Perlepes, Spyros P

    2015-06-14

    The use of N-salicylidene-o-aminophenol (H2saph) in 4f-metal chemistry has led to the isolation of seven new isostructural lanthanide(iii) [Ln(III)] complexes. More specifically the Ln(NO3)3xH2O/H2saph/Et3N (1?:?1?:?1) reaction mixtures in DMF/MeCN gave complexes [Ln2(NO3)2(saph)2(DMF)4] (Ln = Sm (); Eu (); Gd (); Tb (); Dy (); Ho (); Er ()) in good yields (?65%). The structures of the isomorphous complexes and were solved by single-crystal X-ray crystallography; the other complexes are proposed to be isostructural with and based on elemental analyses, IR spectra and powder XRD patterns. The two Ln(III) atoms in the centrosymmetric molecules of and are doubly bridged by the deprotonated iminophenolato oxygen atoms of two nearly planar ?(1):?(1):?(2):? saph(2-) ligands. The imino nitrogen and five terminal oxygen atoms (the salicylaldiminate, two from one bidentate chelating nitrato group and two from two DMF ligands) complete square antiprismatic coordination at each metal centre. The IR spectra of the complexes are discussed in terms of the coordination modes of the ligands present in the complexes. Solid-state emission studies for all display identical ligand-based photoluminescence. Dc magnetic susceptibility studies in the 2-300 K range reveal the presence of a weak, intramolecular antiferromagnetic exchange interaction (J = -0.19(1) cm(-1) based on the spin Hamiltonian H = -J(?Gd?Gd')) for and probably ferromagnetic exchange interaction within the molecules of and . Ac magnetic susceptibility measurements in zero dc field show temperature- and frequency-dependent out-of-phase signals with two well defined, thermally-activated processes for , suggesting potential single-molecule magnetism character. The Ueff value is 17.4 cm(-1) for the higher temperature process and 16.2 cm(-1) for the lower temperature one. The combination of photoluminescence and single-molecule behaviour in the Dy complex is critically discussed. PMID:25952755

  11. A new structurally characterized organotin/Schiff-base complex with approximately rectangular molecular boxes formed through hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-shan; Zhang, Li-juan; Zeng, Xi-rui; Vital, J. J.; You, Xiao-Zeng

    2000-10-01

    A new organotin/Schiff-base compound, C 24H 25Cl 4NO 3Sn0.5C 6H 6 ( 1), was prepared by the reaction of ?- n-butoxycarbonylethyltin trichlorides ( 2) with 2-hydroxy-1-naphthalideneaniline-4-Cl ( 3) in benzene, and characterized by single-crystal X-ray diffraction, IR, 1H NMR, and elemental analysis. Yellow rectangular rods of the title compound crystallize as a benzene solvate of formula C 24H 25Cl 4NO 3Sn0.5C 6H 6 ( 1) in the triclinic space group P-1. The unit cell has dimensions a=9.3624(2) , b=12.4947(3) , c=13.4821(3) , ?=70.7660(10), ?=87.1870(10), ?=75.1270(10), V=1438.13(6) 3, and Z=2. The structure was solved by direct method primarily and difmap secondarily. It is found that the OH hydrogen in free 2-hydroxy-1-naphthalideneaniline tautomerizes to the imine nitrogen due to the coordination of the phenolic oxygen atom with the Sn atom after the complex formation, while an intramolecular hydrogen bond still exists between O and N ( N⋯O=2.585(4) ). The Sn atom is coordinated with three chloride atoms, one carbon atom and two oxygen atoms, resulting in a distorted octahedra. The most notable feature of 1 lies in the ?-? interaction among the approximately planer 2-oxygen-1-naphthalideneaniline moieties and the rectangular molecular boxes formed through hydrogen bonds in which the benzene molecules reside.

  12. Homochiral mononuclear Dy-Schiff base complexes showing field-induced double magnetic relaxation processes.

    PubMed

    Ren, Min; Xu, Zhong-Li; Wang, Ting-Ting; Bao, Song-Song; Zheng, Ze-Hua; Zhang, Zai-Chao; Zheng, Li-Min

    2015-12-22

    A pair of enantiopure mononuclear dysprosium/salen-type complexes (Et3NH)[Dy((R,R)/(S,S)-3-NO2salcy)2] (/), where 3-NO2salcyH2 represents N,N'-(1,2-cyclohexanediylethylene)bis(3-nitrosalicylideneiminato), are reported. The enantiomer contains two crystallographically independent dysprosium(iii) ions, each chelated by two enantiopure 3-NO2salcy(2-) ligands forming a [DyN4O4] core. Detailed magnetic studies on compound reveal a field-induced dual magnetic relaxation behavior, originating from single ion anisotropy and intermolecular interactions, respectively. PMID:26621766

  13. Metal complexes of Schiff base derived from sulphametrole and o-vanilin . Synthesis, spectral, thermal characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Sharaby, Carmen M.

    2007-04-01

    Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [ N1-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H 2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M 2X 3(HL)(H 2O) 5]· yH 2O (where M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl, y = 0-3); [Fe 2Cl 5(HL)(H 2O) 3]·2H 2O; [(FeSO 4) 2(H 2L)(H 2O) 4] and [(UO 2) 2(NO 3) 3(HL)(H 2O)]·2H 2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H 2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi ( Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.

  14. Synthesis of novel p-tert-butylcalix[4]arene Schiff bases and their complexes with C60, potential HIV-Protease inhibitors

    NASA Astrophysics Data System (ADS)

    Khadra, Khalid Abu; Mizyed, Shehadeh; Marji, Deeb; Haddad, Salim F.; Ashram, Muhammad; Foudeh, Ayat

    2015-02-01

    Some p-tert-butylcalix[4]arene Schiff base crown ethers were synthesized, characterized using 1H, 13C-NMR, DEPT 135 and Mass spectrometry. Their complexes with C60 were isolated and characterized. The inhibition effect of these complexes on HIVP was studied and found that complexes of 9 and 10 have comparable Ki values to Pepstatine which is known as HIVP inhibitor and used as a control. The synthesis of the ligands, complexes and the inhibition behavior are discussed in this article.

  15. Structure, photochemistry and magnetic properties of tetrahydrogenated Schiff base chromium(III) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Chai, Jie; Feng, SiSi; Yang, BinSheng

    2015-04-01

    Four mononuclear chromium(III) complexes [Cr(L(1))(en)]Br0.3Cl0.7 (1), [Cr(L(1))(pr)]Cl (2), [Cr(L(2))(en)]ClO4 (3), [Cr(L(2))(pr)]Cl (4) along with one dinuclear ?-methoxo [Cr(?-OMe)(L1)]2 (5) were synthesized (en = 1,2-ethanediamine, pr = 1,3-diaminopropane H2L(1) = Tetrahydrosalen = H2[H4]salen = N,N?-bis(2-hydroxybenzyl)-1,2-ethanediamine, H2L(2) = Tetrahydrosalpr = H2[H4]salpr = N,N?-bis(2-hydroxybenzyl)-1,3-diaminopropane). The competitive reactions in the presence of EDTA were carried out and the first-order rate constants k(1) = (5.2 0.2) 10-3 h-1 < k(2) = (6.7 0.3) 10-3 h-1 < k(3) = (8.0 0.1) 10-3 h-1 < k(4) = (9.5 0.2) 10-3 h-1 were obtained by spectroscopic measurements. In addition, photo-induced decomposition was monitored under irradiation of xenon lamp. The sequence of first-order rate constants is k?(1) = (4 0.1) 10-4 s-1 < k?(2) = (6 0.3) 10-4 s-1 < k?(3) = (1.1 0.2) 10-3 s-1 < k?(4) = (1.4 0.2) 10-3 s-1, which is in accordance with that of kinetics studies with EDTA. Dinuclear complex 5 exhibits a strong antiferromagnetic coupling with the J = -10.8 cm-1.

  16. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.3710(5), 1.8110(5) and 3.2110(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. PMID:25555321

  17. The trivalent copper complex of a conjugated bis-dithiocarbazate Schiff base: stabilization of Cu in three different oxidation states.

    PubMed

    Akbar Ali, Mohammad; Bernhardt, Paul V; Brax, Mathilde A H; England, Jason; Farlow, Anthony J; Hanson, Graeme R; Yeng, Lee Len; Mirza, Aminul Huq; Wieghardt, Karl

    2013-02-01

    The new tribasic N(2)S(2) ligand H(3)ttfasbz has been synthesized by condensation of 4-thenoyl 2,2,2-trifluoroacetone and S-benzyl dithiocarbazate. On complexation with copper(II) acetate, spontaneous oxidation to the Cu(III) oxidation state is observed, and the complex [Cu(ttfasbz)] has been isolated and characterized structurally. Reduction to the EPR active Cu(II) analogue has been achieved chemically and also electrochemically, and in both cases, the process is totally reversible. The Cu(III/II) redox potential of the complex is remarkably low and similar to that of the ferrocenium/ferrocene couple. Further reduction to the formally monovalent (d(10)) dianion [Cu(I)(ttfasbz)](2-) may be achieved electrochemically. Computational chemistry demonstrates that the three redox states [Cu(ttfasbz)], [Cu(ttfasbz)](-), and [Cu(ttfasbz)](2-) are truly Cu(III), Cu(II), and Cu(I) complexes, respectively, and the potentially noninnocent ligand does not undergo any redox reactions. PMID:23324063

  18. A series of transition and non-transition metal complexes from a N 4O 2 hexadentate Schiff base ligand: Synthesis, spectroscopic characterization and efficient antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Dey, Kamalendu

    2010-11-01

    Some transition and non-transition metal complexes of the hexadentate N 4O 2 donor Schiff base ligand 1,8- N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine, abbreviated to H 4fsatrien, have been synthesized. All the 14 metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic (UV-Vis, IR, NMR, ESR) data. The analytical data helped to elucidate the structures of the metal complexes. The Schiff base, H 4fsatrien, is found to act as a dibasic hexadentate ligand using N 2N 2O 2 donor set of atoms (leaving the COOH group uncoordinated) leading to an octahedral geometry for the complexes around all the metal ions except VO 2+ and UO 22+. However, surprisingly the same ligand functions as a neutral hexadentate and neutral tetradentate one towards UO 22+ and VO 2+, respectively. In case of divalent metal complexes they have the general formula [M(H 2fsatrien)] (where M stands for Cu, Co, Hg and Zn); for trivalent metal complexes it is [M(H 2fsatrien)]X· nH 2O (where M stands for Cr, Mn, Fe, Co and X stands for CH 3COO, Cl, NO 3, ClO 4) and for the complexes of VO 2+ and UO 22+, [M(H 4fsatrien)]Y (where M = VO and Y = SO 4; M = UO 2 and Y = 2 NO 3). The Schiff base ligand and most of the complexes have been screened in vitro to judge their antibacterial ( Escherichia coli and Staphylococcus aureus) and antifungal ( Aspergillus niger and Pencillium chrysogenum) activities.

  19. New tetradentate Schiff bases of 2-amino-3,5-dibromobenzaldehyde with aliphatic diamines and their metal complexes: synthesis, characterization and thermal stability.

    PubMed

    Mohammadi, Khosro; Azad, Seyyedeh Sedigheh; Amoozegar, Ameneh

    2015-07-01

    The tetradentate Schiff base ligands (L(1)-L(4)), were synthesized by reaction between 2-amino-3,5-dibromobenzaldehyde and aliphatic diamines. Then, nickel and oxovanadium(IV) complexes of these ligands were synthesized and characterized by (1)H NMR, Mass, IR, UV-Vis spectroscopy and thermogravimetry. The kinetic parameters of oxovanadium(IV) complexes were calculated from thermal studies. According to the results of thermogravimetric data, the thermal stability of oxovanadium(IV) complexes is as follow: [Formula: see text]. PMID:25813179

  20. DFT study on second-order nonlinear optical properties of a series of mono Schiff-base M(II) (M = Ni, Pd, Pt) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Guang; Qiu, Yong-Qing; Sun, Shi-Ling; Chen, Hui; Li, Na; Su, Zhong-Min

    2006-10-01

    A series of mono Schiff-base M(II) (M = Ni, Pd, Pt) complexes based on the crystal data are designed. Density Functional Theory (DFT) method was employed to investigate the second-order nonlinear optical (NLO) properties of all metal complexes. The results show that the second-order NLO properties of metal complexes are intensively sensitive to the exchange of donor/acceptor because of the differences of the extent of charge separation and the intraligand charge transfer (ILCT) processes. The metal ions do not offer direct contributions to second-order NLO responses because they are as electron bridges for transferring electrons in CT processes.

  1. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  2. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  3. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes.

    PubMed

    Abdel-Rahman, Laila H; El-Khatib, Rafat M; Nassr, Lobna A E; Abu-Dief, Ahmed M; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]2H2O), where HL=mono anion and L=dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 ?g/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi>nari>nali>nasi>nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands. PMID:23665616

  4. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  5. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands.

    PubMed

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s(-1) scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction. PMID:25613693

  6. Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide(III) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand.

    PubMed

    Wang, Wen-Min; Zhang, Hong-Xia; Wang, Shi-Yu; Shen, Hai-Yun; Gao, Hong-Ling; Cui, Jian-Zhong; Zhao, Bin

    2015-11-16

    New dinuclear lanthanide(III) complexes based on an 8-hydroxyquinoline Schiff base derivative and β-diketonate ligands, [Ln2(hfac)4(L)2] (Ln(III) = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)), [Ln2(tfac)4(L)2] (Ln(III) = Gd (6), Tb (7), Dy (8), Ho (9)), and [Dy(bfac)4(L)2·C7H16] (10) (L = 2-[[(4-fluorophenyl)imino] methyl]-8-hydroxyquinoline, hfac = hexafluoroacetylacetonate, tfac = trifluoroacetylacetonate, and bfac = benzoyltrifluoroacetone), have been synthesized. The single-crystal X-ray diffraction data show that complexes 1-10 are phenoxo-O-bridged dinuclear complexes; each eight-coordinated center Ln(III) ion is in a slightly distorted dodecahedral geometry with two bidentate β-diketonate coligands and two μ2-O bridging 8-hydroxyquinoline Schiff base derivative ligands. The magnetic study reveals that 1 and 6 display cryogenic magnetic refrigeration properties, whereas complexes 3, 8, and 10 show different SMM behaviors with energy barriers of 6.77 K for 3, 19.83 K for 8, and 25.65 K for 10. Meanwhile, slow magnetic relaxation was observed in 7, while no out-of-phase alternating-current signals were found for 2. The different dynamic magnetic behaviors of two Tb2 complexes and the three Dy2 complexes mainly derive from the tiny crystal structure changes around the Ln(III) ions. It is also proved that the β-diketonate coligands can play an important role in modulating magnetic dynamics of the lanthanide 8-hydroxyquinoline Schiff base derivative system. PMID:26516660

  7. Chemopreventive Evaluation of a Schiff Base Derived Copper (II) Complex against Azoxymethane-Induced Colorectal Cancer in Rats

    PubMed Central

    Hajrezaie, Maryam; Hassandarvish, Pouya; Moghadamtousi, Soheil Zorofchian; Gwaram, Nura Suleiman; Golbabapour, Shahram; NajiHussien, Abdrabuh; Almagrami, Amel Abdullah; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Fani, Somaye; Kamalidehghan, Behnam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    Background Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF). Methodology This study involved five groups of male rats. The negative control group was injected with normal saline once a week for 2 weeks and fed 10% Tween 20 for 10 weeks, the cancer control group was subcutaneously injected with 15 mg/kg azoxymethane once per week for two consecutive weeks, the positive control group was injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and 35 mg/kg 5-fluorouracil (injected intra-peritoneally) for 4 weeks, and the experimental groups were first injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and then fed 2.5 or 5 mg/kg of the Schiff base compound once a day for 10 weeks. Application of the Schiff base compound suppressed total colonic ACF formation by up to 72% to 74% (P<0.05) when compared with the cancer control group. Analysis of colorectal specimens revealed that treatments with the Schiff base compound decreased the mean crypt scores in azoxymethane-treated rats. Significant elevations of superoxide dismutase, glutathione peroxidase and catalase activities and a reduction in the level of malondialdehyde were also observed. Histologically, all treatment groups exhibited significant decreases in dysplasia compared to the cancer control group (P<0.05). Immunohistochemical staining demonstrated down-regulation of the PCNA protein. Comparative western blot analysis revealed that COX-2 and Bcl2 were up-regulated and Bax was down-regulated compared with the AOM control group. Conclusion The current study demonstrated that the Cu(BrHAP)2 compound has promising chemoprotective activities that are evidenced by significant decreases in the numbers of ACFs in azoxymethane-induced colon cancer. PMID:24618844

  8. Dinuclear (Fe(II), Gd(III)) complexes deriving from hexadentate Schiff bases: synthesis, structure, and Mssbauer and magnetic properties.

    PubMed

    Costes, Jean-Pierre; Clemente-Juan, Juan Modesto; Dahan, Franoise; Dumestre, Frdric; Tuchagues, Jean-Pierre

    2002-06-01

    The dinuclear (Fe(II), Gd(III)) complexes studied in this report derive from hexadentate Schiff base ligands abbreviated H(2)L(i)() (i = 1, 2, 3). H(2)L(1) = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2'-dimethyl-propane, H(2)L(2) = N,N'-bis(3-methoxysalicylidene)-1,2-diamino-2-methylpropane, and H(2)L(3) = N,N'-bis(3-methoxysalicylidene)-1,2-diaminoethane. The crystal and molecular structures of three complexes have been determined at 160 K. Depending on the solvent used in the preparation, L(1)Fe(CH(3)OH)Gd(NO(3))(3)(CH(3)OH)(2), 1, or L(1)Fe((CH(3))(2)CO)Gd(NO(3))(3), 1', is obtained from H(2)L(1). A similar complex, L(2)Fe((CH(3))(2)CO)Gd(NO(3))(3), 2, is obtained from H(2)L(2). Complex 1 crystallizes in the orthorhombic space group Pca2(1) (No. 29): a = 22.141(3) A, b = 9.4159(16) A, c = 15.2075(17) A, V = 3170.4(7) A(3), Z = 4. Complexes 1' and 2 crystallize in the monoclinic space group P2(1)/c (No. 14): 1', a = 9.6264(17) A, b = 19.662(3) A, c = 16.039(3) A, beta = 95.15(2) degrees, V = 3023.6(9) A(3), Z = 4; 2, a = 9.7821(13) A, b = 18.7725(17) A, c = 16.100(2) A, beta = 96.497(16) degrees, V = 2937.5(6) A(3), Z = 4. Complexes 1, 1', and 2 possess an Fe(O(phenoxo))(2-)Gd core. The mononuclear L(3)Fe complex could be prepared from H(2)L(3) but not the related dinuclear (Fe, Gd) species. Mssbauer spectroscopy evidences that the iron center is in the +2 oxidation state for the six complexes. The experimental magnetic susceptibility and magnetization data of complexes 1, 1', and 2 indicate the occurrence of weak Fe(II)-Gd(III) ferromagnetic interactions. Single ion zero-field splitting of the iron(II) must be taken into account for satisfactorily fitting the data by exact calculation of the energy levels associated to the spin Hamiltonian through diagonalization of the full matrix for axial symmetry (1, J = 0.50 cm(-1), D = 2.06 cm(-1); 1', J = 0.41 cm(-1), D = 3.22 cm(-1); 2, J = 0.08 cm(-1), D = 4.43 cm(-1)). PMID:12033896

  9. Experimental and Theoretical Investigations of Magnetic Exchange Pathways in Structurally Diverse Iron(III) Schiff-Base Complexes.

    PubMed

    Herchel, Radovan; Nemec, Ivan; Machata, Marek; Trávníček, Zdeněk

    2015-09-01

    The synthesis, and the structural and magnetic properties, of the following new iron(III) Schiff base complexes with the {O',N,O″}-chelating ligand H2L (2-hydroxyphenylsalicylaldimine) are reported: K[FeL2]·H2O (1), (Pr3NH)[FeL2]·2CH3OH (2), [FeL(bpyO2) (CH3OH)][FeL2]·CH3OH (3), [Fe2L3(CH3OH)]·2CH3OH·H2O (4), and [{Fe2L2}(μ-OH)2{FeL(bpyO2)}2][BPh4]2·2H2O (5), where Pr3NH(+) represents the tripropylammonium cation and bpyO2 stands for 2,2'-bipyridine-N-dioxide. A thorough density functional theory (DFT) study of magnetic interactions (the isotropic exchange) at the B3LYP/def-TZVP level of theory was employed, and calculations have revealed superexchange pathways through intramolecular/intermolecular noncovalent contacts (π-π stacking, C-H···O and O-H···O hydrogen bonds, diamagnetic metal cations) and/or covalent bonds ((μ-O(Ph), μ-OH) or bis(μ-O(Ph)) bridging modes), which helped us to postulate trustworthy spin Hamiltonians for magnetic analysis of experimental data. Within the reported family of compounds 1-5, the mediators of the antiferromagnetic exchange can be sorted by their increasing strength as follows: π-π stacking (J(DFT) = -0.022 cm(-1)/J(mag) = -0.025(4) cm(-1) in 2) < C-H···O contacts and π-π stacking (J(DFT) = -0.19 cm(-1)/J(mag) = -0.347(9)cm(-1) in 1) < O-H···O hydrogen bonds (J(DFT) = -0.53 cm(-1)/J(mag) = -0.41(1) cm(-1) in 3) < bis(μ-O(Ph)) bridge (J(DFT) = -13.8 cm(-1)/J(mag) = -12.3(9) cm(-1) in 4) < (μ-O(Ph), μ-OH) bridge (J(DFT) = -18.0 cm(-1)/J(mag) = -17.1(2) cm(-1) in 5), where J(DFT) and J(mag) are the isotropic exchange parameters derived from DFT calculations, and analysis of the experimental magnetic data, respectively. The good agreement between theoretically calculated and experimentally derived isotropic exchange parameters suggests that this procedure is applicable also for other chemical and structural systems to interpret magnetic data properly. PMID:26262499

  10. Synthesis, characterization and crystal structures of the bidentate Schiff base N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine and its complex with CuNCS and triphenylphosphane.

    PubMed

    Clegg, William; Harrington, Ross W; Barati, Kazem; Habibi, Mohammad Hossein; Montazerozohori, Morteza; Lalegani, Arash

    2015-07-01

    Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff base N,N'-bis(trans-2-nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1'E,2E,2'E)-N,N'-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1'E,2E,2'E)-N,N'-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]-?(2)N,N'}(thiocyanato-?N)(triphenylphosphane-?P)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and (1)H NMR spectroscopy, and X-ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with a trans conformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinating via the imine N atoms to the Cu(I) atom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattened gauche conformation, resulting in a rather bowed shape overall for the ligand. The NCS(-) ligand is coordinated through its N atom. The geometry around the Cu(I) atom is distorted tetrahedral, with a small N-Cu-N bite angle of 81.56?(12) and an enlarged opposite angle of 117.29?(9) for SCN-Cu-P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands. PMID:26146396

  11. Ru(II) complexes of N 4 and N 2O 2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng

    2009-07-01

    Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.

  12. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

    PubMed Central

    Karekal, Mahendra Raj; Biradar, Vivekanand; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2013-01-01

    A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL), and its Cu(II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized in the light of microanalytical, IR, H1 NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II), Co(II), and Ni(II) complexes were octahedral, whereas Zn(II), Cd(II), and Hg(II) complexes were tetrahedral in nature. The redox behavior of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:24194692

  13. Accommodation of Mn II, Mn III-N, O, O, O-donor Schiff base complexes in zeolite-Y: Synthesis, structural studies and CO adsorption

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman H.; El-Bahy, Zeinhom M.; Salama, Tarek M.

    2010-04-01

    Manganese (II)-, (III)-complexes with NO 3 Schiff base ligand (SPAB) derived from salicylaldehyde and p-aminobenzoic acid have been synthesized and immobilized in the zeolite-Y supercages by a flexible ligand method. The synthesized new host/guest materials have been characterized by various physicochemical techniques, in addition to surface area measurements and nitrogen adsorption studies. Investigation of the stereochemistry of these incorporated chelates elucidated that, Mn(II) complex is tetrahedral with involvement of zeolite oxygen in coordination meanwhile Mn(III) complex has octahedral configuration with Jahn-Teller distortion but without contribution of the lattice oxygen. The intrazeolitic Schiff base complexes are thermally stable up to ?600 C without any decomposition. Catalytic activity towards CO adsorption for zeolite-encapsulated complexes has been investigated and compared with Mn II-Y using in situ FT-IR spectroscopy. The results pointed out that, encapsulation of manganese (II, III) complexes in zeolites enhances remarkably the selectivity towards the formation of unionized carboxyl (-COOH) species which is considered a characteristic property of the zeolite encapsulated Mn(II,III)-SPAB complexes over Mn II-Y. On the other hand, the in situ FT-IR data demonstrate that Mn II(SPAB)/Y and Mn III(SPAB)/Y can be used as reactive catalysts in water gas shift reaction (WGSR).

  14. Antifungal Activities of Biorelevant Complexes of Copper(II) with Biosensitive Macrocyclic Ligands

    PubMed Central

    Joseph, J.; Velan, A. Senthil Kumara; Pothiraj, C.

    2006-01-01

    Four copper(II) complexes have been prepared using macrocyclic ligands. The macrocyclic ligands have been synthesized by the condensation reaction of diethyl phthalate with Schiff bases derived from o-phenylene diamine and Knoevenagel condensed ?-ketoanilides (obtained by the condensation of acetoacetanilide and substituted benzaldehydes). The ligands and copper complexes have been characterized on the basis of Microanalytical, Mass, UV-Vis., IR and CV spectral studies, as well as conductivity data. On the basis of spectral studies, a square-planar geometry for the copper complexes has been proposed. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans. All the synthesized copper complexes showed stronger antifungal activities than free ligands. The minimum inhibitory concentrations (MIC) of the copper complexes were found in the range of 8~28 g/ml. These compounds represent a novel class of metal-based antifungal agents which provide opportunities for a large number of synthetic variations for modulation of the activities. PMID:24039502

  15. DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2‧-methylacetoacetanilide

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Pothiraj, Krishnan; Baskaran, Thanasekaran

    2011-08-01

    A new Schiff base ligand (HL) was synthesized by the condensation reaction between 2'-methyleacetoacetanilide and 2-amino-3-hydroxypyridine. Its Co(II), Ni(II), Cu(II) and Zn(II) complexes were prepared by the interaction of the ligand with metal(II) chloride. They were characterized by elemental analysis, IR, 1H NMR, EPR, UV-Vis, magnetic susceptibility measurements, conductivity measurements and FAB-mass spectra. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption, viscosity and cyclic voltammetry methods, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. It was found to be oxidative hydroxyl radical cleavage in the presence of 3-mercaptopropionic acid (MPA). The Schiff base and its complexes have been screened for their antibacterial ( Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal ( Aspergillus niger, Rhizopus stolonifer, Rhizoctonia bataicola and Candida albicans) activities and the data reveal that the complexes have higher activity than the free ligand.

  16. Synthesis of a series of new platinum organometallic complexes derived from bidentate Schiff-base ligands and their catalytic activity in the hydrosilylation and dehydrosilylation of styrene.

    PubMed

    Lachachi, M Belhadj; Benabdallah, Tayeb; Aguiar, Pedro M; Youcef, M Hadj; Whitwood, Adrian C; Lynam, Jason M

    2015-07-14

    The synthesis and properties of a novel class of platinum complexes containing Schiff bases as O,N-bidentate ligands is described as are the solution and solid state properties of the uncomplexed ligands. The platinum complexes were prepared from [PtBr2(COD)] (COD = 1,5-cyclooctadiene) and N-(2-hydroxy-1-naphthalidene)aniline derivatives in the presence of base (NaOBu(t)). Instead of a substitution reaction to afford cationic species, the addition of the Schiff base ligands results in both the formal loss of two equivalents of bromide and addition of hydroxide to the COD ligand of the complexes. It is proposed that this reaction proceeds through a cationic platinum complex [Pt(N-O)(COD)]Br which then undergoes addition of water and loss of HBr. An example of a dinuclear platinum complex in which two cyclo-octene ligands are bridged by an ether linkage is also reported. The platinum complexes were evaluated as catalysts for the hydrogenative and dehydrogenative silylation of styrene, the resulting behaviour is substituent, time and temperature dependent. PMID:26061657

  17. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  18. Synthesis, characterization and electrochemical behaviour of cobalt(II) and cobalt(III):O 2- complexes, respectively, with linear and tripodal tetradentate ligands derived from Schiff bases

    NASA Astrophysics Data System (ADS)

    Djebbar-Sid, S.; Benali-Baitich, O.; Deloume, J. P.

    2001-07-01

    New octahedral cobalt complexes with linear and tripodal tetradentate ligands derived from Schiff bases have been synthesized and characterized using elemental analysis, molar conductance, IR spectra, magnetic measurements, electronic and ESR spectra. The experimental results support the binding of linear ligands with two N and two O donor sites to cobalt ion. They show a square planar geometry and tripodal ligands coordinated to the metal ion by only one nitrogen atom, giving an arrangement of NO 3 donor groups, the other axial sites being occupied by the molecular oxygen and/or the aquo molecules. From the results of cyclic voltammetry it is shown that chelate structure and ligand geometry and electron donating effect of the ligand substituents are among the factors influencing the redox potentials of the complexes. Linear ligands lead to high-spin cobalt(II) complexes. They do not interact with dioxygen and stabilize the Co(II) state counter to their related Schiff-base complexes. The low-spin complexes with tripodal ligands are O 2 adducts and the configuration in these complexes is best formulated as [Co IIIO 2-].

  19. Synthesis, crystal structure and interaction of L-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA

    NASA Astrophysics Data System (ADS)

    Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong

    2013-04-01

    A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val = Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1dbnd V1⋯V1Adbnd O1A torsion angle 115.22 (28) and the V1⋯V1A distance 3.455 . The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05 106 M-1 and the binding site number n was 1.18.

  20. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N 3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.

    2010-09-01

    The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  1. Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.

  2. Spectral characterization, optical band gap calculations and DNA binding of some binuclear Schiff-base metal complexes derived from 2-amino-ethanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hussien, Mostafa A.; Nawar, Nagwa; Radwan, Fatima M.; Hosny, Nasser Mohammed

    2015-01-01

    Bi-nuclear metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-ethanoic acid (glycine) and acetylacetone have been synthesized and characterized by elemental analyses, Raman spectra, FT-IR, ES-MS, UV-Vis., 1H NMR, ESR, thermal analyses (TG, DTG and DTA) and magnetic measurements. The results showed that, the Schiff base ligand can bind two metal ions in the same time. It coordinates to the first metal ion as mono-negative bi-dentate through azomethine nitrogen and enolic carbonyl after deprotonation. At the same time, it binds to the second metal ion via carboxylate oxygen after deprotonation. The thermodynamic parameters E?, ?H?, ?G? and ?S? have been calculated by Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The optical band gaps of the isolated complexes have been calculated from absorption spectra and the results indicated semi-conducting nature of the investigated complexes. The interactions between the copper (II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA.

  3. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  4. Synthesis, experimental and theoretical characterization of N,N'-dipyridoxyl (1,4-butanediamine) Schiff-base ligand and its Cu(II) complex

    NASA Astrophysics Data System (ADS)

    Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad R.; Beyramabadi, S. Ali; Tabatabaei, S. Hamid Mir; Esmaeili, Abbas Ali; Javan Khoshkholgh, Malihe

    2011-03-01

    A new N,N'-dipyridoxyl(1,4-butanediamine) [=H 2BS] Schiff-base ligand and its Cu(II) salen complex, [Cu(BS)(H 2O)(CH 3OH)], were synthesized and characterized by IR, UV-vis, 1H NMR, mass spectrometry and elemental analysis. Also, full optimization of the geometries, 1H NMR chemical shifts (for the H 2BS) and vibrational frequencies were calculated by using density functional theory (DFT) method. Structure of the H 2BS ligand is not planar, i.e. two pyridine rings are not in the same plane. In the structure of the Cu complex, the Schiff-base ligand acts as a dianionic tetradentate ligand in N, N, O -, O - manner. The coordinating atoms of BS 2- occupy equatorial positions of the octahedral complex, where the H 2O and CH 3OH ligands locate at axial positions. The calculated results are in good agreement with the experimental data, confirming the suitability of the proposed and optimized structures for the H 2BS ligand and its Cu complex.

  5. Heterobinuclear Zn-Ln (Ln = La, Nd, Eu, Gd, Tb, Er and Yb) complexes based on asymmetric Schiff-base ligand: synthesis, characterization and photophysical properties.

    PubMed

    Zhao, Shunsheng; Liu, Xiangrong; Lü, Xingqiang; Wong, Wai-Kwok

    2013-01-01

    With a novel asymmetric Schiff-base zinc complex ZnL (H2 L = N-(3-methoxysalicylidene)-N'-(5-bromo-3-methoxysalicylidene)phenylene-1,2-diamine), obtained from phenylene-1,2-diamine, 3-methoxysalicylaldehyde and 5-bromo-3-methoxysalicylaldehyde, as the precursor, a series of heterobinuclear Zn-Ln complexes [ZnLnL(NO3 )3 (CH3 CN)] (Ln = La, 1; Ln = Nd, 2; Ln = Eu, 3; Ln = Gd, 4; Ln = Tb, 5; Ln = Er, 6; Ln = Yb, 7) were synthesized by the further reaction with Ln(NO3 )3 ·6H2 O, and characterized by Fourier transform-infrared, fast atom bombardment mass spectroscopy and elemental analysis. Photophysical studies of these complexes show that the strong and characteristic near-infrared luminescence of Nd(3+) , Yb(3+) and Er(3+) with emissive lifetimes in the microsecond range has been sensitized from the excited state of the asymmetric Schiff-base ligand due to effective intramolecular energy transfer; the other complexes do not show characteristic emission due to the energy gap between the chromophore and lanthanide ions. PMID:23001932

  6. Spectroscopic and biological activities studies of bivalent transition metal complexes of Schiff bases derived from condensation of 1,4-phenylenediamine and benzopyrone derivatives

    NASA Astrophysics Data System (ADS)

    Sherif, Omaima E.; Abdel-Kader, Nora S.

    2014-01-01

    Many tools of analysis such as elemental analyses, infrared, ultraviolet-visible, electron spin resonance (ESR) and thermal analysis, as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared Co(II), Ni(II) and Cu(II) complexes with Schiff bases derived from the condensation of 1,4-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one (H2L) or 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one (H4L). The data showed that all formed complexes are 1:1 or 2:2 (M:L) and non-electrolyte chelates. The Co(II) and Cu(II) complexes of the two Schiff bases were screened for antibacterial activities by the disk diffusion method. The antibacterial activity was screened using Escherichia coli and Staphylococcus capitis but the antifungal activity was examined by using Aspergillus flavus and Candida albicans. The Results showed that the tested complexes have antibacterial, except Cusbnd H4L, but not antifungal activities.

  7. An unexpected Schiff base-type Ni(II) complex: synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities.

    PubMed

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-25

    An unexpected Schiff base-type Ni(II) complex, [Ni(L(2))2]?CH3OH (HL(2) = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL(1) (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL(1) and its corresponding Ni(II) complex were characterized by IR, (1)H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL(1) and Ni(II) complex were also investigated. PMID:25247838

  8. An unexpected Schiff base-type Ni(II) complex: Synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities

    NASA Astrophysics Data System (ADS)

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-01

    An unexpected Schiff base-type Ni(II) complex, [Ni(L2)2]?CH3OH (HL2 = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL1 (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL1 and its corresponding Ni(II) complex were characterized by IR, 1H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL1 and Ni(II) complex were also investigated.

  9. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  10. Pd(II) and Zn(II) Based Complexes with Schiff Base Ligands: Synthesis, Characterization, Luminescence, and Antibacterial and Catalytic Activities

    PubMed Central

    Feng, Zhi-Qiang; Yang, Xiao-Li; Ye, Yuan-Feng

    2013-01-01

    Two new metal complexes involving Schiff base ligands, namely, [Pd(L1)2] (1) and [Zn(L2)2] (2), [HL1: 2,4-dibromo-6-((E)-(mesitylimino)methyl)phenol and HL2: 2-((E)-(2,6-diisopropylphenylimino)methyl)-4,6-dibromophenol], have been solvothermally synthesized and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. Both 1 and 2 are mononuclear cyclometalated complexes with square planar and tetrahedral coordination geometry, respectively. 1 and 2 display photoluminescence in the solid state at 298?K (fluorescence lifetimes ? = 5.521??s at 508?nm for 1; ? = 3.697??s at 506?nm for 2). These Schiff base ligands and their metal complexes have been screened for antibacterial activity against several bacteria strains, and the results are compared with the activity of penicillin. Moreover, the Suzuki reaction of 4-bromoanisole with phenylboronic acid by 1 has also been studied. PMID:24307886

  11. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2,2'-bipyridyl

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.

    2011-06-01

    The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO 4 was synthesized by reaction of Mn(OAc) 3·2H 2O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO 4 with ethylenediamine, ethanolamine and glycine (where HPMFP = 1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy = 2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and 1H and 13C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change Δ S*, enthalpy change Δ H* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.

  12. Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2008-12-01

    The chemical modification of multi-wall carbon nanotubes (MWNTs) is an emerging area in material science. In the present study, hydroxyl functionalized nickel(II) Schiff-base has been covalently anchored on modified MWNTs. The new modified MWNTs have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron (XPS), thermal analysis, UV-vis, diffuse reflectance (DRS), FT-IR spectroscopy and elemental analysis. The results suggest that the symmetrical Schiff-base; N, N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diamine; H 2[(OH) 2-salen]; is a bivalent anion with tetradentate N 2O 2 donors derived from the phenolic oxygen and azomethine nitrogen. The formula was found to be [Ni((OH) 2-salen)] for the 1:1 non-electrolytic complex. Multi-wall carbon nanotubes covalently anchored nickel(II) complex ([Ni((OH) 2-salen)]@MWNTs) catalyze the oxidation of phenol with H 2O 2. Oxidation of phenol catalyzed by this complex gave catechol and hydroquinone as major products. A suitable reaction condition has been optimized for [Ni((OH) 2-salen)]@MWNTs by considering the effect of various parameters such as reaction time and amount of oxidant, different solvents, concentration of substrate, etc. for the maximum transformation of phenol.

  13. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: synthesis, characterization, fluorescence and corrosion inhibitors of ligands.

    PubMed

    Ali, Omyma A M

    2014-11-11

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans. PMID:24858346

  14. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: Synthesis, characterization, fluorescence and corrosion inhibitors of ligands

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.

    2014-11-01

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans.

  15. Phenolate based metallomacrocyclic xanthate complexes of Co(II)/Cu(II) and their exclusive deployment in [2?:?2] binuclear N,O-Schiff base macrocycle formation and in vitro anticancer studies.

    PubMed

    Singh, Vinay K; Kadu, Rahul; Roy, Hetal; Raghavaiah, Pallepogu; Mobin, Shaikh M

    2016-01-19

    Potassium salts of phenolate based polydentate xanthate ligands 4,4'-bis(2-dithiocarbonatobenzylideneamino)diphenyl ether () and 4,4'-bis(2-dithiocarbonatonaphthylmethylideneamino)diphenyl ether () have been synthesized and characterized, prior to use. The reaction of or with M(OAc)2 in Et3N affords access to a rare series of binuclear metallomacrocyclic xanthate complexes of the type [M2-?(2)-bis-(?(2)S,S-xan(1)/xan(2))] () which quickly forms [2?:?2] binuclear N,O-bidentate Schiff base macrocyclic complexes of the type [M2-?(2)-bis-(?(2)N,O-L(1)/L(2))] ( = 4,4'-bis(2-hydroxybenzylideneamino)diphenyl ether, = 4,4'-bis(2-hydroxynaphthylmethylidene-amino)diphenyl ether) via evolution of CS2 in solution. The compounds were characterized by microanalysis, relevant spectroscopy (FT-IR, UV-visible), mass spectrometry (ESI-MS), and powder and single crystal XRD techniques. In vitro anticancer activity of all the compounds was evaluated against HEP 3B (hepatoma) and IMR 32 (neuroblastoma) by the MTT assay. Remarkably, the binuclear copper(ii) xanthate complexes were found to be extremely active against both the cell lines (IC50: 8.1 0.8 ?M (), 8.8 1.7 ?M () against HEP 3B and 1.9 0.3 ?M () and 7.3 0.6 ?M () against IMR 32) and this projects them as good candidates for potent antitumor agents and the IC50 values confirm their better potency than the reference drug cisplatin. The flow-cytometric density plot illustrates the induction of apoptosis in HEP 3B and IMR 32 cells after treatment with , , , and . PMID:26674056

  16. Synthesis, solvatochromaticity and bioactivities of some transition metal complexes with 2-(R-benzylideneamino)-pyridin-3-ol Schiff base derivatives

    NASA Astrophysics Data System (ADS)

    Ahmed, I. S.; Kassem, M. A.

    2010-10-01

    New four Schiff bases are prepared by condensation of 2-amino-pyridin-3-ol with 3, 4-dihydroxy-benzaldehyde (I), 2-hydroxybenzaldehyde (II), 5-bromo-2-hydroxybenzaldehyde (III), and 4-dimethylaminobenzaldehyde (IV). The structures of these compounds are characterized based on elemental analyses (C. H. N), IR and 1H NMR. Also, the electronic absorption spectra are recorded in organic solvents of different polarity. The solvents are selected to be covered a wide range of parameters (refractive index, dielectric constant and hydrogen bonding capacity). The UV-vis absorption spectra of Schiff base compounds are investigated in aqueous buffer solutions of varying pH and utilized for the determination of ionization constant, p Ka and activation free energy, Δ G* of the ionization process. The biological activity against bacterial species and fungi as microorganisms representing different microbial categories such as (two Gram-negative bacteria, Eschericha coli and Agrobacterium sp.),three Gram-positive bacteria ( Staphylococcus aureus, Bacillus subtlus and Bacillus megatherium), yeast ( Candida albicans), and fungi ( Aspergillus niger) were studied.

  17. Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin.

    PubMed

    Creemers, A F; Klaassen, C H; Bovee-Geurts, P H; Kelle, R; Kragl, U; Raap, J; de Grip, W J; Lugtenburg, J; de Groot, H J

    1999-06-01

    Using the baculovirus/Sf9 cell expression system, we have incorporated 99% 15N-enriched [alpha,epsilon-15N2]-L-lysine into the rod visual pigment rhodopsin. We have subsequently investigated the protonated Schiff base (pSB) linkage in the [alpha, epsilon-15N2]Lys-rhodopsin with cross-polarization magic angle spinning (CP/MAS) 15N NMR. The Schiff base (SB) 15N in [alpha, epsilon-15N2]Lys-rhodopsin resonates with an isotropic shift sigmaI of 155.9 ppm, relative to 5.6 M 15NH4Cl. This suggests that the SB in rhodopsin is protonated and stabilized by a complex counterion. The 15N shifts of retinal SBs correlate with the energy difference between the ground and excited states and the frequency of maximum visible absorbance, numax, associated with the pi-pi transition of the polyene chromophore. Experimental modeling of the relation between the numax and the size of the counterion with a set of pSBs provides strong evidence that the charged chromophore in rhodopsin is stabilized by a counterion with an estimated effective center-center distance (deff) between the counterion and the pSB of 0.43 +/- 0.01 nm. While selected prokaryotic proteins and complexes have been labeled before, this is the first time to our knowledge that a 15N-labeled eukaryotic membrane protein has been generated in sufficient amount for such NMR investigations. PMID:10353830

  18. Spin Crossover Properties of Iron(ii) Complexes with a N4O2 Donor Set by Extended ?-CONJUGATED Schiff-Base Ligands

    NASA Astrophysics Data System (ADS)

    Kuroda, Takayoshi

    2013-09-01

    The preparation and magnetic properties of three Fe(II) Schiff-base complexes, [Fe(qnal-21)2]CH2Cl2 (1), [Fe(qnal-12)2]2C6H6 (2) and [Fe(Hqsalc)2] (3), (Hqnal-21 = N-(8'-quinolyl)-2-hydroxy-1-naphthaldimine, Hqnal-12 = N-(8'-quinolyl)-1-hydroxy-2-naphthaldimine, H2qsalc = 4-hydroxy-3-[(8-quinolinylimino)methyl]benzoic acid) are reported. X-ray single crystal structure analyses of 1 and 2 reveal that an Fe(II) ion in each complex is coordinated by two Schiff-base ligands, qnal-21 or qnal-12, in a meridional fashion. Molecular packing of 2 shows that a qnal-12 interacts with neighboring two qnal-12's through ?-? interactions, which results in the formation of one-dimensional chain. Although the magnetic property of 2 shows a high-spin state at all the temperature range measured, the ?T-T plot of 3 shows abrupt spin crossover behavior with a wide hysteresis of 21 K, probably due to the hydrogen-bond network originated by carboxyl groups.

  19. Construction and NIR luminescent property of hetero-bimetallic Zn Nd complexes from two chiral salen-type Schiff-base ligands

    NASA Astrophysics Data System (ADS)

    Bi, Wei-Yu; L, Xing-Qiang; Chai, Wen-Li; Song, Ji-Rong; Wong, Wai-Yeung; Wong, Wai-Kwok; Jones, Richard A.

    2008-11-01

    Two new near-infrared (NIR) luminescent Zn-Nd complexes [ZnL 1Nd(OAc)(NO 3) 2] ( 3) and [ZnL 2Nd(DMF) 2(NO 3) 3] ( 4) have been obtained with two salen-type Schiff-base ligands H 2L 1 and H 2L 2, ( H 2L 1 = N, N'-bis(3-methoxysalicylidene)-(1s, 2s)-(-)1,2-dipheneylethylenediamine and H 2L 2 = N, N'-bis(3-methoxysalicylidene)-(s)-2,2-diamine-1,1'-binaphthyl) from the reaction of different chiral diamines with o-vanillin. The X-ray crystal structure analysis reveals that both of them crystallize in the chiral space groups with P2(1), a = 10.1669(6), b = 19.3775(11), c = 17.4639(10) , ? = 94.8710(10), V = 3428.1(3) 3, Z = 4 for 3, and C2, a = 22.1914(13), b = 9.7886(6), c = 22.0138(13) , ? = 118.9590(10), V = 4372.5(4) 3, Z = 4 for 4. Complexes 3- 4 are both dinuclear Zn-Nd structures, while suitable choice of chiral Schiff-base ligands could induce the different complexions of ligands and metal ions, and the functional control of ligand character shows a potentially effective way to the fine-tuning properties of NIR luminescence from Nd ions.

  20. Synthesis, crystal structure, spectral characterization and photoluminescence property of three Cd(II) complexes with a pyrazole based Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    Mandal, Susmita; Saha, Rajat; Saha, Manan; Pradhan, Rajesh; Butcher, Ray J.; Saha, Nitis Chandra

    2016-04-01

    Substituted pyrazole containing Schiff-base ligand, 5-methyl-3-formylpyrazole-N-(2‧-methylphenoxy)methyleneimine, (MPzOA), afforded three new Cd(II) complexes, [Cd(MPzOA)Cl2]2.CH3OH (I), [Cd(MPzOA)2(H2O)2](ClO4)2 (II) and [Cd(MPzOA)(H2O)(NO3)2] (III). In the reported complex species the coordination number and geometry of Cd(II) vary. In complex I and II, Cd(II) adopts six and in (III) it adopts eight coordination modes, with prismatic, octahedral and distorted dodecahedral geometry, respectively. All the complexes are characterized by IR, 1H NMR, UV-Vis spectral parameters and X-ray analyses. The complexes have 1D, 2D and 3D supramolecular frameworks formed by non-covalent interactions, like hydrogen bonding, π … π stacking, C-H … π interactions.

  1. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Khalil, Saied M. E.; Ahmed, Saleh A.; Medien, Hesham A. A.

    2010-09-01

    Condensation of o-acetoacetylphenol and 1,2-diaminopropane in 1:1 molar ratio under condition of high dilution yielded the mono-condensed dibasic Schiff base ligand with a N 2O 2 donors. The mono-condensed ligand has been used for further condensation with 2-hydroxy-5-nitrobenzaldehyde to obtain the new asymmetrical dicompartmental Schiff base ligand, H 3L, with N 2O 3 donors. The structure of the ligand was elucidated by analytical and spectroscopic tools (IR, 1H and 13C NMR spectra) which indicated that the coordinating sites are oxygen atoms of the phenolic OH groups, nitrogen atoms of the azomethine groups and the oxygen atom of the ketonic group. Reactions of the ligand with metal salts yielded mono- and homo-bi-nuclear complexes formulated as [M(HL)], where M dbnd Co(II), Ni(II) and Cu(II), [Fe(H 2L)Cl 2(H 2O)]?2H 2O, [Fe 2(HL)(ox)Cl 3(H 2O) 2]?5H 2O, [UO 2(H 2L)(OAc)(H 2O) 2], [VO(H 3L)(SO 4)(H 2O)]?H 2O, [M 2(L)Cl(H 2O) 2]?H 2O, where M dbnd Co(II) and Ni(II) and [Cu(H 2L)Cl]. The mononuclear Ni(II) complex, [Ni(HL)], was used to synthesize homo- and hetero-bi- and tri-nuclear complexes with the molecular formulae [Ni 2(L)Cl(H 2O) 2], [Ni 2(L) 2FeCl(H 2O)]?H 2O and [Ni 2(HL) 2CoCl 2]. The structures of the complexes were characterized by various techniques such as elemental and thermal analyses, IR, 1H and 13C NMR, mass and electronic spectra as well as conductivity and magnetic moment measurements. Square-planar and octahedral geometries are suggested for the Cu(II), Co(II) and Ni(II) complexes, octahedral geometry for the Fe(III) and VO 2+ complexes while uranium(VI) ion is octa-coordinated in its complex. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli) and fungi ( Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active.

  2. Nano structure zinc (II) Schiff base complexes of a N3-tridentate ligand as new biological active agents: spectral, thermal behaviors and crystal structure of zinc azide complex.

    PubMed

    Montazerozohori, M; Mojahedi Jahromi, S; Masoudiasl, A; McArdle, P

    2015-03-01

    In this work, synthesis of some new five coordinated zinc halide/pseudo-halide complexes of a N3-tridentate ligand is presented. All complexes were subjected to spectroscopic and physical methods such as FT-IR, UV-visible, (1)H and (13)C NMR spectra, thermal analyses and conductivity measurements for identification. Based on spectral data, the general formula of ZnLX2 (X=Cl(-), Br(-), I(-), SCN(-) and N3(-)) was proposed for the zinc complexes. Zinc complexes have been also prepared in nano-structure sizes under ultrasonic irradiation. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for confirmation of nano-structure character for the complexes. Among the complexes, zinc azide complex structure was analyzed by X-ray crystallography. This complex crystallizes as a triplet in trigonal system with space group of P31. The coordination sphere around the zinc center is well shown as a distorted trigonal bipyramidal with three nitrogen atoms from Schiff base ligand and two terminal azide nitrogen atoms attached to zinc ion. Various intermolecular interactions such as NH?N, CH?N and CH?? hydrogen bonding interactions stabilize crystalline lattice so that they causes a three dimensional supramolecular structure for the complex. In vitro screening of the compounds for their antimicrobial activities showed that ZnLI2, ZnL(N3)2, ZnLCl2 and ZnL(NCS)2 were found as the most effective compound against bacteria of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli respectively. Also ZnLI2 and ZnLCl2 complexes were found more effective against two selected fungi than others. Finally, thermal behaviors of the zinc complexes showed that they are decomposed via 2-4 thermal steps from room temperature up to 1000C. PMID:25528511

  3. Nano structure zinc (II) Schiff base complexes of a N3-tridentate ligand as new biological active agents: Spectral, thermal behaviors and crystal structure of zinc azide complex

    NASA Astrophysics Data System (ADS)

    Montazerozohori, M.; Mojahedi Jahromi, S.; Masoudiasl, A.; McArdle, P.

    2015-03-01

    In this work, synthesis of some new five coordinated zinc halide/pseudo-halide complexes of a N3-tridentate ligand is presented. All complexes were subjected to spectroscopic and physical methods such as FT-IR, UV-visible, 1H and 13C NMR spectra, thermal analyses and conductivity measurements for identification. Based on spectral data, the general formula of ZnLX2 (X = Cl-, Br-, I-, SCN- and N3-) was proposed for the zinc complexes. Zinc complexes have been also prepared in nano-structure sizes under ultrasonic irradiation. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for confirmation of nano-structure character for the complexes. Among the complexes, zinc azide complex structure was analyzed by X-ray crystallography. This complex crystallizes as a triplet in trigonal system with space group of P31. The coordination sphere around the zinc center is well shown as a distorted trigonal bipyramidal with three nitrogen atoms from Schiff base ligand and two terminal azide nitrogen atoms attached to zinc ion. Various intermolecular interactions such as Nsbnd H⋯N, Csbnd H⋯N and Csbnd H⋯π hydrogen bonding interactions stabilize crystalline lattice so that they causes a three dimensional supramolecular structure for the complex. In vitro screening of the compounds for their antimicrobial activities showed that ZnLI2, ZnL(N3)2, ZnLCl2 and ZnL(NCS)2 were found as the most effective compound against bacteria of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli respectively. Also ZnLI2 and ZnLCl2 complexes were found more effective against two selected fungi than others. Finally, thermal behaviors of the zinc complexes showed that they are decomposed via 2-4 thermal steps from room temperature up to 1000 °C.

  4. 119Sn Mssbauer characterization of self assembled organotin(IV) complexes with Schiff bases containing amino acetate skeletons

    NASA Astrophysics Data System (ADS)

    Basu, Smita; Mizar, Archana; Baul, Tushar S. Basu; Rivarola, Eleonora

    2008-07-01

    Several organotin(IV) compounds, viz., diorganotin(IV) compounds of the types Ph2SnLH (monomer), nBu2SnLHOH2 (monomer), [Me2SnLHOH2]2 (centrosymmetric dimer), [nBu2SnLH]3 (cyclic trinuclear), [Ph2SnLH] n (polymer), {[nBu2Sn(LH)]2O}2 (centrosymmetric tetranuclear), dinuclear di-/tri-mixed organotin(IV) compounds Ph2SnLHPh3SnCl (monomer) and triorganotin(IV) compounds of the types [Bz3SnLH]2 (centrosymmetric dimer) and [Me3SnL1H] n (Polymer) (LH = Schiff base carboxylate) have been studied in the solid state at liquid nitrogen temperature using 119Sn Mssbauer spectroscopy. The tin coordination geometry of the compounds determined from crystallography was correlated with the 119Sn Mssbauer results.

  5. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Noureldeen, Amani F. H.

    2014-11-01

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.

  6. Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and ?-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties.

    PubMed

    Wang, Shi-Yu; Wang, Wen-Min; Zhang, Hong-Xia; Shen, Hai-Yun; Jiang, Li; Cui, Jian-Zhong; Gao, Hong-Ling

    2016-02-16

    Seven dinuclear complexes based on 8-hydroxyquinoline Schiff base derivatives and ?-diketone ligands, [RE2(hfac)4L2] (RE = Y (), Gd (), Tb (), Dy (), Ho (), Er () and Lu (); hfac(-) = hexafluoroacetylacetonate; HL = 2-[(4-chloro-phenylimino)-methyl]-8-hydroxyquinoline), have been synthesized, and structurally and magnetically characterized. Complexes have similar dinuclear structures, in which each RE(III) ion is eight coordinated by two L(-) and two hfac(-) ligands in a distorted dodecahedron geometry. The luminescence spectra indicate that complex exhibits characteristic Tb(III) ion luminescence, while and show HL ligand luminescence. The magnetic studies reveal that features a magnetocaloric effect with the magnetic entropy change of -?Sm = 16.83 J kg(-1) K(-1) at 2 K for ?H = 8 T, and displays slow magnetic relaxation behavior with the anisotropic barrier of 6.7 K and pre-exponential factor ?0 = 5.3 10(-6) s. PMID:26792239

  7. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  8. Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.

    2012-10-01

    Schiff base ligand, 1,4-bis[(2-hydroxybenzaldehyde)propyl]piperazine (BHPP), and its Cu(II), Ni(II) and Co(II) metal complexes were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance and spectral (IR and UV-vis) studies. The ground state of BHPP ligand was investigated using the BUILDER module of MOE. Metal complexes are formed in the 1:1 (M:L) ratio as found from the elemental analysis and found to have the general formula [ML]nH2O, where M = Co(II), Ni(II) and Cu(II), L = BHPP. In all the studied complexes, the (BHPP) ligand behaves as a hexadentate divalent anion with coordination involving the two azomethine nitrogen's, the two nitrogen atoms of piperazine ring and the two deprotonated phenolic OH-groups. The magnetic and spectral data indicates octahedral geometry of metal(II) complexes. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. Protonation constants of (BHPP) ligand and stability constants of its Cu2+, Co2+ and Ni2+ complexes were determined by potentiometric titration method in 50% DMSO-water solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the protonated Schiff base ligand (BHPP) have four protonation constants. The divalent metal ions Cu2+, Ni2+ and Co2+ form 1:1 complexes.

  9. Grafting of a rhenium-oxo complex on Schiff base functionalized graphene oxide: an efficient catalyst for the oxidation of amines.

    PubMed

    Khatri, Praveen K; Choudhary, Shivani; Singh, Raghuvir; Jain, Suman L; Khatri, Om P

    2014-06-01

    A rhenium-oxo complex such as methyltrioxorhenium (MTO) has been homogeneously immobilized on a Schiff base modified graphene oxide (GrO) support via covalent bonding. The loading of MTO on GrO nanosheets was monitored by FTIR, TG-DTA, and elemental analyses. The developed heterogeneous catalyst is found to be efficient for the oxidation of various amines to the corresponding N-oxides using hydrogen peroxide as an oxidant in high to excellent yields. At the end of the reaction, the catalyst is readily recovered by filtration and reused for subsequent runs. After the third run, the catalyst showed a marginal decrease in catalytic activity owing to the leaching of the MTO complex from the support. PMID:24718600

  10. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  11. Immobilized molybdenum-thiosemicarbazide Schiff base complex on the surface of magnetite nanoparticles as a new nanocatalyst for the epoxidation of olefins

    NASA Astrophysics Data System (ADS)

    Mohammadikish, M.; Masteri-Farahani, M.; Mahdavi, S.

    2014-03-01

    In this work, a new magnetically recoverable nanocatalyst was developed by immobilization of thiosemicarbazide ligand on the surface of silica coated magnetite nanoparticles (SCMNPs) through Schiff base condensation and followed complexation with MoO2(acac)2. Characterization of the prepared nanocatalyst was performed with different physicochemical methods such as Fourier transform infrared (FT-IR) and atomic absorption spectroscopies, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The prepared catalyst catalyzed the epoxidation of olefins and allyl alcohols with tert-butyl hydroperoxide (TBHP) and cumene hydroperoxide (CHP) quantitatively with excellent selectivity toward the corresponding epoxides under mild reaction conditions.

  12. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: antimicrobial evaluation and anticancer studies.

    PubMed

    Dhahagani, K; Mathan Kumar, S; Chakkaravarthi, G; Anitha, K; Rajesh, J; Ramu, A; Rajagopal, G

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by (1)H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M=Cu(II), Co(II)), Zn(II), or VO(IV); MPMP=2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X=Cl, (L1H), X=Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines. PMID:23985482

  13. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2‧(OOCCH3)2(H2O)2](L‧ = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  14. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  15. Two new copper(II) complexes with the shortest (N N) diazine based rigid ligand: Example of unusual tridentate coordination mode

    NASA Astrophysics Data System (ADS)

    Karmakar, Ruma; Choudhury, Chirantan Roy; Batten, Stuart R.; Mitra, Samiran

    2007-01-01

    Two new five coordinated Cu(II) complexes, Cu(L)Cl 2,CH 3OH ( 1) and Cu(L)Br 2 ( 2) derived from the flexidentate ligand (L), 2-pyridinealdazine, have been synthesised and characterised by spectroscopic and electrochemical studies. Single crystal structures of the complexes were determined. Crystal structures of both the complexes contain monomeric entities of five coordinated copper(II) ions where the Schiff base ligand, 2-pyridinealdazine, acts in a tridentate fashion. The central part of the ligand in complex 2 is disordered over two positions: N8 sbnd N9 make up the major position and N8A sbnd N9A make up the minor position.

  16. Coordination modes of a schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies.

    PubMed

    Chandra, Sulekh; Jain, Deepali; Sharma, Amit Kumar; Sharma, Pratibha

    2009-01-01

    Transition metal complexes of Co(II), Ni(II) and Cu(II) metal ions with general stoichiometry [M(L)X]X and [M(L)SO(4)], where M = Co(II), Ni(II) and Cu(II), L = 3,3'-thiodipropionic acid bis(4-amino-5-ethylimino-2,3-dimethyl-1-phenyl-3-pyrazoline) and X = NO(3)(-), Cl(-) and OAc(-), have been synthesized and structurally characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements and spectral techniques like IR, UV and EPR. The nickel(II) complexes were found to have octahedral geometry, whereas cobalt(II) and copper(II) complexes were of tetragonal geometry. The covalency factor (beta) and orbital reduction factor (k) suggest the covalent nature of the complexes. The ligand and its complexes have been screened for their antifungal and antibacterial activities against three fungi, i.e. Alternaria brassicae, Aspergillus niger and Fusarium oxysporum and two bacteria, i.e. Xanthomonas compestris and Pseudomonas aeruginosa. PMID:19127246

  17. Synthesis, characterization and cytotoxicity of rare earth metal ion complexes of N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene, Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Abbasi, Ambreen; Faraz, Mohammad; Sherwani, Asif

    2015-12-01

    Lanthanide complexes of La3+, Pr3+, Nd3+, Gd3+, Er3+ of general formula [Ln2 L(H2O)4(NO3)4](NO3)2·2H2O have been synthesized from Schiff base, N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene. The complexes were characterized by elemental analysis, molar conductance, UV-Vis, fluorescence, FT-IR,1H NMR, mass spectroscopy, EDX, SEM and thermal analysis. FT-IR spectral data suggested that ligand coordinate with metal ions through azomethine nitrogen and uncondensed amino group. Molar conductance data revealed 1:2 electrolytic nature of complexes. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (ligand:metal). Thephysico-chemical data suggested eight coordination number for Ln(III)Schiffbase complexes. SEM analysis shows morphological changes in the surfaces of complexes as compared to free ligand. Thermal decomposition profiles were consistent with proposed formulations. The anticancer activity of the complexes and theSchiffbase ligand has been studied towards human cervical cancer celllines (HeLa) and human breast cancer cell lines (MCF-7) and it was found that complexes exhibited greater activity than theSchiffbase.

  18. Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities.

    PubMed

    Yuan, Caixia; Lu, Liping; Gao, Xiaoli; Wu, Yanbo; Guo, Maolin; Li, Ying; Fu, Xueqi; Zhu, Miaoli

    2009-08-01

    A series of oxovanadium complexes with mixed ligands, a tridentate ONO-donor Schiff base ligand [viz., salicylidene anthranilic acid (SAA)], and a bidentate NN ligand [viz., 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), dipyrido[3,2-a:2',3'-c]phenazine (dppz), or 7-methyldipyrido[3,2-a:2',3'-c]phenazine (dppm)], have been synthesized and characterized by elemental analysis, electrospray ionization mass spectrometry, UV-vis spectroscopy, Fourier transform IR spectroscopy, EPR spectroscopy, and X-ray crystallography. Crystal structures of both complexes, [V(IV)O(SAA)(bpy)].0.25bpy and [V(IV)O(SAA)(phen)].0.33H(2)O, reveal that oxovanadium(IV) is coordinated with one nitrogen and two oxygen atoms from the Schiff base and two nitrogen atoms from the bidentate planar ligands, in a distorted octahedral geometry (VO(3)N(3)). The oxidation state of V(IV) with d(1) configuration was confirmed by EPR spectroscopy. The speciation of VO-SAA-bpy in aqueous solution was investigated by potentiomtreic pH titrations, and the results revealed that the main species are two ternary complexes at a pH range of 7.0-7.4, and one is the isolated crystalline complex. The complexes have been found to be potent inhibitors against human protein tyrosine phosphatase 1B (PTP1B) (IC(50) approximately 30-61 nM), T-cell protein tyrosine phosphatase (TCPTP), and Src homology phosphatase 1 (SHP-1) in vitro. Interestingly, the [V(IV)O(SAA)(bpy)] complex selectively inhibits PTP1B over the other two phosphatases (approximate ninefold selectivity against SHP-1 and about twofold selectivity against TCPTP). Kinetics assays suggest that the complexes inhibit PTP1B in a competitive and reversible manner. These suggest that the complexes may be promising candidates as novel antidiabetic agents. PMID:19290551

  19. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II).

    PubMed

    Abdel-Latif, S A; Hassib, H B; Issa, Y M

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the pK(a) values spectrophotometrically. PMID:17084104

  20. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, S. A.; Hassib, H. B.; Issa, Y. M.

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the p Ka values spectrophotometrically.

  1. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  2. Asymmetric synthesis of ?-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Acea, Jos Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of ?-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of ?-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, ?,?-disubstituted ?-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed. PMID:23832533

  3. Syntheses, structural variations and fluorescence studies of two dinuclear zinc(II) complexes of a Schiff base ligand with an extended carboxylate side arm

    NASA Astrophysics Data System (ADS)

    Shit, Shyamapada; Sasmal, Ashok; Dhal, Piu; Rizzoli, Corrado; Mitra, Samiran

    2016-03-01

    A potentially tetradentate Schiff base ligand containing carboxylic acid group, HL, (E)-2-((pyridin-2-yl)methyleneamino)-5-chlorobenzoic acid is synthesized and characterized. Reaction of HL with hydrated zinc(II) trichloroacetate and zinc(II) trifluoroacetate under similar reaction condition yields two discrete dinuclear complexes, [Zn(L)(Cl)]2 (1) and [Zn(L)(CF3COO)]2 (2) and characterized by different physicochemical methods. Single crystal X-ray structural characterization reveals different ligating properties of the coordinated anionic ligand (L-) in its zinc(II) complexes. The side arm carboxylate of L- shows μ1,3-carboxylato-bridging mode in 1 and connects zinc(II) atoms in syn-anti fashion while it exhibits a μ1,1-carboxylato-bridging mode in 2. The metal ions display distorted square pyramidal geometries in both the structures and associated with different degrees of distortions. The fluorescence spectra of HL and its zinc(II) complexes recorded in methanol at room temperature which reveal the enhancement of emission intensity for the complexes compared to that of the free ligand. Thermogravimetric analyses (TGA) reveal high thermal stabilities of the complexes.

  4. Template synthesis of square-planar Ni(II) complexes with new thiophene appended Schiff base ligands: Characterization, X-ray structure and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Biswas, Sujan; Mondal, Apurba Sau; Roy, Puspendu; Mondal, Tapan Kumar

    2015-11-01

    The square planar nickel(II) complexes have been synthesized by the reaction of nickel(II) chloride hexahydrate and the in situ condensed thiophene appended Schiff base ligands of thiophene-2-ethylamine with 3,5-dimethyl-2-hydroxybenzaldehyde or 3,5-dichloro-2-hydroxybenzaldehyde for [Ni(L1)2] (1) and [Ni(L2)2] (2) respectively. The complexes have been characterized by several spectroscopic techniques, viz. FT-IR, 1H NMR, absorption and emission spectroscopy. The complexes crystallize in monoclinic crystal system with C2/c space group for 1 and triclinic crystal system with P-1 space group for 2. In complex 1 the nickel sits on an inversion centre with symmetry -x, 2-y, -z. Cyclic voltammgrams of the complexes show quasi-reversible NiII/NiIII oxidation couple along with irreversible NiII/NiI reduction. Electronic structure and spectral properties are well interpreted by DFT and TDDFT calculations.

  5. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( ?eff 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (? Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  6. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes.

    PubMed

    Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (?(eff)?5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (?E(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. PMID:21345718

  7. Synthesis, crystal structures, and luminescent properties of phenoxo-bridged heterometallic trinuclear propeller- and sandwich-like Schiff-base complexes.

    PubMed

    Wang, Hailong; Zhang, Daopeng; Ni, Zhong-Hai; Li, Xiyou; Tian, Laijin; Jiang, Jianzhuang

    2009-07-01

    A series of phenoxo-bridged heterometallic Schiff-base trinuclear complexes Zn-M-Zn [M = Cd(II), Pb(II), Nd(III), Eu(III), Gd(III), Tb(III), and Dy(III)] have been synthesized by a rational structural design based on two symmetrical Schiff-base ligands N,N'-bis(3-methoxysalicylidene)propylene-1,3-diamine (H(2)L(a)) and N,N'-bis(3-methoxysalicylidene)benzene-1,2-diamine (H(2)L(b)). Single X-ray diffraction analysis reveals a similar molecular structure among the eight propeller-like and seven sandwich-type phenoxo-bridged Zn-M-Zn complexes. In the compounds Cd[Zn(L(a))Cl](2) (1), {Cd[Zn(L(b))Cl](2)}.H(2)O (2), {Pb[Zn(L(b))Cl](2)}.2H(2)O (4), {Nd[Zn(L(a))Cl](2)(H(2)O)}.0.5ZnCl(4) .2H(2)O (5), and{M(III)[Zn(L(a))Cl](2)(H(2)O)}.0.5ZnCl(4).2MeOH [M = Eu(7), Gd (9), Tb (11), and Dy (13)], two [Zn(L)Cl](-) units coordinate to the central metal ion as a tetradentate ligand using its four oxygen atoms, forming a two-blade propeller-like left-handed and right-handed chiral Zn-M-Zn configuration despite the racemic nature of the whole complexes. Compounds {Pb[Zn(L(a))Cl](2)}.MeOH (3), {Nd[Zn(L(b))Cl](2)(DMF)(OAc)}.CH(3)CN (6), {Eu[Zn(L(b))Cl](2)(DMF)(OAc)}.CH(3)CN (8), {Gd[Zn(L(b))Cl](2)(DMF)(2)}.Cl.2H(2)O (10), {Tb[Zn(L(b))Cl](2)(DMF)(2)}.Cl.2H(2)O (12), {Dy[Zn(L(b))Cl](2)(DMF)(2)}.Cl.2H(2)O (14), and {Pb[Zn(L(b))Cl](2)}.2H(2)O (15) exhibit a relatively rare sandwich-type structure with a central metal ion clamped by two [Zn(L)Cl](-) units. Photophysical studies indicate that all of the complexes exhibit luminescence both in solution and in solid sate, and there exists an energy transfer from the [Zn(L)Cl](-) unit to the central rare earth ions of Nd(III) (5 and 6), Tb(III) (11), and Dy(III) (for 13). In particular, systematic and comparative investigation of the photophysical properties of these trinuclear complexes reveals that the luminescence properties could easily be tuned by changing the central metal or the Schiff-base ligand. PMID:19496590

  8. Synthesis, crystal structure, DFT study and photocatalytic property of a new Ni(II) complex of a symmetric N2O4-donor bis-Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Meng, Xiangmin; Fan, Chuanbin; Fan, Yuhua; Bi, Caifeng

    2016-03-01

    A new complex, Ni(C22H26N2O10S2)·2CH3OH, with a sexidentate (N2O4) symmetric bis-Schiff base ligand (C22H26N2O10S2 = 1,2-bis(2-methoxy-6-formylphenoxy)ethane-2-aminoethane-sulfonic acid) has been synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structure shows that the Ni(II) atom of the complex is six-coordinated by two nitrogens from Cdbnd N groups, two oxygens from ether groups and two hydroxyl oxygens from sulfonic acid groups in the mono-ligand, forming a distorted octahedral geometry. Theoretical study of the complex is carried out by density functional theory (DFT) method and the B3LYP method employing the 6-3l+G* basis set. Moreover, the complex proved to be good candidate for the photocatalytic degradation of methylene blue.

  9. Synthesis, crystal structures, and nonlinear optical (NLO) properties of new Schiff-base nickel(II) complexes. Toward a new type of molecular switch?

    PubMed

    Costes, Jean Pierre; Lamre, Jean Franois; Lepetit, Christine; Lacroix, Pascal G; Dahan, Franoise; Nakatani, Keitaro

    2005-03-21

    An H2L Schiff-base ligand that was obtained from the monocondensation of diaminomaleonitrile and 4-(diethylamino)salicylaldehyde is reported together with four related nickel(II) complexes formulated as [Ni(L)(L')] (L' = MePhCHNH2, iPrNH2, Py, and PPh3). Crystal structures have been solved for H2L, [Ni(L)(MePhCHNH2)], and [Ni(L)(iPrNH2)]. Surprisingly, the complexation process leads to the formation of a rather unusual nickel amido (-NH-Ni(II)) bond by deprotonation of the primary amine of H2L. A reduction of the quadratic hyperpolarizability (beta) from 38 x 10(-30) to 17.5 x 10(-30) cm5 esu(-1) is evidenced on H2L upon metal complexation by the electric-field-induced second-harmonic (EFISH) technique. Qualitative ZINDO/SCI quantum chemical calculations indicate that, in [Ni(L)(MePhCHNH2)], the beta orientation strongly depends on the laser wavelength. In particular, a beta rotation strictly equal to 90 degrees could be obtained with 1.022 microm incident light on passing from [Ni(L)(MePhCHNH2] to a hypothetical [Ni(HL)(MePhCHNH2]+ protonated complex, thus raising the possibility for a new type of molecular switch. PMID:15762724

  10. Synthesis, spectroscopic thermal and biological activity studies on azo-containing Schiff base dye and its Cobalt(II), Chromium(III) and Strontium(II) complexes

    NASA Astrophysics Data System (ADS)

    Alghool, Samir; El-Halim, Hanan F. Abd; Dahshan, A.

    2010-11-01

    Schiff base ligand is prepared by condensation of o-amino benzoic acid with 5-phenyl azo-salicyladehyde. The characterization of the ligand is based on elemental analysis, mass spectra and IR spectra. The novel Co(II), Cr(III) and Sr(II) metal complexes are reported and characterized by physico-chemical, spectroscopic methods based on elemental analyses, IR, magnetic moment, and thermal analysis (TGA). The molar conductance data reveals that all the complexes are non-electrolytes. The activation thermodynamic parameters, such as ? E*, ? H*, ? S* and ? G* are calculated from the DTA curves using Coats-Redfern method. Optical absorption measurements show that the fundamental absorption edge obeys Tauc's relation for the allowed non-direct transition. Optical band gap ( E g) values equal 2.4, 2.38 and 1.5 eV for Co(II), Cr(III) and Sr(II) metal complexes respectively. The synthesized ligand and its metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria ( Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria ( Escherichia coli and Pseudomonas aereuguinosa).

  11. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  12. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach.

    PubMed

    Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S

    2015-02-25

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML22H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. PMID:25244297

  13. Anti-inflammatory activity of some copper(II) complexes.

    PubMed

    Frechilla, D; Lasheras, B; Ucelay, M; Parrondo, E; Craciunescu, G; Cenarruzabeitia, E

    1990-08-01

    Anti-inflammatory activity of some copper(II) neutral complexes and complexated salts on different animal models of inflammation has been investigated. In a preliminary screening 5 complexes were selected for a more extensive study based on their capacity inhibiting the rat hind paw edema induced by carrageenin. These selected complexes showed inhibitory action on acute and subacute inflammation with an activity degree higher than that of indometacin. They were also effective inhibitors of primary and secondary lesions in the adjuvant-induced arthritis, with an activity similar to phenylbutazone. These complexes had no topical anti-inflammatory effect. PMID:2242084

  14. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and DL-alpha-aminobutyric acid.

    PubMed

    Nair, M Sivasankaran; Joseyphus, R Selwin

    2008-09-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H2O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand. PMID:17964848

  15. Photoluminescence properties of a cationic trinuclear zinc(II) complex with the tetradentate Schiff base ligand 6-methyl-2-({[(pyridin-2-yl)methyl]imino}methyl)phenolate.

    PubMed

    Kim, Young Inn; Song, Young Kwang; Kim, Daeyoung; Kang, Sung Kwon

    2015-10-01

    Metal complexes with Schiff base ligands have been suggested as potential phosphors in electroluminescent devices. In the title complex, tetrakis[6-methyl-2-({[(pyridin-2-yl)methyl]imino}methyl)phenolato-1:2κ(8)N,N',O:O;3:2κ(8)N,N',O:O]trizinc(II) hexafluoridophosphate methanol monosolvate, [Zn3(C14H13N2O)4](PF6)2·CH3OH, the Zn(II) cations adopt both six- and four-coordinate geometries involving the N and O atoms of tetradentate 6-methyl-2-({[(pyridin-2-yl)methyl]imino}methyl)phenolate ligands. Two terminal Zn(II) cations adopt distorted octahedral geometries and the central Zn(II) cation adopts a distorted tetrahedral geometry. The O atoms of the phenolate ligands bridge three Zn(II) cations, forming a dicationic trinuclear metal cluster. The title complex exhibits a strong emission at 469 nm with a quantum yield of 15.5%. PMID:26422221

  16. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes.

    PubMed

    Ramadan, Ramadan M; Abu Al-Nasr, Ahmad K; Noureldeen, Amani F H

    2014-11-11

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin. PMID:24887503

  17. Synthesis and Characterisation of Copper(II) Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application

    PubMed Central

    Hazra, Madhumita; Dolai, Tanushree; Pandey, Akhil; Dey, Subrata Kumar; Patra, Animesh

    2014-01-01

    The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2) HL?=?(1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand. PMID:25386109

  18. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  19. Discovery and investigation of anticancer ruthenium-arene Schiff-base complexes via water-promoted combinatorial three-component assembly.

    PubMed

    Chow, Mun Juinn; Licona, Cynthia; Yuan Qiang Wong, Daniel; Pastorin, Giorgia; Gaiddon, Christian; Ang, Wee Han

    2014-07-24

    The structural diversity of metal scaffolds makes them a viable alternative to traditional organic scaffolds for drug design. Combinatorial chemistry and multicomponent reactions, coupled with high-throughput screening, are useful techniques in drug discovery, but they are rarely used in metal-based drug design. We report the optimization and validation of a new combinatorial, metal-based, three-component assembly reaction for the synthesis of a library of 442 Ru-arene Schiff-base (RAS) complexes. These RAS complexes were synthesized in a one-pot, on-a-plate format using commercially available starting materials under aqueous conditions. The library was screened for their anticancer activity, and several cytotoxic lead compounds were identified. In particular, [(?6-1,3,5-triisopropylbenzene)RuCl(4-methoxy-N-(2-quinolinylmethylene)aniline)]Cl (4) displayed low micromolar IC50 values in ovarian cancers (A2780, A2780cisR), breast cancer (MCF7), and colorectal cancer (HCT116, SW480). The absence of p53 activation or changes in IC50 value between p53+/+ and p53-/- cells suggests that 4 and possibly the other lead compounds may act independently of the p53 tumor suppressor gene frequently mutated in cancer. PMID:25023617

  20. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent

    PubMed Central

    Ejidike, Ikechukwu P.; Ajibade, Peter A.

    2016-01-01

    The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(L)Cl2(H2O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl2] > [(BZEBOD)RuCl2] > [(MOABOD)RuCl2] > [Vit. C] > [rutin] > [(METBOD)RuCl2], and ABTS radical in the order: [(PAEBOD)RuCl2] < [(MOABOD)RuCl2] < [(BZEBOD)RuCl2] < [(METBOD)RuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay. PMID:26742030

  1. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent.

    PubMed

    Ejidike, Ikechukwu P; Ajibade, Peter A

    2016-01-01

    The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2',4'-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl₃·3H₂O lead to the formation of neutral complexes of the type [Ru(L)Cl₂(H₂O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl₂] > [(BZEBOD)RuCl₂] > [(MOABOD)RuCl₂] > [Vit. C] > [rutin] > [(METBOD)RuCl₂], and ABTS radical in the order: [(PAEBOD)RuCl₂] < [(MOABOD)RuCl₂] < [(BZEBOD)RuCl₂] < [(METBOD)RuCl₂]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay. PMID:26742030

  2. Synthesis, characterization of N,N?-bis(2-hydroxynaphthalidene)phenylene-1,2-diamine with M(II)(M = Ni, Zn and Fe) Schiff-base complexes and their non-linear optical studies by z-scan technique

    NASA Astrophysics Data System (ADS)

    Sampath Kumar, H. C.; Ramachandra Bhat, B.; Rudresha, B. J.; Ravindra, R.; Philip, Reji

    2010-07-01

    Schiff-base complexes of N, N'-bis(2-hydroxynaphthalidene)phenylene-1,2-diamine ligand with metal M (M = Ni(II), Zn(II) and Fe(II)) have been synthesized and characterized by their UV, FT-IR, NMR, elemental analysis and magnetic susceptibility measurements. Non-linear optical measurements carried out using nanosecond laser pulses at 532 nm show that these complexes can be used for optical limiting applications.

  3. Spectroscopic Elucidation of the Inhibitory Mechanism of Cys2His2 Zinc Finger Transcription Factors by CobaltIII Schiff Base Complexes

    PubMed Central

    Heffern, Marie C.; Kurutz, Josh

    2014-01-01

    Transcription factors are key regulators in both normal and pathological cell processes. Affecting the activity of these proteins is a promising strategy for understanding gene regulation and developing effective therapeutics. CoIII Schiff base complexes ([Co(acacen)(L)2]+ where L = labile axial ligands) have been shown to be potent inhibitors of a number of zinc metalloproteins including Cys2His2 zinc finger transcription factors. Inhibition by [Co(acacen)(L)2]+ of the target protein is believed to occur through a dissociative exchange of the labile axial ligands for histidine (His) residues essential for function. Here, we report a series of spectroscopic investigations with model peptides of zinc fingers that elucidate the interaction between [Co(acacen)(L)2]+ complexes and zinc finger transcription factors. Observed changes in NMR chemical shifts and 2D 1H-1H NOESY NMR spectra demonstrate the preference of [Co(acacen)(L)2]+ complexes to coordinate His residues over other amino acids. The conformation of [Co(acacen)(L)2]+ upon His-coordination was characterized by 1H NMR, near-UV circular dichroism, and electronic absorption. These studies reveal that the resulting His-coordinated [Co(acacen)(L)2]+ complex possesses an octahedral structure. The effects of [Co(acacen)(L)2]+ complexes on the zinc finger structure were assessed by the degree of hydrogen bonding (probed by 2D NMR) and secondary structure profiles measured by far-UV circular dichroism. These structural studies demonstrate the ability of [Co(acacen)(L)2]+ complexes to disrupt the ??? structure of zinc fingers, resulting in primarily random coil conformations. A mechanism is described wherein [Co(acacen)(L)2]+ complexes inhibit zinc finger transcription factor activity through selectively coordinating His residues in the zinc finger via dissociative ligand exchange and disrupting the ??? structural motif required for gene regulation. PMID:24203451

  4. Synthesis and DNA binding studies of Ni(II), Co(II), Cu(II) and Zn(II) metal complexes of N 1,N 5-bis[pyridine-2-methylene]-thiocarbohydrazone Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    Tiwari, A. D.; Mishra, A. K.; Mishra, S. B.; Mamba, B. B.; Maji, B.; Bhattacharya, S.

    2011-09-01

    The thiocarbohydrazone Schiff-base ligand with a nitrogen and sulphur donor was synthesized through condensation of pyridine-2-carbaldehyde and thiocarbohydrazide. Schiff-base ligands have the ability to conjugate with metal salts. A series of metal complexes with a general formula [MCl 2(H 2L)] nH 2O (M dbnd Ni, Co, Cu and Zn) were synthesized by forming complexes of the N 1,N 5-bis[pyridine-2-methylene]-thiocarbohydrazone (H 2L) Schiff-base ligand. These metal complexes and ligand were characterized by using ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FT-IR), 1H and 13C NMR spectroscopy and mass spectroscopy, physicochemical characterization, CHNS and conductivity. The biological activity of the synthesized ligand was investigated by using Escherichia coli DNA as target. The DNA interaction of the synthesized ligand and complexes on E. coli plasmid DNA was investigated in the aqueous medium by UV-Vis spectroscopy and the binding constant ( Kb) was calculated. The DNA binding studies showed that the metal complexes had an improved interaction due to trans-geometrical isomers of the complexes than ligand isomers in cis-positions.

  5. Spectroscopic studies of bimetallic complexes derived from tridentate or tetradentate Schiff bases of some di- and tri-valent transition metals.

    PubMed

    Emara, Adel A A; Abou-Hussen, Azza A A

    2006-07-01

    Two series of new binuclear complexes with Schiff base ligands, H(4)L(a) or H(2)L(b), derived from the reaction of 4,6-diacetylresorcinol and ethylenediamine, in the molar ratio 1:1 and 1:2 have been prepared, respectively. The two ligands react with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Cr(III) and Fe(III)-nitrates to get binuclear complexes. The ligands were characterized by elemental analysis, IR, UV-vis, (1)H NMR and mass spectra. The complexes were synthesized by direct and template methods. Different types of products were obtained for the same ligand and metal salts according to the method of preparation. The H(4)L(a) ligand behaves as a macrocyclic tetrabasic with two N(2)O(2) sits, while the H(2)L(b) ligand behaves as a dibasic with two N(2)O sites. The H(4)L(a) ligand is a compartmental ligand which hosts the two metal ions at the centers of two cis-N(2)O(2) sites, while the metal complexes of H(2)L(b) ligand are binuclear, where the ligand hosts two metal ions at the centers of two N(2)O sites. In both cases, deprotonation of the hydrogen atoms of the phenolic OH groups occur except in the case of the Ni(II), Fe(III) and Cr(III) complexes. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either octahedral or tetrahedral. The structures are consistent with the IR, UV-vis, ESR, (1)H NMR, mass spectra, and thermal gravimetric analysis (TGA/DTA) as well as conductivity and magnetic moment measurements. PMID:16332449

  6. Spectroscopic, thermal characterization and cytotoxic activity of bi-, tri- and tetra-nuclear Pd(II) and Pt(II) complexes with diSchiff base ligands

    NASA Astrophysics Data System (ADS)

    Hegazy, Wael Hussein

    2014-10-01

    In this paper; new di-, tri-, and tetra-nuclear Pd(II) and Pt(II) complexes of N,N‧-bis(3,4-dihydroxybenzylidene)ethan-1,2-diamine (EDH4), N,N‧-bis(3,4-dihydroxy-benzylidene)-benzene-1,2-diamine (PDH4) and N,N‧-bis-(3,4-dihydroxybenzylidene)-4,5-dimethyl-1,2-diamine (MPDH4) ligands were synthesized by two different methods. The first method involve the synthesis of the three ligands from condensation reaction of 3,4-dihydroxybenzaldehyde (L‧H2) with ethylenediamine (en), o-phenylenediamine (o-PD), or 4,5-dimethyl-1,2-phenylendiamine (DMPD) in a mole ratio of 2:1 followed by the reaction of the resulting Schiff bases ligands with Pd(II) or Pt(II) ions in the presence of 2,2‧-dipyridyl (L) to form the di- and tri-nuclear metal complexes. The second method involve the condensation of the Pd complex LPd(II)L‧, (L = 2,2‧-dipyridyl, L‧ = 4-formylbenzene-1,2-bis(olate)) with en, o-PD, or DMPD in a mole ratio of 2:1, respectively, followed by reaction with PdCl2 to form di-, tri-, and tetra-nuclear palladium(II) complexes, respectively. Structures of ligands and metal complexes are characterized by physical properties, FT-IR spectra and nuclear magnetic resonance. The geometries of metal complexes are suggested according to elemental analysis, electronic absorption spectra, thermal analysis, atomic absorption, magnetic susceptibility and molar conductance. Cytotoxic activity against lung large cell carcinoma (H460), prostate carcinoma (DU145), breast adenocarcinoma (MCF-7), amelanotic melanoma (M-14), colon adenocarcinoma (HT-29), and chronic myelogenous leukemia (K562) is also reported.

  7. Synthesis and spectroscopic characterization of copper(II) complexes with the polydentate chelating ligand 4,4'-[1,4-phenylenedi(nitrilo)dipente-2-one

    NASA Astrophysics Data System (ADS)

    Shauib, Nadia M.; Elassar, Abdel-Zaher A.; El-Dissouky, Ali

    2006-03-01

    A new series of complexes of 4,4'-[1,4-phenylenenedi(nitilo)]dipenten-2-one, (H 2L) with CuX 2 nH 2O, X = Cl, Br, ClO 4, NO 3 and OAc; n = 1-6 as well as their ethylenediamine adducts have been synthesized and characterized by different physical techniques. The formulation of the complexes is assumed based on their elemental analysis and the molar conductivity. The products are found to be pH-dependent. The IR data showed that the ligand acts as dibasic tetradentate coordinated to copper(II) ions through the enolato-oxygen and the azomethine nitrogen atoms. Electronic, ESR spectra and room temperature magnetic moments indicate that complexes 1- 9 are square planar while complexes 10 and 11 are square based pyramidal. The different electronic spectral and ESR parameters are calculated and used to describe the nature of ligand-metal bonding ( ? and ?) as well as to estimate the extent of distortion. A macrocyclic containing copper(II) complex, 12 have been isolated by the reaction of Schiff-base with copper(II)-ethylenediamine mixture. The ligand (H 2L) is designed as a building block for larger molecules and superamolecular assemblies.

  8. DFT, characterization and investigation of vibrational spectroscopy of 4-(4-hydroxy)-3-(2-pyrazine-2-carbonyl)hydrazonomethylphenyl-diazen-yl-benzenesulfonamide and its copper(II) complex

    NASA Astrophysics Data System (ADS)

    Ammar, Reda A. A.; Alaghaz, Abdel-Nasser M. A.; Elhenawy, Ahmed A.

    2014-06-01

    Azo-Schiff-base complex of Cu(II) has been synthesized and characterized by elemental, spectral and thermal studies. The conductance data indicate the non-electrolytic nature of the complex. The IR spectra of the prepared complex was suggested that the azo-Schiff-base ligand [4-(4-hydroxy)-3-(2-pyrazine-2-carbonyl)hydrazonomethylphenyl-diazen-yl-benzenesulfonamide] (H2L) behaves as a tri-dentate ligand through the carbonyl oxygen atom, azomethine nitrogen atom and phenolic oxygen atom (ONO). The surface morphology (SEM) of the ligand and its copper(II) complex was studied using SEM analysis. X-ray powder diffraction (XRD) helps to determine the cell parameters of the complex. Transmission electron microscopy (TEM) indicated spherical particles of ∼200 nm diameter. The physico-chemical studies revealed octahedral geometry around copper ion. The EPR spectra of copper complex in DMSO at 300 and 77 K were recorded and their salient feature was reported. The redox behavior of the ligand and its copper(II) complex were studied using cyclic voltammetry. Thermal properties and decomposition kinetics of copper(II) complex was investigated. The interpretation mathematical analysis and evaluation of kinetic parameters (E, A, ΔH, ΔS and ΔG) of all thermal decomposition stages have been evaluated using Coats-Redfern (CR), Horowitz-Metzger (HM) and Piloyan-Novikova (PN) equations. Moreover, the density functional theory studies are discussed for ligand, using DFT/B3LYP with 6-31G* and 6-311G* level of theory, the absorption spectra has been computed by using time dependent at TD-DFT/B3LYP with 6-31G* and 6-311G* level of theory. The HOMO-LUMO energy gap of studied systems has been discussed.

  9. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  10. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  11. Synthesis and characterization of novel Cu (II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: A new route to CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Aly, Hisham M.; Moustafa, Moustafa E.; Nassar, Moustafa Y.; Abdelrahman, Ehab A.

    2015-04-01

    Cu (II) complexes, were synthesized with newly derived biologically active 1,2,4-triazole Schiff bases. The Schiff bases were synthesized by condensation of 3-substituted-4-amino-5-mercapto-1,2,4-triazole with dibenzoylmethane. The synthesized compounds were characterized using elemental analysis, magnetic moment, thermal analysis and spectral tools (FT-IR, 1HNMR, ESR, and UV-Vis spectroscopy). All the synthesized complexes are nonelectrolytes in N,N-dimethylformamide. The synthesized Schiff bases and their Cu (II) complexes have been screened for antibacterial (Escherichia coli &Staphylococcus aureus) and antifungal (Aspergillus flavus &Candida albicans) activity using a modified Bauer-Kirby method. Interestingly, the synthesized Cu (II) complexes were used as precursors for CuO nanoparticles which were characterized using XRD, HR-TEM, FT-IR and UV-Vis spectroscopy. The photocatalytic activity of the prepared CuO nanoparticles was studied by performing the degradation of methylene blue dye under UV illumination in the presence of H2O2 and the results showed that the maximum percent of the degradation of methylene blue dye (MB) was found 96.18% after 360 min.

  12. Synthesis of alpha-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived Schiff bases.

    PubMed

    Belokon, Yuri N; Bespalova, Natalia B; Churkina, Tatiana D; Csarov, Ivana; Ezernitskaya, Marina G; Harutyunyan, Syuzanna R; Hrdina, Radim; Kagan, Henri B; Kocovsk, Pavel; Kochetkov, Konstantin A; Larionov, Oleg V; Lyssenko, Konstantin A; North, Michael; Polsek, Miroslav; Peregudov, Alexander S; Prisyazhnyuk, Vladimir V; Vyskocil, Stepn

    2003-10-22

    Achiral, diamagnetic Ni(II) complexes 1 and 3 have been synthesized from Ni(II) salts and the Schiff bases, generated from glycine and PBP (7) and PBA (11), respectively, in MeONa/MeOH solutions. The requisite carbonyl-derivatizing agents pyridine-2-carboxylic acid(2-benzoyl-phenyl)-amide 7 (PBP) and pyridine-2-carboxylic acid(2-formyl-phenyl)-amide 11 (PBA) were readily prepared from picolinic acid and o-aminobenzophenone or picolinic acid and methyl o-anthranilate, respectively. The structure of 1 was established by X-ray crystallography. Complexes 1 and 3 were found to undergo C-alkylation with alkyl halides under PTC conditions in the presence of beta-naphthol or benzyltriethylammonium bromide as catalysts to give mono- and bis-alkylated products, respectively. Decomposition of the complexes with aqueous HCl under mild conditions gave the required amino acids, and PBP and PBA were recovered. Alkylation of 1 with highly reactive alkyl halides, carried out under the PTC conditions in the presence of 10% mol of (S)- or (R)-2-hydroxy-2'-amino-1,1'-binaphthyl 31a (NOBIN) and/or its N-acyl derivatives and by (S)- or (R)-2-hydroxy-8'-amino-1,1'-binaphthyl 32a (iso-NOBIN) and its N-acyl derivatives, respectively, gave rise to alpha-amino acids with high enantioselectivities (90-98.5% ee) in good-to-excellent chemical yields at room temperature within several minutes. An unusually large positive nonlinear effect was observed in these reactions. The Michael addition of acrylic derivatives 37 to 1 was conducted under similar conditions with up to 96% ee. The (1)H NMR and IR spectra of a mixture of the sodium salt of NOBIN and 1 indicated formation of a complex between the two components. Implications of the association and self-association of NOBIN for the observed sense of asymmetric induction and nonlinear effects are discussed. PMID:14558835

  13. Syntheses, crystallographic, mass-spectroscopic determination and antioxidant studies of Co(II), Ni(II) and Cu(II) complexes of a new imidazol based Schiff base.

    PubMed

    Demir, Serkan; Gder, Ayta; Yaz?c?lar, Turan K; a?lar, Sema; Bykgngr, Orhan

    2015-11-01

    A new imidazole-based Schiff base, 2-((1H-imidazol-4-yl)methyleneamino)benzylalcohol (HL) and corresponding analogous bis(2-((1H-imidazol-4-yl)methyleneimino)benzylalcohol)metal(II) perchlorates (M: Co(1), Ni(2), Cu(3)) have prepared and characterized by elemental analyses, ESI-MS, IR, UV-Vis spectroscopies and conductivity measurements. X-ray single crystal structures of 1 and 2 have been also determined. Elemental analyses, spectroscopic and conductance data of 3 demonstrated similar structural features with these of crystallographically characterized complexes and based upon this relevances, HL ligands are neutrally coordinated to metal(II) ions in tridentate mode and all complexes are isostructural, dicathionic, contain perchlorate anions as complementary ions and, are in octahedral geometry with the formulae of [M(HL)2](ClO4)2 (for 3) and [M(HL)2](ClO4)2H2O (for 1 and 2). Radical scavenging activities of the complexes have been evaluated by using DPPH, DMPD(+), and ABTS(+) assays. SC50 values (?g/mL) of the complexes and standards on DPPH, DMPD(+), ABTS(+) follow the sequences, BHA (9.060.33)>CMPD3 (15.620.52)>CMPD2 (17.430.29)>Rutin (21.650.60)>CMPD1 (25.670.51)>Trolox (28.570.37), Rutin>BHA>CMPD3>CMPD2>Trolox>CMPD1, and Trolox>BHA>CMPD3>CMPD2>Rutin>CMPD1 respectively. PMID:26112106

  14. Studies on the origin of ferromagnetic properties of the complex of Schiff-base polymer with sulfate iron

    NASA Astrophysics Data System (ADS)

    Li, Wenguang; wan, Meixiang

    1994-11-01

    The effect of preparation conditions on the structure and the magnetic properties of PPH-FeSO 4 complexes was investigated by elemental analysis, FTIR, XPS, X-ray diffraction, Mssbauer and magnetic measurements. Excessive amount of FeSO 4 used during the preparation of complexes not only destroys the crystallinity of the polymer, but also introduces more magnetic impurities (Fe 3O 4) into complexes. Increasing acidity of reaction medium during the preparation of complexes was an effective method to prevent the formation of magnetic impurities in complexes. Our results provided a direct experimental evidence to demonstrate that the ferromagnetic properties of PPH-FeSO 4 complexes observed at room temperature are due to the presence of magnetic impurities arising from preparation processes of complexes.

  15. Ferrocene-conjugated L-tryptophan copper(II) complexes of phenanthroline bases showing DNA photocleavage activity and cytotoxicity.

    PubMed

    Goswami, Tridib K; Chakravarthi, Balabhadrapatruni V S K; Roy, Mithun; Karande, Anjali A; Chakravarty, Akhil R

    2011-09-01

    Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)](ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at ~0.5 V vs SCE in DMF-0.1 M [Bu(n)(4)N](ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at ~450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 ?M, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells. PMID:21797197

  16. Rhodium(III)-triphenylphosphine complex with NNS donor thioether containing Schiff base ligand: Synthesis, spectra, electrochemistry and catalytic activity

    NASA Astrophysics Data System (ADS)

    Biswas, Sujan; Sarkar, Deblina; Kundu, Subhankar; Roy, Puspendu; Mondal, Tapan Kumar

    2015-11-01

    New rhodium(III)-triphenylphosphine complex, [Rh(PPh3)(L)Cl2](PF6) (1) with thioether containing NNS donor ligand (L) (L=2-(methylthio)-N-((pyridine-2-yl)methylene)benzenamine) has been synthesized and characterized. The pseudo octahedral geometry of the complex has been confirmed by single crystal X-ray analysis. The electronic structure, redox properties, absorption and emission properties of the complexes have been interpreted by DFT and TDDFT calculations. The complex effectively catalyzed the transfer hydrogenation reaction of ketones in 2-propanol and oxidation of alcohols in presence of NMO.

  17. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  18. Binding Studies of a New Water-Soluble Iron(III) Schiff Base Complex to DNA Using Multispectroscopic Methods

    PubMed Central

    Shahabadi, Nahid; Ghasemian, Zeinab; Hadidi, Saba

    2012-01-01

    A novel iron(III) complex [Fe(SF)](ClO4)3.2H2O; in which SF?=?N,N0-bis{5-[(triphenylphosphonium chloride)-methyl] salicylidene}-o-phenylenediamine) has been synthesized and characterized using different physicochemical methods. The binding of this complex with calf thymus (CT) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, voltammetric studies, and viscosity measurements. The results showed that this complex can bind to DNA via external and groove binding modes. PMID:22899896

  19. A nickel complex of a conjugated bis-dithiocarbazate Schiff base for the photocatalytic production of hydrogen.

    PubMed

    Wise, Catherine F; Liu, Dan; Mayer, Kathryn J; Crossland, Patrick M; Hartley, Carolyn L; McNamara, William R

    2015-08-28

    We report a nickel complex containing a conjugated bis-dithiocarbazate ligand that is an active catalyst for the reduction of protons into hydrogen gas. Light-driven hydrogen generation is observed from a system containing this molecular nickel catalyst coupled with a fluorescein photosensitizer and triethylamine sacrificial donor. The photocatalytic system is stable for over 70 hours, achieving 3300 turnovers with respect to catalyst. The complex is also an active electrocatalyst for proton reduction with catalysis occurring at -1.7 V vs. Fc(+)/Fc. The nickel bis-dithiocarbazate complex represents a highly active and stable catalyst for hydrogen generation. PMID:26194481

  20. Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Ran Vir; Chaudhary, Pratibha; Chauhan, Shikha; Swami, Monika

    2009-03-01

    Microwave-assisted synthesis and characterization of the organotin (IV) complexes are reported. Trigonal bipyramidal and octahedral complexes of tin (IV) have been synthesized by the reaction of dimethyltin (IV) dichloride with 4-nitrobenzanilide- S-benzyldithiocarbazate (L 1H), 4-chlorobenzanilide- S-benzyldithiocarbazate (L 2H), 4-nitrobenzanilidebenzothiazoline (L 3H) and 4-chlorobenzanilidebenzothiazoline (L 4H). The complexes so formed were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data viz. IR, UV-Visible, 1H and 13C NMR. The anti-microbial activities of the ligands and their corresponding organotin (IV) complexes have been screened against various strains of bacteria and fungi. Antifertility activity against male albino rats has also been reported.

  1. Gastroprotection Studies of Schiff Base Zinc (II) Derivative Complex against Acute Superficial Hemorrhagic Mucosal Lesions in Rats

    PubMed Central

    Golbabapour, Shahram; Gwaram, Nura Suleiman; Hassandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Abdulla, Mahmood Ameen; Ali, Hapipah Mohd; Hadi, A. Hamid A; Majid, Nazia Abdul

    2013-01-01

    Background The study was carried out to assess the gastroprotective effect of the zinc (II) complex against ethanol-induced acute hemorrhagic lesions in rats. Methodology/Principal Finding The animals received their respective pre-treatments dissolved in tween 20 (5% v/v), orally. Ethanol (95% v/v) was orally administrated to induce superficial hemorrhagic mucosal lesions. Omeprazole (5.79010?5 M/kg) was used as a reference medicine. The pre-treatment with the zinc (II) complex (2.18110?5 and 4.36210?5 M/kg) protected the gastric mucosa similar to the reference control. They significantly increased the activity levels of nitric oxide, catalase, superoxide dismutase, glutathione and prostaglandin E2, and decreased the level of malondialdehyde. The histology assessments confirmed the protection through remarkable reduction of mucosal lesions and increased the production of gastric mucosa. Immunohistochemistry and western blot analysis indicated that the complex might induced Hsp70 up-regulation and Bax down-regulation. The complex moderately increased the gastroprotectiveness in fine fettle. The acute toxicity approved the non-toxic characteristic of the complex (<87.24110?5 M/kg). Conclusion/Significance The gastroprotective effect of the zinc (II) complex was mainly through its antioxidant activity, enzymatic stimulation of prostaglandins E2, and up-regulation of Hsp70. The gastric wall mucus was also a remarkable protective mechanism. PMID:24058648

  2. Synthesis, spectral characterization, computational calculations and biological activity of complexes designed from NNO donor Schiff-base ligand.

    PubMed

    El-Gammal, Ola A; Abu El-Reash, G M; Yousef, T A; Mefreh, M

    2015-07-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of (Z)-2-oxo-2-(phenylamino)-N'-(1-(pyridin-2-yl)ethylidene)acetohydrazide (H2OPPAH) have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand acts as neutral or mononegative NNO tridentate. On the basis of magnetic and electronic spectral data an octahedral geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complex have been proposed. The molecular modeling using DFT method are drawn showing the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all title compounds. The Kinetic parameters were determined for each thermal degradation stages of the ligand and its complexes using Coats-Redfern and Horowitz-Metzger methods. Also, the compounds were screened for antioxidant activity using ABTS free radical, anti-hemolytic, and in vitro cytotoxic assay. H2OPPAH showed the potent antioxidant activity followed by Co(II) and Cu(II) complexes. On the other hand Ni(II) complex exhibited weak antioxidant activity using ABTS free radical and Erlich and strong erythrocyte hemolysis activity. PMID:25813173

  3. Synthesis, spectral characterization, computational calculations and biological activity of complexes designed from NNO donor Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, Ola A.; El-Reash, G. M. Abu; Yousef, T. A.; Mefreh, M.

    2015-07-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of (Z)-2-oxo-2-(phenylamino)-N‧-(1-(pyridin-2-yl)ethylidene)acetohydrazide (H2OPPAH) have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand acts as neutral or mononegative NNO tridentate. On the basis of magnetic and electronic spectral data an octahedral geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complex have been proposed. The molecular modeling using DFT method are drawn showing the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all title compounds. The Kinetic parameters were determined for each thermal degradation stages of the ligand and its complexes using Coats-Redfern and Horowitz-Metzger methods. Also, the compounds were screened for antioxidant activity using ABTS free radical, anti-hemolytic, and in vitro cytotoxic assay. H2OPPAH showed the potent antioxidant activity followed by Co(II) and Cu(II) complexes. On the other hand Ni(II) complex exhibited weak antioxidant activity using ABTS free radical and Erlich and strong erythrocyte hemolysis activity.

  4. Manganese(II) Complexes with Schiff Bases Immobilized on Nanosilica as Catalysts of the Reaction of Ozone Decomposition

    NASA Astrophysics Data System (ADS)

    Rakytska, Tetyana; Truba, Alla; Radchenko, Evgen; Golub, Alexander

    2015-12-01

    In this article, we submit the description of synthesis and identification of manganese(II) complexes with pyrogenic nanosilica-immobilized ( d av = 10 nm; S sp = 290 m2/g) hydroxyaldimine ligands (Mn{(L)}_2/overline{Si}) : salicilaldiminopropyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphtaldiminopropyl (L3); 2-hydroxy-3-methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophenoniminopropyl (L5); and 4-hydroxy-3-methoxybenzaldiminopropyl (L6). The ligands and complexes were characterized by UV-VIS and IR spectrometry. Nanocomposites consisting of complexes Mn{(L)}_2/overline{Si} showed a high catalytic activity in low-temperature ozone decomposition in the range of concentrations between 2.1 × 10-6 and 8.4 × 10-6 mol/l. The number of catalytic cycles increased for isostructural pseudotetrahedral complexes Mn{(L)}_2/overline{Si} (L1-L5) in the following order: Mn(L3)2 >> Mn(L4)2 > Mn(L1)2 > Mn(L2)2 > Mn(L5)2. In the case of pseudooctahedral complexes with L6, the change of coordination polyhedral does not influence the kinetics and stoichiometric parameters of the reaction.

  5. Manganese(II) Complexes with Schiff Bases Immobilized on Nanosilica as Catalysts of the Reaction of Ozone Decomposition.

    PubMed

    Rakytska, Tetyana; Truba, Alla; Radchenko, Evgen; Golub, Alexander

    2015-12-01

    In this article, we submit the description of synthesis and identification of manganese(II) complexes with pyrogenic nanosilica-immobilized (d av = 10 nm; S sp = 290 m(2)/g) hydroxyaldimine ligands [Formula: see text]: salicilaldiminopropyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphtaldiminopropyl (L3); 2-hydroxy-3-methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophenoniminopropyl (L5); and 4-hydroxy-3-methoxybenzaldiminopropyl (L6). The ligands and complexes were characterized by UV-VIS and IR spectrometry. Nanocomposites consisting of complexes [Formula: see text] showed a high catalytic activity in low-temperature ozone decomposition in the range of concentrations between 2.1 × 10(-6) and 8.4 × 10(-6) mol/l. The number of catalytic cycles increased for isostructural pseudotetrahedral complexes [Formula: see text] (L1-L5) in the following order: Mn(L3)2 > Mn(L4)2 > Mn(L1)2 > Mn(L2)2 > Mn(L5)2. In the case of pseudooctahedral complexes with L6, the change of coordination polyhedral does not influence the kinetics and stoichiometric parameters of the reaction. PMID:26643653

  6. Synthesis and In Vitro Antitumor Activity of Two Mixed-Ligand Oxovanadium(IV) Complexes of Schiff Base and Phenanthroline

    PubMed Central

    Zhang, Yongli; Wang, Xiangsheng; Fang, Wei; Cai, Xiaoyan; Chu, Fujiang; Liao, Xiangwen; Lu, Jiazheng

    2013-01-01

    Two oxovanadium(IV) complexes of [VO(msatsc)(phen)], (1) (msatsc = methoxylsalicylaldehyde thiosemicarbazone, phen = phenanthroline) and its novel derivative [VO (4-chlorosatsc)(phen)], (2) (4-chlorosatsc = 4-chlorosalicylaldehyde thiosemicarbazone), have been synthesized and characterized by elemental analysis, IR, ES-MS, 1H NMR, and magnetic susceptibility measurements. Their antitumor effects on BEL-7402, HUH-7, and HepG2 cells were studied by MTT assay. The antitumor biological mechanism of these two complexes was studied in BEL-7402 cells by cell cycle analysis, Hoechst 33342 staining, Annexin V-FITC/PI assay, and detection of mitochondrial membrane potential (??m). The results showed that the growth of cancer cells was inhibited significantly, and complexes 1 and 2 mainly caused in BEL-7402 cells G0/G1 cell cycle arrest and induced apoptosis. Both 1 and 2 decreased significantly the ??m, causing the depolarization of the mitochondrial membrane. Complex 2 showed greater antitumor efficiency than that of complex 1. PMID:23424390

  7. Polymorphs, enantiomorphs, chirality and helicity in [Rh{N,O}(eta4-cod)] complexes with {N,O}=salicylaldiminato Schiff base or aminocarboxylato ligands.

    PubMed

    Janiak, Christoph; Chamayou, Anne-Christine; Royhan Uddin, A K M; Uddin, Mohammad; Hagen, Karl S; Enamullah, Mohammed

    2009-05-21

    The dimeric complex acetato(eta4-cycloocta-1,5-diene)rhodium(I), [Rh(O2CMe)(eta4-cod)]2 (cod = cycloocta-1,5-diene) reacts with N,O-chelating Schiff-base ligands or with N-phenylglycine to afford the diminato- or aminocarboxylato(4-cycloocta-1,5-diene)rhodium(I) complexes [{Rh(eta4-cod)}2(salen)] (1), [{Rh(eta4-cod)}2(salophen)] (2), [Rh((S)-N-phenylglycinato)(eta4-cod)] (3S), [Rh(rac-N-phenylglycinato)(eta4-cod)] (3rac), [Rh((R)-N-(4-methoxphenyl)ethyl-2-oxo-1-naphthaldiminato)(eta4-cod)] (4) and [Rh(N-(o-tolyl)-2-oxo-1-naphthaldiminato)(eta4-cod)] (5) [salen2- = N,N-ethylene-bis(salicylaldiminato), salophen2- = N,N-(1,2-phenylene)-bis(salicylaldiminato)]. The complexes are characterized by IR-, UV/Vis-, 1H/13C-NMR- and mass-spectroscopy. Complexes 1, 2, 4 and 5 contain six-membered metallaaromatic Rh-(N-CCC-O)-chelate rings which accept C-H...pi contacts. The crystal structure of 2 presents a polymorph (dimorph) (2a) to a previously reported structure (2b, CSD refcode SCLIRB10). Polymorphic forms 2a and 2b are traced to a different interlocking of adjacent dinuclear molecules with their corrugated van der Waals surface. The achiral N-phenylglycine ligand gives a chiral N-phenylglycinato complex [Rh(O2C-CH2-NHPh)(eta4-cod)] (3) with the nitrogen atom becoming the stereogenic center upon metal coordination. Complex 3 can crystallize as the enantiomorph 3S in the tetragonal, chiral space group P41 in a spontaneous resolution of the racemic mixture into homo-chiral helix-enantiomers due to inter-molecular N-H...O hydrogen bonding which connects only molecules of the same (S-) configuration into (right-handed or P-) 41-helical chains. Variation of the crystallization conditions gives 3 as a racemic polymorphic 3rac. R- and S-complexes 3 assemble in the polymorph 3rac in parallel chains along the 21-axes through N-HO hydrogen bonding. Again, only molecules of the same configuration are combined into a chain, albeit neighboring chains have complexes of opposite configuration. The chiral enantiomeric naphthaldiminato complex 4 displays a herring-bone arrangement. Achiral compound 5 crystallizes in the non-centrosymmetric polar space group Cc where all molecules show the same orientation. PMID:19417935

  8. Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling and analysis of some oxovanadium(IV) complexes involving the O, N-donor environment of pyrazolone-based sulfa drug Schiff bases

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Rajput, S.

    2006-08-01

    Four new oxovanadium(IV) complexes, formed by the interaction of vanadyl sulfate pentahydrate and the Schiff bases derived from 3-methyl-1-phenyl-4-valeryl-2-pyrazolin-5-one and the sulfa drugs, N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulfadiazine (L 1H), N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-)sulfaguanidine (L 2H), N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulphanilamide (L 3H) and N'(-3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulphamethoxazole (L 4H) in aqueous ethanol are described. The resulting complexes were characterized by elemental analyses, molar conductances, magnetic and decomposition temperature measurements, cyclic voltammetry, electron spin resonance, infrared and electronic spectral studies. They have the composition [VO(L) 2]·H 2O, where LH=Schiff base L 1H, L 2H, L 3H or L 4H mentioned above. A square-pyramidal structure having a slight ⋯V dbnd6 O⋯V dbnd6 O⋯ type interaction has been proposed for these complexes.

  9. Thermodynamics of adduct formation of cobalt(II) tetraaza Schiff base complexes with organotin(IV)trichlorides.

    PubMed

    Asadi, Zahra; Asadi, Mozaffar; Setoodehkhah, Moslem

    2013-08-01

    UV-Vis. spectrophotometric study of the adduct formation of organotin(IV)trichlorides i.e. PhSnCl3 and MeSnCl3 as acceptors with Co(II) tetraaza complexes, such as [Co(ampen)] [N,N'-ethylenebis-(o-amino-?-phenylbenzylideneiminato)cobalt(II)], [Co(campen)] [N,N'-ethylenebis-(5-chloro-o-amino-?-phenylbenzylideneiminato)cobalt(II)], [Co(amaen)] [N,N'-ethylenebis-(o-amino-?-methylbenzylideneiminato)cobalt(II)], [Co(amppn)] [N,N'-propylene bis-(5-chloro-o-amino-?-phenylbenzylideneiminato)cobalt(II)] and [Co(camppn)] [N,N'-propylenebis-(5-chloro-o-amino-?-phenylbenzylideneiminato)cobalt(II)] as donors were studied spectrophotometrically under N2 atmosphere and in N,N'-dimethylformamide solvent. The formation constants and thermodynamic parameters were measured using spectrophotometric titration of adduct formation at various temperatures. The trend of the adduct formations of the cobalt(II) tetraaza complexes with a given organotintrichloride acceptor decreases as follow: [Co(amaen)]>[Co(amppn)]>[Co(ampen)]>[Co(camppn)]>[Co(campen)]. The trend of the formation constants for the studied organotintrichlorides with a given cobalt(II) tetraaza complexes is as follow: PhSnCl3>MeSnCl3. PMID:23666357

  10. Thermodynamics of adduct formation of cobalt(II) tetraaza Schiff base complexes with organotin(IV)trichlorides

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Asadi, Mozaffar; Setoodehkhah, Moslem

    2013-08-01

    UV-Vis. spectrophotometric study of the adduct formation of organotin(IV)trichlorides i.e. PhSnCl3 and MeSnCl3 as acceptors with Co(II) tetraaza complexes, such as [Co(ampen)] [N,N'-ethylenebis-(o-amino-?-phenylbenzylideneiminato)cobalt(II)], [Co(campen)] [N,N'-ethylenebis-(5-chloro-o-amino-?-phenylbenzylideneiminato)cobalt(II)], [Co(amaen)] [N,N'-ethylenebis-(o-amino-?-methylbenzylideneiminato)cobalt(II)], [Co(amppn)] [N,N'-propylene bis-(5-chloro-o-amino-?-phenylbenzylideneiminato)cobalt(II)] and [Co(camppn)] [N,N'-propylenebis-(5-chloro-o-amino-?-phenylbenzylideneiminato)cobalt(II)] as donors were studied spectrophotometrically under N2 atmosphere and in N,N'-dimethylformamide solvent. The formation constants and thermodynamic parameters were measured using spectrophotometric titration of adduct formation at various temperatures. The trend of the adduct formations of the cobalt(II) tetraaza complexes with a given organotintrichloride acceptor decreases as follow: [Co(amaen)] > [Co(amppn)] > [Co(ampen)] > [Co(camppn)] > [Co(campen)]. The trend of the formation constants for the studied organotintrichlorides with a given cobalt(II) tetraaza complexes is as follow: PhSnCl3 > MeSnCl3.

  11. Magnetic, high-field EPR studies and catalytic activity of Schiff base tetranuclear CuII2FeIII2 complexes obtained by direct synthesis.

    PubMed

    Nesterova, Oksana V; Chygorin, Eduard N; Kokozay, Vladimir N; Bon, Volodymyr V; Omelchenko, Irina V; Shishkin, Oleg V; Titi, Jn; Bo?a, Roman; Pombeiro, Armando J L; Ozarowski, Andrew

    2013-12-28

    Two novel heterometallic complexes [Cu2Fe2(HL(1))2(H2L(1))2]10DMSO (1) and [Cu2Fe2(HL(2))2(H2L(2))2]2DMF (2) have been prepared using the open-air reaction of copper powder, iron(II) chloride and DMSO (1) or DMF (2) solutions of the polydentate Schiff base (H4L(1), 1; H4L(2), 2) formed in situ from salicylaldehyde (1) or 5-bromo-salicylaldehyde (2) and tris(hydroxymethyl)aminomethane. Crystallographic analysis revealed that both compounds are based on the centrosymmetric tetranuclear core {Cu(II)2Fe(III)2(?-O)6} where metal centres are joined by ?-O bridges from the deprotonated ligands forming a nonlinear chain-like arrangement. Variable-temperature (1.8-300 K) magnetic susceptibility measurements of 1 and 2 showed a decrease of the effective magnetic moment value at low temperature, indicative of antiferromagnetic coupling (JCu-Fe/hc = -10.2 cm(-1), JFe-Fe/hc = -10.5 cm(-1) in 1, JCu-Fe/hc = -10.5 cm(-1), JFe-Fe/hc = -8.93 cm(-1) in 2) between the magnetic centres in both compounds. They reveal an exceptionally high catalytic activity in the oxidation of cyclohexane with hydrogen peroxide under mild conditions, with the best observed yield/TON combined values of 36%/596 and 44%/1.1 10(3) for 1 and 2, respectively. PMID:24091798

  12. Construction of Novel Zn-Ni Trinuclear Schiff Base and a Ni2+ Chemosensor

    SciTech Connect

    Li, Guo-Bi; Fang, Hua-Cai; Cai, Yue-Peng; Zhou, Zheng-Yuan; Thallapally, Praveen K.; Tian, Jian

    2010-07-14

    The novel Schiff base Zn-Ni trinuclear complex (Zn[Ni(sy- L2)]2(SCN)2, where sy-H2L2 = H2acacen = bis(acetylacetone)ethylenediamine), which is the first trinuclear compound based on symmetric acacen-base Schiff base ligand, was constructed through Ni2+-selective assembly of chemosensor Schiff base zinc compound Zn[(sy-H2L2)(SCN)]2?(CH3CN)2.

  13. Multifunctional composites of chiral valine derivative Schiff base Cu(II) complexes and TiO2.

    PubMed

    Takeshita, Yuki; Takakura, Kazuya; Akitsu, Takashiro

    2015-01-01

    We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV-Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions. PMID:25686033

  14. DNA interaction studies and evaluation of biological activity of homo- and hetero-trihalide mononuclear Cu(II) Schiff base complexes. Quantitative structure-activity relationships.

    PubMed

    Chaviara, A T; Kioseoglou, E E; Pantazaki, A A; Tsipis, A C; Karipidis, P A; Kyriakidis, D A; Bolos, C A

    2008-09-01

    A new series of mixed-ligand mono- or hetero-trihalide Cu(II) complexes of the type [Cu(dienXX)Y(YZ(2))], where dienXX=Schiff dibase of diethylenetriamine with 2-thiophene-carboxaldehyde (dienSS), 2-furaldehyde (dienOO) or 2-pyrrole-2-carboxaldehyde (dienNN), Y=Cl, Br and Z=Br, I was synthesized by the reaction of the precursors of the type [Cu(dienXX)Y]Y with iodine or bromine in 1:1 molar ratio. The distorted square pyramidal configuration of the new homo- and hetero-trihalide Cu(II) mononuclear complexes was identified by C, H, N, Cu analysis, spectroscopic methods (IR, UV-visible), molar conductivity and magnetic measurements. The basal plane consists of three nitrogen atoms of the Schiff base and one halogen (terminal) atom while another axially located trihalogen moiety occupies the fifth side of the square pyramid as a YZ(2) entity, adopting an almost linear configuration. The equilibrium geometry of these complexes was further corroborated by theoretical studies at the B3LYP/DGDZVP level. A series of quantum chemical descriptors (e.g. SOMO (singly occupied molecular orbital) LUMO (lowest occupied molecular orbital), SOMO and LUMO energies, SOMO-LUMO gap, dipole moment, polarizability, molar volume, etc.) have been utilized in order to deduce quantitative structure-activity relationships (QSARs). The effect of the new compounds on the single stranded (ss), double stranded (ds) and pDNA led either to the formation of a DNA-complex cationic adduct, or to its degradation, evidenced by DNA electrophoretic mobility and DNA interaction spectroscopic titration studies. Moreover, the antimicrobial activity of Cu(II) complexes against Gram(+) and Gram(-) bacteria can be attributed to the synergistic action of the dissociation species, namely the cationic [Cu(dienXX)Y](+) and anionic [YZ(2)](-) ones. Finally, de Novo linear regression analysis correlating the bioactivity of these complexes with their structural substituents has been carried out, leading to some interesting qualitative observations/conclusions. PMID:18584877

  15. Mono- and dinuclear nickel(II) complexes of resolved Schiff-base ligands with extended quinoline substituents.

    PubMed

    Prema, Dipesh; Oshin, Kayode; Desper, John; Levy, Christopher J

    2012-04-28

    The coordination chemistry of four enantiopure tetradentate bis(iminoquinoline) ligands with nickel(II) salts is reported. The previously reported ligands CBQ, CPQ, BBQ, and BPQ result from the condensation of (1R,2R)-cyclohexyldiamine or (R)-BINAM with two equivalents of 2-formylbenzo[h]quinoline or 8-isopropyl-2-quinolinecarboxaldehyde {CBQ = (1R,2R)-cyclohexanediamine-N,N'-bis(benzo[h]quinoline-2-ylmethylene), CPQ = (1R,2R)-cyclohexanediamine-N,N'-bis[[(8-isopropyl)-2-quinolinyl]methylene], BBQ = [(R)-1,1'-binaphthalene]-2,2'-diamine-N,N'-bis(benzo[h]quinoline-2-ylmethylene), BPQ = [(R)-1,1'-binaphthalene]-2,2'-diamine-N,N'-bis[[(8-isopropyl)-2-quinolinyl]methylene]}. Reaction of NiI(2) with the (1R,2R)-cyclohexyl ligands gives the mononuclear distorted trigonal-bipyramidal (TBP) complexes [Ni(N(3)-CBQ)I(2)] and [Ni(N(3)-CPQ)I(2)]. Incomplete iodide abstraction from [Ni(N(3)-CPQ)I(2)] with AgOTf leads to partial replacement of the iodide with hydroxide from adventitious water to give [Ni(N(3)-CPQ)I(1.6)(OH)(0.4)] (distorted TBP). The corresponding reaction with [Ni(N(3)-CBQ)I(2)] again fails to remove all of the iodide, resulting instead in conversion to the syn dinuclear [Ni(2)(CBQ)(?-X)(2)I(2)] (X = Cl(0.925)I(0.075)) complex, where chloride abstraction from the solvent (CH(2)Cl(2)) has resulted in a mixed halide system and the metal centers are square-pyramidal. Reaction of Ni(OTf)(2) with CBQ leads to the isolation of the octahedral cation [Ni(CMBQ)(2)](2+), with CMBQ [(1R,2R)-cyclohexanediamine-mono-N-(benzo[h]quinoline-2-ylmethylene)] being the partial hydrolysis product of CBQ. [Ni(CMBQ)(2)][OTf](2) crystallizes as a 1:1 mixture of P and M helical diastereomers. The coordination of NiI(2) with the (R)-BINAM derived ligands yields the anti dinuclear P-helical complexes [Ni(2)(BBQ)(?-I)(2)I(2)] and [Ni(2)(BPQ)(?-I)(2)I(2)]: one nickel ion is coordinated in each bidentate iminoquinoline pocket and the geometry at the metal centers is distorted square-pyramidal. Characterisation by (1)H NMR, UV-Vis, electronic circular dichroism (ECD) spectroscopy, combustion analysis, and HRMS is reported in addition to structural and halide abstraction studies. PMID:22407327

  16. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  17. One-electron oxidized nickel(II) complexes of bis and tetra(salicylidene) phenylenediamine Schiff bases: from monoradical to interacting Ni(III) ions.

    PubMed

    Rotthaus, Olaf; Jarjayes, Olivier; Philouze, Christian; Del Valle, Carlos Prez; Thomas, Fabrice

    2009-03-14

    The nickel(II) complexes of the mono and di-nucleating Schiff base ligands H(2)L(OMe), H(2)L(NO2) and H(4)L(bis) respectively were synthesized and characterized. H(2)L(OMe) and H(2)L(NO2) differ from one another by the substituents of the phenylene spacer, electron-donating methoxy or electron-withdrawing nitro groups respectively. X-Ray crystal structure analysis shows that the nickel(II) ion(s) resides within a square planar geometry in each complex. Cyclic voltammetry curves reveal that the electrochemical communication is strongly influenced by the substituent and the solvent. The one-electron oxidized species [Ni(L(OMe))](+) in CH(2)Cl(2) is a phenoxyl radical with partial delocalization of the spin density on a metal orbital (contribution of 6.8%), whereas [Ni(L(NO2))](+) was found to disproportionate once it is generated. A shift of electronic hole is observed in the presence of pyridine: both [Ni(L(OMe))](+) and the one-electron oxidation product of [Ni(L(NO2))] are converted into mononuclear octahedral nickel(III) complexes involving two axially bound pyridines. In the dinickel(II) complex of H(4)L(bis), namely [Ni(2)(L(bis))], the phenylene spacer mediates an electronic communication between the two metallic sites. Single oxidation of [Ni(2)(L(bis))] affords the delocalized phenoxyl radical [Ni(2)(L(bis))](+), whose EPR signature is close to that of [Ni(L(OMe))](+). Double oxidation affords the bis-{Ni(II)-delocalized radical} species [Ni(2)(L(bis))](2+). Each radical is located at a distinct metallic site and a weak but appreciable magnetic interaction exists between the paramagnetic centres. In the presence of pyridine, a complex involving two ferromagnetically coupled nickel(III) ions is obtained. The magnetic coupling has been estimated to 3.7 cm(-1), while the zero field splitting parameters are |D| = 0.012 cm(-1) and E = 0. They are weak, in agreement with the large intermetallic distance (7.7 A) observed in the neutral precursor [Ni(2)(L(bis))]. PMID:19240913

  18. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand.

    PubMed

    Shakila, K; Kalainathan, S

    2015-01-25

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). PMID:25173522

  19. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand

    NASA Astrophysics Data System (ADS)

    Shakila, K.; Kalainathan, S.

    2015-01-01

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA).

  20. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: synthesis, spectral characterization, antimicrobial and nuclease studies.

    PubMed

    Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. PMID:23981416

  1. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  2. The relationship between the strength of hydrogen bonding and spin crossover behaviour in a series of iron(III) Schiff base complexes.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Trvn?ek, Zden?k

    2015-03-14

    X-ray crystal structures and magnetic properties of an isostructural series of iron(III) Schiff base complexes with the general formula [Fe(L(5))(NCX)]Solv (where H2L(5) = N,N'-bis(2-hydroxy-naphthylidene)-1,6-diamino-4-azahexane, X = S, Solv = tetrahydrofuran, 1a; X = S, Solv = methanol and 0.5 pyrazine, 1b; X = S, Solv = butanone, 1c; Solv = N,N'-dimethylformamide, X = S (1d) or X = Se (1d'); X = S, Solv = dimethyl sulfoxide, 1e) are reported. In the crystals, the individual [Fe(L(5))(NCX)] molecules are connected through weak C-HO, C-H? or C-HS non-covalent contacts into 2D supramolecular networks, while the guest-solvent (Solv) molecules are trapped in the cavities between two adjacent layers, which are furthermore stabilized by N-HO hydrogen bonds connecting the Solv oxygen atom with the amine group of the [Fe(L(5))(NCX)] molecule, with the NO distances varying from 2.921(6) (in 1d') to 3.295(2) (in 1a). The magnetic properties of the complexes were tuned by the different Solv molecules and as a result of this, four new spin crossover (SCO) compounds with cooperative spin transitions are reported, which are accompanied by thermal hysteresis in two cases (1d and 1e): , T1/2 = 84 K; 1d, T1/2? = 232 K, T1/2? = 235 K and 1e, T1/2? = 127 K, T1/2? = 138 K. The role of the N-HO hydrogen bonding in the occurrence and tuning of SCO was also computationally studied using a topological analysis, and also by evaluation of non-covalent interaction (NCI) indexes. Both theoretical approaches showed a clear relationship between the strength of the N-HO hydrogen bonds and T1/2, as already inferred from X-ray structural and magnetic data. PMID:25645590

  3. Equilibrium CH acidity of Ni(II) complexes of Schiff's bases of amino acids with S-2-N-(N'-benzylprolyl)amino-benzaldehyde and S-2-N-(N'-benzylprolyl)aminobenzophenone

    SciTech Connect

    Terekhova, M.I.; Belokon', Yu.N.; Maleev, V.I.; Chernoglazova, N.I.; Kochetkov, K.A.; Belikov, V.M.; Petrov, E.S.

    1986-10-20

    By metal exchange in DMSO (K/sup +/ cation) pK values have been measured for a series of acids which are Ni(II) complexes of Schiff's bases of the amino acids Gly, S-Ala, and S-Val, with S-2-N-(N'-benzylprolyl)aminobenzaldehyde and S-2-N-(N'-benzylprolyl)aminobenzophenone. The amino acid fragment in the studied Ni(II) complexes possesses high acidity close to fluorene but five orders of magnitude greater than for acetophenone and approaching nitroalkanes in acidity.

  4. Tuning Interchain Interactions in Two-Dimensional Networks of Mn(III) Schiff-Base Complexes and Dicarboxylic Acids by Varying the Linker.

    PubMed

    Aono, Yoshitaka; Yoshida, Hiroki; Katoh, Keiichi; Breedlove, Brian K; Kagesawa, Koichi; Yamashita, Masahiro

    2015-07-20

    Two-dimensional (2D) coordination polymers consisting of Mn(III) Schiff-base complexes and dicarboxylic acids, [{Mn(salen)}4(L1)](PF6)2·(CH3OH)2 (C4; H2L1 = adipid acid) and [{Mn(salen)}4(L2)](PF6)2·(CH3OH)4 (C4'; H2L2 = E,E-1,3-butadiene-1,4-dicarboxylic acid) (salen(2-) = N,N'-(ethylene)bis(salicylideneiminato), were synthesized by using a one-pot reaction and characterized by using single-crystal X-ray crystallographic analysis. One-dimensional (1D) chains composed of Mn(salen) dimers, [Mn2], bridged by carboxylato ligands (-[Mn2]-OCO--[Mn2]-), were linked by dicarboxylato ligands with n-butyl (-C4H8-) (C4) and butadienyl aliphatic groups (-C4H4-) (C4'). From static magnetic measurements on both C4 and C4', there were ferromagnetic interactions between the Mn(III) ions through the phenoxo oxygen atoms of the salen(2-), and antiferromagnetic interactions between the Mn(III) ions through carboxylato ligands (-OCO-). As a result, weak ferromagnetism occurred because of the zigzag-shaped chain structure of C4 and C4', and magnetic anisotropy for Mn(salen). In the magnetization curves for C4', weak interchain interactions (Jlinker) occurred through the π-conjugated butadienyl linkers in C4', which C4 did not have. In other words, changing from saturated to unsaturated aliphatic groups in the dicarboxylic acid linkers resulted in weak interactions between 1D-magnetic chain moieties. Therefore, in the case of only C4', antiferromagnetic phase transition appeared at 2.3 K. Both coordination polymers exhibited slow relaxation of the magnetizations, which originated from SCM moieties, because C4 and C4' showed magnetic correlations. It is noteworthy that alternating current (ac) susceptibilities for C4' are frequency-dependent around the Néel temperature. From analysis of the ac susceptibilities for C4, α (dispersion coefficient of the relaxation of magnetization) varied linearly with 1/T. This signifies that C4 behaved as an SCM with a single relaxation process. On the other hand, in α versus 1/T plots for C4', an inflection point was observed at the Néel temperature, indicating that Jlinkers had an effect on the distribution of the relaxation times. Moreover, the inflection point for C4' disappeared when a dc magnetic field was applied. This is the first report showing a direct correlation between an antiferromagnetic phase transition and slow magnetic relaxation. PMID:26151757

  5. Synthesis and Characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) Complexes of Schiff Base Derived from Isonicotinoyl Hydrazone.

    PubMed

    Gawande, Pranita U; Mandlik, P R; Aswar, A S

    2015-01-01

    2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoyl hydrazone as a Schiff base ligand and its complexes with Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) metal ions have been synthesized. The ligands as well as their metal complexes were well characterized using various physicochemical techniques such as elemental analyses, molar conductance measurements, magnetic measurements, thermal analysis, electronic and IR spectral studies. On the basis of these studies, square pyramidal stereochemistry for Mn(III) and VO(IV) complexes while octahedral stereochemistry for all the other complexes have been suggested. The complexes were found to be stable up to 60-70 and thermal decomposition of the complexes ended with respective metal oxide as a final product. The thermal data have been analyzed for kinetic parameters using Broido and Horowitz-Metzger methods. The synthesized Schiff base ligand and its complexes were also tested for their antimicrobial activity using various microorganisms. PMID:26664052

  6. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide

    PubMed Central

    Gomathi, Ramadoss; Ramu, Andy; Murugan, Athiappan

    2014-01-01

    One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N′-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1 : 2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. PMID:24744691

  7. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide.

    PubMed

    Gomathi, Ramadoss; Ramu, Andy; Murugan, Athiappan

    2014-01-01

    One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N'-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1?:?2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. PMID:24744691

  8. Synthesis and Characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) Complexes of Schiff Base Derived from Isonicotinoyl Hydrazone

    PubMed Central

    Gawande, Pranita U.; Mandlik, P. R.; Aswar, A. S.

    2015-01-01

    2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoyl hydrazone as a Schiff base ligand and its complexes with Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) metal ions have been synthesized. The ligands as well as their metal complexes were well characterized using various physicochemical techniques such as elemental analyses, molar conductance measurements, magnetic measurements, thermal analysis, electronic and IR spectral studies. On the basis of these studies, square pyramidal stereochemistry for Mn(III) and VO(IV) complexes while octahedral stereochemistry for all the other complexes have been suggested. The complexes were found to be stable up to 60-70 and thermal decomposition of the complexes ended with respective metal oxide as a final product. The thermal data have been analyzed for kinetic parameters using Broido and Horowitz-Metzger methods. The synthesized Schiff base ligand and its complexes were also tested for their antimicrobial activity using various microorganisms. PMID:26664052

  9. Spectral studies of copper(II) complexes of 6-(3-thienyl) pyridine-2-thiosemicarbazone

    SciTech Connect

    Mahjoub, Omima Abdalla; Farina, Yang

    2014-09-03

    Two novel copper(II) complexes [Cu(HL)Cl]Cl.H{sub 2}O (1) and [Cu(L)NO{sub 3}]Ðœ‡H{sub 2}O (2) of the three NNS donor thiosemicarbazone ligand 6-(3-thienyl) pyridine-2-thiosemicarbazone have been synthesized. The ligand and its copper(II) complexes were characterized by elemental analysis (C, H, N, and S), FT-IR, UV-visible, magnetic susceptibility and molar conductance. The thiosemicarbazone is present either as the thione form in complex 1 or as thiol form in complex 2 and is coordinated to copper(II) atom via the pyridine nitrogen atom, the azomethine nitrogen atom and the sulfur atom. The physicochemical and spectral data suggest square planar geometry for copper(II) atoms.

  10. Schiff bases: a short survey on an evergreen chemistry tool.

    PubMed

    Qin, Wenling; Long, Sha; Panunzio, Mauro; Biondi, Stefano

    2013-01-01

    The review reports a short biography of the Italian naturalized chemist Hugo Schiff and an outline on the synthesis and use of his most popular discovery: the imines, very well known and popular as Schiff Bases. Recent developments on their "metallo-imines" variants have been described. The applications of Schiff bases in organic synthesis as partner in Staudinger and hetero Diels-Alder reactions, as "privileged" ligands in the organometallic complexes and as biological active Schiff intermediates/targets have been reported as well. PMID:24108395

  11. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  12. Spectral Characterization and 3D Molecular Modeling Studies of Metal Complexes Involving the O, N-Donor Environment of Quinazoline-4(3H)-one Schiff Base and Their Biological Studies

    PubMed Central

    Siddappa, Kuruba; Mane, Sunilkumar B.

    2014-01-01

    A simple condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde produced new tridentate ONO donor Schiff base ligand with efficient yield. The structural characterization of ligand and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were achieved by the aid of elemental analysis, spectral characterization such as (UV-visible, IR, NMR, mass, and ESR), and magnetic data. The analytical and spectroscopic studies suggest the octahedral geometries of Cu(II), Co(II), Ni(II) and Mn(II) complexes and tetrahedral geometry of Zn(II) and Cd(II) complexes with the tridentate ONO Schiff base ligand. Furthermore, the conclusions drawn from these studies afford further support to the mode of bonding discussed on the basis of their 3D molecular modeling studies by considering different bond lengths, bond angles, and bond distance. The ligand and its metal complexes evaluated for their antimicrobial activity against Staphylococcus aureus (MTCC number 7443), Bacillus subtilis (MTCC number 9878), Escherichia coli (MTCC number 1698), Aspergillus niger (MTCC number 281), and Aspergillus flavus (MTCC number 277). The MIC of these compounds was found to be most active at 10??g/mL concentration in inhibiting the growth of the tested organisms. The DNA cleavage activity of all the complexes was studied by gel electrophoresis method. PMID:24678278

  13. Copper(II) complexes with heterocyclic hydroxyimino-containing ligands

    SciTech Connect

    Kogan, V.A.; Burlov, A.S.; Popov, L.D.; Lukov, V.V.; Koshchienko, Yu.V.; Tsupak, E.B.; Barchan, G.P.; Chigarenko, G.G.; Bolotnikov, V.S.

    1988-05-01

    The reaction of oximes (R = Ph (L'), C=N (L'')) with the copper(II) salts CuA/sub 2/ in methanol has given the complexes CuL/sub 2/ ' x H/sub 2/O and CuL/sub 2//sup ''/ x 2H/sub 2/O (I) (A = Acet/sup -/), CuHLCl/sub 2/ x H/sub 2/O (II) (A = Cl/sup -/), CuLOH(ClO/sub 4/)/sub 2/ x 2H/sub 2/O (III) (A = ClO/sub 4//sup -/) and the complexes Cu/sub 3/L/sub 3//sup '/OH(NO/sub 3/)/sub 2/ and Cu/sub 3/L/sub 3//sup ''/(OH)/sub 2/NO/sub 3/ (IV) (A = NO/sub 3//sup -/). Their physicochemical properties have been studied by the methods of IR spectroscopy and magnetochemistry. It has been shown that complexes I have a chelate structure and that their magnetic moments are not dependent on the temperature. An anti-ferromagnetic exchange interaction takes place in complexes II-IV. On the basis of magnetochemical measurements over a broad temperature range and data calculated in the framework of the Heisenberg-Dirac-Van Vleck model of isotropic exchange interactions, a dimeric structure has been proposed for the complexes of type II, and a trinuclear cluster structure has been proposed for complexes III and IV.

  14. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: synthesis, spectral, cyclic voltammetry and biological activity studies.

    PubMed

    Mohamed, Rania G; Elantabli, Fatma M; Helal, Nadia H; El-Medani, Samir M

    2015-04-15

    Thermal reaction of M(CO)6 (M=Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2'-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, (1)H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated. PMID:25670089

  15. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Rania G.; Elantabli, Fatma M.; Helal, Nadia H.; El-Medani, Samir M.

    2015-04-01

    Thermal reaction of M(CO)6 (M = Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2?-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, 1H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  16. Synthesis, spectral characterization, DNA binding studies and antimicrobial activity of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) complexes with 4-aminoantipyrine Schiff base of ortho-vanillin.

    PubMed

    Anupama, B; Sunita, M; Shiva Leela, D; Ushaiah, B; Gyana Kumari, C

    2014-07-01

    A series of transition metal complexes of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) have been synthesized involving the Schiff base, 2,3-dimethyl-1-phenyl-4-(2-hydroxy-3-methoxy benzylideneamino)-pyrazol-5-one(L), obtained by condensation of 4-aminoantipyrine with 3-methoxy salicylaldehyde. Structural features were obtained from their FT-IR, UV-vis, NMR, ESI Mass, elemental analysis, magnetic moments, molar conductivity and thermal analysis studies. The Schiff base acts as a monovalent bidentate ligand, coordinating through the azomethine nitrogen and phenolic oxygen atom. Based on elemental and spectral studies six coordinated geometry is assigned to Co(II), Ni(II), Fe(III) and VO(IV) complexes and four coordinated geometry is assigned to Zn(II) complex. The interaction of metal complexes with Calf thymus DNA were carried out by UV-VIS titrations, fluorescence spectroscopy and viscosity measurements. The binding constants (K(b)) of the complexes were determined as 5??10(5) M(-1) for Co(II) complex, 1.33??10(4) M(-1) for Ni(II) complex, 3.33??10(5) M(-1) for Zn(II) complex, 1.25??10(5) M(-1) for Fe(III) complex and 8??10(5) M(-1) for VO(IV) complex. Quenching studies of the complexes indicate that these complexes strongly bind to DNA. Viscosity measurements indicate the binding mode of complexes with CT DNA by intercalation through groove. The ligand and it's metal complexes were screened for their antimicrobial activity against bacteria. The results showed the metal complexes to be biologically active, while the ligand to be inactive. PMID:24781660

  17. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Eldebss, Taha M. A.

    2011-09-01

    Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML 2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu 2+, Co 2+, Mn 2+, Zn 2+ and Ni 2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO 3.

  18. Facile luminescent tuning of Zn(II)/Hg(II) complexes based on flexible, semi-rigid and rigid polydentate Schiff bases from blue to green to red: structural, photophysics, electrochemistry and theoretical calculations studies.

    PubMed

    Wang, Xin-Ming; Chen, Shuo; Fan, Rui-Qing; Zhang, Fu-Qiang; Yang, Yu-Lin

    2015-05-01

    The photophysical properties of Zn(II)/Hg(II) Schiff base complexes could be fine and predictably tuned over a wide range of wavelengths by changing the ligand structures. A new series of polydentate Schiff base-type ligands, N,N'-bis(2-pyridinylethylidene)R(3)-1,2-diamine (), which contain a flexible, semi-rigid or rigid group (R(3) = butyl, cyclohexane, tolyl and phenylene), has been designed and employed for synthetizing new mononuclear or binuclear trans Zn(II)/Hg(II) complexes with a general formula of [M()Cl2] ( = N,N'-bis(2-pyridinylethylidene)phenylene-1,2-diamine, M = Zn, ; M = Hg, ), [M()Cl2] ( = N,N'-bis(2-pyridinylethylidene)toluene-3,4-diamine, M = Zn, ; M = Hg, ), [M2()Cl4]nCH2Cl2 ( = N,N'-bis(2-pyridinylmethylene)cyclohexane-1,2-diamine, M = Zn, n = 0, ; M = Hg, n = 1, ), [M2()Cl4]nCH3OH ( = N,N'-bis(2-pyridinylethylidene)cyclohexane-1,2-diamine, M = Zn, n = 1, ; M = Hg, n = 0, ), [M2()Cl4] ( = N,N'-bis(3-methoxy-2-pyridinylmethylene)-cyclohexane-1,2-diamine, M = Zn, ; M = Hg, ), [M2()Cl4]nCH3CN ( = N,N'-bis(3-methoxy-2-pyridinylmethylene)butane-1,4-diamine, M = Zn, n = 4, ; M = Hg, n = 0, ). All the ligands and complexes have been characterized by elemental analyses, IR spectra, and (1)H NMR spectra. Twelve structures of , , , , , and crystallized in three different conditions are further determined by single-crystal X-ray diffraction analyses. Their properties are fully characterized by UV-vis and fluorescence spectra both in solution and the solid state at room temperature. The luminescence color of these Zn(II)/Hg(II) Schiff base complexes could be tuned from blue to green to red (429-639 nm for , 434-627 nm for ) in solution by changing the ligand conjugated systems from flexibile () to semi-rigid () to rigid (). The spectra of the free Schiff bases are centered around 402-571 nm, which are perturbed upon the coordination to the Zn(II)/Hg(II) ion. Both the electrochemical data and TD-DFT calculations show that the HOMO-LUMO band gap from the ligand to the complex is reduced by complexation. Meanwhile, the emission efficiencies of Zn(II)-complexes are found to be strongly dependent on the Schiff-base ligands with quantum yields ranging from 14% to 25% for . However, the emission efficiencies dramatically decline in Hg(II)-complexes with quantum yields ranging from 4% to 19%, due to the heavy atom effect. PMID:25832991

  19. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 ?M), compared to the other complexes and the free ligands.

  20. A new trinuclear zinc(II) complex and a heptacoordinated mononuclear cadmium(II) complex with a pyrimidine derived Schiff base ligand: Syntheses, crystal structures, photoluminescence and DFT calculations

    NASA Astrophysics Data System (ADS)

    Das, Kinsuk; Jana, Atanu; Konar, Saugata; Chatterjee, Sudipta; Mondal, Tapan Kumar; Barik, Anil Kumar; Kar, Susanta Kumar

    2013-09-01

    The new N6 donor hexadentate Schiff base 2,4-bis [2-(pyridine-2-ylmethylidene) hydrazinyl] pyrimidine (L), its trinuclear Zn(II) complex, [Zn3(L)2Cl6] (1) and mononuclear heptacoordinate Cd(II) complex [Cd(L)(H2O)2](ClO4)2 (2) have been synthesised and characterised by crystallographically and spectroscopically. Complex 1 is featured by the triangular arrangement of three zinc atoms where the neighbouring Zn atoms are linked via half portion (N3 chromophore) of the same ligand molecule. In 1, the ligand molecules behave as hexadentate ones (employing both pyrimidine nitrogen atoms as active donor centres) to create the octahedral environment around Zn(II). The central and terminal Zn(II) atom has N6 and N3Cl3 chromophores respectively. In 2 the same ligand (L) behaves as pentadentate one (ignoring one pyrimidine nitrogen in the coordination process) to produce a pentagonal bipyramidal geometry with two apical water molecules. The geometries of both complexes were optimised in the singlet state by DFT method. The TDDFT calculations have been done on the optimised geometries to understand the electronic structure and spectral transition in the complexes. Complex 1 exhibits intraligand 1(π → π*) fluorescence in aqueous methanol solvent at room temperature.

  1. The antimicrobial and antibiofilm activities of copper(II) complexes.

    PubMed

    Beeton, Michael L; Aldrich-Wright, Janice R; Bolhuis, Albert

    2014-11-01

    Biofilm-related bacterial infections pose a significant problem, as they are generally more tolerant to antibiotics and the immune system. Development of novel compounds with antibiofilm activity is therefore paramount. In this study we have analysed metal complexes of the general structure [M(IL)(AL)](2+) (where IL represents functionalised 1,10-phenanthrolines and AL represents 1S,2S- or 1R,2R-diaminocyclohexane) and [Cu(IL)3](2+). Antimicrobial activity was tested on a number of bacterial strains, showing that copper(II) compounds were active against both Gram-positive and Gram-negative bacteria, albeit that activity was generally higher for the former. The antibiofilm activity was then determined against a clinical isolate of meticillin-resistant Staphylococcus aureus (MRSA). Strikingly, the copper complexes tested showed significant activity against biofilms, and were better in the removal of biofilms than vancomycin, an antibiotic that is currently used in the treatment of MRSA infections. PMID:25124857

  2. Organotin(IV) complexes derived from Schiff base N'-[(1E)-(2-hydroxy-3-methoxyphenyl)methylidene]pyridine-4-carbohydrazone: synthesis, in vitro cytotoxicities and DNA/BSA interaction.

    PubMed

    Hong, Min; Geng, Honglin; Niu, Meiju; Wang, Fei; Li, Dacheng; Liu, Jifeng; Yin, Handong

    2014-10-30

    Five organotin(IV) compounds were synthesized from N'-[(1E)-(2-hydroxy-3-methoxyphenyl)methylidene]pyridine-4-carbohydrazone and the corresponding dialkyltin(IV) or trialkyltin(IV) precursor. Solid state structures were determined by IR, elemental analysis, NMR spectroscopy, and for 1, 2, 4 and 5 single crystal X-ray diffraction analysis. Compounds 1, 2 and 4 are monomers with the tin atoms five-coordinated in distorted trigonal bipyramid, of which the deprotonated Schiff base ligand chelate to tin center in the enolic tridentate mode. Differently, in compound 5, the enolization does not occur for the Schiff base ligand, and only the pyridinyl N atom and the deprotonated phenol hydroxyl oxygen atom participate in the coordination. Fascinatingly, six trimethyltin(IV) coordination units are linked by the Sn?N weak interaction atoms and form a 72-membered crown-like macrocycle. Preliminary invitro cytotoxicity studies on five human tumor cells lines (HL-60, A549, HT-29, HCT-116 and Caco-2) by MTT assay reveal that di-n-butyltin(IV) complex 2 and diphenyltin(IV) complex 4 triggered significant antiproliferative effects in cultured tumor cells, and their cytotoxic activity correlates with intracellular organotin(IV) concentration. The interaction of the complexes with calf thymus DNA (CT-DNA) has been explored by absorption and emission titration methods, which revealed that complexes 2 and 4 interact with CT-DNA through groove-binding and partial intercalation of the extended planar ligand with the DNA base stack. Further, the albumin interactions of complexes 2 and 4 were investigated using fluorescence quenching spectra and synchronous fluorescence spectra. Studies reveal that di-n-butyltin(IV) complex 2 with higher cytotoxicity show stronger DNA/BSA interaction than diphenyltin(IV) complex 4. PMID:25216377

  3. Synthesis, characterization, X-ray crystal structure and conductometry studying of a number of new Schiff base complexes; a new example of binuclear square pyramidal geometry of Cu(II) complex bridged with an oxo group

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Alavipour, Ehsan

    2015-11-01

    Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L=1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.

  4. New Heteroleptic Copper(II) Complexes as MOCVD Precursors

    NASA Astrophysics Data System (ADS)

    Krisyuk, V. V.; Sysoev, S. V.; Rumyantsev, Y. M.; Prokhorova, S. A.; Maximovskiy, E. V.; Kosinova, M. L.; Igumenov, I. K.

    New volatile heteroleptic copper(II) complexes having beta-ketoiminate (O,N) and diketonate (O,O) ligands in one molecule were tested as precursors for LPCVD of copper films. Saturated vapor pressure was measured and compared for new compounds Cu(ki)(hfa) and Cu(dpk)(hfa), where ki = pentane-2-imino-4-onato, hfa = 1,1,1,5,5,5-hexafluoro-pentane- 2,4-dionato, dpk= 2,2,6,6-tetramethyl-3-iminoheptane-5-onato. The precursors are air stable and non hygroscopic compounds with long shelf life. It was demonstrated that copper metal films can be selectively deposited on metallic surfaces in the presence of hydrogen as a gas-reactant at temperatures of 250, 300, 350 C and pressure of 20 Torr. Si(100), SiO2 (melted quartz), stainless steel, and Cu, Al, RuO2, Ru and Ta sublayers on Si(100) were tested as substrate materials. Deposited films were analyzed and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  5. Synthesis and X-ray structure analysis of a new binuclear Schiff base Co(II) complex with the ligand N,N'-bis(3-methoxysalicylidene)-1,4-butanediamine

    SciTech Connect

    Nasr-Esfahani, M.

    2009-12-15

    The title binuclear complex, tris[N,N-bis(3-methoxysalicylidene)-1,4-diaminobutane] dicobalt(II), C{sub 60}H{sub 70}Co{sub 2}N{sub 6}O{sub 15}, was prepared by the reaction of the tetradentate Schiff base ligand bis(3-methoxysalicylidene)-1,4-diaminobutane and Co(CH{sub 3}COO){sub 2} . 4H{sub 2}O in a ethanol solution and structurally characterized by single-crystal X-ray diffraction. This complex has a dinuclear structure where two Co(II) ions are bridged by one N{sup 0},N'-bis(3-methoxysalicylidene)-1,4-diaminobutane. The two Co(II) ions, have two distorted octahedral coordination involving two O and two N atoms.

  6. Electrochemistry of copper(II) induced complexes in mycorrhizal maize plant tissues.

    PubMed

    Zitka, Ondrej; Merlos, Miguel-Angel; Adam, Vojtech; Ferrol, Nuria; Pohanka, Miroslav; Hubalek, Jaromir; Zehnalek, Josef; Trnkova, Libuse; Kizek, Rene

    2012-02-15

    Aim of the present paper was to study the electrochemical behavior of copper(II) induced complexes in extracts obtained from mycorrhizal and non-mycorrhizal maize (Zea mays L.) plants grown at two concentrations of copper(II): physiological (31.7 ng/mL) and toxic (317 μg/mL). Protein content was determined in the plant extracts and, after dilution to proper concentration, various concentrations of copper(II) ions (0, 100, 200 and 400 μg/mL) were added and incubated for 1h at 37°C. Further, the extracts were analyzed using flow injection analysis with electrochemical detection. The hydrodynamic voltammogram (HDV), which was obtained for each sample, indicated the complex creation. Steepness of measured dependencies was as follows: control 317 μg/mL of coppercopper(II) ions to upper parts of a plant by means of adsorbing of copper(II) in roots. Rapid complex formation was determined under applied potentials 300, 500 and 600 mV during the measuring HDVs. It was also verified that mycorrhizal colonization reduced root to shoot translocation of Cu(II) ions. PMID:22209587

  7. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.; Yadav, Deepak

    2015-06-01

    A series of two biologically active Schiff base ligands L1, L2 have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by 1H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7.

  8. A new oxovanadium(IV) complex containing an O,N-bidentate Schiff base ligand: Synthesis at ambient temperature, characterization, crystal structure and catalytic performance in selective oxidation of sulfides to sulfones using H2O2 under solvent-free conditions

    NASA Astrophysics Data System (ADS)

    Menati, Saeid; Rudbari, Hadi Amiri; Khorshidifard, Mahsa; Jalilian, Fariba

    2016-01-01

    A new bidentate ON Schiff base ligand, HL, was synthesized by simple condensation reaction of isopropylamine and salicylaldehyde. Then by reaction of HL and VO(acac)2 in the ratio of 2:1 at ambient temperature, a new oxovanadium(IV) Schiff base complex, VOL2, was synthesized. The Schiff base ligand and its oxovanadium(IV) complex were characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR and UV-visible spectroscopies. The crystal structure of oxovanadium(IV) complex, VOL2, was also determined by single crystal X-ray analysis. The vanadium center in this structure is coordinated to two bidentate Schiff base ligands with the two nitrogen and two phenolate oxygen atoms in equatorial positions and one oxo oxygen in the axial position to complete the distorted trigonal bipyramidal N2O3 coordination sphere. Catalytic performance of the VOL2 complex was studied in the selective oxidation of thioanisole with the green oxidant 35% aqueous H2O2 under solvent-free conditions and under organic solvents (EtOH, CHCl3, CH2Cl2, DMF, CH3CN, EtOAc) as a model. Due to better catalytic performance of the VOL2 complex under solvent-free conditions, this complex used for the oxidation of the different sulfides to the corresponding sulfones under solvent-free conditions. The use of hydrogen peroxide as oxidant and the absence of solvent makes these reactions interesting from environmental and economic points of view.

  9. Synthesis and Characterization of New Schiff Bases Derived from N (1)-Substituted Isatin with Dithiooxamide and Their Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) Complexes

    PubMed Central

    Abdul-Ghani, Ahlam J.; Khaleel, Asmaa M. N.

    2009-01-01

    Three new Schiff bases of N-substituted isatin LI, LII, and LIII = Schiff base of N-acetylisatin, N-benzylisatin, and N-benzoylisatin, respectively, and their metal complexes C1a,b = [Co2(LI)2Cl3]Cl, C2 = [Ni(LI)2Cl2]0.4BuOH, C3 = [CuLICl(H2O)]Cl ? 0.5BuOH, C4 = [Pd(LI)2Cl]Cl, C5 = [Pt(L1)2Cl2]Cl2 ? 1.8EtOH.H2O, C6a = [CoLIICl]Cl ? 0.4H2O ? 0.3DMSO, C6b = [CoLIICl]Cl ? 0.3H2O ? 0.1BuOH, C7 = [NiLIICl2], C8 = [CuLII]Cl2 ? H2O, C9 = [Pd(LII)2]Cl2, C10 = [Pt(LII)2.5Cl]Cl3, C11a = [Co(LIII)]C12 ? H2O, C11b = [Co(LIII)]Cl2 ? 0.2H2O, and C12 = [Ni(LIII)2]Cl2, C13 = [Ni(LIII)2]Cl2 were reported. The complexes were characterized by elemental analyses, metal and chloride content, spectroscopic methods, magnetic moments, conductivity measurements, and thermal studies. Some of these compounds were tested as antibacterial and antifungal agents against Staphylococcus aureus, Proteus vulgaris, Candida albicans, and Aspergillus niger. PMID:19865487

  10. Directed synthesis of a heterobimetallic complex based on a novel unsymmetric double-Schiff-base ligand: preparation, characterization, reactivity and structures of hetero- and homobimetallic nickel(II) and zinc(II) complexes.

    PubMed

    Roth, Arne; Buchholz, Axel; Rudolph, Manfred; Schtze, Eileen; Kothe, Erika; Plass, Winfried

    2008-01-01

    A series of bimetallic zinc(II) and nickel(II) complexes based on the novel dinucleating unsymmetric double-Schiff-base ligand benzoic acid [1-(3-{[2-(bispyridin-2-ylmethylamino)ethylimino]methyl}-2-hydroxy-5-methylphenyl)methylidene]hydrazide (H(2)bpampbh) has been synthesized and structurally characterized. The metal centers reside in two entirely different binding pockets provided by the ligand H(2)bpampbh, a planar tridentate [ONO] and a pentadentate [ON(4)] compartment. The utilized ligand H(2)bpampbh has been synthesized by condensation of the single-Schiff-base proligand Hbpahmb with benzoic acid hydrazide. The reaction of H(2)bpampbh with two equivalents of either zinc(II) or nickel(II) acetate yields the homobimetallic complexes [Zn(2)(bpampbh)(mu,eta(1)-OAc)(eta(1)-OAc)] (ZnZn) and [Ni(2)(bpampbh)(mu-H(2)O)(eta(1)-OAc)(H(2)O)](OAc) (NiNi), respectively. Simultaneous presence of one equivalent zinc(II) and one equivalent nickel(II) acetate results in the directed formation of the heterobimetallic complex [NiZn(bpampbh)(mu,eta(1)-OAc)(eta(1)-OAc)] (NiZn) with a selective binding of the nickel ions in the pentadentate ligand compartment. In addition, two homobimetallic azide-bridged complexes [Ni(2)(bpampbh)(mu,eta(1)-N(3))]ClO(4) (NiNi(N(3))) and [Ni(2)(bpampbh)(mu,eta(1)-N(3))(MeOH)(2)](ClO(4))(0.5)(N(3))(0.5) (NiNi(N(3))(MeOH)(2)) were synthesized. In all complexes, the metal ions residing in the pentadentate compartment adopt a distorted octahedral coordination geometry, whereas the metal centers placed in the tridentate compartment vary in coordination number and geometry from square-planar (NiNi(N(3))) and square-pyramidal (ZnZn and NiZn), to octahedral (NiNi and NiNi(N(3))(MeOH)(2)). In the case of complex NiNi(N(3)) this leads to a mixed-spin homodinuclear nickel(II) complex. All compounds have been characterized by means of mass spectrometry as well as IR and UV/Vis spectroscopies. Magnetic susceptibility measurements show significant zero-field splitting for the nickel-containing complexes (D=2.9 for NiZn, 2.2 for NiNi(N(3)), and 0.8 cm(-1) for NiNi) and additionally a weak antiferromagnetic coupling (J=-1.4 cm(-1)) in case of NiNi. Electrochemical measurements and photometric titrations reveal a strong Lewis acidity of the metal center placed in the tridentate binding compartment towards external donor molecules. A significant superoxide dismutase reactivity against superoxide radicals was found for complex NiNi. PMID:18058956

  11. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-25

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. PMID:25262143

  12. Synthesis, spectral characterization and antioxidant activity studies of a bidentate Schiff base, 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its Cd(II), Cu(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Harinath, Y.; Harikishore Kumar Reddy, D.; Naresh Kumar, B.; Apparao, Ch.; Seshaiah, K.

    2013-01-01

    A new Schiff base bidentate ligand (L), 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its metal (Cu(II), Cd(II), Ni(II) and Zn(II)) complexes with general stoichiometry [M(L)2X2] (where X = Cl) were synthesized. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, ESR spectral analyses, and molar conductance studies. The molar conductance data revealed that all the metal chelates are non-electrolytes. IR spectra showed that ligand (L) is coordinated to the metal ions in a bidentate manner with N and O donor sites of the azomethine-N, and carbonyl-O. ESR and UV-Vis spectral data showed that the geometrical structure of the complexes are Orthorhombic. Furthermore, the antioxidant activity of the ligand and its complexes was determined by hydroxyl radical scavenging, DPPH, NO, reducing power methods in vitro. The obtained IC50 value of the DPPH activity for the copper complex (IC50 = 66.4 μm) was higher than other compounds. Microbial assay of the above complexes against Staphylococcus aureus, Escherichia coli, Rhizocotonia bataticola and Alternaria alternata showed that copper complex exhibited higher activity than the other complexes.

  13. Theoretical and experimental studies on three new coordination complexes of Co(II), Ni(II), and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand.

    PubMed

    Kusmariya, Brajendra S; Mishra, A P

    2015-11-01

    Three mononuclear coordination complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 2,4-dichloro-6-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol ligand (H 2 L) obtained by simple condensation reaction of 3,5-dichloro-2-hydroxybenzaldehyde and 2-amino-4-chlorobenzenethiol and characterized by elemental analysis, spectral (FT-IR, electronic, and (1)H-NMR), molar conductance, thermal, SEM, PXRD, and fluorescence studies. The PXRD analysis and SEM-EDX micrographs show the crystalline nature of complexes. The domain size and the lattice strain of synthesized compounds have been determined according to Williamson-Hall plot. TG of the synthesized complexes illustrates the general decomposition pattern of the complexes. The ligand exhibits an interesting fluorescence property which is suppressed after complex formation. The Co(II) complex adopted a distorted octahedral configuration while Ni(II) and Cu(II) complexes showed square planar geometry around metal center. The geometry optimization, HOMO-LUMO, molecular electrostatic potential map (MEP), and spin density of synthesized compounds have been performed by density functional theory (DFT) method using B3LYP/6-31G and B3LYP/LANL2DZ as basis set. Graphical abstract Three new coordination complexes of Co(II), Ni(II) and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand. PMID:26438445

  14. Self-assembly of copper(II) complexes with a dibasic tridentate ligand and monodentate N-heterocycles: structural, magnetic and EPR studies

    NASA Astrophysics Data System (ADS)

    Das, Sunirban; Pal, Samudranil

    2005-05-01

    Three ternary copper(II) complexes of general formula [Cu(bhac)(hc)], with a tridentate Schiff base, acetylacetone benzoylhydrazone (H 2bhac) and monodentate N-heterocycles (hc=pyrazole, imidazole and pyridine), have been synthesized. Elemental analysis, various forms of spectroscopy (infrared, electronic absorption and EPR), cyclic voltammetry, cryomagnetic measurements and X-ray crystallography were used for the characterization of the complexes. Analytical data, infrared and electronic spectral features and molar conductivity values are consistent with the proposed molecular formulae and the +2 oxidation state of the metal ion in these complexes. In each complex, the enolate-O, the imine-N and the deprotonated amide-O donor tridentate ligand (bhac 2-) and the sp 2 N donor heterocycle form an O 2N 2 square-plane around the metal ion. The whole molecule of none of the complexes is perfectly planar because of different orientation of the phenyl ring plane of the tridentate ligand and that of the heterocycle ring plane with respect to the plane containing rest of the molecule. In the solid state, the complexes having the pyrazole and the pyridine as the heterocyclic ligand, exist as centrosymmetric dimeric species due to very weak apical coordination of the metal bound enolate-O. The complex of imidazole has no such apical coordination and exists as a monomer. In the crystal lattice, the molecules of these complexes are involved in a variety of intermolecular non-covalent interactions such as O-H⋯O, N-H⋯O, N-H⋯N, C-H⋯? and ?⋯?. Self-assembly via these interactions lead to a one-dimensional arrangement of [Cu(bhac)(Hpyrz)]C 2H 5OH, a two-dimensional layered structure of [Cu(bhac)(Himdz)] and a three-dimensional network of [Cu(bhac)(py)]. Cryomagnetic and EPR spectral measurements indicates weak antiferromagnetic spin-exchange in all the three complexes.

  15. Oxaziridine-mediated enantioselective aminohydroxylation of styrenes catalyzed by copper(II) bis(oxazoline) complexes.

    PubMed

    Michaelis, David J; Williamson, Kevin S; Yoon, Tehshik P

    2009-06-27

    We report an oxaziridine-mediated enantioselective aminohydroxylation of olefins catalyzed by a chiral copper(II) bis(oxazoline) complex. A variety of styrenic olefins undergo efficient aminohydroxylation with excellent regioselectivity and synthetically useful levels of enantioselectivty (up to 84% ee). The reaction can be conducted on multi-gram scale with as little as 2 mol% of the copper(II) catalyst. Hydrolysis of the resulting 1,3-oxazolines under acidic conditions produces N-sulfonyl amino alcohols that can be purified by recrystallization to afford very high levels of enantioselectivity. PMID:20161136

  16. Enantiomeric fluoro-substituted benzothiazole Schiff base-valine Cu(II)/Zn(II) complexes as chemotherapeutic agents: DNA binding profile, cleavage activity, MTT assay and cell imaging studies.

    PubMed

    Alizadeh, Rahman; Yousuf, Imtiyaz; Afzal, Mohd; Srivastav, Saurabh; Srikrishna, Saripella; Arjmand, Farukh

    2015-02-01

    To evaluate the biological preference of chiral drugs toward DNA target, new metal-based chemotherapeutic agents of Cu(II) and Zn(II), l-/d-fluorobenzothiazole Schiff base-valine complexes 1 &2 (a and b), respectively were synthesized and thoroughly characterized. Preliminary in vitro DNA binding studies of ligand L and complexes 1 &2 (a and b) were carried out in Tris-HCl buffer at pH 7.2 to demonstrate the chiral preference of l-enantiomeric complexes over the d-analogues. The extent of DNA binding propensity was ascertained quantitatively by Kb, K and Ksv values which revealed greater binding propensity by l-enantiomeric Cu(II) complex 1a and its potency to act as a chemotherapeutic agent. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1a as compared to 2avia hydrolytic cleavage mechanism. The complexes 1 &2 (a and b) were also screened for antimicrobial activity which demonstrated significantly good activity for l-enantiomeric complexes. Furthermore, cytotoxicity of the complexes 1a and 1b was evaluated by the MTT assay on human HeLa cancer cell line which implicated that more than 50% cells were viable at 15?M. These results were further validated by cell imaging studies which demonstrated the nuclear blebbing. PMID:25600265

  17. Synthesis, spectroscopic, thermal and electrical conductivity studies of three charge transfer complexes formed between 1,3-di[( E)-1-(2-hydroxyphenyl)methylideneamino]-2-propanol Schiff base and different acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ibrahim, Mohamed M.; Moussa, Mohamed A. A.

    2012-01-01

    Charge-transfer complexes (CTC) resulting from interactions of 1,3-di[( E)-1-(2-hydroxyphenyl) methylideneamino]-2-propanol Schiff base with some acceptors such as iodine (I2), bromine (Br2), and picric acid (PiA) have been isolated in the solid state in a chloroform solvent at room temperature. Based on elemental analysis, UV-Vis, infrared, and 1H NMR spectra, and thermogravimetric analysis (TG/DTG) of the solid CTC, [(Schiff)(I2)] (1), [(Schiff)(Br2)] complexes with a ratio of 1:1 and [(Schiff)(PiA)3] complexes with 1:3 have been prepared. In the picric acid complex, infrared and 1H NMR spectroscopic data indicate that the charge-transfer interaction is associated with a hydrogen bonding, whereas the iodine and bromine complexes were interpreted in terms of the formation of dative ion pairs [Schiff+, I{2/•-}] and [Schiff+, Br{2/•-}], respectively. Kinetic parameters were obtained for each stage of thermal degradation of the CT complexes using Coats-Redfern and Horowitz-Metzger methods. DC electrical properties as a function of temperature of these charge transfer complexes have been studied.

  18. Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M(II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH2)

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, Ayman A.; Salem, Abdel Naby M.; Sayed, Mostafa A.; Aboaly, Mohamed M.

    2012-02-01

    The reactions of acetate salts of M(II) (M = Mn, Co, Ni, Cu and Zn) with N-salicylidene-o-aminophenol (saphH2) in ethyl alcohol afforded new four coordinated complexes with the general formula [M(II)(saph)(H2O)]. The complexes have been fully characterized by microanalysis, molar conductance, magnetic susceptibility, 1H NMR, IR, UV-Vis, ESR, mass spectra and thermogravimetric analysis (TGA). The experimental data have been shown that all complexes are mononuclear with the M(II) being coordinated by a dianionic tridentate Schiff base ligand, through the deprotonated two enolic oxygen and the azomethine nitrogen atoms. UV-Vis spectra and magnetic moments have been suggested square planar stereochemistry for Co(II) and Cu(II) complexes, and tetrahedral geometry has been suggested for Mn(II), Ni(II) and Zn(II) complexes. The new complexes have been tested for their abilities to catalyze aerial oxidation of benzaldehyde to benzoic acid. Finally, in view of the biological activity, antibacterial and antifungal tests of the ligand and its complexes have been carried out and the results were compared with some known antibiotics.

  19. Synthesis and characterization of a nickel(II) complex of 9-methoxy-2,3-dihydro-1,4-benzoxyzepine derived from a Schiff base ligand and its ligand substitution reaction

    NASA Astrophysics Data System (ADS)

    Saha, Sudeshna; Kottalanka, Ravi K.; Bhowmik, Prasanta; Jana, Subrata; Harms, Klaus; Panda, Tarun K.; Chattopadhyay, Shouvik; Nayek, Hari Pada

    2014-03-01

    A Schiff base ligand (2-{(E)-[2-bromoethyl)imino]methyl}-6-methoxy phenol (LH) has been synthesized and characterized by NMR, IR spectroscopy and elemental analysis. The reaction of LH with nickel acetate tetrahydrate results in the formation of a nickel(II) complex (1). The ligand (LH) has been converted into a heterocyclic moiety, 9-methoxy-2,3-dihydro-1,4-benzoxyzepine (L) in 1 and coordinated to nickel(II) ion. Ligand substitution reaction of 1 with 3-aminopyridine leads to the formation of 3-aminopyridine derivative of complex 1, [{3-(NH2-Py)}4Ni(H2O)2]Br2?2(CH2Cl2) (2). Complexes 1 and 2 were characterized by using standard analytical techniques and their solid-state structures were confirmed by single crystal X-ray diffraction studies. Complex 1 crystallizes in orthorhombic space group Pccn with cell dimensions of a = 7.8483(10) , b = 30.662(3) , c = 9.3872(11) , Z = 4 and complex 2 crystallizes in orthorhombic space group Fddd with cell dimensions of a = 8.8108(4) , b = 21.0583(11) , c = 34.1913(17) , Z = 8. The optical properties and thermogravimetric analyses of complexes 1 and 2 are also reported.

  20. Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    The novel Schiff base ligand 2-(4-(dimethylamino)benzylidene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 4-dimethylaminobenzaldehyde and its newly synthesized Cu(II), Co(II), Ni(II) and Zn(II) complexes have been characterized by microanalysis, magnetic susceptibility, molar conductance, thermal analysis, FT-IR, 1H NMR, ESI mass, UV-Visible, ESR spectroscopy and powder X-ray diffraction data. The newly synthesized ligand behaves as a bidentate ON donor. The IR results confirmed the bidentate binding of the ligand involving oxygen atom of amide carbonyl and azomethine nitrogen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of all the compounds against Artemia salina. Furthermore, the antioxidant activity of the ligand (L) and its metal complexes were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH), the ligand exhibited potent in vitro - antioxidant activity than its metal complexes.

  1. Chemoprevention of Colonic Aberrant Crypt Foci by Novel Schiff Based Dichlorido(4-Methoxy-2-{[2-(Piperazin-4-Ium-1-Yl)Ethyl]Iminomethyl}Phenolate)Cd Complex in Azoxymethane-Induced Colorectal Cancer in Rats

    PubMed Central

    Hajrezaie, Maryam; Shams, Keivan; Moghadamtousi, Soheil Zorofchian; Karimian, Hamed; Hassandarvish, Pouya; Emtyazjoo, Mozhgan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    Schiff-based complexes as a source of cancer chemotherapeutic compounds have been subjected to the variety of anticancer studies. The in-vitro analysis confirmed the CdCl2(C14H21N3O2) complex possess cytotoxicity and apoptosis induction properties in colon cancer cells, so lead to investigate the inhibitory efficiency of the compound on colonic aberrant crypt foci (ACF). Five groups of adult male rats were used in this study: Vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of complex for 10 weeks. The rats in vehicle group were injected subcutaneously with 15 mg/kg of sterile normal saline once a week for 2 weeks and orally administered with 5% Tween-20 (5 ml/kg) for 10 weeks, other groups were injected subcutaneously with 15 mg/kg azoxymethane once a week for 2 weeks. The rats in positive groups were injected intra-peritoneally with 35 mg/kg 5-Flourouracil four times in a month. Administration of the complex suppressed total colonic ACF formation up to 73.4% (P < 0.05). The results also showed that treatment with the complex significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. PMID:26201720

  2. Synthesis and characterization of some new complexes of Cu(II), Ni(II) and V(IV) with Schiff base derived from indole-3-carboxaldehyde. Biological activity on prokaryotes and eukaryotes.

    PubMed

    Rosu, Tudor; Pahontu, Elena; Ilies, Diana-Carolina; Georgescu, Rodica; Mocanu, Mihaela; Leabu, Mircea; Shova, Sergiu; Gulea, Aurelian

    2012-07-01

    Six new Cu(II), Ni(II), and VO(II) complexes (1-6) with Schiff base 1-phenyl-2,3-dimethyl-4-(1H-indole-3-carboxaldehyde)-3-pyrazolin-5-one (HL) were synthesized. The Schiff base was prepared through the condensation of 1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-one (antipyrine) with 1H-indole-3-carboxaldehyde. The new obtained compounds were characterized by (1)H NMR, (13)C NMR, UV-VIS, IR, EPR spectroscopy, elemental analysis, molar electric conductibility, magnetic susceptibility and thermal gravimetric analysis. In addition, the structure of the ligand HL has been determined by X-ray diffraction methods. The biological activity of complex compounds was investigated in terms of antibacterial effect on prokaryotic cells, by using paper disc diffusion technique, and for antiproliferative effect on eukaryotic cells, by monitoring mitotic activity in timelapse videomicroscopy experiments. The compounds were screened for their antibacterial activity against gram-positive bacteria (Staphylococcus aureus var. Oxford 6538, Klebsielle pneumoniae ATCC 100131 and Legionella monocytogenes ATCC 35182), gram-negative bacteria (Escherichia coli ATCC 10536, Pseudomonas aeruginosa ATCC 9027 and Salmonella typhimurium ATCC 14028) and anti-fungal activity (Candida albicans and Aspergillus flavus) using paper disc diffusion technique. The minimum inhibitory concentrations (MICs) of the compounds were also determined by agar streak dilution method. Compounds 3 and 4 proved to be the most effective as antibacterial agents. The antiproliferative activity was investigated by counting the number of mitoses for HeLa, and MCF7 cells. No significant antiproliferative effect was noted for HL and complex 2, for both used cell types. For complexes 1 and 3 complete inhibition of cell proliferation was observed in the case of HeLa cells, while the effects on MCF7 cell proliferation were lower. In conclusion, six new complex compounds were synthesized, and their biological activity investigated on both prokaryotic and eukaryotic cells, proving that some of them could be putative therapeutic substances. PMID:22516425

  3. Two water-soluble copper(II) complexes: synthesis, characterization, DNA cleavage, protein binding activities and in vitro anticancer activity studies.

    PubMed

    Lu, Jing; Sun, Qian; Li, Jun-Ling; Jiang, Lin; Gu, Wen; Liu, Xin; Tian, Jin-Lei; Yan, Shi-Ping

    2014-08-01

    Two water-soluble ternary copper(II) complexes of [Cu(L)Cl](ClO4) (1) and [Cu(L)Br2] (2) (L=(2-((quinolin-8-ylimino)methyl)pyridine)) were prepared and characterized by various physico-chemical techniques. Both 1 and 2 were structurally characterized by X-ray crystallography. The crystal structures show the presence of a distorted square-pyramidal CuN3Cl2 (1) or CuN3Br2 (2) geometry in which Schiff-base L acts as a neutral tridentate ligand. Both complexes present intermolecular ?-? stacking interactions between quinoline and pyridine rings. The interaction of two complexes with CT-DNA (calf thymus-DNA) and BSA (bovine serum albumin) was studied by means of various spectroscopy methods, which revealed that 1 and 2 could interact with CT-DNA through intercalation mode, and could quench the intrinsic fluorescence of BSA in a static quenching process. Furthermore, the competition experiment using Hoechst 33258 indicated that two complexes may bind to CT-DNA by a minor groove. DNA cleavage experiments indicate that the complexes exhibit efficient DNA cleavage activities without any external agents, and hydroxyl radical (HO) and singlet oxygen ((1)O2) may serve as the major cleavage active species. Notably, the in vitro cytotoxicity of the complexes on three human tumor cells lines (HeLa, MCF-7, and A549) demonstrates that two compounds have broad-spectrum antitumor activity with quite low IC50 ranges of 0.43-1.85?M. Based on the cell cycle experiments, 1 and 2 could delay or inhibit cell cycle progression through the S phase. PMID:24803026

  4. Synthesis, spectral characterization and antimicrobial studies of nano-sized oxovanadium(IV) complexes with Schiff bases derived from 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazole and indoline-2,3-dione

    NASA Astrophysics Data System (ADS)

    Sahani, M. K.; Yadava, U.; Pandey, O. P.; Sengupta, S. K.

    A new class of oxovanadium(IV) complexes with Schiff bases derived by the condensation of 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazoles and indoline-2,3-dione have been prepared in ethanol in the presence of sodium acetate. Micro-analytical data, magnetic susceptibility, UV-Vis, IR, EPR and XRD spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-pyramidal geometry. The oxovanadium(IV) complexes have monoclinic crystal system and particle sizes were found to be in the range 18.0 nm to 24.0 nm (nano-size). In vitro antifungal activity of synthesized compounds was determined against fungi Aspergillus niger, Colletotrichum falcatum and Colletotrichum pallescence and in vitro antibacterial activity was determined by screening the compounds against Gram-negative (Escherichia coli and Salmonella typhi) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains. The oxovanadium(IV) complexes have higher antimicrobial effect than free ligands.

  5. Synthesis, characterization and biological activities of Cu(II), Co(II), Mn(II), Fe(II), and UO2(VI) complexes with a new Schiff Base hydrazone: O-hydroxyacetophenone-7-chloro-4-quinoline hydrazone.

    PubMed

    Al-Shaalan, Nora H

    2011-01-01

    The Schiff base hydrazone ligand HL was prepared by the condensation reaction of 7-chloro-4-quinoline with o-hydroxyacetophenone. The ligand behaves either as monobasic bidentate or dibasic tridentate and contain ONN coordination sites. This was accounted for be the presence in the ligand of a phenolic azomethine and imine groups. It reacts with Cu(II), Ni(II), Co(II), Mn(II), UO(2) (VI) and Fe(II) to form either mono- or binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, NMR, Mass, and UV-Visible spectra. The magnetic moments and electrical conductance of the complexes were also determined. The Co(II), Ni(II) and UO(2) (VI) complexes are mononuclear and coordinated to NO sites of two ligand molecules. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, the Ni(II) complex is octahedral while the UO(2) (VI) complex has its favoured heptacoordination. The Co(II), Mn(II) complexes and also other Ni(II) and Fe(III) complexes, which were obtained in the presence of Li(OH) as deprotonating agent, are binuclear and coordinated via the NNNO sites of two ligand molecules. All the binuclear complexes have octahedral geometries and their magnetic moments are quite low compared to the calculated value for two metal ions complexes and thus antiferromagnetic interactions between the two adjacent metal ions. The ligand HL and metal complexes were tested against a strain of Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited high antibacterial activities. PMID:21996717

  6. Antiangiogenic activity of mononuclear copper(II) polypyridyl complexes for the treatment of cancers.

    PubMed

    Nagababu, Penumaka; Barui, Ayan Kumar; Thulasiram, Bathini; Devi, C Shobha; Satyanarayana, S; Patra, Chitta Ranjan; Sreedhar, Bojja

    2015-07-01

    A series of four new mononuclear copper(II) polypyridyl complexes (1-4) have been designed, developed, and thoroughly characterized by several physicochemical techniques. The CT-DNA binding properties of 1-4 have been investigated by absorption, emission spectroscopy, and viscosity measurements. All the complexes especially 1 and 4 exhibit cytotoxicity toward several cancer cell lines, suggesting their anticancer properties as observed by several in vitro assays. Additionally, the complexes show inhibition of endothelial cell (HUVECs) proliferation, indicating their antiangiogenic nature. In vivo chick embryo angiogenesis assay again confirms the antiangiogenic properties of 1 and 4. The formation of excessive intracellular ROS (H2O2 and O2(•-)) and upregulation of BAX induced by copper(II) complexes may be the plausible mechanisms behind their anticancer activities. The present study may offer a basis for the development of new transition metal complexes through suitable choice of ligands for cancer therapeutics by controlling tumor angiogenesis. PMID:26068145

  7. Preparation, magnetic and EPR spectral studies of copper(II) complexes of an anticancer drug analogue

    NASA Astrophysics Data System (ADS)

    Manoj, E.; Kurup, M. R. Prathapachandra; Punnoose, Alex

    2009-04-01

    Ten new copper(II) complexes of five potential bisthiocarbohydrazone and biscarbohydrazone ligands were synthesized and physico-chemically characterized. The spectral and magnetic studies of compounds are consistent with the formation of asymmetric di-, tri- or tetranuclear copper(II) complexes of deprotonated forms of respective ligands. The variable temperature magnetic susceptibility measurements of all complexes show antiferromagnetic interactions between the Cu(II) centers, in agreement with very broad powder EPR spectra. However, frozen solution EPR spectral studies are found in contradiction with the solid-state magnetic studies and indicate that the complexes are not very stable in solutions; the possible fragmentations of complexes are found in agreement with MALDI MS results. The EPR spectral simulation of most of the compounds is in agreement with the presence of two uncoupled Cu(II) species in solution.

  8. Characterization, molecular modeling and antimicrobial activity of metal complexes of tridentate Schiff base derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 2-aminophenol

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.

    Metal complexes of Ni(II), Co(II), Cd(II), VO(IV) and UO2(VI) as well as several Cu(II) salts, including Cl,NO3-,AcO,ClO4- and SO4-2 with a tridentate O2N donor Schiff base ligand (H2L), synthesized by condensation of 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione with 2-aminophenol, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal gravimetric analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Molecular parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data, and the changes of bond lengths are linearly correlated with IR data. The antimicrobial activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus as Gram positive bacteria, Proteus vulgaris as Gram negative bacteria and Candida albicans as fungus strain, and the results are discussed.

  9. Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds.

    PubMed

    Gorczy?ski, Adam; Pakulski, Dawid; Szyma?ska, Martyna; Kubicki, Maciej; Bu?at, Kornela; ?uczak, Teresa; Patroniak, Violetta

    2016-03-01

    Facile and efficient template synthesis of new manganese(II) complex [Mn2(H2L)2](ClO4)2 (1) and its crystal structure are reported. Self-assembly leads to the formation of dinuclear, phenoxo-bridged closed species via exploitation of both binding subunits of the in situ formed new Schiff-base ligand. Gold electrode modified with self-assembled monolayers (SAMs) composed of synthesized complex 1 was applied as a voltammetric sensor for quantitative determination of dopamine (DA) in the presence of ascorbic (AA) and uric acids (UA). The linear relationship between the current response of dopamine at the potential of peak maximum and the concentration was found over a wide analyte concentration range (R(2)?0.993, 110(-10)-8.510(-4)M) with a very good sensitivity (4.11Acm(-2)M(-1) at dE/dt=0.1Vs(-1)), high detection limit (6.810(-9)M) and excellent reproducibility. It has been proven that current peaks of dopamine, ascorbic and uric acids were clearly separated from each other, thus enabling selective detection of these compounds coexisting in a mixture. PMID:26717851

  10. Synthesis, spectroscopic, thermal and antimicrobial studies of some novel metal complexes of Schiff base derived from [ N1-(4-methoxy-1,2,5-thiadiazol-3-yl)sulfanilamide] and 2-thiophene carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Sharaby, Carmen M.

    2007-04-01

    Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO 2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M 2X 4(HL)(H 2O) 4] (where M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl, [Fe 2Cl 6(HL)(H 2O) 2], [(FeSO 4) 2(HL)(H 2O) 4] and [(UO 2) 2(HL) (NO 3) 4]·H 2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as Δ E*, Δ H*, Δ S*, and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.

  11. Synthesis, Crystal structure, and Hirshfeld Surface Analysis of a New Mixed Ligand Copper(II) Complex.

    PubMed

    Shit, Shyamapada; Marschner, Christoph; Mitra, Samiran

    2016-01-01

    A new mixed ligand copper(II) complex, [Cu(2,4-pydc)(pic)(H2O)]?H2O (1) (where 2,4-pydc = pyridine-2,4-dicarboxylate, pic = 2-picolylamine) has been synthesized and characterized by elemental analysis, FT-IR and UV-Vis spectroscopic and thermogravimetric methods. Single crystal X-ray diffraction analysis reveals that copper(II) atom in the title complex adopts distorted square pyramidal geometry. Structural characterization also reveals that interplay of O-HO, N-HO, C-HO, and C-H? interactions between lattice and coordinated water and ligands significantly contribute to the crystal packing leading to the formation and strengthening of three dimensional supramolecular assembly. Hirshfeld surface analysis employing 3D molecular surface contours and 2D fingerprint plots have been used to analyze intermolecular interactions present in the solid state of the crystal. PMID:26970797

  12. Synthesis, structure and spectroscopic properties of an o-phthalate-bridged copper(II) chain complex

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, J.; Su, Q.; Wang, Q.; Wu, X.

    2000-01-01

    An o-phthalate-bridged copper(II) chain complex of {[Cu(2,2'-bipyridine)(?-phthalate)H 2O]3.5H 2O} n has been prepared and characterized by X-ray crystallography and UV-vis spectroscopy measurements. It crystallizes in the monoclinic system, space group P2 1/c, with a=9.9585(5), b=14.8312(8), c=13.6875(7) , ?=104.868(1) and Z=4. The copper(II) center is in 4+1 surrounding that can be described as square-pyramid. Each Cu(II) atom links by o-phthalate to form a waving chain. A network structure is assembled by chains via ?-? interactions and water molecules are clathrated in the cavities. The UV-vis absorption spectrum of the title complex is also reported and explained perfectly by the scaling radial theory which was proposed by us.

  13. Anticandidal cytotoxicity, antitumor activities, and purified cell wall modulation by novel Schiff base ligand and its metal (II) complexes against some pathogenic yeasts.

    PubMed

    Geweely, Neveen S

    2009-09-01

    The preparation of metal (II) complexes [CoCl(2).6H(2)O, Ni(CH(3)COO)(2).4H(2)O, Cu(CH(3)COO)(2).2H(2)O, and Zn (CH3COO)(2) .2H(2)O] with 2[N-(cinnamlidene) amino]-5-nitro phenol as a novel ligands and their biological evaluation against candida species was studied. The inhibitory effects of the tested metal complexes were tested against six pathogenic yeasts (Candida albicans, C. fructus, C. glabrata, C. oleophila, C. parapsilosis, and C. tropicalis). The effect of the most efficient metal complex (Zn(II) complex) was more pronounced at 1.25 microg/ml, while Ni(II) complex was exhibited the least suppressive effect. Co(II) and Zn(II) complexes act as potential antitumor agents, while Zn(II) complex has shown promising cytotoxic activity with slow candidal respiration rate. Addition of Zn(II) complex leading to suppression of cell wall components in all candidal cells accompanied with leaking out of amino acids. Purification of the cell wall mannoprotein of C. glabrata treated with Zn(II) complex was established, resulting one pure fissured protein peak. Cell wall protein modulation was showed by appearance of two new protein bands with molecular weights of 72 and 39 KDa in C. glabrata cells treated with Zn(II) complex compared with one pure protein band 55.6 KDa in the non treated yeast cell. PMID:19655126

  14. An unusual 3D interdigitated architecture assembled from Keggin polyoxometalates and dinuclear copper(II) complexes

    SciTech Connect

    Pang, Haijun; Yang, Ming; Kang, Lu; Ma, Huiyuan; Liu, Bo; Li, Shaobin; Liu, Heng

    2013-02-15

    A novel organic-inorganic hybrid compound, [Cu{sub 2}(bipy){sub 3}({mu}{sub 1}-H{sub 2}O){sub 2}({mu}{sub 2}-H{sub 2}O)({mu}{sub 2}-OH)(H{sub 2}BW{sub 12}O{sub 40})]{center_dot}4 H{sub 2}O (1) (bipy=4,4 Prime -bipy), has been synthesized in hydrothermal condition and characterized by elemental analysis, IR spectrum, TG analysis and single-crystal X-ray diffraction. Compound 1 possesses poly-pendant layered motifs composed of 12-tungstoborates and dinuclear copper(II) complexes, in which the mono-coordinated bipy molecules are orderly appended to both sides of the layer, respectively. Adjacent layers mutually engage in a zipper-like pattern to result in a novel 3D interdigitated architecture. The variable-temperature magnetic susceptibility of 1 showed that there existed weak antiferromagnetic interaction in 1. Toward the reduction of hydrogen peroxide, 1 has good electrocatalytic activity and remarkable stability. - A new compound has been obtained, which represents the first interdigitated architecture assembled by POMs and dinuclear copper(II) complexes. Highlights: Black-Right-Pointing-Pointer The first example of interdigitated architecture assembled by POMs and dinuclear copper(II) complexes is observed. Black-Right-Pointing-Pointer A zipper-like pattern is observed in the structure. Black-Right-Pointing-Pointer The IR, TG, XRPD, magnetism and electrochemical property of the title compound were studied.

  15. Influence of electron beam irradiation on spectral, thermal, morphological and catalytic properties of Co(II) complex immobilized on chitosan's Schiff base.

    PubMed

    Antony, R; Theodore David, S; Karuppasamy, K; Sanjeev, Ganesh; Balakumar, S

    2014-04-24

    This study was carried out to investigate the effect of electron beam irradiation on the spectral and catalytic properties of chitosan supported (ONClCl) tetra coordinated Co(II) complex, [Co(OIAC)Cl2]. The complex was subjected to electron beam irradiation of 100 Gy, 1 kGy and 10 kGy doses. Chain scission of chitosan was observed on irradiation at 100 Gy and 10 kGy and chain linking at 1 kGy as evidenced by viscosity and FT-IR spectroscopic studies. This observation was also confirmed by thermo gravimetric and differential thermogravimetric (TG-DTG) analysis. It revealed that the thermal stability of the complex was increased at 1 kGy irradiation and decreased at 100 Gy and 10 kGy. In addition, the effect of electron beam irradiation on the surface morphology of the complex was studied by scanning electron microscopy. Catalytic abilities of both non-irradiated complex and irradiated complexes were determined and compared in the cyclohexane oxidation using hydrogen peroxide oxidant. The catalytic activity was found to increase after irradiation at all doses. Though the complex irradiated at 10 kGy showed highest conversion efficiency, irradiation at 1 kGy is suggested as the best dose due to the extensive reusability and adequate catalytic ability of the complex. PMID:24486862

  16. Highly valence-diversified binuclear uranium complexes of a schiff-base polypyrrolic macrocycle: prediction of unusual structures, electronic properties, and formation reactions.

    PubMed

    Yao, Jun; Zheng, Xiu-Jun; Pan, Qing-Jiang; Schreckenbach, Georg

    2015-06-01

    On the basis of relativistic density functional theory calculations, homo- and heterovalent binuclear uranium complexes of a polypyrrolic macrocycle in a U-O-U bridging fashion have been investigated. These complexes show a variety of oxidation states for uranium ranging from III to VI, which have been confirmed by the calculated electron-spin density on each metal center. An equatorially 5-fold uranyl coordination mode is suitable for hexavalent uranium complexes, while silylation of the uranyl oxo is favored by pentavalent uranium. Uranyl oxo ligands are not required anymore for the coordination environment of tetra- and trivalent uranium because of their replacement by strong donors such as tetrahydrofuran and iodine. Optimization of binuclear U(VI)-U(III) complexes with various coordinating modes of U(III), donor numbers, and donor types reveals that 0.5-1.0 electron has been transferred from U(III) to U(VI). Consequently, U(V)-U(IV) complexes are more favorable. Electronic structures and formation reactions of several representative uranium complexes were calculated. For example, a 5f-based ?(U-U) bonding orbital is found in the diuranium(IV) complex, rationalizing the fact that it shows the shortest U-U distance (3.82 ) among the studied binuclear complexes. PMID:25955709

  17. Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities

    NASA Astrophysics Data System (ADS)

    Abo-Aly, M. M.; Salem, A. M.; Sayed, M. A.; Abdel Aziz, A. A.

    2015-02-01

    Spectroscopic (IR, Raman, NMR, UV-visible, and ESR), and structural studies of the ligand 3-methoxy-N-salicylidene-o-amino phenol (H2L) and its synthesized complexes with some transition metal ions (Mn(II), Co(II), Ni(II)), Cu(II) and Zn(II)) were recorded and analyzed. The magnetic properties and thermal gravimetric analysis (TGA and DTA) were also measured for the complexes. The metal complexes were found to have The structural formula ML?H2O and the metal ions Mn(II), Co(II), Ni(II)) and Zn(II) were found to form tetrahedral complexes with the ligand whereas Cu(II) formed a square planar one. Antimicrobial activity of the ligand and its complexes were also investigated and discussed.

  18. A new dioxime ligand and its trinuclear copper(II) complex: Synthesis, characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Karipcin, Fatma; Dede, Bülent; Caglar, Yasemin; Hür, Deniz; Ilican, Saliha; Caglar, Mujdat; Şahin, Yücel

    2007-04-01

    The synthesis and characterization of a new dioxime ligand, (H2L), (III) and its trinuclear copper(II) complex, [Cu3L2(H2O)2](ClO4)2, (V) is described. IR spectra show that the ligand acts in a tetradentate manner and coordinates N4 donor groups of H2L to copper(II) ion. The structure of the metal chelate is clarified with the help of elemental analysis, magnetic moment, conductometric and spectroscopic measurements. The optical absorption studies reveal that the transition is direct with band gap energy values are calculated. The optical constants such as refractive index and dielectric constant of the compound were determined. The refractive index dispersion curves of the films obey the single-oscillator model and oscillator parameters. Optical dispersion parameters E0 and Ed developed by Wemple-DiDomenico were calculated.

  19. Synthesis, spectral characterization, molecular modeling and in vitro antibacterial activity of complexes designed from O2, NO and NO donor Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, Ola A.; Abu El-Reash, G.; Ahmed, S. F.

    2015-01-01

    A new chelating agent, N‧-(4-methoxybenzylidene)-2-oxo-2-(phenylamino)acetohydrazide (H2OMPH) and its complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and U(IV)O22+ ions have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand coordinates as neutral bidentate with Cu(II), Mn(II), U(IV)O22+ and Hg(II), neutral tridentate with Ni(II), mononegative tridentate with Co(II) and binegative tetradentate with Zn(II) ions. On basis of magnetic and electronic spectral data an octahedral geometry for Mn(II), Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complex have been proposed and confirmed by applying geometry optimization and conformational analysis. The protonation constants of H2OMPH and the stepwise stability constants of its complexes are calculated at 298, 308 and 318 k as well as their thermodynamic parameters. Also, the Kinetic parameters (Ea, A, ΔH*, ΔS* and ΔG*) were determined for each thermal degradation stage of some complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and some complexes were screened for in vitro antibacterial activity against Staphylococcus epidermalies (St. epid); Streptococcus pyagenies (Strp. py.) as Gram +ve bacteria and Escherichia coli (E. coli); Klebsiella spp. (kleb. spp.) as Gram -ve bacteria using inhibition zone diameter.

  20. Synthesis, spectral characterization, molecular modeling and in vitro antibacterial activity of complexes designed from OO, NO and NN donor Schiff-base ligand [corrected].

    PubMed

    El-Gammal, Ola A; Abu El-Reash, G; Ahmed, S F

    2015-01-25

    A new chelating agent, N'-(4-methoxybenzylidene)-2-oxo-2-(phenylamino)acetohydrazide (H2OMPH) and its complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and U(IV)O2(2+) ions have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand coordinates as neutral bidentate with Cu(II), Mn(II), U(IV)O2(2+) and Hg(II), neutral tridentate with Ni(II), mononegative tridentate with Co(II) and binegative tetradentate with Zn(II) ions. On basis of magnetic and electronic spectral data an octahedral geometry for Mn(II), Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complex have been proposed and confirmed by applying geometry optimization and conformational analysis. The protonation constants of H2OMPH and the stepwise stability constants of its complexes are calculated at 298, 308 and 318 k as well as their thermodynamic parameters. Also, the Kinetic parameters (Ea, A, ?H(*), ?S(*) and ?G(*)) were determined for each thermal degradation stage of some complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and some complexes were screened for in vitro antibacterial activity against Staphylococcus epidermalies (St. epid); Streptococcus pyagenies (Strp. py.) as Gram +ve bacteria and Escherichia coli (E. coli); Klebsiella spp. (kleb. spp.) as Gram -ve bacteria using inhibition zone diameter. PMID:25064507

  1. Chelating ability and biological activity of hesperetin Schiff base.

    PubMed

    Lodyga-Chruscinska, Elzbieta; Symonowicz, Marzena; Sykula, Anna; Bujacz, Anna; Garribba, Eugenio; Rowinska-Zyrek, Magdalena; Oldziej, Stanislaw; Klewicka, Elzbieta; Janicka, Magdalena; Krolewska, Karolina; Cieslak, Marcin; Brodowska, Katarzyna; Chruscinski, Longin

    2015-02-01

    Hydrazone hesperetin Schiff base (HHSB) - N-[()-[5,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)chroman-4-ylidene]amino]benzamide has been synthesized and its crystal structure was determined. This compound was used for the formation of Cu(II) complexes in solid state and in solution which were characterized using different spectroscopic methods. The analyses of potentiometric titration curves revealed that monomeric and dimeric complexes of Cu(II) are formed above pH7. The ESI-MS (electrospray ionization-mass spectrometry) spectra confirmed their formation. The EPR and UV-visible spectra evidenced the involvement of oxygen and nitrogen atoms in Cu(II) coordination. Hydrazone hesperetin Schiff base can show keto-enol tautomerism and coordinate Cu(II) in the keto (O(-), N, Oket) and in the enolate form (O(-), N, O(-)enol). The semi-empirical molecular orbital method PM6 and DFT (density functional theory) calculations have revealed that the more stable form of the dimeric complex is that one in which the ligand is present in the enol form. The CuHHSB complex has shown high efficiency in the cleavage of plasmid DNA in aqueous solution, indicating its potential as chemical nuclease. Studies on DNA interactions, antimicrobial and cytotoxic activities have been undertaken to gain more information on the biological significance of HHSB and copper(II)-HHSB chelate species. PMID:25486205

  2. Mixed ligand complexes of cobalt(III) and iron(III) containing N2O2-chelating Schiff base: Synthesis, characterisation, antimicrobial activity, antioxidant and DFT study

    NASA Astrophysics Data System (ADS)

    Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2015-11-01

    Six mixed ligand complexes, namely, [Co(acac)L1] (1), [Fe(acac)L1] (2), [Co(acac)L2] (3), [Fe(acac)L2] (4), [Co(acac)L3] (5), and [Fe(acac)L3] (6) (H2L1 = NN/-bis(salicylidene)-trans 1,2 diaminocyclohexane, H2L2 = NN/-bis(salicylidene)-1,2 phenylenediamine, H2L3 = NN/-bis(salicylidene)-4-methyl-1,2-phenylenediamine) were synthesised and characterized using elemental analysis, IR spectra, UV-Vis spectra, mass spectra, magnetic susceptibility measurements, 1H and 13C NMR spectroscopy, thermogravimetric analysis. The molar conductance measurement confirmed the non-electrolytic nature of the complexes in DMF solution. Antioxidant activity of the complexes was studied using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. Biological studies of the complexes have been carried out in vitro for antimicrobial activity against some selected gram-positive and gram-negative bacteria. DFT calculations were performed using GAUSSIAN 09 program to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the complexes.

  3. Pharmacophore hybrid approach of new modulated bis-diimine Cu(II)/Zn(II) complexes based on 5-chloro Isatin Schiff base derivatives: Synthesis, spectral studies and comparative biological assessment.

    PubMed

    Shakir, Mohammad; Hanif, Summaiya; Sherwani, Mohd Asif; Mohammad, Owais; Azam, Mohammad; Al-Resayes, Saud I

    2016-04-01

    Novel bioactive 5-chloro isatin based Schiff base ligands, (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrobenzo [d]thiazol-2-amine), L(1) and (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrothiazol-2-amine), L(2) derived from 2-amino 5-nitrobenzothiazole and 2-amino 5-nitrothiazole and their metal complexes, [Cu(L(1))2]Cl2;1, [Zn(L(1))2(H2O)2]Cl2;2, [Cu(L(2))2]Cl2;3 and [Zn(L(2))2(H2O)2]Cl2;4 have been synthesized. The composition, stoichiometry and geometry of the proposed ligands and their complexes have been envisaged by the results of elemental analyses and spectroscopic data (FT-IR, (1)H NMR and (13)C NMR, Mass and EPR). The molar conductivity values of the metal complexes revealed their ionic nature. The thermal stability of metal complexes was demonstrated by TGA/DTA studies while the crystalline nature of the complexes has been ascertained by XRD. Furthermore, a comparative account of in vitro antibacterial study against different bacterial strains with respect to standard antibiotic and scavenging activity against standard control at different concenterations unfolded pronounced antibacterial and radical scavenging potencies of the metal complexes as compared to free ligands. In addition, in vitro cytotoxicity of ligands and its metal complexes was also screened on MCF7 (Human breast adenocarcinoma), HeLa (Human cervical carcinoma) and HepG2 (Human Hepatocellular carcinoma), cell lines and normal cells (PBMC). The antiproliferative outcomes revealed that metal complexes exhibit superior activity in general as compared to free ligands (L(1) and L(2)) where metal complexes (1 and 2) of 5-chloro isatin linked benzothiazole motif (L(1)) are found to have better prospect of acting as chemotherapeutic agents which can be explained in terms of greater biopotency, planarity and conjugation against all the tested cancer cell lines with IC50<2.80μM. PMID:26882291

  4. One-pot synthesis, structural characterization, UV-Vis and electrochemical analyses of new Schiff base complexes of Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Back, Davi Fernando; de Oliveira, Gelson Manzoni; Fontana, Liniquer Andre; Ramão, Brenda Fiorin; Roman, Daiane; Iglesias, Bernardo Almeida

    2015-11-01

    The complexes [Ni(Pyr2tetam-2H)]·2H2O (1) (Pyr2tetam = (pyridoxyl)2-N1,N4-triethylenetetramine), [Fe(Pyr2tetam-2H)](ClO4)·H2O (2) and [Cu(Pyrtetam-H)](ClO4) (3) (Pyrtetam = pyridoxyl-N1-triethylenetetramine) were obtained through one pot reactions of triethylenetetramine, pyridoxal chloridrate, triethylamine and the metal salts Ni(ClO4)2·6H2O, Fe(ClO4)2·6H2O and Cu(ClO4)2·6H2O. In complexes 1 and 2 the metal centers present a distorted octahedral coordination, while complex 3 shows a square pyramidal configuration. The structures were characterized through X-ray diffractometry, IR and UV-Vis spectra. Cyclic voltammograms of the title compounds are also presented and discussed.

  5. Mimicking peroxidase activity by a polymer-supported oxidovanadium(IV) Schiff base complex derived from salicylaldehyde and 1,3-diamino-2-hydroxypropane.

    PubMed

    Maurya, Mannar R; Chaudhary, Nikita; Avecilla, Fernando; Correia, Isabel

    2015-06-01

    The polymer-supported oxidovanadium(IV) complex PS-[V(IV)O(sal-dahp)] (2) (PS=chloromethylated polystyrene crosslinked with 5% divinylbenzene, and H3sal-dahp=dibasic pentadentate ligand derived from salicylaldehyde and 1,3-diamino-2-hydroxypropane) was prepared from the corresponding monomeric oxidovanadium(IV) complex [V(IV)O(Hsal-dahp)(DMSO)] (1), characterized and successfully used as catalyst for the peroxidase-like oxidation of pyrogallol. The oxidation of pyrogallol to purpurogallin with PS-[V(IV)O(sal-dahp)] (2) was achieved under mild conditions at pH7 buffered solution. Plausible intermediate species formed during peroxidase mimicking experiments are proposed, by studying the model complex [V(IV)O(Hsal-dahp)(DMSO)] (1) by UV-visible and (51)V NMR spectroscopies. The high peroxidase mimicking ability of polymer-supported complex 2, its stability in a wide pH range, the easy separation from the reaction media, and the reusability without considerable decrease in activity, suggest that this heterogeneous catalyst has high potential for application in sustainable industrial catalysis. PMID:25747150

  6. Exploring the coordinative adaptation and molecular shapes of trinuclear CuM(II) (M = Zn/Cd) complexes derived from salen type Schiff bases: structural and theoretical studies.

    PubMed

    Hazari, Alokesh; Das, Lakshmi Kanta; Bauzá, Antonio; Frontera, Antonio; Ghosh, Ashutosh

    2016-04-01

    Three new trinuclear hetero-metallic complexes [(CuL)2Zn(NCS)2] (1), [(CuL(R))2Zn(NCS)(μ1,1-NCS)] (2) and [(CuL(R))2Cd(μ1,3-NCS)2] (4) have been synthesized using [CuL] and [CuL(R)] as "metalloligands" (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine and H2L(R) = N,N'-bis(2-hydroxybenzyl)-1,3-propanediamine). All three complexes are characterized by elemental analysis, spectroscopic methods and single crystal XRD. Complex 1 is an angular trinuclear species, in which two terminal four-coordinate square planar "metalloligands" [CuL] are coordinated to a central Zn(ii) through double phenoxido bridges along with two mutually cis nitrogen atoms of terminal isothiocyanate ions as is usually found in such complexes. In contrast, in complex 2, the two terminal "metalloligands" [CuL(R)] are square pyramidal, as one of the SCN(-) ions makes an unusual μ1,1-NCS bridge between copper centers while the other one coordinates to Zn(ii) through a N atom in a usual fashion making its geometry also square pyramidal. For 4 which possesses an angular trinuclear structure, in addition to double phenoxido bridges from two terminal [CuL(R)], both the SCN(-) ions are S-bonded to Cd(ii) and form a bridge (cis-μ1,3-SCN) between Cd(ii) and each of the terminal Cu(ii) ions. This structure is different from its unreduced analogue in which NCS(-) was N-terminal coordinated to Cd(ii) (3/3'). All the structures have been optimized using density functional theory (DFT) calculations. It has been found that for H2L, optimized structures like 1 and 2 differ only by 0.4 kcal mol(-1) but the H2L(R) structure 2 is more stable by 5.5 kcal mol(-1) than the structure resembling 1. For Cd(ii) complexes also, H2L optimized structures such as 3 and 4 do not differ significantly in energy (1.0 kcal mol(-1)) but the H2L(R) structure 4 is more stable than that of 3 by 4.6 kcal mol(-1). In fact, structure 4 has been found to be the most stable one among the other possible isomers of H2L(R). PMID:26931060

  7. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Copper (II) Complex against Ethanol-Induced Acute Gastric Lesions in Rats

    PubMed Central

    Hassandarvish, Pouya; Gwaram, Nura Suleiman; A. Hadi, A. Hamid; Mohd Ali, Hapipah; Majid, Nazia; Abdulla, Mahmood Ameen

    2012-01-01

    Background Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II) complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats. Methodology/Principal Findings Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v). Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20). Groups 4–7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20), respectively. Tween 20 (10% v/v) was given orally to group 1 and absolute ethanol was given orally to groups 2–7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4–7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4–7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound. Conclusions/Significance The gastroprotective effect of the Copper (II) complex may possibly be due to preservation of gastric wall mucus; increase in PGE2 synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein. PMID:23251568

  8. Synthesis and characterization of substituted Schiff-base ligands and their d(10) metal complexes: structure-induced luminescence tuning behaviors and applications in co-sensitized solar cells.

    PubMed

    Dong, Yu-Wei; Fan, Rui-Qing; Wang, Ping; Wei, Li-Guo; Wang, Xin-Ming; Zhang, Hui-Jie; Gao, Song; Yang, Yu-Lin; Wang, Yu-Lei

    2015-03-28

    Nine IIB group complexes, [ZnL1Cl2] (Zn1), [CdL1Cl2]2 (Cd1), [HgL1Cl2] (Hg1), [ZnL2Cl2] (Zn2), [CdL2Cl2] (Cd2), [HgL2Cl2] (Hg2), [ZnL3Cl2] (Zn3), [CdL3Cl2] (Cd3) and [HgL3Cl2] (Hg3), have been synthesized from the corresponding ortho-(6-methoxy-pyridyl)(CH[double bond, length as m-dash]NAr) (where Ar = 2,6-iPr2C6H3, L1; 4-MeC6H4, L2; 2-OMeC6H4, L3) Schiff base and structurally characterized by elemental analysis, FT-IR, (1)H NMR and X-ray single-crystal analysis. Crystallographic studies reveal that the center metal of the complexes adopts a distorted tetrahedron geometry (except for Cd1 and Cd3, which display square pyramidal geometry) and C-HCl hydrogen bonds and ππ stacking interactions contribute to three-dimensional supramolecular structures. The series of complexes exhibit tunable luminescence from blue, through green, to light yellow by varying the temperature (298 K and 77 K), both in solution and in the solid state. Moreover, the quantum yields range from 0.027 to 0.422, and decrease according to the order of the periodic table (Zn > Cd > Hg). These results indicate that the center atom of the complexes leads to the geometry differences and hence to the tunable luminescence properties. Because Zn1-Zn3 exhibited higher molar extinction coefficients and a distinct absorption region, they were employed as co-sensitizers in ruthenium dye N719-sensitized photoanodes to deliver light-electricity efficiency enhancement, being assembled with counter-electrodes and electrolyte to prepare ZnX/N719 (where ZnX = Zn1, Zn2, and Zn3) co-sensitized dye sensitized solar cell (DSSC) devices. The prepared co-absorbent could overcome the deficiency of N719 absorption in the low-wavelength region of the visible spectrum, and offset competitive visible-light absorption of I3(-). Application of these prepared complexes in N719-sensitized solar cells enhanced their performance by 10-36%, which indicated a potential application of these types of complexes in DSSCs. PMID:25597537

  9. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  10. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: synthesis, spectroscopic and antipathogenic studies.

    PubMed

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X2 and [Ni(L)X]X compositions (where L=ligand and X=NO3-, Cl- and CH3COO-) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans. PMID:21094079

  11. Kinetics and mechanisms of the oxidation of alcohols and hydroxylamines by hydrogen peroxide, catalyzed by methyltrioxorhenium, MTO, and the oxygen binding properties of cobalt Schiff base complexes

    SciTech Connect

    Zauche, Timothy

    1999-02-12

    Catalysis is a very interesting area of chemistry, which is currently developing at a rapid pace. A great deal of effort is being put forth by both industry and academia to make reactions faster and more productive. One method of accomplishing this is by the development of catalysts. Enzymes are an example of catalysts that are able to perform reactions on a very rapid time scale and also very specifically; a goal for every man-made catalyst. A kinetic study can also be carried out for a reaction to gain a better understanding of its mechanism and to determine what type of catalyst would assist the reaction. Kinetic studies can also help determine other factors, such as the shelf life of a chemical, or the optimum temperature for an industrial scale reaction. An area of catalysis being studied at this time is that of oxygenations. Life on this earth depends on the kinetic barriers for oxygen in its various forms. If it were not for these barriers, molecular oxygen, water, and the oxygenated materials in the land would be in a constant equilibrium. These same barriers must be overcome when performing oxygenation reactions on the laboratory or industrial scale. By performing kinetic studies and developing catalysts for these reactions, a large number of reactions can be made more economical, while making less unwanted byproducts. For this dissertation the activation by transition metal complexes of hydrogen peroxide or molecular oxygen coordination will be discussed.

  12. Hexa- and heptacoordinated manganese(II) dicyanamide complexes containing a tetradentate N-donor Schiff base: Syntheses, composition tailored architectures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Bhar, Kishalay; Sutradhar, Dipu; Choubey, Somnath; Ghosh, Rajarshi; Lin, Chia-Her; Ribas, Joan; Ghosh, Barindra Kumar

    2013-11-01

    Two 1D coordination polymers [Mn(L)(?1,5-dca)(MeOH)]n(ClO4)n (1) and [Mn(L)(?1,5-dca)]n(PF6)n (2) and a dinuclear compound [Mn2(L)2(?1,5-dca)2(dca)2]?H2O (3) [L = N,N'-(bis-(pyridin-2-yl)benzylidene)-ethane-1,2-diamine; dca = dicyanamide] have been isolated using one-pot synthesis of the building components in appropriate molar ratios and characterized. X-ray structural studies reveal that 1 forms a zigzag 1D chain through single Mn-(NCNCN)-Mn units in which each heptacoordinated manganese(II) center adopts a distorted pentagonal bipyramidal geometry with an MnN6O chromophore occupied with four N atoms of L, two nitrile N atoms of monobridged ?1,5-dca and one O atom of MeOH. In 2, each hexacoordinated metal(II) center has a distorted octahedral coordination environment with an MnN6 chromophore bound by four N atoms of L and two nitrile N atoms of two different single bridged ?1,5-dca units; the latter connects other neighboring metal centers in a non-ending fashion affording a linear 1D chain. Complex 3 is dinuclear where two [Mn(L)]2+ units are connected by double ?1,5-dca bridges with a distorted pentagonal bipyramidal environment. Variable-temperature magnetic susceptibility measurements of 1-3 show weak antiferromagnetic interactions among the metal centers through ?1,5-dca bridges.

  13. Redox noninnocence of the bridge in copper(II) salophen and bis(oxamato) complexes.

    PubMed

    de Bellefeuille, David; Orio, Maylis; Barra, Anne-Laure; Aukauloo, Ally; Journaux, Yves; Philouze, Christian; Ottenwaelder, Xavier; Thomas, Fabrice

    2015-09-21

    Two square-planar copper(II) complexes of 1,2-bis(2-hydroxy-3,5-di-tert-butylbenzimino)-4,5-bis(dimethylamino)benzene (1) and N-[4,5-bis(dimethylamino)-2-(oxalylamino)benzene]oxamate (2(2-)) were prepared. The crystal structures of the proligands H2L(1) and Et2H2L(2), as well as the corresponding complexes, are reported. The proligands each display a one-electron-oxidation wave, which is assigned to oxidation of the bis(dimethylamino)benzene moiety into a ? radical. Complexes 1 and 2(2-) exhibit reversible one-electron-oxidation waves in their cyclic voltammograms (E1/2(1) = 0.14 and E1/2(2) = 0.31 V for 1 and E1/2(1) = -0.47 V vs Fc(+)/Fc for 2(2-)). The first process corresponds to oxidation of the bis(dimethylamino)benzene central ring into a ? radical, while the second process for 1 is ascribed to oxidation of the ? radical into an ?-diiminoquinone. The one-electron-oxidized species 1(+) and 2(-) exhibit intense visible-near-IR absorptions, which are diagnostic of ? radicals. They display a triplet signal in their electron paramagnetic resonance spectra, which stem from magnetic coupling between the ligand-radical spin and the copper(II) spin. The zero-field-splitting parameters are larger for 2(-) than 1(+) because of greater delocalization of the spin density onto the coordinated amidato N atoms. Density functional theory calculations support a ?-radical nature of the one-electron-oxidized complexes, as well as S = 1 ground spin states. The electrogenerated 1(2+) comprises a closed-shell diiminoquinone ligand coordinated to a copper(II) metal center. Both 1 and 2 catalyze the aerobic oxidation of benzyl alcohol, albeit with different yields. PMID:26340100

  14. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe