Science.gov

Sample records for copy number shuttle

  1. Rare Copy Number Variants

    PubMed Central

    Grozeva, Detelina; Kirov, George; Ivanov, Dobril; Jones, Ian R.; Jones, Lisa; Green, Elaine K.; St Clair, David M.; Young, Allan H.; Ferrier, Nicol; Farmer, Anne E.; McGuffin, Peter; Holmans, Peter A.; Owen, Michael J.; O’Donovan, Michael C.; Craddock, Nick

    2015-01-01

    Context Recent studies suggest that copy number variation in the human genome is extensive and may play an important role in susceptibility to disease, including neuropsychiatric disorders such as schizophrenia and autism. The possible involvement of copy number variants (CNVs) in bipolar disorder has received little attention to date. Objectives To determine whether large (>100 000 base pairs) and rare (found in <1% of the population) CNVs are associated with susceptibility to bipolar disorder and to compare with findings in schizophrenia. Design A genome-wide survey of large, rare CNVs in a case-control sample using a high-density microarray. Setting The Wellcome Trust Case Control Consortium. Participants There were 1697 cases of bipolar disorder and 2806 nonpsychiatric controls. All participants were white UK residents. Main Outcome Measures Overall load of CNVs and presence of rare CNVs. Results The burden of CNVs in bipolar disorder was not increased compared with controls and was significantly less than in schizophrenia cases. The CNVs previously implicated in the etiology of schizophrenia were not more common in cases with bipolar disorder. Conclusions Schizophrenia and bipolar disorder differ with respect to CNV burden in general and association with specific CNVs in particular. Our data are consistent with the possibility that possession of large, rare deletions may modify the phenotype in those at risk of psychosis: those possessing such events are more likely to be diagnosed as having schizophrenia, and those without them are more likely to be diagnosed as having bipolar disorder. PMID:20368508

  2. Counting copy number and calories.

    PubMed

    White, Stefan

    2015-08-01

    Copy number variation (CNV) at several genomic loci has been associated with different human traits and diseases, but in many cases the findings could not be replicated. A new study provides insights into the degree of variation present at the amylase locus and calls into question a previous association between amylase copy number and body mass index. PMID:26220133

  3. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus.

    PubMed

    Aucelli, Tiziana; Contursi, Patrizia; Girfoglio, Michele; Rossi, Mosè; Cannio, Raffaele

    2006-01-01

    The pSSVx genetic element from Sulfolobus islandicus REY15/4 is a hybrid between a plasmid and a fusellovirus, able to be maintained in non-integrative form and to spread when the helper SSV2 virus is present in the cells. In this work, the satellite virus was engineered to obtain an Escherichia coli-Sulfolobus solfataricus shuttle vector for gene transfer and expression in S.solfataricus by fusing site-specifically the pSSVx chromosome with an E.coli plasmid replicon and the ampicillin resistance gene. The pSSVx-based vector was proven functional like the parental virus, namely it was able to spread efficiently through infected S.solfataricus cells. Moreover, the hybrid plasmid stably transformed S.solfataricus and propagated with no rearrangement, recombination or integration into the host chromosome. The high copy number of the artificial genetic element was found comparable with that calculated for the wild-type pSSVx in the new host cells, with no need of genetic markers for vector maintenance in the cells and for transfomant enrichment. The newly constructed vector was also shown to be an efficient cloning vehicle for the expression of passenger genes in S.solfataricus. In fact, a derivative plasmid carrying an expression cassette of the lacS gene encoding the beta-glycosidase from S.solfataricus under the control of the Sulfolobus chaperonine (thermosome tf55) heat shock promoter was also able to drive the expression of a functional enzyme. Complementation of the beta-galactosidase deficiency in a deletion mutant strain of S.solfataricus demonstrated that lacS gene was an efficient marker for selection of single transformants on solid minimal lactose medium. PMID:16971457

  4. Copy number variation and mutation

    NASA Astrophysics Data System (ADS)

    Clark, Brian; Weidner, Jacob; Wabick, Kevin

    2009-11-01

    Until very recently, the standard model of DNA included two genes for each trait. This dated model has given way to a model that includes copies of some genes well in excess of the canonical two. Copy number variations in the human genome play critical roles in causing or aggravating a number of syndromes and diseases while providing increased resistance to others. We explore the role of mutation, crossover, inversion, and reproduction in determining copy number variations in a numerical simulation of a population. The numerical model consists of a population of individuals, where each individual is represented by a single strand of DNA with the same number of genes. Each gene is initially assigned to one of two traits. Fitness of the individual is determined by the two most fit genes for trait one, and trait two genetic material is treated as a reservoir of junk DNA. After a sufficient number of generations, during which the genetic distribution is allowed to reach a steady-state, the mean numberof genes per trait and the copy number variation are recorded. Here, we focus on the role of mutation and compare simulation results to theory.

  5. Copy Number Variation across European Populations

    PubMed Central

    Chen, Wanting; Hayward, Caroline; Wright, Alan F.; Hicks, Andrew A.; Vitart, Veronique; Knott, Sara; Wild, Sarah H.; Pramstaller, Peter P.; Wilson, James F.; Rudan, Igor; Porteous, David J.

    2011-01-01

    Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations. PMID:21829696

  6. Variable copy number DNA sequences in rice.

    PubMed

    Kikuchi, S; Takaiwa, F; Oono, K

    1987-12-01

    We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3'rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element. PMID:3481021

  7. Genomic characteristics of cattle copy number variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  8. Copy Number Variation in the Cattle Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variations (CNVs) are gains and losses of genomic sequence greater than 50 bp between two individuals of a species. While single nucleotide polymorphisms (SNPs) are more frequent, CNVs impact a higher percentage of genomic sequence and have potentially greater effects, including the chan...

  9. Gene copy number and cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Ghosh, Bhaswar; Bose, Indrani

    2006-03-01

    The cell cycle is an orderly sequence of events which ultimately lead to the division of a single cell into two daughter cells. In the case of DNA damage by radiation or chemicals, the damage checkpoints in the G1 and G2 phases of the cell cycle are activated. This results in an arrest of the cell cycle so that the DNA damage can be repaired. Once this is done, the cell continues with its usual cycle of activity. We study a mathematical model of the DNA damage checkpoint in the G2 phase which arrests the transition from the G2 to the M (mitotic) phase of the cell cycle. The tumor suppressor protein p53 plays a key role in activating the pathways leading to cell cycle arrest in mammalian systems. If the DNA damage is severe, the p53 proteins activate other pathways which bring about apoptosis, i.e., programmed cell death. Loss of the p53 gene results in the proliferation of cells containing damaged DNA, i.e., in the growth of tumors which may ultimately become cancerous. There is some recent experimental evidence which suggests that the mutation of a single copy of the p53 gene (in the normal cell each gene has two identical copies) is sufficient to trigger the formation of tumors. We study the effect of reducing the gene copy number of the p53 and two other genes on cell cycle arrest and obtain results consistent with experimental observations.

  10. Copy number variants, aneuploidies, and human disease.

    PubMed

    Martin, Christa Lese; Kirkpatrick, Brianne E; Ledbetter, David H

    2015-06-01

    In the perinatal setting, chromosome imbalances cause a range of clinically significant disorders and increase the risk for other particular phenotypes. As technologies have improved to detect increasingly smaller deletions and duplications, collectively referred to as copy number variants (CNVs), clinicians are learning the significant role that these types of genomic variants play in human disease and their high frequency in ∼ 1% of all pregnancies. This article highlights key aspects of CNV detection and interpretation used during the course of clinical care in the prenatal and neonatal periods. Early diagnosis and accurate interpretation are important for targeted clinical management. PMID:26042902

  11. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  12. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  13. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  14. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  15. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner... returned to the generator....

  16. Copy Number Studies in Noisy Samples

    PubMed Central

    Ginsbach, Philip; Chen, Bowang; Jiang, Yanxiang; Engelter, Stefan T.; Grond-Ginsbach, Caspar

    2013-01-01

    System noise was analyzed in 77 Affymetrix 6.0 samples from a previous clinical study of copy number variation (CNV). Twenty-three samples were classified as eligible for CNV detection, 29 samples as ineligible and 25 were classified as being of intermediate quality. New software (“noise-free-cnv”) was developed to visualize the data and reduce system noise. Fresh DNA preparations were more likely to yield eligible samples (p < 0.001). Eligible samples had higher rates of successfully genotyped SNPs (p < 0.001) and lower variance of signal intensities (p < 0.001), yielded fewer CNV findings after Birdview analysis (p < 0.001), and showed a tendency to yield fewer PennCNV calls (p = 0.053). The noise-free-cnv software visualized trend patterns of noise in the signal intensities across the ordered SNPs, including a wave pattern of noise, being co-linear with the banding pattern of metaphase chromosomes, as well as system deviations of individual probe sets (per-SNP noise). Wave noise and per-SNP noise occurred independently and could be separately removed from the samples. We recommend a two-step procedure of CNV validation, including noise reduction and visual inspection of all CNV calls, prior to molecular validation of a selected number of putative CNVs.

  17. Copy Number Profiling of Brazilian Astrocytomas.

    PubMed

    Bidinotto, Lucas Tadeu; Torrieri, Raul; Mackay, Alan; Almeida, Gisele Caravina; Viana-Pereira, Marta; Cruvinel-Carloni, Adriana; Spina, Maria Luisa; Campanella, Nathalia Cristina; Pereira de Menezes, Weder; Clara, Carlos Afonso; Becker, Aline Paixão; Jones, Chris; Reis, Rui Manuel

    2016-01-01

    Copy number alterations (CNA) are one of the driving mechanisms of glioma tumorigenesis, and are currently used as important biomarkers in the routine setting. Therefore, we performed CNA profiling of 65 astrocytomas of distinct malignant grades (WHO grade I-IV) of Brazilian origin, using array-CGH and microsatellite instability analysis (MSI), and investigated their correlation with TERT and IDH1 mutational status and clinico-pathological features. Furthermore, in silico analysis using the Oncomine database was performed to validate our findings and extend the findings to gene expression level. We found that the number of genomic alterations increases in accordance with glioma grade. In glioblastomas (GBM), the most common alterations were gene amplifications (PDGFRA, KIT, KDR, EGFR, and MET) and deletions (CDKN2A and PTEN) Log-rank analysis correlated EGFR amplification and/or chr7 gain with better survival of the patients. MSI was observed in 11% of GBMs. A total of 69% of GBMs presented TERT mutation, whereas IDH1 mutation was most frequent in diffuse (85.7%) and anaplastic (100%) astrocytomas. The combination of 1p19q deletion and TERT and IDH1 mutational status separated tumor groups that showed distinct age of diagnosis and outcome. In silico validation pointed to less explored genes that may be worthy of future investigation, such as CDK2, DMRTA1, and MTAP Herein, using an extensive integrated analysis, we indicated potentially important genes, not extensively studied in gliomas, that could be further explored to assess their biological and clinical impact in astrocytomas. PMID:27172220

  18. Copy Number Variation in the Horse Genome

    PubMed Central

    Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J.; Fang, Erica; Juras, Rytis; Cothran, E. Gus; McDonell, Sue; Kenney, Daniel G.; Lear, Teri L.; Adelson, David L.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2014-01-01

    We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. PMID:25340504

  19. Copy Number Profiling of Brazilian Astrocytomas

    PubMed Central

    Bidinotto, Lucas Tadeu; Torrieri, Raul; Mackay, Alan; Almeida, Gisele Caravina; Viana-Pereira, Marta; Cruvinel-Carloni, Adriana; Spina, Maria Luisa; Campanella, Nathalia Cristina; Pereira de Menezes, Weder; Clara, Carlos Afonso; Becker, Aline Paixão; Jones, Chris; Reis, Rui Manuel

    2016-01-01

    Copy number alterations (CNA) are one of the driving mechanisms of glioma tumorigenesis, and are currently used as important biomarkers in the routine setting. Therefore, we performed CNA profiling of 65 astrocytomas of distinct malignant grades (WHO grade I–IV) of Brazilian origin, using array-CGH and microsatellite instability analysis (MSI), and investigated their correlation with TERT and IDH1 mutational status and clinico-pathological features. Furthermore, in silico analysis using the Oncomine database was performed to validate our findings and extend the findings to gene expression level. We found that the number of genomic alterations increases in accordance with glioma grade. In glioblastomas (GBM), the most common alterations were gene amplifications (PDGFRA, KIT, KDR, EGFR, and MET) and deletions (CDKN2A and PTEN). Log-rank analysis correlated EGFR amplification and/or chr7 gain with better survival of the patients. MSI was observed in 11% of GBMs. A total of 69% of GBMs presented TERT mutation, whereas IDH1 mutation was most frequent in diffuse (85.7%) and anaplastic (100%) astrocytomas. The combination of 1p19q deletion and TERT and IDH1 mutational status separated tumor groups that showed distinct age of diagnosis and outcome. In silico validation pointed to less explored genes that may be worthy of future investigation, such as CDK2, DMRTA1, and MTAP. Herein, using an extensive integrated analysis, we indicated potentially important genes, not extensively studied in gliomas, that could be further explored to assess their biological and clinical impact in astrocytomas. PMID:27172220

  20. DNA copy number losses in human neoplasms.

    PubMed

    Knuutila, S; Aalto, Y; Autio, K; Björkqvist, A M; El-Rifai, W; Hemmer, S; Huhta, T; Kettunen, E; Kiuru-Kuhlefelt, S; Larramendy, M L; Lushnikova, T; Monni, O; Pere, H; Tapper, J; Tarkkanen, M; Varis, A; Wasenius, V M; Wolf, M; Zhu, Y

    1999-09-01

    This review summarizes reports of recurrent DNA sequence copy number losses in human neoplasms detected by comparative genomic hybridization. Recurrent losses that affect each of the chromosome arms in 73 tumor types are tabulated from 169 reports. The tables are available online at http://www.amjpathol.org and http://www. helsinki.fi/ approximately lglvwww/CMG.html. The genes relevant to the lost regions are discussed for each of the chromosomes. The review is supplemented also by a list of known and putative tumor suppressor genes and DNA repair genes (see Table 1, online). Losses are found in all chromosome arms, but they seem to be relatively rare at 1q, 2p, 3q, 5p, 6p, 7p, 7q, 8q, 12p, and 20q. Losses and their minimal common overlapping areas that were present in a great proportion of the 73 tumor entities reported in Table 2 (see online) are (in descending order of frequency): 9p23-p24 (48%), 13q21 (47%), 6q16 (44%), 6q26-q27 (44%), 8p23 (37%), 18q22-q23 (37%), 17p12-p13 (34%), 1p36.1 (34%), 11q23 (33%), 1p22 (32%), 4q32-qter (31%), 14q22-q23 (25%), 10q23 (25%), 10q25-qter (25%),15q21 (23%), 16q22 (23%), 5q21 (23%), 3p12-p14 (22%), 22q12 (22%), Xp21 (21%), Xq21 (21%), and 10p12 (20%). The frequency of losses at chromosomes 7 and 20 was less than 10% in all tumors. The chromosomal regions in which the most frequent losses are found implicate locations of essential tumor suppressor genes and DNA repair genes that may be involved in the pathogenesis of several tumor types. PMID:10487825

  1. Copy Number Variation in Thai Population

    PubMed Central

    Suktitipat, Bhoom; Naktang, Chaiwat; Mhuantong, Wuttichai; Tularak, Thitima; Artiwet, Paramita; Pasomsap, Ekawat; Jongjaroenprasert, Wallaya; Fuchareon, Suthat; Mahasirimongkol, Surakameth; Chantratita, Wasan; Yimwadsana, Boonsit; Charoensawan, Varodom; Jinawath, Natini

    2014-01-01

    Copy number variation (CNV) is a major genetic polymorphism contributing to genetic diversity and human evolution. Clinical application of CNVs for diagnostic purposes largely depends on sufficient population CNV data for accurate interpretation. CNVs from general population in currently available databases help classify CNVs of uncertain clinical significance, and benign CNVs. Earlier studies of CNV distribution in several populations worldwide showed that a significant fraction of CNVs are population specific. In this study, we characterized and analyzed CNVs in 3,017 unrelated Thai individuals genotyped with the Illumina Human610, Illumina HumanOmniexpress, or Illumina HapMap550v3 platform. We employed hidden Markov model and circular binary segmentation methods to identify CNVs, extracted 23,458 CNVs consistently identified by both algorithms, and cataloged these high confident CNVs into our publicly available Thai CNV database. Analysis of CNVs in the Thai population identified a median of eight autosomal CNVs per individual. Most CNVs (96.73%) did not overlap with any known chromosomal imbalance syndromes documented in the DECIPHER database. When compared with CNVs in the 11 HapMap3 populations, CNVs found in the Thai population shared several characteristics with CNVs characterized in HapMap3. Common CNVs in Thais had similar frequencies to those in the HapMap3 populations, and all high frequency CNVs (>20%) found in Thai individuals could also be identified in HapMap3. The majorities of CNVs discovered in the Thai population, however, were of low frequency, or uniquely identified in Thais. When performing hierarchical clustering using CNV frequencies, the CNV data were clustered into Africans, Europeans, and Asians, in line with the clustering performed with single nucleotide polymorphism (SNP) data. As CNV data are specific to origin of population, our population-specific reference database will serve as a valuable addition to the existing resources for

  2. Copy number variation in Thai population.

    PubMed

    Suktitipat, Bhoom; Naktang, Chaiwat; Mhuantong, Wuttichai; Tularak, Thitima; Artiwet, Paramita; Pasomsap, Ekawat; Jongjaroenprasert, Wallaya; Fuchareon, Suthat; Mahasirimongkol, Surakameth; Chantratita, Wasan; Yimwadsana, Boonsit; Charoensawan, Varodom; Jinawath, Natini

    2014-01-01

    Copy number variation (CNV) is a major genetic polymorphism contributing to genetic diversity and human evolution. Clinical application of CNVs for diagnostic purposes largely depends on sufficient population CNV data for accurate interpretation. CNVs from general population in currently available databases help classify CNVs of uncertain clinical significance, and benign CNVs. Earlier studies of CNV distribution in several populations worldwide showed that a significant fraction of CNVs are population specific. In this study, we characterized and analyzed CNVs in 3,017 unrelated Thai individuals genotyped with the Illumina Human610, Illumina HumanOmniexpress, or Illumina HapMap550v3 platform. We employed hidden Markov model and circular binary segmentation methods to identify CNVs, extracted 23,458 CNVs consistently identified by both algorithms, and cataloged these high confident CNVs into our publicly available Thai CNV database. Analysis of CNVs in the Thai population identified a median of eight autosomal CNVs per individual. Most CNVs (96.73%) did not overlap with any known chromosomal imbalance syndromes documented in the DECIPHER database. When compared with CNVs in the 11 HapMap3 populations, CNVs found in the Thai population shared several characteristics with CNVs characterized in HapMap3. Common CNVs in Thais had similar frequencies to those in the HapMap3 populations, and all high frequency CNVs (>20%) found in Thai individuals could also be identified in HapMap3. The majorities of CNVs discovered in the Thai population, however, were of low frequency, or uniquely identified in Thais. When performing hierarchical clustering using CNV frequencies, the CNV data were clustered into Africans, Europeans, and Asians, in line with the clustering performed with single nucleotide polymorphism (SNP) data. As CNV data are specific to origin of population, our population-specific reference database will serve as a valuable addition to the existing resources for

  3. Sociobiological Control of Plasmid Copy Number in Bacteria

    PubMed Central

    Watve, Mukta M.; Dahanukar, Neelesh; Watve, Milind G.

    2010-01-01

    All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up “cheater” mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers. PMID:20195362

  4. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Number of copies. 33.8 Section 33.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... Number of copies. The applicant must submit the application or petition to the Secretary of...

  5. 22 CFR 1429.25 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Number of copies. 1429.25 Section 1429.25 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... AND GENERAL REQUIREMENTS General Requirements § 1429.25 Number of copies. Unless otherwise provided...

  6. 12 CFR 269b.730 - Number of copies; form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Number of copies; form. 269b.730 Section 269b.730 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) CHARGES OF UNFAIR LABOR PRACTICES General Rules § 269b.730 Number of copies;...

  7. 22 CFR 1429.25 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Number of copies. 1429.25 Section 1429.25 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... AND GENERAL REQUIREMENTS General Requirements § 1429.25 Number of copies. Unless otherwise provided...

  8. No association between mitochondrial DNA copy number and colorectal adenomas.

    PubMed

    Thyagarajan, Bharat; Guan, Weihua; Fedirko, Veronika; Barcelo, Helene; Tu, Huakang; Gross, Myron; Goodman, Michael; Bostick, Roberd M

    2016-08-01

    Despite previously reported associations between peripheral blood mtDNA copy number and colorectal cancer, it remains unclear whether altered mtDNA copy number in peripheral blood is a risk factor for colorectal cancer or a biomarker for undiagnosed colorectal cancer. Though colorectal adenomas are well-recognized precursor lesions to colorectal cancer, no study has evaluated an association between mtDNA copy number and colorectal adenoma risk. Hence, we investigated an association between peripheral blood mtDNA copy number and incident, sporadic colorectal adenoma in 412 colorectal adenoma cases and 526 cancer-free controls pooled from three colonoscopy-based case-control studies that used identical methods for case ascertainment, risk factor determination, and biospecimen collection. We also evaluated associations between relative mtDNA copy number and markers of oxidative stress, including circulating F2 -isoprostanes, carotenoids, and fluorescent oxidation products. We measured mtDNA copy number using a quantitative real time polymerase chain reaction (PCR). We used unconditional logistic regression to analyze the association between mtDNA copy number and colorectal adenoma risk after multivariable adjustment. We found no association between logarithmically transformed relative mtDNA copy number, analyzed as a continuous variable, and colorectal adenoma risk (odds ratio = 1.02, 95%CI: 0.82-1.27; P = 0.86). There were no statistically significant associations between relative mtDNA copy number and other markers of oxidative stress. Our findings, taken together with those from previous studies, suggest that relative mtDNA copy number in peripheral blood may more likely be a marker of early colorectal cancer than of risk for the disease or of in vivo oxidative stress. © 2015 Wiley Periodicals, Inc. PMID:26258394

  9. Different Facets of Copy Number Changes: Permanent, Transient, and Adaptive

    PubMed Central

    Mishra, Sweta

    2016-01-01

    Chromosomal copy number changes are frequently associated with harmful consequences and are thought of as an underlying mechanism for the development of diseases. However, changes in copy number are observed during development and occur during normal biological processes. In this review, we highlight the causes and consequences of copy number changes in normal physiologic processes as well as cover their associations with cancer and acquired drug resistance. We discuss the permanent and transient nature of copy number gains and relate these observations to a new mechanism driving transient site-specific copy gains (TSSGs). Finally, we discuss implications of TSSGs in generating intratumoral heterogeneity and tumor evolution and how TSSGs can influence the therapeutic response in cancer. PMID:26755558

  10. Mitochondrial DNA Copy Number in Peripheral Blood and Melanoma Risk

    PubMed Central

    Shen, Jie; Gopalakrishnan, Vancheswaran; Lee, Jeffrey E.; Fang, Shenying; Zhao, Hua

    2015-01-01

    Mitochondrial DNA (mtDNA) copy number in peripheral blood has been suggested as risk modifier in various types of cancer. However, its influence on melanoma risk is unclear. We evaluated the association between mtDNA copy number in peripheral blood and melanoma risk in 500 melanoma cases and 500 healthy controls from an ongoing melanoma study. The mtDNA copy number was measured using real-time polymerase chain reaction. Overall, mean mtDNA copy number was significantly higher in cases than in controls (1.15 vs 0.99, P<0.001). Increased mtDNA copy number was associated with a 1.45-fold increased risk of melanoma (95% confidence interval: 1.12-1.97). Significant joint effects between mtDNA copy number and variables related to pigmentation and history of sunlight exposure were observed. This study supports an association between increased mtDNA copy number and melanoma risk that is independent on the known melanoma risk factors (pigmentation and history of sunlight exposure). PMID:26110424

  11. 47 CFR 3.25 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES Application Procedures § 3.25 Number of copies. One original and one copy of FCC Form 44, “Application For Certification As An Accounting... application forms will be considered. Applications should be mailed at least 90 days prior to...

  12. Plasmid Copy Number Determination by Quantitative Polymerase Chain Reaction.

    PubMed

    Anindyajati; Artarini, A Anita; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Recombinant therapeutic proteins are biopharmaceutical products that develop rapidly for years. Recombinant protein production in certain hosts requires vector expression harboring the gene encoding the corresponding protein. Escherichia coli is the prokaryote organism mostly used in recombinant protein production, commonly using a plasmid as the expression vector. Recombinant protein production is affected by plasmid copy number harboring the encoded gene, hence the determination of plasmid copy number also plays an important role in establishing a recombinant protein production system. On the industrial scale, a low copy number of plasmids are more suitable due to their better stability. In the previous study we constructed pCAD, a plasmid derived from the low copy number pBR322 plasmid. This study was aimed to confirm pCAD's copy number by quantitative polymerase chain reaction (qPCR). Plasmid copy number was determined by comparing the quantification signal from the plasmid to those from the chromosome. Copy number was then calculated by using a known copy number plasmid as a standard. Two pairs of primers, called tdk and ori, were designed for targeting a single gene tdk in the chromosome and a conserved domain in the plasmid's ori, respectively. Primer quality was analyzed in silico using PrimerSelect DNASTAR and PraTo software prior to in vitro evaluation on primer specificity and efficiency as well as optimization of qPCR conditions. Plasmid copy number determination was conducted on E. coli lysates harboring each plasmid, with the number of cells ranging from 10(2)-10(5) cells/μL. Cells were lysed by incubation at 95ºC for 10 minutes, followed by immediate freezing at -4°C. pBR322 plasmid with the copy number of ~19 copies/cell was used as the standard, while pJExpress414-sod plasmid possessing the high copy number pUC ori was also determined to test the method being used. In silico analysis based on primer-primer and primer-template interactions showed

  13. Diversity of human copy number variation and multicopy genes.

    PubMed

    Sudmant, Peter H; Kitzman, Jacob O; Antonacci, Francesca; Alkan, Can; Malig, Maika; Tsalenko, Anya; Sampas, Nick; Bruhn, Laurakay; Shendure, Jay; Eichler, Evan E

    2010-10-29

    Copy number variants affect both disease and normal phenotypic variation, but those lying within heavily duplicated, highly identical sequence have been difficult to assay. By analyzing short-read mapping depth for 159 human genomes, we demonstrated accurate estimation of absolute copy number for duplications as small as 1.9 kilobase pairs, ranging from 0 to 48 copies. We identified 4.1 million "singly unique nucleotide" positions informative in distinguishing specific copies and used them to genotype the copy and content of specific paralogs within highly duplicated gene families. These data identify human-specific expansions in genes associated with brain development, reveal extensive population genetic diversity, and detect signatures consistent with gene conversion in the human species. Our approach makes ~1000 genes accessible to genetic studies of disease association. PMID:21030649

  14. Hotspots for copy number variation in chimpanzees and humans

    PubMed Central

    Perry, George H.; Tchinda, Joelle; McGrath, Sean D.; Zhang, Junjun; Picker, Simon R.; Cáceres, Angela M.; Iafrate, A. John; Tyler-Smith, Chris; Scherer, Stephen W.; Eichler, Evan E.; Stone, Anne C.; Lee, Charles

    2006-01-01

    Copy number variation is surprisingly common among humans and can be involved in phenotypic diversity and variable susceptibility to complex diseases, but little is known of the extent of copy number variation in nonhuman primates. We have used two array-based comparative genomic hybridization platforms to identify a total of 355 copy number variants (CNVs) in the genomes of 20 wild-born chimpanzees (Pan troglodytes) and have compared the identified chimpanzee CNVs to known human CNVs from previous studies. Many CNVs were observed in the corresponding regions in both chimpanzees and humans; especially those CNVs of higher frequency. Strikingly, these loci are enriched 20-fold for ancestral segmental duplications, which may facilitate CNV formation through nonallelic homologous recombination mechanisms. Therefore, some of these regions may be unstable “hotspots” for the genesis of copy number variation, with recurrent duplications and deletions occurring across and within species. PMID:16702545

  15. DNA sequence copy number analysis by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Pinkel, D.; Kallioniemi, A.; Kallioniemi, O.; Waldman, F.; Sudar, D.; Gray, I. ); Rutovitz, D.; Piper, I. )

    1993-01-01

    Comparative Genomic Hybridization (CGH) uses the kinetics of in situ hybridization to compare the copy numbers of different DNA sequences within the same genome and the copy numbers of the same sequences among different genomes. In a typical application genomic DNA from a tumor and from normal cells are differentially labeled and simultaneously hybridized to normal metaphase chromosomes, and detected with different fluorochromes. Properly registered images of each fluorochrome are obtained using a microscope equipped with multi-band filters and a CCD camera. Digital image analysis permits measurement of intensity ratio profiles along each of the target chromosomes. Studies of cells with known aberrations indicate that the intensity ratio at each position is proportional to the ratio of the copy numbers of the sequences that bind there in the tumor and normal genomes. Analytical challenges posed by the need to efficiently obtain copy number karyotypes are discussed.

  16. Copy number variation and evolution in humans and chimpanzees

    PubMed Central

    Perry, George H.; Yang, Fengtang; Marques-Bonet, Tomas; Murphy, Carly; Fitzgerald, Tomas; Lee, Arthur S.; Hyland, Courtney; Stone, Anne C.; Hurles, Matthew E.; Tyler-Smith, Chris; Eichler, Evan E.; Carter, Nigel P.; Lee, Charles; Redon, Richard

    2008-01-01

    Copy number variants (CNVs) underlie many aspects of human phenotypic diversity and provide the raw material for gene duplication and gene family expansion. However, our understanding of their evolutionary significance remains limited. We performed comparative genomic hybridization on a single human microarray platform to identify CNVs among the genomes of 30 humans and 30 chimpanzees as well as fixed copy number differences between species. We found that human and chimpanzee CNVs occur in orthologous genomic regions far more often than expected by chance and are strongly associated with the presence of highly homologous intrachromosomal segmental duplications. By adapting population genetic analyses for use with copy number data, we identified functional categories of genes that have likely evolved under purifying or positive selection for copy number changes. In particular, duplications and deletions of genes with inflammatory response and cell proliferation functions may have been fixed by positive selection and involved in the adaptive phenotypic differentiation of humans and chimpanzees. PMID:18775914

  17. CONSERTING: integrating copy number analysis with structural variation detection

    PubMed Central

    Chen, Xiang; Gupta, Pankaj; Wang, Jianmin; Nakitandwe, Joy; Roberts, Kathryn; Dalton, James D.; Parker, Matthew; Patel, Samir; Holmfeldt, Linda; Payne, Debbie; Easton, John; Ma, Jing; Rusch, Michael; Wu, Gang; Patel, Aman; J. Baker, Suzanne; Dyer, Michael A.; Shurtleff, Sheila; Espy, Stephen; Pounds, Stanley; Downing, James R.; Ellison, David W.; Mullighan, Charles G.; Zhang, Jinghui

    2015-01-01

    We developed Copy Number Segmentation by Regression Tree in Next Generation Sequencing (CONSERTING), a novel algorithm for detecting somatic copy number alteration (CNA) using whole-genome sequencing (WGS) data. CONSERTING performs iterative analysis of segmentation by read depth change and localized structural variation detection, achieving high accuracy and sensitivity. Analysis of 43 pediatric and adult cancer genomes revealed novel oncogenic CNAs, complex re-arrangements and subclonal CNAs missed by alternative approaches. PMID:25938371

  18. A tremendous expansion of copy number in crossbred bulls ( × ).

    PubMed

    Zhang, G W; Guan, J Q; Luo, Z G; Zhang, W X; Wang, L; Luo, X L; Zuo, F Y

    2016-04-01

    Crossbreeding between cattle () and yak () exhibits significant hybrid advantages in milk yield and meat production. By contrast, cattle-yak F hybrid bulls are sterile. Copy number variations (CNV) of multicopy gene families in male-specific regions of the mammalian Y chromosome (MSY) affect human and animal fertility. The present study investigated CNV of (), (), (), and () in 5 yak breed bulls ( = 63), cattle-yak F ( = 22) and F ( = 2) hybrid bulls, and Chinese Yellow (CY) cattle bulls ( = 10) by quantitative real-time PCR. showed restricted amplification in yak bulls in that the average geometric mean copy number (CN) was estimated to be 4 copies. The most compelling finding is that there is a tremendous expansion of CN in F hybrids (385 copies; 95% confidence interval [CI] = 351-421) and F hybrids (356 copies) compared with the male parent breed CY cattle (142 copies; 95% CI = 95-211). Copy numbers of and were also extensively expanded on the Y chromosome in yak and CY cattle bulls. The geometric mean CN of and were estimated to be 123 (95% CI = 114-132) and 250 copies (95% CI = 233-268) in yak bulls and 71 (95% CI = 61-82) and 133 (95% CI = 107-164) copies in CY cattle, respectively. Yak and CY cattle have 2 copies of the gene on the Y chromosome. Similarly to gene, the F and F hybrid bulls have higher CN of , , and than CY cattle ( < 0.01). These results indicated that the MSY of yak and cattle-yak crossbred hybrids was fundamentally different from cattle MSY in the context of genomic organization. Based on the model of cattle-yak F and F hybrid bull sterility, the CNV of may serve as a potential risk factor for crossbred bull ( × ) infertility. To our knowledge, this is the first study to examine differences in multicopy genes in MSY between yak and cattle-yak bulls. PMID:27135999

  19. SHC2 gene copy number in multiple system atrophy (MSA)

    PubMed Central

    Ferguson, Marcus C.; Garland, Emily M.; Hedges, Lora; Womack-Nunley, Bethany; Hamid, Rizwan; Phillips, John A.; Shibao, Cyndya A.; Raj, Satish R.; Biaggioni, Italo; Robertson, David

    2013-01-01

    Purpose Multiple system atrophy (MSA) is a sporadic, late onset, rapidly-progressing neurodegenerative disorder, which is characterized by autonomic failure, together with parkinsonian, cerebellar, and pyramidal motor symptoms. The pathologic hallmark is the glial cytoplasmic inclusion with alpha-synuclein aggregates. MSA is thus an alpha synucleinopathy. Recently, Sasaki et al. reported that heterozygosity for copy number loss of Src homology 2 domain containing-transforming protein 2 (SHC2) genes (heterozygous SHC2 gene deletions) occurred in DNAs from many Japanese individuals with MSA. Because background copy number variation (CNV) can be distinct in different human populations, we assessed SHC2 allele copy number in DNAs from a US cohort of individuals with MSA, to determine the contribution of SHC2 gene copy number variation in an American cohort followed at a US referral center for MSA. Our cohort included 105 carefully phenotyped individuals with MSA. Methods We studied 105 well characterized patients with MSA and 5 control subjects with reduced SHC2 gene copy number. We used two TaqMan Gene Copy Number Assays, to determine the copy number of two segments of the SHC2 gene that are separated by 27 Kb. Results Assay results of DNAs from all of our 105 subjects with MSA showed two copies of both segments of their SHC2 genes. Conclusion Our results indicate that SHC2 gene deletions underlie few, if any, cases of well characterized MSA in the US population. This is in contrast to the Japanese experience reported by Sasaki et al., likely reflecting heterogeneity of the disease in different genetic backgrounds. PMID:24170347

  20. The Coalescent with Selection on Copy Number Variants

    PubMed Central

    Teshima, Kosuke M.; Innan, Hideki

    2012-01-01

    We develop a coalescent-based simulation tool to generate patterns of single nucleotide polymorphisms (SNPs) in a wide region encompassing both the original and duplicated genes. Selection on the new duplicated copy and interlocus gene conversion between the two copies are incorporated. This simulation enables us to explore how selection on duplicated copies affects the pattern of SNPs. The fixation of an advantageous duplicated copy causes a strong reduction in polymorphism not only in the duplicated copy but also in its flanking regions, which is a typical signature of a selective sweep by positive selection. After fixation, polymorphism gradually increases by accumulating neutral mutations and eventually reaches the equilibrium value if there is no gene conversion. When gene conversion is active, the number of SNPs in the duplicated copy quickly increases by transferring SNPs from the original copy; therefore, the time when we can recognize the signature of selection is decreased. Because this effect of gene conversion is restricted only to the duplicated region, more power to detect selection is expected if a flanking region to the duplicated copy is used. PMID:22174068

  1. Reconstructing DNA copy number by joint segmentation of multiple sequences

    PubMed Central

    2012-01-01

    Background Variations in DNA copy number carry information on the modalities of genome evolution and mis-regulation of DNA replication in cancer cells. Their study can help localize tumor suppressor genes, distinguish different populations of cancerous cells, and identify genomic variations responsible for disease phenotypes. A number of different high throughput technologies can be used to identify copy number variable sites, and the literature documents multiple effective algorithms. We focus here on the specific problem of detecting regions where variation in copy number is relatively common in the sample at hand. This problem encompasses the cases of copy number polymorphisms, related samples, technical replicates, and cancerous sub-populations from the same individual. Results We present a segmentation method named generalized fused lasso (GFL) to reconstruct copy number variant regions. GFL is based on penalized estimation and is capable of processing multiple signals jointly. Our approach is computationally very attractive and leads to sensitivity and specificity levels comparable to those of state-of-the-art specialized methodologies. We illustrate its applicability with simulated and real data sets. Conclusions The flexibility of our framework makes it applicable to data obtained with a wide range of technology. Its versatility and speed make GFL particularly useful in the initial screening stages of large data sets. PMID:22897923

  2. FSHD: copy number variations on the theme of muscular dystrophy

    PubMed Central

    Cabianca, Daphne Selvaggia

    2010-01-01

    In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD. PMID:21149563

  3. Microarray analysis of copy number variation in single cells.

    PubMed

    Konings, Peter; Vanneste, Evelyne; Jackmaert, Sigrun; Ampe, Michèle; Verbeke, Geert; Moreau, Yves; Vermeesch, Joris Robert; Voet, Thierry

    2012-02-01

    We present a protocol for reliably detecting DNA copy number aberrations in a single human cell. Multiple displacement-amplified DNAs of a cell are hybridized to a 3,000-bacterial artificial chromosome (BAC) array and to an Affymetrix 250,000 (250K)-SNP array. Subsequent copy number calling is based on the integration of BAC probe-specific copy number probabilities that are estimated by comparing probe intensities with a single-cell whole-genome amplification (WGA) reference model for diploid chromosomes, as well as SNP copy number and loss-of-heterozygosity states estimated by hidden Markov models (HMM). All methods for detecting DNA copy number aberrations in single human cells have difficulty in confidently discriminating WGA artifacts from true genetic variants. Furthermore, some methods lack thorough validation for segmental DNA imbalance detection. Our protocol minimizes false-positive variant calling and enables uniparental isodisomy detection in single cells. Additionally, it provides quality assessment, allowing the exclusion of uninterpretable single-cell WGA samples. The protocol takes 5-7 d. PMID:22262009

  4. A portrait of copy-number polymorphism in Drosophila melanogaster.

    PubMed

    Dopman, Erik B; Hartl, Daniel L

    2007-12-11

    Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation. PMID:18056801

  5. 14 CFR 221.92 - Number of copies required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Number of copies required. 221.92 Section 221.92 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Filing Tariff Publications With Department § 221.92 Number of...

  6. The role of mutation in genetic copy number variation

    NASA Astrophysics Data System (ADS)

    Clark, B. K.; Weidner, Jacob; Wabick, Kevin

    2010-03-01

    Until very recently, the standard model of DNA included two genes for each trait. This dated model has given way to a model that includes copies of some genes well in excess of the canonical two. Copy number variations in the human genome play critical roles in causing or aggravating a number of syndromes and diseases while providing increased resistance to others. We explore the role of mutation, crossover, inversion, and reproduction in determining copy number variations in a numerical simulation of a population. The numerical model consists of a population of individuals, where each individual is represented by a single strand of DNA with the same number of genes. Each gene is initially assigned to one of two traits. Fitness of the individual is determined by the two most fit genes for trait one, and trait two genetic material is treated as a reservoir of junk DNA. After a sufficient number of generations, during which the genetic distribution is allowed to reach a steady-state, the mean number of genes per trait and the copy number variation are recorded. Here, we focus on the role of mutation and compare simulation results to theory.

  7. Plasmid copy number underlies adaptive mutability in bacteria.

    PubMed

    Sano, Emiko; Maisnier-Patin, Sophie; Aboubechara, John Paul; Quiñones-Soto, Semarhy; Roth, John R

    2014-11-01

    The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F'lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F'lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F'lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F'lac copies divide very little under selection but have enough energy to replicate their F'lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced. PMID:25173846

  8. Analysis of copy number variations reveals differences among cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  9. Mapping cattle copy number variations in water buffalo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variation (CNV) is abundant in livestock, differing from SNPs in extent, origin and functional impact. Despite progress in CNV discovery, the nucleotide resolution architecture of most CNVs remains elusive. Using modified forms of open-source variant detection software packages, we have ...

  10. Analysis of copy number variation in the bovine genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We initiated a systematic study of the copy number variation (CNV) within the Bovine HapMap cattle population using array comparative genomic hybridization (array CGH). Oligonucleotide CGH arrays were designed and fabricated to provide a genome-wide coverage with an average interval of 6 kb using t...

  11. Analysis of copy number variations among cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  12. Bovine copy number variation and its implication in animal health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently it has become apparent that previously unappreciated genomic structural variation, including copy number variations (CNV), contributes significantly to individual health and disease in humans and rodents. As a complement to the bovine HapMap project, we initiated a systematic study of the C...

  13. Genomic Copy Number Variation in Disorders of Cognitive Development

    ERIC Educational Resources Information Center

    Morrow, Eric M.

    2010-01-01

    Objective: To highlight recent discoveries in the area of genomic copy number variation in neuropsychiatric disorders including intellectual disability, autism, and schizophrenia. To emphasize new principles emerging from this area, involving the genetic architecture of disease, pathophysiology, and diagnosis. Method: Review of studies published…

  14. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Number of copies. 33.8 Section 33.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 §...

  15. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Number of copies. 33.8 Section 33.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 §...

  16. Genomic and evolutionary characteristics of cattle copy number variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  17. Endogenous RNA interference is driven by copy number

    PubMed Central

    Cruz, Cristina; Houseley, Jonathan

    2014-01-01

    A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI: http://dx.doi.org/10.7554/eLife.01581.001 PMID:24520161

  18. Detecting copy number variation with mated short reads

    PubMed Central

    Medvedev, Paul; Fiume, Marc; Dzamba, Misko; Smith, Tim; Brudno, Michael

    2010-01-01

    The development of high-throughput sequencing (HTS) technologies has opened the door to novel methods for detecting copy number variants (CNVs) in the human genome. While in the past CNVs have been detected based on array CGH data, recent studies have shown that depth-of-coverage information from HTS technologies can also be used for the reliable identification of large copy-variable regions. Such methods, however, are hindered by sequencing biases that lead certain regions of the genome to be over- or undersampled, lowering their resolution and ability to accurately identify the exact breakpoints of the variants. In this work, we develop a method for CNV detection that supplements the depth-of-coverage with paired-end mapping information, where mate pairs mapping discordantly to the reference serve to indicate the presence of variation. Our algorithm, called CNVer, combines this information within a unified computational framework called the donor graph, allowing us to better mitigate the sequencing biases that cause uneven local coverage and accurately predict CNVs. We use CNVer to detect 4879 CNVs in the recently described genome of a Yoruban individual. Most of the calls (77%) coincide with previously known variants within the Database of Genomic Variants, while 81% of deletion copy number variants previously known for this individual coincide with one of our loss calls. Furthermore, we demonstrate that CNVer can reconstruct the absolute copy counts of segments of the donor genome and evaluate the feasibility of using CNVer with low coverage datasets. PMID:20805290

  19. Analysis of copy number variation using quantitative interspecies competitive PCR.

    PubMed

    Williams, Nigel M; Williams, Hywel; Majounie, Elisa; Norton, Nadine; Glaser, Beate; Morris, Huw R; Owen, Michael J; O'Donovan, Michael C

    2008-10-01

    Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls. PMID:18697816

  20. Detection of copy number variation by SNP-allelotyping.

    PubMed

    Parker, Brett; Alexander, Ryan; Wu, Xingyao; Feely, Shawna; Shy, Michael; Schnetz-Boutaud, Nathalie; Li, Jun

    2015-03-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by an abnormal copy number variation (CNV) with a trisomy of chromosome 17p12. The increase of the DNA-segment copy number is expected to alter the allele frequency of single nucleotide polymorphism (SNP) within the duplicated region. We tested whether SNP allele frequency determined by a Sequenom MassArray can be used to detect the CMT1A mutation. Our results revealed distinct patterns of SNP allele frequency distribution, which reliably differentiated CMT1A patients from controls. This finding suggests that this technique may serve as an alternative approach to identifying CNV in certain diseases, including CMT1A. PMID:24830919

  1. Genome Copy Numbers and Gene Conversion in Methanogenic Archaea▿

    PubMed Central

    Hildenbrand, Catherina; Stock, Tilmann; Lange, Christian; Rother, Michael; Soppa, Jörg

    2011-01-01

    Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera—Methanosarcina acetivorans and Methanococcus maripaludis—were investigated. M. acetivorans was found to be polyploid during fast growth (tD = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called “Muller's ratchet”). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection. PMID:21097629

  2. Mitochondrial DNA copy number variation across human cancers

    PubMed Central

    Reznik, Ed; Miller, Martin L; Şenbabaoğlu, Yasin; Riaz, Nadeem; Sarungbam, Judy; Tickoo, Satish K; Al-Ahmadie, Hikmat A; Lee, William; Seshan, Venkatraman E; Hakimi, A Ari; Sander, Chris

    2016-01-01

    Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities. DOI: http://dx.doi.org/10.7554/eLife.10769.001 PMID:26901439

  3. Mitochondrial DNA copy number and replication in reprogramming and differentiation.

    PubMed

    St John, Justin C

    2016-04-01

    Until recently, it was thought that the role of the mitochondrial genome was confined to encoding key proteins that generate ATP through the process of oxidative phosphorylation in the electron transfer chain. However, with increasing new evidence, it is apparent that the mitochondrial genome has a major role to play in a number of diseases and phenotypes. For example, mitochondrial variants and copy number have been implicated in the processes of fertilisation outcome and development and the onset of tumorigenesis. On the other hand, mitochondrial DNA (mtDNA) haplotypes have been implicated in a variety of diseases and most likely account for the adaptation that our ancestors achieved in order that they were fit for their environments. The mechanisms, which enable the mitochondrial genome to either protect or promote the disease phenotype, require further elucidation. However, there appears to be significant 'crosstalk' between the chromosomal and mitochondrial genomes that enable this to take place. One such mechanism is the regulation of DNA methylation by mitochondrial DNA, which is often perturbed in reprogrammed cells that have undergone dedifferentiation and affects mitochondrial DNA copy number. Furthermore, it appears that the mitochondrial genome interacts with the chromosomal genome to regulate the transcription of key genes at certain stages during development. Additionally, the mitochondrial genome can accumulate a series of mtDNA variants, which can lead to diseases such as cancer. It is likely that a combination of certain mitochondrial variants and aberrant patterns of mtDNA copy number could indeed account for many diseases that have previously been unaccounted for. This review focuses on the role that the mitochondrial genome plays especially during early stages of development and in cancer. PMID:26827792

  4. Mitochondrial DNA Copy Number in Spermatozoa of Fertile Stallions.

    PubMed

    Orsztynowicz, M; Pawlak, P; Podstawski, Z; Nizanski, W; Partyka, A; Gotowiecka, M; Kosiniak-Kamysz, K; Lechniak, D

    2016-06-01

    Predicting male fertility on non-invasive sperm traits is of big importance to human and animal reproduction strategies. Combining the wide range of parameters monitored by computer-assisted sperm analysis (CASA) with some molecular traits (e.g. mtDNA content) may help to identify markers of the male fertility. The aim of this study was to characterize variation in the mtDNA copy number in equine sperm and to investigate whether mtDNA content is correlated with quality traits of stallion spermatozoa and the age of the male. Ejaculates collected from 53 fertile stallions were divided into four age groups (3-5, 6-10, 11-14 and >15 years) and were subjected to a complex investigation including conventional analysis, CASA, flow cytometry and mtDNA content (real-time PCR). The mean (±SD) number of mtDNA copies equalled 14 ± 9 and varied from 3 to 64. Considering the great number of sperm parameters monitored in this study, only few of them were correlated with the mtDNA content: ejaculate volume (a positive correlation), the amplitude of lateral head displacement (ALH; a negative correlation) and the high mitochondrial activity index (a negative correlation). The stallion age was not correlated with the mtDNA copy number. This study provides the first set of data on mtDNA content in equine sperm and confirms phenomena previously described for humans and dog on associations between sperm mtDNA content and selected motility parameters monitored by the CASA. Basing our study on spermatozoa from fertile stallions could however limit the extent of detected associations. PMID:27037507

  5. Genome Architecture and Its Roles in Human Copy Number Variation

    PubMed Central

    Chen, Lu; Zhou, Weichen; Zhang, Ling

    2014-01-01

    Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability. PMID:25705150

  6. Genome-wide copy number analysis in pediatric glioblastoma multiforme.

    PubMed

    Giunti, Laura; Pantaleo, Marilena; Sardi, Iacopo; Provenzano, Aldesia; Magi, Alberto; Cardellicchio, Stefania; Castiglione, Francesca; Tattini, Lorenzo; Novara, Francesca; Buccoliero, Anna Maria; de Martino, Maurizio; Genitori, Lorenzo; Zuffardi, Orsetta; Giglio, Sabrina

    2014-01-01

    Glioblastoma (GBM) is a very aggressive and lethal brain tumor with poor prognosis. Despite new treatment strategies, patients' median survival is still less than 1 year in most cases. Few studies have focused exclusively on this disease in children and most of our understanding of the disease process and its clinical outcome has come from studies on malignant gliomas in childhood, combining children with the diagnosis of GBM with other pediatric patients harboring high grade malignant tumors other than GBM. In this study we investigated, using array-CGH platforms, children (median age of 9 years) affected by GBM (WHO-grade IV). We identified recurrent Copy Number Alterations demonstrating that different chromosome regions are involved, in various combinations. These observations suggest a condition of strong genomic instability. Since cancer is an acquired disease and inherited factors play a significant role, we compared for the first time the constitutional Copy Number Variations with the Copy Number Alterations found in tumor biopsy. We speculate that genes included in the recurrent 9p21.3 and 16p13.3 deletions and 1q32.1-q44 duplication play a crucial role for tumorigenesis and/or progression. In particular we suggest that the A2BP1 gene (16p13.3) is one possible culprit of the disease. Given the rarity of the disease, the poor quality and quantity of bioptic material and the scarcity of data in the literature, our findings may better elucidate the genomic background of these tumors. The recognition of candidate genes underlying this disease could then improve treatment strategies for this devastating tumor. PMID:24959384

  7. Genome-wide copy number analysis in pediatric glioblastoma multiforme

    PubMed Central

    Giunti, Laura; Pantaleo, Marilena; Sardi, Iacopo; Provenzano, Aldesia; Magi, Alberto; Cardellicchio, Stefania; Castiglione, Francesca; Tattini, Lorenzo; Novara, Francesca; Buccoliero, Anna Maria; de Martino, Maurizio; Genitori, Lorenzo; Zuffardi, Orsetta; Giglio, Sabrina

    2014-01-01

    Glioblastoma (GBM) is a very aggressive and lethal brain tumor with poor prognosis. Despite new treatment strategies, patients’ median survival is still less than 1 year in most cases. Few studies have focused exclusively on this disease in children and most of our understanding of the disease process and its clinical outcome has come from studies on malignant gliomas in childhood, combining children with the diagnosis of GBM with other pediatric patients harboring high grade malignant tumors other than GBM. In this study we investigated, using array-CGH platforms, children (median age of 9 years) affected by GBM (WHO-grade IV). We identified recurrent Copy Number Alterations demonstrating that different chromosome regions are involved, in various combinations. These observations suggest a condition of strong genomic instability. Since cancer is an acquired disease and inherited factors play a significant role, we compared for the first time the constitutional Copy Number Variations with the Copy Number Alterations found in tumor biopsy. We speculate that genes included in the recurrent 9p21.3 and 16p13.3 deletions and 1q32.1-q44 duplication play a crucial role for tumorigenesis and/or progression. In particular we suggest that the A2BP1 gene (16p13.3) is one possible culprit of the disease. Given the rarity of the disease, the poor quality and quantity of bioptic material and the scarcity of data in the literature, our findings may better elucidate the genomic background of these tumors. The recognition of candidate genes underlying this disease could then improve treatment strategies for this devastating tumor. PMID:24959384

  8. Copy number variation plays an important role in clinical epilepsy

    PubMed Central

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  9. Reconstructing Breakage Fusion Bridge Architectures Using Noisy Copy Numbers

    PubMed Central

    Bafna, Vineet

    2015-01-01

    Abstract The Breakage Fusion Bridge (BFB) process is a key marker for genomic instability, producing highly rearranged genomes in relatively small numbers of cell cycles. While the process itself was observed during the late 1930s, little is known about the extent of BFB in tumor genome evolution. Moreover, BFB can dramatically increase copy numbers of chromosomal segments, which in turn hardens the tasks of both reference-assisted and ab initio genome assembly. Based on available data such as Next Generation Sequencing (NGS) and Array Comparative Genomic Hybridization (aCGH) data, we show here how BFB evidence may be identified, and how to enumerate all possible evolutions of the process with respect to observed data. Specifically, we describe practical algorithms that, given a chromosomal arm segmentation and noisy segment copy number estimates, produce all segment count vectors supported by the data that can be produced by BFB, and all corresponding BFB architectures. This extends the scope of analyses described in our previous work, which produced a single count vector and architecture per instance. We apply these analyses to a comprehensive human cancer dataset, demonstrate the effectiveness and efficiency of the computation, and suggest methods for further assertions of candidate BFB samples. Source code of our tool can be found online. PMID:26020441

  10. RECONSTRUCTING DNA COPY NUMBER BY PENALIZED ESTIMATION AND IMPUTATION

    PubMed Central

    Zhang, Zhongyang; Lange, Kenneth; Ophoff, Roel; Sabatti, Chiara

    2011-01-01

    Recent advances in genomics have underscored the surprising ubiquity of DNA copy number variation (CNV). Fortunately, modern genotyping platforms also detect CNVs with fairly high reliability. Hidden Markov models and algorithms have played a dominant role in the interpretation of CNV data. Here we explore CNV reconstruction via estimation with a fused-lasso penalty as suggested by Tibshirani and Wang [Biostatistics 9 (2008) 18–29]. We mount a fresh attack on this difficult optimization problem by the following: (a) changing the penalty terms slightly by substituting a smooth approximation to the absolute value function, (b) designing and implementing a new MM (majorization-minimization) algorithm, and (c) applying a fast version of Newton's method to jointly update all model parameters. Together these changes enable us to minimize the fused-lasso criterion in a highly effective way. We also reframe the reconstruction problem in terms of imputation via discrete optimization. This approach is easier and more accurate than parameter estimation because it relies on the fact that only a handful of possible copy number states exist at each SNP. The dynamic programming framework has the added bonus of exploiting information that the current fused-lasso approach ignores. The accuracy of our imputations is comparable to that of hidden Markov models at a substantially lower computational cost. PMID:21572975

  11. Copy Number Variation in Chickens: A Review and Future Prospects

    PubMed Central

    Wang, Xiaofei; Byers, Shannon

    2014-01-01

    DNA sequence variations include nucleotide substitution, deletion, insertion, translocation and inversion. Deletion or insertion of a large DNA segment in the genome, referred to as copy number variation (CNV), has caught the attention of many researchers recently. It is believed that CNVs contribute significantly to genome variability, and thus contribute to phenotypic variability. In chickens, genome-wide surveys with array comparative genome hybridization (aCGH), SNP chip detection or whole genome sequencing have revealed a large number of CNVs. A large portion of chicken CNVs involves protein coding or regulatory sequences. A few CNVs have been demonstrated to be the determinant factors for single gene traits, such as late-feathering, pea-comb and dermal hyperpigmentation. The phenotypic effects of the majority of chicken CNVs are to be delineated.

  12. Copy number analysis of the low-copy repeats at the primate NPHP1 locus by array comparative genomic hybridization.

    PubMed

    Yuan, Bo; Liu, Pengfei; Rogers, Jeffrey; Lupski, James R

    2016-06-01

    Array comparative genomic hybridization (aCGH) has been widely used to detect copy number variants (CNVs) in both research and clinical settings. A customizable aCGH platform may greatly facilitate copy number analyses in genomic regions with higher-order complexity, such as low-copy repeats (LCRs). Here we present the aCGH analyses focusing on the 45 kb LCRs [1] at the NPHP1 region with diverse copy numbers in humans. Also, the interspecies aCGH analysis comparing human and nonhuman primates revealed dynamic copy number transitions of the human 45 kb LCR orthologues during primate evolution and therefore shed light on the origin of complexity at this locus. The original aCGH data are available at GEO under GSE73962. PMID:27222811

  13. Ohnologs are overrepresented in pathogenic copy number mutations

    PubMed Central

    McLysaght, Aoife; Makino, Takashi; Grayton, Hannah M.; Tropeano, Maria; Mitchell, Kevin J.; Vassos, Evangelos; Collier, David A.

    2014-01-01

    A number of rare copy number variants (CNVs), including both deletions and duplications, have been associated with developmental disorders, including schizophrenia, autism, intellectual disability, and epilepsy. Pathogenicity may derive from dosage sensitivity of one or more genes contained within the CNV locus. To understand pathophysiology, the specific disease-causing gene(s) within each CNV need to be identified. In the present study, we test the hypothesis that ohnologs (genes retained after ancestral whole-genome duplication events, which are frequently dosage sensitive) are overrepresented in pathogenic CNVs. We selected three sets of genes implicated in copy number pathogenicity: (i) genes mapping within rare disease-associated CNVs, (ii) genes within de novo CNVs under negative genetic selection, and (iii) genes identified by clinical array comparative genome hybridization studies as potentially pathogenic. We compared the proportion of ohnologs between these gene sets and control genes, mapping to CNVs not known to be disease associated. We found that ohnologs are significantly overrepresented in genes mapping to pathogenic CNVs, irrespective of how CNVs were identified, with over 90% containing an ohnolog, compared with control CNVs >100 kb, where only about 30% contained an ohnolog. In some CNVs, such as del15p11.2 (CYFIP1) and dup/del16p13.11 (NDE1), the most plausible prior candidate gene was also an ohnolog, as were the genes VIPR2 and NRXN1, each found in short CNVs containing no other genes. Our results support the hypothesis that ohnologs represent critical dosage-sensitive elements of the genome, possibly responsible for some of the deleterious phenotypes observed for pathogenic CNVs and as such are readily identifiable candidate genes for further study. PMID:24368850

  14. [Association of common copy number variations with diseases].

    PubMed

    Yang, Fei; Cao, Pengbo; Zhou, Gangqiao

    2016-06-01

    Genomic polymorphisms come in various forms including single nucleotide variations, translocations, insertions and copy number variations (CNVs). As a form of structural variation, the CNVs comprise common and rare forms based on their populational frequencies. Studies have demonstrated that certain CNVs are associated with risks for neuro-developmental diseases, viral infections, chronic inflammations, and cancers. With the development of high-resolution genome typing technologies such as microarrays and whole genome sequencing, the human genomic CNVs map has been continuously improved and refined. In-depth study of CNVs not only can provide comprehensive understanding for their structural variations and genetic evolution, but also provide new insights into genetic factors contributing to such diseases. In this paper, the general characteristics, pathogenesis and detection methods for the CNVs, as well as their association with human diseases are reviewed. PMID:27264828

  15. Copy Number Variation in Human Health, Disease, and Evolution

    PubMed Central

    Zhang, Feng; Gu, Wenli; Hurles, Matthew E.; Lupski, James R.

    2015-01-01

    Copy number variation (CNV) is a source of genetic diversity in humans. Numerous CNVs are being identified with various genome analysis platforms, including array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and next-generation sequencing. CNV formation occurs by both recombination-based and replication-based mechanisms and de novo locus-specific mutation rates appear much higher for CNVs than for SNPs. By various molecular mechanisms, including gene dosage, gene disruption, gene fusion, position effects, etc., CNVs can cause Mendelian or sporadic traits, or be associated with complex diseases. However, CNV can also represent benign polymorphic variants. CNVs, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution. PMID:19715442

  16. A Copy Number Variation Morbidity Map of Developmental Delay

    PubMed Central

    Cooper, Gregory M.; Coe, Bradley P.; Girirajan, Santhosh; Rosenfeld, Jill A.; Vu, Tiffany; Baker, Carl; Williams, Charles; Stalker, Heather; Hamid, Rizwan; Hannig, Vickie; Abdel-Hamid, Hoda; Bader, Patricia; McCracken, Elizabeth; Niyazov, Dmitriy; Leppig, Kathleen; Thiese, Heidi; Hummel, Marybeth; Alexander, Nora; Gorski, Jerome; Kussmann, Jennifer; Shashi, Vandana; Johnson, Krys; Rehder, Catherine; Ballif, Blake C.; Shaffer, Lisa G.; Eichler, Evan E.

    2011-01-01

    To understand the genetic heterogeneity underlying developmental delay, we compare copy-number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects to 8,329 adult controls. We estimate that ~14.2% of disease in these individuals is due to large CNVs > 400 kbp. We find greater CNV enrichment in patients with craniofacial anomalies and cardiovascular defects than epilepsy or autism. We identify 59 pathogenic CNVs including 14 novel or previously weakly supported candidates. We refine the critical interval for several genomic disorders such as the 17q21.31 microdeletion syndrome and identify 940 candidate dosage-sensitive genes. We also develop methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map combined with exome/genome sequencing will be critical for deciphering the genetic basis of developmental delay, intellectual disability, and autism spectrum disorders. PMID:21841781

  17. Identifying Potential Regions of Copy Number Variation for Bipolar Disorder

    PubMed Central

    Chen, Yi-Hsuan; Lu, Ru-Band; Hung, Hung; Kuo, Po-Hsiu

    2014-01-01

    Bipolar disorder is a complex psychiatric disorder with high heritability, but its genetic determinants are still largely unknown. Copy number variation (CNV) is one of the sources to explain part of the heritability. However, it is a challenge to estimate discrete values of the copy numbers using continuous signals calling from a set of markers, and to simultaneously perform association testing between CNVs and phenotypic outcomes. The goal of the present study is to perform a series of data filtering and analysis procedures using a DNA pooling strategy to identify potential CNV regions that are related to bipolar disorder. A total of 200 normal controls and 200 clinically diagnosed bipolar patients were recruited in this study, and were randomly divided into eight control and eight case pools. Genome-wide genotyping was employed using Illumina Human Omni1-Quad array with approximately one million markers for CNV calling. We aimed at setting a series of criteria to filter out the signal noise of marker data and to reduce the chance of false-positive findings for CNV regions. We first defined CNV regions for each pool. Potential CNV regions were reported based on the different patterns of CNV status between cases and controls. Genes that were mapped into the potential CNV regions were examined with association testing, Gene Ontology enrichment analysis, and checked with existing literature for their associations with bipolar disorder. We reported several CNV regions that are related to bipolar disorder. Two CNV regions on chromosome 11 and 22 showed significant signal differences between cases and controls (p < 0.05). Another five CNV regions on chromosome 6, 9, and 19 were overlapped with results in previous CNV studies. Experimental validation of two CNV regions lent some support to our reported findings. Further experimental and replication studies could be designed for these selected regions.

  18. Decoding NF1 Intragenic Copy-Number Variations

    PubMed Central

    Hsiao, Meng-Chang; Piotrowski, Arkadiusz; Callens, Tom; Fu, Chuanhua; Wimmer, Katharina; Claes, Kathleen B.M.; Messiaen, Ludwine

    2015-01-01

    Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1. PMID:26189818

  19. The Effect of Algorithms on Copy Number Variant Detection

    PubMed Central

    Ely, Benjamin; Chi, Peter; Wang, Kenneth; Raskind, Wendy H.; Kim, Sulgi; Brkanac, Zoran; Yu, Chang-En

    2010-01-01

    Background The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery. Methodology and Principal Findings We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212. Conclusions and Significance Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed

  20. Variation in CCL3L1 Copy Number in Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Taormina, Patrick L; Trask, Jessica A Satkoski; Smith, David G; Kanthaswamy, Sreetharan

    2012-01-01

    We used real-time quantitative PCR (qPCR) methodology to examine copy number variation (CNV) of the CCL3L1 gene among pure Indian-origin, pure Chinese-origin, and hybrid Indian–Chinese rhesus macaques (Macaca mulatta). CNV among purebred macaques fell within expected ranges, with Indian macaques having lower copy numbers than those of Chinese macaques. Compared with the purebred macaques, Indian–Chinese hybrid rhesus macaques showed much greater variance in copy number and an intermediate average copy number. Copy numbers of CCL3L1 in rhesus macaque trios (sire, dam, and offspring) were consistent with Mendelian inheritance. PMID:22776055

  1. Variation in CCL3L1 copy number in rhesus macaques (Macaca mulatta).

    PubMed

    Taormina, Patrick L; Satkoski Trask, Jessica A; Smith, David G; Kanthaswamy, Sreetharan

    2012-06-01

    We used real-time quantitative PCR (qPCR) methodology to examine copy number variation (CNV) of the CCL3L1 gene among pure Indian-origin, pure Chinese-origin, and hybrid Indian-Chinese rhesus macaques (Macaca mulatta). CNV among purebred macaques fell within expected ranges, with Indian macaques having lower copy numbers than those of Chinese macaques. Compared with the purebred macaques, Indian-Chinese hybrid rhesus macaques showed much greater variance in copy number and an intermediate average copy number. Copy numbers of CCL3L1 in rhesus macaque trios (sire, dam, and offspring) were consistent with Mendelian inheritance. PMID:22776055

  2. Family-Based Benchmarking of Copy Number Variation Detection Software

    PubMed Central

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico. PMID:26197066

  3. Family-Based Benchmarking of Copy Number Variation Detection Software.

    PubMed

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico. PMID:26197066

  4. Lepton number violation in theories with a large number of standard model copies

    SciTech Connect

    Kovalenko, Sergey; Schmidt, Ivan; Paes, Heinrich

    2011-03-01

    We examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. On the other hand, the violation of the lepton number can be a potential phenomenological problem of this N-copy extension of the standard model as due to the low quantum gravity scale black holes may induce TeV scale LNV operators generating unacceptably large rates of LNV processes. We show, however, that this issue can be avoided by introducing a spontaneously broken U{sub 1(B-L)}. Then, due to the existence of a specific compensation mechanism between contributions of different Majorana neutrino states, LNV processes in the standard model copy become extremely suppressed with rates far beyond experimental reach.

  5. Copy number variation analysis in 98 individuals with PHACE syndrome.

    PubMed

    Siegel, Dawn H; Shieh, Joseph T C; Kwon, Eun-kyung; Baselga, Eulalia; Blei, Francine; Cordisco, Maria; Dobyns, William B; Duffy, Kelly J; Garzon, Maria C; Gibbs, David L; Grimmer, Johannes F; Hayflick, Susan J; Krol, Alfons L; Kwok, Pui-Yan; Lorier, Rachel; Matter, Andrea; McWeeney, Shannon; Metry, Denise; Mitchell, Sheri; Pope, Elena; Santoro, Jennifer L; Stevenson, David A; Bayrak-Toydemir, Pinar; Wilmot, Beth; Worthey, Elizabeth A; Frieden, Ilona J; Drolet, Beth A; Broeckel, Ulrich

    2013-03-01

    PHACE syndrome is the association of large segmental facial hemangiomas and congenital anomalies, such as posterior fossa malformations, cerebral arterial anomalies, coarctation of the aorta, eye anomalies, and sternal defects. To date, the reported cases of PHACE syndrome have been sporadic, suggesting that PHACE may have a complex pathogenesis. We report here genomic copy number variation (CNV) analysis of 98 individuals with PHACE syndrome as a first step in deciphering a potential genetic basis of PHACE syndrome. A total of 3,772 CNVs (2,507 duplications and 1,265 deletions) were detected in 98 individuals with PHACE syndrome. CNVs were then eliminated if they failed to meet established criteria for quality, spanned centromeres, or did not contain genes. CNVs were defined as "rare" if not documented in the database of genomic variants. Ten rare CNVs were discovered (size range: 134-406  kb), located at 1q32.1, 1q43, 3q26.32-3q26.33, 3p11.1, 7q33, 10q24.32, 12q24.13, 17q11.2, 18p11.31, and Xq28. There were no rare CNV events that occurred in more than one subject. Therefore, further study is needed to determine the significance of these CNVs in the pathogenesis of PHACE syndrome. PMID:23096700

  6. Clinically relevant copy number variations detected in cerebral palsy

    PubMed Central

    Oskoui, Maryam; Gazzellone, Matthew J.; Thiruvahindrapuram, Bhooma; Zarrei, Mehdi; Andersen, John; Wei, John; Wang, Zhuozhi; Wintle, Richard F.; Marshall, Christian R.; Cohn, Ronald D.; Weksberg, Rosanna; Stavropoulos, Dimitri J.; Fehlings, Darcy; Shevell, Michael I.; Scherer, Stephen W.

    2015-01-01

    Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age of onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of aetiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (∼1% rate in controls). In four children, large chromosomal abnormalities deemed likely pathogenic were found, and they were significantly more likely to have severe neuromotor impairments than those CP subjects without such alterations. Overall, the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families. PMID:26236009

  7. Detecting independent and recurrent copy number aberrations using interval graphs

    PubMed Central

    Wu, Hsin-Ta; Hajirasouliha, Iman; Raphael, Benjamin J.

    2014-01-01

    Motivation: Somatic copy number aberrations (SCNAs) are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNAs makes the problem of identifying recurrent aberrations notoriously difficult. Results: We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNAs, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNAs as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. Availability: http://compbio.cs.brown.edu/software. Contact: braphael@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931984

  8. The Role of Constitutional Copy Number Variants in Breast Cancer

    PubMed Central

    Walker, Logan C.; Wiggins, George A.R.; Pearson, John F.

    2015-01-01

    Constitutional copy number variants (CNVs) include inherited and de novo deviations from a diploid state at a defined genomic region. These variants contribute significantly to genetic variation and disease in humans, including breast cancer susceptibility. Identification of genetic risk factors for breast cancer in recent years has been dominated by the use of genome-wide technologies, such as single nucleotide polymorphism (SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large datasets have been underutilised for generating genome-wide CNV profiles despite offering a massive resource for assessing the contribution of these structural variants to breast cancer risk. Technical challenges remain in determining the location and distribution of CNVs across the human genome due to the accuracy of computational prediction algorithms and resolution of the array data. Moreover, better methods are required for interpreting the functional effect of newly discovered CNVs. In this review, we explore current and future application of SNP array technology to assess rare and common CNVs in association with breast cancer risk in humans.

  9. Activity, regulation, copy number and function in the glyoxalase system.

    PubMed

    Rabbani, Naila; Xue, Mingzhan; Thornalley, Paul J

    2014-04-01

    Molecular, catalytic and structural properties of glyoxalase pathway enzymes of many species are now known. Current research has focused on the regulation of activity and expression of Glo1 (glyoxalase I) and Glo2 (glyoxalase II) and their role in health and disease. Human GLO1 has MRE (metal-response element), IRE (insulin-response element), E2F4 (early gene 2 factor isoform 4), AP-2α (activating enhancer-binding protein 2α) and ARE (antioxidant response-element) regulatory elements and is a hotspot for copy number variation. The human Glo2 gene, HAGH (hydroxyacylglutathione hydrolase), has a regulatory p53-response element. Glo1 is linked to healthy aging, obesity, diabetes and diabetic complications, chronic renal disease, cardiovascular disease, other disorders and multidrug resistance in cancer chemotherapy. Mathematical modelling of the glyoxalase pathway predicts that pharmacological levels of increased Glo1 activity markedly decrease cellular methylglyoxal and related glycation, and pharmacological Glo1 inhibition markedly increases cellular methylglyoxal and related glycation. Glo1 inducers are in development to sustain healthy aging and for treatment of vascular complications of diabetes and other disorders, and cell-permeant Glo1 inhibitors are in development for treatment of multidrug-resistant tumours, malaria and potentially pathogenic bacteria and fungi. PMID:24646254

  10. Genomic determinants of somatic copy number alterations across human cancers.

    PubMed

    Zhang, Yanping; Xu, Hongen; Frishman, Dmitrij

    2016-03-01

    Somatic copy number alterations (SCNAs) play an important role in carcinogenesis. However, the impact of genomic architecture on the global patterns of SCNAs in cancer genomes remains elusive. In this work, we conducted multiple linear regression (MLR) analyses of the pooled SCNA data from The Cancer Genome Atlas (TCGA) Pan-Cancer project. We performed MLR analyses for 11 individual cancer types and three different kinds of SCNAs-amplifications and deletions, telomere-bound and interstitial SCNAs and local SCNAs. Our MLR model explains >30% of the pooled SCNA breakpoint variation, with the explanatory power ranging from 13 to 32% for different cancer types and SCNA types. In addition to confirming previously identified features [e.g. long interspersed element-1 (L1) and short interspersed nuclear elements], we also identified several novel informative features, including distance to telomere, distance to centromere and low-complexity repeats. The results of the MLR analyses were additionally confirmed on an independent SCNA data set obtained from the catalogue of somatic mutations in cancer database. Using a rare-event logistic regression model and an extremely randomized tree classifier, we revealed that genomic features are informative for defining common SCNA breakpoint hotspots. Our findings shed light on the molecular mechanisms of SCNA generation in cancer. PMID:26732428

  11. Copy number variants in patients with short stature

    PubMed Central

    van Duyvenvoorde, Hermine A; Lui, Julian C; Kant, Sarina G; Oostdijk, Wilma; Gijsbers, Antoinet CJ; Hoffer, Mariëtte JV; Karperien, Marcel; Walenkamp, Marie JE; Noordam, Cees; Voorhoeve, Paul G; Mericq, Verónica; Pereira, Alberto M; Claahsen-van de Grinten, Hedi L; van Gool, Sandy A; Breuning, Martijn H; Losekoot, Monique; Baron, Jeffrey; Ruivenkamp, Claudia AL; Wit, Jan M

    2014-01-01

    Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes. PMID:24065112

  12. Copy number alteration burden predicts prostate cancer relapse

    PubMed Central

    Hieronymus, Haley; Schultz, Nikolaus; Gopalan, Anuradha; Carver, Brett S.; Chang, Matthew T.; Xiao, Yonghong; Heguy, Adriana; Huberman, Kety; Bernstein, Melanie; Assel, Melissa; Murali, Rajmohan; Vickers, Andrew; Scardino, Peter T.; Sander, Chris; Reuter, Victor; Taylor, Barry S.; Sawyers, Charles L.

    2014-01-01

    Primary prostate cancer is the most common malignancy in men but has highly variable outcomes, highlighting the need for biomarkers to determine which patients can be managed conservatively. Few large prostate oncogenome resources currently exist that combine the molecular and clinical outcome data necessary to discover prognostic biomarkers. Previously, we found an association between relapse and the pattern of DNA copy number alteration (CNA) in 168 primary tumors, raising the possibility of CNA as a prognostic biomarker. Here we examine this question by profiling an additional 104 primary prostate cancers and updating the initial 168 patient cohort with long-term clinical outcome. We find that CNA burden across the genome, defined as the percentage of the tumor genome affected by CNA, was associated with biochemical recurrence and metastasis after surgery in these two cohorts, independent of the prostate-specific antigen biomarker or Gleason grade, a major existing histopathological prognostic variable in prostate cancer. Moreover, CNA burden was associated with biochemical recurrence in intermediate-risk Gleason 7 prostate cancers, independent of prostate-specific antigen or nomogram score. We further demonstrate that CNA burden can be measured in diagnostic needle biopsies using low-input whole-genome sequencing, setting the stage for studies of prognostic impact in conservatively treated cohorts. PMID:25024180

  13. Analysis of rare copy number variation in absence epilepsies

    PubMed Central

    Rosch, Richard E.; Valentin, Antonio; Makoff, Andrew; Robinson, Robert; Everett, Kate V.; Nashef, Lina; Pal, Deb K.

    2016-01-01

    Objective: To identify shared genes and pathways between common absence epilepsy (AE) subtypes (childhood absence epilepsy [CAE], juvenile absence epilepsy [JAE], and unclassified absence epilepsy [UAE]) that may indicate common mechanisms for absence seizure generation and potentially a diagnostic continuum. Methods: We used high-density single-nucleotide polymorphism arrays to analyze genome-wide rare copy number variation (CNV) in a cohort of 144 children with AEs (95 CAE, 26 UAE, and 23 JAE). Results: We identified CNVs that are known risk factors for AE in 4 patients, including 3x 15q11.2 deletion. We also expanded the phenotype at 4 regions more commonly identified in other neurodevelopmental disorders: 1p36.33 duplication, 1q21.1 deletion, 22q11.2 duplication, and Xp22.31 deletion and duplication. Fifteen patients (10.5%) were found to carry rare CNVs that disrupt genes associated with neuronal development and function (8 CAE, 2 JAE, and 5 UAE). Four categories of protein are each disrupted by several CNVs: (1) synaptic vesicle membrane or vesicle endocytosis, (2) synaptic cell adhesion, (3) synapse organization and motility via actin, and (4) gap junctions. CNVs within these categories are shared across the AE subtypes. Conclusions: Our results have reinforced the complex and heterogeneous nature of the AEs and their potential for shared genetic mechanisms and have highlighted several pathways that may be important in epileptogenesis of absence seizures. PMID:27123475

  14. Mapping copy number variation by population-scale genome sequencing.

    PubMed

    Mills, Ryan E; Walter, Klaudia; Stewart, Chip; Handsaker, Robert E; Chen, Ken; Alkan, Can; Abyzov, Alexej; Yoon, Seungtai Chris; Ye, Kai; Cheetham, R Keira; Chinwalla, Asif; Conrad, Donald F; Fu, Yutao; Grubert, Fabian; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Iakoucheva, Lilia M; Iqbal, Zamin; Kang, Shuli; Kidd, Jeffrey M; Konkel, Miriam K; Korn, Joshua; Khurana, Ekta; Kural, Deniz; Lam, Hugo Y K; Leng, Jing; Li, Ruiqiang; Li, Yingrui; Lin, Chang-Yun; Luo, Ruibang; Mu, Xinmeng Jasmine; Nemesh, James; Peckham, Heather E; Rausch, Tobias; Scally, Aylwyn; Shi, Xinghua; Stromberg, Michael P; Stütz, Adrian M; Urban, Alexander Eckehart; Walker, Jerilyn A; Wu, Jiantao; Zhang, Yujun; Zhang, Zhengdong D; Batzer, Mark A; Ding, Li; Marth, Gabor T; McVean, Gil; Sebat, Jonathan; Snyder, Michael; Wang, Jun; Ye, Kenny; Eichler, Evan E; Gerstein, Mark B; Hurles, Matthew E; Lee, Charles; McCarroll, Steven A; Korbel, Jan O

    2011-02-01

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies. PMID:21293372

  15. Elevated Gene Copy Number Does Not Always Explain Elevated Amylase Activities in Fishes.

    PubMed

    German, Donovan P; Foti, Dolly M; Heras, Joseph; Amerkhanian, Hooree; Lockwood, Brent L

    2016-01-01

    Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype. We found elevated amylase gene copy number (six haploid copies) with sequence variation among copies in one herbivore (Cebidichthys violaceus) and modest gene copy number (two to three haploid copies) with little sequence variation in the remaining taxa, which included herbivores, omnivores, and a carnivore. Few functional differences in amylase biochemistry were observed, and previous investigations showed similar digestibility among the convergently evolved herbivores with differing amylase genetics. Hence, the phenotype of elevated amylase activity can be achieved by different mechanisms (i.e., elevated expression of fewer genes, increased gene copy number, or expression of more efficient amylase proteins) with similar results. Phylogenetic and comparative genomic analyses of available fish amylase genes show mostly lineage-specific duplication events leading to gene copy number variation, although a whole-genome duplication event or chromosomal translocation may have produced multiple amylase copies in the Ostariophysi, again showing multiple routes to the same result. PMID:27327179

  16. Improved Statistical Analysis for Array CGH-Based DNA Copy Number Aberrations

    PubMed Central

    Jiang, Hongmei; Zhu, Zhong-Zheng; Yu, Yue; Lin, Simon; Hou, Lifang

    2011-01-01

    Array-based comparative genomic hybridization (aCGH) allows measuring DNA copy number at the whole genome scale. In cancer studies, one may be interested in identifying DNA copy number aberrations (CNAs) associated with certain clinicopathological characteristics such as cancer metastasis. We proposed to define test regions based on copy number pattern profiles across multiple samples, using either smoothed log2-ratio or discrete data of copy number gain/loss calls. Association test performed on the refined test regions instead of the probes has improved power due to reduced number of tests. We also compared three types of measurement of copy number levels, normalized log2-ratio, smoothed log2-ratio, and copy number gain or loss calls in statistical hypothesis testing. The relative strengths and weaknesses of the proposed method were demonstrated using both simulation studies and real data analysis of a liver cancer study. PMID:22084565

  17. Copy number variation signature to predict human ancestry

    PubMed Central

    2012-01-01

    Background Copy number variations (CNVs) are genomic structural variants that are found in healthy populations and have been observed to be associated with disease susceptibility. Existing methods for CNV detection are often performed on a sample-by-sample basis, which is not ideal for large datasets where common CNVs must be estimated by comparing the frequency of CNVs in the individual samples. Here we describe a simple and novel approach to locate genome-wide CNVs common to a specific population, using human ancestry as the phenotype. Results We utilized our previously published Genome Alteration Detection Analysis (GADA) algorithm to identify common ancestry CNVs (caCNVs) and built a caCNV model to predict population structure. We identified a 73 caCNV signature using a training set of 225 healthy individuals from European, Asian, and African ancestry. The signature was validated on an independent test set of 300 individuals with similar ancestral background. The error rate in predicting ancestry in this test set was 2% using the 73 caCNV signature. Among the caCNVs identified, several were previously confirmed experimentally to vary by ancestry. Our signature also contains a caCNV region with a single microRNA (MIR270), which represents the first reported variation of microRNA by ancestry. Conclusions We developed a new methodology to identify common CNVs and demonstrated its performance by building a caCNV signature to predict human ancestry with high accuracy. The utility of our approach could be extended to large case–control studies to identify CNV signatures for other phenotypes such as disease susceptibility and drug response. PMID:23270563

  18. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  19. Identification of Copy Number Variations in Xiang and Kele Pigs

    PubMed Central

    Xie, Jian; Li, Rongrong; Li, Sheng; Ran, Xueqin; Wang, Jiafu; Jiang, Jicai; Zhao, Pengju

    2016-01-01

    Xiang and Kele pigs are two well-known local Chinese pig breeds that possess rich genetic resources and have enormous economic and scientific value. We performed a comprehensive genomic analysis of the copy number variations (CNVs) in these breeds. CNVs are one of the most important forms of genomic variation and have profound effects on phenotypic variation. In this study, PorcineSNP60 genotyping data from 98 Xiang pigs and 22 Kele pigs were used to identify CNVs. In total, 172 candidate CNV regions (CNVRs) were identified, ranging from 3.19 kb to 8175.26 kb and covering 80.41 Mb of the pig genome. Approximately 56.40% (97/172) of the CNVRs overlapped with those identified in seven previous studies, and 43.60% (75/172) of the identified CNVRs were novel. Of the identified CNVRs, 82 (47 gain, 33 loss, and two gain-loss events that covered 4.58 Mb of the pig genome) were found only in a Xiang population with a large litter size. In contrast, 13 CNVRs (8 gain and 5 loss events) were unique to a Xiang population with small litter sizes, and 30 CNVRs (14 loss and 16 gain events) were unique to Kele pigs. The CNVRs span approximately 660 annotated Sus scrofa genes that are significantly enriched for specific biological functions, such as sensory perception, cognition, reproduction, ATP biosynthetic processes, and neurological processes. Many CNVR-associated genes, particularly the genes involved in reproductive traits, differed between the Xiang populations with large and small litter sizes, and these genes warrant further investigation due to their importance in determining the reproductive performance of Xiang pigs. Our results provide meaningful information about genomic variation, which may be useful in future assessments of the associations between CNVs and important phenotypes in Xiang and Kele pigs to ultimately help protect these rare breeds. PMID:26840413

  20. Human gene copy number spectra analysis in congenital heart malformations.

    PubMed

    Tomita-Mitchell, Aoy; Mahnke, Donna K; Struble, Craig A; Tuffnell, Maureen E; Stamm, Karl D; Hidestrand, Mats; Harris, Susan E; Goetsch, Mary A; Simpson, Pippa M; Bick, David P; Broeckel, Ulrich; Pelech, Andrew N; Tweddell, James S; Mitchell, Michael E

    2012-05-01

    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency "spectra" to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways. PMID:22318994

  1. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  2. Human gene copy number spectra analysis in congenital heart malformations

    PubMed Central

    Mahnke, Donna K.; Struble, Craig A.; Tuffnell, Maureen E.; Stamm, Karl D.; Hidestrand, Mats; Harris, Susan E.; Goetsch, Mary A.; Simpson, Pippa M.; Bick, David P.; Broeckel, Ulrich; Pelech, Andrew N.; Tweddell, James S.; Mitchell, Michael E.

    2012-01-01

    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways. PMID:22318994

  3. Rare copy number variants implicated in posterior urethral valves.

    PubMed

    Boghossian, Nansi S; Sicko, Robert J; Kay, Denise M; Rigler, Shannon L; Caggana, Michele; Tsai, Michael Y; Yeung, Edwina H; Pankratz, Nathan; Cole, Benjamin R; Druschel, Charlotte M; Romitti, Paul A; Browne, Marilyn L; Fan, Ruzong; Liu, Aiyi; Brody, Lawrence C; Mills, James L

    2016-03-01

    The cause of posterior urethral valves (PUV) is unknown, but genetic factors are suspected given their familial occurrence. We examined cases of isolated PUV to identify novel copy number variants (CNVs). We identified 56 cases of isolated PUV from all live-births in New York State (1998-2005). Samples were genotyped using Illumina HumanOmni2.5 microarrays. Autosomal and sex-linked CNVs were identified using PennCNV and cnvPartition software. CNVs were prioritized for follow-up if they were absent from in-house controls, contained ≥ 10 consecutive probes, were ≥ 20 Kb in size, had ≤ 20% overlap with variants detected in other birth defect phenotypes screened in our lab, and were rare in population reference controls. We identified 47 rare candidate PUV-associated CNVs in 32 cases; one case had a 3.9 Mb deletion encompassing BMP7. Mutations in BMP7 have been associated with severe anomalies in the mouse urethra. Other interesting CNVs, each detected in a single PUV case included: a deletion of PIK3R3 and TSPAN1, duplication/triplication in FGF12, duplication of FAT1--a gene essential for normal growth and development, a large deletion (>2 Mb) on chromosome 17q that involves TBX2 and TBX4, and large duplications (>1 Mb) on chromosomes 3q and 6q. Our finding of previously unreported novel CNVs in PUV suggests that genetic factors may play a larger role than previously understood. Our data show a potential role of CNVs in up to 57% of cases examined. Investigation of genes in these CNVs may provide further insights into genetic variants that contribute to PUV. PMID:26663319

  4. Analysis of copy number variations among diverse cattle breeds

    PubMed Central

    Liu, George E.; Hou, Yali; Zhu, Bin; Cardone, Maria Francesca; Jiang, Lu; Cellamare, Angelo; Mitra, Apratim; Alexander, Leeson J.; Coutinho, Luiz L.; Dell'Aquila, Maria Elena; Gasbarre, Lou C.; Lacalandra, Gianni; Li, Robert W.; Matukumalli, Lakshmi K.; Nonneman, Dan; de A. Regitano, Luciana C.; Smith, Tim P.L.; Song, Jiuzhou; Sonstegard, Tad S.; Van Tassell, Curt P.; Ventura, Mario; Eichler, Evan E.; McDaneld, Tara G.; Keele, John W.

    2010-01-01

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 megabases or ∼1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions, such as immunity, lactation, reproduction, and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research. PMID:20212021

  5. Copy number variations related to reproduction traits in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Daughter pregnancy rate (DPR) is one of important reproduction traits that affect overall profitability in dairy industry. However, historical selection for production and conformation rather than reproduction has resulted in a decline in cow fertility. Genomic structural variation including copy nu...

  6. Mitochondrial copy number and risk of breast cancer: a pilot study.

    PubMed

    Shen, Jie; Platek, Mary; Mahasneh, Amjad; Ambrosone, Christine B; Zhao, Hua

    2010-01-01

    It has been proposed that the copy number of mitochondria DNA (mtDNA) per cell reflects gene-environment interactions between unknown hereditary factors and exposures affecting levels of oxidative stress. However, whether copy number of mtDNA could be a risk predictor of oxidative stress-related human cancers, such as breast cancer, remains to be determined. To explore the role of mtDNA copy number in breast cancer etiology, we analyzed mtDNA copy number in whole blood from 103 patients with breast cancer and 103 matched control subjects and examined in relation to endogenous antioxidants. Case patients with breast cancer had a statistically significantly higher mtDNA copy number than control subjects (median: 1.29 vs. 0.80, P<0.01). High mtDNA copy number (above the median in controls) was associated with a statistically significantly increased risk of breast cancer, compared with low copy number (Odds ratio (OR)=4.67, 95% CI: 2.45-8.92), with a statistically significant dose-response relationship in trend analysis (P<0.01). Moreover, mtDNA copy number was significantly inversely associated with several important endogenous oxidants and antioxidants in blood in either the cases (total glutathione, CuZn-SOD activity and myeloperoxidase (MPO)) or the controls (catalase (CAT) activity). These results suggest the mtDNA copy number could be associated with risk of breast cancer, perhaps through an oxidative stress mechanism. PMID:19788937

  7. Incidental copy-number variants identified by routine genome testing in a clinical population

    PubMed Central

    Boone, Philip M.; Soens, Zachry T.; Campbell, Ian M.; Stankiewicz, Pawel; Cheung, Sau Wai; Patel, Ankita; Beaudet, Arthur L.; Plon, Sharon E.; Shaw, Chad A.; McGuire, Amy L.; Lupski, James R.

    2013-01-01

    Purpose Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. Methods Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. Results In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients’ referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. Conclusion Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient. PMID:22878507

  8. Mitochondrial DNA Copy Number and Exposure to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Pavanello, Sofia; Dioni, Laura; Hoxha, Mirjam; Fedeli, Ugo; Mielzynska-Švach, Danuta; Baccarelli, Andrea A.

    2013-01-01

    Background Increased mitochondrial DNA copy number (mtDNAcn) is a biological response to mtDNA damage and dysfunction predictive of lung cancer risk. Polycyclic aromatic hydrocarbons (PAHs) are established lung carcinogens and may cause mitochondrial toxicity. Whether PAH exposure and PAH-related nuclear DNA (nDNA) genotoxic effects are linked with increased mtDNAcn has never been evaluated. Methods We investigated the effect of chronic exposure to PAHs on mtDNAcn in peripheral blood lymphocytes (PBLs) of 46 Polish male non-current smoking cokeoven workers and 44 matched controls, who were part of a group of 94 study individuals examined in our previous work. Subjects PAH exposure and genetic alterations were characterized through measures of internal dose (urinary 1-pyrenol), target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei, MN and telomere length [TL]) and DNA methylation [p53 promoter] in PBLs. mtDNAcn (MT/S) was measured using a validated real-time PCR method. Results Workers with PAH exposure above the median value (>3 µmol 1-pyrenol/mol creatinine) showed higher mtDNAcn [geometric means (GM) of 1.06 (unadjusted) and 1.07 (age-adjusted)] compared to controls [GM 0.89 (unadjusted); 0.89 (age-adjusted)] (p=0.029 and 0.016), as well as higher levels of genetic and chromosomal [i.e. anti-BPDE-DNA adducts (p<0.001), MN (p<0.001) and TL (p=0.053)] and epigenetic [i.e., p53 gene-specific promoter methylation (p<0.001)] alterations in the nDNA. In the whole study population, unadjusted and age-adjusted mtDNAcn was positively correlated with 1-pyrenol (p=0.043 and 0.032) and anti-BPDE-DNA adducts (p=0.046 and 0.049). Conclusions PAH exposure and PAH-related nDNA genotoxicity are associated with increased mtDNAcn. Impact The present study is suggestive of potential roles of mtDNAcn in PAH-induced carcinogenesis. PMID:23885040

  9. Low copy number of the salivary amylase gene predisposes to obesity.

    PubMed

    Falchi, Mario; El-Sayed Moustafa, Julia Sarah; Takousis, Petros; Pesce, Francesco; Bonnefond, Amélie; Andersson-Assarsson, Johanna C; Sudmant, Peter H; Dorajoo, Rajkumar; Al-Shafai, Mashael Nedham; Bottolo, Leonardo; Ozdemir, Erdal; So, Hon-Cheong; Davies, Robert W; Patrice, Alexandre; Dent, Robert; Mangino, Massimo; Hysi, Pirro G; Dechaume, Aurélie; Huyvaert, Marlène; Skinner, Jane; Pigeyre, Marie; Caiazzo, Robert; Raverdy, Violeta; Vaillant, Emmanuel; Field, Sarah; Balkau, Beverley; Marre, Michel; Visvikis-Siest, Sophie; Weill, Jacques; Poulain-Godefroy, Odile; Jacobson, Peter; Sjostrom, Lars; Hammond, Christopher J; Deloukas, Panos; Sham, Pak Chung; McPherson, Ruth; Lee, Jeannette; Tai, E Shyong; Sladek, Robert; Carlsson, Lena M S; Walley, Andrew; Eichler, Evan E; Pattou, Francois; Spector, Timothy D; Froguel, Philippe

    2014-05-01

    Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10(-14)) and serum enzyme levels (P < 2.20 × 10(-16)), whereas reduced AMY1 copy number was associated with increased BMI (change in BMI per estimated copy = -0.15 (0.02) kg/m(2); P = 6.93 × 10(-10)) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13-1.26; P = 1.46 × 10(-10)). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies. PMID:24686848

  10. Copy number variations and cognitive phenotypes in unselected populations

    PubMed Central

    Männik, Katrin; Mägi, Reedik; Macé, Aurélien; Cole, Ben; Guyatt, Anna; Shihab, Hashem A.; Maillard, Anne M.; Alavere, Helene; Kolk, Anneli; Reigo, Anu; Mihailov, Evelin; Leitsalu, Liis; Ferreira, Anne-Maud; Nõukas, Margit; Teumer, Alexander; Salvi, Erika; Cusi, Daniele; McGue, Matt; Iacono, William G.; Gaunt, Tom R.; Beckmann, Jacques S.; Jacquemont, Sébastien; Kutalik, Zoltán; Pankratz, Nathan; Timpson, Nicholas; Metspalu, Andres; Reymond, Alexandre

    2015-01-01

    Importance The association of rare copy number variants (CNVs) with complex disorders is almost exclusively evaluated using clinically ascertained cohorts. As a result, the contribution of these genetic variants to cognitive phenotypes in the general population remains unclear. Objectives - To investigate the clinical features of genomic disorders in adult carriers without clinical pre-selection. - To assess the genome-wide burden of rare CNVs on carriers’ educational attainment and intellectual disability prevalence in the general population. Design, Setting, and Participants The population biobank of Estonia (EGCUT) contains 52,000 participants, or 5% of the Estonian adults, enrolled in 2002-2010. General practitioners examined participants and filled out a questionnaire of health- and lifestyle-related questions, as well as reported diagnoses. As EGCUT is representative of the country's population, we investigated a random sample of 7877 individuals for CNV analysis and genotype-phenotype associations with education and disease traits. Main Outcomes and Measures Phenotypes of genomic disorders in the general population, prevalence of autosomal CNVs, and association of the latter variants with decreased educational attainment and increased prevalence of intellectual disability. Results We identified 56 carriers of genomic disorders. Their phenotypes are reminiscent of those described for carriers of identical rearrangements ascertained in clinical cohorts. We also generated a genome-wide map of rare (frequency ≤0.05%) autosomal CNVs and identified 10.5% of the screened general population (n=831) as carriers of CNVs ≥250kb. Carriers of deletions ≥250kb or duplications ≥1Mb show, compared to the Estonian population, a greater prevalence of intellectual disability (P=0.0015, OR=3.16, (95%CI: 1.51-5.98); P=0.0083, OR=3.67, (95%CI: 1.29-8.54), respectively), reduced mean education attainment (a proxy for intelligence; P=1.06e-04; P=5.024e-05, respectively

  11. Aluminum tolerance is associated with higher MATE1 gene copy-number in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome structure variation, including copy-number (CNV) and presence/absence variation (PAV), comprise a large extent of maize genetic diversity but their effect on phenotypes remains largely unexplored. Here we describe how copy-number variation in a major aluminum (Al) tolerance locus contributes ...

  12. 47 CFR 1.742 - Place of filing, fees, and number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Place of filing, fees, and number of copies. 1.742 Section 1.742 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Complaints, Applications, Tariffs, and Reports Involving Common Carriers Applications § 1.742 Place of filing, fees, and number of copies....

  13. 17 CFR 230.424 - Filing of prospectuses, number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Filing of prospectuses, number of copies. 230.424 Section 230.424 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933 Form and Content of Prospectuses § 230.424 Filing of prospectuses, number of copies....

  14. Copy number variation of individual cattle genomes using next-generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  15. Copy number variation of individual cattle genomes using next-generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...

  16. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; signatures; binding. 270.8b-11 Section 270.8b-11 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures; binding. (a) Three complete...

  17. 10 CFR 205.307 - Form and style; number of copies

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies 205.307 Section 205.307 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy to A Foreign Country § 205.307 Form and style; number of copies An original and...

  18. 10 CFR 205.324 - Form and style; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies. 205.324 Section 205.324 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy at International Boundaries § 205.324 Form and style; number of copies. All...

  19. 39 CFR 3001.10 - Form and number of copies of documents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Form and number of copies of documents. 3001.10... Rules of General Applicability § 3001.10 Form and number of copies of documents. (a) Documents. Each... generated in either Acrobat (pdf), Word, WordPerfect, or Rich Text Format (rtf). (d) Exception for...

  20. 39 CFR 3001.10 - Form and number of copies of documents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Form and number of copies of documents. 3001.10... Rules of General Applicability § 3001.10 Form and number of copies of documents. (a) Documents. Each... generated in either Acrobat (pdf), Word, WordPerfect, or Rich Text Format (rtf). (d) Exception for...

  1. 39 CFR 3001.10 - Form and number of copies of documents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Form and number of copies of documents. 3001.10... Rules of General Applicability § 3001.10 Form and number of copies of documents. (a) Documents. Each...), Word, or WordPerfect, or Rich Text Format (rtf). (d) Exception for appeals of post office closings...

  2. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-number of copies; distribution. 51.58... Implementing Section 102(2) Environmental Reports-Production and Utilization Facilities § 51.58 Environmental report—number of copies; distribution. (a) Each applicant for a license or permit to site,...

  3. 43 CFR 3104.6 - Where filed and number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Where filed and number of copies. 3104.6 Section 3104.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Bonds § 3104.6 Where filed and number of copies. All...

  4. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-number of copies; distribution. 51.58... report—number of copies; distribution. (a) Each applicant for a license or permit to site, construct...)(4), each applicant for renewal of an operating or combined license for a nuclear power plant,...

  5. 5 CFR 2429.25 - Number of copies and paper size.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Number of copies and paper size. 2429.25... Requirements § 2429.25 Number of copies and paper size. Unless otherwise provided by the Authority or the... the exception of any prescribed forms, any document or paper filed with the Authority, General...

  6. 5 CFR 2429.25 - Number of copies and paper size.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Number of copies and paper size. 2429.25... Requirements § 2429.25 Number of copies and paper size. (a) General rule. Except as discussed in paragraph (b... attachments, must be on 81/2 by 11 inch size paper, using normal margins and font sizes. You must file...

  7. 5 CFR 2429.25 - Number of copies and paper size.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Number of copies and paper size. 2429.25... Requirements § 2429.25 Number of copies and paper size. (a) General rule. Except as discussed in paragraph (b... attachments, must be on 81/2 by 11 inch size paper, using normal margins and font sizes. You must file...

  8. Individualized cattle copy number and segmental duplication maps using next generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  9. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities.

    PubMed

    Kerr, Emma M; Gaude, Edoardo; Turrell, Frances K; Frezza, Christian; Martins, Carla P

    2016-03-01

    The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from Kras(G12D/+);p53-null mice frequently exhibit Kras(G12D) allelic enrichment (Kras(G12D)/Kras(wild-type) > 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, Kras(G12D/G12D) cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of Kras(G12D) copy gain), but not in the corresponding early tumours (Kras(G12D) heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577

  10. Determining Fungi rRNA Copy Number by PCR

    PubMed Central

    Black, Jonathan; Dean, Timothy; Byfield, Grace; Foarde, Karin; Menetrez, Marc

    2013-01-01

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within a standard qPCR reaction. The first control developed was the internal standard control gene, benA. This gene encodes for β-tubulin and was selected based on its single-copy nature. The second control developed was the standard control plasmid, which contained a fragment of the ribosomal RNA (rRNA) gene and produced a specific PCR product. The results confirm the multicopy nature of the rRNA region in several filamentous fungi and show that we can quantify fungi of unknown genome size over a range of spore extractions by inclusion of these two standard controls. Advances in qPCR have led to extremely sensitive and quantitative methods for single-copy genes; however, it has not been well established that the rRNA can be used to quantitate fungal contamination. We report on the use of qPCR, combined with two controls, to identify and quantify indoor fungal contaminants with a greater degree of confidence than has been achieved previously. Advances in indoor environmental health have demonstrated that contamination of the built environment by the filamentous fungi has adverse impacts on the health of building occupants. This study meets the need for more accurate and reliable methods for fungal identification and quantitation in the indoor environment. PMID:23543828

  11. Allele-specific copy number profiling by next-generation DNA sequencing.

    PubMed

    Chen, Hao; Bell, John M; Zavala, Nicolas A; Ji, Hanlee P; Zhang, Nancy R

    2015-02-27

    The progression and clonal development of tumors often involve amplifications and deletions of genomic DNA. Estimation of allele-specific copy number, which quantifies the number of copies of each allele at each variant loci rather than the total number of chromosome copies, is an important step in the characterization of tumor genomes and the inference of their clonal history. We describe a new method, falcon, for finding somatic allele-specific copy number changes by next generation sequencing of tumors with matched normals. falcon is based on a change-point model on a bivariate mixed Binomial process, which explicitly models the copy numbers of the two chromosome haplotypes and corrects for local allele-specific coverage biases. By using the Binomial distribution rather than a normal approximation, falcon more effectively pools evidence from sites with low coverage. A modified Bayesian information criterion is used to guide model selection for determining the number of copy number events. Falcon is evaluated on in silico spike-in data and applied to the analysis of a pre-malignant colon tumor sample and late-stage colorectal adenocarcinoma from the same individual. The allele-specific copy number estimates obtained by falcon allows us to draw detailed conclusions regarding the clonal history of the individual's colon cancer. PMID:25477383

  12. Copy-number changes in evolution: rates, fitness effects and adaptive significance

    PubMed Central

    Katju, Vaishali; Bergthorsson, Ulfar

    2013-01-01

    Gene copy-number differences due to gene duplications and deletions are rampant in natural populations and play a crucial role in the evolution of genome complexity. Per-locus analyses of gene duplication rates in the pre-genomic era revealed that gene duplication rates are much higher than the per nucleotide substitution rate. Analyses of gene duplication and deletion rates in mutation accumulation lines of model organisms have revealed that these high rates of copy-number mutations occur at a genome-wide scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-number polymorphism data and bioinformatic-based estimates of duplication rates from sequenced genomes suggest that the vast majority of gene duplications are detrimental and removed by natural selection. The rate at which new gene copies appear in populations greatly influences their evolutionary dynamics and standing gene copy-number variation in populations. The opportunity for mutations that result in the maintenance of duplicate copies, either through neofunctionalization or subfunctionalization, also depends on the equilibrium frequency of additional gene copies in the population, and hence on the spontaneous gene duplication (and loss) rate. The duplication rate may therefore have profound effects on the role of adaptation in the evolution of duplicated genes as well as important consequences for the evolutionary potential of organisms. We further discuss the broad ramifications of this standing gene copy-number variation on fitness and adaptive potential from a population-genetic and genome-wide perspective. PMID:24368910

  13. Comparison of Copy Number of HSF Genes in Two Buffalo Genomes.

    PubMed

    Lal, Shardul Vikram; Mukherjee, Ayan; Brahma, Biswajit; Gohain, Moloya; Patra, Mahesh Chandra; Saini, Sushil Kumar; Mishra, Purushottam; Ahlawat, Sonika; Upadhyaya, Ramesh C; Datta, Tirtha K; De, Sachinandan

    2016-01-01

    The copy number variation (CNV) is the number of copies of a particular gene in the genotype of an individual. Recent evidences show that the CNVs can vary in frequency and occurrence between breeds. These variations reportedly allowed different breeds to adapt to different environments. As copy number variations follow Mendelian pattern of inheritance, identification and distribution of these variants between populations can be used to infer the evolutionary history of the species. In this study, we have examined the absolute copy number of four Heat shock factor genes viz. HSF-1, 2, 4, and 5 in two different breeds of buffalo species using real-time PCR. Here, we report that the absolute copy number of HSF2 varies between the two breeds. In contrast no significant difference was observed in the copy number for HSF-1, 4, and 5 between the two breeds. Our results provide evidence for the presence of breed specific differences in HSF2 genomic copy number. This seems to be the first step in delineating the genetic factors underlying environmental adaptation between the two breeds. Nevertheless, a more detailed study is needed to characterize the functional consequence of this variation. PMID:26953680

  14. Decreases in average bacterial community rRNA operon copy number during succession.

    PubMed

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution. PMID:26565722

  15. 16Stimator: statistical estimation of ribosomal gene copy numbers from draft genome assemblies.

    PubMed

    Perisin, Matthew; Vetter, Madlen; Gilbert, Jack A; Bergelson, Joy

    2016-04-01

    The 16S rRNA gene (16S) is an accepted marker of bacterial taxonomic diversity, even though differences in copy number obscure the relationship between amplicon and organismal abundances. Ancestral state reconstruction methods can predict 16S copy numbers through comparisons with closely related reference genomes; however, the database of closed genomes is limited. Here, we extend the reference database of 16S copy numbers to de novo assembled draft genomes by developing 16Stimator, a method to estimate 16S copy numbers when these repetitive regions collapse during assembly. Using a read depth approach, we estimate 16S copy numbers for 12 endophytic isolates from Arabidopsis thaliana and confirm estimates by qPCR. We further apply this approach to draft genomes deposited in NCBI and demonstrate accurate copy number estimation regardless of sequencing platform, with an overall median deviation of 14%. The expanded database of isolates with 16S copy number estimates increases the power of phylogenetic correction methods for determining organismal abundances from 16S amplicon surveys. PMID:26359911

  16. Copy number polymorphisms are not a common feature of innate immune genes.

    PubMed

    Linzmeier, Rose M; Ganz, Tomas

    2006-07-01

    Extensive copy number polymorphism was recently reported for innate immunity-related alpha-defensin genes DEFA1 and DEFA3 and beta-defensin genes DEFB4, DEFB103, and DEFB104. To establish whether such polymorphisms are a common feature of innate immune genes we used quantitative real-time PCR to determine the copy numbers of seven genes whose products have important innate immune functions. The genes encoding lysozyme, lactoferrin, cathelicidin antimicrobial peptide (hCAP18/LL-37), cathepsin G, bactericidal/permeability-increasing protein, azurocidin (CAP37/heparin-binding protein), and neutrophil elastase were each found to be single copy per haploid genome. These findings, along with the recent observation that defensin genes DEFA4, DEFA5, DEFA6, and DEFB1 are single copy, suggest that copy number polymorphisms are not a common feature of the innate immune genome but are restricted to a small subset of innate immunity-related genes. PMID:16617005

  17. 47 CFR 1.51 - Number of copies of pleadings, briefs and other papers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... paper filed relates to a matter to be acted upon by the presiding officer or the Chief Administrative Law Judge, an original and 6 copies shall be filed. (2) If the paper filed relates to matters to be... chapter. (c) In matters other than rule making and hearing cases, the following number of copies shall...

  18. Bovine NK-lysin: Copy number variation and functional diversification

    PubMed Central

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M.; Malig, Maika; Lawhon, Sara D.; Skow, Loren C.; Lee, Mi Ok; Eichler, Evan E.; Andersson, Leif; Womack, James E.

    2015-01-01

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30–35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  19. Bovine NK-lysin: Copy number variation and functional diversification.

    PubMed

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M; Malig, Maika; Lawhon, Sara D; Skow, Loren C; Lee, Mi Ok; Eichler, Evan E; Andersson, Leif; Womack, James E

    2015-12-29

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  20. Estimating copy numbers of alleles from population-scale high-throughput sequencing data

    PubMed Central

    2015-01-01

    Background With the recent development of microarray and high-throughput sequencing (HTS) technologies, a number of studies have revealed catalogs of copy number variants (CNVs) and their association with phenotypes and complex traits. In parallel, a number of approaches to predict CNV regions and genotypes are proposed for both microarray and HTS data. However, only a few approaches focus on haplotyping of CNV loci. Results We propose a novel approach to infer copy unit alleles and their numbers in each sample simultaneously from population-scale HTS data by variational Bayesian inference on a generative probabilistic model inspired by latent Dirichlet allocation, which is a well studied model for document classification problems. In simulation studies, we evaluated concordance between inferred and true copy unit alleles for lower-, middle-, and higher-copy number dataset, in which precision and recall were ≥ 0.9 for data with mean coverage ≥ 10× per copy unit. We also applied the approach to HTS data of 1123 samples at highly variable salivary amylase gene locus and a pseudogene locus, and confirmed consistency of the estimated alleles within samples belonging to a trio of CEPH/Utah pedigree 1463 with 11 offspring. Conclusions Our proposed approach enables detailed analysis of copy number variations, such as association study between copy unit alleles and phenotypes or biological features including human diseases. PMID:25707811

  1. Low AMY1 Gene Copy Number Is Associated with Increased Body Mass Index in Prepubertal Boys

    PubMed Central

    Verginelli, Fabio; De Lellis, Laura; Capelli, Cristian; Verzilli, Delfina; Chiarelli, Francesco; Mohn, Angelika; Cama, Alessandro

    2016-01-01

    Background Genome-wide association studies have identified more than 60 single nucleotide polymorphisms associated with Body Mass Index (BMI). Additional genetic variants, such as copy number variations (CNV), have also been investigated in relation to BMI. Recently, the highly polymorphic CNV in the salivary amylase (AMY1) gene, encoding an enzyme implicated in the first step of starch digestion, has been associated with obesity in adults and children. We assessed the potential association between AMY1 copy number and a wide range of BMI in a population of Italian school-children. Methods 744 children (354 boys, 390 girls, mean age (±SD): 8.4±1.4years) underwent anthropometric assessments (height, weight) and collection of saliva samples for DNA extraction. AMY1 copies were evaluated by quantitative PCR. Results A significant increase of BMI z-score by decreasing AMY1 copy number was observed in boys (β: -0.117, p = 0.033), but not in girls. Similarly, waist circumference (β: -0.155, p = 0.003, adjusted for age) was negatively influenced by AMY1 copy number in boys. Boys with 8 or more AMY1 copy numbers presented a significant lower BMI z-score (p = 0.04) and waist circumference (p = 0.01) when compared to boys with less than 8 copy numbers. Conclusions In this pediatric-only, population-based study, a lower AMY1 copy number emerged to be associated with increased BMI in boys. These data confirm previous findings from adult studies and support a potential role of a higher copy number of the salivary AMY1 gene in protecting from excess weight gain. PMID:27149670

  2. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Cancer.gov

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies.

  3. Determination of Transgene Copy Number by Real-time Quantitative-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient methods to characterize transgenic plants are important to quickly understand the state of the transformant. Determining transgene copy number is an important step in transformant characterization and can differentiate between complex and simple transformation events. This knowledge can ...

  4. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  5. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  6. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  7. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... adopting his or her signature that appears in the filing. Execute each such document before or at the...

  8. Functional profiling and gene expression analysis of chromosomal copy number alterations

    PubMed Central

    Conde, Lucía; Montaner, David; Burguet-Castell, Jordi; Tárraga, Joaquín; Al-Shahrour, Fátima; Dopazo, Joaquín

    2007-01-01

    Contrarily to the traditional view in which only one or a few key genes were supposed to be the causative factors of diseases, we discuss the importance of considering groups of functionally related genes in the study of pathologies characterised by chromosomal copy number alterations. Recent observations have reported the existence of regions in higher eukaryotic chromosomes (including humans) containing genes of related function that show a high degree of coregulation. Copy number alterations will consequently affect to clusters of functionally related genes, which will be the final causative agents of the diseased phenotype, in many cases. Therefore, we propose that the functional profiling of the regions affected by copy number alterations must be an important aspect to take into account in the understanding of this type of pathologies. To illustrate this, we present an integrated study of DNA copy number variations, gene expression along with the functional profiling of chromosomal regions in a case of multiple myeloma. PMID:17597935

  9. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks.

    PubMed

    van Dyk, Ewald; Hoogstraat, Marlous; Ten Hoeve, Jelle; Reinders, Marcel J T; Wessels, Lodewyk F A

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects recurrent copy number breaks, rather than recurrently amplified or deleted regions. This change of perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-estimation of the background model are avoided. Furthermore, we control the false discovery rate on the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known cancer genes. PMID:27396759

  10. Porcine oocyte mtDNA copy number is high or low depending on the donor.

    PubMed

    Pedersen, Hanne Skovsgaard; Løvendahl, Peter; Larsen, Knud; Madsen, Lone Bruhn; Callesen, Henrik

    2016-08-01

    Oocyte capacity is relevant in understanding decreasing female fertility and in the use of assisted reproductive technologies in human and farm animals. Mitochondria are important to the development of a functionally good oocyte and the oocyte mtDNA copy number has been introduced as a useful parameter for prediction of oocyte competence. The aim of this study was to investigate: (i) if the oocyte donor has an influence on its oocyte's mtDNA copy number; and (ii) the relation between oocyte size and mtDNA copy number using pre- and postpubertal pig oocytes. Cumulus-oocyte complexes were collected from individual donor pigs. The oocytes were allocated into different size-groups, snap-frozen and single-oocyte mtDNA copy number was estimated by quantitative real-time PCR using the genes ND1 and COX1. Results showed that mean mtDNA copy number in oocytes from any individual donor could be categorized as either 'high' (≥100,000) or 'low' (<100,000) with no difference in threshold between pre- and postpubertal oocytes. No linear correlation was detected between oocyte size and mtDNA copy number within pre- and postpubertal oocytes. This study demonstrates the importance of the oocyte donor in relation to oocyte mtDNA copy number, irrespectively of the donor's puberty status and the oocyte's growth stage. Observations from this study facilitate both further investigations of the importance of mtDNA copy number and the unravelling of relations between different mitochondrial parameters and oocyte competence. PMID:26679989

  11. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing

    PubMed Central

    Shain, A. Hunter; Botton, Thomas; Bastian, Boris C.

    2016-01-01

    Germline copy number variants (CNVs) and somatic copy number alterations (SCNAs) are of significant importance in syndromic conditions and cancer. Massively parallel sequencing is increasingly used to infer copy number information from variations in the read depth in sequencing data. However, this approach has limitations in the case of targeted re-sequencing, which leaves gaps in coverage between the regions chosen for enrichment and introduces biases related to the efficiency of target capture and library preparation. We present a method for copy number detection, implemented in the software package CNVkit, that uses both the targeted reads and the nonspecifically captured off-target reads to infer copy number evenly across the genome. This combination achieves both exon-level resolution in targeted regions and sufficient resolution in the larger intronic and intergenic regions to identify copy number changes. In particular, we successfully inferred copy number at equivalent to 100-kilobase resolution genome-wide from a platform targeting as few as 293 genes. After normalizing read counts to a pooled reference, we evaluated and corrected for three sources of bias that explain most of the extraneous variability in the sequencing read depth: GC content, target footprint size and spacing, and repetitive sequences. We compared the performance of CNVkit to copy number changes identified by array comparative genomic hybridization. We packaged the components of CNVkit so that it is straightforward to use and provides visualizations, detailed reporting of significant features, and export options for integration into existing analysis pipelines. CNVkit is freely available from https://github.com/etal/cnvkit. PMID:27100738

  12. PCR Based Determination of Mitochondrial DNA Copy Number in Multiple Species

    PubMed Central

    Rooney, JP; Ryde, IT; Sanders, LH; Howlett, EH; Colton, MD; Germ, KE; Mayer, GD; Greenamyre, JT; Meyer, JN

    2015-01-01

    Summary Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter we describe methods for isolation of both mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. PMID:25308485

  13. Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease

    PubMed Central

    Pyle, Angela; Anugrha, Haidyan; Kurzawa-Akanbi, Marzena; Yarnall, Alison; Burn, David; Hudson, Gavin

    2016-01-01

    Like any organ, the brain is susceptible to the march of time and a reduction in mitochondrial biogenesis is a hallmark of the aging process. In the largest investigation of mitochondrial copy number in Parkinson's disease (PD) to date and by using multiple tissues, we demonstrate that reduced Parkinson DNA (mitochondrial DNA mtDNA) copy number is a biomarker for the etiology of PD. We used established methods of mtDNA quantification to assess the copy number of mtDNA in n = 363 peripheral blood samples, n = 151 substantia nigra pars compacta tissue samples and n = 120 frontal cortex tissue samples from community-based PD cases fulfilling UK-PD Society brain bank criteria for the diagnosis of PD. Accepting technical limitations, our data show that PD patients suffer a significant reduction in mtDNA copy number in both peripheral blood and the vulnerable substantia nigra pars compacta when compared to matched controls. Our study indicates that reduced mtDNA copy number is restricted to the affected brain tissue, but is also reflected in the peripheral blood, suggesting that mtDNA copy number may be a viable diagnostic predictor of PD. PMID:26639155

  14. Replicated linear association between DUF1220 copy number and severity of social impairment in autism.

    PubMed

    Davis, J M; Searles Quick, V B; Sikela, J M

    2015-06-01

    Sequences encoding DUF1220 protein domains exhibit an exceptional human-specific increase in copy number and have been associated with several phenotypes related to brain size. Autism is a highly heritable and heterogeneous condition characterized behaviorally by social and communicative impairments, and increased repetitive and stereotyped behavior. Given the accelerated brain growth pattern observed in many individuals with autism, and the association between DUF1220 subtype CON1 copy number and brain size, we previously investigated associations between CON1 copy number and autism-related symptoms. We determined that CON1 copy number increase is associated with increasing severity of all three behavioral features of autism. The present study sought to replicate these findings in an independent population (N = 166). Our results demonstrate a replication of the linear relationship between CON1 copy number and the severity of social impairment in individuals with autism as measured by Autism Diagnostic Interview-Revised Social Diagnostic Score, such that with each additional copy of CON1 Social Diagnostic Score increased 0.24 points (SE = 0.11, p = 0.036). We also identified an analogous trend between CON1 copy number and Communicative Diagnostic Score, but did not replicate the relationship between CON1 copy number and Repetitive Behavior Diagnostic Score. Interestingly, these associations appear to be most pronounced in multiplex children. These results, representing the first replication of a gene dosage relationship with the severity of a primary symptom of autism, lend further support to the possibility that the same protein domain family implicated in the evolutionary expansion of the human brain may also be involved in autism severity. PMID:25758905

  15. Ribosome Dwell Times and the Protein Copy Number Distribution

    NASA Astrophysics Data System (ADS)

    Gorissen, Mieke; Vanderzande, Carlo

    2012-09-01

    Translation is the cellular process in which ribosomes make proteins from information encoded on messenger RNA (mRNA). We model translation with an exclusion process taking into account the experimentally determined, non-exponential, waiting time between steps of a ribosome. From numerical simulations using realistic parameter values, we determine the distribution P( E) of the number of proteins E produced by one mRNA. We find that for small E this distribution is not geometric. We present a simplified and analytically solvable model that relates P( E) to the distributions of the times to produce the first E proteins.

  16. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform

    PubMed Central

    2011-01-01

    Background Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. Results APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. Conclusions If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package

  17. HaplotypeCN: copy number haplotype inference with Hidden Markov Model and localized haplotype clustering.

    PubMed

    Lin, Yen-Jen; Chen, Yu-Tin; Hsu, Shu-Ni; Peng, Chien-Hua; Tang, Chuan-Yi; Yen, Tzu-Chen; Hsieh, Wen-Ping

    2014-01-01

    Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states. PMID:24849202

  18. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster.

    PubMed Central

    Lyckegaard, E M; Clark, A G

    1989-01-01

    Multigene families on the Y chromosome face an unusual array of evolutionary forces. Both ribosomal DNA and Stellate, the two families examined here, have multiple copies of similar sequences on the X and Y chromosomes. Although the rate of sequence divergence on the Y chromosome depends on rates of mutation, gene conversion and exchange with the X chromosome, as well as purifying selection, the regulation of gene copy number may also depend on other pleiotropic functions, such as maintenance of chromosome pairing. Gene copy numbers were estimated for a series of 34 Y chromosome replacement lines using densitometric measurements of slot blots of genomic DNA from adult Drosophila melanogaster. Scans of autoradiographs of the same blots probed with the cloned alcohol dehydrogenase gene, a single copy gene, served as internal standards. Copy numbers span a 6-fold range for ribosomal DNA and a 3-fold range for Stellate DNA. Despite this magnitude of variation, there was no association between copy number and segregation variation of the sex chromosomes. Images PMID:2494656

  19. Leukocyte Mitochondrial DNA Copy Number Is Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Liu, Shih-Feng; Kuo, Ho-Chang; Tseng, Ching-Wan; Huang, Hung-Tu; Chen, Yung-Che; Tseng, Chia-Cheng; Lin, Meng-Chih

    2015-01-01

    Background Oxidative stress is known to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Evidence suggests that leukocytes mitochondria DNA (mtDNA) is susceptible to undergo mutations, insertions, or depletion in response to reactive oxidative stress (ROS). We hypothesize that mtDNA copy number is associated with the development of COPD. Methodology/Principal Findings Relative mtDNA copy number was measured by a quantitative real-time PCR assay using DNA extracted from peripheral leukocytes. MtDNA copy number of peripheral leukocytes in the COPD group (n = 86) is significantly decreased compared with non-smoker group (n = 77) (250.3± 21.5 VS. 464.2± 49.9, P<0.001). MtDNA copy number in the COPD group was less than that in the healthy smoking group, but P value nearly achieved significance (250.3± 21.5 VS. 404.0± 76.7, P = 0.08) MtDNA copy number has no significance with age, gender, body mass index, current smoking, and pack-years in COPD group, healthy smoker group and no smoker group, respectively. Serum glutathione level in the COPD group is significantly decreased compared with healthy smoker and non-smoker groups (4.5± 1.3 VS. 6.2± 1.9 and 4.5± 1.3 VS. 7.1±1.1 mU/mL; P<0.001 respectively). Pearson correlation test shows a significant liner correlation between mtDNA copy number and serum glutathione level (R = 0.2, P = 0.009). Conclusions/Significance COPD is associated with decreased leukocyte mtDNA copy number and serum glutathione. COPD is a regulatory disorder of leukocytes mitochondria. However, further studies are needed to determine the real mechanisms about the gene and the function of mitochondria. PMID:26394041

  20. Low Mitochondrial DNA Copy Number is Associated With Adverse Clinical Outcomes in Peritoneal Dialysis Patients.

    PubMed

    Yoon, Chang-Yun; Park, Jung Tak; Kee, Youn Kyung; Han, Seung Gyu; Han, In Mee; Kwon, Young Eun; Park, Kyoung Sook; Lee, Mi Jung; Han, Seung Hyeok; Kang, Shin-Wook; Yoo, Tae-Hyun

    2016-02-01

    Mitochondrial dysfunction may play an important role in abnormal glucose metabolism and systemic inflammation. We aimed to investigate the relationship between mitochondrial DNA (mtDNA) copy number and clinical outcomes in peritoneal dialysis (PD) patients. We recruited 120 prevalent PD patients and determined mtDNA copy number by PCR. Primary outcome was all-cause mortality, whereas secondary outcomes included cardiovascular events, technical PD failure, and incident malignancy. Cox proportional hazards analysis determined the independent association of mtDNA copy number with outcomes. The mean patient age was 52.3 years; 42.5% were men. The mean log mtDNA copy number was 3.30 ± 0.50. During a follow-up period of 35.4 ± 19.3 months, all-cause mortality and secondary outcomes were observed in 20.0% and 59.2% of patients, respectively. Secondary outcomes were significantly lower in the highest mtDNA copy number group than in the lower groups. In multiple Cox analysis, the mtDNA copy number was not associated with all-cause mortality (lower two vs highest tertile: hazard ratio [HR] = 1.208, 95% confidence interval [CI] = 0.477-3.061). However, the highest tertile group was significantly associated with lower incidences of secondary outcomes (lower two vs highest tertile: HR [95% CI] = 0.494 [0.277-0.882]) after adjusting for confounding factors. The decreased mtDNA copy number was significantly associated with adverse clinical outcomes in PD patients. PMID:26886611

  1. Low Mitochondrial DNA Copy Number is Associated With Adverse Clinical Outcomes in Peritoneal Dialysis Patients

    PubMed Central

    Yoon, Chang-Yun; Park, Jung Tak; Kee, Youn Kyung; Han, Seung Gyu; Han, In Mee; Kwon, Young Eun; Park, Kyoung Sook; Lee, Mi Jung; Han, Seung Hyeok; Kang, Shin-Wook; Yoo, Tae-Hyun

    2016-01-01

    Abstract Mitochondrial dysfunction may play an important role in abnormal glucose metabolism and systemic inflammation. We aimed to investigate the relationship between mitochondrial DNA (mtDNA) copy number and clinical outcomes in peritoneal dialysis (PD) patients. We recruited 120 prevalent PD patients and determined mtDNA copy number by PCR. Primary outcome was all-cause mortality, whereas secondary outcomes included cardiovascular events, technical PD failure, and incident malignancy. Cox proportional hazards analysis determined the independent association of mtDNA copy number with outcomes. The mean patient age was 52.3 years; 42.5% were men. The mean log mtDNA copy number was 3.30 ± 0.50. During a follow-up period of 35.4 ± 19.3 months, all-cause mortality and secondary outcomes were observed in 20.0% and 59.2% of patients, respectively. Secondary outcomes were significantly lower in the highest mtDNA copy number group than in the lower groups. In multiple Cox analysis, the mtDNA copy number was not associated with all-cause mortality (lower two vs highest tertile: hazard ratio [HR] = 1.208, 95% confidence interval [CI] = 0.477–3.061). However, the highest tertile group was significantly associated with lower incidences of secondary outcomes (lower two vs highest tertile: HR [95% CI] = 0.494 [0.277–0.882]) after adjusting for confounding factors. The decreased mtDNA copy number was significantly associated with adverse clinical outcomes in PD patients. PMID:26886611

  2. Performance of Molecular Inversion Probes (MIP) in Allele CopyNumber Determination

    SciTech Connect

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Wang,Nicolas J.; Ireland, James; Lin, Steven; Chen, Chunnuan; Heiser, LauraM.; Chin, Koei; Esserman, Laura; Gray, Joe W.; Spellman, Paul T.; Faham,Malek

    2007-05-14

    We have developed a new protocol for using MolecularInversion Probes (MIP) to accurately and specifically measure allele copynumber (ACN). The new protocol provides for significant improvementsincluding the reduction of input DNA (from 2?g) by more than 25 fold (to75ng total genomic DNA), higher overall precision resulting in one orderof magnitude lower false positive rate, and greater dynamic range withaccurate absolute copy number up to 60 copies.

  3. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-01-01

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant(1,2), but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability(3,4). We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements(5) or inferences(6,7). PMID:27617693

  4. BIOFILTER AS A FUNCTIONAL ANNOTATION PIPELINE FOR COMMON AND RARE COPY NUMBER BURDEN

    PubMed Central

    KIM, DOKYOON; LUCAS, ANASTASIA; GLESSNER, JOSEPH; VERMA, SHEFALI S.; BRADFORD, YUKI; LI, RUOWANG; FRASE, ALEX T.; HAKONARSON, HAKON; PEISSIG, PEGGY; BRILLIANT, MURRAY; RITCHIE, MARYLYN D.

    2015-01-01

    Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy number change, is a meaningful measure of genomic instability to identify the association between global genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to interpret biological meaning based on the accumulation of copy number change across the genome associated with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic regions and subsequently pathways and other gene groups using Biofilter – a bioinformatics tool that aggregates over a dozen publicly available databases of prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait phenotype derived from the electronic health record – total cholesterol. We identified several significant pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation p-value < 0.01). Based on the copy number burden analysis, it follows that the more and larger the copy number changes, the more likely that one or more target genes that influence disease risk and phenotypic severity will be affected. Thus, our study suggests the proposed enrichment pipeline could improve the

  5. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane.

    PubMed

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-01-01

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane. PMID:24857916

  6. c-myc copy number gains in bladder cancer detected by fluorescence in situ hybridization.

    PubMed Central

    Sauter, G.; Carroll, P.; Moch, H.; Kallioniemi, A.; Kerschmann, R.; Narayan, P.; Mihatsch, M. J.; Waldman, F. M.

    1995-01-01

    Amplification and overexpression of c-myc have been suggested as prognostic markers in human cancer. To assess the role of c-myc gene copy number alterations in bladder cancer, 87 bladder tumors were examined for c-myc aberrations by fluorescence in situ hybridization. Dual labeling hybridization with a repetitive pericentromeric probe specific for chromosome 8 and a probe for the c-myc locus (at 8q24) was performed to analyze c-myc copy number in relation to chromosome 8 copy number on a cell by cell basis. A clear-cut c-myc amplification (up to 40 to 150 copies per cell) was found in 3 tumors. There was a low level c-myc copy number increase in 32 of the remaining 84 tumors. There was no association of low level c-myc copy number increase with c-myc protein overexpression. This suggests that a c-myc gene copy number gain as detected by fluorescence in situ hybridization does not necessarily reflect a disturbed c-myc gene function but may indicate a structural chromosome 8 abnormality including gain of distal 8q. The strong association of low level c-myc (8q) gains with tumor grade (P < 0.0001), stage (P < 0.0001), chromosome polysomy (P < 0.0001), p53 protein expression (P = 0.0019), p53 deletion (P = 0.0403), and tumor cell proliferation (Ki67 labeling index; P = 0.0021) is consistent with a role of chromosome 8 alterations in bladder cancer progression. Images Figure 1 PMID:7747807

  7. Quantification of protein copy number in single mitochondria: The Bcl-2 family proteins.

    PubMed

    Chen, Chaoxiang; Zhang, Xiang; Zhang, Shuyue; Zhu, Shaobin; Xu, Jingyi; Zheng, Yan; Han, Jinyan; Zeng, Jin-Zhang; Yan, Xiaomei

    2015-12-15

    Bcl-2 family proteins, represented by antiapoptotic protein Bcl-2 and proapoptotic protein Bax, are key regulators of mitochondria-mediated apoptosis pathway. To build a quantitative model of how Bcl-2 family protein interactions control mitochondrial outer membrane permeabilization and subsequent cytochrome c release, it is essential to know the number of proteins in individual mitochondria. Here, we report an effective method to quantify the copy number and distribution of proteins in single mitochondria via immunofluorescent labeling and sensitive detection by a laboratory-built high sensitivity flow cytometer (HSFCM). Mitochondria isolated from HeLa cells were stained with Alexa Fluor 488 (AF488)-labeled monoclonal antibodies specifically targeting Bcl-2 or Bax and with nucleic acid dye. A series of fluorescent nanospheres with fluorescence intensity calibrated in the unit of molecules of equivalent soluble fluorochrome (MESF)-AF488 were used to construct a calibration curve for converting the immunofluorescence of a single mitochondrion to the number of antibodies bound to it and then to the number of proteins per mitochondrion. Under the normal condition, the measured mean copy numbers were 1300 and 220 per mitochondrion for Bcl-2 and Bax, respectively. A significant variation in protein copy number was identified, which ranged from 130 to 6000 (2.5-97.5%) for Bcl-2 and from 65 to 700 (2.5-97.5%) for Bax, respectively. We observed an approximately 4.4 fold increase of Bax copy number per mitochondrion upon 9h of apoptosis stimulation while the abundance of Bcl-2 remained almost unchanged. To the best of our knowledge, this is the first report of Bcl-2 family protein copy number and variance in single mitochondria. Collectively, we demonstrate that the HSFCM-based immunoassay provides a rapid and sensitive method for determining protein copy number distribution in single mitochondria. PMID:26176207

  8. Retroelements contribute to the excess low-copy-number DNA in pine.

    PubMed

    Elsik, C G; Williams, C G

    2000-09-01

    Excess DNA in the single-copy component is rarely recognized as a contributor to the C-value paradox yet the single-copy component of the pine genome is reported to comprise over 3000 Mb of DNA, in large excess over the estimated 100 Mb required for gene expression. Two hypotheses regarding the factors that might contribute to the excess low-copy-number DNA were tested. The first hypothesis proposes that the excess low-copy kinetic component is actually overestimated by reassociation data analysis. To test this, a previously published C0t curve for Pinus strobus was reanalyzed using a new estimate of genome size based on laser flow cytometry. Part of the excess low-copy-number DNA in the pine genome could be attributed to the choice of parameters used in the analysis of the reassociation data. The second hypothesis holds that diverged retrotransposons contribute to the excess low-copy DNA. Sequences randomly sampled from single-copy and low-repetitive kinetic components of the P. taeda genome were characterized. Twelve of 46 fragments cloned from these fractions were found to show sequence similarity to retroelements: hence diverged retroelements contribute to the excess low-repetitive kinetic component in the pine genome. Similarity search was shown to be a conservative method for identifying retroelements, and thus the number of retroelements in the low-copy component was actually underestimated. Most of the retroelements in this fraction were nonfunctional. divergent from known retroelement families and previously reported only for flowering plants. Divergent retrotransposons are thus a major factor contributing to the expansion of the low-repetitive DNA component in higher plants. PMID:11016832

  9. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds

    PubMed Central

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D.

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs. PMID:26863414

  10. Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus.

    PubMed

    Marx, Hans; Mecklenbräuker, Astrid; Gasser, Brigitte; Sauer, Michael; Mattanovich, Diethard

    2009-12-01

    The yeast Pichia pastoris is a widely used host organism for heterologous protein production. One of the basic steps for strain improvement is to ensure a sufficient level of transcription of the heterologous gene, based on promoter strength and gene copy number. To date, high-copy-number integrants of P. pastoris are achievable only by screening of random events or by cloning of gene concatemers. Methods for rapid and reliable multicopy integration of the expression cassette are therefore desirable. Here we present such a method based on vector integration into the rDNA locus and post-transformational vector amplification by repeated selection on increased antibiotic concentrations. Data are presented for two exemplary products: human serum albumin, which is secreted into the supernatant, and human superoxide dismutase, which is accumulated in the cytoplasm of the cells. The striking picture evolving is that intracellular protein production is tightly correlated with gene copy number, while use of the secretory pathway introduces a high clonal variability and the correlation with gene copy number is valid only for low gene copy numbers. PMID:19799640

  11. Probe-free allele-specific copy number detection and analysis of tumors.

    PubMed

    Zhu, Ailin; Guan, Xiaowei; Gu, Xinbin; Xie, Guiqin

    2016-03-15

    Cancer development and progression frequently involve nucleotide mutations as well as amplifications and deletions of genomic segments. Quantification of allele-specific copy number is an important step in characterizing tumor genomes for precision medicine. Despite advances in approaches to high-throughput genomic DNA analysis, inexpensive and simple methods for analyzing complex nucleotide and copy number variants are still needed. Real-time polymerase chain reaction (PCR) methods for discovering and genotyping single nucleotide polymorphisms are becoming increasingly important in genetic analysis. In this study, we describe a simple, single-tube, probe-free method that combines SYBR Green I-based quantitative real-time PCR and quantitative melting curve analysis both to detect specific nucleotide variants and to quantify allele-specific copy number variants of tumors. The approach is based on the quantification of the targets of interest and the relative abundance of two alleles in a single tube. The specificity, sensitivity, and utility of the assay were demonstrated in detecting allele-specific copy number changes critical for carcinogenesis and therapeutic intervention. Our approach would be useful for allele-specific copy number analysis or precise genotyping. PMID:26743720

  12. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    NASA Technical Reports Server (NTRS)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  13. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney

    PubMed Central

    Westland, Rik; Verbitsky, Miguel; Vukojevic, Katarina; Perry, Brittany J.; Fasel, David A.; Zwijnenburg, Petra J.G.; Bökenkamp, Arend; Gille, Johan J.P.; Saraga-Babic, Mirna; Ghiggeri, Gian Marco; D’Agati, Vivette D.; Schreuder, Michiel F.; Gharavi, Ali G.; van Wijk, Joanna A.E.; Sanna-Cherchi, Simone

    2016-01-01

    Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations in 80 patients from the KIMONO-study cohort for which pathogenic mutations in three genes commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the most likely genetic drivers for the CAKUT phenotype underlying these rare copy number variations, we used a systematic in silico approach based on frequency in a large dataset of controls, annotation with publicly available databases for developmental diseases, tolerance and haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. Five novel candidate genes for CAKUT were identified that showed specific expression in the human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance in the determination of kidney developmental phenotypes. Additionally, we defined a systematic strategy to identify genetic drivers underlying rare copy number variations. PMID:26352300

  14. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    PubMed

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs. PMID:26863414

  15. Copy number variations in the amylase gene (AMY2B) in Japanese native dog breeds.

    PubMed

    Tonoike, A; Hori, Y; Inoue-Murayama, M; Konno, A; Fujita, K; Miyado, M; Fukami, M; Nagasawa, M; Mogi, K; Kikusui, T

    2015-10-01

    A recent study suggested that increased copy numbers of the AMY2B gene might be a crucial genetic change that occurred during the domestication of dogs. To investigate AMY2B expansion in ancient breeds, which are highly divergent from modern breeds of presumed European origins, we analysed copy numbers in native Japanese dog breeds. Copy numbers in the Akita and Shiba, two ancient breeds in Japan, were higher than those in wolves. However, compared to a group of various modern breeds, Akitas had fewer copy numbers, whereas Shibas exhibited the same level of expansion as modern breeds. Interestingly, average AMY2B copy numbers in the Jomon-Shiba, a unique line of the Shiba that has been bred to maintain their appearance resembling ancestors of native Japanese dogs and that originated in the same region as the Akita, were lower than those in the Shiba. These differences may have arisen from the earlier introduction of rice farming to the region in which the Shiba originated compared to the region in which the Akita and the Jomon-Shiba originated. Thus, our data provide insights into the relationship between the introduction of agriculture and AMY2B expansion in dogs. PMID:26358734

  16. Relationships between cell cycle regulator gene copy numbers and protein expression levels in Schizosaccharomyces pombe.

    PubMed

    Chino, Ayako; Makanae, Koji; Moriya, Hisao

    2013-01-01

    We previously determined the copy number limits of overexpression for cell division cycle (cdc) regulatory genes in the fission yeast Schizosaccharomyces pombe using the "genetic tug-of-war" (gTOW) method. In this study, we measured the levels of tandem affinity purification (TAP)-tagged target proteins when their copy numbers are increased in gTOW. Twenty analyzed genes showed roughly linear correlations between increased protein levels and gene copy numbers, which suggested a general lack of compensation for gene dosage in S. pombe. Cdc16 and Sid2 protein levels but not their mRNA levels were much lower than that expected by their copy numbers, which suggested the existence of a post-transcriptional down regulation of these genes. The cyclin Cig1 protein level and its mRNA level were much higher than that expected by its copy numbers, which suggested a positive feedback mechanism for its expression. A higher Cdc10 protein level and its mRNA level, probably due to cloning its gene into a plasmid, indicated that Cdc10 regulation was more robust than that previously predicted. PMID:24019917

  17. Chloroplast DNA Copy Number Changes during Plant Development in Organelle DNA Polymerase Mutants

    PubMed Central

    Morley, Stewart A.; Nielsen, Brent L.

    2016-01-01

    Chloroplast genome copy number is very high in leaf tissue, with upwards of 10,000 or more copies of the chloroplast DNA (ctDNA) per leaf cell. This is often promoted as a major advantage for engineering the plastid genome, as it provides high gene copy number and thus is expected to result in high expression of foreign proteins from integrated genes. However, it is also known that ctDNA copy number and ctDNA integrity decrease as cells age. Quantitative PCR (qPCR) allows measurement of organelle DNA levels relative to a nuclear gene target. We have used this approach to determine changes in copy number of ctDNA relative to the nuclear genome at different ages of Arabidopsis plant growth and in organellar DNA polymerase mutants. The mutant plant lines have T-DNA insertions in genes encoding the two organelle localized DNA polymerases (PolIA and PolIB). Each of these mutant lines exhibits some delay in plant growth and development as compared to wild-type plants, with the PolIB plants having a more pronounced delay. Both mutant lines develop to maturity and produce viable seeds. Mutants for both proteins were observed to have a reduction in ctDNA and mtDNA copy number relative to wild type plants at all time points as measured by qPCR. Both DNA polymerase mutants had a fairly similar decrease in ctDNA copy number, while the PolIB mutant had a greater effect of reduction in mtDNA levels. However, despite similar decreases in genome copy number, RT-PCR analysis of PolIA mutants show that PolIB expression remains unchanged, suggesting that PolIA may not be essential to plant survival. Furthermore, genotypic analysis of plants from heterozygous parents display a strong pressure to maintain two functioning copies of PolIB. These results indicate that the two DNA polymerases are both important in ctDNA replication, and they are not fully redundant to each other, suggesting each has a specific function in plant organelles. PMID:26870072

  18. Mitochondrial DNA copy number and lung cancer risk in a prospective cohort study

    PubMed Central

    Hosgood, H.Dean; Liu, Chin-San; Rothman, Nathaniel; Weinstein, Stephanie J.; Bonner, Matthew R.; Shen, Min; Lim, Unhee; Virtamo, Jarmo; Cheng, Wen-ling; Albanes, Demetrius; Lan, Qing

    2010-01-01

    Mitochondria are eukaryotic organelles responsible for energy production. Mitochondrial DNA (mtDNA) lack introns and protective histones, have limited DNA repair capacity and compensate for damage by increasing the number of mtDNA copies. As a consequence, mitochondria are more susceptible to reactive oxygen species, an important determinant of cancer risk, and it is hypothesized that increased mtDNA copy number may be associated with carcinogenesis. We assessed the association of mtDNA copy number and lung cancer risk in 227 prospectively collected cases and 227 matched controls from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for age at randomization, smoking years and number of cigarettes smoked per day. There was suggestion of a dose-dependent relationship between mtDNA copy number and subsequent risk of lung cancer, with a prominent effect observed in the highest mtDNA copy number quartile [ORs (95% CI) by quartile: 1.0 (reference), 1.3 (0.7–2.5), 1.1 (0.6–2.2) and 2.4 (1.1–5.1); Ptrend = 0.008]. This is the first report, to the best of our knowledge, to suggest that mtDNA copy number may be positively associated with subsequent risk of lung cancer in a prospective cohort study; however, replication is needed in other studies and populations. PMID:20176654

  19. Evaluating quantitative methods for measuring plasmid copy numbers in single cells

    PubMed Central

    Tal, Shay; Paulsson, Johan

    2013-01-01

    The life of plasmids is a constant battle against fluctuations: failing to correct copy number fluctuations can increase the plasmid loss rate by many orders of magnitude, as can a failure to more evenly divide the copies between daughters at cell division. Plasmids are therefore long-standing model systems for stochastic processes in cells, much thanks to the efforts of Kurt Nordström to whose memory this issue is dedicated. Here we analyze a range of experimental methods for measuring plasmid copy numbers in single cells, focusing on challenges, trade-offs and necessary experimental controls. In particular we analyze published and unpublished strategies to infer copy numbers from expression of plasmid-encoded reporters, direct labeling of plasmids with fluorescent probes or DNA binding proteins fused to fluorescent reporters, PCR based methods applied to single cell lysates, and plasmid-specific replication arrest. We conclude that no method currently exists to measure plasmid copy numbers in single cells, and that most methods instead inadvertently measure various types of experimental noise. We also discuss how accurate methods can be developed. PMID:22305922

  20. Diet and the evolution of human amylase gene copy number variation

    PubMed Central

    Perry, George H.; Dominy, Nathaniel J.; Claw, Katrina G.; Lee, Arthur S.; Fiegler, Heike; Redon, Richard; Werner, John; Villanea, Fernando A.; Mountain, Joanna L.; Misra, Rajeev; Carter, Nigel P.; Lee, Charles; Stone, Anne C.

    2008-01-01

    Starch consumption is a prominent characteristic of agricultural societies and hunter-gatherers in arid environments. In contrast, rainforest and circum-arctic hunter-gatherers and some pastoralists consume much less starch1-3. This behavioral variation raises the possibility that different selective pressures have acted on amylase, the enzyme responsible for starch hydrolysis4. We found that salivary amylase gene (AMY1) copy number is correlated positively with salivary amylase protein levels, and that individuals from populations with high-starch diets have on average more AMY1 copies than those with traditionally low-starch diets. Comparisons with other loci in a subset of these populations suggest that the level of AMY1 copy number differentiation is unusual. This example of positive selection on a copy number variable gene is one of the first in the human genome. Higher AMY1 copy numbers and protein levels likely improve the digestion of starchy foods, and may buffer against the fitness-reducing effects of intestinal disease. PMID:17828263

  1. Hardy-Weinberg equilibrium revisited for inferences on genotypes featuring allele and copy-number variations.

    PubMed

    Recke, Andreas; Recke, Klaus-Günther; Ibrahim, Saleh; Möller, Steffen; Vonthein, Reinhard

    2015-01-01

    Copy number variations represent a substantial source of genetic variation and are associated with a plethora of physiological and pathophysiological conditions. Joint copy number and allelic variations (CNAVs) are difficult to analyze and require new strategies to unravel the properties of genotype distributions. We developed a Bayesian hidden Markov model (HMM) approach that allows dissecting intrinsic properties and metastructures of the distribution of CNAVs within populations, in particular haplotype phases of genes with varying copy numbers. As a key feature, this approach incorporates an extension of the Hardy-Weinberg equilibrium, allowing both a comprehensive and parsimonious model design. We demonstrate the quality of performance and applicability of the HMM approach with a real data set describing the Fcγ receptor (FcγR) gene region. Our concept, using a dynamic process to analyze a static distribution, establishes the basis for a novel understanding of complex genomic data sets. PMID:25765626

  2. Sequential Model Selection based Segmentation to Detect DNA Copy Number Variation

    PubMed Central

    Hu, Jianhua; Zhang, Liwen; Wang, Huixia Judy

    2016-01-01

    Summary Array-based CGH experiments are designed to detect genomic aberrations or regions of DNA copy-number variation that are associated with an outcome, typically a state of disease. Most of the existing statistical methods target on detecting DNA copy number variations in a single sample or array. We focus on the detection of group effect variation, through simultaneous study of multiple samples from multiple groups. Rather than using direct segmentation or smoothing techniques, as commonly seen in existing detection methods, we develop a sequential model selection procedure that is guided by a modified Bayesian information criterion. This approach improves detection accuracy by accumulatively utilizing information across contiguous clones, and has computational advantage over the existing popular detection methods. Our empirical investigation suggests that the performance of the proposed method is superior to that of the existing detection methods, in particular, in detecting small segments or separating neighboring segments with differential degrees of copy-number variation. PMID:26954760

  3. Hardy-Weinberg equilibrium revisited for inferences on genotypes featuring allele and copy-number variations

    PubMed Central

    Recke, Andreas; Recke, Klaus-Günther; Ibrahim, Saleh; Möller, Steffen; Vonthein, Reinhard

    2015-01-01

    Copy number variations represent a substantial source of genetic variation and are associated with a plethora of physiological and pathophysiological conditions. Joint copy number and allelic variations (CNAVs) are difficult to analyze and require new strategies to unravel the properties of genotype distributions. We developed a Bayesian hidden Markov model (HMM) approach that allows dissecting intrinsic properties and metastructures of the distribution of CNAVs within populations, in particular haplotype phases of genes with varying copy numbers. As a key feature, this approach incorporates an extension of the Hardy-Weinberg equilibrium, allowing both a comprehensive and parsimonious model design. We demonstrate the quality of performance and applicability of the HMM approach with a real data set describing the Fcγ receptor (FcγR) gene region. Our concept, using a dynamic process to analyze a static distribution, establishes the basis for a novel understanding of complex genomic data sets. PMID:25765626

  4. Copy number variations in IL22 gene are associated with Psoriasis vulgaris.

    PubMed

    Prans, Ele; Kingo, Külli; Traks, Tanel; Silm, Helgi; Vasar, Eero; Kõks, Sulev

    2013-06-01

    Psoriasis vulgaris (PsV) is a frequent, chronically relapsing, immune-mediated systemic disease with characteristic skin changes. IL22 is a cytokine of IL10 family, with significant proliferative effect on different cell lines. Copy number variations (CNV) have been discovered to have phenotypic consequences and are associated with various types of diseases. In the work presented here we analyzed the copy number variations in IL22 gene of exon1 and exon5. Our results showed that the IL22 gene exon1 was significantly associated with psoriasis severity (P<0.0001). However, the association between IL22 gene exon5 copy numbers and psoriasis was not detected. PMID:23395647

  5. Interactions between copy number and expression level of genes involved in fluconazole resistance in Candida glabrata

    PubMed Central

    Abbes, Salma; Mary, Charles; Sellami, Hayet; Michel-Nguyen, Annie; Ayadi, Ali; Ranque, Stéphane

    2013-01-01

    Objectives: This study aimed to elucidate the relative involvement of drug resistance gene copy number and overexpression in fluconazole resistance in clinical C. glabrata isolates using a population-based approach. Methods: Fluconazole resistance levels were quantified using the minimal inhibitory concentration (MIC) via Etest method. Both gene expression levels and gene copy number of CgCDR1, CgPDH1, CgERG11, and CgSNQ2 were assessed via quantitative real-time PCR. The influence of the main effects and first-level interactions of both the expression level and copy number of these genes on fluconazole resistance levels were analyzed using a multivariate statistical model. Results: Forty-three C. glabrata isolates were collected from 30 patients during in a hospital survey. In the multivariate analysis, C. glabrata fluconazole MICs were independently increased by CgSNQ2 overexpression (p < 10−4) and the interaction between CgPDH1 gene copy number and CgPDH1 expression level (p = 0.038). In contrast, both CgPDH1 overexpression (p = 0.049) and the interaction between CgSNQ2 and CgERG11 expression (p = 0.003) led to a significant decrease in fluconazole MICs. Conclusion: Fluconazole resistance in C. glabrata involves complex interactions between drug resistance gene expression and/or copy number. The population-based multivariate analysis highlighted the involvement of the CgSNQ2 gene in fluconazole resistance and the complex effect of the other genes such as PDH1 for which overexpression was associated with reduced fluconazole resistance levels, while the interaction between PDH1 overexpression and copy number was associated with increased resistance levels. PMID:24273749

  6. Selection of Suitable Endogenous Reference Genes for Relative Copy Number Detection in Sugarcane

    PubMed Central

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-01-01

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential “single copy” genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3—high copy number group, TST-1 and PRR-1—medium copy number group, P4H-1, APRT-2 and CYC-2—low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane. PMID:24857916

  7. Urinary Mitochondrial DNA Copy Number Identifies Chronic Renal Injury in Hypertensive Patients.

    PubMed

    Eirin, Alfonso; Saad, Ahmed; Tang, Hui; Herrmann, Sandra M; Woollard, John R; Lerman, Amir; Textor, Stephen C; Lerman, Lilach O

    2016-08-01

    Mitochondrial injury contributes to renal dysfunction in several models of renal disease, but its involvement in human hypertension remains unknown. Fragments of the mitochondrial genome released from dying cells are considered surrogate markers of mitochondrial injury. We hypothesized that hypertension would be associated with increased urine mitochondrial DNA (mtDNA) copy numbers. We prospectively measured systemic and urinary copy number of the mtDNA genes cytochrome-c oxidase-3 and NADH dehydrogenase subunit-1 by quantitative polymerase chain reaction in essential (n=25) and renovascular (RVH, n=34) hypertensive patients and compared them with healthy volunteers (n=22). Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin served as indices of renal injury. Renal blood flow and oxygenation were assessed by multidetector computed tomography and blood oxygen level-dependent magnetic resonance imaging. Blood pressure, urinary neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 were similarly elevated in essential hypertension and RVH, and estimated glomerular filtration rate was lower in RVH versus healthy volunteers and essential hypertension. Renal blood flow was lower in RVH compared with essential hypertension. Urinary mtDNA copy number was higher in hypertension compared with healthy volunteers, directly correlated with urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 and inversely with estimated glomerular filtration rate. In RVH, urinary mtDNA copy number correlated directly with intrarenal hypoxia. Furthermore, in an additional validation cohort, urinary mtDNA copy number was higher in RVH compared with healthy volunteers (n=10 each). The change in serum creatinine levels and estimated glomerular filtration rate 3 months after medical therapy without or with revascularization correlated with the change in urinary mtDNA. Therefore, elevated urinary mtDNA copy numbers in

  8. EXCAVATOR: detecting copy number variants from whole-exome sequencing data.

    PubMed

    Magi, Alberto; Tattini, Lorenzo; Cifola, Ingrid; D'Aurizio, Romina; Benelli, Matteo; Mangano, Eleonora; Battaglia, Cristina; Bonora, Elena; Kurg, Ants; Seri, Marco; Magini, Pamela; Giusti, Betti; Romeo, Giovanni; Pippucci, Tommaso; De Bellis, Gianluca; Abbate, Rosanna; Gensini, Gian Franco

    2013-01-01

    We developed a novel software tool, EXCAVATOR, for the detection of copy number variants (CNVs) from whole-exome sequencing data. EXCAVATOR combines a three-step normalization procedure with a novel heterogeneous hidden Markov model algorithm and a calling method that classifies genomic regions into five copy number states. We validate EXCAVATOR on three datasets and compare the results with three other methods. These analyses show that EXCAVATOR outperforms the other methods and is therefore a valuable tool for the investigation of CNVs in largescale projects, as well as in clinical research and diagnostics. EXCAVATOR is freely available at http://sourceforge.net/projects/excavatortool/. PMID:24172663

  9. Interactive analysis and assessment of single-cell copy-number variations.

    PubMed

    Garvin, Tyler; Aboukhalil, Robert; Kendall, Jude; Baslan, Timour; Atwal, Gurinder S; Hicks, James; Wigler, Michael; Schatz, Michael C

    2015-11-01

    We present Ginkgo (http://qb.cshl.edu/ginkgo), a user-friendly, open-source web platform for the analysis of single-cell copy-number variations (CNVs). Ginkgo automatically constructs copy-number profiles of cells from mapped reads and constructs phylogenetic trees of related cells. We validated Ginkgo by reproducing the results of five major studies. After comparing three commonly used single-cell amplification techniques, we concluded that degenerate oligonucleotide-primed PCR is the most consistent for CNV analysis. PMID:26344043

  10. DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials.

    PubMed

    Corbisier, Philippe; Pinheiro, Leonardo; Mazoua, Stéphane; Kortekaas, Anne-Marie; Chung, Pui Yan Jenny; Gerganova, Tsvetelina; Roebben, Gert; Emons, Hendrik; Emslie, Kerry

    2015-03-01

    The value assignment for properties of six certified reference materials (ERM-AD623a-f), each containing a plasmid DNA solution ranging from 1 million to 10 copies per μL, by using digital PCR (dPCR) with the BioMark™ HD System (Fluidigm) has been verified by applying droplet digital PCR (ddPCR) using the QX100 system (Bio-Rad). One of the critical factors in the measurement of copy number concentrations by digital PCR is the partition volume. Therefore, we determined the average droplet volume by optical microscopy, revealing an average droplet volume that is 8 % smaller than the droplet volume used as the defined parameter in the QuantaSoft software version 1.3.2.0 (Bio-Rad) to calculate the copy number concentration. This observation explains why copy number concentrations estimated with ddPCR and using an average droplet volume predefined in the QuantaSoft software were systematically lower than those measured by dPCR, creating a significant bias between the values obtained by these two techniques. The difference was not significant anymore when the measured droplet volume of 0.834 nL was used to estimate copy number concentrations. A new version of QuantaSoft software (version 1.6.6.0320), which has since been released with Bio-Rad's new QX200 systems and QX100 upgrades, uses a droplet volume of 0.85 nL as a defined parameter to calculate copy number concentration. PMID:25600685

  11. Reliable transgene-independent method for determining Sleeping Beauty transposon copy numbers

    PubMed Central

    2011-01-01

    Background The transposon-based gene delivery technique is emerging as a method of choice for gene therapy. The Sleeping Beauty (SB) system has become one of the most favored methods, because of its efficiency and its random integration profile. Copy-number determination of the delivered transgene is a crucial task, but a universal method for measuring this is lacking. In this paper, we show that a real-time quantitative PCR-based, transgene-independent (qPCR-TI) method is able to determine SB transposon copy numbers regardless of the genetic cargo. Results We designed a specific PCR assay to amplify the left inverted repeat-direct repeat region of SB, and used it together with the single-copy control gene RPPH1 and a reference genomic DNA of known copy number. The qPCR-TI method allowed rapid and accurate determination of SB transposon copy numbers in various cell types, including human embryonic stem cells. We also found that this sensitive, rapid, highly reproducible and non-radioactive method is just as accurate and reliable as the widely used blotting techniques or the transposon display method. Because the assay is specific for the inverted repeat region of the transposon, it could be used in any system where the SB transposon is the genetic vehicle. Conclusions We have developed a transgene-independent method to determine copy numbers of transgenes delivered by the SB transposon system. The technique is based on a quantitative real-time PCR detection method, offering a sensitive, non-radioactive, rapid and accurate approach, which has a potential to be used for gene therapy. PMID:21371313

  12. Mitochondrial Copy Number and D-Loop Variants in Pompe Patients

    PubMed Central

    Bahreini, Fatemeh; Houshmand, Massoud; Modaresi, Mohammad Hossein; Tonekaboni, Hassan; Nafissi, Shahriar; Nazari, Ferdoss; Akrami, Seyed Mohammad

    2016-01-01

    Objective Pompe disease is a rare neuromuscular genetic disorder and is classified into two forms of early and late-onset. Over the past two decades, mitochondrial abnor- malities have been recognized as an important contributor to an array of neuromuscular diseases. We therefore aimed to compare mitochondrial copy number and mitochondrial displacement-loop sequence variation in infantile and adult Pompe patients. Materials and Methods In this retrospective study, the mitochondrial D-loop sequence was analyzed by polymerase chain reaction (PCR) and direct sequencing to detect pos- sible variation in 28 Pompe patients (17 infants and 11 adults). Results were compared with 100 healthy controls and sequences of all individuals were compared with the Cam- bridge reference sequence. Real-time PCR was used to quantify mitochondrial DNA copy number. Results Among 59 variants identified, 37(62.71%) were present in the infant group, 14(23.333%) in the adult group and 8(13.333%) in both groups. Mitochondrial copy number in infant patients was lower than adults (P<0.05). A significant frequency differ- ence was seen between the two groups for 12 single nucleotide polymorphism (SNP). A novel insertion (317-318 ins CCC) was observed in patients and six SNPs were iden- tified as neutral variants in controls. There was an inverse association between mito- chondrial copy number and D-loop variant number (r=0.54). Conclusion The 317-318 ins CCC was detected as a new mitochondrial variant in Pompe patients. PMID:27602323

  13. Measurement of the copy number of the master quorum-sensing regulator of a bacterial cell.

    PubMed

    Teng, Shu-Wen; Wang, Yufang; Tu, Kimberly C; Long, Tao; Mehta, Pankaj; Wingreen, Ned S; Bassler, Bonnie L; Ong, N P

    2010-05-19

    Quorum-sensing is the mechanism by which bacteria communicate and synchronize group behaviors. Quantitative information on parameters such as the copy number of particular quorum-sensing proteins should contribute strongly to understanding how the quorum-sensing network functions. Here, we show that the copy number of the master regulator protein LuxR in Vibrio harveyi can be determined in vivo by exploiting small-number fluctuations of the protein distribution when cells undergo division. When a cell divides, both its volume and LuxR protein copy number, N, are partitioned with slight asymmetries. We measured the distribution functions describing the partitioning of the protein fluorescence and the cell volume. The fluorescence distribution is found to narrow systematically as the LuxR population increases, whereas the volume partitioning is unchanged. Analyzing these changes statistically, we determined that N = 80-135 dimers at low cell density and 575 dimers at high cell density. In addition, we measured the static distribution of LuxR over a large (3000) clonal population. Combining the static and time-lapse experiments, we determine the magnitude of the Fano factor of the distribution. This technique has broad applicability as a general in vivo technique for measuring protein copy number and burst size. PMID:20441767

  14. The copy number of rice CACTA DNA transposons carrying MIR820 does not correlate with MIR820 expression

    PubMed Central

    Nosaka, Misuzu; Ishiwata, Aiko; Shimizu-Sato, Sae; Ono, Akemi; Ishimoto, Kiyoe; Noda, Yusaku; Sato, Yutaka

    2013-01-01

    miR820 is a small RNA species (22 and 24 nucleotides), produced from transcripts originated from a region inside CACTA DNA transposons in rice. Because MIR820 is a transposon gene, its expression may depend on the transposon copy number. Here, we investigated the copy number of MIR820 and its expression levels in various cultivars and wild species of rice. We found no correlation between copy number and expression level, suggesting that MIR820 transcription is regulated not by the copy dosage but by the epigenetic state of each copy. PMID:23733074

  15. Assessment of HER2 status in invasive breast cancers with increased centromere 17 copy number.

    PubMed

    Jang, Min Hye; Kim, Eun Joo; Kim, Hyun Jeong; Chung, Yul Ri; Park, So Yeon

    2015-08-01

    This study was designed to evaluate usefulness of additional fluorescence in situ hybridization (FISH) using other reference genes on chromosome 17 for assessment of HER2 status in invasive breast cancers with increased centromere 17 copy number, and to compare this approach with conventional methods based on the 2007 and 2013 ASCO/CAP guidelines. We performed FISH with probes for SMS, RARA, and TP53 on 253 breast cancers with centromeric probe CEP17 copy number ≥ 2.6 using tissue microarrays. If one or more gene had a mean copy number <2.6, the largest number for that gene(s) was chosen as an alternative to CEP17 copy number. Of the 243 cases in which re-grading was possible, only 2 had copy numbers ≥ 2.6 for RARA, SMS, and TP53. Of the 151 breast cancers which were considered HER2 non-amplified by the 2007 ASCO/CAP guidelines using the HER2:CEP17 ratio, 42 (27.8%) were re-graded as amplified and 33 (21.8%) as equivocal after FISH using additional reference genes. Of the 101 HER2-non-amplified cases by the 2013 ASCO/CAP guidelines, 2 (2.0%) were reclassified as amplified and 24 (23.8%) as equivocal. Of 46 equivocal cases, 35 (76.1%) were re-graded as amplified. After re-grading, HER2-amplified cases were significantly increased, and the concordance between HER2 FISH and HER2 immunohistochemistry decreased. And some pathologic features of the cases which were designated to have HER2 amplification after additional FISH were not compatible with those of HER2-amplified breast cancers. The use of additional reference genes has been suggested as an option for accurate assessment of HER2 status in breast cancers with increased CEP17 copy number. However, this has limitations in that it can cause over-grading of HER2 status in tumors that lose the new reference genes. Thus, at present, it seems that additional FISH using other reference gene such as SMS, RARA, and TP53 for the cases with increased CEP17 copy number is not suitable for daily practice. PMID:26223814

  16. Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging

    PubMed Central

    2014-01-01

    Background The mitochondria are essential organelles and are the location of cellular respiration, which is responsible for the majority of ATP production. Each cell contains multiple mitochondria, and each mitochondrion contains multiple copies of its own circular genome. The ratio of mitochondrial genomes to nuclear genomes is referred to as mitochondrial copy number. Decreases in mitochondrial copy number are known to occur in many tissues as people age, and in certain diseases. The regulation of mitochondrial copy number by nuclear genes has been studied extensively. While mitochondrial variation has been associated with longevity and some of the diseases known to have reduced mitochondrial copy number, the role that the mitochondrial genome itself has in regulating mitochondrial copy number remains poorly understood. Results We analyzed the complete mitochondrial genomes from 1007 individuals randomly selected from the Cache County Study on Memory Health and Aging utilizing the inferred evolutionary history of the mitochondrial haplotypes present in our dataset to identify sequence variation and mitochondrial haplotypes associated with changes in mitochondrial copy number. Three variants belonging to mitochondrial haplogroups U5A1 and T2 were significantly associated with higher mitochondrial copy number in our dataset. Conclusions We identified three variants associated with higher mitochondrial copy number and suggest several hypotheses for how these variants influence mitochondrial copy number by interacting with known regulators of mitochondrial copy number. Our results are the first to report sequence variation in the mitochondrial genome that causes changes in mitochondrial copy number. The identification of these variants that increase mtDNA copy number has important implications in understanding the pathological processes that underlie these phenotypes. PMID:25077862

  17. A Computational Framework Discovers New Copy Number Variants with Functional Importance

    PubMed Central

    Banerjee, Samprit; Oldridge, Derek; Poptsova, Maria; Hussain, Wasay M.; Chakravarty, Dimple; Demichelis, Francesca

    2011-01-01

    Structural variants which cause changes in copy numbers constitute an important component of genomic variability. They account for 0.7% of genomic differences in two individual genomes, of which copy number variants (CNVs) are the largest component. A recent population-based CNV study revealed the need of better characterization of CNVs, especially the small ones (<500 bp).We propose a three step computational framework (Identification of germline Changes in Copy Number or IgC2N) to discover and genotype germline CNVs. First, we detect candidate CNV loci by combining information across multiple samples without imposing restrictions to the number of coverage markers or to the variant size. Secondly, we fine tune the detection of rare variants and infer the putative copy number classes for each locus. Last, for each variant we combine the relative distance between consecutive copy number classes with genetic information in a novel attempt to estimate the reference model bias. This computational approach is applied to genome-wide data from 1250 HapMap individuals. Novel variants were discovered and characterized in terms of size, minor allele frequency, type of polymorphism (gains, losses or both), and mechanism of formation. Using data generated for a subset of individuals by a 42 million marker platform, we validated the majority of the variants with the highest validation rate (66.7%) was for variants of size larger than 1 kb. Finally, we queried transcriptomic data from 129 individuals determined by RNA-sequencing as further validation and to assess the functional role of the new variants. We investigated the possible enrichment for variant's regulatory effect and found that smaller variants (<1 Kb) are more likely to regulate gene transcript than larger variants (p-value = 2.04e-08). Our results support the validity of the computational framework to detect novel variants relevant to disease susceptibility studies and provide evidence of the importance of

  18. Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We report an initial analysis of copy number variations (CNVs) in cattle selected for resistance or susceptibility to intestinal nematodes. We performed 4 array comparative genomic hybridization (CG...

  19. Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

    PubMed Central

    Zamani Esteki, Masoud; Dimitriadou, Eftychia; Mateiu, Ligia; Melotte, Cindy; Van der Aa, Niels; Kumar, Parveen; Das, Rakhi; Theunis, Koen; Cheng, Jiqiu; Legius, Eric; Moreau, Yves; Debrock, Sophie; D’Hooghe, Thomas; Verdyck, Pieter; De Rycke, Martine; Sermon, Karen; Vermeesch, Joris R.; Voet, Thierry

    2015-01-01

    Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones. PMID:25983246

  20. Distribution of Disease-Associated Copy Number Variants across Distinct Disorders of Cognitive Development

    ERIC Educational Resources Information Center

    Pescosolido, Matthew F.; Gamsiz, Ece D.; Nagpal, Shailender; Morrow, Eric M.

    2013-01-01

    Objective: The purpose of the present study was to discover the extent to which distinct "DSM" disorders share large, highly recurrent copy number variants (CNVs) as susceptibility factors. We also sought to identify gene mechanisms common to groups of diagnoses and/or specific to a given diagnosis based on associations with CNVs. Method:…

  1. A high-resolution map of copy number variation in the cattle genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a systematic study of the cattle copy number variation (CNV) using array comparative genomic hybridization (array CGH). Oligonucleotide CGH arrays were designed and fabricated to provide a genome-wide coverage with an average interval of 6 kb using the Bta3.1 genome assembly. Dual-lab...

  2. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    PubMed Central

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A; Woodman, Scott E; Kwong, Lawrence N

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy. PMID:26787600

  3. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    NASA Astrophysics Data System (ADS)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  4. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases...

  5. Quantitative Analysis of Copy Number Variants Based on Real-Time LightCycler PCR

    PubMed Central

    Ma, Lijiang; Chung, Wendy K.

    2014-01-01

    Quantitative real-time PCR is PCR visualized in real time by the use of fluorescent or intercalating dyes used to measure gene expression or gene quantification including including contiguous gene deletions or duplications. A simple method is described to quantify DNA copy number from human samples. PMID:24510682

  6. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different individuals of the same species are generally thought to have very similar genomes. However, there is growing evidence that structural variation in the form of copy number variation (CNV) and presence-absence variation (PAV) can lead to variation in the genome content of individuals withi...

  7. Copy number variation detection in cattle reveals potential breed specific differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy Number Variations (CNVs) are large, common deletions or duplications of genome sequence among individuals of a species that have been linked to diseases and phenotypic traits. For example, a CNV-generating, translocation mechanism encompassing the KIT gene is responsible for color sidedness in ...

  8. Accurate and reliable high-throughput detection of copy number variation in the human genome

    PubMed Central

    Fiegler, Heike; Redon, Richard; Andrews, Dan; Scott, Carol; Andrews, Robert; Carder, Carol; Clark, Richard; Dovey, Oliver; Ellis, Peter; Feuk, Lars; French, Lisa; Hunt, Paul; Kalaitzopoulos, Dimitrios; Larkin, James; Montgomery, Lyndal; Perry, George H.; Plumb, Bob W.; Porter, Keith; Rigby, Rachel E.; Rigler, Diane; Valsesia, Armand; Langford, Cordelia; Humphray, Sean J.; Scherer, Stephen W.; Lee, Charles; Hurles, Matthew E.; Carter, Nigel P.

    2006-01-01

    This study describes a new tool for accurate and reliable high-throughput detection of copy number variation in the human genome. We have constructed a large-insert clone DNA microarray covering the entire human genome in tiling path resolution that we have used to identify copy number variation in human populations. Crucial to this study has been the development of a robust array platform and analytic process for the automated identification of copy number variants (CNVs). The array consists of 26,574 clones covering 93.7% of euchromatic regions. Clones were selected primarily from the published “Golden Path,” and mapping was confirmed by fingerprinting and BAC-end sequencing. Array performance was extensively tested by a series of validation assays. These included determining the hybridization characteristics of each individual clone on the array by chromosome-specific add-in experiments. Estimation of data reproducibility and false-positive/negative rates was carried out using self–self hybridizations, replicate experiments, and independent validations of CNVs. Based on these studies, we developed a variance-based automatic copy number detection analysis process (CNVfinder) and have demonstrated its robustness by comparison with the SW-ARRAY method. PMID:17122085

  9. SG-ADVISER CNV: copy-number variant annotation and interpretation

    PubMed Central

    Erikson, Galina A.; Deshpande, Neha; Kesavan, Balachandar G.; Torkamani, Ali

    2016-01-01

    Purpose Copy-number variants have been associated with a variety of diseases, especially cancer, autism, schizophrenia, and developmental delay. The majority of clinically relevant events occur de novo, necessitating the interpretation of novel events. In this light, we present the Scripps Genome ADVISER CNV annotation pipeline and Web server, which aims to fill the gap between copy number variant detection and interpretation by performing in-depth annotations and functional predictions for copy number variants. Methods The Scripps Genome ADVISER CNV suite includes a Web server interface to a high-performance computing environment for calculations of annotations and a table-based user interface that allows for the execution of numerous annotation-based variant filtration strategies and statistics. Results The annotation results include details regarding location, impact on the coding portion of genes, allele frequency information (including allele frequencies from the Scripps Wellderly cohort), and overlap information with other reference data sets (including ClinVar, DGV, DECIPHER). A summary variant classification is produced (ADVISER score) based on the American College of Medical Genetics and Genomics scoring guidelines. We demonstrate >90% sensitivity/specificity for detection of pathogenic events. Conclusion Scripps Genome ADVISER CNV is designed to allow users with no prior bioinformatics expertise to manipulate large volumes of copy-number variant data. Scripps Genome ADVISER CNV is available at http://genomics.scripps.edu/ADVISER/. PMID:25521334

  10. Whole-genome sequencing reveals the diversity of cattle copy number variations and multicopy genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structural and functional impacts of copy number variations (CNVs) on livestock genomes are not yet well understood. We identified 1853 CNV regions using population-scale sequencing data generated from 75 cattle representing 8 breeds (Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnol...

  11. Subtelomeric Rearrangements and Copy Number Variations in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Christofolini, D. M.; De Paula Ramos, M. A.; Kulikowski, L. D.; Da Silva Bellucco, F. T.; Belangero, S. I. N.; Brunoni, D.; Melaragno, M. I.

    2010-01-01

    Background: The most prevalent type of structural variation in the human genome is represented by copy number variations that can affect transcription levels, sequence, structure and function of genes. Method: In the present study, we used the multiplex ligation-dependent probe amplification (MLPA) technique and quantitative PCR for the detection…

  12. Identification of genomic functional hotspots with copy number alteration in liver cancer

    PubMed Central

    2013-01-01

    Copy number alterations (CNAs) can be observed in most of cancer patients. Several oncogenes and tumor suppressor genes with CNAs have been identified in different kinds of tumor. However, the systematic survey of CNA-affected functions is still lack. By employing systems biology approaches, instead of examining individual genes, we directly identified the functional hotspots on human genome. A total of 838 hotspots on human genome with 540 enriched Gene Ontology functions were identified. Seventy-six aCGH array data of hepatocellular carcinoma (HCC) tumors were employed in this study. A total of 150 regions which putatively affected by CNAs and the encoded functions were identified. Our results indicate that two immune related hotspots had copy number alterations in most of patients. In addition, our data implied that these immune-related regions might be involved in HCC oncogenesis. Also, we identified 39 hotspots of which copy number status were associated with patient survival. Our data implied that copy number alterations of the regions may contribute in the dysregulation of the encoded functions. These results further demonstrated that our method enables researchers to survey biological functions of CNAs and to construct regulation hypothesis at pathway and functional levels. PMID:24160471

  13. 18 CFR 34.7 - Number of copies to be filed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Number of copies to be filed. 34.7 Section 34.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATION FOR AUTHORIZATION OF THE ISSUANCE...

  14. ANALYSIS OF CATTLE COPY NUMBER VARIATION REVEALS INSIGHTS INTO THE EVOLUTION OF RUMINANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a systematic study of the cattle copy number variation (CNV) using array comparative genomic hybridization (array CGH). Multiple bulls from both dairy and beef breeds were selected to represent the cattle population. Up to February 2008, over 80 hybridizations were performed and appro...

  15. Structural and functional impacts of copy number variations on the cattle genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs), similar realizations for larger, more complex forms of genetic variation have just emerged. Several recent publications reveal that copy number variations (CNVs) are common an...

  16. Identification of copy number variable gene families in Holstein and Jersey cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variants (CNV) represent a large proportion of genetic variation within the cattle genome that has yet to be accurately characterized by SNP genotyping arrays. While significant progress has been made in the identification of CNVs within individual animals using next generation sequence ...

  17. 18 CFR 156.3 - Applications; number of copies; general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR ORDERS UNDER SECTION 7(a) OF THE NATURAL GAS ACT § 156.3 Applications; number of copies; general... applicant; the name of the natural gas company (respondent) from which applicant is seeking an extension...

  18. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinically significant cardiovascular malformations (CVMs) occur in 5-8 per 1000 live births. Recurrent copy number variations (CNVs) are among the known causes of syndromic CVMs, accounting for an important fraction of cases. We hypothesized that many additional rare CNVs also cause CVMs and can be...

  19. Mapping cattle copy number variation by population-scale genome sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variation (CNV) is abundant in livestock, differing from SNPs in extent, origin and functional impact. Despite progress in CNV discovery, the nucleotide resolution architecture of most CNVs remains elusive. As a pilot population study of cattle CNV, we sequenced 100 representative cattle...

  20. Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We report an initial analysis of copy number variations (CNVs) in cattle selected for resistance or susceptibility to intestinal nematodes. We performed 3 array comparative genomic hybridization (CG...

  1. Peripheral blood mitochondrial DNA copy number, length heteroplasmy and breast cancer risk: a replication study.

    PubMed

    Shen, Jie; Wan, Jie; Song, Renduo; Zhao, Hua

    2015-11-01

    Oxidative stress has consistently been linked to breast carcinogenesis, and mitochondria play a significant role in regulating reactive oxygen species generation. In our previous study, we found that increased levels of mitochondrial DNA (mtDNA) copy number and the presence of mitochondrial length heteroplasmies in the hypervariable (HV) regions 1 and 2 (HV1 and HV2) in peripheral blood are associated with increased risk of breast cancer. In current study with 1000 breast cancer cases and 1000 healthy controls, we intended to replicate our previous findings. Overall, levels of mtDNA copy number were significantly higher in breast cancer cases than healthy controls (mean: 1.17 versus 0.94, P < 0.001). In the multivariate linear regression analysis, increased mtDNA copy number levels were associated with a 1.32-fold increased risk of breast cancer [adjusted odds ratio (OR) = 1.32, 95% confidence interval (CI) = 1.15-1.67]. Breast cancer cases were more likely to have HV1 and HV2 region length heteroplasmies than healthy controls (P < 0.001, respectively). The existence of HV1 and HV2 length heteroplasmies was associated with 2.01- and 1.63-folds increased risk of breast cancer (for HV1: OR = 2.01, 95% CI = 1.66-2.42; for HV2: OR = 1.63, 95% CI = 1.34-1.92). Additionally, joint effects among mtDNA copy number, HV1 and HV2 length heteroplasmies were observed. Our results are consistent with our previous findings and further support the roles of mtDNA copy number and mtDNA length heteroplasmies that may play in the development of breast cancer. PMID:26363030

  2. DUF1220-Domain Copy Number Implicated in Human Brain-Size Pathology and Evolution

    PubMed Central

    Dumas, Laura J.; O’Bleness, Majesta S.; Davis, Jonathan M.; Dickens, C. Michael; Anderson, Nathan; Keeney, J.G.; Jackson, Jay; Sikela, Megan; Raznahan, Armin; Giedd, Jay; Rapoport, Judith; Nagamani, Sandesh S.C.; Erez, Ayelet; Brunetti-Pierri, Nicola; Sugalski, Rachel; Lupski, James R.; Fingerlin, Tasha; Cheung, Sau Wai; Sikela, James M.

    2012-01-01

    DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R2 = 0.98; p = 1.8 × 10−6), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size. PMID:22901949

  3. DNA Copy Number Profiles in Affinity-Purified Ovarian Clear Cell Carcinoma

    PubMed Central

    Kuo, Kuan-Ting; Mao, Tsui-Lien; Chen, Xu; Feng, Yuanjian; Nakayama, Kentaro; Wang, Yue; Glas, Ruth; Ma, M. Joe; Kurman, Robert J.; Shih, Ie-Ming; Wang, Tian-Li

    2010-01-01

    Purpose Advanced ovarian clear cell carcinoma (CCC) is one of the most malignant ovarian malignancies, in part because it tends to be resistant to platinum-based chemotherapy. At present, little is known about the molecular genetic alterations in CCCs except that there are frequent activating mutations in PIK3CA. The purpose of this study is to comprehensively define the genomic changes in CCC based on DNA copy number alterations. Experimental Design We performed 250K high-density SNP array analysis in 12 affinity-purified CCCs and 10 CCC cell lines. Discrete regions of amplification and deletion were also analyzed in additional 21 affinity-purified CCCs using quantitative real-time PCR. Results The level of chromosomal instability in CCC as defined by the extent of DNA copy number changes is similar to those previously reported in low-grade ovarian serous carcinoma but much less than those in high-grade serous carcinoma. The most remarkable region with DNA copy number gain is at chr20 which harbors a potential oncogene, ZNF217. This is observed in 36% of CCCs but rarely detected in serous carcinomas regardless of grade. In addition, homozygous deletions are detected at CDKN2A/2B and LZTS1 loci. Interestingly, the DNA copy number changes observed in fresh CCC tissues are rarely detected in the established CCC cell lines. Conclusions This study provides the first high resolution, genome-wide view of DNA copy number alterations in ovarian CCC. The findings provide a genomic landscape for future studies aimed at elucidating the pathogenesis and developing new target-based therapies for CCCs. PMID:20233889

  4. A Functional Copy-Number Variation in MAPKAPK2 Predicts Risk and Prognosis of Lung Cancer

    PubMed Central

    Liu, Bin; Yang, Lei; Huang, Binfang; Cheng, Mei; Wang, Hui; Li, Yinyan; Huang, Dongsheng; Zheng, Jian; Li, Qingchu; Zhang, Xin; Ji, Weidong; Zhou, Yifeng; Lu, Jiachun

    2012-01-01

    Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) may promote cancer development and progression by inducing tumorigenesis and drug resistance. To assess whether the copy-number variation g.CNV-30450 located in the MAPKAPK2 promoter has any effect on lung cancer risk or prognosis, we investigated the association between g.CNV-30450 and cancer risk in three independent case-control studies of 2,332 individuals with lung cancer and 2,457 controls and the effects of g.CNV-30450 on cancer prognosis in 1,137 individuals with lung cancer with survival data in southern and eastern Chinese populations. We found that those subjects who had four copies of g.CNV-30450 had an increased cancer risk (odds ratio = 1.94, 95% confidence interval [CI] = 1.61–2.35) and a worse prognosis for individuals with lung cancer (with a median survival time of only 9 months) (hazard ratio = 1.47, 95% CI = 1.22–1.78) compared with those with two or three copies (with a median survival time of 14 months). Meanwhile, four copies of g.CNV-30450 significantly increased MAPKAPK2 expression, both in vitro and in vivo, compared with two or three copies. Our study establishes a robust association between the functional g.CNV-30450 in MAPKAPK2 and risk as well as prognosis of lung cancer, and it presents this functional copy-number variation as a potential biomarker for susceptibility to and prognosis for lung cancer. PMID:22883146

  5. The host range of RK2 minimal replicon copy-up mutants is limited by species-specific differences in the maximum tolerable copy number.

    PubMed

    Haugan, K; Karunakaran, P; Tøndervik, A; Valla, S

    1995-01-01

    The minimal replicon of the broad-host-range plasmid RK2 consists of a gene, trfA (trans-acting replication), encoding a protein required for initiation of plasmid replication. The TrfA protein binds to iterons in the cis-acting origin of vegetative replication (oriV), but the exact mechanism by which TrfA-mediated replication initiation takes place is not known. We report here the isolation and characterization of five mini RK2 trfA mutant plasmids with an elevated plasmid copy number, four in Pseudomonas aeruginosa and one in Azotobacter vinelandii. The mutations are localized between or downstream of previously reported Escherichia coli copy-up mutations in trfA, and one of the mutations has been described earlier as an independent copy-up isolate in E. coli. The five mutant plasmids were all moderately copy up in both E. coli and their host of origin, in spite of the use of isolation procedures which were expected to select efficiently in favor of plasmid mutants specifying high copy numbers. In contrast, previously described high copy-up mutants isolated in E. coli could not be established in P. aeruginosa and A. vinelandii. These high copy-up mutants were shown to induce cell killing in E. coli under conditions where the plasmid copy number was increased as a physiological response to reduced growth rate. We propose that the reason for this killing effect is that the copy number under these conditions exceeds an upper tolerance level specific for E. coli. By assuming that the corresponding tolerance level is lower in P. aeruginosa and A. vinelandii than in E. coli, and that the mechanism of copy number regulation is similar, the model can explain the phenotypes of all tested copy up mutants in these two hosts. Analogous studies were also performed in Salmonella typhimurium and Acetobacter xylinum. The data obtained in these studies indicate that the above model is probably generally true for gram-negative bacteria, and the results also indicate that the

  6. A Sensitive Method for Detecting Variation in Copy Numbers of Duplicated Genes

    PubMed Central

    Pielberg, Gerli; Day, Andy E.; Plastow, Graham S.; Andersson, Leif

    2003-01-01

    Gene duplications are common in the vertebrate genome, and duplicated loci often show a variation in copy number that may have important phenotypic effects. Here we describe a powerful method for quantification of duplicated copies based on pyrosequencing. A reliable quantification was obtained by amplification of the duplication break-point and a corresponding nonduplicated sequence in a competitive PCR assay. A comparison with an independent method for quantification based on the Invader technology revealed an excellent correlation between the two methods. The pyrosequencing-based method was evaluated by analyzing variation in copy number at the duplicated KIT/Dominant white locus in pigs. We were able to distinguish haplotypes at this locus by combining the duplication breakpoint test with a diagnostic test for a functionally important splice mutation in the duplicated gene. An extensive allelic variation, including the presence of a new allele carrying a single KIT copy expected to encode a truncated KIT receptor, was revealed when analyzing white pigs from commercial lines. PMID:12952884

  7. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse [corrected].

    PubMed

    LeRiche, Kaitlynn; Eagle, Shannon H C; Crease, Teresa J

    2014-01-01

    Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA) genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR) to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL) initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼ 87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species. PMID:25490398

  8. Copy Number of the Transposon, Pokey, in rDNA Is Positively Correlated with rDNA Copy Number in Daphnia obtusa

    PubMed Central

    LeRiche, Kaitlynn; Eagle, Shannon H. C.; Crease, Teresa J.

    2014-01-01

    Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA) genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR) to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL) initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species. PMID:25490398

  9. Assessment of Complement C4 Gene Copy Number Using the Paralog Ratio Test

    PubMed Central

    Fernando, Michelle M.A.; Boteva, Lora; Morris, David L.; Zhou, Bi; Wu, Yee Ling; Lokki, Marja-Liisa; Yu, Chack Yung; Rioux, John D.; Hollox, Edward J.; Vyse, Timothy J.

    2013-01-01

    The complement C4 locus is in the class III region of the MHC, and exhibits copy number variation. Complement C4 null alleles have shown association with a number of diseases including systemic lupus erythematosus (SLE). However, most studies to date have used protein immunophenotyping and not direct interrogation of the genome to determine C4 null allele status. Moreover, a lack of accurate C4 gene copy number (GCN) estimation and tight linkage disequilibrium across the disease-associated MHC haplotypes has confounded attempts to establish whether or not these associations are causal. We have therefore developed a high through-put paralog ratio test (PRT) in association with two restriction enzyme digest variant ratio tests (REDVRs) to determine total C4 GCN, C4A GCN, and C4B GCN. In the densely genotyped CEU cohort we show that this method is accurate and reproducible when compared to gold standard Southern blot copy number estimation with a discrepancy rate of 9%. We find a broad range of C4 GCNs in the CEU and the 1958 British Birth Cohort populations under study. In addition, SNP-C4 CNV analyses show only moderate levels of correlation and therefore do not support the use of SNP genotypes as proxies for complement C4 GCN. PMID:20506482

  10. PVT1 dependence in cancer with MYC copy-number increase

    PubMed Central

    Tseng, Yuen-Yi; Moriarity, Branden S.; Gong, Wuming; Akiyama, Ryutaro; Tiwari, Ashutosh; Kawakami, Hiroko; Ronning, Peter; Reuland, Brian; Guenther, Kacey; Beadnell, Thomas C.; Essig, Jaclyn; Otto, George M.; O’Sullivan, M. Gerard; Largaespada, David A.; Schwertfeger, Kathryn L.; Marahrens, York; Kawakami, Yasuhiko; Bagchi, Anindya

    2016-01-01

    ‘Gain’ of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers1–13 and is associated with poor prognosis7,10,14. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent ‘gene desert’ of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target. PMID:25043044

  11. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation

    PubMed Central

    Mayer, Melanie G.; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J.

    2015-01-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains´ pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for

  12. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    PubMed

    Mayer, Melanie G; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J

    2015-06-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for

  13. Copy Number Variants Associated with 14 Cases of Self-Injurious Behavior

    PubMed Central

    Shirley, Matthew D.; Frelin, Laurence; López, José Soria; Jedlicka, Anne; Dziedzic, Amanda; Frank-Crawford, Michelle A.; Silverman, Wayne; Hagopian, Louis; Pevsner, Jonathan

    2016-01-01

    Copy number variants (CNVs) were detected and analyzed in 14 probands with autism and intellectual disability with self-injurious behavior (SIB) resulting in tissue damage. For each proband we obtained a clinical history and detailed behavioral descriptions. Genetic anomalies were observed in all probands, and likely clinical significance could be established in four cases. This included two cases having novel, de novo copy number variants and two cases having variants likely to have functional significance. These cases included segmental trisomy 14, segmental monosomy 21, and variants predicted to disrupt the function of ZEB2 (encoding a transcription factor) and HTR2C (encoding a serotonin receptor). Our results identify variants in regions previously implicated in intellectual disability and suggest candidate genes that could contribute to the etiology of SIB. PMID:26933844

  14. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression.

    PubMed

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-05-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

  15. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression

    PubMed Central

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-01-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

  16. An Algorithm for Inferring Complex Haplotypes in a Region of Copy-Number Variation

    PubMed Central

    Kato, Mamoru; Nakamura, Yusuke; Tsunoda, Tatsuhiko

    2008-01-01

    Recent studies have extensively examined the large-scale genetic variants in the human genome known as copy-number variations (CNVs), and the universality of CNVs in normal individuals, along with their functional importance, has been increasingly recognized. However, the absence of a method to accurately infer alleles or haplotypes within a CNV region from high-throughput experimental data hampers the finer analyses of CNV properties and applications to disease-association studies. Here we developed an algorithm to infer complex haplotypes within a CNV region by using data obtained from high-throughput experimental platforms. We applied this algorithm to experimental data and estimated the population frequencies of haplotypes that can yield information on both sequences and numbers of DNA copies. These results suggested that the analysis of such complex haplotypes is essential for accurately detecting genetic differences within a CNV region between population groups. PMID:18639202

  17. The relationship between altered mitochondrial DNA copy number and cancer risk: a meta-analysis.

    PubMed

    Mi, Jia; Tian, Geng; Liu, Shuang; Li, Xianglin; Ni, Tianhui; Zhang, Liwei; Wang, Bin

    2015-01-01

    Currently, a comprehensive assessment between mitochondrial DNA (mtDNA) content and cancer risk is lacking. We designed this meta-analysis to test the hypothesis that altered mtDNA copy number might influence genetic susceptibility to some specific types of cancer. The processes of literature search, eligibility appraisal and data retrieval were independently completed in duplicate. The mtDNA copy number which was dichotomized or classified into tertiles was compared between cancer cases and controls. Twenty-six articles with 38 study groups were analyzed among 6682 cases and 9923 controls. When dichotomizing mtDNA copy number at the median value, there was an 11% increased cancer risk for carriers of high mtDNA content (P = 0.320). By cancer type, high mtDNA content was associated with an increased risk for lymphoma (OR = 1.76; P = 0.023) but a reduced risk for skeleton cancer (OR = 0.39; P = 0.001). Carriers of the 2(nd) and 3(rd) tertiles of mtDNA copy number had an 1.74-fold (P = 0.010) and 2.07-fold (P = 0.021) increased risk of lymphoma, respectively. By contrast, there was correspondingly a 56% (P < 0.001) and 80% (P < 0.001) reduced risk of skeleton cancer. Our findings suggested that elevated mtDNA content was associated with a higher risk for lymphoma, but a lower risk for skeleton cancer. PMID:25952580

  18. Identification of genes with a correlation between copy number and expression in gastric cancer

    PubMed Central

    2012-01-01

    Background To elucidate gene expression associated with copy number changes, we performed a genome-wide copy number and expression microarray analysis of 25 pairs of gastric tissues. Methods We applied laser capture microdissection (LCM) to obtain samples for microarray experiments and profiled DNA copy number and gene expression using 244K CGH Microarray and Human Exon 1.0 ST Microarray. Results Obviously, gain at 8q was detected at the highest frequency (70%) and 20q at the second (63%). We also identified molecular genetic divergences for different TNM-stages or histological subtypes of gastric cancers. Interestingly, the C20orf11 amplification and gain at 20q13.33 almost separated moderately differentiated (MD) gastric cancers from poorly differentiated (PD) type. A set of 163 genes showing the correlations between gene copy number and expression was selected and the identified genes were able to discriminate matched adjacent noncancerous samples from gastric cancer samples in an unsupervised two-way hierarchical clustering. Quantitative RT-PCR analysis for 4 genes (C20orf11, XPO5, PUF60, and PLOD3) of the 163 genes validated the microarray results. Notably, some candidate genes (MCM4 and YWHAZ) and its adjacent genes such as PRKDC, UBE2V2, ANKRD46, ZNF706, and GRHL2, were concordantly deregulated by genomic aberrations. Conclusions Taken together, our results reveal diverse chromosomal region alterations for different TNM-stages or histological subtypes of gastric cancers, which is helpful in researching clinicopathological classification, and highlight several interesting genes as potential biomarkers for gastric cancer. PMID:22559327

  19. A trans-Dominant Form of Gag Restricts Ty1 Retrotransposition and Mediates Copy Number Control

    PubMed Central

    Saha, Agniva; Mitchell, Jessica A.; Nishida, Yuri; Hildreth, Jonathan E.; Ariberre, Joshua A.; Gilbert, Wendy V.

    2015-01-01

    ABSTRACT Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation. IMPORTANCE Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both “host and parasite.” To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate

  20. Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation

    PubMed Central

    Wan, Lin; Sun, Kelian; Ding, Qi; Cui, Yuehua; Li, Ming; Wen, Yalu; Elston, Robert C.; Qian, Minping; Fu, Wenjiang J

    2009-01-01

    Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms. PMID:19586935

  1. Signature of backward replication slippage at the copy number variation junction.

    PubMed

    Ohye, Tamae; Inagaki, Hidehito; Ozaki, Mamoru; Ikeda, Toshiro; Kurahashi, Hiroki

    2014-05-01

    Copy number abnormalities such as deletions and duplications give rise to a variety of medical problems and also manifest innocuous genomic variations. Aberrant DNA replication is suggested as the mechanism underlying de novo copy number abnormalities, but the precise details have remained unknown. In our present study, we analyzed the del(2)(q13q14.2) chromosomal junction site observed in a woman with a recurrent pregnancy loss. Microarray analyses allowed us to precisely demarcate a 2.8 Mb deletion in this case, which does not appear in the database of human genomic variations. This deletion includes only one brain-specific gene that could not be related to the reproduction failure of the patient. At the junction of the deletion, we found that 11-13-nucleotide sequence, originally located at the proximal breakpoint region, was repeated four times with a single-nucleotide microhomology at the joint between each repeat. The proximal region and the distal region was finally joined with six-nucleotide microhomology. The structure of the junction is consistent with backward replication slippage proposed previously. Our data lend support to the notion that a common DNA replication-mediated pathway generates copy number variation in the human genome. PMID:24646726

  2. Chromosomal instability selects gene copy number variants encoding core regulators of proliferation in ER+ breast cancer

    PubMed Central

    Endesfelder, David; McGranahan, Nicholas; Howell, Mike; Parker, Peter J.; Downward, Julian; Swanton, Charles; Kschischo, Maik

    2014-01-01

    Chromosomal instability (CIN) is associated with poor outcome in epithelial malignancies including breast carcinomas. Evidence suggests that prognostic signatures in estrogen receptor-positive (ER+) breast cancer define tumors with CIN and high proliferative potential. Intriguingly, CIN induction in lower eukaryotic cells and human cells is context-dependent, typically resulting in a proliferation disadvantage but conferring a fitness benefit under strong selection pressures. We hypothesised that CIN permits accelerated genomic evolution through the generation of diverse DNA copy number events that may be selected during disease development. In support of this hypothesis, we found evidence for selection of gene amplification of core regulators of proliferation in CIN-associated cancer genomes. Stable DNA copy number amplifications of the core regulators TPX2 and UBE2C were associated with expression of a gene module involved in proliferation. The module genes were enriched within prognostic signature gene sets for ER+ breast cancer, providing a logical connection between CIN and prognostic signature expression. Our results provide a framework to decipher the impact of intratumor heterogeneity on key cancer phenotypes, and they suggest that CIN provides a permissive landscape for selection of copy number alterations which drive cancer proliferation. PMID:24970479

  3. Assessing copy number alterations in targeted, amplicon-based next-generation sequencing data.

    PubMed

    Grasso, Catherine; Butler, Timothy; Rhodes, Katherine; Quist, Michael; Neff, Tanaya L; Moore, Stephen; Tomlins, Scott A; Reinig, Erica; Beadling, Carol; Andersen, Mark; Corless, Christopher L

    2015-01-01

    Changes in gene copy number are important in the setting of precision medicine. Recent studies have established that copy number alterations (CNAs) can be detected in sequencing libraries prepared by hybridization-capture, but there has been comparatively little attention given to CNA assessment in amplicon-based libraries prepared by PCR. In this study, we developed an algorithm for detecting CNAs in amplicon-based sequencing data. CNAs determined from the algorithm mirrored those from a hybridization-capture library. In addition, analysis of 14 pairs of matched normal and breast carcinoma tissues revealed that sequence data pooled from normal samples could be substituted for a matched normal tissue without affecting the detection of clinically relevant CNAs (>|2| copies). Comparison of CNAs identified by array comparative genomic hybridization and amplicon-based libraries across 10 breast carcinoma samples showed an excellent correlation. The CNA algorithm also compared favorably with fluorescence in situ hybridization, with agreement in 33 of 38 assessments across four different genes. Factors that influenced the detection of CNAs included the number of amplicons per gene, the average read depth, and, most important, the proportion of tumor within the sample. Our results show that CNAs can be identified in amplicon-based targeted sequencing data, and that their detection can be optimized by ensuring adequate tumor content and read coverage. PMID:25468433

  4. A Highly Polymorphic Copy Number Variant in the NSF Gene is Associated with Cocaine Dependence

    PubMed Central

    Cabana-Domínguez, Judit; Roncero, Carlos; Grau-López, Lara; Rodríguez-Cintas, Laia; Barral, Carmen; Abad, Alfonso C.; Erikson, Galina; Wineinger, Nathan E.; Torrico, Bàrbara; Arenas, Concepció; Casas, Miquel; Ribasés, Marta; Cormand, Bru; Fernàndez-Castillo, Noèlia

    2016-01-01

    Cocaine dependence is a complex psychiatric disorder involving both genetic and environmental factors. Several neurotransmitter systems mediate cocaine’s effects, dependence and relapse, being the components of the neurotransmitter release machinery good candidates for the disorder. Previously, we identified a risk haplotype for cocaine dependence in the NSF gene, encoding the protein N-Ethylmaleimide-Sensitive Factor essential for synaptic vesicle turnover. Here we examined the possible contribution to cocaine dependence of a large copy number variant (CNV) that encompasses part of the NSF gene. We performed a case-control association study in a discovery sample (359 cases and 356 controls) and identified an association between cocaine dependence and the CNV (P = 0.013), that was confirmed in the replication sample (508 cases and 569 controls, P = 7.1e-03) and in a pooled analysis (P = 1.8e-04), with an over-representation of low number of copies in cases. Subsequently, we studied the functional impact of the CNV on gene expression and found that the levels of two NSF transcripts were significantly increased in peripheral blood mononuclear cells (PBMC) along with the number of copies of the CNV. These results, together with a previous study from our group, support the role of NSF in the susceptibility to cocaine dependence. PMID:27498889

  5. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    PubMed Central

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J.; Szatkiewicz, Jin P.

    2015-01-01

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  6. A novel satellite DNA sequence in the Peromyscus genome (PMSat): Evolution via copy number fluctuation.

    PubMed

    Louzada, Sandra; Vieira-da-Silva, Ana; Mendes-da-Silva, Ana; Kubickova, Svatava; Rubes, Jiri; Adega, Filomena; Chaves, Raquel

    2015-11-01

    Satellite DNAs (satDNA) are tandemly arrayed repeated sequences largely present in eukaryotic genomes, which play important roles in genome evolution and function, and therefore, their analysis is vital. Here, we describe the isolation of a novel satellite DNA family (PMSat) from the rodent Peromyscus eremicus (Cricetidae, Rodentia), which is located in pericentromeric regions and exhibits a typical satellite DNA genome organization. Orthologous PMSat sequences were isolated and characterized from three species belonging to Cricetidae: Cricetus cricetus, Phodopus sungorus and Microtus arvalis. In these species, PMSat is highly conserved, with the absence of fixed species-specific mutations. Strikingly, different numbers of copies of this sequence were found among the species, suggesting evolution by copy number fluctuation. Repeat units of PMSat were also found in the Peromyscus maniculatus bairdii BioProject, but our results suggest that these repeat units are from genome regions outside the pericentromere. The remarkably high evolutionary sequence conservation along with the preservation of a few numbers of copies of this sequence in the analyzed genomes may suggest functional significance but a different sequence nature/organization. Our data highlight that repeats are difficult to analyze due to the limited tools available to dissect genomes and the fact that assemblies do not cover regions of constitutive heterochromatin. PMID:26103000

  7. Rare Copy Number Variants Identified Suggest the Regulating Pathways in Hypertension-Related Left Ventricular Hypertrophy.

    PubMed

    Boon-Peng, Hoh; Mat Jusoh, Julia Ashazila; Marshall, Christian R; Majid, Fadhlina; Danuri, Norlaila; Basir, Fashieha; Thiruvahindrapuram, Bhooma; Scherer, Stephen W; Yusoff, Khalid

    2016-01-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hypertensive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We hypothesized that rare copy number variants (CNVs) contribute to the LVH pathogenesis in hypertensive patients. Copy number variants (CNV) were identified in 258 hypertensive patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in our patients with hypertension related LVH. Preliminary findings from Gene Ontology and pathway analysis of this study confirmed the involvement of the genes known to be functionally involved in cardiac development and phenotypes, in line with previously reported transcriptomic studies. Network enrichment analyses suggested that the gene-set was, directly or indirectly, involved in the transcription factors regulating the "foetal cardiac gene programme" which triggered the hypertrophic cascade, confirming previous reports. These findings suggest that multiple, individually rare copy number variants altering genes may contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided further supporting evidence that rare CNV could potentially impact this common and complex disease susceptibility with lower heritability. PMID:26930585

  8. Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis.

    PubMed

    Torresan, Clarissa; Oliveira, Márcia M C; Pereira, Silma R F; Ribeiro, Enilze M S F; Marian, Catalin; Gusev, Yuriy; Lima, Rubens S; Urban, Cicero A; Berg, Patricia E; Haddad, Bassem R; Cavalli, Iglenir J; Cavalli, Luciane R

    2014-05-01

    DLX4 is a homeobox gene strongly implicated in breast tumor progression and invasion. Our main objective was to determine the DLX4 copy number status in sentinel lymph node (SLN) metastasis to assess its involvement in the initial stages of the axillary metastatic process. A total of 37 paired samples of SLN metastasis and primary breast tumors (PBT) were evaluated by fluorescence in situ hybridization, quantitative polymerase chain reaction and array comparative genomic hybridization assays. DLX4 increased copy number was observed in 21.6% of the PBT and 24.3% of the SLN metastasis; regression analysis demonstrated that the DLX4 alterations observed in the SLN metastasis were dependent on the ones in the PBT, indicating that they occur in the primary tumor cell populations and are maintained in the early axillary metastatic site. In addition, regression analysis demonstrated that DLX4 alterations (and other DLX and HOXB family members) occurred independently of the ones in the HER2/NEU gene, the main amplification driver on the 17q region. Additional studies evaluating DLX4 copy number in non-SLN axillary lymph nodes and/or distant breast cancer metastasis are necessary to determine if these alterations are carried on and maintained during more advanced stages of tumor progression and if could be used as a predictive marker for axillary involvement. PMID:24947980

  9. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  10. Rare Copy Number Variants Identified Suggest the Regulating Pathways in Hypertension-Related Left Ventricular Hypertrophy

    PubMed Central

    Marshall, Christian R.; Majid, Fadhlina; Danuri, Norlaila; Basir, Fashieha; Thiruvahindrapuram, Bhooma; Scherer, Stephen W.; Yusoff, Khalid

    2016-01-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hypertensive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We hypothesized that rare copy number variants (CNVs) contribute to the LVH pathogenesis in hypertensive patients. Copy number variants (CNV) were identified in 258 hypertensive patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in our patients with hypertension related LVH. Preliminary findings from Gene Ontology and pathway analysis of this study confirmed the involvement of the genes known to be functionally involved in cardiac development and phenotypes, in line with previously reported transcriptomic studies. Network enrichment analyses suggested that the gene-set was, directly or indirectly, involved in the transcription factors regulating the “foetal cardiac gene programme” which triggered the hypertrophic cascade, confirming previous reports. These findings suggest that multiple, individually rare copy number variants altering genes may contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided further supporting evidence that rare CNV could potentially impact this common and complex disease susceptibility with lower heritability. PMID:26930585