Science.gov

Sample records for coral reef ecosystem

  1. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  2. USGS research on Atlantic coral reef ecosystems

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Yates, Kimberly K.; Zawada, David G.; Richey, Julie N.; Kellogg, Christina A.; Toth, Lauren T.

    2015-01-01

    Coral reefs are massive, biomineralized structures that protect coastal communities by acting as barriers to hazards such as hurricanes and tsunamis. They provide sand for beaches through the natural process of erosion, support tourism and recreational industries, and provide essential habitat for fisheries. The continuing global degradation of coral reef ecosystems is well documented. There is a need for focused, coordinated science to understand the complex physical and biological processes and interactions that are impacting the condition of coral reefs and their ability to respond to a changing environment.

  3. Quantifying Coral Reef Ecosystem Services

    EPA Science Inventory

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  4. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    PubMed Central

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  5. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    PubMed

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  6. 77 FR 12567 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Islands Region Coral Reef Ecosystems Logbook and Reporting AGENCY: National Oceanic and Atmospheric... Special Coral Reef Ecosystem Fishing Permit (authorized under the Fishery Management Plan for Coral Reef... the logbooks is used to obtain fish catch/fishing effort data on coral reef fishes and...

  7. The importance of structural complexity in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Graham, N. A. J.; Nash, K. L.

    2013-06-01

    The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an

  8. 78 FR 49258 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment; request for comments. SUMMARY: NMFS proposes to issue a Special Coral Reef Ecosystem Fishing Permit that would authorize Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem...

  9. 76 FR 77779 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory....byers@noaa.gov . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a ]...

  10. 77 FR 16211 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory... . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a marine protected area designed to...

  11. Fungi and their role in corals and coral reef ecosystems.

    PubMed

    Raghukumar, Chandralata; Ravindran, J

    2012-01-01

    Fungi in coral reefs exist as endoliths, endobionts, saprotrophs and as pathogens. Although algal and fungal endoliths in corals were described way back in 1973, their role in microboring, carbonate alteration, discoloration, density banding, symbiotic or parasitic association was postulated almost 25 years later. Fungi, as pathogens in corals, have become a much discussed topic in the last 10 years. It is either due to the availability of better tools for investigations or greater awareness among the research communities. Fungi which are exclusive as endoliths (endemic) in corals or ubiquitous forms seem to play a role in coral reef system. Fungi associated with sponges and their role in production or induction of secondary metabolites in their host is of primary interest to various pharmaceutical industries and funding agencies. Fungal enzymes in degradation of coral mucus, and plant detritus hold great promise in biotechnological applications. Unravelling fungal diversity in corals and associated reef organisms using culture and culture-independent approaches is a subject gaining attention from research community world over. PMID:22222828

  12. 77 FR 12243 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Islands Region Coral Reef Ecosystems Permit Form AGENCY: National Oceanic and Atmospheric Administration... vessel to fish for Western Pacific coral reef ecosystem management unit species in the designated low-use... regulations; or (3) fishing for, taking, or retaining any Potentially Harvested Coral Reef Taxa in the...

  13. Ecosystem Services Research Program: LTG 4: Ecosystem specific studies: coral reefs

    EPA Science Inventory

    Our short-term objective is that managers and decision-makers recognize that coral reefs provide ecosystem services (ES) that can be valued and included in decision processes. The long-term objective is that coral reef ES are routinely valued and considered in watershed and coast...

  14. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  15. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  16. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  17. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries....

  18. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries....

  19. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries....

  20. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries....

  1. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries....

  2. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries....

  3. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries....

  4. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries....

  5. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... request for public comments on August 13, 2013 (78 FR 49258). NMFS received comments from eight... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment and finding of no significant impact for the issuance of a special coral reef ecosystem...

  6. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Parrish, Frank A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states. PMID:23737951

  7. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  8. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  9. Herbivorous fishes, ecosystem function and mobile links on coral reefs

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bellwood, D. R.

    2014-06-01

    Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range-body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.

  10. Critical research needs for identifying future changes in Gulf coral reef ecosystems.

    PubMed

    Feary, David A; Burt, John A; Bauman, Andrew G; Al Hazeem, Shaker; Abdel-Moati, Mohamed A; Al-Khalifa, Khalifa A; Anderson, Donald M; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H; Chen, Chaolun Allen; Coles, Steve L; Dab, Koosha; Fowler, Ashley M; George, David; Grandcourt, Edwin; Hill, Ross; John, David M; Jones, David A; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R; Wiedenmann, Joerg

    2013-07-30

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  11. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    PubMed Central

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  12. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  13. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs.

    PubMed

    Bellwood, David R; Hoey, Andrew S; Hughes, Terence P

    2012-04-22

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. PMID:22090383

  14. Ecological intereactions of reef building corals

    EPA Science Inventory

    Coral reefs are very important marine ecosystems because they support tremendous biodiversity and reefs are critical economic resources many coastal nations. Tropical reef structures are largely built by stony corals. This presentation provides background on basic coral biology t...

  15. Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Pandolfi, John M.; Bradbury, Roger H.; Sala, Enric; Hughes, Terence P.; Bjorndal, Karen A.; Cooke, Richard G.; McArdle, Deborah; McClenachan, Loren; Newman, Marah J. H.; Paredes, Gustavo; Warner, Robert R.; Jackson, Jeremy B. C.

    2003-08-01

    Degradation of coral reef ecosystems began centuries ago, but there is no global summary of the magnitude of change. We compiled records, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions. Large animals declined before small animals and architectural species, and Atlantic reefs declined before reefs in the Red Sea and Australia, but the trajectories of decline were markedly similar worldwide. All reefs were substantially degraded long before outbreaks of coral disease and bleaching. Regardless of these new threats, reefs will not survive without immediate protection from human exploitation over large spatial scales.

  16. Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.

    2012-09-01

    Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.

  17. Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    PubMed Central

    Schöttner, Sandra; Wild, Christian; Hoffmann, Friederike; Boetius, Antje; Ramette, Alban

    2012-01-01

    Background Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but weak microbe-host specificity. Conclusions/Significance This study presents the first multi-scale survey of bacterial diversity in cold-water coral reefs, spanning a total of five observational levels including three spatial scales. It demonstrates that bacterial communities in cold-water coral reefs are structured by multiple factors acting at different spatial scales, which has fundamental

  18. Coral reef ecosystem decline: changing dynamics of coral reef carbonate production and implications for reef growth potential

    NASA Astrophysics Data System (ADS)

    Perry, Chris

    2016-04-01

    Global-scale deteriorations in coral reef health have caused major shifts in species composition and are likely to be exacerbated by climate change. It has been suggested that one effect of these ecological changes will be to lower reef carbonate production rates, which will impair reef growth potential and, ultimately, may lead to states of net reef erosion. However, quantitative data to support such assertions are limited, and linkages between the ecological state of coral reefs and their past and present geomorphic performance (in other words their growth potential) are poorly resolved. Using recently collected data from sites in the Caribbean and Indian Ocean, and which have undergone very different post-disturbance ecological trajectories over the last ~20-30 years, the differential impacts of disturbance on contemporary carbonate production regimes and on reef growth potential can be explored. In the Caribbean, a region which has been severely impacted ecological over the last 30+ years, our datasets show that average carbonate production rates on reefs are now less than 50% of pre-disturbance rates, and that calculated accretion rates (mm yr-1) are an about order of magnitude lower within shallow water habitats compared to Holocene averages. Collectively, these data suggest that recent ecological declines are now propagating through the system to impact on the geomorphic performance of Caribbean reefs and will impair their future growth potential. In contrast, the carbonate budgets of most reefs across the Chagos archipelago (central Indian Ocean), which is geographically remote and largely isolated from direct human disturbances, have recovered rapidly from major past disturbances (specifically the 1998 coral bleaching event). The carbonate budgets on these remote reefs now average +3.7 G (G = kg CaCO3 m-2 yr-1). Most significantly the production rates on Acropora-dominated reefs, which were most severely impacted by the 1998 bleaching event, average +8.4 G

  19. Holocene aggradation of the Dry Tortugas coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Brock, J. C.; Palaseanu-Lovejoy, M.; Poore, R. Z.; Nayegandhi, A.; Wright, C. W.

    2010-12-01

    Radiometric age dating of reef cores acquired at the Dry Tortugas coral reef ecosystem (DTCRE) was merged with lidar topographic mapping to examine Holocene reef development linked to spatial variation in growth and erosion under the control of sea level. Analysis of variance of lidar topography confirmed the presence of three distinct terraces on all three major DTCRE banks (Loggerhead Bank, Garden Bank, and Pulaski Bank). Reef building on the middle terrace (T2) began atop Pleistocene edifices on Loggerhead Bank by 8.0 ka (thousands of years ago) and on Garden Bank by 7.2 ka at elevations of about -16.0 m and -11.9 m, respectively, relative to present mean sea level. Following this initiation at different elevations, T2 aggraded vertically on both banks at different rates during the early Holocene under foundering conditions until a highstand at 5.2 ka, resulting in a 2.21 m offset in present mean T2 elevation between these banks. Initiation of an upper terrace (T1) occurred on both Loggerhead Bank and Garden Bank in association with sea-level fall to a lowstand at near 4.8 ka. This upper terrace initiated on Garden Bank at about 5.0 ka and then grew upward at rate of 2.5 mm year-1 until approximately 3.8 ka. On Loggerhead Bank, the upper T1 terrace formed after 4.5 ka at a higher vertical aggradation rate of 4.1 mm year-1, but at a lower elevation than on Garden Bank. Terrace T1 aggraded on Loggerhead Bank below the elevation of lowstands during late Holocene sea-level oscillation, and consequently erosion on Loggerhead Bank was minimal and likely limited to the crest of the upper terrace. In contrast, after 3.8 ka terrace T1 on Garden Bank likely tracked sea level and consequently underwent erosion when sea level fell to second, third and fourth lowstands at 3.3, 1.1, and 0.3 ka.

  20. Holocene aggradation of the Dry Tortugas coral reef ecosystem

    USGS Publications Warehouse

    Brock, J.C.; Palaseanu-Lovejoy, M.; Poore, R.Z.; Nayegandhi, A.; Wright, C.W.

    2010-01-01

    Radiometric age dating of reef cores acquired at the Dry Tortugas coral reef ecosystem (DTCRE) was merged with lidar topographic mapping to examine Holocene reef development linked to spatial variation in growth and erosion under the control of sea level. Analysis of variance of lidar topography confirmed the presence of three distinct terraces on all three major DTCRE banks (Loggerhead Bank, Garden Bank, and Pulaski Bank). Reef building on the middle terrace (T2) began atop Pleistocene edifices on Loggerhead Bank by 8.0 ka (thousands of years ago) and on Garden Bank by 7.2 ka at elevations of about −16.0 m and −11.9 m, respectively, relative to present mean sea level. Following this initiation at different elevations, T2 aggraded vertically on both banks at different rates during the early Holocene under foundering conditions until a highstand at 5.2 ka, resulting in a 2.21 m offset in present mean T2 elevation between these banks. Initiation of an upper terrace (T1) occurred on both Loggerhead Bank and Garden Bank in association with sea-level fall to a lowstand at near 4.8 ka. This upper terrace initiated on Garden Bank at about 5.0 ka and then grew upward at rate of 2.5 mm year−1 until approximately 3.8 ka. On Loggerhead Bank, the upper T1 terrace formed after 4.5 ka at a higher vertical aggradation rate of 4.1 mm year−1, but at a lower elevation than on Garden Bank. Terrace T1 aggraded on Loggerhead Bank below the elevation of lowstands during late Holocene sea-level oscillation, and consequently erosion on Loggerhead Bank was minimal and likely limited to the crest of the upper terrace. In contrast, after 3.8 ka terrace T1 on Garden Bank likely tracked sea level and consequently underwent erosion when sea level fell to second, third and fourth lowstands at 3.3, 1.1, and 0.3 ka.

  1. Satellite Remote Sensing of Coral Reefs: By Learning about Coral Reefs, Students Gain an Understanding of Ecosystems and How Cutting-Edge Technology Can Be Used to Study Ecological Change

    ERIC Educational Resources Information Center

    Palandro, David; Thoms, Kristin; Kusek, Kristen; Muller-Karger, Frank; Greely, Teresa

    2005-01-01

    Coral reefs are one of the most important ecosystems on the planet, providing sustenance to both marine organisms and humans. Yet they are also one of the most endangered ecosystems as coral reef coverage has declined dramatically in the past three decades. Researchers continually seek better ways to map coral reef coverage and monitor changes…

  2. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    USGS Publications Warehouse

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  3. Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems.

    PubMed

    Bourne, David G; Morrow, Kathleen M; Webster, Nicole S

    2016-09-01

    Corals are fundamental ecosystem engineers, creating large, intricate reefs that support diverse and abundant marine life. At the core of a healthy coral animal is a dynamic relationship with microorganisms, including a mutually beneficial symbiosis with photosynthetic dinoflagellates (Symbiodinium spp.) and enduring partnerships with an array of bacterial, archaeal, fungal, protistan, and viral associates, collectively termed the coral holobiont. The combined genomes of this coral holobiont form a coral hologenome, and genomic interactions within the hologenome ultimately define the coral phenotype. Here we integrate contemporary scientific knowledge regarding the ecological, host-specific, and environmental forces shaping the diversity, specificity, and distribution of microbial symbionts within the coral holobiont, explore physiological pathways that contribute to holobiont fitness, and describe potential mechanisms for holobiont homeostasis. Understanding the role of the microbiome in coral resilience, acclimation, and environmental adaptation is a new frontier in reef science that will require large-scale collaborative research efforts. PMID:27482741

  4. A Decision Support System for Ecosystem-Based Management of Tropical Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Muller-Karger, F. E.; Eakin, C.; Guild, L. S.; Nemani, R. R.; Hu, C.; Lynds, S. E.; Li, J.; Vega-Rodriguez, M.; Coral Reef Watch Decision Support System Team

    2010-12-01

    We review a new collaborative program established between the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to augment the NOAA Coral Reef Watch decision-support system. NOAA has developed a Decision Support System (DSS) under the Coral Reef Watch (CRW) program to forecast environmental stress in coral reef ecosystems around the world. This DSS uses models and 50 km Advanced Very High Resolution Radiometer (AVHRR) to generate “HotSpot” and Degree Heating Week coral bleaching indices. These are used by scientists and resource managers around the world. These users, including National Marine Sanctuary managers, have expressed the need for higher spatial resolution tools to understand local issues. The project will develop a series of coral bleaching products at higher spatial resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR data. We will generate and validate products at 1 km resolution for the Caribbean Sea and Gulf of Mexico, and test global assessments at 4 and 50 km. The project will also incorporate the Global Coral Reef Millennium Map, a 30-m resolution thematic classification of coral reefs developed by the NASA Landsat-7 Science Team, into the CRW. The Millennium Maps help understand the geomorphology of individual reefs around the world. The products will be available through the NOAA CRW and UNEP-WCMC web portals. The products will help users formulate policy options and management decisions. The augmented DSS has a global scope, yet it addresses the needs of local resource managers. The work complements efforts to map and monitor coral reef communities in the U.S. territories by NOAA, NASA, and the USGS, and is a contribution to international efforts in ecological forecasting of coral reefs under changing environments, coral reef research, resource management, and conservation. Acknowledgement: Funding is provided by the NASA Ecological Forecasting

  5. Herbivory, Connectivity, and Ecosystem Resilience: Response of a Coral Reef to a Large-Scale Perturbation

    PubMed Central

    Adam, Thomas C.; Schmitt, Russell J.; Holbrook, Sally J.; Brooks, Andrew J.; Edmunds, Peter J.; Carpenter, Robert C.; Bernardi, Giacomo

    2011-01-01

    Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience. PMID:21901131

  6. Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation.

    PubMed

    Adam, Thomas C; Schmitt, Russell J; Holbrook, Sally J; Brooks, Andrew J; Edmunds, Peter J; Carpenter, Robert C; Bernardi, Giacomo

    2011-01-01

    Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience. PMID:21901131

  7. [A review of the role and function of microbes in coral reef ecosystem].

