Science.gov

Sample records for copy number amplification

  1. Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus.

    PubMed

    Marx, Hans; Mecklenbräuker, Astrid; Gasser, Brigitte; Sauer, Michael; Mattanovich, Diethard

    2009-12-01

    The yeast Pichia pastoris is a widely used host organism for heterologous protein production. One of the basic steps for strain improvement is to ensure a sufficient level of transcription of the heterologous gene, based on promoter strength and gene copy number. To date, high-copy-number integrants of P. pastoris are achievable only by screening of random events or by cloning of gene concatemers. Methods for rapid and reliable multicopy integration of the expression cassette are therefore desirable. Here we present such a method based on vector integration into the rDNA locus and post-transformational vector amplification by repeated selection on increased antibiotic concentrations. Data are presented for two exemplary products: human serum albumin, which is secreted into the supernatant, and human superoxide dismutase, which is accumulated in the cytoplasm of the cells. The striking picture evolving is that intracellular protein production is tightly correlated with gene copy number, while use of the secretory pathway introduces a high clonal variability and the correlation with gene copy number is valid only for low gene copy numbers. PMID:19799640

  2. Plasmids with temperature-dependent copy number for amplification of cloned genes and their products.

    PubMed

    Uhlin, B E; Molin, S; Gustafsson, P; Nordström, K

    1979-06-01

    Miniplasmids (pKN402 and pKN410) were isolated from runaway-replication mutants of plasmid R1. At 30 degrees C these miniplasmids are present in 20--50 copies per cell of Escherichia coli, whereas at temperatures above 35 degrees C the plasmids replicate without copy number control during 2--3 h. At the end of this period plasmid DNA amounts to about 75% of the total DNA. During the gene amplification, growth and protein synthesis continue at normal rate leading to a drastic amplification of plasmid gene products. Plasmids pKN402 (4.6 Md) and pKN410 (10 Md) have single restriction sites for restriction endonucleases EcoRI and HindIII; in addition plamid pKN410 has a single BamHI site and carries ampicillin resistance. The plasmids can therefore be used as cloning vectors. Several genes were cloned into these vectors using the EcoRI sites; chromosomal as well as plasmid-coded beta-lactamase was found to be amplified up to 400-fold after thermal induction of the runaway replication. Vectors of this temperature-dependent class will be useful in the production of large quantities of genes and gene products. These plasmids have lost their mobilization capacity. Runaway replication is lethal to the host bacteria in rich media. These two properties contribute to the safe use of the plasmids as cloning vehicles. PMID:383579

  3. Adaptation of the osmotolerant yeast Zygosaccharomyces rouxii to an osmotic environment through copy number amplification of FLO11D.

    PubMed

    Watanabe, Jun; Uehara, Kenji; Mogi, Yoshinobu

    2013-10-01

    Copy number variations (CNVs) contribute to the adaptation process in two possible ways. First, they may have a direct role, in which a certain number of copies often provide a selective advantage. Second, CNVs can also indirectly contribute to adaptation because a higher copy number increases the so-called "mutational target size." In this study, we show that the copy number amplification of FLO11D in the osmotolerant yeast Zygosaccharomyces rouxii promotes its further adaptation to a flor-formative environment, such as osmostress static culture conditions. We demonstrate that a gene, which was identified as FLO11D, is responsible for flor formation and that its expression is induced by osmostress under glucose-free conditions, which confer unique characteristics to Z. rouxii, such as osmostress-dependent flor formation. This organism possesses zero to three copies of FLO11D, and it appears likely that the FLO11D copy number increased in a branch of the Z. rouxii tree. The cellular hydrophobicity correlates with the FLO11D copy number, and the strain with a higher copy number of FLO11D exhibits a fitness advantage compared to a reference strain under osmostress static culture conditions. Our data indicate that the FLO gene-related system in Z. rouxii has evolved remarkably to adapt to osmostress environments. PMID:23893487

  4. Characterization of in vitro transcription amplification linearity and variability in the low copy number regime using External RNA Control Consortium (ERCC) spike-ins.

    PubMed

    Kralj, Jason G; Salit, Marc L

    2013-01-01

    Using spike-in controls designed to mimic mammalian mRNA species, we used the quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the performance of in vitro transcription (IVT) amplification process of small samples. We focused especially on the confidence of the transcript level measurement, which is essential for differential gene expression analyses. IVT reproduced gene expression profiles down to approximately 100 absolute input copies. However, a RT-qPCR analysis of the antisense RNA showed a systematic bias against low copy number transcripts, regardless of sequence. Experiments also showed that noise increases with decreasing copy number. First-round IVT preserved the gene expression information within a sample down to the 100 copy level, regardless of total input sample amount. However, the amplification was nonlinear under low total RNA input/long IVT conditions. Variability of the amplification increased predictably with decreasing input copy number. For the small enrichments of interest in typical differential gene expression studies (e.g., twofold changes), the bias from IVT reactions is unlikely to affect the results. In limited cases, some transcript-specific differential gene expression values will need adjustment to reflect this bias. Proper experimental design with reasonable detection limits will yield differential gene expression capability even between low copy number transcripts. PMID:23086083

  5. A novel study of Copy Number Variations in Hirschsprung disease using the Multiple Ligation-dependent Probe Amplification (MLPA) technique

    PubMed Central

    2009-01-01

    Background Hirschsprung disease (HSCR) is a congenital malformation of the hindgut produced by a disruption in neural crest cell migration during embryonic development. HSCR has a complex genetic etiology and mutations in several genes, mainly the RET proto-oncogene, have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs) have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. Methods In this study we have aimed to analyze the presence of CNVs in some HSCR genes (RET, EDN3, GDNF and ZFHX1B) using the Multiple Ligation-dependent Probe Amplification (MLPA) approach. Results Two alterations in the MLPA profiles of RET and EDN3 were detected, but a detailed inspection showed that the decrease in the corresponding dosages were due to point mutations affecting the hybridization probes regions. Conclusion Our results indicate that CNVs of the gene coding regions analyzed here are not a common molecular cause of Hirschsprung disease. However, further studies are required to determine the presence of CNVs affecting non-coding regulatory regions, as well as other candidate genes. PMID:19925665

  6. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications

    PubMed Central

    2012-01-01

    Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and

  7. Canine Mammary Tumours Are Affected by Frequent Copy Number Aberrations, including Amplification of MYC and Loss of PTEN

    PubMed Central

    Borge, Kaja S.; Nord, Silje; Van Loo, Peter; Lingjærde, Ole C.; Gunnes, Gjermund; Alnæs, Grethe I. G.; Solvang, Hiroko K.; Lüders, Torben; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lingaas, Frode

    2015-01-01

    Background Copy number aberrations frequently occur during the development of many cancers. Such events affect dosage of involved genes and may cause further genomic instability and progression of cancer. In this survey, canine SNP microarrays were used to study 117 canine mammary tumours from 69 dogs. Results We found a high occurrence of copy number aberrations in canine mammary tumours, losses being more frequent than gains. Increased frequency of aberrations and loss of heterozygosity were positively correlated with increased malignancy in terms of histopathological diagnosis. One of the most highly recurrently amplified regions harbored the MYC gene. PTEN was located to a frequently lost region and also homozygously deleted in five tumours. Thus, deregulation of these genes due to copy number aberrations appears to be an important event in canine mammary tumour development. Other potential contributors to canine mammary tumour pathogenesis are COL9A3, INPP5A, CYP2E1 and RB1. The present study also shows that a more detailed analysis of chromosomal aberrations associated with histopathological parameters may aid in identifying specific genes associated with canine mammary tumour progression. Conclusions The high frequency of copy number aberrations is a prominent feature of canine mammary tumours as seen in other canine and human cancers. Our findings share several features with corresponding studies in human breast tumours and strengthen the dog as a suitable model organism for this disease. PMID:25955013

  8. Nucleic acid amplification in vitro: detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection.

    PubMed Central

    Guatelli, J C; Gingeras, T R; Richman, D D

    1989-01-01

    The enzymatic amplification of specific nucleic acid sequences in vitro has revolutionized the use of nucleic acid hybridization assays for viral detection. With this method, the copy number of a pathogen-specific sequence is increased several orders of magnitude before detection is attempted. The sensitivity and specificity of detection are thus markedly improved. Mullis and Faloona devised the first method of sequence amplification in vitro, the polymerase chain reaction (K.B. Mullis and F.A. Faloona, Methods Enzymol. 155:355-350, 1987). By this method, synthetic oligonucleotide primers direct repeated, target-specific, deoxyribonucleic acid-synthetic reactions, resulting in an exponential increase in the amount of the specific target sequence. The application of sequence amplification to viral detection was initially performed with human immunodeficiency virus type 1 and human T-cell lymphoma virus type I. In principle, however, this approach can be applied to the detection of any deoxyribonucleic or ribonucleic acid virus; the only requirement is that sufficient nucleotide sequence data exist to allow the synthesis of target-specific oligonucleotide primers. The use of target amplification in vitro will permit a variety of studies of viral pathogenesis which have not been feasible because of the low copy number of the viral nucleic acids in infected material. This approach is particularly applicable to the study of human retroviral infections, which are chronic and persistent and are characterized by low titers of virus in tissues. In addition, target amplification in vitro will facilitate the development of new methods of sequence detection, which will be useful for rapid viral diagnosis in the clinical laboratory. PMID:2650862

  9. Identification of Multiple DNA Copy Number Alterations Including Frequent 8p11.22 Amplification in Conjunctival Squamous Cell Carcinoma

    PubMed Central

    Asnaghi, Laura; Alkatan, Hind; Mahale, Alka; Othman, Maha; Alwadani, Saeed; Al-Hussain, Hailah; Jastaneiah, Sabah; Yu, Wayne; Maktabi, Azza; Edward, Deepak P.; Eberhart, Charles G.

    2014-01-01

    Purpose. Little is known about the molecular alterations that drive formation and growth of conjunctival squamous cell carcinoma (cSCC). We therefore sought to identify genetic changes that could be used as diagnostic markers or therapeutic targets. Methods. The DNA extracted from 10 snap-frozen cSCC tumor specimens and 2 in situ carcinomas was analyzed using array-based comparative genomic hybridization (aCGH), and further examined with NanoString and quantitative PCR. Results. The number of regions of DNA loss ranged from 1 to 23 per tumor, whereas gains and amplifications ranged from 1 to 15 per tumor. Most large regions of chromosomal gain and loss were confirmed by NanoString karyotype analysis. The commonest alteration was amplification of 8p11.22 in 9 tumors (75%), and quantitative PCR analysis revealed 100-fold or greater overexpression of ADAM3A mRNA from 8p11.22 locus. In addition, recurring losses were observed at 14q13.2 and 22q11.23, both lost in 5 (42%) of the 12 tumors, and at 12p13.31, lost in 4 (33%) of the 12 samples. Of the eight loci associated with the DNA damage repair syndrome xeroderma pigmentosum, three showed loss of at least one allele in our aCGH analysis, including XPA (9q22.33, one tumor), XPE/DDB2 (11p11.2, one tumor) and XPG/ERCC5 (13q33.1, three tumors). Conclusions. Conjunctival SCC contains a range of chromosomal alterations potentially important in tumor formation and growth. Amplification of 8p11.22 and overexpression of ADAM3A suggests a potential role for this protease. Our findings also suggest that defects in DNA repair loci are important in sporadic cSCC. PMID:25491297

  10. Performance of a TthPrimPol-based whole genome amplification kit for copy number alteration detection using massively parallel sequencing.

    PubMed

    Deleye, Lieselot; De Coninck, Dieter; Dheedene, Annelies; De Sutter, Petra; Menten, Björn; Deforce, Dieter; Van Nieuwerburgh, Filip

    2016-01-01

    Starting from only a few cells, current whole genome amplification (WGA) methods provide enough DNA to perform massively parallel sequencing (MPS). Unfortunately, all current WGA methods introduce representation bias which limits detection of copy number aberrations (CNAs) smaller than 3 Mb. A recent WGA method, called TruePrime single cell WGA, uses a recently discovered DNA primase, TthPrimPol, instead of artificial primers to initiate DNA amplification. This method could lead to a lower representation bias, and consequently to a better detection of CNAs. The enzyme requires no complementarity and thus should generate random primers, equally distributed across the genome. The performance of TruePrime WGA was assessed for aneuploidy screening and CNA analysis after MPS, starting from 1, 3 or 5 cells. Although the method looks promising, the single cell TruePrime WGA kit v1 is not suited for high resolution CNA detection after MPS because too much representation bias is introduced. PMID:27546482

  11. Performance of a TthPrimPol-based whole genome amplification kit for copy number alteration detection using massively parallel sequencing

    PubMed Central

    Deleye, Lieselot; De Coninck, Dieter; Dheedene, Annelies; De Sutter, Petra; Menten, Björn; Deforce, Dieter; Van Nieuwerburgh, Filip

    2016-01-01

    Starting from only a few cells, current whole genome amplification (WGA) methods provide enough DNA to perform massively parallel sequencing (MPS). Unfortunately, all current WGA methods introduce representation bias which limits detection of copy number aberrations (CNAs) smaller than 3 Mb. A recent WGA method, called TruePrime single cell WGA, uses a recently discovered DNA primase, TthPrimPol, instead of artificial primers to initiate DNA amplification. This method could lead to a lower representation bias, and consequently to a better detection of CNAs. The enzyme requires no complementarity and thus should generate random primers, equally distributed across the genome. The performance of TruePrime WGA was assessed for aneuploidy screening and CNA analysis after MPS, starting from 1, 3 or 5 cells. Although the method looks promising, the single cell TruePrime WGA kit v1 is not suited for high resolution CNA detection after MPS because too much representation bias is introduced. PMID:27546482

  12. Rare Copy Number Variants

    PubMed Central

    Grozeva, Detelina; Kirov, George; Ivanov, Dobril; Jones, Ian R.; Jones, Lisa; Green, Elaine K.; St Clair, David M.; Young, Allan H.; Ferrier, Nicol; Farmer, Anne E.; McGuffin, Peter; Holmans, Peter A.; Owen, Michael J.; O’Donovan, Michael C.; Craddock, Nick

    2015-01-01

    Context Recent studies suggest that copy number variation in the human genome is extensive and may play an important role in susceptibility to disease, including neuropsychiatric disorders such as schizophrenia and autism. The possible involvement of copy number variants (CNVs) in bipolar disorder has received little attention to date. Objectives To determine whether large (>100 000 base pairs) and rare (found in <1% of the population) CNVs are associated with susceptibility to bipolar disorder and to compare with findings in schizophrenia. Design A genome-wide survey of large, rare CNVs in a case-control sample using a high-density microarray. Setting The Wellcome Trust Case Control Consortium. Participants There were 1697 cases of bipolar disorder and 2806 nonpsychiatric controls. All participants were white UK residents. Main Outcome Measures Overall load of CNVs and presence of rare CNVs. Results The burden of CNVs in bipolar disorder was not increased compared with controls and was significantly less than in schizophrenia cases. The CNVs previously implicated in the etiology of schizophrenia were not more common in cases with bipolar disorder. Conclusions Schizophrenia and bipolar disorder differ with respect to CNV burden in general and association with specific CNVs in particular. Our data are consistent with the possibility that possession of large, rare deletions may modify the phenotype in those at risk of psychosis: those possessing such events are more likely to be diagnosed as having schizophrenia, and those without them are more likely to be diagnosed as having bipolar disorder. PMID:20368508

  13. Simultaneous detection of mutations and copy number variation of NPM1 in the acute myeloid leukemia using multiplex ligation-dependent probe amplification.

    PubMed

    Marcinkowska-Swojak, Malgorzata; Handschuh, Luiza; Wojciechowski, Pawel; Goralski, Michal; Tomaszewski, Kamil; Kazmierczak, Maciej; Lewandowski, Krzysztof; Komarnicki, Mieczyslaw; Blazewicz, Jacek; Figlerowicz, Marek; Kozlowski, Piotr

    2016-04-01

    The NPM1 gene encodes nucleophosmin, a protein involved in multiple cell functions and carcinogenesis. Mutation of the NPM1 gene, causing delocalization of the protein, is the most frequent genetic lesion in acute myeloid leukemia (AML); it is considered a founder event in AML pathogenesis and serves as a favorable prognostic marker. Moreover, in solid tumors and some leukemia cell lines, overexpression of the NPM1 gene is commonly observed. Therefore, the purpose of this study was to develop a new method for the detection of NPM1 mutations and the simultaneous analysis of copy number alterations (CNAs), which may underlie NPM1 gene expression deregulation. To address both of the issues, we applied a strategy based on multiplex ligation-dependent probe amplification (MLPA). A designed NPM1mut+ assay enables the detection of three of the most frequent NPM1 mutations: A, B and D. The accuracy of the assay was tested using a group of 83 samples from Polish patients with AML and other blood-proliferative disorders. To verify the results, we employed traditional Sanger sequencing and next-generation transcriptome sequencing. With the use of the NPM1mut+ assay, we detected mutations A, D and B in 14, 1 and 0 of the analyzed samples, respectively. All of these mutations were confirmed by complementary sequencing approaches, proving the 100% specificity and sensitivity of the proposed test. The performed sequencing analysis allowed the identification of two additional rare mutations (I and ZE). All of the mutations were identified exclusively in AML cases, accounting for 25% of those cases. We did not observe any CNAs (amplifications) of the NPM1 gene in the studied samples, either with or without the mutation. The presented method is simple, reliable and cost-effective. It can be easily introduced into clinical practice or developed to target both less-frequent mutations in the NPM1 gene and other cancer-related genes. PMID:26894557

  14. Multiplex Ligation-Dependent Probe Amplification Analysis of GATA4 Gene Copy Number Variations in Patients with Isolated Congenital Heart Disease

    PubMed Central

    Guida, Valentina; Lepri, Francesca; Vijzelaar, Raymon; De Zorzi, Andrea; Versacci, Paolo; Digilio, Maria Cristina; Marino, Bruno; De Luca, Alessandro; Dallapiccola, Bruno

    2010-01-01

    GATA4 mutations are found in patients with different isolated congenital heart defects (CHDs), mostly cardiac septal defects and tetralogy of Fallot. In addition, GATA4 is supposed to be the responsible gene for the CHDs in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation syndrome with clinical symptoms of facial anomalies, microcephaly, mental retardation, and congenital heart defects. Thus far, no study has been carried out to investigate the role of GATA4 copy number variations (CNVs) in non-syndromic CHDs. To explore the possible occurrence of GATA4 gene CNVs in isolated CHDs, we analyzed by multiplex ligation-dependent probe amplification (MLPA) a cohort of 161 non-syndromic patients with cardiac anomalies previously associated with GATA4 gene mutations. The patients were mutation-negative for GATA4, NKX2.5, and FOG2 genes after screening with denaturing high performance liquid chromatography. MLPA analysis revealed that normalized MLPA signals were all found within the normal range values for all exons in all patients, excluding a major contribution of GATA4 gene CNVs in CHD pathogenesis. PMID:20592452

  15. Counting copy number and calories.

    PubMed

    White, Stefan

    2015-08-01

    Copy number variation (CNV) at several genomic loci has been associated with different human traits and diseases, but in many cases the findings could not be replicated. A new study provides insights into the degree of variation present at the amylase locus and calls into question a previous association between amylase copy number and body mass index. PMID:26220133

  16. High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer

    PubMed Central

    Czubak, Karol; Lewandowska, Marzena Anna; Klonowska, Katarzyna; Roszkowski, Krzysztof; Kowalewski, Janusz; Figlerowicz, Marek; Kozlowski, Piotr

    2015-01-01

    A growing body of evidence indicates that miRNAs may be a class of genetic elements that can either drive or suppress oncogenesis. In this study we analyzed the somatic copy number variation of 14 miRNA genes frequently found to be either over- or underexpressed in lung cancer, as well as two miRNA biogenesis genes, DICER1 and DROSHA, in non-small-cell lung cancer (NSCLC). Our analysis showed that most analyzed miRNA genes undergo substantial copy number alteration in lung cancer. The most frequently amplified miRNA genes include the following: miR-30d, miR-21, miR-17 and miR-155. We also showed that both DICER1 and DROSHA are frequently amplified in NSCLC. The copy number variation of DICER1 and DROSHA correlates well with their expression and survival of NSCLC and other cancer patients. The increased expression of DROSHA and DICER1 decreases and increases the survival, respectively. In conclusion, our results show that copy number variation may be an important mechanism of upregulation/downregulation of miRNAs in cancer and suggest an oncogenic role for DROSHA. PMID:26156018

  17. High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer.

    PubMed

    Czubak, Karol; Lewandowska, Marzena Anna; Klonowska, Katarzyna; Roszkowski, Krzysztof; Kowalewski, Janusz; Figlerowicz, Marek; Kozlowski, Piotr

    2015-09-15

    A growing body of evidence indicates that miRNAs may be a class of genetic elements that can either drive or suppress oncogenesis. In this study we analyzed the somatic copy number variation of 14 miRNA genes frequently found to be either over- or underexpressed in lung cancer, as well as two miRNA biogenesis genes, DICER1 and DROSHA, in non-small-cell lung cancer (NSCLC). Our analysis showed that most analyzed miRNA genes undergo substantial copy number alteration in lung cancer. The most frequently amplified miRNA genes include the following: miR-30d, miR-21, miR-17 and miR-155. We also showed that both DICER1 and DROSHA are frequently amplified in NSCLC. The copy number variation of DICER1 and DROSHA correlates well with their expression and survival of NSCLC and other cancer patients. The increased expression of DROSHA and DICER1 decreases and increases the survival, respectively. In conclusion, our results show that copy number variation may be an important mechanism of upregulation/downregulation of miRNAs in cancer and suggest an oncogenic role for DROSHA. PMID:26156018

  18. Copy number variation and mutation

    NASA Astrophysics Data System (ADS)

    Clark, Brian; Weidner, Jacob; Wabick, Kevin

    2009-11-01

    Until very recently, the standard model of DNA included two genes for each trait. This dated model has given way to a model that includes copies of some genes well in excess of the canonical two. Copy number variations in the human genome play critical roles in causing or aggravating a number of syndromes and diseases while providing increased resistance to others. We explore the role of mutation, crossover, inversion, and reproduction in determining copy number variations in a numerical simulation of a population. The numerical model consists of a population of individuals, where each individual is represented by a single strand of DNA with the same number of genes. Each gene is initially assigned to one of two traits. Fitness of the individual is determined by the two most fit genes for trait one, and trait two genetic material is treated as a reservoir of junk DNA. After a sufficient number of generations, during which the genetic distribution is allowed to reach a steady-state, the mean numberof genes per trait and the copy number variation are recorded. Here, we focus on the role of mutation and compare simulation results to theory.

  19. Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy.

    PubMed

    Alías, Laura; Bernal, Sara; Barceló, Maria J; Also-Rallo, Eva; Martínez-Hernández, Rebeca; Rodríguez-Alvarez, Francisco J; Hernández-Chico, Concepción; Baiget, Montserrat; Tizzano, Eduardo F

    2011-09-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by absence of or mutations in the survival motor neuron1 gene (SMN1). All SMA patients have a highly homologous copy of SMN1, the SMN2 gene. Severe (type I) SMA patients present one or two SMN2 copies, whereas milder chronic forms (type II-III) usually have three or four SMN2 copies. SMN2 dosage is important to stratify patients for motor function tests and clinical trials. Our aim was to compare three methods, marker analysis, real-time quantitative polymerase chain reaction using the LightCycler instrument, and multiple ligation-dependent probe amplification (MLPA), to characterize their accuracy in quantifying SMN2 genes. We studied a group of 62 genetically confirmed SMA patients, 54 with homozygous absence of exons 7 and 8 of SMN1 and 8 with SMN2-SMN1 hybrid genes. A complete correlation using the three methods was observed in 32 patients (51.6%). In the remaining 30 patients, discordances between the three methods were found, including under or overestimation of SMN2 copies by marker analysis with respect to the quantitative methods (LightCycler and MLPA) because of lack of informativeness of markers, 3' deletions of SMN genes, and breakpoints in SMN2-SMN1 hybrid genes. The technical limitations and advantages and disadvantages of these methods are discussed. We conclude that the three methods complement each other in estimating the SMN2 copy number in most cases. However, MLPA offers additional information to characterize SMA cases with particular rearrangements such as partial deletions and hybrid genes. PMID:21548796

  20. Copy Number Profiling of Brazilian Astrocytomas.

    PubMed

    Bidinotto, Lucas Tadeu; Torrieri, Raul; Mackay, Alan; Almeida, Gisele Caravina; Viana-Pereira, Marta; Cruvinel-Carloni, Adriana; Spina, Maria Luisa; Campanella, Nathalia Cristina; Pereira de Menezes, Weder; Clara, Carlos Afonso; Becker, Aline Paixão; Jones, Chris; Reis, Rui Manuel

    2016-01-01

    Copy number alterations (CNA) are one of the driving mechanisms of glioma tumorigenesis, and are currently used as important biomarkers in the routine setting. Therefore, we performed CNA profiling of 65 astrocytomas of distinct malignant grades (WHO grade I-IV) of Brazilian origin, using array-CGH and microsatellite instability analysis (MSI), and investigated their correlation with TERT and IDH1 mutational status and clinico-pathological features. Furthermore, in silico analysis using the Oncomine database was performed to validate our findings and extend the findings to gene expression level. We found that the number of genomic alterations increases in accordance with glioma grade. In glioblastomas (GBM), the most common alterations were gene amplifications (PDGFRA, KIT, KDR, EGFR, and MET) and deletions (CDKN2A and PTEN) Log-rank analysis correlated EGFR amplification and/or chr7 gain with better survival of the patients. MSI was observed in 11% of GBMs. A total of 69% of GBMs presented TERT mutation, whereas IDH1 mutation was most frequent in diffuse (85.7%) and anaplastic (100%) astrocytomas. The combination of 1p19q deletion and TERT and IDH1 mutational status separated tumor groups that showed distinct age of diagnosis and outcome. In silico validation pointed to less explored genes that may be worthy of future investigation, such as CDK2, DMRTA1, and MTAP Herein, using an extensive integrated analysis, we indicated potentially important genes, not extensively studied in gliomas, that could be further explored to assess their biological and clinical impact in astrocytomas. PMID:27172220

  1. Copy Number Profiling of Brazilian Astrocytomas

    PubMed Central

    Bidinotto, Lucas Tadeu; Torrieri, Raul; Mackay, Alan; Almeida, Gisele Caravina; Viana-Pereira, Marta; Cruvinel-Carloni, Adriana; Spina, Maria Luisa; Campanella, Nathalia Cristina; Pereira de Menezes, Weder; Clara, Carlos Afonso; Becker, Aline Paixão; Jones, Chris; Reis, Rui Manuel

    2016-01-01

    Copy number alterations (CNA) are one of the driving mechanisms of glioma tumorigenesis, and are currently used as important biomarkers in the routine setting. Therefore, we performed CNA profiling of 65 astrocytomas of distinct malignant grades (WHO grade I–IV) of Brazilian origin, using array-CGH and microsatellite instability analysis (MSI), and investigated their correlation with TERT and IDH1 mutational status and clinico-pathological features. Furthermore, in silico analysis using the Oncomine database was performed to validate our findings and extend the findings to gene expression level. We found that the number of genomic alterations increases in accordance with glioma grade. In glioblastomas (GBM), the most common alterations were gene amplifications (PDGFRA, KIT, KDR, EGFR, and MET) and deletions (CDKN2A and PTEN). Log-rank analysis correlated EGFR amplification and/or chr7 gain with better survival of the patients. MSI was observed in 11% of GBMs. A total of 69% of GBMs presented TERT mutation, whereas IDH1 mutation was most frequent in diffuse (85.7%) and anaplastic (100%) astrocytomas. The combination of 1p19q deletion and TERT and IDH1 mutational status separated tumor groups that showed distinct age of diagnosis and outcome. In silico validation pointed to less explored genes that may be worthy of future investigation, such as CDK2, DMRTA1, and MTAP. Herein, using an extensive integrated analysis, we indicated potentially important genes, not extensively studied in gliomas, that could be further explored to assess their biological and clinical impact in astrocytomas. PMID:27172220

  2. Quantitative copy number analysis by Multiplex Ligation-dependent Probe Amplification (MLPA) of BRCA1-associated breast cancer regions identifies BRCAness

    PubMed Central

    2011-01-01

    Introduction Our group has previously employed array Comparative Genomic Hybridization (aCGH) to assess the genomic patterns of BRCA1-mutated breast cancers. We have shown that the so-called BRCA1-likeaCGH profile is also present in about half of all triple-negative sporadic breast cancers and is predictive for benefit from intensified alkylating chemotherapy. As aCGH is a rather complex method, we translated the BRCA1aCGH profile to a Multiplex Ligation-dependent Probe Amplification (MLPA) assay, to identify both BRCA1-mutated breast cancers and sporadic cases with a BRCA1-likeaCGH profile. Methods The most important genomic regions of the original aCGH based classifier (3q22-27, 5q12-14, 6p23-22, 12p13, 12q21-23, 13q31-34) were mapped to a set of 34 MLPA probes. The training set consisted of 39 BRCA1-likeaCGH breast cancers and 45 non-BRCA1-likeaCGH breast cancers, which had previously been analyzed by aCGH. The BRCA1-likeaCGH group consisted of germline BRCA1-mutated cases and sporadic tumours with low BRCA1 gene expression and/or BRCA1 promoter methylation. We trained a shrunken centroids classifier on the training set and validation was performed on an independent test set of 40 BRCA1-likeaCGH breast cancers and 32 non-BRCA1-likeaCGH breast cancer tumours. In addition, we validated the set prospectively on 69 new triple-negative tumours. Results BRCAness in the training set of 84 tumours could accurately be predicted by prediction analysis of microarrays (PAM) (accuracy 94%). Application of this classifier on the independent validation set correctly predicted BRCA-like status of 62 out of 72 breast tumours (86%). Sensitivity and specificity were 85% and 87%, respectively. When the MLPA-test was subsequently applied to 46 breast tumour samples from a randomized clinical trial, the same survival benefit for BRCA1-like tumours associated with intensified alkylating chemotherapy was shown as was previously reported using the aCGH assay. Conclusions Since the MLPA

  3. A tremendous expansion of copy number in crossbred bulls ( × ).

    PubMed

    Zhang, G W; Guan, J Q; Luo, Z G; Zhang, W X; Wang, L; Luo, X L; Zuo, F Y

    2016-04-01

    Crossbreeding between cattle () and yak () exhibits significant hybrid advantages in milk yield and meat production. By contrast, cattle-yak F hybrid bulls are sterile. Copy number variations (CNV) of multicopy gene families in male-specific regions of the mammalian Y chromosome (MSY) affect human and animal fertility. The present study investigated CNV of (), (), (), and () in 5 yak breed bulls ( = 63), cattle-yak F ( = 22) and F ( = 2) hybrid bulls, and Chinese Yellow (CY) cattle bulls ( = 10) by quantitative real-time PCR. showed restricted amplification in yak bulls in that the average geometric mean copy number (CN) was estimated to be 4 copies. The most compelling finding is that there is a tremendous expansion of CN in F hybrids (385 copies; 95% confidence interval [CI] = 351-421) and F hybrids (356 copies) compared with the male parent breed CY cattle (142 copies; 95% CI = 95-211). Copy numbers of and were also extensively expanded on the Y chromosome in yak and CY cattle bulls. The geometric mean CN of and were estimated to be 123 (95% CI = 114-132) and 250 copies (95% CI = 233-268) in yak bulls and 71 (95% CI = 61-82) and 133 (95% CI = 107-164) copies in CY cattle, respectively. Yak and CY cattle have 2 copies of the gene on the Y chromosome. Similarly to gene, the F and F hybrid bulls have higher CN of , , and than CY cattle ( < 0.01). These results indicated that the MSY of yak and cattle-yak crossbred hybrids was fundamentally different from cattle MSY in the context of genomic organization. Based on the model of cattle-yak F and F hybrid bull sterility, the CNV of may serve as a potential risk factor for crossbred bull ( × ) infertility. To our knowledge, this is the first study to examine differences in multicopy genes in MSY between yak and cattle-yak bulls. PMID:27135999

  4. Copy Number Variation across European Populations

    PubMed Central

    Chen, Wanting; Hayward, Caroline; Wright, Alan F.; Hicks, Andrew A.; Vitart, Veronique; Knott, Sara; Wild, Sarah H.; Pramstaller, Peter P.; Wilson, James F.; Rudan, Igor; Porteous, David J.

    2011-01-01

    Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations. PMID:21829696

  5. Microarray analysis of copy number variation in single cells.

    PubMed

    Konings, Peter; Vanneste, Evelyne; Jackmaert, Sigrun; Ampe, Michèle; Verbeke, Geert; Moreau, Yves; Vermeesch, Joris Robert; Voet, Thierry

    2012-02-01

    We present a protocol for reliably detecting DNA copy number aberrations in a single human cell. Multiple displacement-amplified DNAs of a cell are hybridized to a 3,000-bacterial artificial chromosome (BAC) array and to an Affymetrix 250,000 (250K)-SNP array. Subsequent copy number calling is based on the integration of BAC probe-specific copy number probabilities that are estimated by comparing probe intensities with a single-cell whole-genome amplification (WGA) reference model for diploid chromosomes, as well as SNP copy number and loss-of-heterozygosity states estimated by hidden Markov models (HMM). All methods for detecting DNA copy number aberrations in single human cells have difficulty in confidently discriminating WGA artifacts from true genetic variants. Furthermore, some methods lack thorough validation for segmental DNA imbalance detection. Our protocol minimizes false-positive variant calling and enables uniparental isodisomy detection in single cells. Additionally, it provides quality assessment, allowing the exclusion of uninterpretable single-cell WGA samples. The protocol takes 5-7 d. PMID:22262009

  6. Variable copy number DNA sequences in rice.

    PubMed

    Kikuchi, S; Takaiwa, F; Oono, K

    1987-12-01

    We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3'rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element. PMID:3481021

  7. Plasmid copy number underlies adaptive mutability in bacteria.

    PubMed

    Sano, Emiko; Maisnier-Patin, Sophie; Aboubechara, John Paul; Quiñones-Soto, Semarhy; Roth, John R

    2014-11-01

    The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F'lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F'lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F'lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F'lac copies divide very little under selection but have enough energy to replicate their F'lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced. PMID:25173846

  8. Genomic characteristics of cattle copy number variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  9. Copy Number Variation in the Cattle Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variations (CNVs) are gains and losses of genomic sequence greater than 50 bp between two individuals of a species. While single nucleotide polymorphisms (SNPs) are more frequent, CNVs impact a higher percentage of genomic sequence and have potentially greater effects, including the chan...

  10. Gene copy number and cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Ghosh, Bhaswar; Bose, Indrani

    2006-03-01

    The cell cycle is an orderly sequence of events which ultimately lead to the division of a single cell into two daughter cells. In the case of DNA damage by radiation or chemicals, the damage checkpoints in the G1 and G2 phases of the cell cycle are activated. This results in an arrest of the cell cycle so that the DNA damage can be repaired. Once this is done, the cell continues with its usual cycle of activity. We study a mathematical model of the DNA damage checkpoint in the G2 phase which arrests the transition from the G2 to the M (mitotic) phase of the cell cycle. The tumor suppressor protein p53 plays a key role in activating the pathways leading to cell cycle arrest in mammalian systems. If the DNA damage is severe, the p53 proteins activate other pathways which bring about apoptosis, i.e., programmed cell death. Loss of the p53 gene results in the proliferation of cells containing damaged DNA, i.e., in the growth of tumors which may ultimately become cancerous. There is some recent experimental evidence which suggests that the mutation of a single copy of the p53 gene (in the normal cell each gene has two identical copies) is sufficient to trigger the formation of tumors. We study the effect of reducing the gene copy number of the p53 and two other genes on cell cycle arrest and obtain results consistent with experimental observations.

  11. Copy number variants, aneuploidies, and human disease.

    PubMed

    Martin, Christa Lese; Kirkpatrick, Brianne E; Ledbetter, David H

    2015-06-01

    In the perinatal setting, chromosome imbalances cause a range of clinically significant disorders and increase the risk for other particular phenotypes. As technologies have improved to detect increasingly smaller deletions and duplications, collectively referred to as copy number variants (CNVs), clinicians are learning the significant role that these types of genomic variants play in human disease and their high frequency in ∼ 1% of all pregnancies. This article highlights key aspects of CNV detection and interpretation used during the course of clinical care in the prenatal and neonatal periods. Early diagnosis and accurate interpretation are important for targeted clinical management. PMID:26042902

  12. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  13. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  14. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  15. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  16. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  17. Quantification of Fewer than Ten Copies of a DNA Biomarker without Amplification or Labeling.

    PubMed

    Lee, Yoonhee; Kim, Youngkyu; Lee, Donggyu; Roy, Dhruvajyoti; Park, Joon Won

    2016-06-01

    Polymerase chain reaction (PCR) is a highly sensitive diagnosis technique for detection of nucleic acids and for monitoring residual disease; however, PCR can be unreliable for samples containing very few target molecules. Here, we describe a quantification method, using force-distance (FD) curve based atomic force microscopy (AFM) to detect a target DNA bound to small (1.4-1.9 μm diameter) probe DNA spots, allowing mapping of entire spots to nanometer resolution. Using a synthetic BCR-ABL fusion gene sequence target, we examined samples containing between one and 10 target copies. A high degree of correlation (r(2) = 0.994) between numbers of target copies and detected probe clusters was observed, and the approach could detect the BCR-ABL biomarker when only a single copy was present, although multiple screens were required. Our results clearly demonstrate that FD curve-based imaging is suitable for quantitative analysis of fewer than 10 copies of DNA biomarkers without amplification, modification, or labeling. PMID:27175474

  18. Copy Number Studies in Noisy Samples

    PubMed Central

    Ginsbach, Philip; Chen, Bowang; Jiang, Yanxiang; Engelter, Stefan T.; Grond-Ginsbach, Caspar

    2013-01-01

    System noise was analyzed in 77 Affymetrix 6.0 samples from a previous clinical study of copy number variation (CNV). Twenty-three samples were classified as eligible for CNV detection, 29 samples as ineligible and 25 were classified as being of intermediate quality. New software (“noise-free-cnv”) was developed to visualize the data and reduce system noise. Fresh DNA preparations were more likely to yield eligible samples (p < 0.001). Eligible samples had higher rates of successfully genotyped SNPs (p < 0.001) and lower variance of signal intensities (p < 0.001), yielded fewer CNV findings after Birdview analysis (p < 0.001), and showed a tendency to yield fewer PennCNV calls (p = 0.053). The noise-free-cnv software visualized trend patterns of noise in the signal intensities across the ordered SNPs, including a wave pattern of noise, being co-linear with the banding pattern of metaphase chromosomes, as well as system deviations of individual probe sets (per-SNP noise). Wave noise and per-SNP noise occurred independently and could be separately removed from the samples. We recommend a two-step procedure of CNV validation, including noise reduction and visual inspection of all CNV calls, prior to molecular validation of a selected number of putative CNVs.

  19. Subtelomeric Rearrangements and Copy Number Variations in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Christofolini, D. M.; De Paula Ramos, M. A.; Kulikowski, L. D.; Da Silva Bellucco, F. T.; Belangero, S. I. N.; Brunoni, D.; Melaragno, M. I.

    2010-01-01

    Background: The most prevalent type of structural variation in the human genome is represented by copy number variations that can affect transcription levels, sequence, structure and function of genes. Method: In the present study, we used the multiplex ligation-dependent probe amplification (MLPA) technique and quantitative PCR for the detection…

  20. Copy Number Variation in the Horse Genome

    PubMed Central

    Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J.; Fang, Erica; Juras, Rytis; Cothran, E. Gus; McDonell, Sue; Kenney, Daniel G.; Lear, Teri L.; Adelson, David L.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2014-01-01

    We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. PMID:25340504

  1. DNA copy number losses in human neoplasms.

    PubMed

    Knuutila, S; Aalto, Y; Autio, K; Björkqvist, A M; El-Rifai, W; Hemmer, S; Huhta, T; Kettunen, E; Kiuru-Kuhlefelt, S; Larramendy, M L; Lushnikova, T; Monni, O; Pere, H; Tapper, J; Tarkkanen, M; Varis, A; Wasenius, V M; Wolf, M; Zhu, Y

    1999-09-01

    This review summarizes reports of recurrent DNA sequence copy number losses in human neoplasms detected by comparative genomic hybridization. Recurrent losses that affect each of the chromosome arms in 73 tumor types are tabulated from 169 reports. The tables are available online at http://www.amjpathol.org and http://www. helsinki.fi/ approximately lglvwww/CMG.html. The genes relevant to the lost regions are discussed for each of the chromosomes. The review is supplemented also by a list of known and putative tumor suppressor genes and DNA repair genes (see Table 1, online). Losses are found in all chromosome arms, but they seem to be relatively rare at 1q, 2p, 3q, 5p, 6p, 7p, 7q, 8q, 12p, and 20q. Losses and their minimal common overlapping areas that were present in a great proportion of the 73 tumor entities reported in Table 2 (see online) are (in descending order of frequency): 9p23-p24 (48%), 13q21 (47%), 6q16 (44%), 6q26-q27 (44%), 8p23 (37%), 18q22-q23 (37%), 17p12-p13 (34%), 1p36.1 (34%), 11q23 (33%), 1p22 (32%), 4q32-qter (31%), 14q22-q23 (25%), 10q23 (25%), 10q25-qter (25%),15q21 (23%), 16q22 (23%), 5q21 (23%), 3p12-p14 (22%), 22q12 (22%), Xp21 (21%), Xq21 (21%), and 10p12 (20%). The frequency of losses at chromosomes 7 and 20 was less than 10% in all tumors. The chromosomal regions in which the most frequent losses are found implicate locations of essential tumor suppressor genes and DNA repair genes that may be involved in the pathogenesis of several tumor types. PMID:10487825

  2. Copy Number Variation in Thai Population

    PubMed Central

    Suktitipat, Bhoom; Naktang, Chaiwat; Mhuantong, Wuttichai; Tularak, Thitima; Artiwet, Paramita; Pasomsap, Ekawat; Jongjaroenprasert, Wallaya; Fuchareon, Suthat; Mahasirimongkol, Surakameth; Chantratita, Wasan; Yimwadsana, Boonsit; Charoensawan, Varodom; Jinawath, Natini

    2014-01-01

    Copy number variation (CNV) is a major genetic polymorphism contributing to genetic diversity and human evolution. Clinical application of CNVs for diagnostic purposes largely depends on sufficient population CNV data for accurate interpretation. CNVs from general population in currently available databases help classify CNVs of uncertain clinical significance, and benign CNVs. Earlier studies of CNV distribution in several populations worldwide showed that a significant fraction of CNVs are population specific. In this study, we characterized and analyzed CNVs in 3,017 unrelated Thai individuals genotyped with the Illumina Human610, Illumina HumanOmniexpress, or Illumina HapMap550v3 platform. We employed hidden Markov model and circular binary segmentation methods to identify CNVs, extracted 23,458 CNVs consistently identified by both algorithms, and cataloged these high confident CNVs into our publicly available Thai CNV database. Analysis of CNVs in the Thai population identified a median of eight autosomal CNVs per individual. Most CNVs (96.73%) did not overlap with any known chromosomal imbalance syndromes documented in the DECIPHER database. When compared with CNVs in the 11 HapMap3 populations, CNVs found in the Thai population shared several characteristics with CNVs characterized in HapMap3. Common CNVs in Thais had similar frequencies to those in the HapMap3 populations, and all high frequency CNVs (>20%) found in Thai individuals could also be identified in HapMap3. The majorities of CNVs discovered in the Thai population, however, were of low frequency, or uniquely identified in Thais. When performing hierarchical clustering using CNV frequencies, the CNV data were clustered into Africans, Europeans, and Asians, in line with the clustering performed with single nucleotide polymorphism (SNP) data. As CNV data are specific to origin of population, our population-specific reference database will serve as a valuable addition to the existing resources for

  3. Copy number variation in Thai population.

    PubMed

    Suktitipat, Bhoom; Naktang, Chaiwat; Mhuantong, Wuttichai; Tularak, Thitima; Artiwet, Paramita; Pasomsap, Ekawat; Jongjaroenprasert, Wallaya; Fuchareon, Suthat; Mahasirimongkol, Surakameth; Chantratita, Wasan; Yimwadsana, Boonsit; Charoensawan, Varodom; Jinawath, Natini

    2014-01-01

    Copy number variation (CNV) is a major genetic polymorphism contributing to genetic diversity and human evolution. Clinical application of CNVs for diagnostic purposes largely depends on sufficient population CNV data for accurate interpretation. CNVs from general population in currently available databases help classify CNVs of uncertain clinical significance, and benign CNVs. Earlier studies of CNV distribution in several populations worldwide showed that a significant fraction of CNVs are population specific. In this study, we characterized and analyzed CNVs in 3,017 unrelated Thai individuals genotyped with the Illumina Human610, Illumina HumanOmniexpress, or Illumina HapMap550v3 platform. We employed hidden Markov model and circular binary segmentation methods to identify CNVs, extracted 23,458 CNVs consistently identified by both algorithms, and cataloged these high confident CNVs into our publicly available Thai CNV database. Analysis of CNVs in the Thai population identified a median of eight autosomal CNVs per individual. Most CNVs (96.73%) did not overlap with any known chromosomal imbalance syndromes documented in the DECIPHER database. When compared with CNVs in the 11 HapMap3 populations, CNVs found in the Thai population shared several characteristics with CNVs characterized in HapMap3. Common CNVs in Thais had similar frequencies to those in the HapMap3 populations, and all high frequency CNVs (>20%) found in Thai individuals could also be identified in HapMap3. The majorities of CNVs discovered in the Thai population, however, were of low frequency, or uniquely identified in Thais. When performing hierarchical clustering using CNV frequencies, the CNV data were clustered into Africans, Europeans, and Asians, in line with the clustering performed with single nucleotide polymorphism (SNP) data. As CNV data are specific to origin of population, our population-specific reference database will serve as a valuable addition to the existing resources for

  4. Allele-specific copy number profiling by next-generation DNA sequencing.

    PubMed

    Chen, Hao; Bell, John M; Zavala, Nicolas A; Ji, Hanlee P; Zhang, Nancy R

    2015-02-27

    The progression and clonal development of tumors often involve amplifications and deletions of genomic DNA. Estimation of allele-specific copy number, which quantifies the number of copies of each allele at each variant loci rather than the total number of chromosome copies, is an important step in the characterization of tumor genomes and the inference of their clonal history. We describe a new method, falcon, for finding somatic allele-specific copy number changes by next generation sequencing of tumors with matched normals. falcon is based on a change-point model on a bivariate mixed Binomial process, which explicitly models the copy numbers of the two chromosome haplotypes and corrects for local allele-specific coverage biases. By using the Binomial distribution rather than a normal approximation, falcon more effectively pools evidence from sites with low coverage. A modified Bayesian information criterion is used to guide model selection for determining the number of copy number events. Falcon is evaluated on in silico spike-in data and applied to the analysis of a pre-malignant colon tumor sample and late-stage colorectal adenocarcinoma from the same individual. The allele-specific copy number estimates obtained by falcon allows us to draw detailed conclusions regarding the clonal history of the individual's colon cancer. PMID:25477383

  5. Sociobiological Control of Plasmid Copy Number in Bacteria

    PubMed Central

    Watve, Mukta M.; Dahanukar, Neelesh; Watve, Milind G.

    2010-01-01

    All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up “cheater” mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers. PMID:20195362

  6. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Number of copies. 33.8 Section 33.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... Number of copies. The applicant must submit the application or petition to the Secretary of...

  7. 22 CFR 1429.25 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Number of copies. 1429.25 Section 1429.25 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... AND GENERAL REQUIREMENTS General Requirements § 1429.25 Number of copies. Unless otherwise provided...

  8. 12 CFR 269b.730 - Number of copies; form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Number of copies; form. 269b.730 Section 269b.730 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) CHARGES OF UNFAIR LABOR PRACTICES General Rules § 269b.730 Number of copies;...

  9. 22 CFR 1429.25 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Number of copies. 1429.25 Section 1429.25 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... AND GENERAL REQUIREMENTS General Requirements § 1429.25 Number of copies. Unless otherwise provided...

  10. Interactive analysis and assessment of single-cell copy-number variations.

    PubMed

    Garvin, Tyler; Aboukhalil, Robert; Kendall, Jude; Baslan, Timour; Atwal, Gurinder S; Hicks, James; Wigler, Michael; Schatz, Michael C

    2015-11-01

    We present Ginkgo (http://qb.cshl.edu/ginkgo), a user-friendly, open-source web platform for the analysis of single-cell copy-number variations (CNVs). Ginkgo automatically constructs copy-number profiles of cells from mapped reads and constructs phylogenetic trees of related cells. We validated Ginkgo by reproducing the results of five major studies. After comparing three commonly used single-cell amplification techniques, we concluded that degenerate oligonucleotide-primed PCR is the most consistent for CNV analysis. PMID:26344043

  11. No association between mitochondrial DNA copy number and colorectal adenomas.

    PubMed

    Thyagarajan, Bharat; Guan, Weihua; Fedirko, Veronika; Barcelo, Helene; Tu, Huakang; Gross, Myron; Goodman, Michael; Bostick, Roberd M

    2016-08-01

    Despite previously reported associations between peripheral blood mtDNA copy number and colorectal cancer, it remains unclear whether altered mtDNA copy number in peripheral blood is a risk factor for colorectal cancer or a biomarker for undiagnosed colorectal cancer. Though colorectal adenomas are well-recognized precursor lesions to colorectal cancer, no study has evaluated an association between mtDNA copy number and colorectal adenoma risk. Hence, we investigated an association between peripheral blood mtDNA copy number and incident, sporadic colorectal adenoma in 412 colorectal adenoma cases and 526 cancer-free controls pooled from three colonoscopy-based case-control studies that used identical methods for case ascertainment, risk factor determination, and biospecimen collection. We also evaluated associations between relative mtDNA copy number and markers of oxidative stress, including circulating F2 -isoprostanes, carotenoids, and fluorescent oxidation products. We measured mtDNA copy number using a quantitative real time polymerase chain reaction (PCR). We used unconditional logistic regression to analyze the association between mtDNA copy number and colorectal adenoma risk after multivariable adjustment. We found no association between logarithmically transformed relative mtDNA copy number, analyzed as a continuous variable, and colorectal adenoma risk (odds ratio = 1.02, 95%CI: 0.82-1.27; P = 0.86). There were no statistically significant associations between relative mtDNA copy number and other markers of oxidative stress. Our findings, taken together with those from previous studies, suggest that relative mtDNA copy number in peripheral blood may more likely be a marker of early colorectal cancer than of risk for the disease or of in vivo oxidative stress. © 2015 Wiley Periodicals, Inc. PMID:26258394

  12. Genomic determinants of somatic copy number alterations across human cancers.

    PubMed

    Zhang, Yanping; Xu, Hongen; Frishman, Dmitrij

    2016-03-01

    Somatic copy number alterations (SCNAs) play an important role in carcinogenesis. However, the impact of genomic architecture on the global patterns of SCNAs in cancer genomes remains elusive. In this work, we conducted multiple linear regression (MLR) analyses of the pooled SCNA data from The Cancer Genome Atlas (TCGA) Pan-Cancer project. We performed MLR analyses for 11 individual cancer types and three different kinds of SCNAs-amplifications and deletions, telomere-bound and interstitial SCNAs and local SCNAs. Our MLR model explains >30% of the pooled SCNA breakpoint variation, with the explanatory power ranging from 13 to 32% for different cancer types and SCNA types. In addition to confirming previously identified features [e.g. long interspersed element-1 (L1) and short interspersed nuclear elements], we also identified several novel informative features, including distance to telomere, distance to centromere and low-complexity repeats. The results of the MLR analyses were additionally confirmed on an independent SCNA data set obtained from the catalogue of somatic mutations in cancer database. Using a rare-event logistic regression model and an extremely randomized tree classifier, we revealed that genomic features are informative for defining common SCNA breakpoint hotspots. Our findings shed light on the molecular mechanisms of SCNA generation in cancer. PMID:26732428

  13. Different Facets of Copy Number Changes: Permanent, Transient, and Adaptive

    PubMed Central

    Mishra, Sweta

    2016-01-01

    Chromosomal copy number changes are frequently associated with harmful consequences and are thought of as an underlying mechanism for the development of diseases. However, changes in copy number are observed during development and occur during normal biological processes. In this review, we highlight the causes and consequences of copy number changes in normal physiologic processes as well as cover their associations with cancer and acquired drug resistance. We discuss the permanent and transient nature of copy number gains and relate these observations to a new mechanism driving transient site-specific copy gains (TSSGs). Finally, we discuss implications of TSSGs in generating intratumoral heterogeneity and tumor evolution and how TSSGs can influence the therapeutic response in cancer. PMID:26755558

  14. c-myc copy number gains in bladder cancer detected by fluorescence in situ hybridization.

    PubMed Central

    Sauter, G.; Carroll, P.; Moch, H.; Kallioniemi, A.; Kerschmann, R.; Narayan, P.; Mihatsch, M. J.; Waldman, F. M.

    1995-01-01

    Amplification and overexpression of c-myc have been suggested as prognostic markers in human cancer. To assess the role of c-myc gene copy number alterations in bladder cancer, 87 bladder tumors were examined for c-myc aberrations by fluorescence in situ hybridization. Dual labeling hybridization with a repetitive pericentromeric probe specific for chromosome 8 and a probe for the c-myc locus (at 8q24) was performed to analyze c-myc copy number in relation to chromosome 8 copy number on a cell by cell basis. A clear-cut c-myc amplification (up to 40 to 150 copies per cell) was found in 3 tumors. There was a low level c-myc copy number increase in 32 of the remaining 84 tumors. There was no association of low level c-myc copy number increase with c-myc protein overexpression. This suggests that a c-myc gene copy number gain as detected by fluorescence in situ hybridization does not necessarily reflect a disturbed c-myc gene function but may indicate a structural chromosome 8 abnormality including gain of distal 8q. The strong association of low level c-myc (8q) gains with tumor grade (P < 0.0001), stage (P < 0.0001), chromosome polysomy (P < 0.0001), p53 protein expression (P = 0.0019), p53 deletion (P = 0.0403), and tumor cell proliferation (Ki67 labeling index; P = 0.0021) is consistent with a role of chromosome 8 alterations in bladder cancer progression. Images Figure 1 PMID:7747807

  15. Mitochondrial DNA Copy Number in Peripheral Blood and Melanoma Risk

    PubMed Central

    Shen, Jie; Gopalakrishnan, Vancheswaran; Lee, Jeffrey E.; Fang, Shenying; Zhao, Hua

    2015-01-01

    Mitochondrial DNA (mtDNA) copy number in peripheral blood has been suggested as risk modifier in various types of cancer. However, its influence on melanoma risk is unclear. We evaluated the association between mtDNA copy number in peripheral blood and melanoma risk in 500 melanoma cases and 500 healthy controls from an ongoing melanoma study. The mtDNA copy number was measured using real-time polymerase chain reaction. Overall, mean mtDNA copy number was significantly higher in cases than in controls (1.15 vs 0.99, P<0.001). Increased mtDNA copy number was associated with a 1.45-fold increased risk of melanoma (95% confidence interval: 1.12-1.97). Significant joint effects between mtDNA copy number and variables related to pigmentation and history of sunlight exposure were observed. This study supports an association between increased mtDNA copy number and melanoma risk that is independent on the known melanoma risk factors (pigmentation and history of sunlight exposure). PMID:26110424

  16. 47 CFR 3.25 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES Application Procedures § 3.25 Number of copies. One original and one copy of FCC Form 44, “Application For Certification As An Accounting... application forms will be considered. Applications should be mailed at least 90 days prior to...

  17. Plasmid Copy Number Determination by Quantitative Polymerase Chain Reaction.

    PubMed

    Anindyajati; Artarini, A Anita; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Recombinant therapeutic proteins are biopharmaceutical products that develop rapidly for years. Recombinant protein production in certain hosts requires vector expression harboring the gene encoding the corresponding protein. Escherichia coli is the prokaryote organism mostly used in recombinant protein production, commonly using a plasmid as the expression vector. Recombinant protein production is affected by plasmid copy number harboring the encoded gene, hence the determination of plasmid copy number also plays an important role in establishing a recombinant protein production system. On the industrial scale, a low copy number of plasmids are more suitable due to their better stability. In the previous study we constructed pCAD, a plasmid derived from the low copy number pBR322 plasmid. This study was aimed to confirm pCAD's copy number by quantitative polymerase chain reaction (qPCR). Plasmid copy number was determined by comparing the quantification signal from the plasmid to those from the chromosome. Copy number was then calculated by using a known copy number plasmid as a standard. Two pairs of primers, called tdk and ori, were designed for targeting a single gene tdk in the chromosome and a conserved domain in the plasmid's ori, respectively. Primer quality was analyzed in silico using PrimerSelect DNASTAR and PraTo software prior to in vitro evaluation on primer specificity and efficiency as well as optimization of qPCR conditions. Plasmid copy number determination was conducted on E. coli lysates harboring each plasmid, with the number of cells ranging from 10(2)-10(5) cells/μL. Cells were lysed by incubation at 95ºC for 10 minutes, followed by immediate freezing at -4°C. pBR322 plasmid with the copy number of ~19 copies/cell was used as the standard, while pJExpress414-sod plasmid possessing the high copy number pUC ori was also determined to test the method being used. In silico analysis based on primer-primer and primer-template interactions showed

  18. Diversity of human copy number variation and multicopy genes.

    PubMed

    Sudmant, Peter H; Kitzman, Jacob O; Antonacci, Francesca; Alkan, Can; Malig, Maika; Tsalenko, Anya; Sampas, Nick; Bruhn, Laurakay; Shendure, Jay; Eichler, Evan E

    2010-10-29

    Copy number variants affect both disease and normal phenotypic variation, but those lying within heavily duplicated, highly identical sequence have been difficult to assay. By analyzing short-read mapping depth for 159 human genomes, we demonstrated accurate estimation of absolute copy number for duplications as small as 1.9 kilobase pairs, ranging from 0 to 48 copies. We identified 4.1 million "singly unique nucleotide" positions informative in distinguishing specific copies and used them to genotype the copy and content of specific paralogs within highly duplicated gene families. These data identify human-specific expansions in genes associated with brain development, reveal extensive population genetic diversity, and detect signatures consistent with gene conversion in the human species. Our approach makes ~1000 genes accessible to genetic studies of disease association. PMID:21030649

  19. Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma.

    PubMed

    van Kempen, Pauline M W; Noorlag, Rob; Braunius, Weibel W; Moelans, Cathy B; Rifi, Widad; Savola, Suvi; Koole, Ronald; Grolman, Wilko; van Es, Robert J J; Willems, Stefan M

    2015-10-01

    Current conventional treatment modalities in head and neck squamous cell carcinoma (HNSCC) are nonselective and have shown to cause serious side effects. Unraveling the molecular profiles of head and neck cancer may enable promising clinical applications that pave the road for personalized cancer treatment. We examined copy number status in 36 common oncogenes and tumor suppressor genes in a cohort of 191 oropharyngeal squamous cell carcinomas (OPSCC) and 164 oral cavity squamous cell carcinomas (OSCC) using multiplex ligation probe amplification. Copy number status was correlated with human papillomavirus (HPV) status in OPSCC, with occult lymph node status in OSCC and with patient survival. The 11q13 region showed gain or amplifications in 59% of HPV-negative OPSCC, whereas this amplification was almost absent in HPV-positive OPSCC. Additionally, in clinically lymph node-negative OSCC (Stage I-II), gain of the 11q13 region was significantly correlated with occult lymph node metastases with a negative predictive value of 81%. Multivariate survival analysis revealed a significantly decreased disease-free survival in both HPV-negative and HPV-positive OPSCC with a gain of Wnt-induced secreted protein-1. Gain of CCND1 showed to be an independent predictor for worse survival in OSCC. These results show that copy number aberrations, mainly of the 11q13 region, may be important predictors and prognosticators which allow for stratifying patients for personalized treatment of HNSCC. PMID:26194878

  20. Hotspots for copy number variation in chimpanzees and humans

    PubMed Central

    Perry, George H.; Tchinda, Joelle; McGrath, Sean D.; Zhang, Junjun; Picker, Simon R.; Cáceres, Angela M.; Iafrate, A. John; Tyler-Smith, Chris; Scherer, Stephen W.; Eichler, Evan E.; Stone, Anne C.; Lee, Charles

    2006-01-01

    Copy number variation is surprisingly common among humans and can be involved in phenotypic diversity and variable susceptibility to complex diseases, but little is known of the extent of copy number variation in nonhuman primates. We have used two array-based comparative genomic hybridization platforms to identify a total of 355 copy number variants (CNVs) in the genomes of 20 wild-born chimpanzees (Pan troglodytes) and have compared the identified chimpanzee CNVs to known human CNVs from previous studies. Many CNVs were observed in the corresponding regions in both chimpanzees and humans; especially those CNVs of higher frequency. Strikingly, these loci are enriched 20-fold for ancestral segmental duplications, which may facilitate CNV formation through nonallelic homologous recombination mechanisms. Therefore, some of these regions may be unstable “hotspots” for the genesis of copy number variation, with recurrent duplications and deletions occurring across and within species. PMID:16702545

  1. DNA sequence copy number analysis by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Pinkel, D.; Kallioniemi, A.; Kallioniemi, O.; Waldman, F.; Sudar, D.; Gray, I. ); Rutovitz, D.; Piper, I. )

    1993-01-01

    Comparative Genomic Hybridization (CGH) uses the kinetics of in situ hybridization to compare the copy numbers of different DNA sequences within the same genome and the copy numbers of the same sequences among different genomes. In a typical application genomic DNA from a tumor and from normal cells are differentially labeled and simultaneously hybridized to normal metaphase chromosomes, and detected with different fluorochromes. Properly registered images of each fluorochrome are obtained using a microscope equipped with multi-band filters and a CCD camera. Digital image analysis permits measurement of intensity ratio profiles along each of the target chromosomes. Studies of cells with known aberrations indicate that the intensity ratio at each position is proportional to the ratio of the copy numbers of the sequences that bind there in the tumor and normal genomes. Analytical challenges posed by the need to efficiently obtain copy number karyotypes are discussed.

  2. Copy number variation and evolution in humans and chimpanzees

    PubMed Central

    Perry, George H.; Yang, Fengtang; Marques-Bonet, Tomas; Murphy, Carly; Fitzgerald, Tomas; Lee, Arthur S.; Hyland, Courtney; Stone, Anne C.; Hurles, Matthew E.; Tyler-Smith, Chris; Eichler, Evan E.; Carter, Nigel P.; Lee, Charles; Redon, Richard

    2008-01-01

    Copy number variants (CNVs) underlie many aspects of human phenotypic diversity and provide the raw material for gene duplication and gene family expansion. However, our understanding of their evolutionary significance remains limited. We performed comparative genomic hybridization on a single human microarray platform to identify CNVs among the genomes of 30 humans and 30 chimpanzees as well as fixed copy number differences between species. We found that human and chimpanzee CNVs occur in orthologous genomic regions far more often than expected by chance and are strongly associated with the presence of highly homologous intrachromosomal segmental duplications. By adapting population genetic analyses for use with copy number data, we identified functional categories of genes that have likely evolved under purifying or positive selection for copy number changes. In particular, duplications and deletions of genes with inflammatory response and cell proliferation functions may have been fixed by positive selection and involved in the adaptive phenotypic differentiation of humans and chimpanzees. PMID:18775914

  3. CONSERTING: integrating copy number analysis with structural variation detection

    PubMed Central

    Chen, Xiang; Gupta, Pankaj; Wang, Jianmin; Nakitandwe, Joy; Roberts, Kathryn; Dalton, James D.; Parker, Matthew; Patel, Samir; Holmfeldt, Linda; Payne, Debbie; Easton, John; Ma, Jing; Rusch, Michael; Wu, Gang; Patel, Aman; J. Baker, Suzanne; Dyer, Michael A.; Shurtleff, Sheila; Espy, Stephen; Pounds, Stanley; Downing, James R.; Ellison, David W.; Mullighan, Charles G.; Zhang, Jinghui

    2015-01-01

    We developed Copy Number Segmentation by Regression Tree in Next Generation Sequencing (CONSERTING), a novel algorithm for detecting somatic copy number alteration (CNA) using whole-genome sequencing (WGS) data. CONSERTING performs iterative analysis of segmentation by read depth change and localized structural variation detection, achieving high accuracy and sensitivity. Analysis of 43 pediatric and adult cancer genomes revealed novel oncogenic CNAs, complex re-arrangements and subclonal CNAs missed by alternative approaches. PMID:25938371

  4. SHC2 gene copy number in multiple system atrophy (MSA)

    PubMed Central

    Ferguson, Marcus C.; Garland, Emily M.; Hedges, Lora; Womack-Nunley, Bethany; Hamid, Rizwan; Phillips, John A.; Shibao, Cyndya A.; Raj, Satish R.; Biaggioni, Italo; Robertson, David

    2013-01-01

    Purpose Multiple system atrophy (MSA) is a sporadic, late onset, rapidly-progressing neurodegenerative disorder, which is characterized by autonomic failure, together with parkinsonian, cerebellar, and pyramidal motor symptoms. The pathologic hallmark is the glial cytoplasmic inclusion with alpha-synuclein aggregates. MSA is thus an alpha synucleinopathy. Recently, Sasaki et al. reported that heterozygosity for copy number loss of Src homology 2 domain containing-transforming protein 2 (SHC2) genes (heterozygous SHC2 gene deletions) occurred in DNAs from many Japanese individuals with MSA. Because background copy number variation (CNV) can be distinct in different human populations, we assessed SHC2 allele copy number in DNAs from a US cohort of individuals with MSA, to determine the contribution of SHC2 gene copy number variation in an American cohort followed at a US referral center for MSA. Our cohort included 105 carefully phenotyped individuals with MSA. Methods We studied 105 well characterized patients with MSA and 5 control subjects with reduced SHC2 gene copy number. We used two TaqMan Gene Copy Number Assays, to determine the copy number of two segments of the SHC2 gene that are separated by 27 Kb. Results Assay results of DNAs from all of our 105 subjects with MSA showed two copies of both segments of their SHC2 genes. Conclusion Our results indicate that SHC2 gene deletions underlie few, if any, cases of well characterized MSA in the US population. This is in contrast to the Japanese experience reported by Sasaki et al., likely reflecting heterogeneity of the disease in different genetic backgrounds. PMID:24170347

  5. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  6. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  7. Analysis of copy number variations among diverse cattle breeds

    PubMed Central

    Liu, George E.; Hou, Yali; Zhu, Bin; Cardone, Maria Francesca; Jiang, Lu; Cellamare, Angelo; Mitra, Apratim; Alexander, Leeson J.; Coutinho, Luiz L.; Dell'Aquila, Maria Elena; Gasbarre, Lou C.; Lacalandra, Gianni; Li, Robert W.; Matukumalli, Lakshmi K.; Nonneman, Dan; de A. Regitano, Luciana C.; Smith, Tim P.L.; Song, Jiuzhou; Sonstegard, Tad S.; Van Tassell, Curt P.; Ventura, Mario; Eichler, Evan E.; McDaneld, Tara G.; Keele, John W.

    2010-01-01

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 megabases or ∼1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions, such as immunity, lactation, reproduction, and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research. PMID:20212021

  8. The Coalescent with Selection on Copy Number Variants

    PubMed Central

    Teshima, Kosuke M.; Innan, Hideki

    2012-01-01

    We develop a coalescent-based simulation tool to generate patterns of single nucleotide polymorphisms (SNPs) in a wide region encompassing both the original and duplicated genes. Selection on the new duplicated copy and interlocus gene conversion between the two copies are incorporated. This simulation enables us to explore how selection on duplicated copies affects the pattern of SNPs. The fixation of an advantageous duplicated copy causes a strong reduction in polymorphism not only in the duplicated copy but also in its flanking regions, which is a typical signature of a selective sweep by positive selection. After fixation, polymorphism gradually increases by accumulating neutral mutations and eventually reaches the equilibrium value if there is no gene conversion. When gene conversion is active, the number of SNPs in the duplicated copy quickly increases by transferring SNPs from the original copy; therefore, the time when we can recognize the signature of selection is decreased. Because this effect of gene conversion is restricted only to the duplicated region, more power to detect selection is expected if a flanking region to the duplicated copy is used. PMID:22174068

  9. Somatic Copy Number Alterations Associated with Japanese or Endometriosis in Ovarian Clear Cell Adenocarcinoma

    PubMed Central

    Okamoto, Aikou; Sehouli, Jalid; Yanaihara, Nozomu; Hirata, Yukihiro; Braicu, Ioana; Kim, Byoung-Gie; Takakura, Satoshi; Saito, Misato; Yanagida, Satoshi; Takenaka, Masataka; Yamaguchi, Noriko; Morikawa, Asuka; Tanabe, Hiroshi; Yamada, Kyosuke; Yoshihara, Kosuke; Enomoto, Takayuki; Itamochi, Hiroaki; Kigawa, Junzo; Matsumura, Noriomi; Konishi, Ikuo; Aida, Satoshi; Aoki, Yuko; Ishii, Nobuya; Ochiai, Kazunori; Akiyama, Tetsu; Urashima, Mitsuyoshi

    2015-01-01

    When compared with other epithelial ovarian cancers, the clinical characteristics of ovarian clear cell adenocarcinoma (CCC) include 1) a higher incidence among Japanese, 2) an association with endometriosis, 3) poor prognosis in advanced stages, and 4) a higher incidence of thrombosis as a complication. We used high resolution comparative genomic hybridization (CGH) to identify somatic copy number alterations (SCNAs) associated with each of these clinical characteristics of CCC. The Human Genome CGH 244A Oligo Microarray was used to examine 144 samples obtained from 120 Japanese, 15 Korean, and nine German patients with CCC. The entire 8q chromosome (minimum corrected p-value: q = 0.0001) and chromosome 20q13.2 including the ZNF217 locus (q = 0.0078) were amplified significantly more in Japanese than in Korean or German samples. This copy number amplification of the ZNF217 gene was confirmed by quantitative real-time polymerase chain reaction (Q-PCR). ZNF217 RNA levels were also higher in Japanese tumor samples than in non-Japanese samples (P = 0.027). Moreover, endometriosis was associated with amplification of EGFR gene (q = 0.047), which was again confirmed by Q-PCR and correlated with EGFR RNA expression. However, no SCNAs were significantly associated with prognosis or thrombosis. These results indicated that there may be an association between CCC and ZNF217 amplification among Japanese patients as well as between endometriosis and EGFR gene amplifications. PMID:25658832

  10. Probe-free allele-specific copy number detection and analysis of tumors.

    PubMed

    Zhu, Ailin; Guan, Xiaowei; Gu, Xinbin; Xie, Guiqin

    2016-03-15

    Cancer development and progression frequently involve nucleotide mutations as well as amplifications and deletions of genomic segments. Quantification of allele-specific copy number is an important step in characterizing tumor genomes for precision medicine. Despite advances in approaches to high-throughput genomic DNA analysis, inexpensive and simple methods for analyzing complex nucleotide and copy number variants are still needed. Real-time polymerase chain reaction (PCR) methods for discovering and genotyping single nucleotide polymorphisms are becoming increasingly important in genetic analysis. In this study, we describe a simple, single-tube, probe-free method that combines SYBR Green I-based quantitative real-time PCR and quantitative melting curve analysis both to detect specific nucleotide variants and to quantify allele-specific copy number variants of tumors. The approach is based on the quantification of the targets of interest and the relative abundance of two alleles in a single tube. The specificity, sensitivity, and utility of the assay were demonstrated in detecting allele-specific copy number changes critical for carcinogenesis and therapeutic intervention. Our approach would be useful for allele-specific copy number analysis or precise genotyping. PMID:26743720

  11. Reconstructing DNA copy number by joint segmentation of multiple sequences

    PubMed Central

    2012-01-01

    Background Variations in DNA copy number carry information on the modalities of genome evolution and mis-regulation of DNA replication in cancer cells. Their study can help localize tumor suppressor genes, distinguish different populations of cancerous cells, and identify genomic variations responsible for disease phenotypes. A number of different high throughput technologies can be used to identify copy number variable sites, and the literature documents multiple effective algorithms. We focus here on the specific problem of detecting regions where variation in copy number is relatively common in the sample at hand. This problem encompasses the cases of copy number polymorphisms, related samples, technical replicates, and cancerous sub-populations from the same individual. Results We present a segmentation method named generalized fused lasso (GFL) to reconstruct copy number variant regions. GFL is based on penalized estimation and is capable of processing multiple signals jointly. Our approach is computationally very attractive and leads to sensitivity and specificity levels comparable to those of state-of-the-art specialized methodologies. We illustrate its applicability with simulated and real data sets. Conclusions The flexibility of our framework makes it applicable to data obtained with a wide range of technology. Its versatility and speed make GFL particularly useful in the initial screening stages of large data sets. PMID:22897923

  12. FSHD: copy number variations on the theme of muscular dystrophy

    PubMed Central

    Cabianca, Daphne Selvaggia

    2010-01-01

    In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD. PMID:21149563

  13. A portrait of copy-number polymorphism in Drosophila melanogaster.

    PubMed

    Dopman, Erik B; Hartl, Daniel L

    2007-12-11

    Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation. PMID:18056801

  14. 14 CFR 221.92 - Number of copies required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Number of copies required. 221.92 Section 221.92 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Filing Tariff Publications With Department § 221.92 Number of...

  15. The role of mutation in genetic copy number variation

    NASA Astrophysics Data System (ADS)

    Clark, B. K.; Weidner, Jacob; Wabick, Kevin

    2010-03-01

    Until very recently, the standard model of DNA included two genes for each trait. This dated model has given way to a model that includes copies of some genes well in excess of the canonical two. Copy number variations in the human genome play critical roles in causing or aggravating a number of syndromes and diseases while providing increased resistance to others. We explore the role of mutation, crossover, inversion, and reproduction in determining copy number variations in a numerical simulation of a population. The numerical model consists of a population of individuals, where each individual is represented by a single strand of DNA with the same number of genes. Each gene is initially assigned to one of two traits. Fitness of the individual is determined by the two most fit genes for trait one, and trait two genetic material is treated as a reservoir of junk DNA. After a sufficient number of generations, during which the genetic distribution is allowed to reach a steady-state, the mean number of genes per trait and the copy number variation are recorded. Here, we focus on the role of mutation and compare simulation results to theory.

  16. Chromosomal instability selects gene copy number variants encoding core regulators of proliferation in ER+ breast cancer

    PubMed Central

    Endesfelder, David; McGranahan, Nicholas; Howell, Mike; Parker, Peter J.; Downward, Julian; Swanton, Charles; Kschischo, Maik

    2014-01-01

    Chromosomal instability (CIN) is associated with poor outcome in epithelial malignancies including breast carcinomas. Evidence suggests that prognostic signatures in estrogen receptor-positive (ER+) breast cancer define tumors with CIN and high proliferative potential. Intriguingly, CIN induction in lower eukaryotic cells and human cells is context-dependent, typically resulting in a proliferation disadvantage but conferring a fitness benefit under strong selection pressures. We hypothesised that CIN permits accelerated genomic evolution through the generation of diverse DNA copy number events that may be selected during disease development. In support of this hypothesis, we found evidence for selection of gene amplification of core regulators of proliferation in CIN-associated cancer genomes. Stable DNA copy number amplifications of the core regulators TPX2 and UBE2C were associated with expression of a gene module involved in proliferation. The module genes were enriched within prognostic signature gene sets for ER+ breast cancer, providing a logical connection between CIN and prognostic signature expression. Our results provide a framework to decipher the impact of intratumor heterogeneity on key cancer phenotypes, and they suggest that CIN provides a permissive landscape for selection of copy number alterations which drive cancer proliferation. PMID:24970479

  17. Copy-number analysis of topoisomerase and thymidylate synthase genes in frozen and FFPE DNAs of colorectal cancers

    PubMed Central

    Yu, Jinsheng; Miller, Ryan; Zhang, Wanghai; Sharma, Mala; Holtschlag, Vicky; Watson, Mark A; McLeod, Howard L

    2008-01-01

    Background Archived formalin-fixed, paraffin-embedded specimens represent an important resource for pharmacogenomic analysis in retrospective clinical studies but the quality of results from formalin-fixed, paraffin-embedded samples is of concern due to the fact of the degradation of DNAs and RNAs from formalin-fixed, paraffin-embedded tissues. Methods In the present study, we used DNA from fresh frozen as well as formalin-fixed, paraffin-embedded tumor to detect copy-number changes in colorectal cancer, and our data shows that formalin-fixed, paraffin-embedded DNAs were able to deliver reliable copy-number data, and that quantitative PCR had the ability to detect copy-number changes from deletion to amplification, with high concordance of copy-number calls among formalin-fixed, paraffin-embedded and frozen DNAs. Results The amplification of topoisomerase I and deletion of thymidylate synthase were found in 23% (12/52) and 27% (14/52) of colorectal cancers, but EGF receptor amplification was not common (5/52, < 10%). Among 52 colorectal cancers, 31 tumors were both topoisomerase I and thymidylate synthase diploid, which may have a worse outcome for tumor chemotherapy; and there were five tumors with favorable genomics (topoisomerase I amplification and thymidylate synthase deletion). Furthermore, topoisomerase I-amplified tumors had a two-times higher RNA level and a nearly twofold higher protein expression level than did the diploid tumors (p < 0.001 and 0.01, respectively), but there were no correlations between copy-number status and RNA or protein level for thymidylate synthase. Conclusions Our study suggests a potential pharmacogenomic influence of topoisomerase I copy-number alteration on its RNA/protein expressions, which could be reflected on tumor response to chemotherapy in human colorectal cancer. PMID:18855534

  18. Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

    PubMed Central

    Zamani Esteki, Masoud; Dimitriadou, Eftychia; Mateiu, Ligia; Melotte, Cindy; Van der Aa, Niels; Kumar, Parveen; Das, Rakhi; Theunis, Koen; Cheng, Jiqiu; Legius, Eric; Moreau, Yves; Debrock, Sophie; D’Hooghe, Thomas; Verdyck, Pieter; De Rycke, Martine; Sermon, Karen; Vermeesch, Joris R.; Voet, Thierry

    2015-01-01

    Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones. PMID:25983246

  19. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    PubMed Central

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A; Woodman, Scott E; Kwong, Lawrence N

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy. PMID:26787600

  20. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    NASA Astrophysics Data System (ADS)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  1. Analysis of copy number variations reveals differences among cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  2. Mapping cattle copy number variations in water buffalo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variation (CNV) is abundant in livestock, differing from SNPs in extent, origin and functional impact. Despite progress in CNV discovery, the nucleotide resolution architecture of most CNVs remains elusive. Using modified forms of open-source variant detection software packages, we have ...

  3. Analysis of copy number variation in the bovine genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We initiated a systematic study of the copy number variation (CNV) within the Bovine HapMap cattle population using array comparative genomic hybridization (array CGH). Oligonucleotide CGH arrays were designed and fabricated to provide a genome-wide coverage with an average interval of 6 kb using t...

  4. Analysis of copy number variations among cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  5. Bovine copy number variation and its implication in animal health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently it has become apparent that previously unappreciated genomic structural variation, including copy number variations (CNV), contributes significantly to individual health and disease in humans and rodents. As a complement to the bovine HapMap project, we initiated a systematic study of the C...

  6. Genomic Copy Number Variation in Disorders of Cognitive Development

    ERIC Educational Resources Information Center

    Morrow, Eric M.

    2010-01-01

    Objective: To highlight recent discoveries in the area of genomic copy number variation in neuropsychiatric disorders including intellectual disability, autism, and schizophrenia. To emphasize new principles emerging from this area, involving the genetic architecture of disease, pathophysiology, and diagnosis. Method: Review of studies published…

  7. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Number of copies. 33.8 Section 33.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 §...

  8. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Number of copies. 33.8 Section 33.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 §...

  9. Genomic and evolutionary characteristics of cattle copy number variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  10. Endogenous RNA interference is driven by copy number

    PubMed Central

    Cruz, Cristina; Houseley, Jonathan

    2014-01-01

    A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI: http://dx.doi.org/10.7554/eLife.01581.001 PMID:24520161

  11. Detection of MET Gene Copy Number in Cancer Samples Using the Droplet Digital PCR Method

    PubMed Central

    Zhang, Yanni; Tang, En-Tzu; Du, Zhiqiang

    2016-01-01

    Purpose The analysis of MET gene copy number (CN) has been considered to be a potential biomarker to predict the response to MET-targeted therapies in various cancers. However, the current standard methods to determine MET CN are SNP 6.0 in the genomic DNA of cancer cell lines and fluorescence in situ hybridization (FISH) in tumor models, respectively, which are costly and require advanced technical skills and result in relatively subjective judgments. Therefore, we employed a novel method, droplet digital PCR (ddPCR), to determine the MET gene copy number with high accuracy and precision. Methods The genomic DNA of cancer cell lines or tumor models were tested and compared with the MET gene CN and MET/CEN-7 ratio determined by SNP 6.0 and FISH, respectively. Results In cell lines, the linear association of the MET CN detected by ddPCR and SNP 6.0 is strong (Pearson correlation = 0.867). In tumor models, the MET CN detected by ddPCR was significantly different between the MET gene amplification and non-amplification groups according to FISH (mean: 15.4 vs 2.1; P = 0.044). Given that MET gene amplification is defined as MET CN >5.5 by ddPCR, the concordance rate between ddPCR and FISH was 98.0%, and Cohen's kappa coefficient was 0.760 (95% CI, 0.498–1.000; P <0.001). Conclusions The results demonstrated that the ddPCR method has the potential to quantify the MET gene copy number with high precision and accuracy as compared with the results from SNP 6.0 and FISH in cancer cell lines and tumor samples, respectively. PMID:26765781

  12. Detecting copy number variation with mated short reads

    PubMed Central

    Medvedev, Paul; Fiume, Marc; Dzamba, Misko; Smith, Tim; Brudno, Michael

    2010-01-01

    The development of high-throughput sequencing (HTS) technologies has opened the door to novel methods for detecting copy number variants (CNVs) in the human genome. While in the past CNVs have been detected based on array CGH data, recent studies have shown that depth-of-coverage information from HTS technologies can also be used for the reliable identification of large copy-variable regions. Such methods, however, are hindered by sequencing biases that lead certain regions of the genome to be over- or undersampled, lowering their resolution and ability to accurately identify the exact breakpoints of the variants. In this work, we develop a method for CNV detection that supplements the depth-of-coverage with paired-end mapping information, where mate pairs mapping discordantly to the reference serve to indicate the presence of variation. Our algorithm, called CNVer, combines this information within a unified computational framework called the donor graph, allowing us to better mitigate the sequencing biases that cause uneven local coverage and accurately predict CNVs. We use CNVer to detect 4879 CNVs in the recently described genome of a Yoruban individual. Most of the calls (77%) coincide with previously known variants within the Database of Genomic Variants, while 81% of deletion copy number variants previously known for this individual coincide with one of our loss calls. Furthermore, we demonstrate that CNVer can reconstruct the absolute copy counts of segments of the donor genome and evaluate the feasibility of using CNVer with low coverage datasets. PMID:20805290

  13. The positioning logic and copy number control of genes in bacteria under stress

    NASA Astrophysics Data System (ADS)

    Zhang, Qiucen; Austin, Robert; Vyawahare, Saurabh; Lau, Alexandra

    2013-03-01

    Escherichia coli (E. coli) cells when challenged with sublethal concentrations of the genotoxic antibiotic ciprofloxacin cease to divide and form long filaments which contain multiple bacterial chromosomes. These filaments are individual mesoscopic environmental niches which provide protection for a community of chromosomes (as opposed to cells) under mutagenic stress and can provide an evolutionary fitness advantage within the niche. We use comparative genomic hybridization to show that the mesoscopic niche evolves within 20 minutes of ciprofloxacin exposure via replication of multiple copies of genes expressing ATP dependent transporters. We show that this rapid genomic amplification is done in a time efficient manner via placement of the genes encoding the pumps near the origin of replication on the bacterial chromosome. The de-amplification of multiple copies back to the wild type number is a function of the duration is a function of the ciprofloxacin exposure duration: the longer the exposure, the slower the removal of the multiple copies. The project described was supported by the National Science Foundation and the National Cancer Institute

  14. A Sensitive Method for Detecting Variation in Copy Numbers of Duplicated Genes

    PubMed Central

    Pielberg, Gerli; Day, Andy E.; Plastow, Graham S.; Andersson, Leif

    2003-01-01

    Gene duplications are common in the vertebrate genome, and duplicated loci often show a variation in copy number that may have important phenotypic effects. Here we describe a powerful method for quantification of duplicated copies based on pyrosequencing. A reliable quantification was obtained by amplification of the duplication break-point and a corresponding nonduplicated sequence in a competitive PCR assay. A comparison with an independent method for quantification based on the Invader technology revealed an excellent correlation between the two methods. The pyrosequencing-based method was evaluated by analyzing variation in copy number at the duplicated KIT/Dominant white locus in pigs. We were able to distinguish haplotypes at this locus by combining the duplication breakpoint test with a diagnostic test for a functionally important splice mutation in the duplicated gene. An extensive allelic variation, including the presence of a new allele carrying a single KIT copy expected to encode a truncated KIT receptor, was revealed when analyzing white pigs from commercial lines. PMID:12952884

  15. Analysis of copy number variation using quantitative interspecies competitive PCR.

    PubMed

    Williams, Nigel M; Williams, Hywel; Majounie, Elisa; Norton, Nadine; Glaser, Beate; Morris, Huw R; Owen, Michael J; O'Donovan, Michael C

    2008-10-01

    Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls. PMID:18697816

  16. DNA Copy Number Profiles in Affinity-Purified Ovarian Clear Cell Carcinoma

    PubMed Central

    Kuo, Kuan-Ting; Mao, Tsui-Lien; Chen, Xu; Feng, Yuanjian; Nakayama, Kentaro; Wang, Yue; Glas, Ruth; Ma, M. Joe; Kurman, Robert J.; Shih, Ie-Ming; Wang, Tian-Li

    2010-01-01

    Purpose Advanced ovarian clear cell carcinoma (CCC) is one of the most malignant ovarian malignancies, in part because it tends to be resistant to platinum-based chemotherapy. At present, little is known about the molecular genetic alterations in CCCs except that there are frequent activating mutations in PIK3CA. The purpose of this study is to comprehensively define the genomic changes in CCC based on DNA copy number alterations. Experimental Design We performed 250K high-density SNP array analysis in 12 affinity-purified CCCs and 10 CCC cell lines. Discrete regions of amplification and deletion were also analyzed in additional 21 affinity-purified CCCs using quantitative real-time PCR. Results The level of chromosomal instability in CCC as defined by the extent of DNA copy number changes is similar to those previously reported in low-grade ovarian serous carcinoma but much less than those in high-grade serous carcinoma. The most remarkable region with DNA copy number gain is at chr20 which harbors a potential oncogene, ZNF217. This is observed in 36% of CCCs but rarely detected in serous carcinomas regardless of grade. In addition, homozygous deletions are detected at CDKN2A/2B and LZTS1 loci. Interestingly, the DNA copy number changes observed in fresh CCC tissues are rarely detected in the established CCC cell lines. Conclusions This study provides the first high resolution, genome-wide view of DNA copy number alterations in ovarian CCC. The findings provide a genomic landscape for future studies aimed at elucidating the pathogenesis and developing new target-based therapies for CCCs. PMID:20233889

  17. Detection of copy number variation by SNP-allelotyping.

    PubMed

    Parker, Brett; Alexander, Ryan; Wu, Xingyao; Feely, Shawna; Shy, Michael; Schnetz-Boutaud, Nathalie; Li, Jun

    2015-03-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by an abnormal copy number variation (CNV) with a trisomy of chromosome 17p12. The increase of the DNA-segment copy number is expected to alter the allele frequency of single nucleotide polymorphism (SNP) within the duplicated region. We tested whether SNP allele frequency determined by a Sequenom MassArray can be used to detect the CMT1A mutation. Our results revealed distinct patterns of SNP allele frequency distribution, which reliably differentiated CMT1A patients from controls. This finding suggests that this technique may serve as an alternative approach to identifying CNV in certain diseases, including CMT1A. PMID:24830919

  18. Genome Copy Numbers and Gene Conversion in Methanogenic Archaea▿

    PubMed Central

    Hildenbrand, Catherina; Stock, Tilmann; Lange, Christian; Rother, Michael; Soppa, Jörg

    2011-01-01

    Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera—Methanosarcina acetivorans and Methanococcus maripaludis—were investigated. M. acetivorans was found to be polyploid during fast growth (tD = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called “Muller's ratchet”). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection. PMID:21097629

  19. Mitochondrial DNA copy number variation across human cancers

    PubMed Central

    Reznik, Ed; Miller, Martin L; Şenbabaoğlu, Yasin; Riaz, Nadeem; Sarungbam, Judy; Tickoo, Satish K; Al-Ahmadie, Hikmat A; Lee, William; Seshan, Venkatraman E; Hakimi, A Ari; Sander, Chris

    2016-01-01

    Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities. DOI: http://dx.doi.org/10.7554/eLife.10769.001 PMID:26901439

  20. Assessment of HER2 status in invasive breast cancers with increased centromere 17 copy number.

    PubMed

    Jang, Min Hye; Kim, Eun Joo; Kim, Hyun Jeong; Chung, Yul Ri; Park, So Yeon

    2015-08-01

    This study was designed to evaluate usefulness of additional fluorescence in situ hybridization (FISH) using other reference genes on chromosome 17 for assessment of HER2 status in invasive breast cancers with increased centromere 17 copy number, and to compare this approach with conventional methods based on the 2007 and 2013 ASCO/CAP guidelines. We performed FISH with probes for SMS, RARA, and TP53 on 253 breast cancers with centromeric probe CEP17 copy number ≥ 2.6 using tissue microarrays. If one or more gene had a mean copy number <2.6, the largest number for that gene(s) was chosen as an alternative to CEP17 copy number. Of the 243 cases in which re-grading was possible, only 2 had copy numbers ≥ 2.6 for RARA, SMS, and TP53. Of the 151 breast cancers which were considered HER2 non-amplified by the 2007 ASCO/CAP guidelines using the HER2:CEP17 ratio, 42 (27.8%) were re-graded as amplified and 33 (21.8%) as equivocal after FISH using additional reference genes. Of the 101 HER2-non-amplified cases by the 2013 ASCO/CAP guidelines, 2 (2.0%) were reclassified as amplified and 24 (23.8%) as equivocal. Of 46 equivocal cases, 35 (76.1%) were re-graded as amplified. After re-grading, HER2-amplified cases were significantly increased, and the concordance between HER2 FISH and HER2 immunohistochemistry decreased. And some pathologic features of the cases which were designated to have HER2 amplification after additional FISH were not compatible with those of HER2-amplified breast cancers. The use of additional reference genes has been suggested as an option for accurate assessment of HER2 status in breast cancers with increased CEP17 copy number. However, this has limitations in that it can cause over-grading of HER2 status in tumors that lose the new reference genes. Thus, at present, it seems that additional FISH using other reference gene such as SMS, RARA, and TP53 for the cases with increased CEP17 copy number is not suitable for daily practice. PMID:26223814

  1. Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis.

    PubMed

    Torresan, Clarissa; Oliveira, Márcia M C; Pereira, Silma R F; Ribeiro, Enilze M S F; Marian, Catalin; Gusev, Yuriy; Lima, Rubens S; Urban, Cicero A; Berg, Patricia E; Haddad, Bassem R; Cavalli, Iglenir J; Cavalli, Luciane R

    2014-05-01

    DLX4 is a homeobox gene strongly implicated in breast tumor progression and invasion. Our main objective was to determine the DLX4 copy number status in sentinel lymph node (SLN) metastasis to assess its involvement in the initial stages of the axillary metastatic process. A total of 37 paired samples of SLN metastasis and primary breast tumors (PBT) were evaluated by fluorescence in situ hybridization, quantitative polymerase chain reaction and array comparative genomic hybridization assays. DLX4 increased copy number was observed in 21.6% of the PBT and 24.3% of the SLN metastasis; regression analysis demonstrated that the DLX4 alterations observed in the SLN metastasis were dependent on the ones in the PBT, indicating that they occur in the primary tumor cell populations and are maintained in the early axillary metastatic site. In addition, regression analysis demonstrated that DLX4 alterations (and other DLX and HOXB family members) occurred independently of the ones in the HER2/NEU gene, the main amplification driver on the 17q region. Additional studies evaluating DLX4 copy number in non-SLN axillary lymph nodes and/or distant breast cancer metastasis are necessary to determine if these alterations are carried on and maintained during more advanced stages of tumor progression and if could be used as a predictive marker for axillary involvement. PMID:24947980

  2. Focal DNA Copy Number Changes in Neuroblastoma Target MYCN Regulated Genes

    PubMed Central

    Mestdagh, Pieter; Menten, Björn; Lefever, Steve; Pattyn, Filip; De Brouwer, Sara; Sante, Tom; Schulte, Johannes Hubertus; Schramm, Alexander; Van Roy, Nadine; Van Maerken, Tom; Noguera, Rosa; Combaret, Valérie; Devalck, Christine; Westermann, Frank; Laureys, Geneviève; Eggert, Angelika; Vandesompele, Jo; De Preter, Katleen; Speleman, Frank

    2013-01-01

    Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17∼92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17∼92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17∼92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1) target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2) serve as a resource for identifying new molecular targets for treatment. PMID:23308108

  3. Fast detection of MYCN copy number alterations in brain neuronal tumors by real-time PCR.

    PubMed

    Malakho, S G; Korshunov, A; Stroganova, A M; Poltaraus, A B

    2008-01-01

    Increased MYCN gene copy number is a characteristic property of neurogenic tumors. Fluorescence in situ hybridization (FISH) and array-based comparative genomic hybridization (array-CGH) are traditionally used to determine MYCN amplification for tumor stratification. A unique ability of real-time quantitative polymerase chain reaction (qPCR) to determine gene copy number, even within a small percent of observed tumor cells, and can be more appropriate. MYCN genomic copy number from 44 human brain tumors (22 medulloblastomas and 22 neurocytomas) was determined by means of FISH, array-CGH, and qPCR. By qPCR, with the original set of oligonucleotides, 17 out of 44 (38.6%) tumors were found to contain a 1.3- to 2.9-fold increase of MYCN defined as low-level gain. An absolute qPCR method was used to get high accuracy of results. Strong correlation was observed between the three methods: for medulloblastomas, r=1 (P<0.01) between FISH and array-CGH and r=0.92 (P<0.01) between qPCR and FISH/array-CGH. For neurocytomas, r=0.9 (P<0.01) between FISH and array-CGH and r=0.34/0.43 (P<0.01) between qPCR and FISH/array-CGH. Absolute qPCR assays possess high precision compared to other conventional methods and can be used for accurate and quickness detection of MYCN status (low-level gene gain and amplification). PMID:18348317

  4. Mitochondrial DNA copy number and replication in reprogramming and differentiation.

    PubMed

    St John, Justin C

    2016-04-01

    Until recently, it was thought that the role of the mitochondrial genome was confined to encoding key proteins that generate ATP through the process of oxidative phosphorylation in the electron transfer chain. However, with increasing new evidence, it is apparent that the mitochondrial genome has a major role to play in a number of diseases and phenotypes. For example, mitochondrial variants and copy number have been implicated in the processes of fertilisation outcome and development and the onset of tumorigenesis. On the other hand, mitochondrial DNA (mtDNA) haplotypes have been implicated in a variety of diseases and most likely account for the adaptation that our ancestors achieved in order that they were fit for their environments. The mechanisms, which enable the mitochondrial genome to either protect or promote the disease phenotype, require further elucidation. However, there appears to be significant 'crosstalk' between the chromosomal and mitochondrial genomes that enable this to take place. One such mechanism is the regulation of DNA methylation by mitochondrial DNA, which is often perturbed in reprogrammed cells that have undergone dedifferentiation and affects mitochondrial DNA copy number. Furthermore, it appears that the mitochondrial genome interacts with the chromosomal genome to regulate the transcription of key genes at certain stages during development. Additionally, the mitochondrial genome can accumulate a series of mtDNA variants, which can lead to diseases such as cancer. It is likely that a combination of certain mitochondrial variants and aberrant patterns of mtDNA copy number could indeed account for many diseases that have previously been unaccounted for. This review focuses on the role that the mitochondrial genome plays especially during early stages of development and in cancer. PMID:26827792

  5. Mitochondrial DNA Copy Number in Spermatozoa of Fertile Stallions.

    PubMed

    Orsztynowicz, M; Pawlak, P; Podstawski, Z; Nizanski, W; Partyka, A; Gotowiecka, M; Kosiniak-Kamysz, K; Lechniak, D

    2016-06-01

    Predicting male fertility on non-invasive sperm traits is of big importance to human and animal reproduction strategies. Combining the wide range of parameters monitored by computer-assisted sperm analysis (CASA) with some molecular traits (e.g. mtDNA content) may help to identify markers of the male fertility. The aim of this study was to characterize variation in the mtDNA copy number in equine sperm and to investigate whether mtDNA content is correlated with quality traits of stallion spermatozoa and the age of the male. Ejaculates collected from 53 fertile stallions were divided into four age groups (3-5, 6-10, 11-14 and >15 years) and were subjected to a complex investigation including conventional analysis, CASA, flow cytometry and mtDNA content (real-time PCR). The mean (±SD) number of mtDNA copies equalled 14 ± 9 and varied from 3 to 64. Considering the great number of sperm parameters monitored in this study, only few of them were correlated with the mtDNA content: ejaculate volume (a positive correlation), the amplitude of lateral head displacement (ALH; a negative correlation) and the high mitochondrial activity index (a negative correlation). The stallion age was not correlated with the mtDNA copy number. This study provides the first set of data on mtDNA content in equine sperm and confirms phenomena previously described for humans and dog on associations between sperm mtDNA content and selected motility parameters monitored by the CASA. Basing our study on spermatozoa from fertile stallions could however limit the extent of detected associations. PMID:27037507

  6. Genome Architecture and Its Roles in Human Copy Number Variation

    PubMed Central

    Chen, Lu; Zhou, Weichen; Zhang, Ling

    2014-01-01

    Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability. PMID:25705150

  7. Genome-wide copy number analysis in pediatric glioblastoma multiforme.

    PubMed

    Giunti, Laura; Pantaleo, Marilena; Sardi, Iacopo; Provenzano, Aldesia; Magi, Alberto; Cardellicchio, Stefania; Castiglione, Francesca; Tattini, Lorenzo; Novara, Francesca; Buccoliero, Anna Maria; de Martino, Maurizio; Genitori, Lorenzo; Zuffardi, Orsetta; Giglio, Sabrina

    2014-01-01

    Glioblastoma (GBM) is a very aggressive and lethal brain tumor with poor prognosis. Despite new treatment strategies, patients' median survival is still less than 1 year in most cases. Few studies have focused exclusively on this disease in children and most of our understanding of the disease process and its clinical outcome has come from studies on malignant gliomas in childhood, combining children with the diagnosis of GBM with other pediatric patients harboring high grade malignant tumors other than GBM. In this study we investigated, using array-CGH platforms, children (median age of 9 years) affected by GBM (WHO-grade IV). We identified recurrent Copy Number Alterations demonstrating that different chromosome regions are involved, in various combinations. These observations suggest a condition of strong genomic instability. Since cancer is an acquired disease and inherited factors play a significant role, we compared for the first time the constitutional Copy Number Variations with the Copy Number Alterations found in tumor biopsy. We speculate that genes included in the recurrent 9p21.3 and 16p13.3 deletions and 1q32.1-q44 duplication play a crucial role for tumorigenesis and/or progression. In particular we suggest that the A2BP1 gene (16p13.3) is one possible culprit of the disease. Given the rarity of the disease, the poor quality and quantity of bioptic material and the scarcity of data in the literature, our findings may better elucidate the genomic background of these tumors. The recognition of candidate genes underlying this disease could then improve treatment strategies for this devastating tumor. PMID:24959384

  8. Genome-wide copy number analysis in pediatric glioblastoma multiforme

    PubMed Central

    Giunti, Laura; Pantaleo, Marilena; Sardi, Iacopo; Provenzano, Aldesia; Magi, Alberto; Cardellicchio, Stefania; Castiglione, Francesca; Tattini, Lorenzo; Novara, Francesca; Buccoliero, Anna Maria; de Martino, Maurizio; Genitori, Lorenzo; Zuffardi, Orsetta; Giglio, Sabrina

    2014-01-01

    Glioblastoma (GBM) is a very aggressive and lethal brain tumor with poor prognosis. Despite new treatment strategies, patients’ median survival is still less than 1 year in most cases. Few studies have focused exclusively on this disease in children and most of our understanding of the disease process and its clinical outcome has come from studies on malignant gliomas in childhood, combining children with the diagnosis of GBM with other pediatric patients harboring high grade malignant tumors other than GBM. In this study we investigated, using array-CGH platforms, children (median age of 9 years) affected by GBM (WHO-grade IV). We identified recurrent Copy Number Alterations demonstrating that different chromosome regions are involved, in various combinations. These observations suggest a condition of strong genomic instability. Since cancer is an acquired disease and inherited factors play a significant role, we compared for the first time the constitutional Copy Number Variations with the Copy Number Alterations found in tumor biopsy. We speculate that genes included in the recurrent 9p21.3 and 16p13.3 deletions and 1q32.1-q44 duplication play a crucial role for tumorigenesis and/or progression. In particular we suggest that the A2BP1 gene (16p13.3) is one possible culprit of the disease. Given the rarity of the disease, the poor quality and quantity of bioptic material and the scarcity of data in the literature, our findings may better elucidate the genomic background of these tumors. The recognition of candidate genes underlying this disease could then improve treatment strategies for this devastating tumor. PMID:24959384

  9. Copy number variation plays an important role in clinical epilepsy

    PubMed Central

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  10. Dosage compensation can buffer copy-number variation in wild yeast

    PubMed Central

    Hose, James; Yong, Chris Mun; Sardi, Maria; Wang, Zhishi; Newton, Michael A; Gasch, Audrey P

    2015-01-01

    Aneuploidy is linked to myriad diseases but also facilitates organismal evolution. It remains unclear how cells overcome the deleterious effects of aneuploidy until new phenotypes evolve. Although laboratory strains are extremely sensitive to aneuploidy, we show here that aneuploidy is common in wild yeast isolates, which show lower-than-expected expression at many amplified genes. We generated diploid strain panels in which cells carried two, three, or four copies of the affected chromosomes, to show that gene-dosage compensation functions at >30% of amplified genes. Genes subject to dosage compensation are under higher expression constraint in wild populations—but they show elevated rates of gene amplification, suggesting that copy-number variation is buffered at these genes. We find that aneuploidy provides a clear ecological advantage to oak strain YPS1009, by amplifying a causal gene that escapes dosage compensation. Our work presents a model in which dosage compensation buffers gene amplification through aneuploidy to provide a natural, but likely transient, route to rapid phenotypic evolution. DOI: http://dx.doi.org/10.7554/eLife.05462.001 PMID:25955966

  11. Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes.

    PubMed

    Kooi, Irsan E; Mol, Berber M; Massink, Maarten P G; Ameziane, Najim; Meijers-Heijboer, Hanne; Dommering, Charlotte J; van Mil, Saskia E; de Vries, Yne; van der Hout, Annemarie H; Kaspers, Gertjan J L; Moll, Annette C; Te Riele, Hein; Cloos, Jacqueline; Dorsman, Josephine C

    2016-01-01

    Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control. PMID:27126562

  12. Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes

    PubMed Central

    Kooi, Irsan E.; Mol, Berber M.; Massink, Maarten P. G.; Ameziane, Najim; Meijers-Heijboer, Hanne; Dommering, Charlotte J.; van Mil, Saskia E.; de Vries, Yne; van der Hout, Annemarie H.; Kaspers, Gertjan J. L.; Moll, Annette C.; te Riele, Hein; Cloos, Jacqueline; Dorsman, Josephine C.

    2016-01-01

    Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control. PMID:27126562

  13. Reconstructing Breakage Fusion Bridge Architectures Using Noisy Copy Numbers

    PubMed Central

    Bafna, Vineet

    2015-01-01

    Abstract The Breakage Fusion Bridge (BFB) process is a key marker for genomic instability, producing highly rearranged genomes in relatively small numbers of cell cycles. While the process itself was observed during the late 1930s, little is known about the extent of BFB in tumor genome evolution. Moreover, BFB can dramatically increase copy numbers of chromosomal segments, which in turn hardens the tasks of both reference-assisted and ab initio genome assembly. Based on available data such as Next Generation Sequencing (NGS) and Array Comparative Genomic Hybridization (aCGH) data, we show here how BFB evidence may be identified, and how to enumerate all possible evolutions of the process with respect to observed data. Specifically, we describe practical algorithms that, given a chromosomal arm segmentation and noisy segment copy number estimates, produce all segment count vectors supported by the data that can be produced by BFB, and all corresponding BFB architectures. This extends the scope of analyses described in our previous work, which produced a single count vector and architecture per instance. We apply these analyses to a comprehensive human cancer dataset, demonstrate the effectiveness and efficiency of the computation, and suggest methods for further assertions of candidate BFB samples. Source code of our tool can be found online. PMID:26020441

  14. Ioncopy: a novel method for calling copy number alterations in amplicon sequencing data including significance assessment

    PubMed Central

    Budczies, Jan; Pfarr, Nicole; Stenzinger, Albrecht; Treue, Denise; Endris, Volker; Ismaeel, Fakher; Bangemann, Nikola; Blohmer, Jens-Uwe; Dietel, Manfred; Loibl, Sibylle; Klauschen, Frederick; Weichert, Wilko; Denkert, Carsten

    2016-01-01

    Recently, it has been demonstrated that calling of copy number alterations (CNAs) from amplicon sequencing (AS) data is feasible. Most approaches, however, require non-tumor (germline) DNA for data normalization. Here, we present the method Ioncopy for CNA detection which requires no normal controls and includes a significance assessment for each detected alteration. Ioncopy was evaluated in a cohort of 184 clinically annotated breast carcinomas. A total number of 252 amplifications were detected, of which 183 (72.6%) could be validated by a call of an additional amplicon interrogating the same gene. Moreover, a total number of 33 deletions were found, whereof 27 (81.8%) could be validated. Analyzing the 16 most frequently amplified genes, validation rates of over 89% could be achieved for 11 of these genes. 11 of the top 16 genes showed significant overexpression in the amplified tumors. 89.5% of the HER2-amplified tumors were GRB7 and STARD3 co-amplified, whereas 68.4% of the HER2-amplified tumors had additional MED1 amplifications. Correlations between CNAs measured by amplicons in HER2 exons 19, 20 and 21 were strong (all R > 0.93). AS based detection of HER2 amplifications had a sensitivity of 90.0% and a specificity of 98.8% compared to the gold standard of HER2 immunohistochemistry combined with in situ hybridization. In summary, we developed and validated a novel method for detection and significance assessment of CNAs in amplicon sequencing data. Using Ioncopy, AS offers a straightforward and efficient approach to simultaneously analyze gene amplifications and gene deletions together with simple somatic mutations in a single assay. PMID:26910888

  15. Identification of genes with a correlation between copy number and expression in gastric cancer

    PubMed Central

    2012-01-01

    Background To elucidate gene expression associated with copy number changes, we performed a genome-wide copy number and expression microarray analysis of 25 pairs of gastric tissues. Methods We applied laser capture microdissection (LCM) to obtain samples for microarray experiments and profiled DNA copy number and gene expression using 244K CGH Microarray and Human Exon 1.0 ST Microarray. Results Obviously, gain at 8q was detected at the highest frequency (70%) and 20q at the second (63%). We also identified molecular genetic divergences for different TNM-stages or histological subtypes of gastric cancers. Interestingly, the C20orf11 amplification and gain at 20q13.33 almost separated moderately differentiated (MD) gastric cancers from poorly differentiated (PD) type. A set of 163 genes showing the correlations between gene copy number and expression was selected and the identified genes were able to discriminate matched adjacent noncancerous samples from gastric cancer samples in an unsupervised two-way hierarchical clustering. Quantitative RT-PCR analysis for 4 genes (C20orf11, XPO5, PUF60, and PLOD3) of the 163 genes validated the microarray results. Notably, some candidate genes (MCM4 and YWHAZ) and its adjacent genes such as PRKDC, UBE2V2, ANKRD46, ZNF706, and GRHL2, were concordantly deregulated by genomic aberrations. Conclusions Taken together, our results reveal diverse chromosomal region alterations for different TNM-stages or histological subtypes of gastric cancers, which is helpful in researching clinicopathological classification, and highlight several interesting genes as potential biomarkers for gastric cancer. PMID:22559327

  16. Photon number amplification/duplication through parametric conversion

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.; Macchiavello, C.; Paris, M.

    1993-01-01

    The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.

  17. Copy number variants calling for single cell sequencing data by multi-constrained optimization.

    PubMed

    Xu, Bo; Cai, Hongmin; Zhang, Changsheng; Yang, Xi; Han, Guoqiang

    2016-08-01

    Variations in DNA copy number carry important information on genome evolution and regulation of DNA replication in cancer cells. The rapid development of single-cell sequencing technology allows one to explore gene expression heterogeneity among single-cells, thus providing important cancer cell evolution information. Single-cell DNA/RNA sequencing data usually have low genome coverage, which requires an extra step of amplification to accumulate enough samples. However, such amplification will introduce large bias and makes bioinformatics analysis challenging. Accurately modeling the distribution of sequencing data and effectively suppressing the bias influence is the key to success variations analysis. Recent advances demonstrate the technical noises by amplification are more likely to follow negative binomial distribution, a special case of Poisson distribution. Thus, we tackle the problem CNV detection by formulating it into a quadratic optimization problem involving two constraints, in which the underling signals are corrupted by Poisson distributed noises. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signals from single-cell sequencing data are anticipated to fit the CNVs patterns more accurately. An efficient numerical solution based on the classical alternating direction minimization method (ADMM) is tailored to solve the proposed model. We demonstrate the advantages of the proposed method using both synthetic and empirical single-cell sequencing data. Our experimental results demonstrate that the proposed method achieves excellent performance and high promise of success with single-cell sequencing data. PMID:26923213

  18. RECONSTRUCTING DNA COPY NUMBER BY PENALIZED ESTIMATION AND IMPUTATION

    PubMed Central

    Zhang, Zhongyang; Lange, Kenneth; Ophoff, Roel; Sabatti, Chiara

    2011-01-01

    Recent advances in genomics have underscored the surprising ubiquity of DNA copy number variation (CNV). Fortunately, modern genotyping platforms also detect CNVs with fairly high reliability. Hidden Markov models and algorithms have played a dominant role in the interpretation of CNV data. Here we explore CNV reconstruction via estimation with a fused-lasso penalty as suggested by Tibshirani and Wang [Biostatistics 9 (2008) 18–29]. We mount a fresh attack on this difficult optimization problem by the following: (a) changing the penalty terms slightly by substituting a smooth approximation to the absolute value function, (b) designing and implementing a new MM (majorization-minimization) algorithm, and (c) applying a fast version of Newton's method to jointly update all model parameters. Together these changes enable us to minimize the fused-lasso criterion in a highly effective way. We also reframe the reconstruction problem in terms of imputation via discrete optimization. This approach is easier and more accurate than parameter estimation because it relies on the fact that only a handful of possible copy number states exist at each SNP. The dynamic programming framework has the added bonus of exploiting information that the current fused-lasso approach ignores. The accuracy of our imputations is comparable to that of hidden Markov models at a substantially lower computational cost. PMID:21572975

  19. PCR-Based Analysis of Mitochondrial DNA Copy Number, Mitochondrial DNA Damage, and Nuclear DNA Damage.

    PubMed

    Gonzalez-Hunt, Claudia P; Rooney, John P; Ryde, Ian T; Anbalagan, Charumathi; Joglekar, Rashmi; Meyer, Joel N

    2016-01-01

    Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  20. PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage

    PubMed Central

    Gonzalez-Hunt, Claudia P.; Rooney, John P.; Ryde, Ian T.; Anbalagan, Charumathi; Joglekar, Rashmi

    2016-01-01

    Because of the role DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  1. Copy Number Variation in Chickens: A Review and Future Prospects

    PubMed Central

    Wang, Xiaofei; Byers, Shannon

    2014-01-01

    DNA sequence variations include nucleotide substitution, deletion, insertion, translocation and inversion. Deletion or insertion of a large DNA segment in the genome, referred to as copy number variation (CNV), has caught the attention of many researchers recently. It is believed that CNVs contribute significantly to genome variability, and thus contribute to phenotypic variability. In chickens, genome-wide surveys with array comparative genome hybridization (aCGH), SNP chip detection or whole genome sequencing have revealed a large number of CNVs. A large portion of chicken CNVs involves protein coding or regulatory sequences. A few CNVs have been demonstrated to be the determinant factors for single gene traits, such as late-feathering, pea-comb and dermal hyperpigmentation. The phenotypic effects of the majority of chicken CNVs are to be delineated.

  2. Copy number analysis of the low-copy repeats at the primate NPHP1 locus by array comparative genomic hybridization.

    PubMed

    Yuan, Bo; Liu, Pengfei; Rogers, Jeffrey; Lupski, James R

    2016-06-01

    Array comparative genomic hybridization (aCGH) has been widely used to detect copy number variants (CNVs) in both research and clinical settings. A customizable aCGH platform may greatly facilitate copy number analyses in genomic regions with higher-order complexity, such as low-copy repeats (LCRs). Here we present the aCGH analyses focusing on the 45 kb LCRs [1] at the NPHP1 region with diverse copy numbers in humans. Also, the interspecies aCGH analysis comparing human and nonhuman primates revealed dynamic copy number transitions of the human 45 kb LCR orthologues during primate evolution and therefore shed light on the origin of complexity at this locus. The original aCGH data are available at GEO under GSE73962. PMID:27222811

  3. Ohnologs are overrepresented in pathogenic copy number mutations

    PubMed Central

    McLysaght, Aoife; Makino, Takashi; Grayton, Hannah M.; Tropeano, Maria; Mitchell, Kevin J.; Vassos, Evangelos; Collier, David A.

    2014-01-01

    A number of rare copy number variants (CNVs), including both deletions and duplications, have been associated with developmental disorders, including schizophrenia, autism, intellectual disability, and epilepsy. Pathogenicity may derive from dosage sensitivity of one or more genes contained within the CNV locus. To understand pathophysiology, the specific disease-causing gene(s) within each CNV need to be identified. In the present study, we test the hypothesis that ohnologs (genes retained after ancestral whole-genome duplication events, which are frequently dosage sensitive) are overrepresented in pathogenic CNVs. We selected three sets of genes implicated in copy number pathogenicity: (i) genes mapping within rare disease-associated CNVs, (ii) genes within de novo CNVs under negative genetic selection, and (iii) genes identified by clinical array comparative genome hybridization studies as potentially pathogenic. We compared the proportion of ohnologs between these gene sets and control genes, mapping to CNVs not known to be disease associated. We found that ohnologs are significantly overrepresented in genes mapping to pathogenic CNVs, irrespective of how CNVs were identified, with over 90% containing an ohnolog, compared with control CNVs >100 kb, where only about 30% contained an ohnolog. In some CNVs, such as del15p11.2 (CYFIP1) and dup/del16p13.11 (NDE1), the most plausible prior candidate gene was also an ohnolog, as were the genes VIPR2 and NRXN1, each found in short CNVs containing no other genes. Our results support the hypothesis that ohnologs represent critical dosage-sensitive elements of the genome, possibly responsible for some of the deleterious phenotypes observed for pathogenic CNVs and as such are readily identifiable candidate genes for further study. PMID:24368850

  4. [Association of common copy number variations with diseases].

    PubMed

    Yang, Fei; Cao, Pengbo; Zhou, Gangqiao

    2016-06-01

    Genomic polymorphisms come in various forms including single nucleotide variations, translocations, insertions and copy number variations (CNVs). As a form of structural variation, the CNVs comprise common and rare forms based on their populational frequencies. Studies have demonstrated that certain CNVs are associated with risks for neuro-developmental diseases, viral infections, chronic inflammations, and cancers. With the development of high-resolution genome typing technologies such as microarrays and whole genome sequencing, the human genomic CNVs map has been continuously improved and refined. In-depth study of CNVs not only can provide comprehensive understanding for their structural variations and genetic evolution, but also provide new insights into genetic factors contributing to such diseases. In this paper, the general characteristics, pathogenesis and detection methods for the CNVs, as well as their association with human diseases are reviewed. PMID:27264828

  5. Copy Number Variation in Human Health, Disease, and Evolution

    PubMed Central

    Zhang, Feng; Gu, Wenli; Hurles, Matthew E.; Lupski, James R.

    2015-01-01

    Copy number variation (CNV) is a source of genetic diversity in humans. Numerous CNVs are being identified with various genome analysis platforms, including array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and next-generation sequencing. CNV formation occurs by both recombination-based and replication-based mechanisms and de novo locus-specific mutation rates appear much higher for CNVs than for SNPs. By various molecular mechanisms, including gene dosage, gene disruption, gene fusion, position effects, etc., CNVs can cause Mendelian or sporadic traits, or be associated with complex diseases. However, CNV can also represent benign polymorphic variants. CNVs, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution. PMID:19715442

  6. A Copy Number Variation Morbidity Map of Developmental Delay

    PubMed Central

    Cooper, Gregory M.; Coe, Bradley P.; Girirajan, Santhosh; Rosenfeld, Jill A.; Vu, Tiffany; Baker, Carl; Williams, Charles; Stalker, Heather; Hamid, Rizwan; Hannig, Vickie; Abdel-Hamid, Hoda; Bader, Patricia; McCracken, Elizabeth; Niyazov, Dmitriy; Leppig, Kathleen; Thiese, Heidi; Hummel, Marybeth; Alexander, Nora; Gorski, Jerome; Kussmann, Jennifer; Shashi, Vandana; Johnson, Krys; Rehder, Catherine; Ballif, Blake C.; Shaffer, Lisa G.; Eichler, Evan E.

    2011-01-01

    To understand the genetic heterogeneity underlying developmental delay, we compare copy-number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects to 8,329 adult controls. We estimate that ~14.2% of disease in these individuals is due to large CNVs > 400 kbp. We find greater CNV enrichment in patients with craniofacial anomalies and cardiovascular defects than epilepsy or autism. We identify 59 pathogenic CNVs including 14 novel or previously weakly supported candidates. We refine the critical interval for several genomic disorders such as the 17q21.31 microdeletion syndrome and identify 940 candidate dosage-sensitive genes. We also develop methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map combined with exome/genome sequencing will be critical for deciphering the genetic basis of developmental delay, intellectual disability, and autism spectrum disorders. PMID:21841781

  7. Copy number variation of genes involved in the hepatitis C virus-human interactome.

    PubMed

    Budzko, Lucyna; Marcinkowska-Swojak, Malgorzata; Jackowiak, Paulina; Kozlowski, Piotr; Figlerowicz, Marek

    2016-01-01

    Copy number variation (CNV) is a newly discovered form of intra-species genetic polymorphism that is defined as deletions or duplications of genome segments ranging from 1 kbp to several Mbp. CNV accounts for the majority of the genetic variation observed in humans (CNV regions cover more than 10% of the human genome); therefore, it may significantly influence both the phenotype and susceptibility to various diseases. Unfortunately, the impact of CNV on a number of diseases, including hepatitis C virus (HCV) infection, remains largely unexplored. Here, we analyzed 421 human genes encoding proteins that have been shown to interact with HCV proteins or genomic RNA (proteins from the HCV-human interactome). We found that 19 of the 421 candidate genes are located in putative CNV regions. For all of these genes, copy numbers were determined for European, Asiatic and African populations using the multiplex ligation-dependent amplification (MLPA) method. As a result, we identified 4 genes, IGLL1, MLLT4, PDPK1, PPP1R13L, for which the CN-genotype ranged from 1 to 6. All of these genes are involved in host-virus interaction; thus, their polymorphism has a potential impact on the development of HCV infection and/or therapy outcome. PMID:27510840

  8. Copy number variation of genes involved in the hepatitis C virus-human interactome

    PubMed Central

    Budzko, Lucyna; Marcinkowska-Swojak, Malgorzata; Jackowiak, Paulina; Kozlowski, Piotr; Figlerowicz, Marek

    2016-01-01

    Copy number variation (CNV) is a newly discovered form of intra-species genetic polymorphism that is defined as deletions or duplications of genome segments ranging from 1 kbp to several Mbp. CNV accounts for the majority of the genetic variation observed in humans (CNV regions cover more than 10% of the human genome); therefore, it may significantly influence both the phenotype and susceptibility to various diseases. Unfortunately, the impact of CNV on a number of diseases, including hepatitis C virus (HCV) infection, remains largely unexplored. Here, we analyzed 421 human genes encoding proteins that have been shown to interact with HCV proteins or genomic RNA (proteins from the HCV-human interactome). We found that 19 of the 421 candidate genes are located in putative CNV regions. For all of these genes, copy numbers were determined for European, Asiatic and African populations using the multiplex ligation-dependent amplification (MLPA) method. As a result, we identified 4 genes, IGLL1, MLLT4, PDPK1, PPP1R13L, for which the CN-genotype ranged from 1 to 6. All of these genes are involved in host-virus interaction; thus, their polymorphism has a potential impact on the development of HCV infection and/or therapy outcome. PMID:27510840

  9. Identifying Potential Regions of Copy Number Variation for Bipolar Disorder

    PubMed Central

    Chen, Yi-Hsuan; Lu, Ru-Band; Hung, Hung; Kuo, Po-Hsiu

    2014-01-01

    Bipolar disorder is a complex psychiatric disorder with high heritability, but its genetic determinants are still largely unknown. Copy number variation (CNV) is one of the sources to explain part of the heritability. However, it is a challenge to estimate discrete values of the copy numbers using continuous signals calling from a set of markers, and to simultaneously perform association testing between CNVs and phenotypic outcomes. The goal of the present study is to perform a series of data filtering and analysis procedures using a DNA pooling strategy to identify potential CNV regions that are related to bipolar disorder. A total of 200 normal controls and 200 clinically diagnosed bipolar patients were recruited in this study, and were randomly divided into eight control and eight case pools. Genome-wide genotyping was employed using Illumina Human Omni1-Quad array with approximately one million markers for CNV calling. We aimed at setting a series of criteria to filter out the signal noise of marker data and to reduce the chance of false-positive findings for CNV regions. We first defined CNV regions for each pool. Potential CNV regions were reported based on the different patterns of CNV status between cases and controls. Genes that were mapped into the potential CNV regions were examined with association testing, Gene Ontology enrichment analysis, and checked with existing literature for their associations with bipolar disorder. We reported several CNV regions that are related to bipolar disorder. Two CNV regions on chromosome 11 and 22 showed significant signal differences between cases and controls (p < 0.05). Another five CNV regions on chromosome 6, 9, and 19 were overlapped with results in previous CNV studies. Experimental validation of two CNV regions lent some support to our reported findings. Further experimental and replication studies could be designed for these selected regions.

  10. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma.

    PubMed

    Zhao, Siming; Choi, Murim; Overton, John D; Bellone, Stefania; Roque, Dana M; Cocco, Emiliano; Guzzo, Federica; English, Diana P; Varughese, Joyce; Gasparrini, Sara; Bortolomai, Ileana; Buza, Natalia; Hui, Pei; Abu-Khalaf, Maysa; Ravaggi, Antonella; Bignotti, Eliana; Bandiera, Elisabetta; Romani, Chiara; Todeschini, Paola; Tassi, Renata; Zanotti, Laura; Carrara, Luisa; Pecorelli, Sergio; Silasi, Dan-Arin; Ratner, Elena; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Stiegler, Amy L; Mane, Shrikant; Boggon, Titus J; Schlessinger, Joseph; Lifton, Richard P; Santin, Alessandro D

    2013-02-19

    Uterine serous carcinoma (USC) is a biologically aggressive subtype of endometrial cancer. We analyzed the mutational landscape of USC by whole-exome sequencing of 57 cancers, most of which were matched to normal DNA from the same patients. The distribution of the number of protein-altering somatic mutations revealed that 52 USC tumors had fewer than 100 (median 36), whereas 5 had more than 3,000 somatic mutations. The mutations in these latter tumors showed hallmarks of defects in DNA mismatch repair. Among the remainder, we found a significantly increased burden of mutation in 14 genes. In addition to well-known cancer genes (i.e., TP53, PIK3CA, PPP2R1A, KRAS, FBXW7), there were frequent mutations in CHD4/Mi2b, a member of the NuRD-chromatin-remodeling complex, and TAF1, an element of the core TFIID transcriptional machinery. Additionally, somatic copy-number variation was found to play an important role in USC, with 13 copy-number gains and 12 copy-number losses that occurred more often than expected by chance. In addition to loss of TP53, we found frequent deletion of a small segment of chromosome 19 containing MBD3, also a member of the NuRD-chromatin-modification complex, and frequent amplification of chromosome segments containing PIK3CA, ERBB2 (an upstream activator of PIK3CA), and CCNE1 (a target of FBXW7-mediated ubiquitination). These findings identify frequent mutation of DNA damage, chromatin remodeling, cell cycle, and cell proliferation pathways in USC and suggest potential targets for treatment of this lethal variant of endometrial cancer. PMID:23359684

  11. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma

    PubMed Central

    Zhao, Siming; Choi, Murim; Overton, John D.; Bellone, Stefania; Roque, Dana M.; Cocco, Emiliano; Guzzo, Federica; English, Diana P.; Varughese, Joyce; Gasparrini, Sara; Bortolomai, Ileana; Buza, Natalia; Hui, Pei; Abu-Khalaf, Maysa; Ravaggi, Antonella; Bignotti, Eliana; Bandiera, Elisabetta; Romani, Chiara; Todeschini, Paola; Tassi, Renata; Zanotti, Laura; Carrara, Luisa; Pecorelli, Sergio; Silasi, Dan-Arin; Ratner, Elena; Azodi, Masoud; Schwartz, Peter E.; Rutherford, Thomas J.; Stiegler, Amy L.; Mane, Shrikant; Boggon, Titus J.; Schlessinger, Joseph; Lifton, Richard P.; Santin, Alessandro D.

    2013-01-01

    Uterine serous carcinoma (USC) is a biologically aggressive subtype of endometrial cancer. We analyzed the mutational landscape of USC by whole-exome sequencing of 57 cancers, most of which were matched to normal DNA from the same patients. The distribution of the number of protein-altering somatic mutations revealed that 52 USC tumors had fewer than 100 (median 36), whereas 5 had more than 3,000 somatic mutations. The mutations in these latter tumors showed hallmarks of defects in DNA mismatch repair. Among the remainder, we found a significantly increased burden of mutation in 14 genes. In addition to well-known cancer genes (i.e., TP53, PIK3CA, PPP2R1A, KRAS, FBXW7), there were frequent mutations in CHD4/Mi2b, a member of the NuRD–chromatin-remodeling complex, and TAF1, an element of the core TFIID transcriptional machinery. Additionally, somatic copy-number variation was found to play an important role in USC, with 13 copy-number gains and 12 copy-number losses that occurred more often than expected by chance. In addition to loss of TP53, we found frequent deletion of a small segment of chromosome 19 containing MBD3, also a member of the NuRD–chromatin-modification complex, and frequent amplification of chromosome segments containing PIK3CA, ERBB2 (an upstream activator of PIK3CA), and CCNE1 (a target of FBXW7-mediated ubiquitination). These findings identify frequent mutation of DNA damage, chromatin remodeling, cell cycle, and cell proliferation pathways in USC and suggest potential targets for treatment of this lethal variant of endometrial cancer. PMID:23359684

  12. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes

    PubMed Central

    Škulj, Mihaela; Okršlar, Veronika; Jalen, Špela; Jevševar, Simona; Slanc, Petra; Štrukelj, Borut; Menart, Viktor

    2008-01-01

    Background Recombinant protein production in Escherichia coli cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity. It was recognised that a method for accurate and rapid quantification of plasmid copy number is necessary for optimization and better understanding of this process. Lately, qPCR is becoming the method of choice for this purpose. In the presented work, an improved qPCR method adopted for PCN determination in various fermentation processes was developed. Results To avoid experimental errors arising from irreproducible DNA isolation, whole cells, treated by heating at 95°C for 10 minutes prior to storage at -20°C, were used as a template source. Relative quantification, taking into account different amplification efficiencies of amplicons for chromosome and plasmid, was used in the PCN calculation. The best reproducibility was achieved when the efficiency estimated for specific amplicon, obtained within one run, was averaged. It was demonstrated that the quantification range of 2 log units (100 to 10000 bacteria per well) enable quantification in each time point during fermentation. The method was applied to study PCN variation in fermentation at 25°C and the correlation between PCN and protein accumulation was established. Conclusion Using whole cells as a template source and relative quantification considering different PCR amplification efficiencies are significant improvements of the qPCR method for PCN determination. Due to the approaches used, the method is suitable for PCN determination in fermentation processes using various media and conditions. PMID:18328094

  13. Jagged1 DNA Copy Number Variation Is Associated with Poor Outcome in Liver Cancer.

    PubMed

    Kawaguchi, Kazunori; Honda, Masao; Yamashita, Taro; Okada, Hikari; Shirasaki, Takayoshi; Nishikawa, Masashi; Nio, Kouki; Arai, Kuniaki; Sakai, Yoshio; Yamashita, Tatsuya; Mizukoshi, Eishiro; Kaneko, Shuichi

    2016-08-01

    Notch signaling abnormalities are reported to be involved in the acceleration of malignancy in solid tumors and stem cell formation or regeneration in various organs. We analyzed specific genes for DNA copy number variations in liver cancer cells and investigated whether these factors relate to clinical outcome. Chromosome 20p, which includes the ligand for Notch pathways, Jagged1, was found to be amplified in several types of hepatoma cells, and its mRNA was up-regulated according to α-fetoprotein gene expression levels. Notch inhibition using Jagged1 shRNA and γ-secretase inhibitors produced significant suppression of cell growth in α-fetoprotein-producing cells with suppression of downstream genes. Using in vivo hepatoma models, the administration of γ-secretase inhibitors resulted in reduced tumor sizes and effective Notch inhibition with widespread apoptosis and necrosis of viable tumor cells. The γ-secretase inhibitors suppressed cell growth of the epithelial cell adhesion molecule-positive fraction in hepatoma cells, indicating that Notch inhibitors could suppress the stem cell features of liver cancer cells. Even in clinical liver cancer samples, the expression of α-fetoprotein and Jagged1 showed significant correlation, and amplification of the copy number of Jagged1 was associated with Jagged1 mRNA expression and poor survival after liver cancer surgical resection. In conclusion, amplification of Jagged1 contributed to mRNA expression that activates the Jagged1-Notch signaling pathway in liver cancer and led to poor outcome. PMID:27315779

  14. Profiling genomic copy number changes in retinoblastoma beyond loss of RB1.

    PubMed

    Bowles, Ella; Corson, Timothy W; Bayani, Jane; Squire, Jeremy A; Wong, Nathalie; Lai, Paul B-S; Gallie, Brenda L

    2007-02-01

    Loss of both RB1 alleles is rate limiting for development of retinoblastoma (RB), but genomic copy number gain or loss may impact oncogene(s) and tumor suppressor genes, facilitating tumor progression. We used quantitative multiplex polymerase chain reaction to profile "hot spot" genomic copy number changes for gain at 1q32.1, 6p22, and MYCN, and loss at 16q22 in 87 primary RB and 7 cell lines. Loss at 16q22 (48%) negatively associated with MYCN gain (18%) (Fisher's exact P = 0.031), gain at 1q32.1 (62%) positively associated with 6p "hot spot" gain (43%) (P = 0.033), and there was a trend for positive association between 1q and MYCN gain (P = 0.095). Cell lines had a higher frequency of MYCN amplification than primary tumors (29% versus 3%; P = 0.043). Novel high-level amplification of 1q32.1 in one primary tumor, confirmed by fluorescence in situ hybridization, strongly supports the presence of oncogene(s) in this region, possibly the mitotic kinesin, KIF14. Gene-specific quantitative multiplex polymerase chain reaction of candidate oncogenes at 1q32.1 (KIF14), 6p22 (E2F3 and DEK), and tumor suppressor genes at 16q22 (CDH11) and 17q21 (NGFR) showed the most common gene gains in RB to be KIF14 in cell lines (80%) and E2F3 in primary tumors (70%). The patterns of gain/loss were qualitatively different in 25 RB compared with 12 primary hepatocellular carcinoma and 12 breast cancer cell lines. Gene specific analysis of one bone marrow metastasis of RB, prechemotherapy and postchemotherapy, showed the typical genomic changes of RB pretreatment, which normalized after chemotherapy. PMID:17099872

  15. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  16. Decoding NF1 Intragenic Copy-Number Variations

    PubMed Central

    Hsiao, Meng-Chang; Piotrowski, Arkadiusz; Callens, Tom; Fu, Chuanhua; Wimmer, Katharina; Claes, Kathleen B.M.; Messiaen, Ludwine

    2015-01-01

    Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1. PMID:26189818

  17. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells

    SciTech Connect

    Corvi, R.; Amler, L.C.; Savelyeva, L.; Gehring, M.; Schwab, M. )

    1994-06-07

    Amplification of the human N-myc protooncogene, MYCN, is frequently seen either in extrachromosomal double minutes or in homogeneously staining regions of aggressively growing neuroblastomas. MYCN maps to chromosome 2 band p23-24, but homogeneously staining regions have never been observed at this band, suggesting transposition of MYCN during amplification. The authors have employed fluorescence in situ hybridization to determine the status of MYCN at 2p23-24 in five human neuroblastoma cell lines. All five lines carried, in addition to amplified MYCN in homogeneously staining regions or double minutes, single-copy MYCN at the normal position. In one line there was coamplification of MYCN together with DNA of the host chromosome 12, to which MYCN had been transposed. The results suggest a model of amplification where MYCN is retained at its original location. They further sustain the view that either the initial events of MYCN amplification or the further evolution of amplified MYCN copies follow mechanisms different from those leading to amplification of drug-resistance genes.

  18. Native and rearranged ALK copy number and rearranged cell count in NSCLC: Implications for ALK inhibitor therapy

    PubMed Central

    Camidge, D. Ross; Skokan, Margaret; Kiatsimkul, Porntip; Helfrich, Barbara; Lu, Xian; Barón, Anna E.; Schulte, Nathan; Maxson, DeLee; Aisner, Dara L.; Franklin, Wilbur A.; Doebele, Robert C.; Varella-Garcia, Marileila

    2013-01-01

    Background Anaplastic Lymphoma Kinase positive (ALK+) non-small cell lung cancer (NSCLC) responds to ALK inhibitors. Clinically, ≥ 15% cells showing rearrangements by break-apart FISH classify tumors as positive. Increases in native and rearranged ALK copy number also occur. Methods 1426 NSCLC clinical specimens (174 ALK+ and 1252 ALK negative), and 24 ALK negative NSCLC cell lines were investigated. ALK copy number and genomic status were assessed by FISH. Results Clinical specimens with 0–9%, 10–15%, 16–30%, 31–50% and >50% of ALK+ cells were found in 79.3%, 8.5%, 1.4%, 2.7% and 8.1% of cases, respectively. Increased native ALK copy number (≥3 copies/cell in ≥40% cells) was detected in 19% of ALK+ and 62% of ALK negative tumors. In ALK negative tumors, abundant focal amplification of native ALK was rare (0.8%). Other atypical patterns occurred in ~6% of tumors. Mean native ALK copy number ranged from 2.1–6.9 in cell lines and was not correlated with crizotinib sensitivity (IC50s 0.34–2.8 uM) (r=0.279, p=0.1764). Neither native, nor rearranged ALK copy number, nor percentage cells positive correlated with extra-central nervous system progression free survivalin ALK+ patients on crizotinib. Conclusions 8.5% of cases are below the established positivity threshold by ≤5%. Further investigation of ALK by other diagnostic techniques in such cases may be warranted. Native ALK copy number increases alone are not associated with sensitivity to ALK inhibition in vitro. However, rare complex patterns of increased native ALK in patients should be studied further as atypical rearrangements contained within these may otherwise be missed. PMID:24022839

  19. The Effect of Algorithms on Copy Number Variant Detection

    PubMed Central

    Ely, Benjamin; Chi, Peter; Wang, Kenneth; Raskind, Wendy H.; Kim, Sulgi; Brkanac, Zoran; Yu, Chang-En

    2010-01-01

    Background The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery. Methodology and Principal Findings We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212. Conclusions and Significance Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed

  20. Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3.

    PubMed

    Liu, X; Wang, L G; Zhang, L C; Yan, H; Zhao, K B; Liang, J; Li, N; Pu, L; Zhang, T; Wang, L X

    2016-01-01

    The signal peptide CUB EGF-like domain-containing protein 3 (SCUBE3) gene is a member of SCUBE gene family and plays important roles in bone cell biology and the determination of limb bone length. In this study, the full-length transcript of porcine SCUBE3 was cloned using reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The full-length sequence of porcine SCUBE3 cDNA was 4131 base pairs and included 21 exons. The SCUBE3 gene contained a 2895-base pair open reading frame that encoded a peptide of 965 amino acids. Comparison of the deduced amino acid sequences of porcine SCUBE3 with those of human, mouse, zebrafish, and rat showed 96, 95, 73, and 95% identities, respectively. Porcine SCUBE3 mRNA expression levels were highest in the backfat, bone marrow, and cartilage tissues. Copy number variation was detected in porcine SCUBE3 and validated by real-time quantitative polymerase chain reaction. Different copy number variations were present in randomly selected individuals and may, therefore, be a good marker for identifying phenotypic traits. Our findings provide a basis for further investigation of the functions and regulatory mechanisms of SCUBE3 in pigs. PMID:26909946

  1. Searching for Copy Number Changes in Nonsyndromic X-Linked Intellectual Disability

    PubMed Central

    Utine, G.E.; Kiper, P.Ö.; Alanay, Y.; Haliloğlu, G.; Aktaş, D.; Boduroğlu, K.; Tunçbilek, E.; Alikaşifoğlu, M.

    2012-01-01

    Intellectual disability (ID) has a prevalence of 2–3% with 0.3% of the population being severely retarded. Etiology is heterogeneous, owing to numerous genetic and environmental factors. Underlying etiology remains undetermined in 75–80% of mildly disabled patients and 20–50% of those severely disabled. Twelve percent of all ID is thought to be X-linked (XLID). This study covers copy number analysis of some of the known XLID genes, using multiplex ligation-dependent probe amplification (MLPA) in 100 nonsyndromic patients. One of the patients was found to have duplication in all exons of MECP2 gene, and another had duplication in the fifth exon of TM4SF2/TSPAN7 gene. Affymetrix® 6.0 whole-genome SNP microarray confirmed the duplication in MECP2 and showed duplication of exons 2–7 in TM4SF2/TSPAN7, respectively. MECP2 duplication has recently been recognized as a syndromic cause of XLID in males, whereas duplications in TM4SF2/TSPAN7 are yet to be determined as a cause of XLID. Being an efficient, rapid, easy-to-perform, easy-to-interpret, and cost-effective method of copy number analysis of specific DNA sequences, MLPA presents wide clinical utility and may be included in diagnostic workup of ID, particularly when microarrays are unavailable as a first-line approach. PMID:22511893

  2. Variation in CCL3L1 Copy Number in Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Taormina, Patrick L; Trask, Jessica A Satkoski; Smith, David G; Kanthaswamy, Sreetharan

    2012-01-01

    We used real-time quantitative PCR (qPCR) methodology to examine copy number variation (CNV) of the CCL3L1 gene among pure Indian-origin, pure Chinese-origin, and hybrid Indian–Chinese rhesus macaques (Macaca mulatta). CNV among purebred macaques fell within expected ranges, with Indian macaques having lower copy numbers than those of Chinese macaques. Compared with the purebred macaques, Indian–Chinese hybrid rhesus macaques showed much greater variance in copy number and an intermediate average copy number. Copy numbers of CCL3L1 in rhesus macaque trios (sire, dam, and offspring) were consistent with Mendelian inheritance. PMID:22776055

  3. Variation in CCL3L1 copy number in rhesus macaques (Macaca mulatta).

    PubMed

    Taormina, Patrick L; Satkoski Trask, Jessica A; Smith, David G; Kanthaswamy, Sreetharan

    2012-06-01

    We used real-time quantitative PCR (qPCR) methodology to examine copy number variation (CNV) of the CCL3L1 gene among pure Indian-origin, pure Chinese-origin, and hybrid Indian-Chinese rhesus macaques (Macaca mulatta). CNV among purebred macaques fell within expected ranges, with Indian macaques having lower copy numbers than those of Chinese macaques. Compared with the purebred macaques, Indian-Chinese hybrid rhesus macaques showed much greater variance in copy number and an intermediate average copy number. Copy numbers of CCL3L1 in rhesus macaque trios (sire, dam, and offspring) were consistent with Mendelian inheritance. PMID:22776055

  4. Family-Based Benchmarking of Copy Number Variation Detection Software

    PubMed Central

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico. PMID:26197066

  5. Family-Based Benchmarking of Copy Number Variation Detection Software.

    PubMed

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico. PMID:26197066

  6. Lepton number violation in theories with a large number of standard model copies

    SciTech Connect

    Kovalenko, Sergey; Schmidt, Ivan; Paes, Heinrich

    2011-03-01

    We examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. On the other hand, the violation of the lepton number can be a potential phenomenological problem of this N-copy extension of the standard model as due to the low quantum gravity scale black holes may induce TeV scale LNV operators generating unacceptably large rates of LNV processes. We show, however, that this issue can be avoided by introducing a spontaneously broken U{sub 1(B-L)}. Then, due to the existence of a specific compensation mechanism between contributions of different Majorana neutrino states, LNV processes in the standard model copy become extremely suppressed with rates far beyond experimental reach.

  7. Genomewide copy number analysis of Müllerian adenosarcoma identified chromosomal instability in the aggressive subgroup.

    PubMed

    Lee, Jen-Chieh; Lu, Tzu-Pin; Changou, Chun A; Liang, Cher-Wei; Huang, Hsien-Neng; Lauria, Alexandra; Huang, Hsuan-Ying; Lin, Chin-Yao; Chiang, Ying-Cheng; Davidson, Ben; Lin, Ming-Chieh; Kuo, Kuan-Ting

    2016-09-01

    Müllerian adenosarcomas are malignant gynecologic neoplasms. Advanced staging and sarcomatous overgrowth predict poor prognosis. Because the genomic landscape remains poorly understood, we conducted this study to characterize the genomewide copy number variations in adenosarcomas. Sixteen tumors, including eight with and eight without sarcomatous overgrowth, were subjected to a molecular inversion probe array analysis. Copy number variations, particularly losses, were significantly higher in cases with sarcomatous overgrowth. Frequent gains of chromosomal 12q were noted, often involving cancer-associated genes CDK4 (six cases), MDM2, CPM, YEATS4, DDIT3, GLI1 (five each), HMGA2 and STAT6 (four), without association with sarcomatous overgrowth status. The most frequent losses involved chromosomes 13q (five cases), 9p, 16q and 17q (four cases each) and were almost limited to cases with sarcomatous overgrowth. MDM2 and CDK4 amplification, as well as losses of RB1 (observed in two cases) and CDKN2A/B (one case), was verified by FISH. By immunohistochemistry, all MDM2/CDK4-coamplified cases were confirmed to overexpress both encoded proteins, whereas all four cases with (plus an additional four without) gain of HMGA2 overexpressed the HMGA2 protein. Both cases with RB1 loss were negative for the immunostaining of the encoded protein. Chromothripsis-like copy number profiles involving chromosome 12 or 14 were observed in three fatal cases, all of which harbored sarcomatous overgrowth. With whole chromosome painting and deconvolution fluorescent microscopy, dividing tumor cells in all three cases were shown to have scattered extrachromosomal materials derived from chromosomes involved by chromothripsis, suggesting that this phenomenon may serve as visual evidence for chromothripsis in paraffin tissue. In conclusion, we identified frequent chromosome 12q amplifications, including loci containing potential pharmacological targets. Global chromosomal instability and

  8. ROS1 copy number alterations are frequent in non-small cell lung cancer

    PubMed Central

    Clavé, Sergi; Gimeno, Javier; Muñoz-Mármol, Ana M.; Vidal, Joana; Reguart, Noemí; Carcereny, Enric; Pijuan, Lara; Menéndez, Sílvia; Taus, Álvaro; Mate, José Luís; Serrano, Sergio; Albanell, Joan; Espinet, Blanca; Arriola, Edurne; Salido, Marta

    2016-01-01

    Objectives We aimed to determine the prevalence and partners of ROS1 rearrangements, to explore the correlation between FISH and IHC assays, and to investigate clinical implications of ROS1 copy number alterations (CNAs). Methods A total of 314 NSCLC patients were screened using ROS1 FISH break-apart probes. Of these, 47 surgical tumors were included in TMAs to analyze ROS1 heterogeneity assessed either by FISH and IHC, and chromosome 6 aneusomy. To characterize ROS1 partners, probes for CD74, EZR, SLC34A2 and SDC3 genes were developed. ROS1 positive FISH cases were screened also by IHC. Results Five patients were ROS1 positive (1.8%). We identified two known fusion partners in three patients: CD74 and SLC34A2. Four out of five ROS1 rearranged patients were female, never smokers and with adenocarcinoma histology. Rearranged cases were also positive by IHC as well. According to ROS1 CNAs, we found a prevalence of 37.8% gains/amplifications and 25.1% deletions. Conclusions This study point out the high prevalence of ROS1 CNAs in a large series of NSCLC. ROS1 gains, amplifications and deletions, most of them due to chromosome 6 polysomy or monosomy, were heterogeneous within a tumor and had no impact on overall survival. PMID:26783962

  9. Renal Cell Neoplasms Contain Shared Tumor Type–Specific Copy Number Variations

    PubMed Central

    Krill-Burger, John M.; Lyons, Maureen A.; Kelly, Lori A.; Sciulli, Christin M.; Petrosko, Patricia; Chandran, Uma R.; Kubal, Michael D.; Bastacky, Sheldon I.; Parwani, Anil V.; Dhir, Rajiv; LaFramboise, William A.

    2012-01-01

    Copy number variant (CNV) analysis was performed on renal cell carcinoma (RCC) specimens (chromophobe, clear cell, oncocytoma, papillary type 1, and papillary type 2) using high-resolution arrays (1.85 million probes). The RCC samples exhibited diverse genomic changes within and across tumor types, ranging from 106 to 2238 CNV segments in a clear-cell specimen and in a papillary type 2 specimen, respectively. Despite this heterogeneity, distinct CNV segments were common within each tumor classification: chromophobe (seven segments), clear cell (three segments), oncocytoma (nine segments), and papillary type 2 (two segments). Shared segments ranged from a 6.1-kb deletion (oncocytomas) to a 208.3-kb deletion (chromophobes). Among common tumor type–specific variations, chromophobes, clear-cell tumors, and oncocytomas were composed exclusively of noncoding DNA. No CNV regions were common to papillary type 1 specimens, although there were 12 amplifications and 12 deletions in five of six samples. Three microRNAs and 12 mRNA genes had a ≥98% coding region contained within CNV regions, including multiple gene families (chromophobe: amylases 1A, 1B, and 1C; oncocytoma: general transcription factors 2H2, 2B, 2C, and 2D). Gene deletions involved in histone modification and chromatin remodeling affected individual subtypes (clear cell: SFMBT and SETD2; papillary type 2: BAZ1A) and the collective RCC group (KDM4C). The genomic amplifications/deletions identified herein represent potential diagnostic and/or prognostic biomarkers. PMID:22483639

  10. Copy number variation analysis in 98 individuals with PHACE syndrome.

    PubMed

    Siegel, Dawn H; Shieh, Joseph T C; Kwon, Eun-kyung; Baselga, Eulalia; Blei, Francine; Cordisco, Maria; Dobyns, William B; Duffy, Kelly J; Garzon, Maria C; Gibbs, David L; Grimmer, Johannes F; Hayflick, Susan J; Krol, Alfons L; Kwok, Pui-Yan; Lorier, Rachel; Matter, Andrea; McWeeney, Shannon; Metry, Denise; Mitchell, Sheri; Pope, Elena; Santoro, Jennifer L; Stevenson, David A; Bayrak-Toydemir, Pinar; Wilmot, Beth; Worthey, Elizabeth A; Frieden, Ilona J; Drolet, Beth A; Broeckel, Ulrich

    2013-03-01

    PHACE syndrome is the association of large segmental facial hemangiomas and congenital anomalies, such as posterior fossa malformations, cerebral arterial anomalies, coarctation of the aorta, eye anomalies, and sternal defects. To date, the reported cases of PHACE syndrome have been sporadic, suggesting that PHACE may have a complex pathogenesis. We report here genomic copy number variation (CNV) analysis of 98 individuals with PHACE syndrome as a first step in deciphering a potential genetic basis of PHACE syndrome. A total of 3,772 CNVs (2,507 duplications and 1,265 deletions) were detected in 98 individuals with PHACE syndrome. CNVs were then eliminated if they failed to meet established criteria for quality, spanned centromeres, or did not contain genes. CNVs were defined as "rare" if not documented in the database of genomic variants. Ten rare CNVs were discovered (size range: 134-406  kb), located at 1q32.1, 1q43, 3q26.32-3q26.33, 3p11.1, 7q33, 10q24.32, 12q24.13, 17q11.2, 18p11.31, and Xq28. There were no rare CNV events that occurred in more than one subject. Therefore, further study is needed to determine the significance of these CNVs in the pathogenesis of PHACE syndrome. PMID:23096700

  11. Clinically relevant copy number variations detected in cerebral palsy

    PubMed Central

    Oskoui, Maryam; Gazzellone, Matthew J.; Thiruvahindrapuram, Bhooma; Zarrei, Mehdi; Andersen, John; Wei, John; Wang, Zhuozhi; Wintle, Richard F.; Marshall, Christian R.; Cohn, Ronald D.; Weksberg, Rosanna; Stavropoulos, Dimitri J.; Fehlings, Darcy; Shevell, Michael I.; Scherer, Stephen W.

    2015-01-01

    Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age of onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of aetiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (∼1% rate in controls). In four children, large chromosomal abnormalities deemed likely pathogenic were found, and they were significantly more likely to have severe neuromotor impairments than those CP subjects without such alterations. Overall, the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families. PMID:26236009

  12. Detecting independent and recurrent copy number aberrations using interval graphs

    PubMed Central

    Wu, Hsin-Ta; Hajirasouliha, Iman; Raphael, Benjamin J.

    2014-01-01

    Motivation: Somatic copy number aberrations (SCNAs) are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNAs makes the problem of identifying recurrent aberrations notoriously difficult. Results: We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNAs, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNAs as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. Availability: http://compbio.cs.brown.edu/software. Contact: braphael@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931984

  13. The Role of Constitutional Copy Number Variants in Breast Cancer

    PubMed Central

    Walker, Logan C.; Wiggins, George A.R.; Pearson, John F.

    2015-01-01

    Constitutional copy number variants (CNVs) include inherited and de novo deviations from a diploid state at a defined genomic region. These variants contribute significantly to genetic variation and disease in humans, including breast cancer susceptibility. Identification of genetic risk factors for breast cancer in recent years has been dominated by the use of genome-wide technologies, such as single nucleotide polymorphism (SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large datasets have been underutilised for generating genome-wide CNV profiles despite offering a massive resource for assessing the contribution of these structural variants to breast cancer risk. Technical challenges remain in determining the location and distribution of CNVs across the human genome due to the accuracy of computational prediction algorithms and resolution of the array data. Moreover, better methods are required for interpreting the functional effect of newly discovered CNVs. In this review, we explore current and future application of SNP array technology to assess rare and common CNVs in association with breast cancer risk in humans.

  14. Activity, regulation, copy number and function in the glyoxalase system.

    PubMed

    Rabbani, Naila; Xue, Mingzhan; Thornalley, Paul J

    2014-04-01

    Molecular, catalytic and structural properties of glyoxalase pathway enzymes of many species are now known. Current research has focused on the regulation of activity and expression of Glo1 (glyoxalase I) and Glo2 (glyoxalase II) and their role in health and disease. Human GLO1 has MRE (metal-response element), IRE (insulin-response element), E2F4 (early gene 2 factor isoform 4), AP-2α (activating enhancer-binding protein 2α) and ARE (antioxidant response-element) regulatory elements and is a hotspot for copy number variation. The human Glo2 gene, HAGH (hydroxyacylglutathione hydrolase), has a regulatory p53-response element. Glo1 is linked to healthy aging, obesity, diabetes and diabetic complications, chronic renal disease, cardiovascular disease, other disorders and multidrug resistance in cancer chemotherapy. Mathematical modelling of the glyoxalase pathway predicts that pharmacological levels of increased Glo1 activity markedly decrease cellular methylglyoxal and related glycation, and pharmacological Glo1 inhibition markedly increases cellular methylglyoxal and related glycation. Glo1 inducers are in development to sustain healthy aging and for treatment of vascular complications of diabetes and other disorders, and cell-permeant Glo1 inhibitors are in development for treatment of multidrug-resistant tumours, malaria and potentially pathogenic bacteria and fungi. PMID:24646254

  15. Copy number variants in patients with short stature

    PubMed Central

    van Duyvenvoorde, Hermine A; Lui, Julian C; Kant, Sarina G; Oostdijk, Wilma; Gijsbers, Antoinet CJ; Hoffer, Mariëtte JV; Karperien, Marcel; Walenkamp, Marie JE; Noordam, Cees; Voorhoeve, Paul G; Mericq, Verónica; Pereira, Alberto M; Claahsen-van de Grinten, Hedi L; van Gool, Sandy A; Breuning, Martijn H; Losekoot, Monique; Baron, Jeffrey; Ruivenkamp, Claudia AL; Wit, Jan M

    2014-01-01

    Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes. PMID:24065112

  16. Copy number alteration burden predicts prostate cancer relapse

    PubMed Central

    Hieronymus, Haley; Schultz, Nikolaus; Gopalan, Anuradha; Carver, Brett S.; Chang, Matthew T.; Xiao, Yonghong; Heguy, Adriana; Huberman, Kety; Bernstein, Melanie; Assel, Melissa; Murali, Rajmohan; Vickers, Andrew; Scardino, Peter T.; Sander, Chris; Reuter, Victor; Taylor, Barry S.; Sawyers, Charles L.

    2014-01-01

    Primary prostate cancer is the most common malignancy in men but has highly variable outcomes, highlighting the need for biomarkers to determine which patients can be managed conservatively. Few large prostate oncogenome resources currently exist that combine the molecular and clinical outcome data necessary to discover prognostic biomarkers. Previously, we found an association between relapse and the pattern of DNA copy number alteration (CNA) in 168 primary tumors, raising the possibility of CNA as a prognostic biomarker. Here we examine this question by profiling an additional 104 primary prostate cancers and updating the initial 168 patient cohort with long-term clinical outcome. We find that CNA burden across the genome, defined as the percentage of the tumor genome affected by CNA, was associated with biochemical recurrence and metastasis after surgery in these two cohorts, independent of the prostate-specific antigen biomarker or Gleason grade, a major existing histopathological prognostic variable in prostate cancer. Moreover, CNA burden was associated with biochemical recurrence in intermediate-risk Gleason 7 prostate cancers, independent of prostate-specific antigen or nomogram score. We further demonstrate that CNA burden can be measured in diagnostic needle biopsies using low-input whole-genome sequencing, setting the stage for studies of prognostic impact in conservatively treated cohorts. PMID:25024180

  17. Analysis of rare copy number variation in absence epilepsies

    PubMed Central

    Rosch, Richard E.; Valentin, Antonio; Makoff, Andrew; Robinson, Robert; Everett, Kate V.; Nashef, Lina; Pal, Deb K.

    2016-01-01

    Objective: To identify shared genes and pathways between common absence epilepsy (AE) subtypes (childhood absence epilepsy [CAE], juvenile absence epilepsy [JAE], and unclassified absence epilepsy [UAE]) that may indicate common mechanisms for absence seizure generation and potentially a diagnostic continuum. Methods: We used high-density single-nucleotide polymorphism arrays to analyze genome-wide rare copy number variation (CNV) in a cohort of 144 children with AEs (95 CAE, 26 UAE, and 23 JAE). Results: We identified CNVs that are known risk factors for AE in 4 patients, including 3x 15q11.2 deletion. We also expanded the phenotype at 4 regions more commonly identified in other neurodevelopmental disorders: 1p36.33 duplication, 1q21.1 deletion, 22q11.2 duplication, and Xp22.31 deletion and duplication. Fifteen patients (10.5%) were found to carry rare CNVs that disrupt genes associated with neuronal development and function (8 CAE, 2 JAE, and 5 UAE). Four categories of protein are each disrupted by several CNVs: (1) synaptic vesicle membrane or vesicle endocytosis, (2) synaptic cell adhesion, (3) synapse organization and motility via actin, and (4) gap junctions. CNVs within these categories are shared across the AE subtypes. Conclusions: Our results have reinforced the complex and heterogeneous nature of the AEs and their potential for shared genetic mechanisms and have highlighted several pathways that may be important in epileptogenesis of absence seizures. PMID:27123475

  18. Mapping copy number variation by population-scale genome sequencing.

    PubMed

    Mills, Ryan E; Walter, Klaudia; Stewart, Chip; Handsaker, Robert E; Chen, Ken; Alkan, Can; Abyzov, Alexej; Yoon, Seungtai Chris; Ye, Kai; Cheetham, R Keira; Chinwalla, Asif; Conrad, Donald F; Fu, Yutao; Grubert, Fabian; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Iakoucheva, Lilia M; Iqbal, Zamin; Kang, Shuli; Kidd, Jeffrey M; Konkel, Miriam K; Korn, Joshua; Khurana, Ekta; Kural, Deniz; Lam, Hugo Y K; Leng, Jing; Li, Ruiqiang; Li, Yingrui; Lin, Chang-Yun; Luo, Ruibang; Mu, Xinmeng Jasmine; Nemesh, James; Peckham, Heather E; Rausch, Tobias; Scally, Aylwyn; Shi, Xinghua; Stromberg, Michael P; Stütz, Adrian M; Urban, Alexander Eckehart; Walker, Jerilyn A; Wu, Jiantao; Zhang, Yujun; Zhang, Zhengdong D; Batzer, Mark A; Ding, Li; Marth, Gabor T; McVean, Gil; Sebat, Jonathan; Snyder, Michael; Wang, Jun; Ye, Kenny; Eichler, Evan E; Gerstein, Mark B; Hurles, Matthew E; Lee, Charles; McCarroll, Steven A; Korbel, Jan O

    2011-02-01

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies. PMID:21293372

  19. Chromosomal instability selects gene copy-number variants encoding core regulators of proliferation in ER+ breast cancer.

    PubMed

    Endesfelder, David; Burrell, Rebecca A; Kanu, Nnennaya; McGranahan, Nicholas; Howell, Mike; Parker, Peter J; Downward, Julian; Swanton, Charles; Kschischo, Maik

    2014-09-01

    Chromosomal instability (CIN) is associated with poor outcome in epithelial malignancies, including breast carcinomas. Evidence suggests that prognostic signatures in estrogen receptor-positive (ER(+)) breast cancer define tumors with CIN and high proliferative potential. Intriguingly, CIN induction in lower eukaryotic cells and human cells is context dependent, typically resulting in a proliferation disadvantage but conferring a fitness benefit under strong selection pressures. We hypothesized that CIN permits accelerated genomic evolution through the generation of diverse DNA copy-number events that may be selected during disease development. In support of this hypothesis, we found evidence for selection of gene amplification of core regulators of proliferation in CIN-associated cancer genomes. Stable DNA copy-number amplifications of the core regulators TPX2 and UBE2C were associated with expression of a gene module involved in proliferation. The module genes were enriched within prognostic signature gene sets for ER(+) breast cancer, providing a logical connection between CIN and prognostic signature expression. Our results provide a framework to decipher the impact of intratumor heterogeneity on key cancer phenotypes, and they suggest that CIN provides a permissive landscape for selection of copy-number alterations that drive cancer proliferation. PMID:24970479

  20. Use of the MLPA Assay in the Molecular Diagnosis of Gene Copy Number Alterations in Human Genetic Diseases

    PubMed Central

    Stuppia, Liborio; Antonucci, Ivana; Palka, Giandomenico; Gatta, Valentina

    2012-01-01

    Multiplex Ligation-dependent Probe Amplification (MLPA) assay is a recently developed technique able to evidence variations in the copy number of several human genes. Due to this ability, MLPA can be used in the molecular diagnosis of several genetic diseases whose pathogenesis is related to the presence of deletions or duplications of specific genes. Moreover, MLPA assay can also be used in the molecular diagnosis of genetic diseases characterized by the presence of abnormal DNA methylation. Due to the large number of genes that can be analyzed by a single technique, MLPA assay represents the gold standard for molecular analysis of all pathologies derived from the presence of gene copy number variation. In this review, the main applications of the MLPA technique for the molecular diagnosis of human diseases are described. PMID:22489151

  1. Elevated Gene Copy Number Does Not Always Explain Elevated Amylase Activities in Fishes.

    PubMed

    German, Donovan P; Foti, Dolly M; Heras, Joseph; Amerkhanian, Hooree; Lockwood, Brent L

    2016-01-01

    Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype. We found elevated amylase gene copy number (six haploid copies) with sequence variation among copies in one herbivore (Cebidichthys violaceus) and modest gene copy number (two to three haploid copies) with little sequence variation in the remaining taxa, which included herbivores, omnivores, and a carnivore. Few functional differences in amylase biochemistry were observed, and previous investigations showed similar digestibility among the convergently evolved herbivores with differing amylase genetics. Hence, the phenotype of elevated amylase activity can be achieved by different mechanisms (i.e., elevated expression of fewer genes, increased gene copy number, or expression of more efficient amylase proteins) with similar results. Phylogenetic and comparative genomic analyses of available fish amylase genes show mostly lineage-specific duplication events leading to gene copy number variation, although a whole-genome duplication event or chromosomal translocation may have produced multiple amylase copies in the Ostariophysi, again showing multiple routes to the same result. PMID:27327179

  2. Chromosomal copy number changes in patients with non‐syndromic X linked mental retardation detected by array CGH

    PubMed Central

    Lugtenberg, D; de Brouwer, A P M; Kleefstra, T; Oudakker, A R; Frints, S G M; Schrander‐Stumpel, C T R M; Fryns, J P; Jensen, L R; Chelly, J; Moraine, C; Turner, G; Veltman, J A; Hamel, B C J; de Vries, B B A; van Bokhoven, H; Yntema, H G

    2006-01-01

    Several studies have shown that array based comparative genomic hybridisation (CGH) is a powerful tool for the detection of copy number changes in the genome of individuals with a congenital disorder. In this study, 40 patients with non‐specific X linked mental retardation were analysed with full coverage, X chromosomal, bacterial artificial chromosome arrays. Copy number changes were validated by multiplex ligation dependent probe amplification as a fast method to detect duplications and deletions in patient and control DNA. This approach has the capacity to detect copy number changes as small as 100 kb. We identified three causative duplications: one family with a 7 Mb duplication in Xp22.2 and two families with a 500 kb duplication in Xq28 encompassing the MECP2 gene. In addition, we detected four regions with copy number changes that were frequently identified in our group of patients and therefore most likely represent genomic polymorphisms. These results confirm the power of array CGH as a diagnostic tool, but also emphasise the necessity to perform proper validation experiments by an independent technique. PMID:16169931

  3. Improved Statistical Analysis for Array CGH-Based DNA Copy Number Aberrations

    PubMed Central

    Jiang, Hongmei; Zhu, Zhong-Zheng; Yu, Yue; Lin, Simon; Hou, Lifang

    2011-01-01

    Array-based comparative genomic hybridization (aCGH) allows measuring DNA copy number at the whole genome scale. In cancer studies, one may be interested in identifying DNA copy number aberrations (CNAs) associated with certain clinicopathological characteristics such as cancer metastasis. We proposed to define test regions based on copy number pattern profiles across multiple samples, using either smoothed log2-ratio or discrete data of copy number gain/loss calls. Association test performed on the refined test regions instead of the probes has improved power due to reduced number of tests. We also compared three types of measurement of copy number levels, normalized log2-ratio, smoothed log2-ratio, and copy number gain or loss calls in statistical hypothesis testing. The relative strengths and weaknesses of the proposed method were demonstrated using both simulation studies and real data analysis of a liver cancer study. PMID:22084565

  4. Copy number variation signature to predict human ancestry

    PubMed Central

    2012-01-01

    Background Copy number variations (CNVs) are genomic structural variants that are found in healthy populations and have been observed to be associated with disease susceptibility. Existing methods for CNV detection are often performed on a sample-by-sample basis, which is not ideal for large datasets where common CNVs must be estimated by comparing the frequency of CNVs in the individual samples. Here we describe a simple and novel approach to locate genome-wide CNVs common to a specific population, using human ancestry as the phenotype. Results We utilized our previously published Genome Alteration Detection Analysis (GADA) algorithm to identify common ancestry CNVs (caCNVs) and built a caCNV model to predict population structure. We identified a 73 caCNV signature using a training set of 225 healthy individuals from European, Asian, and African ancestry. The signature was validated on an independent test set of 300 individuals with similar ancestral background. The error rate in predicting ancestry in this test set was 2% using the 73 caCNV signature. Among the caCNVs identified, several were previously confirmed experimentally to vary by ancestry. Our signature also contains a caCNV region with a single microRNA (MIR270), which represents the first reported variation of microRNA by ancestry. Conclusions We developed a new methodology to identify common CNVs and demonstrated its performance by building a caCNV signature to predict human ancestry with high accuracy. The utility of our approach could be extended to large case–control studies to identify CNV signatures for other phenotypes such as disease susceptibility and drug response. PMID:23270563

  5. Identification of Copy Number Variations in Xiang and Kele Pigs

    PubMed Central

    Xie, Jian; Li, Rongrong; Li, Sheng; Ran, Xueqin; Wang, Jiafu; Jiang, Jicai; Zhao, Pengju

    2016-01-01

    Xiang and Kele pigs are two well-known local Chinese pig breeds that possess rich genetic resources and have enormous economic and scientific value. We performed a comprehensive genomic analysis of the copy number variations (CNVs) in these breeds. CNVs are one of the most important forms of genomic variation and have profound effects on phenotypic variation. In this study, PorcineSNP60 genotyping data from 98 Xiang pigs and 22 Kele pigs were used to identify CNVs. In total, 172 candidate CNV regions (CNVRs) were identified, ranging from 3.19 kb to 8175.26 kb and covering 80.41 Mb of the pig genome. Approximately 56.40% (97/172) of the CNVRs overlapped with those identified in seven previous studies, and 43.60% (75/172) of the identified CNVRs were novel. Of the identified CNVRs, 82 (47 gain, 33 loss, and two gain-loss events that covered 4.58 Mb of the pig genome) were found only in a Xiang population with a large litter size. In contrast, 13 CNVRs (8 gain and 5 loss events) were unique to a Xiang population with small litter sizes, and 30 CNVRs (14 loss and 16 gain events) were unique to Kele pigs. The CNVRs span approximately 660 annotated Sus scrofa genes that are significantly enriched for specific biological functions, such as sensory perception, cognition, reproduction, ATP biosynthetic processes, and neurological processes. Many CNVR-associated genes, particularly the genes involved in reproductive traits, differed between the Xiang populations with large and small litter sizes, and these genes warrant further investigation due to their importance in determining the reproductive performance of Xiang pigs. Our results provide meaningful information about genomic variation, which may be useful in future assessments of the associations between CNVs and important phenotypes in Xiang and Kele pigs to ultimately help protect these rare breeds. PMID:26840413

  6. Human gene copy number spectra analysis in congenital heart malformations.

    PubMed

    Tomita-Mitchell, Aoy; Mahnke, Donna K; Struble, Craig A; Tuffnell, Maureen E; Stamm, Karl D; Hidestrand, Mats; Harris, Susan E; Goetsch, Mary A; Simpson, Pippa M; Bick, David P; Broeckel, Ulrich; Pelech, Andrew N; Tweddell, James S; Mitchell, Michael E

    2012-05-01

    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency "spectra" to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways. PMID:22318994

  7. Human gene copy number spectra analysis in congenital heart malformations

    PubMed Central

    Mahnke, Donna K.; Struble, Craig A.; Tuffnell, Maureen E.; Stamm, Karl D.; Hidestrand, Mats; Harris, Susan E.; Goetsch, Mary A.; Simpson, Pippa M.; Bick, David P.; Broeckel, Ulrich; Pelech, Andrew N.; Tweddell, James S.; Mitchell, Michael E.

    2012-01-01

    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways. PMID:22318994

  8. Rare copy number variants implicated in posterior urethral valves.

    PubMed

    Boghossian, Nansi S; Sicko, Robert J; Kay, Denise M; Rigler, Shannon L; Caggana, Michele; Tsai, Michael Y; Yeung, Edwina H; Pankratz, Nathan; Cole, Benjamin R; Druschel, Charlotte M; Romitti, Paul A; Browne, Marilyn L; Fan, Ruzong; Liu, Aiyi; Brody, Lawrence C; Mills, James L

    2016-03-01

    The cause of posterior urethral valves (PUV) is unknown, but genetic factors are suspected given their familial occurrence. We examined cases of isolated PUV to identify novel copy number variants (CNVs). We identified 56 cases of isolated PUV from all live-births in New York State (1998-2005). Samples were genotyped using Illumina HumanOmni2.5 microarrays. Autosomal and sex-linked CNVs were identified using PennCNV and cnvPartition software. CNVs were prioritized for follow-up if they were absent from in-house controls, contained ≥ 10 consecutive probes, were ≥ 20 Kb in size, had ≤ 20% overlap with variants detected in other birth defect phenotypes screened in our lab, and were rare in population reference controls. We identified 47 rare candidate PUV-associated CNVs in 32 cases; one case had a 3.9 Mb deletion encompassing BMP7. Mutations in BMP7 have been associated with severe anomalies in the mouse urethra. Other interesting CNVs, each detected in a single PUV case included: a deletion of PIK3R3 and TSPAN1, duplication/triplication in FGF12, duplication of FAT1--a gene essential for normal growth and development, a large deletion (>2 Mb) on chromosome 17q that involves TBX2 and TBX4, and large duplications (>1 Mb) on chromosomes 3q and 6q. Our finding of previously unreported novel CNVs in PUV suggests that genetic factors may play a larger role than previously understood. Our data show a potential role of CNVs in up to 57% of cases examined. Investigation of genes in these CNVs may provide further insights into genetic variants that contribute to PUV. PMID:26663319

  9. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis

    PubMed Central

    Stambuk, Boris U.; Dunn, Barbara; Alves, Sergio L.; Duval, Eduarda H.; Sherlock, Gavin

    2009-01-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks. PMID:19897511

  10. Copy number variations related to reproduction traits in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Daughter pregnancy rate (DPR) is one of important reproduction traits that affect overall profitability in dairy industry. However, historical selection for production and conformation rather than reproduction has resulted in a decline in cow fertility. Genomic structural variation including copy nu...

  11. Mitochondrial copy number and risk of breast cancer: a pilot study.

    PubMed

    Shen, Jie; Platek, Mary; Mahasneh, Amjad; Ambrosone, Christine B; Zhao, Hua

    2010-01-01

    It has been proposed that the copy number of mitochondria DNA (mtDNA) per cell reflects gene-environment interactions between unknown hereditary factors and exposures affecting levels of oxidative stress. However, whether copy number of mtDNA could be a risk predictor of oxidative stress-related human cancers, such as breast cancer, remains to be determined. To explore the role of mtDNA copy number in breast cancer etiology, we analyzed mtDNA copy number in whole blood from 103 patients with breast cancer and 103 matched control subjects and examined in relation to endogenous antioxidants. Case patients with breast cancer had a statistically significantly higher mtDNA copy number than control subjects (median: 1.29 vs. 0.80, P<0.01). High mtDNA copy number (above the median in controls) was associated with a statistically significantly increased risk of breast cancer, compared with low copy number (Odds ratio (OR)=4.67, 95% CI: 2.45-8.92), with a statistically significant dose-response relationship in trend analysis (P<0.01). Moreover, mtDNA copy number was significantly inversely associated with several important endogenous oxidants and antioxidants in blood in either the cases (total glutathione, CuZn-SOD activity and myeloperoxidase (MPO)) or the controls (catalase (CAT) activity). These results suggest the mtDNA copy number could be associated with risk of breast cancer, perhaps through an oxidative stress mechanism. PMID:19788937

  12. Incidental copy-number variants identified by routine genome testing in a clinical population

    PubMed Central

    Boone, Philip M.; Soens, Zachry T.; Campbell, Ian M.; Stankiewicz, Pawel; Cheung, Sau Wai; Patel, Ankita; Beaudet, Arthur L.; Plon, Sharon E.; Shaw, Chad A.; McGuire, Amy L.; Lupski, James R.

    2013-01-01

    Purpose Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. Methods Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. Results In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients’ referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. Conclusion Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient. PMID:22878507

  13. Mitochondrial DNA Copy Number and Exposure to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Pavanello, Sofia; Dioni, Laura; Hoxha, Mirjam; Fedeli, Ugo; Mielzynska-Švach, Danuta; Baccarelli, Andrea A.

    2013-01-01

    Background Increased mitochondrial DNA copy number (mtDNAcn) is a biological response to mtDNA damage and dysfunction predictive of lung cancer risk. Polycyclic aromatic hydrocarbons (PAHs) are established lung carcinogens and may cause mitochondrial toxicity. Whether PAH exposure and PAH-related nuclear DNA (nDNA) genotoxic effects are linked with increased mtDNAcn has never been evaluated. Methods We investigated the effect of chronic exposure to PAHs on mtDNAcn in peripheral blood lymphocytes (PBLs) of 46 Polish male non-current smoking cokeoven workers and 44 matched controls, who were part of a group of 94 study individuals examined in our previous work. Subjects PAH exposure and genetic alterations were characterized through measures of internal dose (urinary 1-pyrenol), target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei, MN and telomere length [TL]) and DNA methylation [p53 promoter] in PBLs. mtDNAcn (MT/S) was measured using a validated real-time PCR method. Results Workers with PAH exposure above the median value (>3 µmol 1-pyrenol/mol creatinine) showed higher mtDNAcn [geometric means (GM) of 1.06 (unadjusted) and 1.07 (age-adjusted)] compared to controls [GM 0.89 (unadjusted); 0.89 (age-adjusted)] (p=0.029 and 0.016), as well as higher levels of genetic and chromosomal [i.e. anti-BPDE-DNA adducts (p<0.001), MN (p<0.001) and TL (p=0.053)] and epigenetic [i.e., p53 gene-specific promoter methylation (p<0.001)] alterations in the nDNA. In the whole study population, unadjusted and age-adjusted mtDNAcn was positively correlated with 1-pyrenol (p=0.043 and 0.032) and anti-BPDE-DNA adducts (p=0.046 and 0.049). Conclusions PAH exposure and PAH-related nDNA genotoxicity are associated with increased mtDNAcn. Impact The present study is suggestive of potential roles of mtDNAcn in PAH-induced carcinogenesis. PMID:23885040

  14. Differential Pathogenesis of Lung Adenocarcinoma Subtypes Involving Sequence Mutations, Copy Number, Chromosomal Instability, and Methylation

    PubMed Central

    Wilkerson, Matthew D.; Yin, Xiaoying; Walter, Vonn; Zhao, Ni; Cabanski, Christopher R.; Hayward, Michele C.; Miller, C. Ryan; Socinski, Mark A.; Parsons, Alden M.; Thorne, Leigh B.; Haithcock, Benjamin E.; Veeramachaneni, Nirmal K.; Funkhouser, William K.; Randell, Scott H.; Bernard, Philip S.; Perou, Charles M.; Hayes, D. Neil

    2012-01-01

    Background Lung adenocarcinoma (LAD) has extreme genetic variation among patients, which is currently not well understood, limiting progress in therapy development and research. LAD intrinsic molecular subtypes are a validated stratification of naturally-occurring gene expression patterns and encompass different functional pathways and patient outcomes. Patients may have incurred different mutations and alterations that led to the different subtypes. We hypothesized that the LAD molecular subtypes co-occur with distinct mutations and alterations in patient tumors. Methodology/Principal Findings The LAD molecular subtypes (Bronchioid, Magnoid, and Squamoid) were tested for association with gene mutations and DNA copy number alterations using statistical methods and published cohorts (n = 504). A novel validation (n = 116) cohort was assayed and interrogated to confirm subtype-alteration associations. Gene mutation rates (EGFR, KRAS, STK11, TP53), chromosomal instability, regional copy number, and genomewide DNA methylation were significantly different among tumors of the molecular subtypes. Secondary analyses compared subtypes by integrated alterations and patient outcomes. Tumors having integrated alterations in the same gene associated with the subtypes, e.g. mutation, deletion and underexpression of STK11 with Magnoid, and mutation, amplification, and overexpression of EGFR with Bronchioid. The subtypes also associated with tumors having concurrent mutant genes, such as KRAS-STK11 with Magnoid. Patient overall survival, cisplatin plus vinorelbine therapy response and predicted gefitinib sensitivity were significantly different among the subtypes. Conclusions/ Significance The lung adenocarcinoma intrinsic molecular subtypes co-occur with grossly distinct genomic alterations and with patient therapy response. These results advance the understanding of lung adenocarcinoma etiology and nominate patient subgroups for future evaluation of treatment response

  15. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors.

    PubMed

    Robbins, Christiane M; Tembe, Waibov A; Baker, Angela; Sinari, Shripad; Moses, Tracy Y; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Barrett, Michael; Long, James; Chinnaiyan, Arul; Lowey, James; Suh, Edward; Pearson, John V; Craig, David W; Agus, David B; Pienta, Kenneth J; Carpten, John D

    2011-01-01

    Advanced prostate cancer can progress to systemic metastatic tumors, which are generally androgen insensitive and ultimately lethal. Here, we report a comprehensive genomic survey for somatic events in systemic metastatic prostate tumors using both high-resolution copy number analysis and targeted mutational survey of 3508 exons from 577 cancer-related genes using next generation sequencing. Focal homozygous deletions were detected at 8p22, 10q23.31, 13q13.1, 13q14.11, and 13q14.12. Key genes mapping within these deleted regions include PTEN, BRCA2, C13ORF15, and SIAH3. Focal high-level amplifications were detected at 5p13.2-p12, 14q21.1, 7q22.1, and Xq12. Key amplified genes mapping within these regions include SKP2, FOXA1, and AR. Furthermore, targeted mutational analysis of normal-tumor pairs has identified somatic mutations in genes known to be associated with prostate cancer including AR and TP53, but has also revealed novel somatic point mutations in genes including MTOR, BRCA2, ARHGEF12, and CHD5. Finally, in one patient where multiple independent metastatic tumors were available, we show common and divergent somatic alterations that occur at both the copy number and point mutation level, supporting a model for a common clonal progenitor with metastatic tumor-specific divergence. Our study represents a deep genomic analysis of advanced metastatic prostate tumors and has revealed candidate somatic alterations, possibly contributing to lethal prostate cancer. PMID:21147910

  16. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors

    PubMed Central

    Robbins, Christiane M.; Tembe, Waibov A.; Baker, Angela; Sinari, Shripad; Moses, Tracy Y.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Barrett, Michael; Long, James; Chinnaiyan, Arul; Lowey, James; Suh, Edward; Pearson, John V.; Craig, David W.; Agus, David B.; Pienta, Kenneth J.; Carpten, John D.

    2011-01-01

    Advanced prostate cancer can progress to systemic metastatic tumors, which are generally androgen insensitive and ultimately lethal. Here, we report a comprehensive genomic survey for somatic events in systemic metastatic prostate tumors using both high-resolution copy number analysis and targeted mutational survey of 3508 exons from 577 cancer-related genes using next generation sequencing. Focal homozygous deletions were detected at 8p22, 10q23.31, 13q13.1, 13q14.11, and 13q14.12. Key genes mapping within these deleted regions include PTEN, BRCA2, C13ORF15, and SIAH3. Focal high-level amplifications were detected at 5p13.2-p12, 14q21.1, 7q22.1, and Xq12. Key amplified genes mapping within these regions include SKP2, FOXA1, and AR. Furthermore, targeted mutational analysis of normal-tumor pairs has identified somatic mutations in genes known to be associated with prostate cancer including AR and TP53, but has also revealed novel somatic point mutations in genes including MTOR, BRCA2, ARHGEF12, and CHD5. Finally, in one patient where multiple independent metastatic tumors were available, we show common and divergent somatic alterations that occur at both the copy number and point mutation level, supporting a model for a common clonal progenitor with metastatic tumor-specific divergence. Our study represents a deep genomic analysis of advanced metastatic prostate tumors and has revealed candidate somatic alterations, possibly contributing to lethal prostate cancer. PMID:21147910

  17. Assessment of epidermal growth factor receptor mutation/copy number and K-ras mutation in esophageal cancer

    PubMed Central

    Guo, Kang; Wang, Wu-Ping; Jiang, Tao; Wang, Ju-Zheng; Chen, Zhao; Li, Yong; Zhou, Yong-An; Li, Xiao-Fei

    2016-01-01

    Background The molecular status of epidermal growth factor receptor (EGFR) in esophageal cancer has not been well elucidated. The purpose of the study was to investigate the prevalence of EGFR and K-ras mutation, and EGFR gene copy number status as well as its association with clinicopathologic characteristics, and also to identify the prognostic value of EGFR gene copy number in esophageal cancer. Methods EGFR mutation in exon 19/exon 21 and K-ras mutation in codon 12/codon 13 were detected by real-time PCR method, while EGFR gene copy number status was analyzed by fluorescent in situ hybridization (FISH). EGFR gene amplification and high polysomy were defined as high EGFR gene copy number status (FISH-positive), and all else were defined as low EGFR gene copy number status (FISH-negative). The relationship between EGFR gene copy number status and clinicpathologic characteristics was analyzed. Kaplan-Meier method and Cox proportional hazards regression model were employed to evaluate the effects of EGFR gene copy number status on the patients’ survival. Results A total of 57 esophageal squamous cell carcinoma (ESCC) patients and 9 esophageal adenocarcinoma (EADC) patients were enrolled in the study. EGFR mutation was identified in one patient who was diagnosed as ESCC with stage IIIC disease. K-ras mutation was identified in one patient who was diagnosed as EADC. In all, 34 of 66 (51.5%) samples were detected as FISH-positive, which includes 30 ESCC and 4 EADC tumor samples. The correlation analysis showed that FISH-positive was significantly associated with the tumor stage (P=0.019) and lymph node metastasis (P=0.005) in esophageal cancer patients, and FISH-positive was also significantly associated with the tumor stage (P=0.007) and lymph node metastasis (P=0.008) in ESCC patients. Cox regression analysis showed that high EGFR gene copy number was not a significant predictor of a poor outcome for esophageal cancer patients (P=0.251) or for ESCC patients (P=0

  18. Computational method for estimating DNA copy numbers in normal samples, cancer cell lines, and solid tumors using array comparative genomic hybridization.

    PubMed

    Abkevich, Victor; Iliev, Diana; Timms, Kirsten M; Tran, Thanh; Skolnick, Mark; Lanchbury, Jerry S; Gutin, Alexander

    2010-01-01

    Genomic copy number variations are a typical feature of cancer. These variations may influence cancer outcomes as well as effectiveness of treatment. There are many computational methods developed to detect regions with deletions and amplifications without estimating actual copy numbers (CN) in these regions. We have developed a computational method capable of detecting regions with deletions and amplifications as well as estimating actual copy numbers in these regions. The method is based on determining how signal intensity from different probes is related to CN, taking into account changes in the total genome size, and incorporating into analysis contamination of the solid tumors with benign tissue. Hidden Markov Model is used to obtain the most likely CN solution. The method has been implemented for Affymetrix 500K GeneChip arrays and Agilent 244K oligonucleotide arrays. The results of CN analysis for normal cell lines, cancer cell lines, and tumor samples are presented. The method is capable of detecting copy number alterations in tumor samples with up to 80% contamination with benign tissue. Analysis of 178 cancer cell lines reveals multiple regions of common homozygous deletions and strong amplifications encompassing known tumor suppressor genes and oncogenes as well as novel cancer related genes. PMID:20706610

  19. High-Throughput Sequencing and Copy Number Variation Detection Using Formalin Fixed Embedded Tissue in Metastatic Gastric Cancer

    PubMed Central

    Hong, Min Eui; Do, In-Gu; Kang, So Young; Ha, Sang Yun; Kim, Seung Tae; Park, Se Hoon; Kang, Won Ki; Choi, Min-Gew; Lee, Jun Ho; Sohn, Tae Sung; Bae, Jae Moon; Kim, Sung; Kim, Duk-Hwan; Kim, Kyoung-Mee

    2014-01-01

    In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. To characterize cancer at a molecular level, the use of formalin-fixed paraffin-embedded tissue is important. We tested the Ion AmpliSeq Cancer Hotspot Panel v2 and nCounter Copy Number Variation Assay in 89 formalin-fixed paraffin-embedded gastric cancer samples to determine whether they are applicable in archival clinical samples for personalized targeted therapies. We validated the results with Sanger sequencing, real-time quantitative PCR, fluorescence in situ hybridization and immunohistochemistry. Frequently detected somatic mutations included TP53 (28.17%), APC (10.1%), PIK3CA (5.6%), KRAS (4.5%), SMO (3.4%), STK11 (3.4%), CDKN2A (3.4%) and SMAD4 (3.4%). Amplifications of HER2, CCNE1, MYC, KRAS and EGFR genes were observed in 8 (8.9%), 4 (4.5%), 2 (2.2%), 1 (1.1%) and 1 (1.1%) cases, respectively. In the cases with amplification, fluorescence in situ hybridization for HER2 verified gene amplification and immunohistochemistry for HER2, EGFR and CCNE1 verified the overexpression of proteins in tumor cells. In conclusion, we successfully performed semiconductor-based sequencing and nCounter copy number variation analyses in formalin-fixed paraffin-embedded gastric cancer samples. High-throughput screening in archival clinical samples enables faster, more accurate and cost-effective detection of hotspot mutations or amplification in genes. PMID:25372287

  20. Optimizing sparse sequencing of single cells for highly multiplex copy number profiling

    PubMed Central

    Baslan, Timour; Kendall, Jude; Ward, Brian; Cox, Hilary; Leotta, Anthony; Rodgers, Linda; Riggs, Michael; D'Italia, Sean; Sun, Guoli; Yong, Mao; Miskimen, Kristy; Gilmore, Hannah; Saborowski, Michael; Dimitrova, Nevenka; Krasnitz, Alexander; Harris, Lyndsay; Wigler, Michael; Hicks, James

    2015-01-01

    Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage. PMID:25858951

  1. Identification of Copy Number Aberrations in Breast Cancer Subtypes Using Persistence Topology

    PubMed Central

    Arsuaga, Javier; Borrman, Tyler; Cavalcante, Raymond; Gonzalez, Georgina; Park, Catherine

    2015-01-01

    DNA copy number aberrations (CNAs) are of biological and medical interest because they help identify regulatory mechanisms underlying tumor initiation and evolution. Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task, because they are frequently hidden by CNAs that are the product of random events that take place during tumor evolution. Experimental detection of CNAs is commonly accomplished through array comparative genomic hybridization (aCGH) assays followed by supervised and/or unsupervised statistical methods that combine the segmented profiles of all patients to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for the identification of CNAs that is based on a topological representation of the data. Our method associates a two-dimensional (2D) point cloud with each aCGH profile and generates a sequence of simplicial complexes, mathematical objects that generalize the concept of a graph. This representation of the data permits segmenting the data at different resolutions and identifying CNAs by interrogating the topological properties of these simplicial complexes. We tested our approach on a published dataset with the goal of identifying specific breast cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated with each subtype was performed by analyzing each subtype separately from the others and by taking the rest of the subtypes as the control. Our results found a new amplification in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations in the Luminal B subtype were found only upon removal of the basal-like subtype from the control set. Under those conditions, all regions found in the original publication, except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and 12q were confirmed in the basal-like subtype. These two chromosome arms, however, were detected only upon removal of three patients

  2. Low copy number of the salivary amylase gene predisposes to obesity.

    PubMed

    Falchi, Mario; El-Sayed Moustafa, Julia Sarah; Takousis, Petros; Pesce, Francesco; Bonnefond, Amélie; Andersson-Assarsson, Johanna C; Sudmant, Peter H; Dorajoo, Rajkumar; Al-Shafai, Mashael Nedham; Bottolo, Leonardo; Ozdemir, Erdal; So, Hon-Cheong; Davies, Robert W; Patrice, Alexandre; Dent, Robert; Mangino, Massimo; Hysi, Pirro G; Dechaume, Aurélie; Huyvaert, Marlène; Skinner, Jane; Pigeyre, Marie; Caiazzo, Robert; Raverdy, Violeta; Vaillant, Emmanuel; Field, Sarah; Balkau, Beverley; Marre, Michel; Visvikis-Siest, Sophie; Weill, Jacques; Poulain-Godefroy, Odile; Jacobson, Peter; Sjostrom, Lars; Hammond, Christopher J; Deloukas, Panos; Sham, Pak Chung; McPherson, Ruth; Lee, Jeannette; Tai, E Shyong; Sladek, Robert; Carlsson, Lena M S; Walley, Andrew; Eichler, Evan E; Pattou, Francois; Spector, Timothy D; Froguel, Philippe

    2014-05-01

    Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10(-14)) and serum enzyme levels (P < 2.20 × 10(-16)), whereas reduced AMY1 copy number was associated with increased BMI (change in BMI per estimated copy = -0.15 (0.02) kg/m(2); P = 6.93 × 10(-10)) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13-1.26; P = 1.46 × 10(-10)). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies. PMID:24686848

  3. Copy number variations and cognitive phenotypes in unselected populations

    PubMed Central

    Männik, Katrin; Mägi, Reedik; Macé, Aurélien; Cole, Ben; Guyatt, Anna; Shihab, Hashem A.; Maillard, Anne M.; Alavere, Helene; Kolk, Anneli; Reigo, Anu; Mihailov, Evelin; Leitsalu, Liis; Ferreira, Anne-Maud; Nõukas, Margit; Teumer, Alexander; Salvi, Erika; Cusi, Daniele; McGue, Matt; Iacono, William G.; Gaunt, Tom R.; Beckmann, Jacques S.; Jacquemont, Sébastien; Kutalik, Zoltán; Pankratz, Nathan; Timpson, Nicholas; Metspalu, Andres; Reymond, Alexandre

    2015-01-01

    Importance The association of rare copy number variants (CNVs) with complex disorders is almost exclusively evaluated using clinically ascertained cohorts. As a result, the contribution of these genetic variants to cognitive phenotypes in the general population remains unclear. Objectives - To investigate the clinical features of genomic disorders in adult carriers without clinical pre-selection. - To assess the genome-wide burden of rare CNVs on carriers’ educational attainment and intellectual disability prevalence in the general population. Design, Setting, and Participants The population biobank of Estonia (EGCUT) contains 52,000 participants, or 5% of the Estonian adults, enrolled in 2002-2010. General practitioners examined participants and filled out a questionnaire of health- and lifestyle-related questions, as well as reported diagnoses. As EGCUT is representative of the country's population, we investigated a random sample of 7877 individuals for CNV analysis and genotype-phenotype associations with education and disease traits. Main Outcomes and Measures Phenotypes of genomic disorders in the general population, prevalence of autosomal CNVs, and association of the latter variants with decreased educational attainment and increased prevalence of intellectual disability. Results We identified 56 carriers of genomic disorders. Their phenotypes are reminiscent of those described for carriers of identical rearrangements ascertained in clinical cohorts. We also generated a genome-wide map of rare (frequency ≤0.05%) autosomal CNVs and identified 10.5% of the screened general population (n=831) as carriers of CNVs ≥250kb. Carriers of deletions ≥250kb or duplications ≥1Mb show, compared to the Estonian population, a greater prevalence of intellectual disability (P=0.0015, OR=3.16, (95%CI: 1.51-5.98); P=0.0083, OR=3.67, (95%CI: 1.29-8.54), respectively), reduced mean education attainment (a proxy for intelligence; P=1.06e-04; P=5.024e-05, respectively

  4. Aluminum tolerance is associated with higher MATE1 gene copy-number in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome structure variation, including copy-number (CNV) and presence/absence variation (PAV), comprise a large extent of maize genetic diversity but their effect on phenotypes remains largely unexplored. Here we describe how copy-number variation in a major aluminum (Al) tolerance locus contributes ...

  5. 47 CFR 1.742 - Place of filing, fees, and number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Place of filing, fees, and number of copies. 1.742 Section 1.742 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Complaints, Applications, Tariffs, and Reports Involving Common Carriers Applications § 1.742 Place of filing, fees, and number of copies....

  6. 17 CFR 230.424 - Filing of prospectuses, number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Filing of prospectuses, number of copies. 230.424 Section 230.424 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 Form and Content of Prospectuses § 230.424 Filing of prospectuses, number of copies....

  7. Copy number variation of individual cattle genomes using next-generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  8. Copy number variation of individual cattle genomes using next-generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...

  9. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; signatures; binding. 270.8b-11 Section 270.8b-11 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures; binding. (a) Three complete...

  10. 10 CFR 205.307 - Form and style; number of copies

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies 205.307 Section 205.307 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy to A Foreign Country § 205.307 Form and style; number of copies An original and...

  11. 10 CFR 205.324 - Form and style; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies. 205.324 Section 205.324 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy at International Boundaries § 205.324 Form and style; number of copies. All...

  12. 39 CFR 3001.10 - Form and number of copies of documents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Form and number of copies of documents. 3001.10... Rules of General Applicability § 3001.10 Form and number of copies of documents. (a) Documents. Each... generated in either Acrobat (pdf), Word, WordPerfect, or Rich Text Format (rtf). (d) Exception for...

  13. 39 CFR 3001.10 - Form and number of copies of documents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Form and number of copies of documents. 3001.10... Rules of General Applicability § 3001.10 Form and number of copies of documents. (a) Documents. Each... generated in either Acrobat (pdf), Word, WordPerfect, or Rich Text Format (rtf). (d) Exception for...

  14. 39 CFR 3001.10 - Form and number of copies of documents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Form and number of copies of documents. 3001.10... Rules of General Applicability § 3001.10 Form and number of copies of documents. (a) Documents. Each...), Word, or WordPerfect, or Rich Text Format (rtf). (d) Exception for appeals of post office closings...

  15. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-number of copies; distribution. 51.58... Implementing Section 102(2) Environmental Reports-Production and Utilization Facilities § 51.58 Environmental report—number of copies; distribution. (a) Each applicant for a license or permit to site,...

  16. 43 CFR 3104.6 - Where filed and number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Where filed and number of copies. 3104.6 Section 3104.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Bonds § 3104.6 Where filed and number of copies. All...

  17. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-number of copies; distribution. 51.58... report—number of copies; distribution. (a) Each applicant for a license or permit to site, construct...)(4), each applicant for renewal of an operating or combined license for a nuclear power plant,...

  18. 5 CFR 2429.25 - Number of copies and paper size.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Number of copies and paper size. 2429.25... Requirements § 2429.25 Number of copies and paper size. Unless otherwise provided by the Authority or the... the exception of any prescribed forms, any document or paper filed with the Authority, General...

  19. 5 CFR 2429.25 - Number of copies and paper size.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Number of copies and paper size. 2429.25... Requirements § 2429.25 Number of copies and paper size. (a) General rule. Except as discussed in paragraph (b... attachments, must be on 81/2 by 11 inch size paper, using normal margins and font sizes. You must file...

  20. 5 CFR 2429.25 - Number of copies and paper size.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Number of copies and paper size. 2429.25... Requirements § 2429.25 Number of copies and paper size. (a) General rule. Except as discussed in paragraph (b... attachments, must be on 81/2 by 11 inch size paper, using normal margins and font sizes. You must file...

  1. Individualized cattle copy number and segmental duplication maps using next generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  2. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities.

    PubMed

    Kerr, Emma M; Gaude, Edoardo; Turrell, Frances K; Frezza, Christian; Martins, Carla P

    2016-03-01

    The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from Kras(G12D/+);p53-null mice frequently exhibit Kras(G12D) allelic enrichment (Kras(G12D)/Kras(wild-type) > 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, Kras(G12D/G12D) cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of Kras(G12D) copy gain), but not in the corresponding early tumours (Kras(G12D) heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577

  3. MYC, FBXW7 and TP53 copy number variation and expression in Gastric Cancer

    PubMed Central

    2013-01-01

    Background MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. Methods We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. Results MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. Conclusion In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful

  4. Genetic changes during laboratory propagation: copy number At the reticulocyte-binding protein 1 locus of Plasmodium falciparum.

    PubMed

    Nair, Shalini; Nkhoma, Standwell; Nosten, François; Mayxay, Mayfong; French, Neil; Whitworth, Jim; Anderson, Tim

    2010-08-01

    Comparative genomic hybridization studies have revealed elevated copy number (CN) at the reticulocyte-binding protein 1 gene (PfRh1) in fast growing lab-adapted parasites, while genetic manipulation demonstrates a causal link between cell invasion and PfRh1 CN. We therefore examined PfRh1 copy number variation (CNV) in 202 single clone parasite isolates from four countries to quantify the extent of CNV within natural populations. Surprisingly, we found that no natural parasite infections showed elevated CN. In contrast, 4/28 independent laboratory reference strains show elevated CN. One possibility is that amplification of PfRh1 (or neighboring loci) is selected during laboratory culture. In the case of FCR3 group of parasites, clone trees show that PfRh1 amplification arose in laboratory lines following establishment in culture. These data show that CNV at PfRh1 is rare or non-existent in natural populations, but can arise during laboratory propagation. We conclude that PfRh1 CNV is not an important determinant of gene expression, cell invasion or growth rate in natural parasite populations. PMID:20363264

  5. Chromosome 10 and RET gene copy number alterations in hereditary and sporadic Medullary Thyroid Carcinoma.

    PubMed

    Ciampi, Raffaele; Romei, Cristina; Cosci, Barbara; Vivaldi, Agnese; Bottici, Valeria; Renzini, Giulia; Ugolini, Clara; Tacito, Alessia; Basolo, Fulvio; Pinchera, Aldo; Elisei, Rossella

    2012-01-01

    About 30% of hereditary Medullary Thyroid Carcinoma (MTC) have been demonstrated to harbour imbalance between mutant and wild-type RET alleles. We studied the RET copy number alterations (RET CNA) in 65 MTC and their correlation with RET mutation and patients' outcome. Fluorescence in situ Hybridization and Real-time PCR revealed RET CNA in 27.7% MTC but only in a variable percentage of cells. In sporadic MTC, RET CNA were represented by chromosome 10 aneuploidy while in hereditary MTC by RET amplification. A significant higher prevalence of RET CNA was observed in RET mutated MTC (P=0.003). RET CNA was also associated to a poorer outcome (P=0.005). However, the multivariate analysis revealed that only RET mutation and advanced clinical stage correlated with the worst outcome. In conclusion, 30% MTC harbour RET CNA in variable percentage of cells suggesting cell heterogeneity. RET CNA can be considered a poor prognostic factor potentiating the poor prognostic role of RET mutation. PMID:21867742

  6. Validation of copy number variation sequencing for detecting chromosome imbalances in human preimplantation embryos.

    PubMed

    Wang, Li; Cram, David S; Shen, Jiandong; Wang, Xiaohong; Zhang, Jianguang; Song, Zhuo; Xu, Genming; Li, Na; Fan, Junmei; Wang, Shufang; Luo, Yaning; Wang, Jun; Yu, Li; Liu, Jiayin; Yao, Yuanqing

    2014-08-01

    Chromosome aneuploidies commonly arise in embryos produced by assisted reproductive technologies and represent a major cause of implantation failure and miscarriage. Currently, preimplantation genetic diagnosis (PGD) is performed by array-based methods to identify euploid embryos for transfer to the patient. We speculated that a combination of next-generation sequencing technologies and sophisticated bioinformatics would deliver a more comprehensive and accurate methodology to improve the overall efficacy of embryo testing. To meet this challenge, we developed a high-resolution copy number variation (CNV) sequencing pipeline suitable for single-cell analysis. In validation studies, we showed that CNV-Seq was highly sensitive and specific for detection of euploidy, aneuploidy, and segmental imbalances in 24 whole genome amplification samples from PGD embryos that were originally diagnosed by gold standard array comparative genomic hybridization. In addition, CNV-Seq was capable of detecting, mapping, and accurately quantifying terminal chromosome imbalances down to 1 Mb in size originating from abnormal segregation of translocation chromosomes. These validation studies indicate that CNV-Seq displays the hallmarks of an accurate and reliable embryo test with the potential to further improve the overall efficacy of PGD. PMID:24966395

  7. Copy Number Variations in a Population-Based Study of Charcot-Marie-Tooth Disease

    PubMed Central

    Høyer, Helle; Braathen, Geir J.; Eek, Anette K.; Nordang, Gry B. N.; Skjelbred, Camilla F.; Russell, Michael B.

    2015-01-01

    Copy number variations (CNVs) are important in relation to diversity and evolution but can sometimes cause disease. The most common genetic cause of the inherited peripheral neuropathy Charcot-Marie-Tooth disease is the PMP22 duplication; otherwise, CNVs have been considered rare. We investigated CNVs in a population-based sample of Charcot-Marie-Tooth (CMT) families. The 81 CMT families had previously been screened for the PMP22 duplication and point mutations in 51 peripheral neuropathy genes, and a genetic cause was identified in 37 CMT families (46%). Index patients from the 44 CMT families with an unknown genetic diagnosis were analysed by whole-genome array comparative genomic hybridization to investigate the entire genome for larger CNVs and multiplex ligation-dependent probe amplification to detect smaller intragenomic CNVs in MFN2 and MPZ. One patient had the pathogenic PMP22 duplication not detected by previous methods. Three patients had potentially pathogenic CNVs in the CNTNAP2, LAMA2, or SEMA5A, that is, genes related to neuromuscular or neurodevelopmental disease. Genotype and phenotype correlation indicated likely pathogenicity for the LAMA2 CNV, whereas the CNTNAP2 and SEMA5A CNVs remained potentially pathogenic. Except the PMP22 duplication, disease causing CNVs are rare but may cause CMT in about 1% (95% CI 0–7%) of the Norwegian CMT families. PMID:25648254

  8. Shared Copy Number Variation in Simultaneous Nephroblastoma and Neuroblastoma due to Fanconi Anemia

    PubMed Central

    Serra, A.; Eirich, K.; Winkler, A.K.; Mrasek, K.; Göhring, G.; Barbi, G.; Cario, H.; Schlegelberger, B.; Pokora, B.; Liehr, T.; Leriche, C.; Henne-Bruns, D.; Barth, T.F.; Schindler, D.

    2012-01-01

    Concurrent emergence of nephroblastoma (Wilms Tumor; WT) and neuroblastoma (NB) is rare and mostly observed in patients with severe subtypes of Fanconi anemia (FA) with or without VACTER-L association (VL). We investigated the hypothesis that early consequences of genomic instability result in shared regions with copy number variation in different precursor cells that originate distinct embryonal tumors. We observed a newborn girl with FA and VL (aplasia of the thumbs, cloacal atresia (urogenital sinus), tethered cord at L3/L4, muscular ventricular septum defect, and horseshoe-kidney with a single ureter) who simultaneously acquired an epithelial-type WT in the left portion of the kidney and a poorly differentiated adrenal NB in infancy. A novel homozygous germline frameshift mutation in PALB2 (c.1676_c1677delAAinsG) leading to protein truncation (pGln526ArgfsX1) inherited from consanguineous parents formed the genetic basis of FA-N. Spontaneous and induced chromosomal instability was detected in the majority of cells analyzed from peripheral lymphocytes, bone marrow, and cultured fibroblasts. Bone marrow cells also showed complex chromosome rearrangements consistent with the myelodysplastic syndrome at 11 months of age. Array-comparative genomic hybridization analyses of both WT and NB showed shared gains or amplifications within the chromosomal regions 11p15.5 and 17q21.31-q25.3, including genes that are reportedly implicated in tumor development such as IGF2, H19, WT2, BIRC5, and HRAS. PMID:23112754

  9. Gene copy number variations in the leukocyte genome of hepatocellular carcinoma patients with integrated hepatitis B virus DNA

    PubMed Central

    Xu, Guixia; Cheng, Kai; Cao, Guangwen; Wu, Mengchao; Cheng, Shuqun; Liu, Shanrong

    2016-01-01

    Integration of hepatitis B virus (HBV) DNA into the human liver cell genome is believed to promote HBV-related carcinogenesis. This study aimed to quantify the integration of HBV DNA into the leukocyte genome in hepatocellular carcinoma (HCC) patients in order to identify potential biomarkers for HBV-related diseases. Whole-genome comparative genomic hybridization (CGH) chip array analyses were performed to screen gene copy number variations (CNV) in the leukocyte genome, and the results were confirmed by quantitative polymerase chain reaction (qPCR). The commonly detected regions included chromosome arms 19p, 5q, 1q and 15p, where 200 copy number gain events and 270 copy number loss events were noted. In particular, gains were observed in 5q35.3 (OR4F3) and 19p13.3 (OR4F17) in 90% of the samples. Successful homologous recombination of OR4F3 and the HBV P gene was demonstrated, and the amplification at 5q35.3 is potentially associated with the integration of HBV P gene into natural killer cells isolated from peripheral blood mononuclear cells (PBMCs). Receiver operating characteristic (ROC) curve analysis indicated that the combination of OR4F3 and OR4F17 a novel potential biomarker of HBV-related diseases. PMID:26769853

  10. Determining Fungi rRNA Copy Number by PCR

    PubMed Central

    Black, Jonathan; Dean, Timothy; Byfield, Grace; Foarde, Karin; Menetrez, Marc

    2013-01-01

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within a standard qPCR reaction. The first control developed was the internal standard control gene, benA. This gene encodes for β-tubulin and was selected based on its single-copy nature. The second control developed was the standard control plasmid, which contained a fragment of the ribosomal RNA (rRNA) gene and produced a specific PCR product. The results confirm the multicopy nature of the rRNA region in several filamentous fungi and show that we can quantify fungi of unknown genome size over a range of spore extractions by inclusion of these two standard controls. Advances in qPCR have led to extremely sensitive and quantitative methods for single-copy genes; however, it has not been well established that the rRNA can be used to quantitate fungal contamination. We report on the use of qPCR, combined with two controls, to identify and quantify indoor fungal contaminants with a greater degree of confidence than has been achieved previously. Advances in indoor environmental health have demonstrated that contamination of the built environment by the filamentous fungi has adverse impacts on the health of building occupants. This study meets the need for more accurate and reliable methods for fungal identification and quantitation in the indoor environment. PMID:23543828

  11. Copy-number changes in evolution: rates, fitness effects and adaptive significance

    PubMed Central

    Katju, Vaishali; Bergthorsson, Ulfar

    2013-01-01

    Gene copy-number differences due to gene duplications and deletions are rampant in natural populations and play a crucial role in the evolution of genome complexity. Per-locus analyses of gene duplication rates in the pre-genomic era revealed that gene duplication rates are much higher than the per nucleotide substitution rate. Analyses of gene duplication and deletion rates in mutation accumulation lines of model organisms have revealed that these high rates of copy-number mutations occur at a genome-wide scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-number polymorphism data and bioinformatic-based estimates of duplication rates from sequenced genomes suggest that the vast majority of gene duplications are detrimental and removed by natural selection. The rate at which new gene copies appear in populations greatly influences their evolutionary dynamics and standing gene copy-number variation in populations. The opportunity for mutations that result in the maintenance of duplicate copies, either through neofunctionalization or subfunctionalization, also depends on the equilibrium frequency of additional gene copies in the population, and hence on the spontaneous gene duplication (and loss) rate. The duplication rate may therefore have profound effects on the role of adaptation in the evolution of duplicated genes as well as important consequences for the evolutionary potential of organisms. We further discuss the broad ramifications of this standing gene copy-number variation on fitness and adaptive potential from a population-genetic and genome-wide perspective. PMID:24368910

  12. Comparison of Copy Number of HSF Genes in Two Buffalo Genomes.

    PubMed

    Lal, Shardul Vikram; Mukherjee, Ayan; Brahma, Biswajit; Gohain, Moloya; Patra, Mahesh Chandra; Saini, Sushil Kumar; Mishra, Purushottam; Ahlawat, Sonika; Upadhyaya, Ramesh C; Datta, Tirtha K; De, Sachinandan

    2016-01-01

    The copy number variation (CNV) is the number of copies of a particular gene in the genotype of an individual. Recent evidences show that the CNVs can vary in frequency and occurrence between breeds. These variations reportedly allowed different breeds to adapt to different environments. As copy number variations follow Mendelian pattern of inheritance, identification and distribution of these variants between populations can be used to infer the evolutionary history of the species. In this study, we have examined the absolute copy number of four Heat shock factor genes viz. HSF-1, 2, 4, and 5 in two different breeds of buffalo species using real-time PCR. Here, we report that the absolute copy number of HSF2 varies between the two breeds. In contrast no significant difference was observed in the copy number for HSF-1, 4, and 5 between the two breeds. Our results provide evidence for the presence of breed specific differences in HSF2 genomic copy number. This seems to be the first step in delineating the genetic factors underlying environmental adaptation between the two breeds. Nevertheless, a more detailed study is needed to characterize the functional consequence of this variation. PMID:26953680

  13. Decreases in average bacterial community rRNA operon copy number during succession.

    PubMed

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution. PMID:26565722

  14. 16Stimator: statistical estimation of ribosomal gene copy numbers from draft genome assemblies.

    PubMed

    Perisin, Matthew; Vetter, Madlen; Gilbert, Jack A; Bergelson, Joy

    2016-04-01

    The 16S rRNA gene (16S) is an accepted marker of bacterial taxonomic diversity, even though differences in copy number obscure the relationship between amplicon and organismal abundances. Ancestral state reconstruction methods can predict 16S copy numbers through comparisons with closely related reference genomes; however, the database of closed genomes is limited. Here, we extend the reference database of 16S copy numbers to de novo assembled draft genomes by developing 16Stimator, a method to estimate 16S copy numbers when these repetitive regions collapse during assembly. Using a read depth approach, we estimate 16S copy numbers for 12 endophytic isolates from Arabidopsis thaliana and confirm estimates by qPCR. We further apply this approach to draft genomes deposited in NCBI and demonstrate accurate copy number estimation regardless of sequencing platform, with an overall median deviation of 14%. The expanded database of isolates with 16S copy number estimates increases the power of phylogenetic correction methods for determining organismal abundances from 16S amplicon surveys. PMID:26359911

  15. Copy number polymorphisms are not a common feature of innate immune genes.

    PubMed

    Linzmeier, Rose M; Ganz, Tomas

    2006-07-01

    Extensive copy number polymorphism was recently reported for innate immunity-related alpha-defensin genes DEFA1 and DEFA3 and beta-defensin genes DEFB4, DEFB103, and DEFB104. To establish whether such polymorphisms are a common feature of innate immune genes we used quantitative real-time PCR to determine the copy numbers of seven genes whose products have important innate immune functions. The genes encoding lysozyme, lactoferrin, cathelicidin antimicrobial peptide (hCAP18/LL-37), cathepsin G, bactericidal/permeability-increasing protein, azurocidin (CAP37/heparin-binding protein), and neutrophil elastase were each found to be single copy per haploid genome. These findings, along with the recent observation that defensin genes DEFA4, DEFA5, DEFA6, and DEFB1 are single copy, suggest that copy number polymorphisms are not a common feature of the innate immune genome but are restricted to a small subset of innate immunity-related genes. PMID:16617005

  16. 47 CFR 1.51 - Number of copies of pleadings, briefs and other papers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... paper filed relates to a matter to be acted upon by the presiding officer or the Chief Administrative Law Judge, an original and 6 copies shall be filed. (2) If the paper filed relates to matters to be... chapter. (c) In matters other than rule making and hearing cases, the following number of copies shall...

  17. Bovine NK-lysin: Copy number variation and functional diversification

    PubMed Central

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M.; Malig, Maika; Lawhon, Sara D.; Skow, Loren C.; Lee, Mi Ok; Eichler, Evan E.; Andersson, Leif; Womack, James E.

    2015-01-01

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30–35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  18. Bovine NK-lysin: Copy number variation and functional diversification.

    PubMed

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M; Malig, Maika; Lawhon, Sara D; Skow, Loren C; Lee, Mi Ok; Eichler, Evan E; Andersson, Leif; Womack, James E

    2015-12-29

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  19. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq.

    PubMed

    Kondrashova, Olga; Love, Clare J; Lunke, Sebastian; Hsu, Arthur L; Waring, Paul M; Taylor, Graham R

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395

  20. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq

    PubMed Central

    Kondrashova, Olga; Love, Clare J.; Lunke, Sebastian; Hsu, Arthur L.; Waring, Paul M.; Taylor, Graham R.

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395

  1. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains

    PubMed Central

    Bushman, Diane M; Kaeser, Gwendolyn E; Siddoway, Benjamin; Westra, Jurgen W; Rivera, Richard R; Rehen, Stevens K; Yung, Yun C; Chun, Jerold

    2015-01-01

    Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ∼8% over non-diseased controls that were unrelated to trisomy 21. Two independent single-cell copy number analyses identified amplifications at the APP locus. The use of single-cell qPCR identified up to 12 copies of APP in sampled neurons. Peptide nucleic acid (PNA) probes targeting APP, combined with super-resolution microscopy detected primarily single fluorescent signals of variable intensity that paralleled single-cell qPCR analyses. These data identify somatic genomic changes in single neurons, affecting known and unknown loci, which are increased in sporadic AD, and further indicate functionality for genomic mosaicism in the CNS. DOI: http://dx.doi.org/10.7554/eLife.05116.001 PMID:25650802

  2. Estimating copy numbers of alleles from population-scale high-throughput sequencing data

    PubMed Central

    2015-01-01

    Background With the recent development of microarray and high-throughput sequencing (HTS) technologies, a number of studies have revealed catalogs of copy number variants (CNVs) and their association with phenotypes and complex traits. In parallel, a number of approaches to predict CNV regions and genotypes are proposed for both microarray and HTS data. However, only a few approaches focus on haplotyping of CNV loci. Results We propose a novel approach to infer copy unit alleles and their numbers in each sample simultaneously from population-scale HTS data by variational Bayesian inference on a generative probabilistic model inspired by latent Dirichlet allocation, which is a well studied model for document classification problems. In simulation studies, we evaluated concordance between inferred and true copy unit alleles for lower-, middle-, and higher-copy number dataset, in which precision and recall were ≥ 0.9 for data with mean coverage ≥ 10× per copy unit. We also applied the approach to HTS data of 1123 samples at highly variable salivary amylase gene locus and a pseudogene locus, and confirmed consistency of the estimated alleles within samples belonging to a trio of CEPH/Utah pedigree 1463 with 11 offspring. Conclusions Our proposed approach enables detailed analysis of copy number variations, such as association study between copy unit alleles and phenotypes or biological features including human diseases. PMID:25707811

  3. Low AMY1 Gene Copy Number Is Associated with Increased Body Mass Index in Prepubertal Boys

    PubMed Central

    Verginelli, Fabio; De Lellis, Laura; Capelli, Cristian; Verzilli, Delfina; Chiarelli, Francesco; Mohn, Angelika; Cama, Alessandro

    2016-01-01

    Background Genome-wide association studies have identified more than 60 single nucleotide polymorphisms associated with Body Mass Index (BMI). Additional genetic variants, such as copy number variations (CNV), have also been investigated in relation to BMI. Recently, the highly polymorphic CNV in the salivary amylase (AMY1) gene, encoding an enzyme implicated in the first step of starch digestion, has been associated with obesity in adults and children. We assessed the potential association between AMY1 copy number and a wide range of BMI in a population of Italian school-children. Methods 744 children (354 boys, 390 girls, mean age (±SD): 8.4±1.4years) underwent anthropometric assessments (height, weight) and collection of saliva samples for DNA extraction. AMY1 copies were evaluated by quantitative PCR. Results A significant increase of BMI z-score by decreasing AMY1 copy number was observed in boys (β: -0.117, p = 0.033), but not in girls. Similarly, waist circumference (β: -0.155, p = 0.003, adjusted for age) was negatively influenced by AMY1 copy number in boys. Boys with 8 or more AMY1 copy numbers presented a significant lower BMI z-score (p = 0.04) and waist circumference (p = 0.01) when compared to boys with less than 8 copy numbers. Conclusions In this pediatric-only, population-based study, a lower AMY1 copy number emerged to be associated with increased BMI in boys. These data confirm previous findings from adult studies and support a potential role of a higher copy number of the salivary AMY1 gene in protecting from excess weight gain. PMID:27149670

  4. Copy number gain of PIK3CA and MET is associated with poor prognosis in head and neck squamous cell carcinoma.

    PubMed

    Brauswetter, Diána; Dános, Kornél; Gurbi, Bianka; Félegyházi, Éva Fruzsina; Birtalan, Ede; Meggyesházi, Nóra; Krenács, Tibor; Tamás, László; Peták, István

    2016-05-01

    The incidence of head and neck squamous cell carcinomas is still growing, and the long-term prognosis of advanced disease remains poor. Only a fraction of head and neck cancers are sensitive to the EGFR-inhibitor cetuximab, which is the only registered targeted therapy available today. In several cancers, gene copy number alterations of MET and PIK3CA have been found to be prognostic and predictive for therapy response. The aim of this study was to systematically analyze in head and neck cancers the pathological characteristics and prognostic significance of copy number changes of MET and PIK3CA genes. MET and PIK3CA copy numbers were analyzed by fluorescence in situ hybridization in tumor samples of 152 patients. Expression of EGFR, p16, and Ki67 was studied by immunohistochemistry. High polysomy of PIK3CA (chromosome 3) was found in 20 % of cases and amplification in 4.5 %. Regarding MET, 35 % of cases showed low or high polysomy of the gene (chromosome 7), while no intra-chromosomal amplification of MET was detected. PIK3CA copy number gain (high polysomy or amplification) was significantly associated with shorter disease-specific survival, larger tumor volume, and lower p16 expression. MET copy number gain (low or high polysomy) in tumors was significantly associated with shorter disease-specific survival and lower level of EGFR. PIK3CA and MET may play an important role in oncogenesis of certain specific subtypes of head and neck cancer. There is an urgent need for the development of novel targeted therapies against these tumors associated with poor prognosis. PMID:26832731

  5. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Cancer.gov

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies.

  6. Determination of Transgene Copy Number by Real-time Quantitative-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient methods to characterize transgenic plants are important to quickly understand the state of the transformant. Determining transgene copy number is an important step in transformant characterization and can differentiate between complex and simple transformation events. This knowledge can ...

  7. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  8. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  9. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  10. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  11. Functional profiling and gene expression analysis of chromosomal copy number alterations

    PubMed Central

    Conde, Lucía; Montaner, David; Burguet-Castell, Jordi; Tárraga, Joaquín; Al-Shahrour, Fátima; Dopazo, Joaquín

    2007-01-01

    Contrarily to the traditional view in which only one or a few key genes were supposed to be the causative factors of diseases, we discuss the importance of considering groups of functionally related genes in the study of pathologies characterised by chromosomal copy number alterations. Recent observations have reported the existence of regions in higher eukaryotic chromosomes (including humans) containing genes of related function that show a high degree of coregulation. Copy number alterations will consequently affect to clusters of functionally related genes, which will be the final causative agents of the diseased phenotype, in many cases. Therefore, we propose that the functional profiling of the regions affected by copy number alterations must be an important aspect to take into account in the understanding of this type of pathologies. To illustrate this, we present an integrated study of DNA copy number variations, gene expression along with the functional profiling of chromosomal regions in a case of multiple myeloma. PMID:17597935

  12. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks.

    PubMed

    van Dyk, Ewald; Hoogstraat, Marlous; Ten Hoeve, Jelle; Reinders, Marcel J T; Wessels, Lodewyk F A

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects recurrent copy number breaks, rather than recurrently amplified or deleted regions. This change of perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-estimation of the background model are avoided. Furthermore, we control the false discovery rate on the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known cancer genes. PMID:27396759

  13. Porcine oocyte mtDNA copy number is high or low depending on the donor.

    PubMed

    Pedersen, Hanne Skovsgaard; Løvendahl, Peter; Larsen, Knud; Madsen, Lone Bruhn; Callesen, Henrik

    2016-08-01

    Oocyte capacity is relevant in understanding decreasing female fertility and in the use of assisted reproductive technologies in human and farm animals. Mitochondria are important to the development of a functionally good oocyte and the oocyte mtDNA copy number has been introduced as a useful parameter for prediction of oocyte competence. The aim of this study was to investigate: (i) if the oocyte donor has an influence on its oocyte's mtDNA copy number; and (ii) the relation between oocyte size and mtDNA copy number using pre- and postpubertal pig oocytes. Cumulus-oocyte complexes were collected from individual donor pigs. The oocytes were allocated into different size-groups, snap-frozen and single-oocyte mtDNA copy number was estimated by quantitative real-time PCR using the genes ND1 and COX1. Results showed that mean mtDNA copy number in oocytes from any individual donor could be categorized as either 'high' (≥100,000) or 'low' (<100,000) with no difference in threshold between pre- and postpubertal oocytes. No linear correlation was detected between oocyte size and mtDNA copy number within pre- and postpubertal oocytes. This study demonstrates the importance of the oocyte donor in relation to oocyte mtDNA copy number, irrespectively of the donor's puberty status and the oocyte's growth stage. Observations from this study facilitate both further investigations of the importance of mtDNA copy number and the unravelling of relations between different mitochondrial parameters and oocyte competence. PMID:26679989

  14. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing

    PubMed Central

    Shain, A. Hunter; Botton, Thomas; Bastian, Boris C.

    2016-01-01

    Germline copy number variants (CNVs) and somatic copy number alterations (SCNAs) are of significant importance in syndromic conditions and cancer. Massively parallel sequencing is increasingly used to infer copy number information from variations in the read depth in sequencing data. However, this approach has limitations in the case of targeted re-sequencing, which leaves gaps in coverage between the regions chosen for enrichment and introduces biases related to the efficiency of target capture and library preparation. We present a method for copy number detection, implemented in the software package CNVkit, that uses both the targeted reads and the nonspecifically captured off-target reads to infer copy number evenly across the genome. This combination achieves both exon-level resolution in targeted regions and sufficient resolution in the larger intronic and intergenic regions to identify copy number changes. In particular, we successfully inferred copy number at equivalent to 100-kilobase resolution genome-wide from a platform targeting as few as 293 genes. After normalizing read counts to a pooled reference, we evaluated and corrected for three sources of bias that explain most of the extraneous variability in the sequencing read depth: GC content, target footprint size and spacing, and repetitive sequences. We compared the performance of CNVkit to copy number changes identified by array comparative genomic hybridization. We packaged the components of CNVkit so that it is straightforward to use and provides visualizations, detailed reporting of significant features, and export options for integration into existing analysis pipelines. CNVkit is freely available from https://github.com/etal/cnvkit. PMID:27100738

  15. PCR Based Determination of Mitochondrial DNA Copy Number in Multiple Species

    PubMed Central

    Rooney, JP; Ryde, IT; Sanders, LH; Howlett, EH; Colton, MD; Germ, KE; Mayer, GD; Greenamyre, JT; Meyer, JN

    2015-01-01

    Summary Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter we describe methods for isolation of both mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. PMID:25308485

  16. Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease

    PubMed Central

    Pyle, Angela; Anugrha, Haidyan; Kurzawa-Akanbi, Marzena; Yarnall, Alison; Burn, David; Hudson, Gavin

    2016-01-01

    Like any organ, the brain is susceptible to the march of time and a reduction in mitochondrial biogenesis is a hallmark of the aging process. In the largest investigation of mitochondrial copy number in Parkinson's disease (PD) to date and by using multiple tissues, we demonstrate that reduced Parkinson DNA (mitochondrial DNA mtDNA) copy number is a biomarker for the etiology of PD. We used established methods of mtDNA quantification to assess the copy number of mtDNA in n = 363 peripheral blood samples, n = 151 substantia nigra pars compacta tissue samples and n = 120 frontal cortex tissue samples from community-based PD cases fulfilling UK-PD Society brain bank criteria for the diagnosis of PD. Accepting technical limitations, our data show that PD patients suffer a significant reduction in mtDNA copy number in both peripheral blood and the vulnerable substantia nigra pars compacta when compared to matched controls. Our study indicates that reduced mtDNA copy number is restricted to the affected brain tissue, but is also reflected in the peripheral blood, suggesting that mtDNA copy number may be a viable diagnostic predictor of PD. PMID:26639155

  17. Replicated linear association between DUF1220 copy number and severity of social impairment in autism.

    PubMed

    Davis, J M; Searles Quick, V B; Sikela, J M

    2015-06-01

    Sequences encoding DUF1220 protein domains exhibit an exceptional human-specific increase in copy number and have been associated with several phenotypes related to brain size. Autism is a highly heritable and heterogeneous condition characterized behaviorally by social and communicative impairments, and increased repetitive and stereotyped behavior. Given the accelerated brain growth pattern observed in many individuals with autism, and the association between DUF1220 subtype CON1 copy number and brain size, we previously investigated associations between CON1 copy number and autism-related symptoms. We determined that CON1 copy number increase is associated with increasing severity of all three behavioral features of autism. The present study sought to replicate these findings in an independent population (N = 166). Our results demonstrate a replication of the linear relationship between CON1 copy number and the severity of social impairment in individuals with autism as measured by Autism Diagnostic Interview-Revised Social Diagnostic Score, such that with each additional copy of CON1 Social Diagnostic Score increased 0.24 points (SE = 0.11, p = 0.036). We also identified an analogous trend between CON1 copy number and Communicative Diagnostic Score, but did not replicate the relationship between CON1 copy number and Repetitive Behavior Diagnostic Score. Interestingly, these associations appear to be most pronounced in multiplex children. These results, representing the first replication of a gene dosage relationship with the severity of a primary symptom of autism, lend further support to the possibility that the same protein domain family implicated in the evolutionary expansion of the human brain may also be involved in autism severity. PMID:25758905

  18. Ribosome Dwell Times and the Protein Copy Number Distribution

    NASA Astrophysics Data System (ADS)

    Gorissen, Mieke; Vanderzande, Carlo

    2012-09-01

    Translation is the cellular process in which ribosomes make proteins from information encoded on messenger RNA (mRNA). We model translation with an exclusion process taking into account the experimentally determined, non-exponential, waiting time between steps of a ribosome. From numerical simulations using realistic parameter values, we determine the distribution P( E) of the number of proteins E produced by one mRNA. We find that for small E this distribution is not geometric. We present a simplified and analytically solvable model that relates P( E) to the distributions of the times to produce the first E proteins.

  19. Methylation of tumor suppressor genes is related with copy number aberrations in breast cancer

    PubMed Central

    Murria, Rosa; Palanca, Sarai; de Juan, Inmaculada; Egoavil, Cecilia; Alenda, Cristina; García-Casado, Zaida; Juan, María J; Sánchez, Ana B; Santaballa, Ana; Chirivella, Isabel; Segura, Ángel; Hervás, David; Llop, Marta; Barragán, Eva; Bolufer, Pascual

    2015-01-01

    This study investigates the relationship of promoter methylation in tumor suppressor genes with copy-number aberrations (CNA) and with tumor markers in breast cancer (BCs). The study includes 98 formalin fixed paraffin-embedded BCs in which promoter methylation of 24 tumour suppressor genes were assessed by Methylation-Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA), CNA of 20 BC related genes by MLPA and ER, PR, HER2, CK5/6, CK18, EGFR, Cadherin-E, P53, Ki-67 and PARP expression by immunohistochemistry (IHC). Cluster analysis classed BCs in two groups according to promoter methylation percentage: the highly-methylated group (16 BCs), containing mostly hyper-methylated genes, and the sparsely-methylated group (82 BCs) with hypo-methylated genes. ATM, CDKN2A, VHL, CHFR and CDKN2B showed the greatest differences in the mean methylation percentage between these groups. We found no relationship of the IHC parameters or pathological features with methylation status, except for Catherin-E (p = 0.008). However the highly methylated BCs showed higher CNA proportion than the sparsely methylated BCs (p < 0.001, OR = 1.62; IC 95% [1.26, 2.07]). CDC6, MAPT, MED1, PRMD14 and AURKA showed the major differences in the CNA percentage between the two groups, exceeding the 22%. Methylation in RASSF1, CASP8, DAPK1 and GSTP1 conferred the highest probability of harboring CNA. Our results show a new link between promoter methylation and CNA giving support to the importance of methylation events to establish new BCs subtypes. Our findings may be also of relevance in personalized therapy assessment, which could benefit the hyper methylated BC patients group. PMID:25628946

  20. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform

    PubMed Central

    2011-01-01

    Background Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. Results APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. Conclusions If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package

  1. HaplotypeCN: copy number haplotype inference with Hidden Markov Model and localized haplotype clustering.

    PubMed

    Lin, Yen-Jen; Chen, Yu-Tin; Hsu, Shu-Ni; Peng, Chien-Hua; Tang, Chuan-Yi; Yen, Tzu-Chen; Hsieh, Wen-Ping

    2014-01-01

    Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states. PMID:24849202

  2. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster.

    PubMed Central

    Lyckegaard, E M; Clark, A G

    1989-01-01

    Multigene families on the Y chromosome face an unusual array of evolutionary forces. Both ribosomal DNA and Stellate, the two families examined here, have multiple copies of similar sequences on the X and Y chromosomes. Although the rate of sequence divergence on the Y chromosome depends on rates of mutation, gene conversion and exchange with the X chromosome, as well as purifying selection, the regulation of gene copy number may also depend on other pleiotropic functions, such as maintenance of chromosome pairing. Gene copy numbers were estimated for a series of 34 Y chromosome replacement lines using densitometric measurements of slot blots of genomic DNA from adult Drosophila melanogaster. Scans of autoradiographs of the same blots probed with the cloned alcohol dehydrogenase gene, a single copy gene, served as internal standards. Copy numbers span a 6-fold range for ribosomal DNA and a 3-fold range for Stellate DNA. Despite this magnitude of variation, there was no association between copy number and segregation variation of the sex chromosomes. Images PMID:2494656

  3. Leukocyte Mitochondrial DNA Copy Number Is Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Liu, Shih-Feng; Kuo, Ho-Chang; Tseng, Ching-Wan; Huang, Hung-Tu; Chen, Yung-Che; Tseng, Chia-Cheng; Lin, Meng-Chih

    2015-01-01

    Background Oxidative stress is known to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Evidence suggests that leukocytes mitochondria DNA (mtDNA) is susceptible to undergo mutations, insertions, or depletion in response to reactive oxidative stress (ROS). We hypothesize that mtDNA copy number is associated with the development of COPD. Methodology/Principal Findings Relative mtDNA copy number was measured by a quantitative real-time PCR assay using DNA extracted from peripheral leukocytes. MtDNA copy number of peripheral leukocytes in the COPD group (n = 86) is significantly decreased compared with non-smoker group (n = 77) (250.3± 21.5 VS. 464.2± 49.9, P<0.001). MtDNA copy number in the COPD group was less than that in the healthy smoking group, but P value nearly achieved significance (250.3± 21.5 VS. 404.0± 76.7, P = 0.08) MtDNA copy number has no significance with age, gender, body mass index, current smoking, and pack-years in COPD group, healthy smoker group and no smoker group, respectively. Serum glutathione level in the COPD group is significantly decreased compared with healthy smoker and non-smoker groups (4.5± 1.3 VS. 6.2± 1.9 and 4.5± 1.3 VS. 7.1±1.1 mU/mL; P<0.001 respectively). Pearson correlation test shows a significant liner correlation between mtDNA copy number and serum glutathione level (R = 0.2, P = 0.009). Conclusions/Significance COPD is associated with decreased leukocyte mtDNA copy number and serum glutathione. COPD is a regulatory disorder of leukocytes mitochondria. However, further studies are needed to determine the real mechanisms about the gene and the function of mitochondria. PMID:26394041

  4. Low Mitochondrial DNA Copy Number is Associated With Adverse Clinical Outcomes in Peritoneal Dialysis Patients.

    PubMed

    Yoon, Chang-Yun; Park, Jung Tak; Kee, Youn Kyung; Han, Seung Gyu; Han, In Mee; Kwon, Young Eun; Park, Kyoung Sook; Lee, Mi Jung; Han, Seung Hyeok; Kang, Shin-Wook; Yoo, Tae-Hyun

    2016-02-01

    Mitochondrial dysfunction may play an important role in abnormal glucose metabolism and systemic inflammation. We aimed to investigate the relationship between mitochondrial DNA (mtDNA) copy number and clinical outcomes in peritoneal dialysis (PD) patients. We recruited 120 prevalent PD patients and determined mtDNA copy number by PCR. Primary outcome was all-cause mortality, whereas secondary outcomes included cardiovascular events, technical PD failure, and incident malignancy. Cox proportional hazards analysis determined the independent association of mtDNA copy number with outcomes. The mean patient age was 52.3 years; 42.5% were men. The mean log mtDNA copy number was 3.30 ± 0.50. During a follow-up period of 35.4 ± 19.3 months, all-cause mortality and secondary outcomes were observed in 20.0% and 59.2% of patients, respectively. Secondary outcomes were significantly lower in the highest mtDNA copy number group than in the lower groups. In multiple Cox analysis, the mtDNA copy number was not associated with all-cause mortality (lower two vs highest tertile: hazard ratio [HR] = 1.208, 95% confidence interval [CI] = 0.477-3.061). However, the highest tertile group was significantly associated with lower incidences of secondary outcomes (lower two vs highest tertile: HR [95% CI] = 0.494 [0.277-0.882]) after adjusting for confounding factors. The decreased mtDNA copy number was significantly associated with adverse clinical outcomes in PD patients. PMID:26886611

  5. Low Mitochondrial DNA Copy Number is Associated With Adverse Clinical Outcomes in Peritoneal Dialysis Patients

    PubMed Central

    Yoon, Chang-Yun; Park, Jung Tak; Kee, Youn Kyung; Han, Seung Gyu; Han, In Mee; Kwon, Young Eun; Park, Kyoung Sook; Lee, Mi Jung; Han, Seung Hyeok; Kang, Shin-Wook; Yoo, Tae-Hyun

    2016-01-01

    Abstract Mitochondrial dysfunction may play an important role in abnormal glucose metabolism and systemic inflammation. We aimed to investigate the relationship between mitochondrial DNA (mtDNA) copy number and clinical outcomes in peritoneal dialysis (PD) patients. We recruited 120 prevalent PD patients and determined mtDNA copy number by PCR. Primary outcome was all-cause mortality, whereas secondary outcomes included cardiovascular events, technical PD failure, and incident malignancy. Cox proportional hazards analysis determined the independent association of mtDNA copy number with outcomes. The mean patient age was 52.3 years; 42.5% were men. The mean log mtDNA copy number was 3.30 ± 0.50. During a follow-up period of 35.4 ± 19.3 months, all-cause mortality and secondary outcomes were observed in 20.0% and 59.2% of patients, respectively. Secondary outcomes were significantly lower in the highest mtDNA copy number group than in the lower groups. In multiple Cox analysis, the mtDNA copy number was not associated with all-cause mortality (lower two vs highest tertile: hazard ratio [HR] = 1.208, 95% confidence interval [CI] = 0.477–3.061). However, the highest tertile group was significantly associated with lower incidences of secondary outcomes (lower two vs highest tertile: HR [95% CI] = 0.494 [0.277–0.882]) after adjusting for confounding factors. The decreased mtDNA copy number was significantly associated with adverse clinical outcomes in PD patients. PMID:26886611

  6. Performance of Molecular Inversion Probes (MIP) in Allele CopyNumber Determination

    SciTech Connect

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Wang,Nicolas J.; Ireland, James; Lin, Steven; Chen, Chunnuan; Heiser, LauraM.; Chin, Koei; Esserman, Laura; Gray, Joe W.; Spellman, Paul T.; Faham,Malek

    2007-05-14

    We have developed a new protocol for using MolecularInversion Probes (MIP) to accurately and specifically measure allele copynumber (ACN). The new protocol provides for significant improvementsincluding the reduction of input DNA (from 2?g) by more than 25 fold (to75ng total genomic DNA), higher overall precision resulting in one orderof magnitude lower false positive rate, and greater dynamic range withaccurate absolute copy number up to 60 copies.

  7. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-01-01

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant(1,2), but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability(3,4). We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements(5) or inferences(6,7). PMID:27617693

  8. BIOFILTER AS A FUNCTIONAL ANNOTATION PIPELINE FOR COMMON AND RARE COPY NUMBER BURDEN

    PubMed Central

    KIM, DOKYOON; LUCAS, ANASTASIA; GLESSNER, JOSEPH; VERMA, SHEFALI S.; BRADFORD, YUKI; LI, RUOWANG; FRASE, ALEX T.; HAKONARSON, HAKON; PEISSIG, PEGGY; BRILLIANT, MURRAY; RITCHIE, MARYLYN D.

    2015-01-01

    Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy number change, is a meaningful measure of genomic instability to identify the association between global genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to interpret biological meaning based on the accumulation of copy number change across the genome associated with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic regions and subsequently pathways and other gene groups using Biofilter – a bioinformatics tool that aggregates over a dozen publicly available databases of prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait phenotype derived from the electronic health record – total cholesterol. We identified several significant pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation p-value < 0.01). Based on the copy number burden analysis, it follows that the more and larger the copy number changes, the more likely that one or more target genes that influence disease risk and phenotypic severity will be affected. Thus, our study suggests the proposed enrichment pipeline could improve the

  9. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane.

    PubMed

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-01-01

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane. PMID:24857916

  10. Primers for low-copy nuclear genes in Metrosideros and cross-amplification in Myrtaceae1

    PubMed Central

    Pillon, Yohan; Johansen, Jennifer; Sakishima, Tomoko; Chamala, Srikar; Barbazuk, W. Brad; Stacy, Elizabeth A.

    2014-01-01

    • Premise of the study: Primers were developed to amplify low-copy nuclear genes in Hawaiian Metrosideros (Myrtaceae). • Methods and Results: Data from a pooled 454 Titanium run of the partial transcriptomes of four Metrosideros taxa were used to identify the loci of interest. Ten exon-primed intron-crossing (EPIC) markers were amplified and sequenced directly with success in Metrosideros, as well as in a representative selection of Myrtaceae, including Syzygium, Psidium, and Melaleuca for most of the markers. The loci amplified ranged between 500 and 1100 bp, and up to 117 polymorphic sites were observed within an individual gene alignment. Two introns contained microsatellites in some of the species. • Conclusions: These novel primer pairs should be useful for phylogenetic analysis and population genetics of a broad range of Myrtaceae, particularly the diverse fleshy-fruited tribes Syzygieae and Myrteae. PMID:25309837