    PubMed

    Zhou, Jin; Jin, Hui; Cai, Zhong-Hua

    2014-03-01

    Coral reef is consisted with several kinds of reef-associated organisms, including coral, fish, benthos, algae and microbes, which is an important marine ecosystem. Coral reef lives in the oligotrophic environment, has very highly primary productivity and net productivity, and is called "tropical rain forest in ocean". In corals, diverse microorganisms exert a significant influence on biogeochemical and ecological processes, including food webs, organism life cycles, and nutrient cycling. With the development of molecular biology, the role of microorganisms in a coral system is becoming more outstanding. In this article, we reviewed current understanding on 1) the onset of coral-bacterial associations; 2) the characteristics of microbes in coral (specificity, plasticity and co-evolution) ; 3) the role and signal regulation of microbes in the health and disease of coral; and 4) the response mechanism of microbes for global climatic change and consequent effects, such as temperature rise, ocean acidification and eutrophication. The aims of this article were to summarize the latest theories and achievements, clear the mechanism of microbial ecology in coral reefs and provide a theoretical reference for better protection and maintaining the coral's biodiversity. PMID:24984515

  8. Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kikuchi, R. K.; Elliff, C. I.

    2014-12-01

    Coral reefs provide many ecosystem services of which coastal populations are especially dependent upon, both in cases of extreme events and in daily life. However, adaptation to climate change is still relatively unknown territory regarding the ecosystem services provided by coastal environments, such as coral reefs. Management strategies usually consider climate change as a distant issue and rarely include ecosystem services in decision-making. Coral reefs are among the most vulnerable environments to climate change, considering the impact that increased ocean temperature and acidity have on the organisms that compose this ecosystem. If no actions are taken, the most likely scenario to occur will be of extreme decline in the ecosystem services provided by coral reefs. Loss of biodiversity due to the pressures of ocean warming and acidification will lead to increased price of seafood products, negative impact on food security, and ecological imbalances. Also, sea-level rise and fragile structures due to carbonate dissolution will increase vulnerability to storms, which can lead to shoreline erosion and ultimately threaten coastal communities. Both these conditions will undoubtedly affect recreation and tourism, which are often the most important use values in the case of coral reef systems. Adaptation strategies to climate change must take on an ecosystem-based approach with continuous monitoring programs, so that multiple ecosystem services are considered and not only retrospective trends are analyzed. Brazilian coral reefs have been monitored on a regular basis since 2000 and, considering that these marginal coral reefs of the eastern Atlantic are naturally under stressful conditions (e.g. high sedimentation rates), inshore reefs of Brazil, such as those in Tinharé-Boipeba, have shown lower vitality rates due to greater impacts from the proximity to the coastal area (e.g. pollution, overfishing, sediment run-off). This chronic negative impact must be addressed

  9. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar.

    PubMed

    Sheikh, Mohammed A; Juma, Fatma S; Staehr, Peter; Dahl, Karsten; Rashid, Rashid J; Mohammed, Mohammed S; Ussi, Ali M; Ali, Hassan R

    2016-08-15

    2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine (Irgarol-1051) has been widely used as effective alternative antifouling paint in marine structures including ships. However, it has been causing deleterious effects to marine organisms including reef building corals. The main objective of this study was to establish baseline levels of Irgarol-1051 around coral reefs and nearby ecosystems along coastline of Zanzibar Island. The levels of Irgarol-1051 ranged from 1.35ng/L around coral reefs to 15.44ng/L around harbor with average concentration of 4.11 (mean)±0.57 (SD) ng/L. This is below Environmental Risk Limit of 24ng/L as proposed by Dutch Authorities which suggests that the contamination is not alarming especially for coral reef ecosystem health. The main possible sources of the contamination are from shipping activities. This paper provides important baseline information of Irgarol-1051 around the coral reef ecosystems within the Western Indian Ocean (WIO) region and may be useful for formulation of marine conservation strategies and policies. PMID:27234364

  10. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems.

    PubMed

    Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D

    2014-08-01

    Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. PMID:24692262

  11. Sustaining Ecosystem Services in the Global Coral Reef Crisis

    NASA Astrophysics Data System (ADS)

    Aronson, Richard B.; Precht, William F.

    2009-07-01

    Objective science is critical to understanding the relative impacts of the many putative causal agents in the global coral reef crisis. This paper provides an evidence-based scenario of causality leading to the current state of reef degradation. Contrary to revisionist narratives that emphasize the local-scale effects of fishing and nutrient loading, coral populations were and are degrading primarily due to regional-to global-scale factors. Most important among these large-scale factors are disease outbreaks and coral bleaching, both of which are related to climate change. Because policy recommendations and management strategies will differ depending on which cause(s) are perceived to exert the greatest influence, scientists must be explicit about when they are acting as advocates and when they are objectively conveying scientific results. Legitimate scientific debate is healthy and in no way diminishes the goal of creating cogent policy. Forced ideological unification, in contrast, risks obfuscation, undermining the scientific process. Science must move forward unfettered by political expediency; however, the situation is dire enough to warrant immediate action on local, regional, and global levels, based on the best scientific information at hand, in parallel with continuing research.

  12. Reefs of the deep: the biology and geology of cold-water coral ecosystems.

    PubMed

    Roberts, J Murray; Wheeler, Andrew J; Freiwald, André

    2006-04-28

    Coral reefs are generally associated with shallow tropical seas; however, recent deep-ocean exploration using advanced acoustics and submersibles has revealed unexpectedly widespread and diverse coral ecosystems in deep waters on continental shelves, slopes, seamounts, and ridge systems around the world. Advances reviewed here include the use of corals as paleoclimatic archives and their biogeological functioning, biodiversity, and biogeography. Threats to these fragile, long-lived, and rich ecosystems are mounting: The impacts of deep-water trawling are already widespread, and effects of ocean acidification are potentially devastating. PMID:16645087

  13. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    USGS Publications Warehouse

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene

  14. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they

  15. Anticipative management for coral reef ecosystem services in the 21st century.

    PubMed

    Rogers, Alice; Harborne, Alastair R; Brown, Christopher J; Bozec, Yves-Marie; Castro, Carolina; Chollett, Iliana; Hock, Karlo; Knowland, Cheryl A; Marshell, Alyssa; Ortiz, Juan C; Razak, Tries; Roff, George; Samper-Villarreal, Jimena; Saunders, Megan I; Wolff, Nicholas H; Mumby, Peter J

    2015-02-01

    Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century. PMID:25179273

  16. CORAL CONDITION: HOW TO FATHOM THE DECLINE OF CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Coral reefs have experienced unprecedented levels of bleaching, disease and mortality during the last three decades. The goal of EPA-ORD research is to identify the culpable stressors in different species, reefs and regions using integrated field and laboratory studies.

  17. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  18. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  19. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  20. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  1. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  2. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  3. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  4. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  5. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  6. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  7. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  8. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  9. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. PMID:24975091

  10. Ecology of the south Florida coral reefs: a community profile

    SciTech Connect

    Jaap, W.C.

    1984-08-01

    An overview of coral reef research in southern Florida is provided as a prelude to a genuine description of the coral reef ecosystem in the Florida Keys and surrounding environments. Coral reef community types, reef benthos, plankton and reef fish are given specific treatment. Coral reef ecology and management are described. 27 figs., 31 tabs.

  11. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  12. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  13. A continuous, real-time water quality monitoring system for the coral reef ecosystems of Nanwan Bay, Southern Taiwan.

    PubMed

    Tew, Kwee Siong; Leu, Ming-Yih; Wang, Jih-Terng; Chang, Chia-Ming; Chen, Chung-Chi; Meng, Pei-Jie

    2014-08-30

    The coral reef ecosystems of Nanwan Bay, Southern Taiwan are undergoing degradation due to anthropogenic impacts, and as such have resulted in a decline in coral cover. As a first step in preventing the continual degradation of these coral reef environments, it is important to understand how changes in water quality affect these ecosystems on a fine-tuned timescale. To this end, a real-time water quality monitoring system was implemented in Nanwan Bay in 2010. We found that natural events, such as cold water intrusion due to upwelling, tended to elicit temporal shifts in coral spawning between 2010 and 2011. In addition, Degree Heating Weeks (DHWs), a commonly utilized predictor of coral bleaching, were 0.92 and 0.59 in summer 2010 and 2011, respectively. Though this quantity of DHW was below the presumed stress-inducing value for these reefs, a rise in DHWs in the future may stress the resident corals. PMID:24332988

  14. Economic valuation of ecosystem services from coral reefs in the South Pacific: taking stock of recent experience.

    PubMed

    Laurans, Yann; Pascal, Nicolas; Binet, Thomas; Brander, Luke; Clua, Eric; David, Gilbert; Rojat, Dominique; Seidl, Andrew

    2013-02-15

    The economic valuation of coral reefs ecosystem services is currently seen as a promising approach to demonstrate the benefits of sustainable management of coral ecosystems to policymakers and to provide useful information for improved decisions. Most coral reefs economic studies have been conducted in the United States, Southeast Asia and the Caribbean, and only a few have covered the South Pacific region. In this region, coral reefs are essential assets for small island developing states as well as for developed countries. Accordingly, a series of ecosystem services valuations has been carried out recently in the South Pacific, to try and supply decision-makers with new information. Applying ecosystem services valuation to the specific ecological, social, economic and cultural contexts of the South Pacific is however not straightforward. This paper analyses how extant valuations address the various management challenges of coral reef regions in general and more specifically for the South Pacific. Bearing in mind that economic valuation has to match policy-making contexts, we emphasize a series of specific considerations when conducting and applying ecosystem services valuation in South Pacific ecological and social contexts. Finally, the paper examines the decision-making situations in which extant valuations took place. We conclude that, although ecosystem valuations have been effectively used as a means to raise awareness with respect to coral reef conservation, methodologies will have to be further developed, with multidisciplinary inputs, if they are to provide valuable inputs in local and technical decision-making. PMID:23295680

  15. Coral reef resilience through biodiversity

    USGS Publications Warehouse

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  16. The origins of ambient biological sound from coral reef ecosystems in the Line Islands archipelago.

    PubMed

    Freeman, Simon E; Rohwer, Forest L; D'Spain, Gerald L; Friedlander, Alan M; Gregg, Allison K; Sandin, Stuart A; Buckingham, Michael J

    2014-04-01

    Although ambient biological underwater sound was first characterized more than 60 years ago, attributing specific components of ambient sound to their creators remains a challenge. Noise produced by snapping shrimp typically dominates the ambient spectra near tropical coasts, but significant unexplained spectral variation exists. Here, evidence is presented indicating that a discernible contribution to the ambient sound field over coral reef ecosystems in the Line Islands archipelago originates from the interaction of hard-shelled benthic macro-organisms with the coral substrate. Recordings show a broad spectral peak centered between 14.30 and 14.63 kHz, incoherently added to a noise floor typically associated with relatively "white" snapping shrimp sounds. A 4.6 to 6.2 dB increase of pressure spectral density level in the 11 to 17 kHz band occurs simultaneously with an increase in benthic invertebrate activity at night, quantified through time-lapse underwater photography. Spectral-level-filtered recordings of hermit crabs Clibanarius diugeti in quiet aquarium conditions reveal that transient sounds produced by the interaction between the crustaceans' carapace, shell, and coral substrate are spectrally consistent with Line Islands recordings. Coral reef ecosystems are highly interconnected and subtle yet important ecological changes may be detected quantitatively through passive monitoring that utilizes the acoustic byproducts of biological activity. PMID:25234977

  17. Disease of coral and coral reef fishes

    USGS Publications Warehouse

    Panek, Frank

    2008-01-01

    The Department of the Interior protects sensitive habitats amounting to about 3,600,000 acres of coral reefs and other submerged lands. These reefs are important ecosystems in 13 National Wildlife Refuges, 10 National Parks and in certain territorial waters such as the Wake Atoll.

  18. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    PubMed Central

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on

  19. The Paradoxical Roles of Climate Stressors on Disturbance and Recovery of Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Manfrino, C.; Foster, G.; Camp, E.

    2013-05-01

    The geographic isolation, absence of significant anthropogenic impacts, compressed spatial scale, and habitat diversity of Little Cayman combine to make it a natural laboratory for elucidating the dualistic impacts of various climatic events. These events both impart ecosystem disturbances and aid in the subsequent recovery of coral reef habitats. Within the isolated microcosm of Little Cayman the environmental factors commonly associated with coral stress, mortality, resilience and recovery hinted at by regional-scale observations can be more clearly observed. The primary thrust of this study is to reveal the under-pinning biophysical and hydrologic factors pertinent to reef resilience and to better understand the various roles played by climatic disturbances that have led to the rapid recovery of corals at Little Cayman following a spate of high temperature anomalies. Six closely-spaced high-temperature events were recorded in the Caribbean between the years of 1987 and 2009. Of these, only the 1998 global ENSO event, with well-documented levels of elevated SST, reduced cloud cover and surface water texture with concomittant increases in UV and irradiance and reduced water velocity, resulted in significant mortality at Little Cayman. Following this event, island-wide live coral cover decreased by 40%, from 26% to 14%. Annual monitoring of live coral cover following the 1998 ENSO event revealed no significant recovery of live coral cover until 2009, at which point there was a rapid rebound to pre-disturbance levels by 2011. Such a protracted step-change in coral recovery is indicative of one or more episodic events. The proposed scenario is that the numerous thermal stress events damaged the photo-system of the zooxanthellae, limiting the scope for growth and recovery as the metabolic budgets of corals were diverted to cellular repair. It is posited that the rapid cooling effect of frequent Tropical Storms and Hurricanes between 2002 - 2008, coupled with the

  20. Monitoring Watershed Water Quality Impacts on Near-Shore Coral Reef Ecosystems in American Samoa using NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Teaby, A.; Price, J.; Minovitz, D.; Makely, L.; Torres-Perez, J. L.; Schmidt, C.; Guild, L. S.; Palacios, S. L.

    2014-12-01

    Land use changes can greatly increase erosion and sediment loads reaching watersheds and downstream coastal waters. In coastal environments with steep terrain and small drainage basins, sedimentation directly influences water quality in near-shore marine environments. Poor water quality indicators (i.e., dissolved nutrients and high particulates) affect coral calcification, photosynthesis, and coral cover. The abundance, recruitment, and biodiversity of American Samoa's coral reefs have been heavily affected by population growth, land cover change, pollution, and sediment influx. Monitoring, managing, and protecting these fragile ecosystems remains difficult due to limited resource availability, steep terrain, and local land ownership. Despite extensive field hours, traditional field and lab-based water quality research produces temporally and spatially limited datasets. Using a 'ridge to reef' effort, this project built a management tool to assess coral reef vulnerability using land use, hydrology, water quality, and coral reef cover in American Samoa to provide local agencies and partners with spatial representation of water quality parameters and site-specific implications for coral reef vulnerability. This project used land cover classified from Landsat 7 and 8 images, precipitation data from NOAA, and physical ocean factors from Terra MODIS. Changes in land cover from 2000 to 2014 were also estimated using Landsat imagery. Final products were distributed to partners to enhance water quality management, community outreach, and coral reef conservation.

  1. Bayesian decision-network modeling of multiple stakeholders for reef ecosystem restoration in the coral triangle.

    PubMed

    Varkey, Divya A; Pitcher, Tony J; McAllister, Murdoch K; Sumaila, Rashid S

    2013-06-01

    Proposals for marine conservation measures have proliferated in the last 2 decades due to increased reports of fishery declines and interest in conservation. Fishers and fisheries managers have often disagreed strongly when discussing controls on fisheries. In such situations, ecosystem-based models and fisheries-stock assessment models can help resolve disagreements by highlighting the trade-offs that would be made under alternative management scenarios. We extended the analytical framework for modeling such trade-offs by including additional stakeholders whose livelihoods and the value they place on conservation depend on the condition of the marine ecosystem. To do so, we used Bayesian decision-network models (BDNs) in a case study of an Indonesian coral reef fishery. Our model included interests of the fishers and fishery managers; individuals in the tourism industry; conservation interests of the state, nongovernmental organizations, and the local public; and uncertainties in ecosystem status, projections of fisheries revenues, tourism growth, and levels of interest in conservation. We calculated the total utility (i.e., value) of a range of restoration scenarios. Restricting net fisheries and live-fish fisheries appeared to be the best compromise solutions under several combinations of settings of modeled variables. Results of our case study highlight the implications of alternate formulations for coral reef stakeholder utility functions and discount rates for the calculation of the net benefits of alternative fisheries management options. This case study may also serve as a useful example for other decision analyses with multiple stakeholders. PMID:23530881

  2. Seasonal variations in the subsurface ultraviolet-B on an inshore Pacific coral reef ecosystem.

    PubMed

    Downs, Nathan J; Schouten, Peter W; Parisi, Alfio V

    2013-01-01

    Fringing coral reefs provide a unique opportunity to study shallow aquatic ecosystems. A fringing coral reef system located in close proximity to a developed region was considered in this study. In such an environment, the rate of decay of dissolved organic matter is high and the penetration of higher energy ultraviolet-B (UVB) extends a greater influence on species diversity, particularly upon shallow benthic communities. Results from a 9 month subsurface UVB exposure measurement campaign performed at a site located on the southern Queensland coast (Hervey Bay, 25°S) are presented in this research. For this, a novel dosimetric technique was utilized to measure long-term subsurface UVB exposures. The resultant data set includes exposure measurements made during the significant La Niña event of late 2010 which resulted in unprecedented high sea surface temperatures and severe flooding across eastern Australia, impacting upon the lagoon regions of the Great Barrier Reef and Queensland's southern estuaries, including the study site. The influence of season, diurnal tidal variation, cloud cover and solar zenith angle were analyzed over the campaign period. Mean minimum daylight water depth was found to be the most significant factor influencing subsurface UVB. PMID:23701175

  3. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs.

    PubMed

    Hicks, Christina C; Cinner, Joshua E

    2014-12-16

    Ecosystem services are supplied by nature but, by definition, are received by people. Ecosystem service assessments, intended to influence the decisions people make regarding their interactions with nature, need to understand how people benefit from different ecosystem services. A critical question is therefore, What determines the distribution of ecosystem service benefits between different sections of society? Here, we use an entitlements approach to examine how people perceive ecosystem service benefits across 28 coral reef fishing communities in four countries. In doing so, we quantitatively show that bundles of benefits are mediated by key access mechanisms (e.g., rights-based, economic, knowledge, social, and institutional). We find that specific access mechanisms influence which ecosystem services people prioritize. Social, institutional, and knowledge mechanisms are associated with the largest number and diversity of benefits. However, local context strongly determines whether specific access mechanisms enable or constrain benefits. Local ecological knowledge enabled people to prioritize a habitat benefit in Kenya, but constrained people from prioritizing the same benefit in Madagascar. Ecosystem service assessments, and their resultant policies, need to include the broad suite of access mechanisms that enable different people to benefit from a supply of ecosystem services. PMID:25453100

  4. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs

    PubMed Central

    Cinner, Joshua E.

    2014-01-01

    Ecosystem services are supplied by nature but, by definition, are received by people. Ecosystem service assessments, intended to influence the decisions people make regarding their interactions with nature, need to understand how people benefit from different ecosystem services. A critical question is therefore, What determines the distribution of ecosystem service benefits between different sections of society? Here, we use an entitlements approach to examine how people perceive ecosystem service benefits across 28 coral reef fishing communities in four countries. In doing so, we quantitatively show that bundles of benefits are mediated by key access mechanisms (e.g., rights-based, economic, knowledge, social, and institutional). We find that specific access mechanisms influence which ecosystem services people prioritize. Social, institutional, and knowledge mechanisms are associated with the largest number and diversity of benefits. However, local context strongly determines whether specific access mechanisms enable or constrain benefits. Local ecological knowledge enabled people to prioritize a habitat benefit in Kenya, but constrained people from prioritizing the same benefit in Madagascar. Ecosystem service assessments, and their resultant policies, need to include the broad suite of access mechanisms that enable different people to benefit from a supply of ecosystem services. PMID:25453100

  5. Coral reef bleaching: ecological perspectives

    NASA Astrophysics Data System (ADS)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  6. Global microbialization of coral reefs.

    PubMed

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-01-01

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC. PMID:27572833

  7. Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys

    USGS Publications Warehouse

    Turk, Daniela; Yates, Kimberly K.; Vega-Rodriguez, Maria; Toro-Farmer, Gerardo; L'Esperance, Chris; Melo, Nelson; Ramsewak, Deanesch; Estrada, S. Cerdeira; Muller-Karger, Frank E.; Herwitz, Stan R.; McGillis, Wade

    2016-01-01

    Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC, with positive values at near-seafloor light levels >100–300 µEinstein m-2 s-1. During daylight hours, we detected an average NEP of 12.3 and 8.6 mmol O2 m-2 h-1 at the seagrass and coral reef site, respectively. At night, NEP at the seagrass site was relatively constant, while on the coral reef, net respiration was highest immediately after dusk and decreased during the rest of the night. At the seagrass site, NEC values ranged from 0.20 g CaCO3 m-2 h-1 during daylight to -0.15 g CaCO3 m-2 h-1 at night, and from 0.17 to -0.10 g CaCO3 m-2 h-1 at the coral reef site. There were no significant differences in pH and aragonite saturation states (Ωar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic.

  8. The future of coral reefs

    NASA Astrophysics Data System (ADS)

    Knowlton, Nancy

    2001-05-01

    Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived "weedy" corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral "bleaching" (the breakdown of coral-algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.

  9. Community metabolism in shallow coral reef and seagrass ecosystems, Lower Florida Keys

    NASA Astrophysics Data System (ADS)

    Turk, Daniela; Yates, Kimberly; Vega-Rodriguez, Maria; Toro-Farmer, Gerardo; L'Esperance, Chris; Melo, Nelson; Ramsevak, Deanesh; Cerdeira-Estrada, Sergio; Muller-Karger, Frank; Herwitz, Stanley; McGillis, Wade

    2015-04-01

    Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC with positive values at near-bottom light levels above 100-300 μEinstein m-2 s-1. During daylight hours, seagrasses showed an average NEP of 12.3 mmol O2 m-2 h-1 compared to daylight coral reef NEP of 8.6 mmol O2 m-2 h-1. At night, NEP at the seagrass was relatively constant, while in the coral reef, net respiration was highest immediately after dusk and decreasing during the rest of the night. NEC values were ranging from 0.20 g CaCO3 m-2 h-1 during daylight to -0.15 g CaCO3 m-2 h-1 at night at the seagrass site, and from 0.17 to -0.10 g CaCO3 m-2 h-1 at the coral reef site. Similar NEC:NEP ratios were observed at the seagrass site and the coral site at the time of maximum daily irradiance. Average photosynthetic quotient (PQ) at the seagrass site was slightly lower in the morning and early afternoon than at the coral reef site, and higher at the seagrass site in the late afternoon. There were no significant differences in pH and aragonite saturation states (Ωar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic.

  10. Key Ecological Interactions of Reef Building Corals - 11-16-2011

    EPA Science Inventory

    Coral reefs are very important marine ecosystems because they support tremendous biodiversity and reefs are critical economic resources many coastal nations. Tropical reef structures are largely built by stony corals. This presentation provides background on basic coral biology t...

  11. Parameters of productivity and metabolism of coral reef ecosystems off central Vietnam

    NASA Astrophysics Data System (ADS)

    Sorokin, Yu. I.

    1991-09-01

    Primary production of phytoplankton in coastal waters off central Vietnam (20-100 mg C m -2 day -1) was depleted over the shallow coral reefs (1-5 mg C m -3 day -1). Planktonic bacteria totalled 0·2-2 × 10 6 cells ml -1, wet biomass was 50-1250 mg m -3, and productivity was 50-200 mg m -3 day -1 of wet biomass (or 10-40 mg C m -3 day -1). The biomass of planktonic protozoa (ciliates and zooflagellates) in waters off the reefs was 100-300 mg m -3 with depletion by grazing over the reefs being 1-5 mg m -3. Total respiration rates of microplankton were within the range 0·2-1 mg O 2l -1 day -1, respiration of bacteria comprising 80-90% of the total. The stock of labile (potentially utilizable by planktonic microflora) organic matter in coastal waters varied from 0·3 to 3 mg C l -1, higher values corresponding with waters over the active coral reef. The excretion of organic matter by corals as well as the respiration and photosynthesis rates in different components of bottom biotopes were measured. The roles of bacteria, algae and planktonic protozoa in coral reef trophodynamics are discussed.

  12. Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    NASA Astrophysics Data System (ADS)

    Keller, Brian D.; Gleason, Daniel F.; McLeod, Elizabeth; Woodley, Christa M.; Airamé, Satie; Causey, Billy D.; Friedlander, Alan M.; Grober-Dunsmore, Rikki; Johnson, Johanna E.; Miller, Steven L.; Steneck, Robert S.

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.

  13. Climate change, coral reef ecosystems, and management options for marine protected areas.

    PubMed

    Keller, Brian D; Gleason, Daniel F; McLeod, Elizabeth; Woodley, Christa M; Airamé, Satie; Causey, Billy D; Friedlander, Alan M; Grober-Dunsmore, Rikki; Johnson, Johanna E; Miller, Steven L; Steneck, Robert S

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more "traditional" stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation. PMID:19636605

  14. Climate change impacts on freshwater fish, coral reefs, and related ecosystem services in the United States

    EPA Science Inventory

    We analyzed the potential physical and economic impacts of climate change on freshwater fisheries and coral reefs in the United States, examining a reference scenario and two policy scenarios that limit global greenhouse gas (GHG) emissions. We modeled shifts in suitable habitat ...

  15. Identifying cold-water coral ecosystem by using benthic foraminiferal indicators: from active reefs to the geological record

    NASA Astrophysics Data System (ADS)

    Margreth, Stephan; Rüggeberg, Andres; Gennari, Giordana; Spezzaferri, Silvia

    2010-05-01

    Cold-water coral ecosystems dominated by the species Lophelia pertusa and Madrepora oculata, as well as cold-water coral carbonate mounds (fossils and/or active) occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz and into the Alboran Sea. Their discovery is a major achievement of the last few decades and their widespread occurrence presents a challenge to understand their development, preservation and possible importance in the geologic record. On the Norwegian shelf active/living reefs are developed on elevated hard substrata. Along the Irish margin L. pertusa builds large fossil and/or active carbonate mounds. In the Gulf of Cadiz and in the Alboran Sea buried reefs and patch reefs are generally found in association with mud volcanoes. In modern oceans, they provide important ecological niches for the marine benthic fauna in the deep-sea. In comparison to the macrofauna the microfauna, particularly the foraminifera associated to these systems, are poorly known. We present here a detailed study based on quantitative analyses of benthic and planktonic foraminifera together with the statistical treatment of assemblage data collected along the Norwegian margin, in the Porcupine-Rockall region and in the Alboran Sea. The three regions were and/or are site of cold-water coral ecosystems settlements. Our study reveals that in the Porcupine/Rockall region benthic foraminiferal assemblages are strictly related to the distribution of facies. On the Norwegian margin, benthic foraminiferal habitats are weakly defined and grade one into the other preventing the sharp facies separation observed along the Irish margin (Margreth et al., 2009). In the Alboran Sea cold-water coral ecosystems and cold-water carbonate mounds are presently buried and corals are generally fragmented. However, benthic assemblages from coral-rich layers in the Alboran Sea and those from Porcupine/Rockall and Norway show remarkable

  16. In Brief: Coral ecosystems plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-08-01

    With climate change, unsustainable fishing practices, and disease ``transforming coral communities at regional to global scales,'' a 30 July report from the U.S. Geological Survey outlines a strategy for conducting research on coral ecosystems. The report indicates that USGS coral ecosystem research will focus on three major themes during the next five years, as funding permits: reef structure, ecological integrity, and the role of marine reserves; land-based and local impacts; and responses to global change.

  17. Coral reefs: Turning back time

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.

    2016-03-01

    An in situ experiment finds that reducing the acidity of the seawater surrounding a natural coral reef significantly increases reef calcification, suggesting that ocean acidification may already be slowing coral growth. See Letter p.362

  18. Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun

    2015-06-01

    Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.

  19. Population Genetics of an Ecosystem-Defining Reef Coral Pocillopora damicornis in the Tropical Eastern Pacific

    PubMed Central

    Combosch, David J.; Vollmer, Steven V.

    2011-01-01

    Background Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP. Methodology Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama. Principal Findings/Conclusions We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly

  20. From ridge to reef—linking erosion and changing watersheds to impacts on the coral reef ecosystems of Hawai‘i and the Pacific Ocean

    USGS Publications Warehouse

    Stock, Jonathan D.; Cochran, Susan A.; Field, Michael E.; Jacobi, James D.; Tribble, Gordon

    2011-01-01

    Coral reef ecosystems are threatened by unprecedented watershed changes in the United States and worldwide. These ecosystems sustain fishing and tourism industries essential to the economic survival of many communities. Sediment, nutrients, and pollutants from watersheds are increasingly transported to coastal waters, where these contaminants damage corals. Although pollution from watersheds is one of many factors threatening coral survival, it is one that local people can have a profound influence on. U.S. Geological Survey scientists are using mapping, monitoring, and computer modeling to better forecast the effects of watershed changes on reef health. Working with communities in Hawai‘i and on other U.S. islands in the Pacific, they are helping to provide the science needed to make informed decisions on watershed and coral reef management.

  1. Remote sensing and fish-habitat relationships in coral reef ecosystems: review and pathways for multi-scale hierarchical research.

    PubMed

    Mellin, Camille; Andréfouët, Serge; Kulbicki, Michel; Dalleau, Mayeul; Vigliola, Laurent

    2009-01-01

    Understanding spatial variations in alpha, beta, and gamma coral reef fish diversity, as well as both local community and regional metacommunity structures, is critical for science and conservation of coral reef ecosystems. This quest implies that fish-habitat relationships are characterized across different spatial scales. Remote sensing allows now for a routine description of habitats from global-regional to detailed reef scales, thus theoretically offering access to hierarchical spatial analysis at multiple scales. To judge the progress in using remotely sensed habitat variables for reef fish study, existing peer-reviewed papers on the subject are reviewed. We tabulated the significant fish-habitat relationships given the different study sites, fish and habitat variables, statistical analysis, sampling efforts and scales. Studies generally do not corroborate each other. Instead, the exercise provides a diversity of thematic results from which lessons remain equivocal. It is thus justified to recommend more systematic and hierarchical remote-sensing based research in the future. We advocate the use of remote-sensing early in the design of the fish study, as part of a coherent conceptual scheme spanning all spatial scales. PMID:19058817

  2. New directions in coral reef microbial ecology.

    PubMed

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. PMID:21955796

  3. 77 FR 48504 - Proposed Information Collection; Comment Request; Economic Value of Puerto Rico's Coral Reef...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Value of Puerto Rico's Coral Reef Ecosystems for Recreation-Tourism AGENCY: National Oceanic and... values of Puerto Rico's coral reef ecosystems. Estimates will be made for all ecosystem services for the Guanica Bay Watershed and for recreation-tourism for all of Puerto Rico's coral reef ecosystems....

  4. CORAL REEF BIOCRITERIA

    EPA Science Inventory

    Coral reefs worldwide are experiencing the greatest decline of their known existence and few tools are available to offset the growing impacts of human coastal and watershed activities. Biocriteria are a potentially effective means to evaluate and restore impaired waters, but are...

  5. Coral Reef Biological Criteria

    EPA Science Inventory

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  6. Oman's coral reefs: A unique ecosystem challenged by natural and man-related stresses and in need of conservation.

    PubMed

    Burt, J A; Coles, S; van Lavieren, H; Taylor, O; Looker, E; Samimi-Namin, K

    2016-04-30

    Oman contains diverse and abundant reef coral communities that extend along a coast that borders three environmentally distinct water bodies, with corals existing under unique and often stressful environmental conditions. In recent years Oman's reefs have undergone considerable change due to recurrent predatory starfish outbreaks, cyclone damage, harmful algal blooms, and other stressors. In this review we summarize current knowledge of the biology and status of corals in Oman, particularly in light of recent stressors and projected future threats, and examine current reef management practices. Oman's coral communities occur in marginal environmental conditions for reefs, and hence are quite vulnerable to anthropogenic effects. We recommend a focus on developing conservation-oriented coral research to guide proactive management and expansion of the number and size of designated protected areas in Oman, particularly those associated with critical coral habitat. PMID:26573133

  7. Reciprocal feedbacks between spatial subsidies and reserve networks in coral reef meta-ecosystems.

    PubMed

    Spiecker, Barbara; Gouhier, Tark C; Guichard, Frédéric

    2016-01-01

    Top-down processes such as predation and herbivory have been shown to control the dynamics of communities across a range of ecosystems by generating trophic cascades. However, theory is only beginning to describe how these local trophic processes interact with spatial subsidies in the form of material (nutrient, detritus) transport and organismal dispersal to (1) shape the structure of interconnected (meta-) ecosystems and (2) determine their optimal management via reserve networks. Here, we develop a meta-ecosystem model to understand how the reciprocal feedbacks between spatial subsidies and reserve networks modulate the importance of top-down control in a simple herbivorous fish-macroalgae-coral system. We show that in large and isolated reserve networks where connectivity between protected and unprotected areas is limited, spatial subsidies remain largely confined to reserves. This retention of spatial subsidies promotes the top-down control of corals and macroalgae by herbivores inside reserves but reduces it outside reserves. Conversely, in small and aggregated reserves where connectivity between protected and unprotected areas is high, the spillover of spatial subsidies causes a reduction in top-down control of corals and macroalgae by herbivores inside reserves and an increase in the strength of top-down control outside reserves. In addition, we demonstrate that there is a trade-off between local and regional conservation objectives when designing reserve networks: small and aggregated reserves based on the extent of dispersal maximize the abundance of corals and herbivores regionally, whereas large and isolated reserves always maximize the abundance of corals within reserves, regardless of the extent of dispersal. The existence of such "conservation traps," which arise from the fulfillment of population-level objectives within local reserves at the cost of community-level objectives at regional scales, suggests the importance of adopting a more holistic

  8. The Global Coral Reef Crisis: Trends and Solutions (Coral Reefs: Values, Threats, and the Marine Aquarium Trade)

    SciTech Connect

    Shuman, Craig S.

    2003-02-05

    Second only to tropical rainforests, coral reefs support one of the world's most diverse natural habitats. Over 350 million individuals depend on coral reef resources for food and income. Unfortunately, the Earth is in the midst of a coral reef crisis. Anthropogenic impacts including overfishing, destructive fishing practices, sedimentation and pollution, as well as global climate change, have served to disrupt the natural processes that maintain the health of these ecosystems. Until recently, however, the global extent of the coral reef crisis was unknown. Reef Check was developed in 1996 as a volunteer, community-based monitoring protocol designed to measure the health of coral reefs on a global scale. With goals of education, monitoring, and management, Reef Check has activities in over 60 countries and territories. They have not only provided scientific evidence of the global extent of the coral reef crisis, but have provided the first community based steps to alleviate this urgent situation.

  9. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs

    USGS Publications Warehouse

    Kleypas, J.A.; Buddemeier, R.W.; Archer, D.; Gattuso, J.-P.; Langdon, C.; Opdyke, B.N.

    1999-01-01

    A coral reef represents the net accumulation of calcium carbonate (CaCO3) produced by corals and other calcifying organisms. If calcification declines, then reef-building capacity also declines. Coral reef calcification depends on the saturation state of the carbonate mineral aragonite of surface waters. By the middle of the next century, an increased concentration of carbon dioxide will decrease the aragonite saturation state in the tropics by 30 percent and biogenic aragonite precipitation by 14 to 30 percent. Coral reefs are particularly threatened, because reef-building organisms secrete metastable forms of CaCO3, but the biogeochemical consequences on other calcifying marine ecosystems may be equally severe.

  10. Benthic foraminifera as bioindicator for cold-water coral reef ecosystems along the Irish margin

    NASA Astrophysics Data System (ADS)

    Margreth, Stephan; Rüggeberg, Andres; Spezzaferri, Silvia

    2009-12-01

    Cold-water coral ecosystems building cold-water carbonate mounds occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz. A remarkable mound province is documented southwest of Ireland along the Porcupine and Rockall Banks. In this area carbonate mounds are formed in water depths between 500 and 1200 m and are often densely settled by cold-water coral ecosystems offering many ecological niches for benthic foraminifera. We investigated total (unstained) benthic foraminiferal assemblages from surface sediments (0-1 cm, >63 μm size fraction) of this region with the aim to trace their distribution patterns and to test if they can be used as bioindicators for facies characterization in different parts of carbonate mound systems. Our quantitative data were further statistically treated with non-metric multidimensional scaling (nMDS) based on Bray-Curtis similarity matrix to highlight community patterns that were not readily apparent. Our results indicate that different benthic foraminiferal assemblages characterize different facies along cold-water carbonate mounds and are related to the environmental conditions and available substrates. The following facies can be described: (1) the Off-Mound Facies is dominated by uvigerinids and other infaunal species; (2) the Dropstone Facies is characterized by infaunal Globocassidulina subglobosa and attached-epifaunal Cibicidoides sp.; (3) the Dead Coral Facies is characterised by epifaunal species (e.g., Planulina ariminensis, Hanzawaia boueana) and infaunal species ( Spiroplectinella wrightii, Angulogerina angulosa, Epistominella vitrea); (4) the Living Coral Facies includes both infaunal and epifaunal species, but is dominated by the epifaunal Discanomalina coronata; and (5) the Sandwave Facies contains high abundances of epifaunal species including D. coronata. Based on this distribution, we propose D. coronata, as an indicator species to identify active mounds and

  11. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    USGS Publications Warehouse

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  12. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Storlazzi, Curt D.; Norris, Ben K.; Rosenberger, Kurt J.

    2015-09-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  13. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  14. Assessing the sensitivity of coral reef condition indicators to local and global stressors with Bayesian networks

    EPA Science Inventory

    Coral reefs are highly valued ecosystems that are currently imperiled. Although the value of coral reefs to human societies is only just being investigated and better understood, for many local and global economies coral reefs are important providers of ecosystem services that su...

  15. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  16. African and Asian dust: from desert soils to coral reefs

    USGS Publications Warehouse

    Garrison, Virginia H.; Shinn, Eugene A.; Foreman, William T.; Griffin, Dale W.; Holmes, Charles W.; Kellogg, Christina A.; Majewski, Michael S.; Richardson, Laurie L.; Ritchie, Kim B.; Smith, Garriet W.

    2003-01-01

    Many hypotheses have been proposed to explain the decline of coral reefs throughout the world, but none adequately accounts for the lack of recovery of reefs or the wide geographical distribution of coral diseases. The processes driving the decline remain elusive. Hundreds of millions of tons of dust transported annually from Africa and Asia to the Americas may be adversely affecting coral reefs and other downwind ecosystems. Viable microorganisms, macro- and micronutrients, trace metals, and an array of organic contaminants carried in the dust air masses and deposited in the oceans and on land may play important roles in the complex changes occurring on coral reefs worldwide.

  17. NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers

    NASA Astrophysics Data System (ADS)

    Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.

    2010-12-01

    A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.

  18. Warm-water coral reefs and climate change

    NASA Astrophysics Data System (ADS)

    Spalding, Mark D.; Brown, Barbara E.

    2015-11-01

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  19. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. PMID:26564846

  20. Rising to the challenge of sustaining coral reef resilience.

    PubMed

    Hughes, Terry P; Graham, Nicholas A J; Jackson, Jeremy B C; Mumby, Peter J; Steneck, Robert S

    2010-11-01

    Phase-shifts from one persistent assemblage of species to another have become increasingly commonplace on coral reefs and in many other ecosystems due to escalating human impacts. Coral reef science, monitoring and global assessments have focused mainly on producing detailed descriptions of reef decline, and continue to pay insufficient attention to the underlying processes causing degradation. A more productive way forward is to harness new theoretical insights and empirical information on why some reefs degrade and others do not. Learning how to avoid undesirable phase-shifts, and how to reverse them when they occur, requires an urgent reform of scientific approaches, policies, governance structures and coral reef management. PMID:20800316

  1. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  2. Coral reef protection

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The National Oceanic and Atmospheric Administration announced the establishment on 13 November of the first U.S. zone to protect a sensitive coral reef area from potential damage by ships.The Florida Keys' Particularly Sensitive Sea Area, just one of a handful of such areas globally, has been designated by the International Maritime Organization, a specialized agency of the United Nations. The area protects a zone of more than 3,000 square nautical miles stretching from the Biscayne National Park to the Dry Tortugas.

  3. Fishing down nutrients on coral reefs

    PubMed Central

    Allgeier, Jacob E.; Valdivia, Abel; Cox, Courtney; Layman, Craig A.

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  4. Fishing down nutrients on coral reefs.

    PubMed

    Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  5. GLOBAL CHANGE EFFECTS ON CORAL REEF CONDITION

    EPA Science Inventory

    Fisher, W., W. Davis, J. Campbell, L. Courtney, P. Harris, B. Hemmer, M. Parsons, B. Quarles and D. Santavy. In press. Global Change Effects on Coral Reef Condition (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington...

  6. Wave transformation over coral reefs

    NASA Astrophysics Data System (ADS)

    Young, Ian R.

    1989-07-01

    Ocean wave attenuation on coral reefs is discussed using data obtained from a preliminary field experiment and from the Seasat altimeter. Marked attenuation of the waves is observed, the rate being consistent with existing theories of bottom friction and wave breaking decay. In addition, there is a significant broadening of the spectrum during propagation across reefs. Three-dimensional effects, such as refraction and defraction, can also lead to substantial wave height reduction for significant distances adjacent to coral reefs. As a result, a matrix of such reefs provides significantly more wave attenuation than may initially be expected.

  7. Consequences of a Government-Controlled Agricultural Price Increase on Fishing and the Coral Reef Ecosystem in the Republic of Kiribati

    PubMed Central

    Reddy, Sheila M. W.; Groves, Theodore; Nagavarapu, Sriniketh

    2014-01-01

    Background Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. Methods/Principal Findings We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. Conclusions/Significance We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by

  8. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  9. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  10. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  11. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  12. Spatial Analyses of Benthic Habitats to Define Coral Reef Ecosystem Regions and Potential Biogeographic Boundaries along a Latitudinal Gradient

    PubMed Central

    Walker, Brian K.

    2012-01-01

    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar

  13. Are coral reefs victims of their own past success?

    PubMed

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services. PMID:27152330

  14. 77 FR 39724 - U.S. Coral Reef Task Force Public Meeting and Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Fish and Wildlife Service U.S. Coral Reef Task Force Public Meeting and Public Comment AGENCY: Fish and... U.S. Fish and Wildlife Service (Service), announce a public meeting of the U.S. Coral Reef Task... protect coral reef ecosystems. The Departments of Commerce and the Interior co-chair the USCRTF,...

  15. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    EPA Science Inventory

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  16. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): Actual Condition of Coral Reefs Associated with the Guanica and Manati Watersheds in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto, M.; Guild, L. S.; Ortiz, J.; Setegn, S. G.; Ramos-Scharron, C. E.; Armstrong, R.; Santiago, L.

    2015-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs), particularly coral reefs, have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Here we present an overview of the first year of findings of a NASA-funded project that studies human impacts in two priority watersheds (Manatí and Guánica). The project includes remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change of CMEs. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. This project will include imagery from Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Field data was collected through a series of phototransects at the main reefs associated with these two priority watersheds. A preliminary assessment shows a range in coral cover from 0.2-30% depending on the site (Guánica) whereas apparently healthy corals dominate the reef in the north coast (Manatí). Reefs on the southwest coast of PR (Guánica) show an apparent shift from hard corals to a more algae and soft corals dominance after decades of anthropogenic impacts (sedimentation, eutrophication, mechanical damage through poorly supervised recreational activities, etc.). Additionally preliminary results from land cover/land use changes analyses show dynamic historical shoreline changes in beaches located west of the Manatí river mouth and a degradation of water quality in Guánica possibly being one of the main factors affecting the actual condition of its CMEs.

  17. Miocene reef corals: A review

    SciTech Connect

    Frost, S.H.

    1988-01-01

    Tectonic blockage in the Middle East of westward-flowing Tethys surface circulation during the latest Oligocene led to creation in the earliest Miocene of endemic Mediterranean, Western Atlantic-Caribbean, and Indo-Pacific realms. A great reduction in reef coral diversity from 60-80 Oligocene species to 25-35 early Miocene species occurred in the Western Atlantic-Caribbean and Mediterranean areas accompanied by a decrease in reef growth. A slower and less drastic change apparently occurred in the Indo-Pacific area. Early Miocene reef corals of the Western Atlantic-Caribbean comprise a transition between the cosmopolitan Oligocene fauna and its endemic mid-Miocene to modern counterpart. Although early Miocene reefs were dominated by a Porites-Montastrea assemblage, eastward flow of Pacific circulation brought with it ''exotic'' corals such as Coscinaraea and Pseudocolumnastrea. Also, many cosmopolitan genera persisted from the Oligocene. During the middle to late Miocene, most of the species still living on Holocene reefs evolved. As the Mediterranean basin became more restricted, there was a slow decline in reef corals from 20 - 25 species in the Aquitainian to less than five species in the Messinian. Eustatic lowstand led to the extinction of reef-building corals in the late Messinian. In the Indo-Pacific, Neogene evolution of reef corals was conservative. Excluding the Acroporidae and Seriatoporidae, most Holocene framework species had evolved by the middle Miocene. Interplay between regional tectonics and eustatic sea level changes led to extensive development of middle to late Miocene pinnacle reefs over the southwestern Pacific.

  18. Community dynamics of Pleistocene coral reefs during alternative climatic regimes.

    PubMed

    Tager, Danika; Webster, Jody M; Potts, Donald C; Renema, Willem; Braga, Juan C; Pandolfi, John M

    2010-01-01

    Reef ecosystems built during successive periods of Pleistocene sea level rise have shown remarkable persistence in coral community structure, but little is known of the ecological characteristics of reef communities during periods of low sea stands or sea level falls. We sampled the relative species abundance of coral, benthic foraminifera, and calcareous red algae communities from eight submerged coral reefs in the Huon Gulf, Papua New Guinea, which formed during successive sea level fall and lowstand periods over the past approximately kyr. We found that dissimilarity in coral species composition increased significantly with increasing time between reef-building events. However, neither coral diversity nor the taxonomic composition of benthic foraminifera and calcareous red algae assemblages varied significantly over time. The taxonomic composition of coral communities from lowstand reefs was significantly different from that of highstand reefs previously reported from the nearby Huon Peninsula. We interpret the community composition and temporal dynamics of lowstand reefs as a result of shifting energy regimes in the Huon Gulf, and differences between low and highstand reefs as a result of differences in the interaction between biotic and environmental factors between the Huon Gulf and Huon Peninsula. Regardless of the exact processes driving these trends, our study represents the first glimpse into the ecological dynamics of coral reefs during low sea level stands when climatic conditions for reef growth were much different and less optimal than during previously studied highstand periods. PMID:20380208

  19. Population trends among Jamaican reef corals

    NASA Astrophysics Data System (ADS)

    Porter, James W.; Woodley, Jeremy D.; Jason Smith, G.; Neigel, Joseph E.; Battey, James F.; Dallmeyer, Dorinda G.

    1981-11-01

    Disturbance has been cited as a potentially important agent in structuring ecological communities by modifying the effects of competition1-5. Catastrophic disturbance has also been proposed as a factor promoting the coexistence of competing species in highly diverse tropical ecosystems such as rain forests and coral reefs2,6-11. Here we describe patterns of recruitment and mortality among reef corals over 4 yr at several depths on the reefs of Discovery Bay, Jamaica, which were struck by Hurricane Alien on 6 August 198012. Photographic quadrats monitored since 1976 on a shallow water reef showed a negative correlation between coral abundance and mortality which was not offset by compensatory patterns of recruitment. This slow trend in the disproportionate reduction of rarer, competitively inferior species was reversed by Hurricane Alien, with storm-induced mortality being greatest in the most abundant species. On deeper reef stations, undisturbed by the storm, slower rates of colony loss were compensated for by commensurate rates of colony recruitment. Thus, patterns of differential mortality and recruitment contribute to the maintenance of high species diversity in this tropical marine ecosystem.

  20. Ocean acidification worse in coral reefs

    NASA Astrophysics Data System (ADS)

    Betz, Eric O.

    2014-12-01

    The rate of ocean acidification in coral reefs outpaces the rise in carbon dioxide (CO2) in Earth's atmosphere, indicating that anthropogenic carbon emissions alone are not to blame for the threat to coral reefs, a new study shows.

  1. Recovery potential of the world's coral reef fishes.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Wilson, Shaun K; Williams, Ivor D; Maina, Joseph; Newman, Steven; Friedlander, Alan M; Jupiter, Stacy; Polunin, Nicholas V C; McClanahan, Tim R

    2015-04-16

    Continuing degradation of coral reef ecosystems has generated substantial interest in how management can support reef resilience. Fishing is the primary source of diminished reef function globally, leading to widespread calls for additional marine reserves to recover fish biomass and restore key ecosystem functions. Yet there are no established baselines for determining when these conservation objectives have been met or whether alternative management strategies provide similar ecosystem benefits. Here we establish empirical conservation benchmarks and fish biomass recovery timelines against which coral reefs can be assessed and managed by studying the recovery potential of more than 800 coral reefs along an exploitation gradient. We show that resident reef fish biomass in the absence of fishing (B0) averages ∼1,000 kg ha(-1), and that the vast majority (83%) of fished reefs are missing more than half their expected biomass, with severe consequences for key ecosystem functions such as predation. Given protection from fishing, reef fish biomass has the potential to recover within 35 years on average and less than 60 years when heavily depleted. Notably, alternative fisheries restrictions are largely (64%) successful at maintaining biomass above 50% of B0, sustaining key functions such as herbivory. Our results demonstrate that crucial ecosystem functions can be maintained through a range of fisheries restrictions, allowing coral reef managers to develop recovery plans that meet conservation and livelihood objectives in areas where marine reserves are not socially or politically feasible solutions. PMID:25855298

  2. Persistence of coral-rudist reefs into the Late Cretaceous

    SciTech Connect

    Scott, R.W. ); Fernandez-Mendiola, P.A. ); Gili, E. ); Simo, A. )

    1990-04-01

    During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thickets that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.

  3. Are coral reefs victims of their own past success?

    PubMed Central

    Renema, Willem; Pandolfi, John M.; Kiessling, Wolfgang; Bosellini, Francesca R.; Klaus, James S.; Korpanty, Chelsea; Rosen, Brian R.; Santodomingo, Nadiezhda; Wallace, Carden C.; Webster, Jody M.; Johnson, Kenneth G.

    2016-01-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs’ ability to provide ecosystem services. PMID:27152330

  4. Could some coral reefs become sponge reefs as our climate changes?

    PubMed

    Bell, James J; Davy, Simon K; Jones, Timothy; Taylor, Michael W; Webster, Nicole S

    2013-09-01

    Coral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end-Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge-dominated period far surpasses that of alternative stable-ecosystem or phase-shift states reported on modern day coral reefs and, as such, a shift to sponge-dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral- to sponge-dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature and pH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning. PMID:23553821

  5. The wicked problem of China's disappearing coral reefs.

    PubMed

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. PMID:23140101

  6. Do tabular corals constitute keystone structures for fishes on coral reefs?

    NASA Astrophysics Data System (ADS)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  7. Coral reef diseases in the Atlantic-Caribbean

    USGS Publications Warehouse

    Rogers, Caroline S.; Weil, Ernesto

    2010-01-01

    Coral reefs are the jewels of the tropical oceans. They boast the highest diversity of all marine ecosystems, aid in the development and protection of other important, productive coastal marine communities, and have provided millions of people with food, building materials, protection from storms, recreation and social stability over thousands of years, and more recently, income, active pharmacological compounds and other benefits. These communities have been deteriorating rapidly in recent times. The continuous emergence of coral reef diseases and increase in bleaching events caused in part by high water temperatures among other factors underscore the need for intensive assessments of their ecological status and causes and their impact on coral reefs.

  8. Classification of remote Pacific coral reefs by physical oceanographic environment

    NASA Astrophysics Data System (ADS)

    Freeman, Lauren A.; Miller, Arthur J.; Norris, Richard D.; Smith, Jennifer E.

    2012-02-01

    The oceanographic environment is a key element in structuring coral reef ecosystems by setting the range of physical and chemical conditions in which coral reef-builders live. A cluster analysis of physical and chemical oceanographic data is used to classify coral habitats in the remote tropical and subtropical Pacific Ocean based on average temperature, temperature seasonal cycle, nutrient levels, salinity, aragonite saturation state, storm frequency, intense hurricane hits, and dissolved oxygen as well as temperature anomalies in degree heating weeks. The resulting seven geographic habitats are stable to perturbations in types of data used in the cluster analysis. Based on recent coral reef survey data in the area, the coral cover was related to the identified geographic regions. The habitats tend to be geographically clustered, and each is characterized by a unique combination of oceanographic conditions. Previous studies suggest coral reef habitats are associated with a uniform array of oceanographic conditions, while our results demonstrate that finer-scale variations in physical variables may control coral reef environments. The results better define the physical environment of remote coral reefs, forming a foundation for future work addressing physical habitat perturbation and anthropogenic impacts on reefs.

  9. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    PubMed

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-01

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation. PMID:25607371

  10. Research Spotlight: New method to assess coral reef health

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    Coral reefs around the world are becoming stressed due to rising temperatures, ocean acidification, overfishing, and other factors. Measuring community level rates of photosynthesis, respiration, and biogenic calcification is essential to assessing the health of coral reef ecosystems because the balance between these processes determines the potential for reef growth and the export of carbon. Measurements of biological productivity have typically been made by tracing changes in dissolved oxygen in seawater as it passes over a reef. However, this is a labor-intensive and difficult method, requiring repeated measurements. (Geophysical Research Letters, doi:10.1029/2010GL046179, 2011)

  11. Coral reef baselines: how much macroalgae is natural?

    PubMed

    Bruno, John F; Precht, William F; Vroom, Peter S; Aronson, Richard B

    2014-03-15

    Identifying the baseline or natural state of an ecosystem is a critical step in effective conservation and restoration. Like most marine ecosystems, coral reefs are being degraded by human activities: corals and fish have declined in abundance and seaweeds, or macroalgae, have become more prevalent. The challenge for resource managers is to reverse these trends, but by how much? Based on surveys of Caribbean reefs in the 1970s, some reef scientists believe that the average cover of seaweed was very low in the natural state: perhaps less than 3%. On the other hand, evidence from remote Pacific reefs, ecological theory, and impacts of over-harvesting in other systems all suggest that, historically, macroalgal biomass may have been higher than assumed. Uncertainties about the natural state of coral reefs illustrate the difficulty of determining the baseline condition of even well studied systems. PMID:24486044

  12. Bacterial Diversity Associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the Coral Reef Ecosystem of Gulf of Mannar, Southeast Coast of India

    PubMed Central

    Jasmin, C.; Anas, Abdulaziz; Nair, Shanta

    2015-01-01

    Sponges are abundant, diverse and functionally important organisms of coral reef ecosystems. Sponge-associated microorganisms have been receiving greater attention because of their significant contribution to sponge biomass, biogeochemical cycles and biotechnological potentials. However, our understanding of the sponge microbiome is limited to a few species of sponges from restricted geographical locations. Here, we report for the first time the bacterial diversity of two cohabiting sponges, viz. Cinachyra cavernosa and Haliclona pigmentifera, as well as that in the ambient water from the coral reef ecosystems of the Gulf of Mannar, located along the southeast coast of India. Two hundred and fifty two clones in the 16S rRNA gene library of these sponges were grouped into eight distinct phyla, of which four belonged to the core group that are associated only with sponges. Phylogenetic analysis of the core bacteria showed close affinity to other sponge-associated bacteria from different geographical locations. γ-Proteobacteria, Chloroflexi, Planctomycetes and Deferribacter were the core groups in C. cavernosa while β and δ-Proteobacteria performed this role in H. pigmentifera. We observed greater OTU diversity for C. cavernosa (Hǀ 2.07) compared to H. pigmentifera (Hǀ 1.97). UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water (p<0.001). The results of our study restate the existence of a host driven force in shaping the sponge microbiome. PMID:25938436

  13. The ecological research on coral reefs of the Red Sea

    NASA Astrophysics Data System (ADS)

    Mergner, Hans

    Klunzinger (1872) characterised the zonation of the coral reef near Al-Qusayr, Egypt with the help of indicator species. He identified a Stylophora-zone among other zones and established the first biophysiographic zonation of a coral reef which is, in many respects, still valid today. Since then, ecological research work on coral reefs has developed to its present understanding of one of the most complicated and densely populated ecosystems on Earth. Much biological and ecological work has been done on the coral reefs along the Red Sea coasts. This is not surrising, because the Red Sea is the coral sea closest to Europe and has attracted the interest of European investigators for over 200 years. With few exceptions, this interest has been concentrated on a limited number of coastal sites: Jeddah, Al-Qunfudhah, Al-Luhayyah and Al-Mukha along the east coast, and Assab, Mesewa, Al-Qusayr and As-Suways along the west coast. Although the early coral reef workers were primarily interested in collecting animals, they also made some informal observations on the habitats of the species they collected. However, full ecological statements were rare — with the exception of those of Klunzinger (1872). Research centres have been established and active programmes continue on the Sudanese coast at Dungunab (since 1907), Sawakin and Bur Sudan (since 1963 when the first ecological investigations on Bur Sudan coral reefs occured (Mergner, 1967), and in 1974 and 1976 respectively the biological stations at Sawakin and Bur Sudan were established), on the Egyptian coast at Al-Ghardaga (since 1930), on the Sinai coast at Eilat (since 1968) and on the Jordan coast at Al-Aqabah (since 1972). New research centres continue to open, such as aong the east coast at Jeddah. The special interest of the ecology of Red Sea coral reefs is that it encompasses a broad range of problems: the influence of abiotic factors on the community structure, distribution and species diversity of corals and the

  14. Short-term and seasonal pH,pCO2and saturation state variability in a coral-reef ecosystem

    NASA Astrophysics Data System (ADS)

    Gray, Sarah E. C.; Degrandpre, Michael D.; Langdon, Chris; Corredor, Jorge E.

    2012-09-01

    Coral reefs are predicted to be one of the ecosystems most sensitive to ocean acidification. To improve predictions of coral reef response to acidification, we need to better characterize the natural range of variability of pH, partial pressure of carbon dioxide (pCO2) and calcium carbonate saturation states (Ω). In this study, autonomous sensors for pH and pCO2 were deployed on Media Luna reef, Puerto Rico over three seasons from 2007 to 2008. High temporal resolution CaCO3 saturation states were calculated from the in situ data, giving a much more detailed characterization of reef saturation states than previously possible. Reef pH, pCO2 and aragonite saturation (ΩAr) ranged from 7.89 to 8.17 pH units, 176-613 μatm and 2.7-4.7, respectively, in the range characteristic of most other previously studied reef ecosystems. The diel pH, pCO2 and Ω cycles were also large, encompassing about half of the seasonal range of variability. Warming explained about 50% of the seasonal supersaturation in mean pCO2, with the remaining supersaturation primarily due to net heterotrophy and net CaCO3 production. Net heterotrophy was likely driven by remineralization of mangrove derived organic carbon which continued into the fall, sustaining high pCO2 levels until early winter when the pCO2 returned to offshore values. As a consequence, the reef was a source of CO2 to the atmosphere during the summer and fall and a sink during winter, resulting in a net annual source of 0.73 ± 1.7 mol m-2 year-1. These results show that reefs are exposed to a wide range of saturation states in their natural environment. Mean ΩAr levels will drop to 3.0 when atmospheric CO2 increases to 500 μatm and ΩAr will be less than 3.0 for greater than 70% of the time in the summer. Long duration exposure to these low ΩAr levels are expected to significantly decrease calcification rates on the reef.

  15. Building coral reef resilience through assisted evolution

    PubMed Central

    van Oppen, Madeleine J. H.; Oliver, James K.; Putnam, Hollie M.; Gates, Ruth D.

    2015-01-01

    The genetic enhancement of wild animals and plants for characteristics that benefit human populations has been practiced for thousands of years, resulting in impressive improvements in commercially valuable species. Despite these benefits, genetic manipulations are rarely considered for noncommercial purposes, such as conservation and restoration initiatives. Over the last century, humans have driven global climate change through industrialization and the release of increasing amounts of CO2, resulting in shifts in ocean temperature, ocean chemistry, and sea level, as well as increasing frequency of storms, all of which can profoundly impact marine ecosystems. Coral reefs are highly diverse ecosystems that have suffered massive declines in health and abundance as a result of these and other direct anthropogenic disturbances. There is great concern that the high rates, magnitudes, and complexity of environmental change are overwhelming the intrinsic capacity of corals to adapt and survive. Although it is important to address the root causes of changing climate, it is also prudent to explore the potential to augment the capacity of reef organisms to tolerate stress and to facilitate recovery after disturbances. Here, we review the risks and benefits of the improvement of natural and commercial stocks in noncoral reef systems and advocate a series of experiments to determine the feasibility of developing coral stocks with enhanced stress tolerance through the acceleration of naturally occurring processes, an approach known as (human)-assisted evolution, while at the same time initiating a public dialogue on the risks and benefits of this approach. PMID:25646461

  16. Connectivity of the South Florida Coral Reef Ecosystem to Upstream Waters of the Western Caribbean and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Birbriezca, L. C.; Vasquez-Yeomans, L.; Cordero, E. S.

    2008-05-01

    The coastal waters of south Florida, including the coral reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS), are directly connected by means of strong ocean currents with upstream waters of the western Caribbean Sea and the Gulf of Mexico. The Caribbean Current and the Loop Current provide a rapid conduit for transport from Mexican and Belizean coral reefs, located off the eastern shore of the Yucatan Peninsula, to nearshore regions of northern Cuba, Florida, and the Bahamas. Interdisciplinary cruise data collected in August 2002, March 2006 and January 2007 aboard the NOAA Ship Gordon Gunter, in combination with satellite-tracked surface drifter trajectories and remote sensing imagery, clearly show the highly variable and dynamic nature of the regional current regimes and provide a means of quantifying the potential pathways and transport rates of the coastal waters and their biological and chemical constituents from one region to another. Results from these cruises and ancillary data show that the study areas are connected with rapid transport time scales, and that frontal eddies and gyres play an important role in establishing the time and length scales of this connectivity. Such direct physical connectivity between the coral reef biota of these geographically separated spawning grounds via ocean currents may have an important influence on the degree of biological connectivity between regional larval populations. Initial analyses of ichthyoplankton surveys and inshore collections along the Yucatan mesoamerican reef suggest large scale variability in both local recruitment and large scale spatial distribution. Despite strong northward flowing currents, inshore collections indicate that local recruitment in some areas is strongly influenced by small scale circulation patterns. However, the distribution of spawning aggregations along the Yucatan coast suggests a larger role for the Caribbean Current. Determining the interactions between the larger scale

  17. First Record of Porpita porpita (Cnidaria: Hydrozoa) from the coral reef ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. Shah Nawaz; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman; Rashed-Un-Nabi, Md.; Hossain, M. Shahadat

    2016-03-01

    The occurrence of Porpita porpita is reported, for the first time, in the coral island of St. Martin's located in the southeastern coastal region of Bangladesh. P. porpita was found to occur in the lower littoral zone and beach rock pools, together with molluscan species, and collected during the pre-monsoon season when both water temperature (> 30°C) and salinity (> 30‰) tend to reach a maximum. This study recounts some details on the discovery and description of the species, and thus extends the global distribution and range limits of the genus Porpita.

  18. REEF MANAGER'S GUIDE TO CORAL BLEACHING

    EPA Science Inventory

    A Reef Manager's Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) engage in information-sharing in the areas of coral reef science and management for climate change and coral bleaching; and (2) compile a management tool ...

  19. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    PubMed

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. PMID:26241935

  20. Variability in reef connectivity in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.

    2015-12-01

    The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM

  1. Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats

    PubMed Central

    Doropoulos, Christopher; Ward, Selina; Roff, George; González-Rivero, Manuel; Mumby, Peter J.

    2015-01-01

    Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation

  2. Ecological consequences of major hydrodynamic disturbances on coral reefs.

    PubMed

    Madin, Joshua S; Connolly, Sean R

    2006-11-23

    A recent tsunami and an apparent increase in the frequency of severe tropical storms underscore the need to understand and predict the ecological consequences of major hydrodynamic disturbances. Reef corals provide the habitat structure that sustains the high biodiversity of tropical reefs, and thus provide the foundation for the ecosystem goods and services that are critical to many tropical societies. Here we integrate predictions from oceanographic models with engineering theory, to predict the dislodgement of benthic reef corals during hydrodynamic disturbances. This generalizes earlier work, by incorporating colonies of any shape and by explicitly examining the effects of hydrodynamic gradients on coral assemblage structure. A field test shows that this model accurately predicts changes in the mechanical vulnerability of coral colonies, and thus their size and shape, with distance from the reef crest. This work provides a general framework for understanding and predicting the effects of hydrodynamic disturbances on coral reef communities; such disturbances have a major role in determining species zonation and coexistence on coral reefs, and are critical determinants of how coral assemblages will respond to changes in the frequency and intensity of tropical storms associated with a changing climate. PMID:17122855

  3. A novel reef coral symbiosis

    NASA Astrophysics Data System (ADS)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  4. Avoiding coral reef functional collapse requires local and global action.

    PubMed

    Kennedy, Emma V; Perry, Chris T; Halloran, Paul R; Iglesias-Prieto, Roberto; Schönberg, Christine H L; Wisshak, Max; Form, Armin U; Carricart-Ganivet, Juan P; Fine, Maoz; Eakin, C Mark; Mumby, Peter J

    2013-05-20

    Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification. While the abundance of coral has declined in recent decades, the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services. PMID:23664976

  5. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    NASA Astrophysics Data System (ADS)

    Hochberg, E. J.

    2015-12-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  6. Florida Integrated Science Center (FISC) Coral Reef Research

    USGS Publications Warehouse

    Poore, D.Z.

    2008-01-01

    Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.

  7. Coral reef hydrogeology

    SciTech Connect

    Buddemeier, R.W.; Oberdorfer, J.A.

    1985-05-21

    Knowledge of internal flow velocities and pore water residence time is important in understanding pore water geochemistry, nutrient fluxes at the benthic boundary, reef diagenesis, and fresh water resources in reef islands. Hydrogeologic studies of Pacific and Indian Ocean reef and atoll islands indicate a dual aquifer systems; the major Pleistocene aquifer has hydraulic conductivities on the order of 1000 m/d, while the overlying Holocene aquifer of unconsolidated sediments is at least an order of magnitude less permeable. The high permeability in the Pleistocene formation is the result of large voids, both constructional and from subaerial solution during low stands of the sea. Wind, wave and tide induced head differences ranging from a few centimeters to several tens of centimeters provide the driving force for internal flow. Pore water residence times and geochemistry will vary greatly, depending on whether the water is in a major flow channel or in more restricted pores. Studies of both submerged reefs and atoll islands give bulk pore water residence times on the order of months to a few years. Chemical analyses of pore water indicate that both carbonate solution and precipitation are taking place, which will alter porosity and permeability with time. The dual aquifer model also suggests that the Ghyben-Herzberg lens approach to reef island fresh water resources is inaccurate and can lead to a gross overestimation of the potable resource. 18 refs., 5 figs.

  8. Connectivity, regime shifts and the resilience of coral reefs

    NASA Astrophysics Data System (ADS)

    Elmhirst, Toby; Connolly, Sean R.; Hughes, Terry P.

    2009-12-01

    Connectivity of larvae among metapopulations in open marine systems can be a double-edged sword, allowing for the colonization and replenishment of both desirable and undesirable elements of interacting species-rich assemblages. This article studies the effect of recruitment by coral and macroalgae on the resilience of grazed reef ecosystems. In particular, we focus on how larval connectivity affects regime shifts between alternative assemblages that are dominated either by corals or by macroalgae. Using a model with bistability dynamics, we show that recruitment of coral larvae erodes the resilience of a macroalgae-dominated ecosystem when grazing is high, but has negligible effect when grazing is low. Conversely, recruitment by macroalgae erodes the resilience of a coral-dominated ecosystem when grazing is low, leading to a regime shift to macroalgae. Thus, spillover of coral recruits from highly protected areas will not restore coral cover or prevent flips to macroalgae in the surrounding seascape if grazing levels in these areas are depleted, but may be pivotal for re-building coral populations if grazing is high. Fishing restrictions and the re-introduction of herbivores should therefore be a prime conservation objective for preventing undesirable regime shifts. Connectivity by some components of coral reef assemblages (e.g., macroalgae, pathogens, crown-of-thorns starfish) may be detrimental to sustaining reefs, especially where overfishing and other drivers have eroded their resilience, making them more vulnerable to a regime shift.

  9. Quantifying Water Flow within Aquatic Ecosystems Using Load Cell Sensors: A Profile of Currents Experienced by Coral Reef Organisms around Lizard Island, Great Barrier Reef, Australia

    PubMed Central

    Johansen, Jacob L.

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms−1 and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm−2 allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: Currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms−1, while tidal currents rarely exceed 5.5 cms−1. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats. PMID:24421878

  10. Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    PubMed Central

    Kittinger, John N.; Pandolfi, John M.; Blodgett, Jonathan H.; Hunt, Terry L.; Jiang, Hong; Maly, Kepā; McClenachan, Loren E.; Schultz, Jennifer K.; Wilcox, Bruce A.

    2011-01-01

    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311

  11. Historical reconstruction reveals recovery in Hawaiian coral reefs.

    PubMed

    Kittinger, John N; Pandolfi, John M; Blodgett, Jonathan H; Hunt, Terry L; Jiang, Hong; Maly, Kepā; McClenachan, Loren E; Schultz, Jennifer K; Wilcox, Bruce A

    2011-01-01

    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (~AD 1400-1820) and an ongoing recovery in the NWHI (~AD 1950-2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>10(3) km(2)). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311

  12. Coral Settlement on a Highly Disturbed Equatorial Reef System

    PubMed Central

    Bauman, Andrew G.; Guest, James R.; Dunshea, Glenn; Low, Jeffery; Todd, Peter A.; Steinberg, Peter D.

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of

  13. Tradeoffs between fisheries harvest and the resilience of coral reefs.

    PubMed

    Bozec, Yves-Marie; O'Farrell, Shay; Bruggemann, J Henrich; Luckhurst, Brian E; Mumby, Peter J

    2016-04-19

    Many countries are legally obliged to embrace ecosystem-based approaches to fisheries management. Reductions in bycatch and physical habitat damage are now commonplace, but mitigating more sophisticated impacts associated with the ecological functions of target fisheries species are in their infancy. Here we model the impacts of a parrotfish fishery on the future state and resilience of Caribbean coral reefs, enabling us to view the tradeoff between harvest and ecosystem health. We find that the implementation of a simple and enforceable size restriction of >30 cm provides a win:win outcome in the short term, delivering both ecological and fisheries benefits and leading to increased yield and greater coral recovery rate for a given harvest rate. However, maintaining resilient coral reefs even until 2030 requires the addition of harvest limitations (<10% of virgin fishable biomass) to cope with a changing climate and induced coral disturbances, even in reefs that are relatively healthy today. Managing parrotfish is not a panacea for protecting coral reefs but can play a role in sustaining the health of reefs and high-quality habitat for reef fisheries. PMID:27044106

  14. Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs

    PubMed Central

    Klein, Carissa J.; Ban, Natalie C.; Halpern, Benjamin S.; Beger, Maria; Game, Edward T.; Grantham, Hedley S.; Green, Alison; Klein, Travis J.; Kininmonth, Stuart; Treml, Eric; Wilson, Kerrie; Possingham, Hugh P.

    2010-01-01

    Background Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. Methodology/Principal Findings Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. Conclusions/Significance Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems. PMID:20814570

  15. Can we measure beauty? Computational evaluation of coral reef aesthetics

    PubMed Central

    Guibert, Marine; Foerschner, Anja; Co, Tim; Calhoun, Sandi; George, Emma; Hatay, Mark; Dinsdale, Elizabeth; Sandin, Stuart A.; Smith, Jennifer E.; Vermeij, Mark J.A.; Felts, Ben; Dustan, Phillip; Salamon, Peter; Rohwer, Forest

    2015-01-01

    The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Specific coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and significantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but influenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost efficient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population. PMID:26587350

  16. Can we measure beauty? Computational evaluation of coral reef aesthetics.

    PubMed

    Haas, Andreas F; Guibert, Marine; Foerschner, Anja; Co, Tim; Calhoun, Sandi; George, Emma; Hatay, Mark; Dinsdale, Elizabeth; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Felts, Ben; Dustan, Phillip; Salamon, Peter; Rohwer, Forest

    2015-01-01

    The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Specific coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and significantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but influenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost efficient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population. PMID:26587350

  17. Forest conservation delivers highly variable coral reef conservation outcomes.

    PubMed

    Klein, Carissa J; Jupiter, Stacy D; Selig, Elizabeth R; Watts, Matthew E; Halpern, Benjamin S; Kamal, Muhammad; Roelfsema, Chris; Possingham, Hugh P

    2012-06-01

    Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land-sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land-sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8-58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land-sea planning. PMID:22827132

  18. Mechanical vulnerability explains size-dependent mortality of reef corals

    PubMed Central

    Madin, Joshua S; Baird, Andrew H; Dornelas, Maria; Connolly, Sean R

    2014-01-01

    Understanding life history and demographic variation among species within communities is a central ecological goal. Mortality schedules are especially important in ecosystems where disturbance plays a major role in structuring communities, such as coral reefs. Here, we test whether a trait-based, mechanistic model of mechanical vulnerability in corals can explain mortality schedules. Specifically, we ask whether species that become increasingly vulnerable to hydrodynamic dislodgment as they grow have bathtub-shaped mortality curves, whereas species that remain mechanically stable have decreasing mortality rates with size, as predicted by classical life history theory for reef corals. We find that size-dependent mortality is highly consistent between species with the same growth form and that the shape of size-dependent mortality for each growth form can be explained by mechanical vulnerability. Our findings highlight the feasibility of predicting assemblage-scale mortality patterns on coral reefs with trait-based approaches. PMID:24894390

  19. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    PubMed

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results. PMID:25708511

  20. Herbivore space use influences coral reef recovery.

    PubMed

    Eynaud, Yoan; McNamara, Dylan E; Sandin, Stuart A

    2016-06-01

    Herbivores play an important role in marine communities. On coral reefs, the diversity and unique feeding behaviours found within this functional group can have a comparably diverse set of impacts in structuring the benthic community. Here, using a spatially explicit model of herbivore foraging, we explore how the spatial pattern of grazing behaviours impacts the recovery of a reef ecosystem, considering movements at two temporal scales-short term (e.g. daily foraging patterns) and longer term (e.g. monthly movements across the landscape). Model simulations suggest that more spatially constrained herbivores are more effective at conferring recovery capability by providing a favourable environment to coral recruitment and growth. Results also show that the composition of food available to the herbivore community is linked directly to the pattern of space use by herbivores. To date, most studies of variability among the impacts of herbivore species have considered the diversity of feeding modes and mouthparts. Our work provides a complementary view of spatial patterns of foraging, revealing that variation in movement behaviours alone can affect patterns of benthic change, and thus broadens our view of realized links between herbivore diversity and reef recovery. PMID:27429784

  1. Herbivore space use influences coral reef recovery

    PubMed Central

    Eynaud, Yoan; McNamara, Dylan E.; Sandin, Stuart A.

    2016-01-01

    Herbivores play an important role in marine communities. On coral reefs, the diversity and unique feeding behaviours found within this functional group can have a comparably diverse set of impacts in structuring the benthic community. Here, using a spatially explicit model of herbivore foraging, we explore how the spatial pattern of grazing behaviours impacts the recovery of a reef ecosystem, considering movements at two temporal scales—short term (e.g. daily foraging patterns) and longer term (e.g. monthly movements across the landscape). Model simulations suggest that more spatially constrained herbivores are more effective at conferring recovery capability by providing a favourable environment to coral recruitment and growth. Results also show that the composition of food available to the herbivore community is linked directly to the pattern of space use by herbivores. To date, most studies of variability among the impacts of herbivore species have considered the diversity of feeding modes and mouthparts. Our work provides a complementary view of spatial patterns of foraging, revealing that variation in movement behaviours alone can affect patterns of benthic change, and thus broadens our view of realized links between herbivore diversity and reef recovery. PMID:27429784

  2. Modeling Reef Hydrodynamics to Predict Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Bird, James; Steinberg, Craig; Hardy, Tom

    2005-11-01

    The aim of this study is to use environmental physics to predict water temperatures around and within coral reefs. Anomalously warm water is the leading cause for mass coral bleaching; thus a clearer understanding of the oceanographic mechanisms that control reef water temperatures will enable better reef management. In March 1998 a major coral bleaching event occurred at Scott Reef, a 40 km-wide lagoon 300 km off the northwest coast of Australia. Meteorological and coral cover observations were collected before, during, and after the event. In this study, two hydrodynamic models are applied to Scott Reef and validated against oceanographic data collected between March and June 2003. The models are then used to hindcast the reef hydrodynamics that led up to the 1998 bleaching event. Results show a positive correlation between poorly mixed regions and bleaching severity.

  3. Astronaut Photography of Coral Reefs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Noordeloos, Marco

    2001-01-01

    Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart

  4. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    PubMed

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. PMID:27097927

  5. Uncovering the connectivity of coral reef systems via Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Leclair, Matthieu; Lowe, Ryan; Zang, Zhenlin; Ivey, Gregory; Peacock, Thomas

    2015-04-01

    There has been a staggering decline in the health of coral reef ecosystems worldwide over the past century, driven by anthropogenic influences, natural processes, and overall climate change. The future of coral reefs depends largely on their ability to recover from catastrophic events, which in turn crucially relies on the ability of reef larval populations to supply and restore damaged reefs. Improving quantitative predictions of reef larval transport and connectivity has thus emerged as a high priority research area in coral reef science. Ocean circulation models are being increasingly utilized in conjunction with particle tracking methods to provide spatially explicit predictions of larval transport within reef systems. The current major drawback of this approach is that it does not elucidate the underlying yet dynamic flow structures that drive reef connectivity. Recently, however, novel Lagrangian-based analysis approaches have been developed to identify the hidden coherent structures that govern material transport in spatiotemporally complex flow fields. Here we apply these methods to investigate the connectivity within a complex coral reef system, using the UNESCO World Heritage Ningaloo Reef in Australia as a case study. Our study demonstrates how this new approach identifies the dominant flow structures present on the reef, thereby uncovering connectivity and advocating a new practical framework for investigating and understanding how ocean processes shape the ecological transport in and around coral reefs. The technique can prove particularly valuable in supporting the design of Marine Protected Areas that are intended to safeguard the future of coral reefs and other ocean ecosystems.

  6. Diversity and stability of herbivorous fishes on coral reefs.

    PubMed

    Thibaut, Loic M; Connolly, Sean R; Sweatman, Hugh P A

    2012-04-01

    Biodiversity may provide insurance against ecosystem collapse by stabilizing assemblages that perform particular ecological functions (the "portfolio effect"). However, the extent to which this occurs in nature and the importance of different mechanisms that generate portfolio effects remain controversial. On coral reefs, herbivory helps maintain coral dominated states, so volatility in levels of herbivory has important implications for reef ecosystems. Here, we used an extensive time series of abundances on 35 reefs of the Great Barrier Reef of Australia to quantify the strength of the portfolio effect for herbivorous fishes. Then, we disentangled the contributions of two mechanisms that underlie it (compensatory interactions and differential responses to environmental fluctuations ["response diversity"]) by fitting a community-dynamic model that explicitly includes terms for both mechanisms. We found that portfolio effects operate strongly in herbivorous fishes, as shown by nearly independent fluctuations in abundances over time. Moreover, we found strong evidence for high response diversity, with nearly independent responses to environmental fluctuations. In contrast, we found little evidence that the portfolio effect in this system was enhanced by compensatory ecological interactions. Our results show that portfolio effects are driven principally by response diversity for herbivorous fishes on coral reefs. We conclude that portfolio effects can be very strong in nature and that, for coral reefs in particular, response diversity may help maintain herbivory above the threshold levels that trigger regime shifts. PMID:22690639

  7. Photography of Coral Reefs from ISS

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  8. Past corals and recent reefs in Indonesia

    NASA Astrophysics Data System (ADS)

    Boekschoten, G. J.; Best, Maya Borel; Oosterbaan, A.; Molenkamp, F. M.

    During the Snellius-II Expedition Lower Pilocene coral material was collected near Salayer, and Quaternary reefs were sampled on Ambon and Sumba. Coral collections from the Pliocene of Nias were also available for study. This new material is presented together with earlier data. Preservation potentials of different coral growth forms are reviewed. The absence of Acropora and Montipora from Quaternary coral faunae is striking. This is interpreted with the model of POTTS (1983), on the disturbance by Pleistocene sea level fluctuations in the reef coral fauna. Diversification within both genera is apparently very recent, which may explain their complex taxonomy. Given the dominant role of Acropora and Montipora in many present day Indonesian reefs, these are better described as transitional assemblages of corals than as established coral communities.

  9. Developing a Biological Condition Gradient for the Protection of Puerto Rico's Coral Reefs

    EPA Science Inventory

    We introduce the application of the Biological Condition Gradient (BCG) to coral reefs: a conceptual model that describes how biological attributes of coral reef ecosystems might change along a gradient of increasing anthropogenic stress. Under authority of the Clean Water Act, t...

  10. Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy.

    PubMed

    Tedetti, Marc; Cuet, Pascale; Guigue, Catherine; Goutx, Madeleine

    2011-05-01

    La Saline fringing reef is the most important coral reef complex of La Réunion Island (southwestern Indian Ocean; 21°07'S, 55°32'E). This ecosystem is subjected to anthropogenic pressures through river inputs and submarine groundwater discharge (SGD). The goal of this study was to characterize the pool of fluorescent dissolved organic matter (FDOM) in different water bodies of La Saline fringing reef ecosystem using excitation-emission matrix (EEM) spectrofluorometry. From EEMs, we identified the different fluorophores by the peak picking technique and determined two fluorescence indices issued from the literature: the humification index (HIX) and the biological index (BIX). The main known fluorophores were present within the sample set: humic-like A, humic-like C, marine humic-like M, tryptophan-like T1 and T2, and tyrosine-like B1 and B2. In some samples, unknown fluorophores ("U") were also detected. The surface oceanic waters located beyond the reef front displayed a typical oligotrophic marine signature, with a dominance of autochthonous/biological material (presence of peaks: T1>B1>A>T2>M>C; HIX: 0.9±0.4; BIX: 2.3±1.1). In the reef waters, the autochthonous/biological fingerprint also dominated even though the content in humic substances was higher (same relative distribution of peaks; HIX: 1.6±0.6; BIX: 1.0±0.1). Sedimentary and volcanic SGD showed very different patterns with a strong terrestrial source for the former (A>T1>C>B1 and A>C>B1; HIX: 9.8±2.0; BIX: 0.8±0.0) and a weak terrestrial source for the latter (A>B1>U3>B2>C and A>U4>C; HIX: 2.4±0.3; BIX: 0.9±0.0). In the Hermitage River, both humic substances and protein-like material were abundant (T1>A>U5>B1>C>B2; HIX: 2.3; BIX: 1.4). We provide evidences for the presence of anthropogenic DOM in some of these water bodies. Some oceanic samples (presence of peaks U1 and U2) were likely contaminated by oil-derived PAHs from ships navigating around the reef front, whereas the Hermitage River was

  11. Biological Criteria for Protection of U.S. Coral Reefs.

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  12. Biological Criteria for Protection of U.S. Coral Reefs

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  13. Fish-derived nutrient hotspots shape coral reef benthic communities.

    PubMed

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  14. Reversal of ocean acidification enhances net coral reef calcification.

    PubMed

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth. PMID:26909578

  15. Reversal of ocean acidification enhances net coral reef calcification

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; MacLaren, Jana K.; Mason, Benjamin M.; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L.; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-01

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32‑]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32‑], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  16. Marine Reserves Enhance the Recovery of Corals on Caribbean Reefs

    PubMed Central

    2010-01-01

    The fisheries and biodiversity benefits of marine reserves are widely recognised but there is mounting interest in exploiting the importance of herbivorous fishes as a tool to help ecosystems recover from climate change impacts. This approach might be particularly suitable for coral reefs, which are acutely threatened by climate change, yet the trophic cascades generated by reserves are strong enough that they might theoretically enhance the rate of coral recovery after disturbance. However, evidence for reserves facilitating coral recovery has been lacking. Here we investigate whether reductions in macroalgal cover, caused by recovery of herbivorous parrotfishes within a reserve, have resulted in a faster rate of coral recovery than in areas subject to fishing. Surveys of ten sites inside and outside a Bahamian marine reserve over a 2.5-year period demonstrated that increases in coral cover, including adjustments for the initial size-distribution of corals, were significantly higher at reserve sites than those in non-reserve sites. Furthermore, macroalgal cover was significantly negatively correlated with the change in total coral cover over time. Recovery rates of individual species were generally consistent with small-scale manipulations on coral-macroalgal interactions, but also revealed differences that demonstrate the difficulties of translating experiments across spatial scales. Size-frequency data indicated that species which were particularly affected by high abundances of macroalgae outside the reserve had a population bottleneck restricting the supply of smaller corals to larger size classes. Importantly, because coral cover increased from a heavily degraded state, and recovery from such states has not previously been described, similar or better outcomes should be expected for many reefs in the region. Reducing herbivore exploitation as part of an ecosystem-based management strategy for coral reefs appears to be justified. PMID:20066158

  17. Coral bleaching: Thermal adaptation in reef coral symbionts

    NASA Astrophysics Data System (ADS)

    Rowan, Rob

    2004-08-01

    Many corals bleach as a result of increased seawater temperature, which causes them to lose their vital symbiotic algae (Symbiodinium spp.) - unless these symbioses are able to adapt to global warming, bleaching threatens coral reefs worldwide. Here I show that some corals have adapted to higher temperatures, at least in part, by hosting specifically adapted Symbiodinium. If other coral species can host these or similar Symbiodinium taxa, they might adapt to warmer habitats relatively easily.

  18. A geological perspective on the degradation and conservation of western Atlantic coral reefs.

    PubMed

    Kuffner, Ilsa B; Toth, Lauren T

    2016-08-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs-as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species-cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources

  19. Digital Reef Rugosity Estimates Coral Reef Habitat Complexity

    PubMed Central

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity. PMID:23437380

  20. The preparation of the rice coral Montipora capitata nubbins for application in coral-reef ecotoxicology.

    PubMed

    Vijayavel, K; Richmond, R H

    2012-04-01

    Securing adequate and appropriate source material for coral-reef ecotoxicology studies is a significant impediment to conducting various experiments supporting the goal of conserving coral-reef ecosystems. Collecting colonies from wild stocks may be counter to protecting coral reef populations. To address this issue the rice coral Montipora capitata was used to generate sufficient genetically identical nubbins for research purposes. Growth and survival rates of these laboratory-prepared M. capitata nubbins were studied over a period of 90 days. The resulting data support the conclusion that the laboratory-prepared M. capitata nubbins showed successful growth and survival rates and are the best solution to solve the source material issue for lab experimentation. This paper describes the laboratory method used for the preparation and maintenance of these M. capitata nubbins and discusses the benefits and difficulties of using these nubbins in ecotoxicity studies. PMID:22218977

  1. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    PubMed

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities. PMID:25070649

  2. Marine protected areas increase resilience among coral reef communities.

    PubMed

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. PMID:27038889

  3. Measuring coral reef decline through meta-analyses

    PubMed Central

    Côté, I.M; Gill, J.A; Gardner, T.A; Watkinson, A.R

    2005-01-01

    Coral reef ecosystems are in decline worldwide, owing to a variety of anthropogenic and natural causes. One of the most obvious signals of reef degradation is a reduction in live coral cover. Past and current rates of loss of coral are known for many individual reefs; however, until recently, no large-scale estimate was available. In this paper, we show how meta-analysis can be used to integrate existing small-scale estimates of change in coral and macroalgal cover, derived from in situ surveys of reefs, to generate a robust assessment of long-term patterns of large-scale ecological change. Using a large dataset from Caribbean reefs, we examine the possible biases inherent in meta-analytical studies and the sensitivity of the method to patchiness in data availability. Despite the fact that our meta-analysis included studies that used a variety of sampling methods, the regional estimate of change in coral cover we obtained is similar to that generated by a standardized survey programme that was implemented in 1991 in the Caribbean. We argue that for habitat types that are regularly and reasonably well surveyed in the course of ecological or conservation research, meta-analysis offers a cost-effective and rapid method for generating robust estimates of past and current states. PMID:15814352

  4. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    PubMed

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  5. Determining the Extent and Characterizing Coral Reef Habitats of the Northern Latitudes of the Florida Reef Tract (Martin County)

    PubMed Central

    Walker, Brian K.; Gilliam, David S.

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25–27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km2 seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  6. Status and trends of Caribbean coral reefs: 1970-2012

    USGS Publications Warehouse

    Jackson, Jeremy; Donovan, Mary; Cramer, Katie; Lam, Vivian

    2014-01-01

    vigorously communicate results in simple and straightforward terms to foster more effective conservation and management. This and subsequent reports will focus on separate biogeographic regions in a stepwise fashion and combine all of the results for a global synthesis in the coming years. We began in the wide Caribbean region because the historical data are so extensive and to refine methods of analysis before moving on to other regions. This report documents quantitative trends for Caribbean reef corals, macroalgae, sea urchins, and fishes based on data from 90 reef locations over the past 43 tears. This is the first report to combine all these disparate kinds of data in a single place to explore how the different major components of coral reef ecosystems interact on a broadly regional oceanic scale. We obtained data from more than 35,000 ecological surveys carried out by 78 principal investigators (PIs) and some 200 colleagues working in 34 countries, states, and territories throughout the wide Caribbean region. We conducted two workshops in Panama and Brisbane, Australia to bring together people who provided the data to assist in data quality control, analysis, and synthesis. The first workshop at the Smithsonian Tropical Research Institute (STRI) in the Republic of Panama 29 April to 5 May, 2012 included scientists from 18 countries and territories to verify and expand the database and to conduct exploratory analyses of status and trends. Preliminary results based on the Panama workshop were presented to the DC Marine Community and Smithsonian Institution Senate of Scientists in May 2012 and at the International Coral Reef Symposium (ICRS) and annual ICRI meeting in Cairns, Australia in July 2012. The second workshop in Brisbane, Australia in December 2012 brought together eight coral reef scientists for more detailed data analysis and organization of results for this report and subsequent publications. Subsequent presentations to solicit comments while the report was

  7. The future of evolutionary diversity in reef corals

    PubMed Central

    Huang, Danwei; Roy, Kaustuv

    2015-01-01

    One-third of the world's reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures—phylogenetic diversity and phylogenetic species variability—we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs. PMID:25561671

  8. The future of evolutionary diversity in reef corals.

    PubMed

    Huang, Danwei; Roy, Kaustuv

    2015-02-19

    One-third of the world's reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures-phylogenetic diversity and phylogenetic species variability-we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs. PMID:25561671

  9. Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody

    2012-01-01

    Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used

  10. Direct evaluation of macroalgal removal by herbivorous coral reef fishes

    NASA Astrophysics Data System (ADS)

    Mantyka, C. S.; Bellwood, D. R.

    2007-06-01

    Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.

  11. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Toth, Lauren

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  12. African dust and the demise of Caribbean Coral Reefs

    NASA Astrophysics Data System (ADS)

    Shinn, Eugene A.; Smith, Garriet W.; Prospero, Joseph M.; Betzer, Peter; Hayes, Marshall L.; Garrison, Virginia; Barber, Richard T.

    2000-10-01

    The vitality of Caribbean coral reefs has undergone a continual state of decline since the late 1970s, a period of time coincidental with large increases in transatlantic dust transport. It is proposed that the hundreds of millions of tons/year of soil dust that have been crossing the Atlantic during the last 25 years could be a significant contributor to coral reef decline and may be affecting other ecosystems. Benchmark events, such as near synchronous Caribbean-wide mortalities of acroporid corals and the urchin Diadema in 1983, and coral bleaching beginning in 1987, correlate with the years of maximum dust flux into the Caribbean. Besides crustal elements, in particular Fe, Si, and aluminosilicate clays, the dust can serve as a substrate for numerous species of viable spores, especially the soil fungus Aspergillus. Aspergillus sydowii, the cause of an ongoing Caribbean-wide seafan disease, has been cultured from Caribbean air samples and used to inoculate sea fans.

  13. African dust and the demise of Caribbean coral reefs

    USGS Publications Warehouse

    Shinn, E.A.; Smith, G.W.; Prospero, J.M.; Betzer, P.; Hayes, M.L.; Garrison, V.; Barber, R.T.

    2000-01-01

    The vitality of Caribbean coral reefs has undergone a continual state of decline since the late 1970s, a period of time coincidental with large increases in transatlantic dust transport. It is proposed that the hundreds of millions of tons/year of soil dust that have been crossing the Atlantic during the last 25 years could be a significant contributor to coral reef decline and may be affecting other ecosystems. Benchmark events, such as near synchronous Caribbean-wide mortalities of acroporid corals and the urchin Diadema in 1983, and coral bleaching beginning in 1987, correlate with the years of maximum dust flux into the Caribbean. Besides crustal elements, in particular Fe, Si, and aluminosilicate clays, the dust can serve as a substrate for numerous species of viable spores, especially the soil fungus Aspergillus. Aspergillus sydowii, the cause of an ongoing Caribbean-wide seafan disease, has been cultured from Caribbean air samples and used to inoculate sea fans.

  14. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    EPA Science Inventory

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  15. EPA Field Manual for Coral Reef Assessments

    EPA Science Inventory

    The Water Quality Research Program (WQRP) supports development of coral reef biological criteria. Research is focused on developing methods and tools to support implementation of legally defensible biological standards for maintaining biological integrity, which is protected by ...

  16. Mass Spawning in Tropical Reef Corals

    NASA Astrophysics Data System (ADS)

    Harrison, Peter L.; Babcock, Russell C.; Bull, Gordon D.; Oliver, James K.; Wallace, Carden C.; Willis, Bette L.

    1984-03-01

    Synchronous multispecific spawning by a total of 32 coral species occurred a few nights after late spring full moons in 1981 and 1982 at three locations on the Great Barrier Reef, Australia. The data invalidate the generalization that most corals have internally fertilized, brooded planula larvae. In every species observed, gametes were released; external fertilization and development then followed. The developmental rates of externally fertilized eggs and longevities of planulae indicate that planulae may be dispersed between reefs.

  17. Linking habitat mosaics and connectivity in a coral reef seascape.

    PubMed

    McMahon, Kelton W; Berumen, Michael L; Thorrold, Simon R

    2012-09-18

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes. PMID:22949665

  18. Linking habitat mosaics and connectivity in a coral reef seascape

    PubMed Central

    McMahon, Kelton W.; Berumen, Michael L.; Thorrold, Simon R.

    2012-01-01

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes. PMID:22949665

  19. Key herbivores reveal limited functional redundancy on inshore coral reefs

    NASA Astrophysics Data System (ADS)

    Johansson, C. L.; van de Leemput, I. A.; Depczynski, M.; Hoey, A. S.; Bellwood, D. R.

    2013-12-01

    Marine ecosystems are facing increasing exposure to a range of stressors and declines in critical ecological functions. The likelihood of further loss of functions and resilience is dependent, in part, on the extent of functional redundancy (i.e. the capacity of one species to functionally compensate for the loss of another species) within critical functional groups. We used multiple metrics; species richness, generic richness, abundance and reserve capacity (i.e. the relative number of individuals available to fulfil the function if the numerically dominant species is lost), as indicators to assess the potential functional redundancy of four functional groups of herbivorous fishes (browsers, excavators, grazers and scrapers) in two of the worlds' most intact coral reef ecosystems: the Great Barrier Reef (GBR) and Ningaloo Reef in Western Australia. We found marked variations in potential redundancy among habitats within each reef system and functional groups. Despite negligible fishing of herbivorous fishes, coastal habitats in both reef systems had lower functional redundancy compared to offshore locations for all herbivorous fishes collectively and the four functional groups independently. This pattern was consistent in all four indicators of redundancy. The potential vulnerability of these coastal habitats is highlighted by recent shifts from coral to macroalgal dominance on several coastal reefs of the GBR. Our approach provides a simple yet revealing evaluation of potential functional redundancy. Moreover, it highlights the spatial variation in potential vulnerability and resilience of reef systems.

  20. Black reefs: iron-induced phase shifts on coral reefs.

    PubMed

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions. PMID:21881615

  1. Watershed- and island wide-scale land cover changes in Puerto Rico (1930s-2004) and their potential effects on coral reef ecosystems.

    PubMed

    Ramos-Scharrón, Carlos E; Torres-Pulliza, Damaris; Hernández-Delgado, Edwin A

    2015-02-15

    Anthropogenically enhanced delivery of sediments and other land-based sources of pollution represent well-recognized threats to nearshore coral reef communities worldwide. Land cover change is commonly used as a proxy to document human-induced alterations to sediment and pollutant delivery rates to coral reef bearing waters. In this article, land cover change was assessed for a 69-km(2) watershed in Puerto Rico between 1936 and 2004 by aerial photograph interpretation. Forests and sugar cane fields predominated from 1936 through the late 1970s, but while cropland dipped to negligible levels by 2004, net forest cover doubled and built-up areas increased tenfold. The watershed-scale land cover changes documented here mimicked those of the entire Puerto Rican landmass. Sediment yield predictions that rely on the sort of land cover changes reported here inevitably result in declining trends, but anecdotal and scientific evidence in the study watershed and throughout Puerto Rico suggests that sediment and pollutant loading rates still remain high and at potentially threatening levels. The simultaneous reduction in living coral cover that accompanied reforestation and urbanization patterns since the 1970s in our study region is discussed here within the context of the following non-mutually exclusive potential explanations: (a) the inability of land cover change-based assessments to discern spatially-focused, yet highly influential sources of sediment; (b) the potentially secondary role of cropland and forest cover changes in influencing nearshore coral reef conditions relative to other types of stressors like those related to climate change; and (c) the potentially dominant role that urban development may have had in altering marine water quality to the extent of reducing live coral cover. Since identification of the causes for coral reef degradation has proven elusive here and elsewhere, we infer that coral reef management may only be effective when numerous land- and

  2. The dynamics of architectural complexity on coral reefs under climate change.

    PubMed

    Bozec, Yves-Marie; Alvarez-Filip, Lorenzo; Mumby, Peter J

    2015-01-01

    One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate-driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species-specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony-scale (1-10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas

  3. Evaluation of Stony Coral Indicators for Coral Reef Management.

    EPA Science Inventory

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  4. CORAL REEF RESPONSES TO GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Increased emissions of greenhouse gases and synthetic compounds are related to rising sea temperatures and increased penetration of ultraviolet radiation (UVR), two factors that are consistently linked to bleaching and disease of corals. Coral reefs play a major role in the envir...

  5. The Coral Reef pH-stat: An Important Defense Against Ocean Acidification? (Invited)

    NASA Astrophysics Data System (ADS)

    Andersson, A. J.; Yeakel, K.; Bates, N.; de Putron, S.; Collins, A.

    2013-12-01

    Concerns have been raised on how coral reefs will be affected by ocean acidification (OA), but there are currently no direct predictions on how seawater CO2 chemistry and pH within coral reefs might change in response to OA. Projections of future changes in seawater pH and aragonite saturation state have only been applied to open ocean conditions surrounding coral reef environments rather than the reef systems themselves. The seawater CO2 chemistry within heterogenous coral reef systems can be significantly different from that of the open ocean depending on the residence time, community composition and the major biogeochemical processes occurring on the reef, i.e., net ecosystem organic carbon production and calcification, which combined act to modify the seawater chemistry. We argue that these processes and coral reefs in general could as a pH-stat, partly regulating seawater pH on the reef and offsetting changes in seawater chemistry imposed by ocean acidification. Based on observations from the Bermuda coral reef, we show that a range of anticipated biogeochemical responses of coral reef communities to OA by the end of this century could partially offset changes in seawater pH by an average of 12% to 24%.

  6. A Trait-Based Approach to Advance Coral Reef Science.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H

    2016-06-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. PMID:26969335

  7. Coral reef formation theory may apply to oil, gas exploration

    SciTech Connect

    Not Available

    1990-12-10

    This paper reports a coral reef formation theory that has implications for hydrocarbon exploration. The theory states that many coral reefs and carbonate buildups from at and are dependent upon nutrient rich fluids seeping through the seabed.

  8. Primary production of coral ecosystems in the Vietnamese coastal and adjacent marine waters

    NASA Astrophysics Data System (ADS)

    Tac-An, Nguyen; Minh-Thu, Phan; Cherbadji, I. I.; Propp, M. V.; Odintsov, V. S.; Propp, L. H.

    2013-11-01

    Coral reef ecosystems in coastal waters and islands of Vietnam have high primary production. Average gross primary production (GPP) in coral reef waters was 0.39 g C m-2 day-1. GPP of corals ranged from 3.12 to 4.37 g C m-2 day-1. GPP of benthic microalgae in coral reefs ranged from 2 to 10 g C m-2 day-1. GPP of macro-algae was 2.34 g C m-2 day-1. Therefore, the total of GPP of whole coral reef ecosystems could reach 7.85 to 17.10 g C m-2 day-1. Almost all values of the ratio of photosynthesis to respiration in the water bodies are higher than 1, which means these regions are autotrophic systems. Wire variation of GPP in coral reefs was contributed by species abundance of coral and organisms, nutrient supports and environmental characteristics of coral ecosystems. Coral reefs play an important ecological role of biogeochemical cycling of nutrients in waters around the reefs. These results contribute valuable information for the protection, conservation and sustainable exploitation of the natural resources in coral reef ecosystems in Vietnam.

  9. New protection initiatives announced for coral reefs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  10. Feedbacks Between Wave Energy And Declining Coral Reef Structure: Implications For Coastal Morphodynamics

    NASA Astrophysics Data System (ADS)

    Grady, A. E.; Jenkins, C. J.; Moore, L. J.; Potts, D. C.; Burgess, P. M.; Storlazzi, C. D.; Elias, E.; Reidenbach, M. A.

    2013-12-01

    The incident wave energy dissipated by the structural complexity and bottom roughness of coral reef ecosystems, and the carbonate sediment produced by framework-building corals, provide natural shoreline protection and nourishment, respectively. Globally, coral reef ecosystems are in decline as a result of ocean warming and acidification, which is exacerbated by chronic regional stressors such as pollution and disease. As a consequence of declining reef health, many reef ecosystems are experiencing reduced coral cover and shifts to dominance by macroalgae, resulting in a loss of rugosity and thus hydrodynamic roughness. As coral reef architecture is compromised and carbonate skeletons are eroded, wave energy dissipation and sediment transport patterns--along with the carbonate sediment budget of the coastal environment--may be altered. Using a Delft3D numerical model of the south-central Molokai, Hawaii, fringing reef, we simulate the effects of changing reef states on wave energy and sediment transport. To determine the temporally-varying effects of biotic and abiotic stressors such as storms and bleaching on the reef structure and carbonate production, we couple Delft3D with CarboLOT, a model that simulates growth and competition of carbonate-producing organisms. CarboLOT is driven by the Lotka-Volterra population ecology equations and niche suitability principles, and accesses the CarboKB database for region-specific, carbonate-producing species information on growth rates, reproduction patterns, habitat suitability, as well as organism geometries. Simulations assess how changing reef states--which alter carbonate sediment production and reef morphology and thus hydrodynamic roughness--impact wave attenuation and sediment transport gradients along reef-fronted beaches. Initial results suggest that along fringing reefs having characteristics similar to the Molokai fringing reef, projected sea level rise will likely outpace coral reef accretion, and the increased

  11. Trapping and dispersion of coral eggs around Bowden Reef, Great Barrier Reef, following mass coral spawning

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Burrage, Derek; King, Brian

    1989-05-01

    Bowden Reef is a 5 km long kidney-shaped coral reef with a lagoon, located on the mid-shelf of the central region of the Great Barrier Reef. Field studies were carried out, in November 1986, at the time of mass coral spawning, of the water circulation around Bowden Reef and in the surrounding inter-reefal waters. The near-reef water circulation was strongly three-dimensional although the stratification was weak. In calm weather, coral eggs were aggregated in slicks along topographically controlled fronts. In the absence of a longshore current, water and coral eggs were trapped in the lagoon and in a boundary layer around Bowden Reef, by tidally driven recirculating motions. In the presence of a longshore current, some trapping occurred in the lagoon, but the bulk of the coral eggs was advected away from Bowden Reef and reached downstream reefs in a few days. This implies a likelihood of both self-seeding of reefs, and connectivity between reefs.

  12. Catastrophe and the life span of coral reefs.

    PubMed

    Aronson, Richard B; Precht, William F; Macintyre, Ian G; Toth, Lauren T

    2012-02-01

    A strong earthquake in the western Caribbean in 2009 had a catastrophic impact on uncemented, unconsolidated coral reefs in the central sector of the shelf lagoon of the Belizean barrier reef. In a set of 21 reef sites that had been observed prior to the earthquake, the benthic assemblages of 10 were eradicated, and one was partially damaged, by avalanching of their slopes. Ecological dynamics that had played out over the previous 23 years, including the mass mortalities of two sequentially dominant coral species and a large increase in the cover of an encrusting sponge, were instantaneously rendered moot in the areas of catastrophic reef-slope failure. Because these prior dynamics also determined the benthic composition and resilience of adjacent sections of reef that remained intact, the history of disturbance prior to the earthquake will strongly influence decadal-scale recovery in the failed areas. Geological analysis of the reef framework yielded a minimum return time of 2000-4000 years for this type of high-amplitude event. Anthropogenic degradation of ecosystems must be viewed against the backdrop of long-period, natural catastrophes, such as the impact of strong earthquakes on uncemented, lagoonal reefs. PMID:22624312

  13. Persistence and change in community composition of reef corals through present, past, and future climates.

    PubMed

    Edmunds, Peter J; Adjeroud, Mehdi; Baskett, Marissa L; Baums, Iliana B; Budd, Ann F; Carpenter, Robert C; Fabina, Nicholas S; Fan, Tung-Yung; Franklin, Erik C; Gross, Kevin; Han, Xueying; Jacobson, Lianne; Klaus, James S; McClanahan, Tim R; O'Leary, Jennifer K; van Oppen, Madeleine J H; Pochon, Xavier; Putnam, Hollie M; Smith, Tyler B; Stat, Michael; Sweatman, Hugh; van Woesik, Robert; Gates, Ruth D

    2014-01-01

    The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past. PMID:25272143

  14. Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates

    PubMed Central

    Edmunds, Peter J.; Adjeroud, Mehdi; Baskett, Marissa L.; Baums, Iliana B.; Budd, Ann F.; Carpenter, Robert C.; Fabina, Nicholas S.; Fan, Tung-Yung; Franklin, Erik C.; Gross, Kevin; Han, Xueying; Jacobson, Lianne; Klaus, James S.; McClanahan, Tim R.; O'Leary, Jennifer K.; van Oppen, Madeleine J. H.; Pochon, Xavier; Putnam, Hollie M.; Smith, Tyler B.; Stat, Michael; Sweatman, Hugh; van Woesik, Robert; Gates, Ruth D.

    2014-01-01

    The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past. PMID:25272143

  15. Tectonic subsidence provides insight into possible coral reef futures under rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Saunders, Megan I.; Albert, Simon; Roelfsema, Chris M.; Leon, Javier X.; Woodroffe, Colin D.; Phinn, Stuart R.; Mumby, Peter J.

    2016-03-01

    Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less

  16. Developing a multi-stressor gradient for coral reefs

    EPA Science Inventory

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  17. 78 FR 67128 - Coral Reef Conservation Program; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... National Oceanic and Atmospheric Administration Coral Reef Conservation Program; Meeting AGENCY: Coral Reef... of public comment. SUMMARY: Notice is hereby given of a public meeting of the U.S. Coral Reef Task.../uscrtf-registration-form . Commenters may address the meeting, the role of the USCRTF, or general...

  18. Coral Reefs: A Gallery Program, Grades 7-12.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  19. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.

    2012-12-01

    Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.

  20. Advancing Ocean Monitoring Near Coral Reefs

    NASA Astrophysics Data System (ADS)

    Heron, Scott F.; Steinberg, Craig R.; Heron, Mal L.; Mantovanelli, Alessandra; Jaffrés, Jasmine B. D.; Skirving, William J.; McAllister, Felicity; Rigby, Paul; Wisdom, Daniel; Bainbridge, Scott

    2010-10-01

    Corals, the foundation of tropical marine ecosystems, exist in a symbiotic relationship with zooxanthellae (algae). The corals obtain much of their energy by consuming compounds derived from photosynthesis by these microorganisms; the microorganisms, which reside in the coral tissue, in turn use waste products from the corals to sustain photosynthesis. This symbiosis is very sensitive to subtle changes in environment, such as increased ocean acidity, temperature, and light. When unduly stressed, the colorful algae are expelled from the corals, causing the corals to “bleach” and potentially die [e.g., van Oppen and Lough, 2009].

  1. Discovery of a living coral reef in the coastal waters of Iraq

    NASA Astrophysics Data System (ADS)

    Pohl, Thomas; Al-Muqdadi, Sameh W.; Ali, Malik H.; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-03-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km2 large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area ranges between 14 and 34°C. The discovery of the unique coral reef oasis in the turbid coastal waters of Iraq will stimulate the interest of governmental agencies, environmental organizations, as well as of the international scientific community working on the fundamental understanding of coral marine ecosystems and global climate today.

  2. Discovery of a living coral reef in the coastal waters of Iraq

    PubMed Central

    Pohl, Thomas; Al-Muqdadi, Sameh W.; Ali, Malik H.; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-01-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km2 large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area ranges between 14 and 34°C. The discovery of the unique coral reef oasis in the turbid coastal waters of Iraq will stimulate the interest of governmental agencies, environmental organizations, as well as of the international scientific community working on the fundamental understanding of coral marine ecosystems and global climate today. PMID:24603901

  3. Coral reef evolution on rapidly subsiding margins

    USGS Publications Warehouse

    Webster, J.M.; Braga, J.C.; Clague, D.A.; Gallup, C.; Hein, J.R.; Potts, D.C.; Renema, W.; Riding, R.; Riker-Coleman, K.; Silver, E.; Wallace, L.M.

    2009-01-01

    A series of well-developed submerged coral reefs are preserved in the Huon Gulf (Papua New Guinea) and around Hawaii. Despite different tectonics settings, both regions have experienced rapid subsidence (2-6??m/ka) over the last 500??ka. Rapid subsidence, combined with eustatic sea-level changes, is responsible for repeated drowning and backstepping of coral reefs over this period. Because we can place quantitative constraints on these systems (i.e., reef drowning age, eustatic sea-level changes, subsidence rates, accretion rates, basement substrates, and paleobathymetry), these areas represent unique natural laboratories for exploring the roles of tectonics, reef accretion, and eustatic sea-level changes in controlling the evolution of individual reefs, as well as backstepping of the entire system. A review of new and existing bathymetric, radiometric, sedimentary facies and numerical modeling data indicate that these reefs have had long, complex growth histories and that they are highly sensitive, recording drowning not only during major deglaciations, but also during high-frequency, small-amplitude interstadial and deglacial meltwater pulse events. Analysis of five generalized sedimentary facies shows that reef drowning is characterized by a distinct biological and sedimentary sequence. Observational and numerical modeling data indicate that on precessional (20??ka) and sub-orbital timescales, the rate and amplitude of eustatic sea-level changes are critical in controlling initiation, growth, drowning or sub-aerial exposure, subsequent re-initiation, and final drowning. However, over longer timescales (> 100-500??ka) continued tectonic subsidence and basement substrate morphology influence broad scale reef morphology and backstepping geometries. Drilling of these reefs will yield greatly expanded stratigraphic sections compared with similar reefs on slowly subsiding, stable and uplifting margins, and thus they represent a unique archive of sea-level and climate

  4. Water column correction for coral reef studies by remote sensing.

    PubMed

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  5. Water Column Correction for Coral Reef Studies by Remote Sensing

    PubMed Central

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  6. Coral larvae move toward reef sounds.

    PubMed

    Vermeij, Mark J A; Marhaver, Kristen L; Huijbers, Chantal M; Nagelkerken, Ivan; Simpson, Stephen D

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  7. Coral Larvae Move toward Reef Sounds

    PubMed Central

    Vermeij, Mark J. A.; Marhaver, Kristen L.; Huijbers, Chantal M.; Nagelkerken, Ivan; Simpson, Stephen D.

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  8. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    NASA Astrophysics Data System (ADS)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  9. Variability in microbial community composition and function between different niches within a coral reef.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Webster, Nicole S; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2014-04-01

    To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions. PMID:24477921

  10. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    NASA Astrophysics Data System (ADS)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem