Science.gov

Sample records for coral reef fisheries

  1. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic; Exempted Fishing Permit AGENCY... Plan (FMP) for the Snapper-Grouper Fishery of the South Atlantic Region and the FMP for Coral,...

  2. Tradeoffs between fisheries harvest and the resilience of coral reefs.

    PubMed

    Bozec, Yves-Marie; O'Farrell, Shay; Bruggemann, J Henrich; Luckhurst, Brian E; Mumby, Peter J

    2016-04-19

    Many countries are legally obliged to embrace ecosystem-based approaches to fisheries management. Reductions in bycatch and physical habitat damage are now commonplace, but mitigating more sophisticated impacts associated with the ecological functions of target fisheries species are in their infancy. Here we model the impacts of a parrotfish fishery on the future state and resilience of Caribbean coral reefs, enabling us to view the tradeoff between harvest and ecosystem health. We find that the implementation of a simple and enforceable size restriction of >30 cm provides a win:win outcome in the short term, delivering both ecological and fisheries benefits and leading to increased yield and greater coral recovery rate for a given harvest rate. However, maintaining resilient coral reefs even until 2030 requires the addition of harvest limitations (<10% of virgin fishable biomass) to cope with a changing climate and induced coral disturbances, even in reefs that are relatively healthy today. Managing parrotfish is not a panacea for protecting coral reefs but can play a role in sustaining the health of reefs and high-quality habitat for reef fisheries. PMID:27044106

  3. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries....

  4. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries....

  5. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries....

  6. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries....

  7. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries....

  8. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries....

  9. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC American Samoa Fisheries § 665.120 American Samoa coral reef ecosystem fisheries....

  10. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries....

  11. 78 FR 49258 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment; request for comments. SUMMARY: NMFS proposes to issue a Special Coral Reef Ecosystem Fishing Permit that would authorize Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem...

  12. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  13. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  14. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  15. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  16. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  17. 50 CFR 665.120 - American Samoa coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false American Samoa coral reef ecosystem fisheries. 665.120 Section 665.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE...

  18. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  19. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  20. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Mariana coral reef ecosystem fisheries. 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  1. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  2. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false PRIA coral reef ecosystem fisheries. 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  3. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  4. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... request for public comments on August 13, 2013 (78 FR 49258). NMFS received comments from eight... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment and finding of no significant impact for the issuance of a special coral reef ecosystem...

  5. 77 FR 25407 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA935 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic States; Exempted Fishing...

  6. 76 FR 41764 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the Southern Atlantic States; Exempted Fishing Permit AGENCY:...

  7. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs

    NASA Astrophysics Data System (ADS)

    Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.

    2016-03-01

    Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.

  8. A preliminary survey of the artisanal fishery on coral reefs of the Tulear Region (southwest Madagascar)

    NASA Astrophysics Data System (ADS)

    Laroche, J.; Ramananarivo, N.

    1995-11-01

    Fish catches from the coral reefs of the Tulear region (southwest Madagascar), are analyzed based on fish landings. This region of the island consists of two barrier reefs, two coral banks, three lagoon reefs and a fringing reef. The total reef area studied was 190 km2. Of the whole fishing area, the reef flat was the most frequently used by fishermen. Line catches per unit effort (CPUE) were stable throughout the eight month sampling period (6 to 8 kg/trip to sea), whereas gillnet and seine catches showed differences between the cold period and the warm period. These results appear to be representative of the artisanal fishery catches in the southwest Indian Ocean. Annual fish yield was estimated at 12 t km-2 yr-1. Comparable yields have been recorded in certain regions of the Indo-Pacific, that have similar ratios of coral reef area to adjacent shallows and similar fishing practices. Reef species (Lethrinidae, Siganidae) dominated the catches. At present, coastal waters of the Tulear region are heavily fished, and the fishermen report a progressive decrease in the average size of fish caught over the last 15 years. Management measures are suggested, based on preliminary findings.

  9. Commercial coral-reef fisheries across Micronesia: A need for improving management

    NASA Astrophysics Data System (ADS)

    Houk, P.; Rhodes, K.; Cuetos-Bueno, J.; Lindfield, S.; Fread, V.; McIlwain, J. L.

    2012-03-01

    A dearth of scientific data surrounding Micronesia's coral-reef fisheries has limited their formal assessment and continues to hinder local and regional management efforts. We approach this problem by comparing catch-based datasets from market landings across Micronesia to evaluate fishery status in the Commonwealth of the Northern Mariana Islands (CNMI), Guam, Yap, and Pohnpei. Initial examinations found that calm weather and low lunar illumination predicted between 6% (Yap) and 30% (CNMI) of the variances in daily commercial landings. Both environmentally driven catch success and daily catch variability increased in accordance with reef-fish demand indices. Subsequent insight from species composition and size-at-capture data supported these findings, highlighting reduced trophic levels and capture sizes where higher human-population-per-reef-area existed. Among the 12-15 target species and/or species complexes that accounted for 70% of the harvest biomass, capture sizes were consistently smallest for CNMI and Guam, often below the reported mean reproductive sizes. Comparatively, Pohnpei has the greatest potential for reef fisheries, with a large reef area (303 km2) and a moderate human population (34,000 people). However, the estimated harvest volume of 476 mt year-1 was 8-9 times higher than other jurisdictions. Even on Yap where the reef-fish demand index was lowest (67.7 people km-2 reef habitat), many target fish were harvested below their mean reproductive sizes, including the iconic green bumphead parrotfish and humphead wrasse, as well as several other herbivores. We discuss our results with respect to the contemporary doctrine surrounding size-spectra, catch composition, and catch frequencies that afford insight into fishery pressure and status. We posit that regional catch-based policies (initially) instituted at the market level, combined with area and gear-based restrictions, represent plausible vectors for improving Micronesian fisheries.

  10. Global effects of local human population density and distance to markets on the condition of coral reef fisheries.

    PubMed

    Cinner, Joshua E; Graham, Nicholas A J; Huchery, Cindy; Macneil, M Aaron

    2013-06-01

    Coral reef fisheries support the livelihoods of millions of people but have been severely and negatively affected by anthropogenic activities. We conducted a systematic review of published data on the biomass of coral reef fishes to explore how the condition of reef fisheries is related to the density of local human populations, proximity of the reef to markets, and key environmental variables (including broad geomorphologic reef type, reef area, and net productivity). When only population density and environmental covariates were considered, high variability in fisheries conditions at low human population densities resulted in relatively weak explanatory models. The presence or absence of human settlements, habitat type, and distance to fish markets provided a much stronger explanatory model for the condition of reef fisheries. Fish biomass remained relatively low within 14 km of markets, then biomass increased exponentially as distance from reefs to markets increased. Our results suggest the need for an increased science and policy focus on markets as both a key driver of the condition of reef fisheries and a potential source of solutions. PMID:23025334

  11. Vulnerability of coral reef fisheries to a loss of structural complexity.

    PubMed

    Rogers, Alice; Blanchard, Julia L; Mumby, Peter J

    2014-05-01

    Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity. PMID:24746794

  12. From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

    PubMed

    Kittinger, John N; Teneva, Lida T; Koike, Haruko; Stamoulis, Kostantinos A; Kittinger, Daniela S; Oleson, Kirsten L L; Conklin, Eric; Gomes, Mahana; Wilcox, Bart; Friedlander, Alan M

    2015-01-01

    Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change. PMID:26244910

  13. From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security

    PubMed Central

    Kittinger, John N.; Teneva, Lida T.; Koike, Haruko; Stamoulis, Kostantinos A.; Kittinger, Daniela S.; Oleson, Kirsten L. L.; Conklin, Eric; Gomes, Mahana; Wilcox, Bart; Friedlander, Alan M.

    2015-01-01

    Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr-1 (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the “food shed” for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change. PMID:26244910

  14. Reconstruction of coral reef fisheries catches in American Samoa, 1950 2002

    NASA Astrophysics Data System (ADS)

    Zeller, Dirk; Booth, Shawn; Craig, Peter; Pauly, Daniel

    2006-03-01

    Fisheries catches from Pacific Island coral reefs are rarely recorded in official statistics. Reconstruction of catch estimates with limited hard data requires interpolation and assumptions, justifiable only by the unsatisfactory alternative of continued substitution of zero catches, a common policy interpretation for ‘no data’. Uncertainties associated with reconstructions are high, requiring conservative estimation. American Samoan domestic fisheries consist of an artisanal, small-boat sector, whose commercial catches are reported, and a shore-based subsistence sector, with no regular reporting. Our catch reconstruction (with large pelagic species removed) suggested a 79% decrease in catches between 1950 (752 t) and 2002 (155 t). Accounting for rapid human population growth on the main island, the per capita catch rate may have declined from 36.3 kg·person-1 year-1 in 1950 to 1.3 kg·person-1 year-1 by 2002, while the catch rate for the inhabited outer islands has been independently reported as 58.6 kg·person-1 year-1. Catch per area of coral reef (to 50-m depth) may have declined from 5.5 to 0.7 t km-2 year-1 for the main island, and from 9.1 to 4.9 t km-2 year-1 for the outer islands, for 1950 and 2002, respectively. Summed for 1950 2002, our reconstruction suggested a 17-fold difference between reconstructed estimates and reported statistics.

  15. Characterization and management of the commercial sector of the Pohnpei coral reef fishery, Micronesia

    NASA Astrophysics Data System (ADS)

    Rhodes, K. L.; Tupper, M. H.; Wichilmel, C. B.

    2008-06-01

    Commercial coral reef fisheries in Pohnpei (Micronesia) extract approximately 1,521 kg of reef fish daily (˜500 MT year-1) from 152 km2 of surrounding reef. More than 153 species were represented during surveys, with 25 species very common or common within combined-gear catch. Acanthurids contributed the greatest to catch volume, with bluespine unicornfish, Naso unicornis, and orangespine unicornfish, Naso lituratus, among the most frequently observed herbivores. Nighttime spearfishing was the dominant fishing method and inner lagoon areas were primarily targeted. A seasonal sales ban (March April), intended to reduce pressure on reproductively active serranids, significantly increased the capture volume of other families. Catch was significantly greater during periods of low lunar illumination, suggesting higher fishing success or greater effort, or both. The marketed catch was dominated by juveniles and small adults, based on fishes of known size at sexual maturity. Artificially depressed market prices appear to be catalyzing (potential or realized) overfishing by increasing the volume of fish needed to offset rising fuel prices. These results support the need for comprehensive fisheries management that produces sustainable fishing and marketing practices and promotes shared management and enforced responsibilities between communities and the state. To be effective, management should prohibit nighttime spearfishing.

  16. Biomass-based targets and the management of multispecies coral reef fisheries.

    PubMed

    McClanahan, T R; Graham, N A J; MacNeil, M A; Cinner, J E

    2015-04-01

    The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small-scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem-based management approaches. However, ecosystem-based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life-history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade-offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem-based fisheries management targets that can be easily applied even where research capacity and

  17. Returns from matching management resolution to ecological variation in a coral reef fishery.

    PubMed

    Bode, Michael; Sanchirico, James N; Armsworth, Paul R

    2016-03-16

    When managing heterogeneous socioecological systems, decision-makers must choose a spatial resolution at which to define management policies. Complex spatial policies allow managers to better reflect underlying ecological and economic heterogeneity, but incur higher compliance and enforcement costs. To choose the most appropriate management resolution, we need to characterize the relationship between management resolution and performance. We parameterize a model of the commercial coral trout fishery in the Great Barrier Reef, Australia, which is currently managed by a single, spatially homogeneous management policy. We use this model to estimate how the spatial resolution of management policies affect the amount of revenue generated, and assess whether a more spatially complex policy can be justified. Our results suggest that economic variation is likely to be a more important source of heterogeneity than ecological differences, and that the majority of this variation can be captured by a relatively simple spatial management policy. Moreover, while an increase in policy resolution can improve performance, the location of policy changes also needs to align with ecological and socioeconomic variation. Interestingly, the highly complex process of larval dispersal, which plays a critical ecological role in coral reef ecosystem dynamics, may not demand equally complex management policies. PMID:26984622

  18. 77 FR 32572 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ....gov . Correction In notice document FR Doc. 2012-10372, published in the Federal Register issue of April 30, 2012 (77 FR 83), make the following corrections: 1. On page 25407, column 3: a. Line 10, after..., and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic States; Exempted Fishing...

  19. Synergistic Effects of Marine Reserves and Harvest Controls on the Abundance and Catch Dynamics of a Coral Reef Fishery.

    PubMed

    Hopf, Jess K; Jones, Geoffrey P; Williamson, David H; Connolly, Sean R

    2016-06-20

    Marine no-take reserves, where fishing and other extractive activities are prohibited, have well-established conservation benefits [1], yet their impacts on fisheries remains contentious [2-4]. For fishery species, reserves are often implemented alongside more conventional harvest strategies, including catch and size limits [2, 5]. However, catch and fish abundances observed post-intervention are often attributed to reserves, without explicitly estimating the potential contribution of concurrent management interventions [2, 3, 6-9]. Here we test a metapopulation model against observed fishery [10] and population [11] data for an important coral reef fishery (coral trout; Plectropomus spp.) in Australia's Great Barrier Reef Marine Park (GBRMP) to evaluate how the combined increase in reserve area [12] and reduction in fishing effort [13, 14] in 2004 influenced changes in fish stocks and the commercial fishery. We found that declines in catch, increases in catch rates, and increases in biomass since 2004 were substantially attributable to the integration of direct effort controls with the rezoning, rather than the rezoning alone. The combined management approach was estimated to have been more productive for fish and fisheries than if the rezoning had occurred alone and comparable to what would have been obtained with effort controls alone. Sensitivity analyses indicate that the direct effort controls prevented initial decreases in catch per unit effort that would have otherwise occurred with the rezoning. Our findings demonstrate that by concurrently restructuring the fishery, the conservation benefits of reserves were enhanced and the fishery cost of rezoning the reserve network was socialized, mitigating negative impacts on individual fishers. PMID:27185553

  20. Population Connectivity Measures of Fishery-Targeted Coral Reef Species to Inform Marine Reserve Network Design in Fiji.

    PubMed

    Eastwood, Erin K; López, Elora H; Drew, Joshua A

    2016-01-01

    Coral reef fish serve as food sources to coastal communities worldwide, yet are vulnerable to mounting anthropogenic pressures like overfishing and climate change. Marine reserve networks have become important tools for mitigating these pressures, and one of the most critical factors in determining their spatial design is the degree of connectivity among different populations of species prioritized for protection. To help inform the spatial design of an expanded reserve network in Fiji, we used rapidly evolving mitochondrial genes to investigate connectivity patterns of three coral reef species targeted by fisheries in Fiji: Epinephelus merra (Serranidae), Halichoeres trimaculatus (Labridae), and Holothuria atra (Holothuriidae). The two fish species, E. merra and Ha. trimaculatus, exhibited low genetic structuring and high amounts of gene flow, whereas the sea cucumber Ho. atra displayed high genetic partitioning and predominantly westward gene flow. The idiosyncratic patterns observed among these species indicate that patterns of connectivity in Fiji are likely determined by a combination of oceanographic and ecological characteristics. Our data indicate that in the cases of species with high connectivity, other factors such as representation or political availability may dictate where reserves are placed. In low connectivity species, ensuring upstream and downstream connections is critical. PMID:26805954

  1. Population Connectivity Measures of Fishery-Targeted Coral Reef Species to Inform Marine Reserve Network Design in Fiji

    PubMed Central

    Eastwood, Erin K.; López, Elora H.; Drew, Joshua A.

    2016-01-01

    Coral reef fish serve as food sources to coastal communities worldwide, yet are vulnerable to mounting anthropogenic pressures like overfishing and climate change. Marine reserve networks have become important tools for mitigating these pressures, and one of the most critical factors in determining their spatial design is the degree of connectivity among different populations of species prioritized for protection. To help inform the spatial design of an expanded reserve network in Fiji, we used rapidly evolving mitochondrial genes to investigate connectivity patterns of three coral reef species targeted by fisheries in Fiji: Epinephelus merra (Serranidae), Halichoeres trimaculatus (Labridae), and Holothuria atra (Holothuriidae). The two fish species, E. merra and Ha. trimaculatus, exhibited low genetic structuring and high amounts of gene flow, whereas the sea cucumber Ho. atra displayed high genetic partitioning and predominantly westward gene flow. The idiosyncratic patterns observed among these species indicate that patterns of connectivity in Fiji are likely determined by a combination of oceanographic and ecological characteristics. Our data indicate that in the cases of species with high connectivity, other factors such as representation or political availability may dictate where reserves are placed. In low connectivity species, ensuring upstream and downstream connections is critical. PMID:26805954

  2. 77 FR 12567 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Islands Region Coral Reef Ecosystems Logbook and Reporting AGENCY: National Oceanic and Atmospheric... Special Coral Reef Ecosystem Fishing Permit (authorized under the Fishery Management Plan for Coral Reef... the logbooks is used to obtain fish catch/fishing effort data on coral reef fishes and...

  3. Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

    PubMed

    Cinner, Joshua E; Huchery, Cindy; Darling, Emily S; Humphries, Austin T; Graham, Nicholas A J; Hicks, Christina C; Marshall, Nadine; McClanahan, Tim R

    2013-01-01

    There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change. PMID:24040228

  4. Evaluating Social and Ecological Vulnerability of Coral Reef Fisheries to Climate Change

    PubMed Central

    Cinner, Joshua E.; Huchery, Cindy; Darling, Emily S.; Humphries, Austin T.; Graham, Nicholas A. J.; Hicks, Christina C.; Marshall, Nadine; McClanahan, Tim R.

    2013-01-01

    There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change. PMID:24040228

  5. USGS research on Atlantic coral reef ecosystems

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Yates, Kimberly K.; Zawada, David G.; Richey, Julie N.; Kellogg, Christina A.; Toth, Lauren T.

    2015-01-01

    Coral reefs are massive, biomineralized structures that protect coastal communities by acting as barriers to hazards such as hurricanes and tsunamis. They provide sand for beaches through the natural process of erosion, support tourism and recreational industries, and provide essential habitat for fisheries. The continuing global degradation of coral reef ecosystems is well documented. There is a need for focused, coordinated science to understand the complex physical and biological processes and interactions that are impacting the condition of coral reefs and their ability to respond to a changing environment.

  6. Coral reefs: Turning back time

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.

    2016-03-01

    An in situ experiment finds that reducing the acidity of the seawater surrounding a natural coral reef significantly increases reef calcification, suggesting that ocean acidification may already be slowing coral growth. See Letter p.362

  7. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  8. 76 FR 64327 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Fish, Shrimp, and Coral and Coral Reefs Fishery Management Plans (Generic ACL Amendment) for purposes... Register on September 26, 2011 (76 FR 59373). As part of this amendment, the GMFMC has selected to remove..., and South Atlantic; Gulf of Mexico Reef Fish Fishery; South Atlantic Snapper-Grouper Fishery...

  9. Coral Reef Biological Criteria

    EPA Science Inventory

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  10. CORAL REEF BIOCRITERIA

    EPA Science Inventory

    Coral reefs worldwide are experiencing the greatest decline of their known existence and few tools are available to offset the growing impacts of human coastal and watershed activities. Biocriteria are a potentially effective means to evaluate and restore impaired waters, but are...

  11. Ecological intereactions of reef building corals

    EPA Science Inventory

    Coral reefs are very important marine ecosystems because they support tremendous biodiversity and reefs are critical economic resources many coastal nations. Tropical reef structures are largely built by stony corals. This presentation provides background on basic coral biology t...

  12. New protection initiatives announced for coral reefs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  13. A Global Estimate of the Number of Coral Reef Fishers

    PubMed Central

    Teh, Louise S. L.; Teh, Lydia C. L.; Sumaila, U. Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world’s small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale. PMID:23840327

  14. A Global Estimate of the Number of Coral Reef Fishers.

    PubMed

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale. PMID:23840327

  15. 78 FR 14503 - Amendment 4 to the Corals and Reef Associated Plants and Invertebrates Fishery Management Plan of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... 30, 2011 (76 FR 82414). The 2011 Caribbean ACL Amendment included Amendment 3 to the Coral FMP... Amendment 2 to the Queen Conch FMP and Amendment 5 to the Reef Fish FMP (2010 Caribbean ACL Amendment)(76 FR..., Christmas tree worm IV. Mollusks--Phylum Mollusca A. Gastropods--Class Gastropoda Family Elysiidae...

  16. Coral reef resilience through biodiversity

    USGS Publications Warehouse

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  17. 78 FR 12703 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Amendment to the Corals and Reef...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... a final rule to implement the 2011 Caribbean ACL Amendment on December 30, 2011 (76 FR 82414), which... Invertebrates Fishery Management Plan of Puerto Rico and the U.S. Virgin Islands AGENCY: National Marine... and Invertebrates of Puerto Rico and the U.S. Virgin Islands (USVI) (Coral FMP) for review,...

  18. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  19. Coral reef protection

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The National Oceanic and Atmospheric Administration announced the establishment on 13 November of the first U.S. zone to protect a sensitive coral reef area from potential damage by ships.The Florida Keys' Particularly Sensitive Sea Area, just one of a handful of such areas globally, has been designated by the International Maritime Organization, a specialized agency of the United Nations. The area protects a zone of more than 3,000 square nautical miles stretching from the Biscayne National Park to the Dry Tortugas.

  20. Disease of coral and coral reef fishes

    USGS Publications Warehouse

    Panek, Frank

    2008-01-01

    The Department of the Interior protects sensitive habitats amounting to about 3,600,000 acres of coral reefs and other submerged lands. These reefs are important ecosystems in 13 National Wildlife Refuges, 10 National Parks and in certain territorial waters such as the Wake Atoll.

  1. Coral reef bleaching: ecological perspectives

    NASA Astrophysics Data System (ADS)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  2. Wave transformation over coral reefs

    NASA Astrophysics Data System (ADS)

    Young, Ian R.

    1989-07-01

    Ocean wave attenuation on coral reefs is discussed using data obtained from a preliminary field experiment and from the Seasat altimeter. Marked attenuation of the waves is observed, the rate being consistent with existing theories of bottom friction and wave breaking decay. In addition, there is a significant broadening of the spectrum during propagation across reefs. Three-dimensional effects, such as refraction and defraction, can also lead to substantial wave height reduction for significant distances adjacent to coral reefs. As a result, a matrix of such reefs provides significantly more wave attenuation than may initially be expected.

  3. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  4. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  5. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  6. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  7. Global microbialization of coral reefs.

    PubMed

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-01-01

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC. PMID:27572833

  8. 78 FR 72583 - Reef Fish Fishery of the Gulf of Mexico; 2013 Accountability Measure and Closure for Hogfish in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    .../Accountability Measures Amendment to the Red Drum, Reef Fish Resources, Shrimp, and Coral and Coral Reefs Fishery Management Plans for the Gulf of Mexico (Generic ACL Amendment; 76 FR 82044) as prepared and submitted by the... National Oceanic and Atmospheric Administration 50 CFR Part 622 RIN 0648-XC981 Reef Fish Fishery of...

  9. The future of coral reefs

    NASA Astrophysics Data System (ADS)

    Knowlton, Nancy

    2001-05-01

    Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived "weedy" corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral "bleaching" (the breakdown of coral-algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.

  10. Miocene reef corals: A review

    SciTech Connect

    Frost, S.H.

    1988-01-01

    Tectonic blockage in the Middle East of westward-flowing Tethys surface circulation during the latest Oligocene led to creation in the earliest Miocene of endemic Mediterranean, Western Atlantic-Caribbean, and Indo-Pacific realms. A great reduction in reef coral diversity from 60-80 Oligocene species to 25-35 early Miocene species occurred in the Western Atlantic-Caribbean and Mediterranean areas accompanied by a decrease in reef growth. A slower and less drastic change apparently occurred in the Indo-Pacific area. Early Miocene reef corals of the Western Atlantic-Caribbean comprise a transition between the cosmopolitan Oligocene fauna and its endemic mid-Miocene to modern counterpart. Although early Miocene reefs were dominated by a Porites-Montastrea assemblage, eastward flow of Pacific circulation brought with it ''exotic'' corals such as Coscinaraea and Pseudocolumnastrea. Also, many cosmopolitan genera persisted from the Oligocene. During the middle to late Miocene, most of the species still living on Holocene reefs evolved. As the Mediterranean basin became more restricted, there was a slow decline in reef corals from 20 - 25 species in the Aquitainian to less than five species in the Messinian. Eustatic lowstand led to the extinction of reef-building corals in the late Messinian. In the Indo-Pacific, Neogene evolution of reef corals was conservative. Excluding the Acroporidae and Seriatoporidae, most Holocene framework species had evolved by the middle Miocene. Interplay between regional tectonics and eustatic sea level changes led to extensive development of middle to late Miocene pinnacle reefs over the southwestern Pacific.

  11. Ocean acidification worse in coral reefs

    NASA Astrophysics Data System (ADS)

    Betz, Eric O.

    2014-12-01

    The rate of ocean acidification in coral reefs outpaces the rise in carbon dioxide (CO2) in Earth's atmosphere, indicating that anthropogenic carbon emissions alone are not to blame for the threat to coral reefs, a new study shows.

  12. Recovery potential of the world's coral reef fishes.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Wilson, Shaun K; Williams, Ivor D; Maina, Joseph; Newman, Steven; Friedlander, Alan M; Jupiter, Stacy; Polunin, Nicholas V C; McClanahan, Tim R

    2015-04-16

    Continuing degradation of coral reef ecosystems has generated substantial interest in how management can support reef resilience. Fishing is the primary source of diminished reef function globally, leading to widespread calls for additional marine reserves to recover fish biomass and restore key ecosystem functions. Yet there are no established baselines for determining when these conservation objectives have been met or whether alternative management strategies provide similar ecosystem benefits. Here we establish empirical conservation benchmarks and fish biomass recovery timelines against which coral reefs can be assessed and managed by studying the recovery potential of more than 800 coral reefs along an exploitation gradient. We show that resident reef fish biomass in the absence of fishing (B0) averages ∼1,000 kg ha(-1), and that the vast majority (83%) of fished reefs are missing more than half their expected biomass, with severe consequences for key ecosystem functions such as predation. Given protection from fishing, reef fish biomass has the potential to recover within 35 years on average and less than 60 years when heavily depleted. Notably, alternative fisheries restrictions are largely (64%) successful at maintaining biomass above 50% of B0, sustaining key functions such as herbivory. Our results demonstrate that crucial ecosystem functions can be maintained through a range of fisheries restrictions, allowing coral reef managers to develop recovery plans that meet conservation and livelihood objectives in areas where marine reserves are not socially or politically feasible solutions. PMID:25855298

  13. 76 FR 59377 - Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ..., Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and Invertebrates Fishery Management... Associated Plants and Invertebrates for the U.S. Caribbean for review, approval, and implementation by NMFS... and coral and reef associated plants and invertebrates species. The 2011 Caribbean ACL Amendment...

  14. Ecology of the south Florida coral reefs: a community profile

    SciTech Connect

    Jaap, W.C.

    1984-08-01

    An overview of coral reef research in southern Florida is provided as a prelude to a genuine description of the coral reef ecosystem in the Florida Keys and surrounding environments. Coral reef community types, reef benthos, plankton and reef fish are given specific treatment. Coral reef ecology and management are described. 27 figs., 31 tabs.

  15. Quantifying Coral Reef Ecosystem Services

    EPA Science Inventory

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  16. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    USGS Publications Warehouse

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  17. A quantitative comparison of recreational spearfishing and linefishing on the Great Barrier Reef: implications for management of multi-sector coral reef fisheries

    NASA Astrophysics Data System (ADS)

    Frisch, A. J.; Baker, R.; Hobbs, J.-P. A.; Nankervis, L.

    2008-03-01

    This study compared the catch composition, catch per unit effort, and incidental impacts of spearfishers and linefishers engaged in a structured fishing program whereby fishing effort was standardized across time, space and skill level. It was found that (1) the catch composition of both groups of fishers overlapped considerably, (2) the numbers of target fish caught by spearfishers (156) and linefishers (168) were not significantly different, (3) the mean size of target fish caught by spearfishers (1.95 ± 0.1 kg, ±SE) was significantly larger than the mean size of target fish caught by linefishers (1.27 ± 0.06 kg), and (4) spearfishers retained 43% more biomass of target species than did linefishers (304 versus 213 kg, respectively). However, linefishers used ˜1 kg of bait for every 3 kg of target fish that were captured. Linefishers also caught far more undersized, undesirable, or protected fishes (i.e., bycatch) and caused far more pollution (i.e., lost gear) than did spearfishers. It is concluded that the overall impacts of recreational spearfishing and linefishing on fishery resources of the Great Barrier Reef are broadly equivalent (per unit of fishing effort), and that management regulations should be applied equitably across both fishing sectors. A management strategy of this type will simplify enforcement of fisheries regulations and avoid discrimination of particular fishers in local communities where both fishing methods are socially or culturally important.

  18. REEF MANAGER'S GUIDE TO CORAL BLEACHING

    EPA Science Inventory

    A Reef Manager's Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) engage in information-sharing in the areas of coral reef science and management for climate change and coral bleaching; and (2) compile a management tool ...

  19. A novel reef coral symbiosis

    NASA Astrophysics Data System (ADS)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  20. Coral reef hydrogeology

    SciTech Connect

    Buddemeier, R.W.; Oberdorfer, J.A.

    1985-05-21

    Knowledge of internal flow velocities and pore water residence time is important in understanding pore water geochemistry, nutrient fluxes at the benthic boundary, reef diagenesis, and fresh water resources in reef islands. Hydrogeologic studies of Pacific and Indian Ocean reef and atoll islands indicate a dual aquifer systems; the major Pleistocene aquifer has hydraulic conductivities on the order of 1000 m/d, while the overlying Holocene aquifer of unconsolidated sediments is at least an order of magnitude less permeable. The high permeability in the Pleistocene formation is the result of large voids, both constructional and from subaerial solution during low stands of the sea. Wind, wave and tide induced head differences ranging from a few centimeters to several tens of centimeters provide the driving force for internal flow. Pore water residence times and geochemistry will vary greatly, depending on whether the water is in a major flow channel or in more restricted pores. Studies of both submerged reefs and atoll islands give bulk pore water residence times on the order of months to a few years. Chemical analyses of pore water indicate that both carbonate solution and precipitation are taking place, which will alter porosity and permeability with time. The dual aquifer model also suggests that the Ghyben-Herzberg lens approach to reef island fresh water resources is inaccurate and can lead to a gross overestimation of the potable resource. 18 refs., 5 figs.

  1. Avoiding coral reef functional collapse requires local and global action.

    PubMed

    Kennedy, Emma V; Perry, Chris T; Halloran, Paul R; Iglesias-Prieto, Roberto; Schönberg, Christine H L; Wisshak, Max; Form, Armin U; Carricart-Ganivet, Juan P; Fine, Maoz; Eakin, C Mark; Mumby, Peter J

    2013-05-20

    Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification. While the abundance of coral has declined in recent decades, the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services. PMID:23664976

  2. 77 FR 19230 - Western Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Insular Fisheries. A. American Samoa i. Coral reef and crustacean fisheries. ii. Bottomfish fisheries. iii. Precious corals fishery and coral reef habitat status. iv. Update on Bio-Sampling Program data summary. v. Non-stock related factors affecting Catch Per Unit Effort (CPUE) in the coral reef fisheries....

  3. Florida Integrated Science Center (FISC) Coral Reef Research

    USGS Publications Warehouse

    Poore, D.Z.

    2008-01-01

    Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.

  4. Modeling Reef Hydrodynamics to Predict Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Bird, James; Steinberg, Craig; Hardy, Tom

    2005-11-01

    The aim of this study is to use environmental physics to predict water temperatures around and within coral reefs. Anomalously warm water is the leading cause for mass coral bleaching; thus a clearer understanding of the oceanographic mechanisms that control reef water temperatures will enable better reef management. In March 1998 a major coral bleaching event occurred at Scott Reef, a 40 km-wide lagoon 300 km off the northwest coast of Australia. Meteorological and coral cover observations were collected before, during, and after the event. In this study, two hydrodynamic models are applied to Scott Reef and validated against oceanographic data collected between March and June 2003. The models are then used to hindcast the reef hydrodynamics that led up to the 1998 bleaching event. Results show a positive correlation between poorly mixed regions and bleaching severity.

  5. Astronaut Photography of Coral Reefs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Noordeloos, Marco

    2001-01-01

    Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart

  6. Photography of Coral Reefs from ISS

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  7. Past corals and recent reefs in Indonesia

    NASA Astrophysics Data System (ADS)

    Boekschoten, G. J.; Best, Maya Borel; Oosterbaan, A.; Molenkamp, F. M.

    During the Snellius-II Expedition Lower Pilocene coral material was collected near Salayer, and Quaternary reefs were sampled on Ambon and Sumba. Coral collections from the Pliocene of Nias were also available for study. This new material is presented together with earlier data. Preservation potentials of different coral growth forms are reviewed. The absence of Acropora and Montipora from Quaternary coral faunae is striking. This is interpreted with the model of POTTS (1983), on the disturbance by Pleistocene sea level fluctuations in the reef coral fauna. Diversification within both genera is apparently very recent, which may explain their complex taxonomy. Given the dominant role of Acropora and Montipora in many present day Indonesian reefs, these are better described as transitional assemblages of corals than as established coral communities.

  8. 78 FR 33255 - Amendment 4 to the Corals and Reef Associated Plants and Invertebrates Fishery Management Plan of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... availability for Amendment 4 and requested comments (78 FR 12703). On March 6, 2013, NMFS published a proposed rule for Amendment 4 to the Coral FMP and requested public comments (78 FR 14503). The proposed rule.... magnifica, Magnificent duster Family Serpulidae Spirobranchus giganteus, Christmas tree worm IV....

  9. Geographical aspects of informal reef fishery systems in New Caledonia.

    PubMed

    Jollit, I; Léopold, M; Guillemot, N; David, G; Chabanet, P; Lebigre, J M; Ferraris, J

    2010-01-01

    The coral reefs in New Caledonia have long been used by the local population for subsistence as well as commercial and recreational purposes. The impact of informal fisheries on reef ecosystems illustrated the idiosyncrasies of New Caledonian fisheries in the southwest Pacific. This paper compared informal fishery systems on the southwest coast (close to the capital and economic center of the country) and the northwest coast (where an industrial mining complex has been under development) of New Caledonia to analyze their spatial structure and characteristics. Four geosystems were defined. These depended on the natural, social and economical environments as well as management strategies. The way of life of the fishers proved to be a major factor in how the informal fishery systems were structured. Our observations suggested that ongoing socio-economic changes in New Caledonia have shaped informal fishing activities since the 1900s. The findings from this study validate the suitability of spatial approaches to coral reef fisheries and provide local stakeholders with original management clues for marine resources sustainability. PMID:20667555

  10. Marine Reserves Enhance the Recovery of Corals on Caribbean Reefs

    PubMed Central

    2010-01-01

    The fisheries and biodiversity benefits of marine reserves are widely recognised but there is mounting interest in exploiting the importance of herbivorous fishes as a tool to help ecosystems recover from climate change impacts. This approach might be particularly suitable for coral reefs, which are acutely threatened by climate change, yet the trophic cascades generated by reserves are strong enough that they might theoretically enhance the rate of coral recovery after disturbance. However, evidence for reserves facilitating coral recovery has been lacking. Here we investigate whether reductions in macroalgal cover, caused by recovery of herbivorous parrotfishes within a reserve, have resulted in a faster rate of coral recovery than in areas subject to fishing. Surveys of ten sites inside and outside a Bahamian marine reserve over a 2.5-year period demonstrated that increases in coral cover, including adjustments for the initial size-distribution of corals, were significantly higher at reserve sites than those in non-reserve sites. Furthermore, macroalgal cover was significantly negatively correlated with the change in total coral cover over time. Recovery rates of individual species were generally consistent with small-scale manipulations on coral-macroalgal interactions, but also revealed differences that demonstrate the difficulties of translating experiments across spatial scales. Size-frequency data indicated that species which were particularly affected by high abundances of macroalgae outside the reserve had a population bottleneck restricting the supply of smaller corals to larger size classes. Importantly, because coral cover increased from a heavily degraded state, and recovery from such states has not previously been described, similar or better outcomes should be expected for many reefs in the region. Reducing herbivore exploitation as part of an ecosystem-based management strategy for coral reefs appears to be justified. PMID:20066158

  11. Habitat Associations of Juvenile Fish at Ningaloo Reef, Western Australia: The Importance of Coral and Algae

    PubMed Central

    Wilson, Shaun K.; Depczynski, Martial; Fisher, Rebecca; Holmes, Thomas H.; O'Leary, Rebecca A.; Tinkler, Paul

    2010-01-01

    Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs

  12. Coral bleaching: Thermal adaptation in reef coral symbionts

    NASA Astrophysics Data System (ADS)

    Rowan, Rob

    2004-08-01

    Many corals bleach as a result of increased seawater temperature, which causes them to lose their vital symbiotic algae (Symbiodinium spp.) - unless these symbioses are able to adapt to global warming, bleaching threatens coral reefs worldwide. Here I show that some corals have adapted to higher temperatures, at least in part, by hosting specifically adapted Symbiodinium. If other coral species can host these or similar Symbiodinium taxa, they might adapt to warmer habitats relatively easily.

  13. Digital Reef Rugosity Estimates Coral Reef Habitat Complexity

    PubMed Central

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity. PMID:23437380

  14. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    EPA Science Inventory

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  15. EPA Field Manual for Coral Reef Assessments

    EPA Science Inventory

    The Water Quality Research Program (WQRP) supports development of coral reef biological criteria. Research is focused on developing methods and tools to support implementation of legally defensible biological standards for maintaining biological integrity, which is protected by ...

  16. Mass Spawning in Tropical Reef Corals

    NASA Astrophysics Data System (ADS)

    Harrison, Peter L.; Babcock, Russell C.; Bull, Gordon D.; Oliver, James K.; Wallace, Carden C.; Willis, Bette L.

    1984-03-01

    Synchronous multispecific spawning by a total of 32 coral species occurred a few nights after late spring full moons in 1981 and 1982 at three locations on the Great Barrier Reef, Australia. The data invalidate the generalization that most corals have internally fertilized, brooded planula larvae. In every species observed, gametes were released; external fertilization and development then followed. The developmental rates of externally fertilized eggs and longevities of planulae indicate that planulae may be dispersed between reefs.

  17. Black reefs: iron-induced phase shifts on coral reefs.

    PubMed

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions. PMID:21881615

  18. New directions in coral reef microbial ecology.

    PubMed

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. PMID:21955796

  19. Evaluation of Stony Coral Indicators for Coral Reef Management.

    EPA Science Inventory

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  20. CORAL REEF RESPONSES TO GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Increased emissions of greenhouse gases and synthetic compounds are related to rising sea temperatures and increased penetration of ultraviolet radiation (UVR), two factors that are consistently linked to bleaching and disease of corals. Coral reefs play a major role in the envir...

  1. Movement patterns of silvertip sharks ( Carcharhinus albimarginatus) on coral reefs

    NASA Astrophysics Data System (ADS)

    Espinoza, Mario; Heupel, Michelle. R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-09-01

    Understanding how sharks use coral reefs is essential for assessing risk of exposure to fisheries, habitat loss, and climate change. Despite a wide Indo-Pacific distribution, little is known about the spatial ecology of silvertip sharks ( Carcharhinus albimarginatus), compromising the ability to effectively manage their populations. We examined the residency and movements of silvertip sharks in the central Great Barrier Reef (GBR). An array of 56 VR2W acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Twenty-seven individuals tagged with acoustic transmitters were monitored from 70 to 731 d. Residency index to the study site ranged from 0.05 to 0.97, with a mean residency (±SD) of 0.57 ± 0.26, but most individuals were detected at or near their tagging reef. Clear seasonal patterns were apparent, with fewer individuals detected between September and February. A large proportion of the tagged population (>71 %) moved regularly between reefs. Silvertip sharks were detected less during daytime and exhibited a strong diel pattern in depth use, which may be a strategy for optimizing energetic budgets and foraging opportunities. This study provides the first detailed examination of the spatial ecology and behavior of silvertip sharks on coral reefs. Silvertip sharks remained resident at coral reef habitats over long periods, but our results also suggest this species may have more complex movement patterns and use larger areas of the GBR than common reef shark species. Our findings highlight the need to further understand the movement ecology of silvertip sharks at different spatial and temporal scales, which is critical for developing effective management approaches.

  2. Coral reef formation theory may apply to oil, gas exploration

    SciTech Connect

    Not Available

    1990-12-10

    This paper reports a coral reef formation theory that has implications for hydrocarbon exploration. The theory states that many coral reefs and carbonate buildups from at and are dependent upon nutrient rich fluids seeping through the seabed.

  3. Trapping and dispersion of coral eggs around Bowden Reef, Great Barrier Reef, following mass coral spawning

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Burrage, Derek; King, Brian

    1989-05-01

    Bowden Reef is a 5 km long kidney-shaped coral reef with a lagoon, located on the mid-shelf of the central region of the Great Barrier Reef. Field studies were carried out, in November 1986, at the time of mass coral spawning, of the water circulation around Bowden Reef and in the surrounding inter-reefal waters. The near-reef water circulation was strongly three-dimensional although the stratification was weak. In calm weather, coral eggs were aggregated in slicks along topographically controlled fronts. In the absence of a longshore current, water and coral eggs were trapped in the lagoon and in a boundary layer around Bowden Reef, by tidally driven recirculating motions. In the presence of a longshore current, some trapping occurred in the lagoon, but the bulk of the coral eggs was advected away from Bowden Reef and reached downstream reefs in a few days. This implies a likelihood of both self-seeding of reefs, and connectivity between reefs.

  4. Developing a multi-stressor gradient for coral reefs

    EPA Science Inventory

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  5. 78 FR 67128 - Coral Reef Conservation Program; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... National Oceanic and Atmospheric Administration Coral Reef Conservation Program; Meeting AGENCY: Coral Reef... of public comment. SUMMARY: Notice is hereby given of a public meeting of the U.S. Coral Reef Task.../uscrtf-registration-form . Commenters may address the meeting, the role of the USCRTF, or general...

  6. Coral Reefs: A Gallery Program, Grades 7-12.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  7. Coral-algal phase shifts alter fish communities and reduce fisheries production.

    PubMed

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  8. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.260 Hawaii precious coral fisheries....

  9. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.260 Hawaii precious coral fisheries....

  10. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.660 PRIA precious coral fisheries....

  11. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.660 PRIA precious coral fisheries....

  12. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Archipelago Fisheries § 665.460 Mariana precious coral fisheries....

  13. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Archipelago Fisheries § 665.460 Mariana precious coral fisheries....

  14. Are artificial reefs surrogates of natural habitats for corals and fish in Dubai, United Arab Emirates?

    NASA Astrophysics Data System (ADS)

    Burt, J.; Bartholomew, A.; Usseglio, P.; Bauman, A.; Sale, P. F.

    2009-09-01

    Artificial reefs are often promoted as mitigating human impacts in coastal ecosystems and enhancing fisheries; however, evidence supporting their benefits is equivocal. Such structures must be compared with natural reefs in order to assess their performance, but past comparisons typically examined artificial structures that were too small, or were immature, relative to the natural reefs. We compared coral and fish communities on two large (>400,000 m3) and mature (>25 year) artificial reefs with six natural coral patches. Coral cover was higher on artificial reefs (50%) than in natural habitats (31%), but natural coral patches contained higher species richness (29 vs. 20) and coral diversity ( H' = 2.3 vs. 1.8). Multivariate analyses indicated strong differences between coral communities in natural and artificial habitats. Fish communities were sampled seasonally for 1 year. Multivariate fish communities differed significantly among habitat types in the summer and fall, but converged in the winter and spring. Univariate analysis indicated that species richness and abundance were stable throughout the year on natural coral patches but increased significantly in the summer on artificial reefs compared with the winter and spring, explaining the multivariate changes in community structure. The increased summer abundance on artificial reefs was mainly due to adult immigration. Piscivores were much more abundant in the fall than in the winter or spring on artificial reefs, but had low and stable abundance throughout the year in natural habitats. It is likely that the decreased winter and spring abundance of fish on the artificial reefs resulted from both predation and emigration. These results indicate that large artificial reefs can support diverse and abundant coral and fish communities. However, these communities differ structurally and functionally from those in natural habitats, and they should not be considered as replacements for natural coral and fish communities.

  15. Coral reef evolution on rapidly subsiding margins

    USGS Publications Warehouse

    Webster, J.M.; Braga, J.C.; Clague, D.A.; Gallup, C.; Hein, J.R.; Potts, D.C.; Renema, W.; Riding, R.; Riker-Coleman, K.; Silver, E.; Wallace, L.M.

    2009-01-01

    A series of well-developed submerged coral reefs are preserved in the Huon Gulf (Papua New Guinea) and around Hawaii. Despite different tectonics settings, both regions have experienced rapid subsidence (2-6??m/ka) over the last 500??ka. Rapid subsidence, combined with eustatic sea-level changes, is responsible for repeated drowning and backstepping of coral reefs over this period. Because we can place quantitative constraints on these systems (i.e., reef drowning age, eustatic sea-level changes, subsidence rates, accretion rates, basement substrates, and paleobathymetry), these areas represent unique natural laboratories for exploring the roles of tectonics, reef accretion, and eustatic sea-level changes in controlling the evolution of individual reefs, as well as backstepping of the entire system. A review of new and existing bathymetric, radiometric, sedimentary facies and numerical modeling data indicate that these reefs have had long, complex growth histories and that they are highly sensitive, recording drowning not only during major deglaciations, but also during high-frequency, small-amplitude interstadial and deglacial meltwater pulse events. Analysis of five generalized sedimentary facies shows that reef drowning is characterized by a distinct biological and sedimentary sequence. Observational and numerical modeling data indicate that on precessional (20??ka) and sub-orbital timescales, the rate and amplitude of eustatic sea-level changes are critical in controlling initiation, growth, drowning or sub-aerial exposure, subsequent re-initiation, and final drowning. However, over longer timescales (> 100-500??ka) continued tectonic subsidence and basement substrate morphology influence broad scale reef morphology and backstepping geometries. Drilling of these reefs will yield greatly expanded stratigraphic sections compared with similar reefs on slowly subsiding, stable and uplifting margins, and thus they represent a unique archive of sea-level and climate

  16. Fungi and their role in corals and coral reef ecosystems.

    PubMed

    Raghukumar, Chandralata; Ravindran, J

    2012-01-01

    Fungi in coral reefs exist as endoliths, endobionts, saprotrophs and as pathogens. Although algal and fungal endoliths in corals were described way back in 1973, their role in microboring, carbonate alteration, discoloration, density banding, symbiotic or parasitic association was postulated almost 25 years later. Fungi, as pathogens in corals, have become a much discussed topic in the last 10 years. It is either due to the availability of better tools for investigations or greater awareness among the research communities. Fungi which are exclusive as endoliths (endemic) in corals or ubiquitous forms seem to play a role in coral reef system. Fungi associated with sponges and their role in production or induction of secondary metabolites in their host is of primary interest to various pharmaceutical industries and funding agencies. Fungal enzymes in degradation of coral mucus, and plant detritus hold great promise in biotechnological applications. Unravelling fungal diversity in corals and associated reef organisms using culture and culture-independent approaches is a subject gaining attention from research community world over. PMID:22222828

  17. Coral Larvae Move toward Reef Sounds

    PubMed Central

    Vermeij, Mark J. A.; Marhaver, Kristen L.; Huijbers, Chantal M.; Nagelkerken, Ivan; Simpson, Stephen D.

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  18. Coral larvae move toward reef sounds.

    PubMed

    Vermeij, Mark J A; Marhaver, Kristen L; Huijbers, Chantal M; Nagelkerken, Ivan; Simpson, Stephen D

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  19. Management implications of fish trap effectiveness in adjacent coral reef and gorgonian habitats

    USGS Publications Warehouse

    Wolff, Nicholas; Grober-Dunsmore, Rikki; Rogers, Caroline S.; Beets, James P.

    1999-01-01

    A combination of visual census and trap sampling in St. John, USVI indicated that traps performed better in gorgonian habitat than in adjacent coral reef habitat. Although most families were seen more commonly in coral habitat, they were caught more often in gorgonian areas. Traps probably fished more effectively in gorgonian habitats, especially for migrating species, because traps provided shelter in the relatively topographically uniform environment of gorgonian dominated habitats. Recently, trap fishermen on St. John have been moving effort away from traditionally fished nearshore coral reefs and into a variety of more homogeneous habitats such as gorgonian habitat. Consequently, exploitation rates of the already over-harvested reef fish resources may be increasing. Reef fish managers and marine reserve designers should consider limiting trap fishing in gorgonian habitats to slow the decline of reef fisheries.

  20. Quaternary coral reef refugia preserved fish diversity.

    PubMed

    Pellissier, Loïc; Leprieur, Fabien; Parravicini, Valeriano; Cowman, Peter F; Kulbicki, Michel; Litsios, Glenn; Olsen, Steffen M; Wisz, Mary S; Bellwood, David R; Mouillot, David

    2014-05-30

    The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity. PMID:24876495

  1. Coral chronometers: seasonal growth bands in reef corals.

    PubMed

    Knutson, D W; Buddemeier, R W; Smith, S V

    1972-07-21

    Autoradiagraphs and x-radiographs have been made of vertical sections through the centers of reef corals from Eniwetok. Radioactivity bands in the coral structure are caused by strontium-90 and are related to specific series of nuclear tests, thus making possible calculation of long-term growth rates. These data indicate that the cyclic variations in radial density revealed by x-radiography are annual. PMID:17815626

  2. NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers

    NASA Astrophysics Data System (ADS)

    Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.

    2010-12-01

    A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.

  3. Coral Reefs: An English Compilation of Activities for Middle School Students.

    ERIC Educational Resources Information Center

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book on coral reefs for middle school students is divided into 10 sections. Section 1 contains the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 discusses where coral reefs are found and section 5 describes life on a coral reef. Section 6 discusses the…

  4. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    PubMed

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  5. The Global Coral Reef Crisis: Trends and Solutions (Coral Reefs: Values, Threats, and the Marine Aquarium Trade)

    SciTech Connect

    Shuman, Craig S.

    2003-02-05

    Second only to tropical rainforests, coral reefs support one of the world's most diverse natural habitats. Over 350 million individuals depend on coral reef resources for food and income. Unfortunately, the Earth is in the midst of a coral reef crisis. Anthropogenic impacts including overfishing, destructive fishing practices, sedimentation and pollution, as well as global climate change, have served to disrupt the natural processes that maintain the health of these ecosystems. Until recently, however, the global extent of the coral reef crisis was unknown. Reef Check was developed in 1996 as a volunteer, community-based monitoring protocol designed to measure the health of coral reefs on a global scale. With goals of education, monitoring, and management, Reef Check has activities in over 60 countries and territories. They have not only provided scientific evidence of the global extent of the coral reef crisis, but have provided the first community based steps to alleviate this urgent situation.

  6. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  7. Fishing down nutrients on coral reefs.

    PubMed

    Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  8. Fishing down nutrients on coral reefs

    PubMed Central

    Allgeier, Jacob E.; Valdivia, Abel; Cox, Courtney; Layman, Craig A.

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  9. GLOBAL CHANGE EFFECTS ON CORAL REEF CONDITION

    EPA Science Inventory

    Fisher, W., W. Davis, J. Campbell, L. Courtney, P. Harris, B. Hemmer, M. Parsons, B. Quarles and D. Santavy. In press. Global Change Effects on Coral Reef Condition (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington...

  10. Coral reefs: threats and conservation in an era of global change.

    PubMed

    Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E

    2009-04-01

    Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies. PMID:19432648

  11. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    NASA Astrophysics Data System (ADS)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  12. Can coral reefs be monitored from space?

    PubMed

    Philipson, Petra; Lindell, Tommy

    2003-12-01

    The dramatic bleaching events on the coral reefs recently have enhanced the need for environmental monitoring. Remote sensing is an important constituent for monitoring of reefs, and an invaluable complement to field observations. This paper discusses the possibilities and limitations of present high resolution satellites for mapping and monitoring coral reefs. The sensors with the best spatial and radiometric resolution available today, e.g. IKONOS, can be useful for mapping and monitoring of reefs, but they are too costly for global surveys. However, our coral bleaching studies indicate that massive bleaching could be detected even from satellites with lower resolution, like Landsat, SPOT, and IRS. They could also be useful for coarser, from a spatial and thematic point of view, global mapping and updating purposes. A more detailed monitoring requires both better spatial resolution and spectral resolution than today's sensors. In the future, it is necessary to construct a more reef specific sensor with a few specially selected narrow bands and a good spatial, radiometric and temporal resolution. PMID:15049357

  13. Population trends among Jamaican reef corals

    NASA Astrophysics Data System (ADS)

    Porter, James W.; Woodley, Jeremy D.; Jason Smith, G.; Neigel, Joseph E.; Battey, James F.; Dallmeyer, Dorinda G.

    1981-11-01

    Disturbance has been cited as a potentially important agent in structuring ecological communities by modifying the effects of competition1-5. Catastrophic disturbance has also been proposed as a factor promoting the coexistence of competing species in highly diverse tropical ecosystems such as rain forests and coral reefs2,6-11. Here we describe patterns of recruitment and mortality among reef corals over 4 yr at several depths on the reefs of Discovery Bay, Jamaica, which were struck by Hurricane Alien on 6 August 198012. Photographic quadrats monitored since 1976 on a shallow water reef showed a negative correlation between coral abundance and mortality which was not offset by compensatory patterns of recruitment. This slow trend in the disproportionate reduction of rarer, competitively inferior species was reversed by Hurricane Alien, with storm-induced mortality being greatest in the most abundant species. On deeper reef stations, undisturbed by the storm, slower rates of colony loss were compensated for by commensurate rates of colony recruitment. Thus, patterns of differential mortality and recruitment contribute to the maintenance of high species diversity in this tropical marine ecosystem.

  14. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs

    USGS Publications Warehouse

    Kleypas, J.A.; Buddemeier, R.W.; Archer, D.; Gattuso, J.-P.; Langdon, C.; Opdyke, B.N.

    1999-01-01

    A coral reef represents the net accumulation of calcium carbonate (CaCO3) produced by corals and other calcifying organisms. If calcification declines, then reef-building capacity also declines. Coral reef calcification depends on the saturation state of the carbonate mineral aragonite of surface waters. By the middle of the next century, an increased concentration of carbon dioxide will decrease the aragonite saturation state in the tropics by 30 percent and biogenic aragonite precipitation by 14 to 30 percent. Coral reefs are particularly threatened, because reef-building organisms secrete metastable forms of CaCO3, but the biogeochemical consequences on other calcifying marine ecosystems may be equally severe.

  15. An observational heat budget analysis of a coral reef, Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.

    2013-03-01

    Measurements of the surface energy balance, the structure and evolution of the convective atmospheric reef layer (CARL), and local meteorology and hydrodynamics were made during June 2009 and February 2010 at Heron Reef, Australia, to establish the relative partitioning of heating within the water and atmosphere. Horizontal advection was shown to moderate temperature in the CARL and the water, having a cooling influence on the atmosphere, and providing an additional source or sink of energy to the water overlying the reef, depending on tide. The key driver of atmospheric heating was surface sensible heat flux, while heating of the reef water was primarily due to solar radiation, and thermal conduction and convection from the reef substrate. Heating and cooling processes were more defined during winter due to higher sensible and latent heat fluxes and strong diurnal evolution of the CARL. Sudden increases in water temperature were associated with inundation of warmer oceanic water during the flood tide, particularly in winter due to enhanced nocturnal cooling of water overlying the reef. Similarly, cooling of the water over the reef occurred during the ebb tide as heat was transported off the reef to the surrounding ocean. While these results are the first to shed light on the heat budget of a coral reef and overlying CARL, longer-term, systematic measurements of reef thermal budgets are needed under a range of meteorological and hydrodynamic conditions, and across various reef types to elucidate the influence on larger-scale oceanic and atmospheric processes. This is essential for understanding the role of coral reefs in tropical and sub-tropical meteorology; the physical processes that take place during coral bleaching events, and coral and algal community dynamics on coral reefs.

  16. Coral Reef Education and Australian High School Students

    ERIC Educational Resources Information Center

    Stepath, Carl M.

    2004-01-01

    Educational programs that focus on humans and their relationship to coral reefs are becoming necessary, as reef structures along the Queensland coast come under mounting ecological pressure. This paper reports on a PhD research project which investigated marine education and learning with high school students in coral reef environments along the…

  17. Key Ecological Interactions of Reef Building Corals - 11-16-2011

    EPA Science Inventory

    Coral reefs are very important marine ecosystems because they support tremendous biodiversity and reefs are critical economic resources many coastal nations. Tropical reef structures are largely built by stony corals. This presentation provides background on basic coral biology t...

  18. 75 FR 21650 - Coral Reef Restoration Plan, Draft Programmatic Environmental Impact Statement, Biscayne National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... National Park Service Coral Reef Restoration Plan, Draft Programmatic Environmental Impact Statement... Availability of the Draft Programmatic Environmental Impact Statement for the Coral Reef Restoration Plan... Environmental Impact Statement (DEIS) for the Coral Reef Restoration Plan for Biscayne National Park,...

  19. Coral reef metabolism and carbon chemistry dynamics of a coral reef flat

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Benthuysen, Jessica; Cantin, Neal; Caldeira, Ken; Anthony, Ken

    2015-05-01

    Global carbon emissions continue to acidify the oceans, motivating growing concern for the ability of coral reefs to maintain net positive calcification rates. Efforts to develop robust relationships between coral reef calcification and carbonate parameters such as aragonite saturation state (Ωarag) aim to facilitate meaningful predictions of how reef calcification will change in the face of ocean acidification. Here we investigate natural trends in carbonate chemistry of a coral reef flat over diel cycles and relate these trends to benthic carbon fluxes by quantifying net community calcification and net community production. We find that, despite an apparent dependence of calcification on Ωarag seen in a simple pairwise relationship, if the dependence of net calcification on net photosynthesis is accounted for, knowing Ωarag does not add substantial explanatory value. This suggests that, over short time scales, the control of Ωarag on net calcification is weak relative to factors governing net photosynthesis.

  20. Climate change impacts on freshwater fish, coral reefs, and related ecosystem services in the United States

    EPA Science Inventory

    We analyzed the potential physical and economic impacts of climate change on freshwater fisheries and coral reefs in the United States, examining a reference scenario and two policy scenarios that limit global greenhouse gas (GHG) emissions. We modeled shifts in suitable habitat ...

  1. Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire

    NASA Astrophysics Data System (ADS)

    Bak, Rolf P. M.; Nieuwland, Gerard; Meesters, Erik H.

    2005-11-01

    Coral reefs are thought to be in worldwide decline but available data are practically limited to reefs shallower than 25 m. Zooxanthellate coral communities in deep reefs (30-40 m) are relatively unstudied. Our question is: what is happening in deep reefs in terms of coral cover and coral mortality? We compare changes in species composition, coral mortality, and coral cover at Caribbean (Curacao and Bonaire) deep (30-40 m) and shallow reefs (10-20 m) using long-term (1973-2002) data from permanent photo quadrats. About 20 zooxanthellate coral species are common in the deep-reef communities, dominated by Agaricia sp., with coral cover up to 60%. In contrast with shallow reefs, there is no decrease in coral cover or number of coral colonies in deep reefs over the last 30 years. In deep reefs, non-agaricid species are decreasing but agaricid domination will be interrupted by natural catastrophic mortality such as deep coral bleaching and storms. Temperature is a vastly fluctuating variable in the deep-reef environment with extremely low temperatures possibly related to deep-reef bleaching.

  2. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  3. Vertical variations of coral reef drag forces

    NASA Astrophysics Data System (ADS)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri

    2016-05-01

    Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.

  4. Commencement on a Coral Reef

    ERIC Educational Resources Information Center

    Webster, Steven K.

    1973-01-01

    Describes an environmental program in which sixteen students and three biology teachers from Northfield Mount Hermon School in Massachusetts spent two weeks examining the ecology of a Caribbean reef.. (JR)

  5. Bayesian decision-network modeling of multiple stakeholders for reef ecosystem restoration in the coral triangle.

    PubMed

    Varkey, Divya A; Pitcher, Tony J; McAllister, Murdoch K; Sumaila, Rashid S

    2013-06-01

    Proposals for marine conservation measures have proliferated in the last 2 decades due to increased reports of fishery declines and interest in conservation. Fishers and fisheries managers have often disagreed strongly when discussing controls on fisheries. In such situations, ecosystem-based models and fisheries-stock assessment models can help resolve disagreements by highlighting the trade-offs that would be made under alternative management scenarios. We extended the analytical framework for modeling such trade-offs by including additional stakeholders whose livelihoods and the value they place on conservation depend on the condition of the marine ecosystem. To do so, we used Bayesian decision-network models (BDNs) in a case study of an Indonesian coral reef fishery. Our model included interests of the fishers and fishery managers; individuals in the tourism industry; conservation interests of the state, nongovernmental organizations, and the local public; and uncertainties in ecosystem status, projections of fisheries revenues, tourism growth, and levels of interest in conservation. We calculated the total utility (i.e., value) of a range of restoration scenarios. Restricting net fisheries and live-fish fisheries appeared to be the best compromise solutions under several combinations of settings of modeled variables. Results of our case study highlight the implications of alternate formulations for coral reef stakeholder utility functions and discount rates for the calculation of the net benefits of alternative fisheries management options. This case study may also serve as a useful example for other decision analyses with multiple stakeholders. PMID:23530881

  6. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    PubMed Central

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  7. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.

    PubMed

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-02-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  8. Effects of changing temperatures on coral reef health: Implications for management

    NASA Astrophysics Data System (ADS)

    Selig, Elizabeth Rose

    Human-induced climate change has already led to substantial changes in a variety of ecosystems. Coral reefs are particularly vulnerable to rises in ocean temperature as a result of climate change because they already live near their thermal limits. However, we know little about the spatial patterns of temperature anomalies, areas of greater than usual temperature, which cause coral mortality and increased rates of coral disease. These gaps in knowledge make it difficult to design effective management strategies for mitigating the effects of ocean warming. My dissertation research uses a combination of a new satellite ocean temperature dataset, field surveys on coral health, and data on marine protected area (MPA) boundaries to analyze how ocean temperatures are affecting coral reef health at regional and global scales. I discovered that temperature anomalies are spatially and temporally variable from 1985-2005 even during El Nino events. They are also typically less than 50 km2, smaller than the resolution of many climate models. In addition, I found a strong relationship on the Great Barrier Reef between the number of temperature anomalies and the number of cases of white syndrome, a prevalent coral disease. Results from this study suggest that temperature anomalies are playing a major role in the observed decline of coral reefs over the last 30-40 years. This decline highlights the importance of determining whether MPAs, one of the most common management tools are effective in restoring coral cover. My analyses demonstrated that MPAs can confer some ecosystem resilience through fisheries management and land management practices at regional scales. Coral cover on reefs inside of MPAs did not change over time, while unprotected reefs experienced declines in coral cover. However, MPAs do not moderate the effect of thermal stress on corals or reduce coral decline at rates that can offset losses from thermal stress and other major natural and human-caused disturbances

  9. African and Asian dust: from desert soils to coral reefs

    USGS Publications Warehouse

    Garrison, Virginia H.; Shinn, Eugene A.; Foreman, William T.; Griffin, Dale W.; Holmes, Charles W.; Kellogg, Christina A.; Majewski, Michael S.; Richardson, Laurie L.; Ritchie, Kim B.; Smith, Garriet W.

    2003-01-01

    Many hypotheses have been proposed to explain the decline of coral reefs throughout the world, but none adequately accounts for the lack of recovery of reefs or the wide geographical distribution of coral diseases. The processes driving the decline remain elusive. Hundreds of millions of tons of dust transported annually from Africa and Asia to the Americas may be adversely affecting coral reefs and other downwind ecosystems. Viable microorganisms, macro- and micronutrients, trace metals, and an array of organic contaminants carried in the dust air masses and deposited in the oceans and on land may play important roles in the complex changes occurring on coral reefs worldwide.

  10. Bright spots among the world’s coral reefs.

    PubMed

    Cinner, Joshua E; Huchery, Cindy; MacNeil, M Aaron; Graham, Nicholas A J; McClanahan, Tim R; Maina, Joseph; Maire, Eva; Kittinger, John N; Hicks, Christina C; Mora, Camilo; Allison, Edward H; D'Agata, Stephanie; Hoey, Andrew; Feary, David A; Crowder, Larry; Williams, Ivor D; Kulbicki, Michel; Vigliola, Laurent; Wantiez, Laurent; Edgar, Graham; Stuart-Smith, Rick D; Sandin, Stuart A; Green, Alison L; Hardt, Marah J; Beger, Maria; Friedlander, Alan; Campbell, Stuart J; Holmes, Katherine E; Wilson, Shaun K; Brokovich, Eran; Brooks, Andrew J; Cruz-Motta, Juan J; Booth, David J; Chabanet, Pascale; Gough, Charlie; Tupper, Mark; Ferse, Sebastian C A; Sumaila, U Rashid; Mouillot, David

    2016-07-21

    Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries

  11. Bright spots among the world’s coral reefs

    NASA Astrophysics Data System (ADS)

    Cinner, Joshua E.; Huchery, Cindy; MacNeil, M. Aaron; Graham, Nicholas A. J.; McClanahan, Tim R.; Maina, Joseph; Maire, Eva; Kittinger, John N.; Hicks, Christina C.; Mora, Camilo; Allison, Edward H.; D’Agata, Stephanie; Hoey, Andrew; Feary, David A.; Crowder, Larry; Williams, Ivor D.; Kulbicki, Michel; Vigliola, Laurent; Wantiez, Laurent; Edgar, Graham; Stuart-Smith, Rick D.; Sandin, Stuart A.; Green, Alison L.; Hardt, Marah J.; Beger, Maria; Friedlander, Alan; Campbell, Stuart J.; Holmes, Katherine E.; Wilson, Shaun K.; Brokovich, Eran; Brooks, Andrew J.; Cruz-Motta, Juan J.; Booth, David J.; Chabanet, Pascale; Gough, Charlie; Tupper, Mark; Ferse, Sebastian C. A.; Sumaila, U. Rashid; Mouillot, David

    2016-07-01

    Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries

  12. Climate Change, Human Impacts, and the Resilience of Coral Reefs

    NASA Astrophysics Data System (ADS)

    Hughes, T. P.; Baird, A. H.; Bellwood, D. R.; Card, M.; Connolly, S. R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J. B. C.; Kleypas, J.; Lough, J. M.; Marshall, P.; Nyström, M.; Palumbi, S. R.; Pandolfi, J. M.; Rosen, B.; Roughgarden, J.

    2003-08-01

    The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.

  13. Climate change, human impacts, and the resilience of coral reefs.

    PubMed

    Hughes, T P; Baird, A H; Bellwood, D R; Card, M; Connolly, S R; Folke, C; Grosberg, R; Hoegh-Guldberg, O; Jackson, J B C; Kleypas, J; Lough, J M; Marshall, P; Nyström, M; Palumbi, S R; Pandolfi, J M; Rosen, B; Roughgarden, J

    2003-08-15

    The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming. PMID:12920289

  14. Rising to the challenge of sustaining coral reef resilience.

    PubMed

    Hughes, Terry P; Graham, Nicholas A J; Jackson, Jeremy B C; Mumby, Peter J; Steneck, Robert S

    2010-11-01

    Phase-shifts from one persistent assemblage of species to another have become increasingly commonplace on coral reefs and in many other ecosystems due to escalating human impacts. Coral reef science, monitoring and global assessments have focused mainly on producing detailed descriptions of reef decline, and continue to pay insufficient attention to the underlying processes causing degradation. A more productive way forward is to harness new theoretical insights and empirical information on why some reefs degrade and others do not. Learning how to avoid undesirable phase-shifts, and how to reverse them when they occur, requires an urgent reform of scientific approaches, policies, governance structures and coral reef management. PMID:20800316

  15. Warm-water coral reefs and climate change

    NASA Astrophysics Data System (ADS)

    Spalding, Mark D.; Brown, Barbara E.

    2015-11-01

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  16. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. PMID:26564846

  17. Live coral repels a common reef fish ectoparasite

    NASA Astrophysics Data System (ADS)

    Artim, J. M.; Sikkel, P. C.

    2013-06-01

    Coral reefs are undergoing rapid changes as living corals give way to dead coral on which other benthic organisms grow. This decline in live coral could influence habitat availability for fish parasites with benthic life stages. Gnathiid isopod larvae live in the substratum and are common blood-feeding parasites of reef fishes. We examined substrate associations and preferences of a common Caribbean gnathiid, Gnathia marleyi. Emergence traps set over predominantly live coral substrata captured significantly fewer gnathiids than traps set over dead coral substrata. In laboratory experiments, gnathiids preferred dead coral and sponge and tended to avoid contact with live coral. When live gnathiids were added to containers with dead or live coral, significantly fewer were recovered from the latter after 24 h. Our data therefore suggest that live coral is not suitable microhabitat for parasitic gnathiid isopods and that a decrease in live coral cover increases available habitat for gnathiids.

  18. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  19. Resilience of predators to fishing pressure on coral patch reefs

    USGS Publications Warehouse

    Schroeder, R.E.; Parrish, J.D.

    2005-01-01

    Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could

  20. Building coral reef resilience through assisted evolution

    PubMed Central

    van Oppen, Madeleine J. H.; Oliver, James K.; Putnam, Hollie M.; Gates, Ruth D.

    2015-01-01

    The genetic enhancement of wild animals and plants for characteristics that benefit human populations has been practiced for thousands of years, resulting in impressive improvements in commercially valuable species. Despite these benefits, genetic manipulations are rarely considered for noncommercial purposes, such as conservation and restoration initiatives. Over the last century, humans have driven global climate change through industrialization and the release of increasing amounts of CO2, resulting in shifts in ocean temperature, ocean chemistry, and sea level, as well as increasing frequency of storms, all of which can profoundly impact marine ecosystems. Coral reefs are highly diverse ecosystems that have suffered massive declines in health and abundance as a result of these and other direct anthropogenic disturbances. There is great concern that the high rates, magnitudes, and complexity of environmental change are overwhelming the intrinsic capacity of corals to adapt and survive. Although it is important to address the root causes of changing climate, it is also prudent to explore the potential to augment the capacity of reef organisms to tolerate stress and to facilitate recovery after disturbances. Here, we review the risks and benefits of the improvement of natural and commercial stocks in noncoral reef systems and advocate a series of experiments to determine the feasibility of developing coral stocks with enhanced stress tolerance through the acceleration of naturally occurring processes, an approach known as (human)-assisted evolution, while at the same time initiating a public dialogue on the risks and benefits of this approach. PMID:25646461

  1. Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs

    NASA Astrophysics Data System (ADS)

    Paddack, Michelle J.; Cowen, Robert K.; Sponaugle, Su

    2006-08-01

    The impact of grazing by herbivorous fishes (Acanthuridae, Scaridae, and Pomacentridae) on low coral-cover reefs was assessed by measuring rates of benthic algal production and consumption on inshore and offshore reefs in the upper Florida Keys. Algal production rates, determined in situ with caged and uncaged experimental plates, were low (mean 1.05gCm-2 day-1) and similar among reef types. Algal consumption rates were estimated using two different models, a detailed model incorporating fish bite rates and algal yield-per-bite for one species extrapolated to a guild-wide value, and a general regression relating fish biomass to algal consumption. Algal consumption differed among reef types: a majority of algal production was consumed on offshore reefs (55-100%), whereas consumption on inshore patch reefs was 31-51%. Spatial variation in algal consumption was driven by differences in herbivorous fish species composition, density, and size-structure among reef types. Algal consumption rates also varied temporally due to seasonal declines in bite rates and intermittent presence of large-bodied, vagile, schooling species. Spatial coherence of benthic community structure and temporal stability of algal turf over 3 years suggests that grazing intensity is currently sufficient to limit further spread of macroalgal cover on these low coral-cover reefs, but not to exclude it from the system.

  2. Microbial photosynthesis in coral reef sediments (Heron Reef, Australia)

    NASA Astrophysics Data System (ADS)

    Werner, Ursula; Blazejak, Anna; Bird, Paul; Eickert, Gabriele; Schoon, Raphaela; Abed, Raeid M. M.; Bissett, Andrew; de Beer, Dirk

    2008-03-01

    We investigated microphytobenthic photosynthesis at four stations in the coral reef sediments at Heron Reef, Australia. The microphytobenthos was dominated by diatoms, dinoflagellates and cyanobacteria, as indicated by biomarker pigment analysis. Conspicuous algae firmly attached to the sand grains (ca. 100 μm in diameter, surrounded by a hard transparent wall) were rich in peridinin, a marker pigment for dinoflagellates, but also showed a high diversity based on cyanobacterial 16S rDNA gene sequence analysis. Specimens of these algae that were buried below the photic zone exhibited an unexpected stimulation of respiration by light, resulting in an increase of local oxygen concentrations upon darkening. Net photosynthesis of the sediments varied between 1.9 and 8.5 mmol O 2 m -2 h -1 and was strongly correlated with Chl a content, which lay between 31 and 84 mg m -2. An estimate based on our spatially limited dataset indicates that the microphytobenthic production for the entire reef is in the order of magnitude of the production estimated for corals. Photosynthesis stimulated calcification at all investigated sites (0.2-1.0 mmol Ca 2+ m -2 h -1). The sediments of at least three stations were net calcifying. Sedimentary N 2-fixation rates (measured by acetylene reduction assays at two sites) ranged between 0.9 to 3.9 mmol N 2 m -2 h -1 and were highest in the light, indicating the importance of heterocystous cyanobacteria. In coral fingers no N 2-fixation was measurable, which stresses the importance of the sediment compartment for reef nitrogen cycling.

  3. Perturbation and change in coral reef communities.

    PubMed

    Porter, J W; Battey, J F; Smith, G J

    1982-03-01

    Ninety-six percent of surveyed shallow-water Dry Tortugas reef corals died during the severe winter of 1976-1977. Data from skeletal stains indicate that death occurred during the mid-January intrusion of 14 degrees C water onto the reef. In deeper water, community parameters such as percent cover, species number, and relative abundance showed no significant change. However, an analysis of competitive interactions at the growing edges of adjacent colonies reveals a 70% reduction in space competition during this environmental disturbance. These results can explain high variability in the growth rate of Floridian reefs and demonstrate the importance of obtaining long-term spatial information to interpret successional dynamics of complex communities. PMID:16578761

  4. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia.

    PubMed

    Graham, Nicholas A J; Chong-Seng, Karen M; Huchery, Cindy; Januchowski-Hartley, Fraser A; Nash, Kirsty L

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  5. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    PubMed Central

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  6. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

    PubMed

    Dixon, Groves B; Davies, Sarah W; Aglyamova, Galina A; Meyer, Eli; Bay, Line K; Matz, Mikhail V

    2015-06-26

    As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection. PMID:26113720

  7. The Ecological Role of Sharks on Coral Reefs.

    PubMed

    Roff, George; Doropoulos, Christopher; Rogers, Alice; Bozec, Yves-Marie; Krueck, Nils C; Aurellado, Eleanor; Priest, Mark; Birrell, Chico; Mumby, Peter J

    2016-05-01

    Sharks are considered the apex predator of coral reefs, but the consequences of their global depletion are uncertain. Here we explore the ecological roles of sharks on coral reefs and, conversely, the importance of reefs for sharks. We find that most reef-associated shark species do not act as apex predators but instead function as mesopredators along with a diverse group of reef fish. While sharks perform important direct and indirect ecological roles, the evidence to support hypothesised shark-driven trophic cascades that benefit corals is weak and equivocal. Coral reefs provide some functional benefits to sharks, but sharks do not appear to favour healthier reef environments. Restoring populations of sharks is important and can yet deliver ecological surprise. PMID:26975420

  8. Community dynamics of Pleistocene coral reefs during alternative climatic regimes.

    PubMed

    Tager, Danika; Webster, Jody M; Potts, Donald C; Renema, Willem; Braga, Juan C; Pandolfi, John M

    2010-01-01

    Reef ecosystems built during successive periods of Pleistocene sea level rise have shown remarkable persistence in coral community structure, but little is known of the ecological characteristics of reef communities during periods of low sea stands or sea level falls. We sampled the relative species abundance of coral, benthic foraminifera, and calcareous red algae communities from eight submerged coral reefs in the Huon Gulf, Papua New Guinea, which formed during successive sea level fall and lowstand periods over the past approximately kyr. We found that dissimilarity in coral species composition increased significantly with increasing time between reef-building events. However, neither coral diversity nor the taxonomic composition of benthic foraminifera and calcareous red algae assemblages varied significantly over time. The taxonomic composition of coral communities from lowstand reefs was significantly different from that of highstand reefs previously reported from the nearby Huon Peninsula. We interpret the community composition and temporal dynamics of lowstand reefs as a result of shifting energy regimes in the Huon Gulf, and differences between low and highstand reefs as a result of differences in the interaction between biotic and environmental factors between the Huon Gulf and Huon Peninsula. Regardless of the exact processes driving these trends, our study represents the first glimpse into the ecological dynamics of coral reefs during low sea level stands when climatic conditions for reef growth were much different and less optimal than during previously studied highstand periods. PMID:20380208

  9. The Role of Turtles as Coral Reef Macroherbivores

    PubMed Central

    Goatley, Christopher H. R.; Hoey, Andrew S.; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. PMID:22768189

  10. Are coral reefs victims of their own past success?

    PubMed

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services. PMID:27152330

  11. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    USGS Publications Warehouse

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene

  12. Persistence of coral-rudist reefs into the Late Cretaceous

    SciTech Connect

    Scott, R.W. ); Fernandez-Mendiola, P.A. ); Gili, E. ); Simo, A. )

    1990-04-01

    During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thickets that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.

  13. Wave transformation across coral reefs under changing sea levels

    NASA Astrophysics Data System (ADS)

    Harris, Daniel; Power, Hannah; Vila-Conejo, Ana; Webster, Jody

    2015-04-01

    The transformation of swell waves from deep water across reef flats is the primary process regulating energy regimes in coral reef systems. Coral reefs are effective barriers removing up to 99% of wave energy during breaking and propagation across reef flats. Consequently back-reef environments are often considered low energy with only limited sediment transport and geomorphic change during modal conditions. Coral reefs, and specifically reef flats, therefore provide important protection to tropical coastlines from coastal erosion and recession. However, changes in sea level could lead to significant changes in the dissipation of swell wave energy in coral reef systems with wave heights dependent on the depth over the reef flat. This suggests that a rise in sea level would also lead to significantly higher energy conditions exacerbating the transgressive effects of sea level rise on tropical beaches and reef islands. This study examines the potential implications of different sea level scenarios on the transformation of waves across the windward reef flats of One Tree Reef, southern Great Barrier Reef. Waves were measured on the reef flats and back-reef sand apron of One Tree Reef. A one-dimensional wave model was calibrated and used to investigate wave processes on the reef flats under different mean sea level (MSL) scenarios (present MSL, +1 m MSL, and +2 m MSL). These scenarios represent both potential future sea level states and also the paleo sea level of the late Holocene in the southern Great Barrier Reef. Wave heights were shown to increase under sea level rise, with greater wave induced orbital velocities affecting the bed under higher sea levels. In general waves were more likely to entrain and transport sediment both on the reef flat and in the back reef environment under higher sea levels which has implications for not only forecasted climate change scenarios but also for interpreting geological changes during the late Holocene when sea levels were 1

  14. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  15. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  16. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  17. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  18. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  19. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  20. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  1. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  2. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  3. The wicked problem of China's disappearing coral reefs.

    PubMed

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. PMID:23140101

  4. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    NASA Astrophysics Data System (ADS)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  5. Arrecifes de Coral: Una Coleccion de Actividades en Espanol para Estudiantes de Escuela Intermedia (Coral Reefs: A Spanish Compilation of Activities for Middle School Students).

    ERIC Educational Resources Information Center

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book for middle school students on coral reefs is divided into 10 sections. Section 1 is the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 describes where coral reefs are found, and section 5 describes life on a coral reef. Section 6 describes the…

  6. Coral reef ecosystem decline: changing dynamics of coral reef carbonate production and implications for reef growth potential

    NASA Astrophysics Data System (ADS)

    Perry, Chris

    2016-04-01

    Global-scale deteriorations in coral reef health have caused major shifts in species composition and are likely to be exacerbated by climate change. It has been suggested that one effect of these ecological changes will be to lower reef carbonate production rates, which will impair reef growth potential and, ultimately, may lead to states of net reef erosion. However, quantitative data to support such assertions are limited, and linkages between the ecological state of coral reefs and their past and present geomorphic performance (in other words their growth potential) are poorly resolved. Using recently collected data from sites in the Caribbean and Indian Ocean, and which have undergone very different post-disturbance ecological trajectories over the last ~20-30 years, the differential impacts of disturbance on contemporary carbonate production regimes and on reef growth potential can be explored. In the Caribbean, a region which has been severely impacted ecological over the last 30+ years, our datasets show that average carbonate production rates on reefs are now less than 50% of pre-disturbance rates, and that calculated accretion rates (mm yr-1) are an about order of magnitude lower within shallow water habitats compared to Holocene averages. Collectively, these data suggest that recent ecological declines are now propagating through the system to impact on the geomorphic performance of Caribbean reefs and will impair their future growth potential. In contrast, the carbonate budgets of most reefs across the Chagos archipelago (central Indian Ocean), which is geographically remote and largely isolated from direct human disturbances, have recovered rapidly from major past disturbances (specifically the 1998 coral bleaching event). The carbonate budgets on these remote reefs now average +3.7 G (G = kg CaCO3 m-2 yr-1). Most significantly the production rates on Acropora-dominated reefs, which were most severely impacted by the 1998 bleaching event, average +8.4 G

  7. Rising sea level may cause decline of fringing coral reefs

    NASA Astrophysics Data System (ADS)

    Field, Michael E.; Ogston, Andrea S.; Storlazzi, Curt D.

    2011-08-01

    Coral reefs are major marine ecosystems and critical resources for marine diversity and fisheries. These ecosystems are widely recognized to be at risk from a number of stressors, and added to those in the past several decades is climate change due to anthropogenically driven increases in atmospheric concentrations of greenhouse gases. Most threatening to most coral reefs are elevated sea surface temperatures and increased ocean acidity [e.g., Kleypas et al., 1999; Hoegh-Guldberg et al., 2007], but sea level rise, another consequence of climate change, is also likely to increase sedimentary processes that potentially interfere with photosynthesis, feeding, recruitment, and other key physiological processes (Figure 1). Anderson et al. [2010] argue compellingly that potential hazardous impacts to coastlines from 21st-century sea level rise are greatly underestimated, particularly because of the rapid rate of rise. The Intergovernmental Panel on Climate Change estimates that sea level will rise in the coming century (1990-2090) by 2.2-4.4 millimeters per year, when projected with little contribution from melting ice [Meehl et al., 2007]. New studies indicate that rapid melting of land ice could substantially increase the rate of sea level rise [Grinsted et al., 2009; Milne et al., 2009].

  8. Herbivore space use influences coral reef recovery

    PubMed Central

    Eynaud, Yoan; McNamara, Dylan E.; Sandin, Stuart A.

    2016-01-01

    Herbivores play an important role in marine communities. On coral reefs, the diversity and unique feeding behaviours found within this functional group can have a comparably diverse set of impacts in structuring the benthic community. Here, using a spatially explicit model of herbivore foraging, we explore how the spatial pattern of grazing behaviours impacts the recovery of a reef ecosystem, considering movements at two temporal scales—short term (e.g. daily foraging patterns) and longer term (e.g. monthly movements across the landscape). Model simulations suggest that more spatially constrained herbivores are more effective at conferring recovery capability by providing a favourable environment to coral recruitment and growth. Results also show that the composition of food available to the herbivore community is linked directly to the pattern of space use by herbivores. To date, most studies of variability among the impacts of herbivore species have considered the diversity of feeding modes and mouthparts. Our work provides a complementary view of spatial patterns of foraging, revealing that variation in movement behaviours alone can affect patterns of benthic change, and thus broadens our view of realized links between herbivore diversity and reef recovery. PMID:27429784

  9. Herbivore space use influences coral reef recovery.

    PubMed

    Eynaud, Yoan; McNamara, Dylan E; Sandin, Stuart A

    2016-06-01

    Herbivores play an important role in marine communities. On coral reefs, the diversity and unique feeding behaviours found within this functional group can have a comparably diverse set of impacts in structuring the benthic community. Here, using a spatially explicit model of herbivore foraging, we explore how the spatial pattern of grazing behaviours impacts the recovery of a reef ecosystem, considering movements at two temporal scales-short term (e.g. daily foraging patterns) and longer term (e.g. monthly movements across the landscape). Model simulations suggest that more spatially constrained herbivores are more effective at conferring recovery capability by providing a favourable environment to coral recruitment and growth. Results also show that the composition of food available to the herbivore community is linked directly to the pattern of space use by herbivores. To date, most studies of variability among the impacts of herbivore species have considered the diversity of feeding modes and mouthparts. Our work provides a complementary view of spatial patterns of foraging, revealing that variation in movement behaviours alone can affect patterns of benthic change, and thus broadens our view of realized links between herbivore diversity and reef recovery. PMID:27429784

  10. Reproductive ecology of Caribbean reef corals

    NASA Astrophysics Data System (ADS)

    Szmant, Alina M.

    1986-08-01

    The last decade has seen a resurgence of interest in the processes of sexual reproduction by scleractinian reef corals. Earlier investigations had focused fortuitously on brooding (planulating) species, which resulted in the general misconception that brooding was the main form of larval development of reef corals. More recent work on Indo-Pacific species has shown broadcast spawning and short annual reproductive periods to predominate. This report presents the reproductive patterns of eleven Caribbean coral species and attempts to explain the adaptive features and selective pressures that have led to the evolution of the four reproductive patterns described to date: (a) hermaphroditic broadcasters; (b) gonochoric broadcasters; (c) hermaphroditic broadcasters; (b) gonochoric brooders. Both (a) and (b) correlate with large colony size and short annual spawning periods; and (c) and (d) correlate with small colony size, multiple planulating cycles per year, and occupation of unstable habitats. Selection for outcrossing between long-lived individuals is proposed as the reason for gonochorism and for synchronous spawning of hermaphroditic broadcasters, and also for the large amount of sperm produced by hermaphroditic brooders. Selection for high rates of local recruitment is proposed as the force behind the evolution of brooding by species inhabiting unstable habitats and suffering high rates of adult mortality.

  11. Threatened Reef Corals of the World

    PubMed Central

    Huang, Danwei

    2012-01-01

    A substantial proportion of the world's living species, including one-third of the reef-building corals, are threatened with extinction and in pressing need of conservation action. In order to reduce biodiversity loss, it is important to consider species' contribution to evolutionary diversity along with their risk of extinction for the purpose of setting conservation priorities. Here I reconstruct the most comprehensive tree of life for the order Scleractinia (1,293 species) that includes all 837 living reef species, and employ a composite measure of phylogenetic distinctiveness and extinction risk to identify the most endangered lineages that would not be given top priority on the basis of risk alone. The preservation of these lineages, not just the threatened species, is vital for safeguarding evolutionary diversity. Tests for phylogeny-associated patterns show that corals facing elevated extinction risk are not clustered on the tree, but species that are susceptible, resistant or resilient to impacts such as bleaching and disease tend to be close relatives. Intensification of these threats or extirpation of the endangered lineages could therefore result in disproportionate pruning of the coral tree of life. PMID:22479633

  12. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  13. The ecological research on coral reefs of the Red Sea

    NASA Astrophysics Data System (ADS)

    Mergner, Hans

    Klunzinger (1872) characterised the zonation of the coral reef near Al-Qusayr, Egypt with the help of indicator species. He identified a Stylophora-zone among other zones and established the first biophysiographic zonation of a coral reef which is, in many respects, still valid today. Since then, ecological research work on coral reefs has developed to its present understanding of one of the most complicated and densely populated ecosystems on Earth. Much biological and ecological work has been done on the coral reefs along the Red Sea coasts. This is not surrising, because the Red Sea is the coral sea closest to Europe and has attracted the interest of European investigators for over 200 years. With few exceptions, this interest has been concentrated on a limited number of coastal sites: Jeddah, Al-Qunfudhah, Al-Luhayyah and Al-Mukha along the east coast, and Assab, Mesewa, Al-Qusayr and As-Suways along the west coast. Although the early coral reef workers were primarily interested in collecting animals, they also made some informal observations on the habitats of the species they collected. However, full ecological statements were rare — with the exception of those of Klunzinger (1872). Research centres have been established and active programmes continue on the Sudanese coast at Dungunab (since 1907), Sawakin and Bur Sudan (since 1963 when the first ecological investigations on Bur Sudan coral reefs occured (Mergner, 1967), and in 1974 and 1976 respectively the biological stations at Sawakin and Bur Sudan were established), on the Egyptian coast at Al-Ghardaga (since 1930), on the Sinai coast at Eilat (since 1968) and on the Jordan coast at Al-Aqabah (since 1972). New research centres continue to open, such as aong the east coast at Jeddah. The special interest of the ecology of Red Sea coral reefs is that it encompasses a broad range of problems: the influence of abiotic factors on the community structure, distribution and species diversity of corals and the

  14. THE CONDITION OF CORAL REEFS IN SOUTH FLORIDA (2000) USING CORAL DISEASE AND BLEACHING AS INDICATORS

    EPA Science Inventory

    The destruction for coral reef habitats is occurring at unprecedented levels. Coral disease epizootics in the Southwestern Atlantic have lead to coral replacement by turf algae, prompting a call to classify some coral species as endangered. In addition, a massive bleaching event ...

  15. River discharge reduces reef coral diversity in Palau.

    PubMed

    Golbuu, Yimnang; van Woesik, Robert; Richmond, Robert H; Harrison, Peter; Fabricius, Katharina E

    2011-04-01

    Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs. PMID:21251680

  16. Could some coral reefs become sponge reefs as our climate changes?

    PubMed

    Bell, James J; Davy, Simon K; Jones, Timothy; Taylor, Michael W; Webster, Nicole S

    2013-09-01

    Coral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end-Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge-dominated period far surpasses that of alternative stable-ecosystem or phase-shift states reported on modern day coral reefs and, as such, a shift to sponge-dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral- to sponge-dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature and pH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning. PMID:23553821

  17. Classification of remote Pacific coral reefs by physical oceanographic environment

    NASA Astrophysics Data System (ADS)

    Freeman, Lauren A.; Miller, Arthur J.; Norris, Richard D.; Smith, Jennifer E.

    2012-02-01

    The oceanographic environment is a key element in structuring coral reef ecosystems by setting the range of physical and chemical conditions in which coral reef-builders live. A cluster analysis of physical and chemical oceanographic data is used to classify coral habitats in the remote tropical and subtropical Pacific Ocean based on average temperature, temperature seasonal cycle, nutrient levels, salinity, aragonite saturation state, storm frequency, intense hurricane hits, and dissolved oxygen as well as temperature anomalies in degree heating weeks. The resulting seven geographic habitats are stable to perturbations in types of data used in the cluster analysis. Based on recent coral reef survey data in the area, the coral cover was related to the identified geographic regions. The habitats tend to be geographically clustered, and each is characterized by a unique combination of oceanographic conditions. Previous studies suggest coral reef habitats are associated with a uniform array of oceanographic conditions, while our results demonstrate that finer-scale variations in physical variables may control coral reef environments. The results better define the physical environment of remote coral reefs, forming a foundation for future work addressing physical habitat perturbation and anthropogenic impacts on reefs.

  18. Are coral reefs victims of their own past success?

    PubMed Central

    Renema, Willem; Pandolfi, John M.; Kiessling, Wolfgang; Bosellini, Francesca R.; Klaus, James S.; Korpanty, Chelsea; Rosen, Brian R.; Santodomingo, Nadiezhda; Wallace, Carden C.; Webster, Jody M.; Johnson, Kenneth G.

    2016-01-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs’ ability to provide ecosystem services. PMID:27152330

  19. Comparative studies on the status of Indonesian coral reefs

    NASA Astrophysics Data System (ADS)

    Soekarno, R.

    Coral reefs are of great economic importance for Indonesia. Unfortunately these resources are suffering from increasing human pressure. Several factors may cause the degradation of coral reefs, including the consequences of several human activities. Activities indirectly affecting the quality of the reefs are land-based activities such as deforestation, agriculture intensification, industrialization and domestic waste disposal. Direct use of the reefs, e.g. by coral mining, fish blasting and other fishing and collecting activities, is of greater and more widespread importance. Therefore, a rational management of the reef resources is urgently needed. Management is impossible without simple means of monitoring the status of reefs. One factor, living coral cover, has been determined for several years in many areas, including those studied during the Snellius-II Expedition. This allowed a comparative study of several different areas, which showed that coral cover is often very useful as an indication of the quality of reefs. It was found that the diversity of reef fishes is correlated with the condition of reefs as determined by the percentage cover of living coral.

  20. 76 FR 38618 - Proposed Information Collection; Comment Request; Coral Reef Conservation Program Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Coral... United States (U.S.) jurisdictions containing coral reefs. Specifically, NOAA is seeking information on... collection of social and economic data related to the communities affected by coral reef...

  1. History of coral reefs and sea level

    SciTech Connect

    Fairbridge, R.W.

    1985-01-01

    Charles Darwin proposed crustal subsidence for atoll growth, on the Beagle, between England and Brazil, before even seeing a coral reef, on the basis of charts and discussions with Captain Fitzroy. Relative change of sea level due to crustal movements was then well-accepted from evidence of raised strandlines in Scandinavia and Scotland and sunken forests in England. Darwin added global change of sea level (tectonoeustasy) caused by remote tectonic activity, as explained by Robert Chambers (1848, p. 319). The glacioeustasy concept was mooted soon afterwards, though the term itself came later. When Suess in 1888 proposed eustatic change, he had in mind Archimedian displacement of water by sediment or lava accumulation on the sea floor. Integrated ideas of reef development also came in the 20th century. The powerful arguments against Darwin were led by Murray with his solution hypothesis, which can not be judged as good observation but from a narrow viewpoint. The Royal Society reef borings at Funafuti were heroic but at the same time misread. Subsequently came isotopic geochemistry, absolute dating, the Milankovitch insolation theory, and plate tectonics. And much more field work. The result is an integrated reef growth theory.

  2. CHARACTERIZING CORAL CONDITION USING ESTIMATES OF THREE-DIMENSIONAL COLONY SURFACE AREA

    EPA Science Inventory

    Coral reefs provide shoreline protection, biological diversity, fishery harvets, and tourism, all values that stem from the physically-complex coral infrastructure. Stony corals (scleractinianss) construct and maintain the reef through deposition of calcium carbonate. Therefore...

  3. Do tabular corals constitute keystone structures for fishes on coral reefs?

    NASA Astrophysics Data System (ADS)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  4. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  5. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  6. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  7. Responses of algae, corals and fish to the reduction of macroalgae in fished and unfished patch reefs of Glovers Reef Atoll, Belize

    NASA Astrophysics Data System (ADS)

    McClanahan, T.; McField, M.; Huitric, M.; Bergman, K.; Sala, E.; Nyström, M.; Nordemar, I.; Elfwing, T.; Muthiga, N.

    2001-05-01

    Macroalgae were experimentally reduced by approximately 2.5 kg/m2 on eight similar-sized patch reefs of Glovers Reef Atoll, Belize, in September 1998. Four of these reefs were in a protected "no-take" zone and four were in a "general use" fishing zone. Eight adjacent reefs (four in each management zone) were also studied as unmanipulated controls to determine the interactive effect of algal reduction and fisheries management on algae, coral, fish, and rates of herbivory. The 16 reefs were sampled five times for 1 year after the manipulation. We found that the no-fishing zone had greater population densities for 13 of 30 species of fish, including four herbivorous species, but lower herbivory levels by sea urchins. However, there was lower stony coral cover and higher macroalgal cover in the "no-take" zone, both prior to and after the experiment. There were no significant effects of management on the percent cover of fleshy macroalgae. The algal reduction resulted in an increase in six fish species, including four herbivores and two which feed on invertebrates. One species, Lutjanus griseus, declined in experimental reefs. Macroalgal biomass quickly recovered from the reduction in both management areas within a few months, and by species-level community measures within 1 year, while stony coral was reduced in all treatments. Coral bleaching and Hurricane Mitch disturbed the site at the beginning of the study period and may explain the loss of stony coral and rapid increase in erect algae. We suggest that reducing macroalgae, as a technique to restore turf and encrusting coralline algae and stony corals, may work best after reefs have been fully protected from fishing for a period long enough to allow herbivorous fish to recover (i.e. >5 years). Further ecological studies on Glovers Reef are required to understand the shift from coral to algal dominance that has occurred on this reef in the last 25 years.

  8. Recovery of an isolated coral reef system following severe disturbance.

    PubMed

    Gilmour, James P; Smith, Luke D; Heyward, Andrew J; Baird, Andrew H; Pratchett, Morgan S

    2013-04-01

    Coral reef recovery from major disturbance is hypothesized to depend on the arrival of propagules from nearby undisturbed reefs. Therefore, reefs isolated by distance or current patterns are thought to be highly vulnerable to catastrophic disturbance. We found that on an isolated reef system in north Western Australia, coral cover increased from 9% to 44% within 12 years of a coral bleaching event, despite a 94% reduction in larval supply for 6 years after the bleaching. The initial increase in coral cover was the result of high rates of growth and survival of remnant colonies, followed by a rapid increase in juvenile recruitment as colonies matured. We show that isolated reefs can recover from major disturbance, and that the benefits of their isolation from chronic anthropogenic pressures can outweigh the costs of limited connectivity. PMID:23559247

  9. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Parrish, Frank A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states. PMID:23737951

  10. Unseen players shape benthic competition on coral reefs.

    PubMed

    Barott, Katie L; Rohwer, Forest L

    2012-12-01

    Recent work has shown that hydrophilic and hydrophobic organic matter (OM) from algae disrupts the function of the coral holobiont and promotes the invasion of opportunistic pathogens, leading to coral morbidity and mortality. Here we refer to these dynamics as the (3)DAM [dissolved organic matter (DOM), direct contact, disease, algae and microbes] model. There is considerable complexity in coral-algae interactions; turf algae and macroalgae promote heterotrophic microbial overgrowth of coral, macroalgae also directly harm the corals via hydrophobic OM, whereas crustose coralline algae generally encourage benign microbial communities. In addition, complex flow patterns transport OM and pathogens from algae to downstream corals, and direct algal contact enhances their delivery. These invisible players (microbes, viruses, and OM) are important drivers of coral reefs because they have non-linear responses to disturbances and are the first to change in response to perturbations, providing near real-time trajectories for a coral reef, a vital metric for conservation and restoration. PMID:22944243

  11. Revisiting the Cassandra syndrome; the changing climate of coral reef research

    NASA Astrophysics Data System (ADS)

    Maynard, J. A.; Baird, A. H.; Pratchett, M. S.

    2008-12-01

    Climate change will be with us for decades, even with significant reductions in emissions. Therefore, predictions made with respect to climate change impacts on coral reefs need to be highly defensible to ensure credibility over the timeframes this issue demands. If not, a Cassandra syndrome could be created whereby future more well-supported predictions of the fate of reefs are neither heard nor acted upon. Herein, popularising predictions based on essentially untested assumptions regarding reefs and their capacity to cope with future climate change is questioned. Some of these assumptions include that: all corals live close to their thermal limits, corals cannot adapt/acclimatize to rapid rates of change, physiological trade-offs resulting from ocean acidification will lead to reduced fecundity, and that climate-induced coral loss leads to widespread fisheries collapse. We argue that, while there is a place for popularising worst-case scenarios, the coral reef crisis has been effectively communicated and, though this communication should be sustained, efforts should now focus on addressing critical knowledge gaps.

  12. Mangroves enhance the biomass of coral reef fish communities in the Caribbean.

    PubMed

    Mumby, Peter J; Edwards, Alasdair J; Arias-González, J Ernesto; Lindeman, Kenyon C; Blackwell, Paul G; Gall, Angela; Gorczynska, Malgosia I; Harborne, Alastair R; Pescod, Claire L; Renken, Henk; Wabnitz, Colette C C; Llewellyn, Ghislane

    2004-02-01

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs. PMID:14765193

  13. Coral reef diseases in the Atlantic-Caribbean

    USGS Publications Warehouse

    Rogers, Caroline S.; Weil, Ernesto

    2010-01-01

    Coral reefs are the jewels of the tropical oceans. They boast the highest diversity of all marine ecosystems, aid in the development and protection of other important, productive coastal marine communities, and have provided millions of people with food, building materials, protection from storms, recreation and social stability over thousands of years, and more recently, income, active pharmacological compounds and other benefits. These communities have been deteriorating rapidly in recent times. The continuous emergence of coral reef diseases and increase in bleaching events caused in part by high water temperatures among other factors underscore the need for intensive assessments of their ecological status and causes and their impact on coral reefs.

  14. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    PubMed

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  15. Variability in reef connectivity in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.

    2015-12-01

    The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM

  16. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    PubMed Central

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  17. Phosphorus and nitrogen in coral reef sediments

    SciTech Connect

    Entsch, B.; Boto, K.G.; Sim, R.G.; Wellington, J.T.

    1983-05-01

    The occurrence of P and N in the sediments has been investigated on Davies Reef in the central region of the Great Barrier Reef Complex. Concentrations of inorganic P and N in the water were typical of nutrient-depleted tropical surface water. Carbonate sediments were found to contain a uniform pool of P (300 ppm by wt), principally in the form of inorganic phosphate. The interstitial water of the surface layer of sediment contained micromolar concentrations of inorganic P and even higher concentrations of inorganic N, principally as ammonium. These nutrient concentrations were considered too low to compete significantly with the uptake of available phasphate into algae. The presence of ammonium and soluble P was associated with anaerobic redox potentials in the sediments just below the surface. Soluble phosphorus was in equilibrium with a small, rapidly exchangeable fraction of the sedimentary pool of inorganic phosphate. Analyses of P in growing tips of Halimeda and corals (which supply more than half of reef sediments) suggested that the skeletons provide a biological mechanism for the replenishment of at least some of the sedimentary pool. Ratios of C:N:P for a selection of benthic algae were used as a preliminary indicator of thier N and P status.

  18. Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs

    NASA Astrophysics Data System (ADS)

    Brandl, S. J.; Hoey, A. S.; Bellwood, D. R.

    2014-06-01

    Processes occurring during the early life stages of corals are important for the replenishment of coral assemblages and the resilience of coral reefs. However, the factors influencing early life stages of corals are not well understood, and the role of micro-topographic complexity for habitat associations of juvenile corals is largely unexplored. This study investigated the microhabitat distribution patterns of early life stages of corals and a potential macroalgal competitor ( Turbinaria ornata) across two reef zones (reef crest and outer reef flat) on Lizard Island, Great Barrier Reef. In both reef zones, both corals and T. ornata were significantly more abundant in concealed microhabitats than in semi-concealed or open microhabitats (GLMM: P < 0.001). The prevalence of juvenile corals and T. ornata within concealed environments suggests that they might be effective refuges from grazing by herbivorous fishes. The density of juvenile corals was positively related, and density of T. ornata negatively related to the abundance of two groups of herbivorous fishes, pairing rabbitfishes, and surgeonfishes in the genus Zebrasoma (BEST ENV-BIO: r s = 0.72, P < 0.01), which feed in concealed microhabitats. This correlative evidence suggests that crevices may be important for early life stages of both coral and macroalgae, and that a specific suite of crevice-feeding fishes may influence benthic community dynamics in these microhabitats.

  19. Research Spotlight: New method to assess coral reef health

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    Coral reefs around the world are becoming stressed due to rising temperatures, ocean acidification, overfishing, and other factors. Measuring community level rates of photosynthesis, respiration, and biogenic calcification is essential to assessing the health of coral reef ecosystems because the balance between these processes determines the potential for reef growth and the export of carbon. Measurements of biological productivity have typically been made by tracing changes in dissolved oxygen in seawater as it passes over a reef. However, this is a labor-intensive and difficult method, requiring repeated measurements. (Geophysical Research Letters, doi:10.1029/2010GL046179, 2011)

  20. Depth Refuge and the Impacts of SCUBA Spearfishing on Coral Reef Fishes

    PubMed Central

    Lindfield, Steven J.; McIlwain, Jennifer L.; Harvey, Euan S.

    2014-01-01

    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries. PMID:24663400

  1. Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes.

    PubMed

    Lindfield, Steven J; McIlwain, Jennifer L; Harvey, Euan S

    2014-01-01

    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries. PMID:24663400

  2. Accretion history of mid-Holocene coral reefs from the southeast Florida continental reef tract, USA

    NASA Astrophysics Data System (ADS)

    Stathakopoulos, A.; Riegl, B. M.

    2015-03-01

    Sixteen new coral reef cores were collected to better understand the accretion history and composition of submerged relict reefs offshore of continental southeast (SE) Florida. Coral radiometric ages from three sites on the shallow inner reef indicate accretion initiated by 8,050 Cal BP and terminated by 5,640 Cal BP. The reef accreted up to 3.75 m of vertical framework with accretion rates that averaged 2.53 m kyr-1. The reef was composed of a nearly even mixture of Acropora palmata and massive corals. In many cases, cores show an upward transition from massives to A. palmata and may indicate local dominance by this species prior to reef demise. Quantitative macroscopic analyses of reef clasts for various taphonomic and diagenetic features did not correlate well with depth/environmental-related trends established in other studies. The mixed coral framestone reef lacks a classical Caribbean reef zonation and is best described as an immature reef and/or a series of fused patch reefs; a pattern that is evident in both cores and reef morphology. This is in stark contrast to the older and deeper outer reef of the SE Florida continental reef tract. Accretion of the outer reef lasted from 10,695-8,000 Cal BP and resulted in a larger and better developed structure that achieved a distinct reef zonation. The discrepancies in overall reef morphology and size as well as the causes of reef terminations remain elusive without further study, yet they likely point to different climatic/environmental conditions during their respective accretion histories.

  3. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    PubMed

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. PMID:22462739

  4. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  5. Ecological consequences of major hydrodynamic disturbances on coral reefs.

    PubMed

    Madin, Joshua S; Connolly, Sean R

    2006-11-23

    A recent tsunami and an apparent increase in the frequency of severe tropical storms underscore the need to understand and predict the ecological consequences of major hydrodynamic disturbances. Reef corals provide the habitat structure that sustains the high biodiversity of tropical reefs, and thus provide the foundation for the ecosystem goods and services that are critical to many tropical societies. Here we integrate predictions from oceanographic models with engineering theory, to predict the dislodgement of benthic reef corals during hydrodynamic disturbances. This generalizes earlier work, by incorporating colonies of any shape and by explicitly examining the effects of hydrodynamic gradients on coral assemblage structure. A field test shows that this model accurately predicts changes in the mechanical vulnerability of coral colonies, and thus their size and shape, with distance from the reef crest. This work provides a general framework for understanding and predicting the effects of hydrodynamic disturbances on coral reef communities; such disturbances have a major role in determining species zonation and coexistence on coral reefs, and are critical determinants of how coral assemblages will respond to changes in the frequency and intensity of tropical storms associated with a changing climate. PMID:17122855

  6. Low calcification in corals in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    Reef-building coral communities in the Great Barrier Reef—the world's largest coral reef—may now be calcifying at only about half the rate that they did during the 1970s, even though live coral cover may not have changed over the past 40 years, a new study finds. In recent decades, coral reefs around the world, home to large numbers of fish and other marine species, have been threatened by such human activities as pollution, overfishing, global warming, and ocean acidification; the latter affects ambient water chemistry and availability of calcium ions, which are critical for coral communities to calcify, build, and maintain reefs. Comparing data from reef surveys during the 1970s, 1980s, and 1990s with present-day (2009) measurements of calcification rates in One Tree Island, a coral reef covering 13 square kilometers in the southern part of the Great Barrier Reef, Silverman et al. show that the total calcification rates (the rate of calcification minus the rate of dissolution) in these coral communities have decreased by 44% over the past 40 years; the decrease appears to stem from a threefold reduction in calcification rates during nighttime.

  7. 76 FR 6403 - Western Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Limit (ACL) Specification Process B. Workshop on ACLs for Coral Reef Fisheries C. National ACL Science... Monitoring and Community Issues A. Report on Coral Reef Funded Projects B. Federal Programs and Projects i... Programs and Research Projects A. Department of Marine and Wildlife Resources i. Coral Reef Fisheries...

  8. Coral health on reefs near mining sites in New Caledonia.

    PubMed

    Heintz, T; Haapkylä, J; Gilbert, A

    2015-07-23

    Coral health data are poorly documented in New Caledonia, particularly from reefs chronically subject to anthropogenic and natural runoff. We investigated patterns of coral disease and non-disease conditions on reefs situated downstream of mining sites off the coast of New Caledonia. Surveys were conducted in March 2013 at 2 locations along the west coast and 2 locations along the east coast of the main island. Only 2 coral diseases were detected: growth anomalies and white syndrome. The most prevalent signs of compromised health at each location were sediment damage and algal overgrowth. These results support earlier findings that sedimentation and turbidity are major threats to in-shore reefs in New Caledonia. The Poritidae-dominated west coast locations were more subject to sediment damage, algal overgrowth and growth anomalies compared to the Acroporidae-dominated east coast locations. If growth form and resistance of coral hosts influence these results, differences in environmental conditions including hydro-dynamism between locations may also contribute to these outputs. Our results highlight the importance of combining coral health surveys with measurements of coral cover when assessing the health status of a reef, as reefs with high coral cover may have a high prevalence of corals demonstrating signs of compromised health. PMID:26203888

  9. ReefLink Database: A decision support tool for Linking Coral Reefs and Society Through Systems Thinking

    EPA Science Inventory

    Coral reefs provide the ecological foundation for productive and diverse fish and invertebrate communities that support multibillion dollar reef fishing and tourism industries. Yet reefs are threatened by growing coastal development, climate change, and over-exploitation. A key i...

  10. Coral-associated bacterial communities on Ningaloo Reef, Western Australia.

    PubMed

    Ceh, Janja; Van Keulen, Mike; Bourne, David G

    2011-01-01

    Coral-associated microbial communities from three coral species (Pocillopora damicornis, Acropora tenuis and Favites abdita) were examined every 3 months (January, March, June, October) over a period of 1 year on Ningaloo Reef, Western Australia. Tissue from corals was collected throughout the year and additional sampling of coral mucus and seawater samples was performed in January. Tissue samples were also obtained in October from P. damicornis coral colonies on Rottnest Island off Perth, 1200 km south of Ningaloo Reef, to provide comparisons between coral-microbial associates in different locations. The community structures of the coral-associated microorganisms were analysed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse microbial profiles among all the coral species sampled. Principal component analysis revealed that samples grouped according to time and not species, indicating that coral-microbial associations may be a result of environmental drivers such as oceanographic characteristics, benthic community structure and temperature. Tissue samples from P. damicornis at Rottnest Island revealed similarities in bacteria to the samples at Ningaloo Reef. This study highlights that coral-associated microbial communities are highly diverse; however, the complex interactions that determine the stability of these associations are not necessarily dependent on coral host specificity. PMID:21044100

  11. Dynamic Stability of Coral Reefs on the West Australian Coast

    PubMed Central

    Speed, Conrad W.; Babcock, Russ C.; Bancroft, Kevin P.; Beckley, Lynnath E.; Bellchambers, Lynda M.; Depczynski, Martial; Field, Stuart N.; Friedman, Kim J.; Gilmour, James P.; Hobbs, Jean-Paul A.; Kobryn, Halina T.; Moore, James A. Y.; Nutt, Christopher D.; Shedrawi, George; Thomson, Damian P.; Wilson, Shaun K.

    2013-01-01

    Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10–35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs. PMID:23922829

  12. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects

    PubMed Central

    Edwards, C. B.; Friedlander, A. M.; Green, A. G.; Hardt, M. J.; Sala, E.; Sweatman, H. P.; Williams, I. D.; Zgliczynski, B.; Sandin, S. A.; Smith, J. E.

    2014-01-01

    On coral reefs, herbivorous fishes consume benthic primary producers and regulate competition between fleshy algae and reef-building corals. Many of these species are also important fishery targets, yet little is known about their global status. Using a large-scale synthesis of peer-reviewed and unpublished data, we examine variability in abundance and biomass of herbivorous reef fishes and explore evidence for fishing impacts globally and within regions. We show that biomass is more than twice as high in locations not accessible to fisheries relative to fisheries-accessible locations. Although there are large biogeographic differences in total biomass, the effects of fishing are consistent in nearly all regions. We also show that exposure to fishing alters the structure of the herbivore community by disproportionately reducing biomass of large-bodied functional groups (scraper/excavators, browsers, grazer/detritivores), while increasing biomass and abundance of territorial algal-farming damselfishes (Pomacentridae). The browser functional group that consumes macroalgae and can help to prevent coral–macroalgal phase shifts appears to be most susceptible to fishing. This fishing down the herbivore guild probably alters the effectiveness of these fishes in regulating algal abundance on reefs. Finally, data from remote and unfished locations provide important baselines for setting management and conservation targets for this important group of fishes. PMID:24258715

  13. Coral Settlement on a Highly Disturbed Equatorial Reef System

    PubMed Central

    Bauman, Andrew G.; Guest, James R.; Dunshea, Glenn; Low, Jeffery; Todd, Peter A.; Steinberg, Peter D.

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of

  14. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    PubMed

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. PMID:26241935

  15. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    NASA Astrophysics Data System (ADS)

    Hochberg, E. J.

    2015-12-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  16. Coral reef baselines: how much macroalgae is natural?

    PubMed

    Bruno, John F; Precht, William F; Vroom, Peter S; Aronson, Richard B

    2014-03-15

    Identifying the baseline or natural state of an ecosystem is a critical step in effective conservation and restoration. Like most marine ecosystems, coral reefs are being degraded by human activities: corals and fish have declined in abundance and seaweeds, or macroalgae, have become more prevalent. The challenge for resource managers is to reverse these trends, but by how much? Based on surveys of Caribbean reefs in the 1970s, some reef scientists believe that the average cover of seaweed was very low in the natural state: perhaps less than 3%. On the other hand, evidence from remote Pacific reefs, ecological theory, and impacts of over-harvesting in other systems all suggest that, historically, macroalgal biomass may have been higher than assumed. Uncertainties about the natural state of coral reefs illustrate the difficulty of determining the baseline condition of even well studied systems. PMID:24486044

  17. Can we measure beauty? Computational evaluation of coral reef aesthetics

    PubMed Central

    Guibert, Marine; Foerschner, Anja; Co, Tim; Calhoun, Sandi; George, Emma; Hatay, Mark; Dinsdale, Elizabeth; Sandin, Stuart A.; Smith, Jennifer E.; Vermeij, Mark J.A.; Felts, Ben; Dustan, Phillip; Salamon, Peter; Rohwer, Forest

    2015-01-01

    The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Specific coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and significantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but influenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost efficient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population. PMID:26587350

  18. Can we measure beauty? Computational evaluation of coral reef aesthetics.

    PubMed

    Haas, Andreas F; Guibert, Marine; Foerschner, Anja; Co, Tim; Calhoun, Sandi; George, Emma; Hatay, Mark; Dinsdale, Elizabeth; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Felts, Ben; Dustan, Phillip; Salamon, Peter; Rohwer, Forest

    2015-01-01

    The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Specific coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and significantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but influenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost efficient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population. PMID:26587350

  19. Effects of solar ultraviolet radiation on coral reef organisms.

    PubMed

    Banaszak, Anastazia T; Lesser, Michael P

    2009-09-01

    Organisms living in shallow-water tropical coral reef environments are exposed to high UVR irradiances due to the low solar zenith angles (the angle of the sun from the vertical), the natural thinness of the ozone layer over tropical latitudes, and the high transparency of the water column. The hypothesis that solar ultraviolet radiation (UVR, 290-400 nm) is an important factor that affects the biology and ecology of coral reef organisms dates only to about 1980. It has been previously suggested that increased levels of biologically effective ultraviolet B radiation (UVB, 290-320 nm), which is the waveband primarily affected by ozone depletion, would have relatively small effects on corals and coral reefs and that these effects might be observed as changes in the minimum depths of occurrence of important reef taxa such as corals. This conclusion was based on predictions of increases in UVR as well as its attenuation with depth using the available data on UVR irradiances, ozone levels, and optical properties of the water overlying coral reefs. Here, we review the experimental evidence demonstrating the direct and indirect effects of UVR, both UVB and ultraviolet A (UVA, 320-400 nm) on corals and other reef associated biota, with emphasis on those studies conducted since 1996. Additionally, we re-examine the predictions made in 1996 for the increase in UVB on reefs with currently available data, assess whether those predictions were reasonable, and look at what changes might occur on coral reefs in the future as the multiple effects (i.e. increased temperature, hypercapnia, and ocean acidification) of global climate change continue. PMID:19707616

  20. Forest conservation delivers highly variable coral reef conservation outcomes.

    PubMed

    Klein, Carissa J; Jupiter, Stacy D; Selig, Elizabeth R; Watts, Matthew E; Halpern, Benjamin S; Kamal, Muhammad; Roelfsema, Chris; Possingham, Hugh P

    2012-06-01

    Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land-sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land-sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8-58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land-sea planning. PMID:22827132

  1. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  2. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  3. Reef-Fidelity and Migration of Tiger Sharks, Galeocerdo cuvier, across the Coral Sea

    PubMed Central

    Werry, Jonathan M.; Planes, Serge; Berumen, Michael L.; Lee, Kate A.; Braun, Camrin D.; Clua, Eric

    2014-01-01

    Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark–human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a

  4. Coral Reefs on the Edge? Carbon Chemistry on Inshore Reefs of the Great Barrier Reef

    PubMed Central

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff. PMID:25295864

  5. Effects of cold stress and heat stress on coral fluorescence in reef-building corals

    PubMed Central

    Roth, Melissa S.; Deheyn, Dimitri D.

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals. PMID:23478289

  6. Caught in the middle: combined impacts of shark removal and coral loss on the fish communities of coral reefs.

    PubMed

    Ruppert, Jonathan L W; Travers, Michael J; Smith, Luke L; Fortin, Marie-Josée; Meekan, Mark G

    2013-01-01

    Due to human activities, marine and terrestrial ecosystems face a future where disturbances are predicted to occur at a frequency and severity unprecedented in the recent past. Of particular concern is the ability of systems to recover where multiple stressors act simultaneously. We examine this issue in the context of a coral reef ecosystem where increases in stressors, such as fisheries, benthic degradation, cyclones and coral bleaching, are occurring at global scales. By utilizing long-term (decadal) monitoring programs, we examined the combined effects of chronic (removal of sharks) and pulse (cyclones, bleaching) disturbances on the trophic structure of coral reef fishes at two isolated atoll systems off the coast of northwest Australia. We provide evidence consistent with the hypothesis that the loss of sharks can have an impact that propagates down the food chain, potentially contributing to mesopredator release and altering the numbers of primary consumers. Simultaneously, we show how the effects of bottom-up processes of bleaching and cyclones appear to propagate up the food chain through herbivores, planktivores and corallivores, but do not affect carnivores. Because their presence may promote the abundance of herbivores, the removal of sharks by fishing has implications for both natural and anthropogenic disturbances involving the loss of corals, as herbivores are critical to the progress and outcome of coral recovery. PMID:24058618

  7. Caught in the Middle: Combined Impacts of Shark Removal and Coral Loss on the Fish Communities of Coral Reefs

    PubMed Central

    Ruppert, Jonathan L. W.; Travers, Michael J.; Smith, Luke L.; Fortin, Marie-Josée; Meekan, Mark G.

    2013-01-01

    Due to human activities, marine and terrestrial ecosystems face a future where disturbances are predicted to occur at a frequency and severity unprecedented in the recent past. Of particular concern is the ability of systems to recover where multiple stressors act simultaneously. We examine this issue in the context of a coral reef ecosystem where increases in stressors, such as fisheries, benthic degradation, cyclones and coral bleaching, are occurring at global scales. By utilizing long-term (decadal) monitoring programs, we examined the combined effects of chronic (removal of sharks) and pulse (cyclones, bleaching) disturbances on the trophic structure of coral reef fishes at two isolated atoll systems off the coast of northwest Australia. We provide evidence consistent with the hypothesis that the loss of sharks can have an impact that propagates down the food chain, potentially contributing to mesopredator release and altering the numbers of primary consumers. Simultaneously, we show how the effects of bottom-up processes of bleaching and cyclones appear to propagate up the food chain through herbivores, planktivores and corallivores, but do not affect carnivores. Because their presence may promote the abundance of herbivores, the removal of sharks by fishing has implications for both natural and anthropogenic disturbances involving the loss of corals, as herbivores are critical to the progress and outcome of coral recovery. PMID:24058618

  8. The role of fringing coral reefs on beach morphodynamics

    NASA Astrophysics Data System (ADS)

    Ruiz de Alegria-Arzaburu, Amaia; Mariño-Tapia, Ismael; Enriquez, Cecilia; Silva, Rodolfo; González-Leija, Mariana

    2013-09-01

    This paper examines the degree of energy dissipation provided by a fringing coral reef, and its role on the morphodynamics of adjacent beaches in terms of volumetric sediment transport. Morphological data were collected from the microtidal Mexican Caribbean beaches of Puerto Morelos, fringed by a reef, and Cancun, without a reef, from September 2007 to May 2011. Being exposed to the same offshore wave conditions, the morphodynamics of the coral reef-fronted beach were compared with those of the adjacent beach without a coral reef. Spatio-temporal changes in beach morphology were determined applying empirical orthogonal functions (EOF) to the shorelines extracted from the topographic data, and it was concluded that Puerto Morelos was considerably less dynamic than Cancun. The longshore energy fluxes were larger in Cancun, and the subaerial morphological differences in both beaches and under the same offshore conditions demonstrated that Puerto Morelos was particularly stable under shore-normal easterly waves. A calibrated phase-averaged wave model was implemented to determine the amount of wave energy dissipation across the coral reef. For energetic shore-normal waves the model determined that the semi-emerged coral reef was capable of reducing up to 85% of the incident wave height. The reef-crest height controlled the amount of wave energy dissipation, and the distance between the reef-crest and the shore determined the vulnerability of the beach to morphological changes. Reef-crest degradation by 1 m resulted in a 10% increase in incoming wave energy, which resulted in 0.9 m3/h/m of sand being mobilised along the beaches closer to the reef.

  9. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands

    NASA Astrophysics Data System (ADS)

    Zgliczynski, B. J.; Williams, I. D.; Schroeder, R. E.; Nadon, M. O.; Richards, B. L.; Sandin, S. A.

    2013-09-01

    Widespread declines among many coral reef fisheries have led scientists and managers to become increasingly concerned over the extinction risk facing some species. To aid in assessing the extinction risks facing coral reef fishes, large-scale censuses of the abundance and distribution of individual species are critically important. We use fisheries-independent data collected as part of the NOAA Pacific Reef Assessment and Monitoring Program from 2000 to 2009 to describe the range and density across the US Pacific of coral reef fishes included on The International Union for the Conservation of Nature's (IUCN) 2011 Red List of Threatened Species. Forty-five species, including sharks, rays, groupers, humphead wrasse ( Cheilinus undulatus), and bumphead parrotfish ( Bolbometopon muricatum), included on the IUCN List, were recorded in the US Pacific Islands. Most species were generally rare in the US Pacific with the exception of a few species, principally small groupers and reef sharks. The greatest diversity and densities of IUCN-listed fishes were recorded at remote and uninhabited islands of the Pacific Remote Island Areas; in general, lower densities were observed at reefs of inhabited islands. Our findings complement IUCN assessment efforts, emphasize the efficacy of large-scale assessment and monitoring efforts in providing quantitative data on reef fish assemblages, and highlight the importance of protecting populations at remote and uninhabited islands where some species included on the IUCN Red List of Threatened Species can be observed in abundance.

  10. COLLABORATIVE GUIDE: A REEF MANAGER'S GUIDE TO CORAL BLEACHING

    EPA Science Inventory

    Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental...

  11. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  12. Estimating the willingness to pay to protect coral reefs from potential damage caused by climate change--The evidence from Taiwan.

    PubMed

    Tseng, William Wei-Chun; Hsu, Shu-Han; Chen, Chi-Chung

    2015-12-30

    Coral reefs constitute the most biologically productive and diverse ecosystem, and provide various goods and services including those related to fisheries, marine tourism, coastal protection, and medicine. However, they are sensitive to climate change and rising temperatures. Taiwan is located in the central part of the world's distribution of coral reefs and has about one third of the coral species in the world. This study estimates the welfare losses associated with the potential damage to coral reefs in Taiwan caused by climate change. The contingent valuation method adopted includes a pre-survey, a face-to-face formal survey, and photo illustrations used to obtain reliable data. Average annual personal willingness to pay is found to be around US$35.75 resulting in a total annual willingness to pay of around US$0.43 billion. These high values demonstrate that coral reefs in Taiwan deserve to be well preserved, which would require a dedicated agency and ocean reserves. PMID:26522161

  13. The 1991 1992 rapid ecological assessment of Palau's coral reefs

    NASA Astrophysics Data System (ADS)

    Maragos, J. E.; Cook, C. W.

    1995-11-01

    At the request of the Palau and US governments, a team of 30 scientists under the leadership of the Nature Conservancy completed a rapid ecological assessment (REA) of nearshore marine resources in Palau in 1992. The REA provided ecological input to Palau's ongoing master plan for economic development and identified 45 marine sites worthy of special protection. The REA relied on previous literature, 1992 aerial photography, interviews, and field observations. A combination of qualitative and quantitative techniques were used to assess stony corals, other reef invertebrates, reef and shore fishes, macroscopic algae, seagrasses, sea turtles and other marine organisms. The REA covered a variety of coral reef habitats including beaches, seagrass beds, fringing reefs, lagoons, passes, channels, reef holes, patch and pinnacle reefs, barrier reefs, atolls, submerged reefs, mangroves, and "rock" islands. Major stresses to Palau's coral reefs include sedimentation from soil erosion, overfishing, and damage from periodic storms and waves. Minor stresses include dredge-and fill activities, sewage pollution, anchor damage, tourism use, ship groundings, aquarium fish collecting, and minor crown-of-thorns ( Acanthaster) infestations.

  14. Macroalgal herbivory on recovering versus degrading coral reefs

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.

    2014-06-01

    Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change

  15. Competition between corals and algae on coral reefs: a review of evidence and mechanisms

    NASA Astrophysics Data System (ADS)

    McCook, L.; Jompa, J.; Diaz-Pulido, G.

    2001-05-01

    Despite widespread acceptance that competition between scleractinian corals and benthic algae is important to the structure of coral reef communities, there is little direct experimental evidence that corals and algae do compete, and very little data on the processes and causality of their interactions. Most available evidence is observational or correlative, with intrinsic risks of confounded causality. This paper reviews and categorises the available evidence, concluding that competition between corals and algae probably is widespread on coral reefs, but also that the interaction varies considerably. Widespread replacement of corals by algae may often indicate coral mortality due to external disturbances, rather than competitive overgrowth, but may lead to competitive inhibition of coral recruitment, with consequences for reef recovery. We list eight specific processes by which corals and algae may affect each other, and suggest life history properties that will influence which of these interactions are possible. We propose a matrix for algal effects on corals, which lists the subset of processes possible for each combination of coral life form and algal functional group. This table provides a preliminary framework for improved understanding and interpretation of coral-algal interactions.

  16. Status and trends of Caribbean coral reefs: 1970-2012

    USGS Publications Warehouse

    Jackson, Jeremy; Donovan, Mary; Cramer, Katie; Lam, Vivian

    2014-01-01

    This it the 9th status report since the Global Coral Reef Monitoring Network (GCRMN) was founded in 1995 was the data arm of the International Coral Reef Initiative (ICRI) to document the ecological condition or corral reefs, strengthen monitoring efforts, and link existing organizations and people working on reefs worldwide. The US Government provided the initial funding to help set up a global network of coral reef workers and has continued to provide core support. Since then, the series of reports have aimed to present the current status of coral reefs of the world or particular regions, the major threats to reefs and their consequences, and any initiative undertaken under the auspices of ICRI or other bodies to arrest or reverse the decline of coral reefs. IUCN assumed responsibility for hosting the global coordination of the GCRMN in 2010 under the scientific direction of Jeremy Jackson with the following objectives: 1. Document quantitatively the global status and trends for corals, macroalgae, sea urchins, and fishes based on available data from individual scientists as well as the peer reviewed scientific literature, monitoring programs, and report. 2. Bring together regional experts in a series of workshops to involve them in data compilation, analysis, and synthesis. 3. Integrate coral reef status and trends with independent environmental, management, and socioeconomic data to better understand the primary factors responsible for coral reef decline, the possible synergies among factors that may further magnify their impacts, and how these stresses may be more effectively alleviated. Work with GCRMN partners to establish simple and practical standardized protocols for future monitoring and assessment. Disseminate information and results to help guide member state policy and actions. The overarching objective is to understand why some reefs are much healthier than others, to identify what kinds of actions have been particularly beneficial or harmful, and to

  17. Mechanical vulnerability explains size-dependent mortality of reef corals

    PubMed Central

    Madin, Joshua S; Baird, Andrew H; Dornelas, Maria; Connolly, Sean R

    2014-01-01

    Understanding life history and demographic variation among species within communities is a central ecological goal. Mortality schedules are especially important in ecosystems where disturbance plays a major role in structuring communities, such as coral reefs. Here, we test whether a trait-based, mechanistic model of mechanical vulnerability in corals can explain mortality schedules. Specifically, we ask whether species that become increasingly vulnerable to hydrodynamic dislodgment as they grow have bathtub-shaped mortality curves, whereas species that remain mechanically stable have decreasing mortality rates with size, as predicted by classical life history theory for reef corals. We find that size-dependent mortality is highly consistent between species with the same growth form and that the shape of size-dependent mortality for each growth form can be explained by mechanical vulnerability. Our findings highlight the feasibility of predicting assemblage-scale mortality patterns on coral reefs with trait-based approaches. PMID:24894390

  18. Status of Caribbean coral reefs in seven countries in 1986.

    PubMed

    Wilkinson, Clive; Nowak, Madeleine; Miller, Ian; Baker, Valonna

    2013-05-15

    There are few long-term datasets available to make reliable statements about trends in cover and structure in many coral reefs around the world. We present 27year old summary data of the cover of corals and other biota on Caribbean and Western Atlantic coral reefs in 7 countries collected in late 1985 and early 1986. These data were collected to support research on sponge populations and show relatively low coral cover on many of these reefs with particularly low cover of Acropora spp. We present these summaries to encourage other researchers to compare with current conditions or repeat the surveys to show long-term trends; the raw data will be supplied on request. PMID:23602263

  19. Pulley reef: a deep photosynthetic coral reef on the West Florida Shelf, USA

    USGS Publications Warehouse

    Culter, J.K.; Ritchie, K.B.; Earle, S.A.; Guggenheim, D.E.; Halley, R.B.; Ciembronowicz, K.T.; Hine, A.C.; Jarrett, B.D.; Locker, S.D.; Jaap, W.C.

    2006-01-01

    Pulley Reef (24°50′N, 83°40′W) lies on a submerged late Pleistocene shoreline feature that formed during a sea-level stillstand from 13.8 to 14.5 ka (Jarrett et al. 2005). The reef is currently 60–75 m deep, exhibits 10–60% coral cover, and extends over approximately 160 km2 of the sea floor. Zooxanthellate corals are primarily Agaricia lamarcki, A. fragilis, Leptoseris cucullata, and less common Madracis formosa, M. pharensis, M. decactis, Montastraea cavernosa, Porites divaricata, Scolymia cubensis and Oculina tenella. Coralline algae are comparable in abundance to stony corals. Other macroalgae include Halimeda tuna, Dictyota divaricata, Lobophora variegata, Ventricatri ventricosa, Verdigelas pelas, and Kallymenia sp. Anadyomene menziesii is abundant. The reef provides a habitat for organisms typically observed at much shallower depths, and is the deepest known photosynthetic coral reef on the North America continental shelf (Fig. 1).

  20. Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Johns, K. A.; Osborne, K. O.; Logan, M.

    2014-09-01

    Changes in the relative abundances of coral taxa during recovery from disturbance may cause shifts in essential ecological processes on coral reefs. Coral cover can return to pre-disturbance levels (coral recovery) without the assemblage returning to its previous composition (i.e., without reassembly). The processes underlying such changes are not well understood due to a scarcity of long-term studies with sufficient taxonomic resolution. We assessed the trajectories and time frames for coral recovery and reassembly of coral communities following disturbances, using modeled trajectories based on data from a broad spatial and temporal monitoring program. We studied coral communities at six reefs that suffered substantial coral loss and subsequently regained at least 50 % of their pre-disturbance coral cover. Five of the six communities regained their coral cover and the rates were remarkably consistent, taking 7-10 years. Four of the six communities reassembled to their pre-disturbance composition in 8-13 years. The coral communities at three of the reefs both regained coral cover and reassembled ten years. The trajectories of two communities suggested that they were unlikely to reassemble and the remaining community did not regain pre-disturbance coral cover. The communities that regained coral cover and reassembled had high relative abundance of tabulate Acropora spp. Coral communities of this composition appear likely to persist in a regime of pulse disturbances at intervals of ten years or more. Communities that failed to either regain coral cover or reassemble were in near-shore locations and had high relative abundance of Porites spp. and soft corals. Under current disturbance regimes, these communities are unlikely to re-establish their pre-disturbance community composition.

  1. Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs

    PubMed Central

    Klein, Carissa J.; Ban, Natalie C.; Halpern, Benjamin S.; Beger, Maria; Game, Edward T.; Grantham, Hedley S.; Green, Alison; Klein, Travis J.; Kininmonth, Stuart; Treml, Eric; Wilson, Kerrie; Possingham, Hugh P.

    2010-01-01

    Background Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. Methodology/Principal Findings Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. Conclusions/Significance Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems. PMID:20814570

  2. Macroalgal terpenes function as allelopathic agents against reef corals

    PubMed Central

    Rasher, Douglas B.; Stout, E. Paige; Engel, Sebastian; Kubanek, Julia; Hay, Mark E.

    2011-01-01

    During recent decades, many tropical reefs have transitioned from coral to macroalgal dominance. These community shifts increase the frequency of algal–coral interactions and may suppress coral recovery following both anthropogenic and natural disturbance. However, the extent to which macroalgae damage corals directly, the mechanisms involved, and the species specificity of algal–coral interactions remain uncertain. Here, we conducted field experiments demonstrating that numerous macroalgae directly damage corals by transfer of hydrophobic allelochemicals present on algal surfaces. These hydrophobic compounds caused bleaching, decreased photosynthesis, and occasionally death of corals in 79% of the 24 interactions assayed (three corals and eight algae). Coral damage generally was limited to sites of algal contact, but algae were unaffected by contact with corals. Artificial mimics for shading and abrasion produced no impact on corals, and effects of hydrophobic surface extracts from macroalgae paralleled effects of whole algae; both findings suggest that local effects are generated by allelochemical rather than physical mechanisms. Rankings of macroalgae from most to least allelopathic were similar across the three coral genera tested. However, corals varied markedly in susceptibility to allelopathic algae, with globally declining corals such as Acropora more strongly affected. Bioassay-guided fractionation of extracts from two allelopathic algae led to identification of two loliolide derivatives from the red alga Galaxaura filamentosa and two acetylated diterpenes from the green alga Chlorodesmis fastigiata as potent allelochemicals. Our results highlight a newly demonstrated but potentially widespread competitive mechanism to help explain the lack of coral recovery on many present-day reefs. PMID:22006333

  3. Length-Based Assessment of Coral Reef Fish Populations in the Main and Northwestern Hawaiian Islands

    PubMed Central

    Nadon, Marc O.; Ault, Jerald S.; Williams, Ivor D.; Smith, Steven G.; DiNardo, Gerard T.

    2015-01-01

    The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable “average length in the exploited phase of the population (L¯)”, estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold. PMID:26267473

  4. Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian islands.

    PubMed

    Nadon, Marc O; Ault, Jerald S; Williams, Ivor D; Smith, Steven G; DiNardo, Gerard T

    2015-01-01

    The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable "average length in the exploited phase of the population ([Formula: see text])", estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold. PMID:26267473

  5. The condition of coral reefs in South Florida (2000) using Coral disease and bleaching as indicators.

    PubMed

    Santavy, Deborah L; Summers, J Kevin; Engle, Virginia D; Harwell, Linda C

    2005-01-01

    The destruction of coral reef habitats has occurred at unprecedented levels during the last three decades. Coral disease and bleaching in the Caribbean and South Florida have caused extensive coral mortality with limited recovery, often coral reefs are being replaced with turf algae. Acroporids were once dominant corals and have diminished to the state where they are being considered as endangered species. Our survey assessed the condition of reef corals throughout South Florida. A probability-based design produced unbiased estimates of the spatial extent of ecological condition, measured as the absence or presence and frequency or prevalence of coral diseases and bleaching intensity over large geographic regions. This approach allowed us to calculate a quantifiable level of uncertainty. Coral condition was estimated for 4100 hectares (ha) (or 41.0 km2) of coral reefs in South Florida, including reefs in the Florida Keys National Marine Sanctuary (FKNMS), New Grounds, Dry Tortugas National Park (DTNP), and Biscayne National Park (BNP). The absence or presence of coral disease, 'causal' coral bleaching, partial bleaching and coral paling were not good indicators of overall coral condition. It was more useful to report the prevalence of anomalies that indicated a compromised condition at both the population and community levels. For example, 79% of the area in South Florida had less than 6% of the coral colonies diseased, whereas only 2.2% (97.15 ha) of the sampled area had a maximum prevalence of 13% diseased coral colonies at any single location. The usefulness of 'causal bleaching' might be more important when considering the prevalence of each of the three different states at a single location. For example, paling was observed over the entire area, whereas bleaching and partial bleaching occurred at 19 and 41% of the area, respectively. An index for coral reef condition might integrate the prevalence and species affected by each bleaching state at individual

  6. 76 FR 66021 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Generic Annual Catch Limits...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...) to the Reef Fish Resources, Red Drum, Shrimp, and Coral and Coral Reefs Fishery Management Plans for..., shrimp, and coral and coral reefs of the Gulf of Mexico (Gulf) are managed under their respective FMPs... regulations necessary for the species. Similarly, the rule would remove octocorals from the Coral and...

  7. Punctuated Stratigraphic Appearance of Cold-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Eberli, G. P.; Correa, T.; Massaferro, J. L.

    2008-05-01

    Existing and new data acquired with an AUV document a high abundance of cold-water coral mounds in the bottom of the Straits of Florida (SoF). These mounds display a large variability of shapes and heights. The abundance and variability encountered in these and modern cold-water coral mounds elsewhere is in stark contrast to lack of reported ancient cold-water coral reefs. Furthermore, the stratigraphic distribution suggests that cold-water corals punctuate the stratigraphic record with times of bloom and times of near complete absence. In the Florida Bahamas region, for example, the stratigraphic distribution is non-uniform. Preliminary age dating of the modern coral mounds produce ages of a few hundred to 1300 years for corals at the surface of the mounds. Sub-bottom profiles and seismic data across the investigated mound fields reveal that the "modern" mounds root in Pleistocene strata but are absent in the Pliocene strata below. Cores taken during ODP Legs 101 and 166 in the SoF confirm the punctuated appearance as deep-water coral rubble was penetrated only in the Pleistocene and in the upper Oligocene strata. The vast occurrence of Oligocene cold-water coral mounds is also visible on a 2-D seismic line in the northern SoF and on a 3-D seismic survey in the southwestern portion of the SoF. In this latter data set a mid-Miocene and the base of Tertiary seismic horizon also image mounded features. These spikes in reef development indicate that environmental conditions were only occasionally favorable for reef growth. The punctuated appearance is surprising as the core and seismic data document continuous current activity since the late Miocene in the SoF. We speculate that the "modern" bloom of cold-water coral reefs in the Pleistocene coincides with the onset of the large barrier reef systems in the Australia and Belize.

  8. The changing dynamics of coral reef science in Arabia.

    PubMed

    Vaughan, Grace O; Burt, John A

    2016-04-30

    Six percent of the world's coral reefs occur around the Arabian Peninsula, providing a valuable ecological, economic and scientific resource for the nations bordering its shores. We provide the first region-wide assessment of the current status and historical trends in coral reef research, focusing on research in the Red Sea, Arabian Sea, and Arabian Gulf. In total, 633 regional reef publications have been produced since the 1930s, covering a wide variety of themes and taxa. Our results show a great deal of commonality in regional reef research, but also highlight important differences in research among the various seas as well as knowledge gaps that represent opportunities for future research. A regionally-integrated approach to future research is essential. There is a growing need for large-scale research to guide management of reefs and their stressors, as these operate at much larger scales than the national borders within which most research currently occurs. PMID:26621575

  9. Coral-algal phase shifts on coral reefs: Ecological and environmental aspects [review article

    NASA Astrophysics Data System (ADS)

    McManus, John W.; Polsenberg, Johanna F.

    2004-02-01

    This paper briefly reviews coral-algal phase shifts on coral reefs, with particular regard to summarizing the exogenous and endogenous factors in support of a proposed conceptual model, and to identifying critical information gaps. A phase shift occurs on a coral reef when the cover of a substrate by scleractinian corals is reduced in favor of macroalgal dominance, and resilience of the former condition is retarded because of ecological processes and/or environmental conditions. The change is often, but not always, associated with a perturbation such as coral bleaching, outbreaks of a coral-eating species, or storm damage. The new state is generally associated with some combination of reduced herbivory (from disease and/or fishing) and nutrient enrichment, although the relative importance of these factors is under debate and may vary among locations and even across single reefs. Disturbances that result in a state of generally low biotic three-dimensional structural complexity often precede a phase shift. Following such a disturbance, the system will pass to a state of higher biotic structural complexity, with either macroalgae or coral dominating. As the community progresses towards larger and more three-dimensionally complex corals or macroalgae, it exhibits greater resistance to shifting dominance from one state to the other. Studies of the phase-shift phenomena have been generally conducted at scales that are small relative to the sizes and inherent variability of whole coral reefs and systems of reefs. There is an urgent need for studies aimed at quantifying and simulating cause and effect aspects of the phase shift, including human-environment coupling, particularly in support of coral reef decision-making.

  10. Coral reef bleaching at Agatti Island of Lakshadweep atolls, India

    NASA Astrophysics Data System (ADS)

    Vinoth, Ramar; Gopi, Mohan; Kumar, Thipramalai Thankappanpillai Ajith; Thangaradjou, Thirunavukarassu; Balasubramanian, Thangavel

    2012-03-01

    A survey on coral bleaching was carried out at Agatti Island of Lakshadweep from May to June 2010. Elevated sea surface temperatures (SSTs) of the region exceeded the seasonal average and delayed the onset of monsoon, which triggered widespread bleaching of corals. The Agatti reefs showed an average of 73% bleached corals with apparent bleaching-related mortality of sea anemones (87%) and giant clams (83%). The SST increased up to 34 °C with an average maximum SST of 32.5 during the study °C period between May and June 2010. Coral reefs on the southern side of the island are fully or partially exposed to sun light during low tide in contrast to the other side. This suggests that the mortality is more likely due to the low tide exposure than exclusively due to the elevated SST. Observations indicated a clear increase in coral bleaching during April 2010, at levels higher than that in normal summer.

  11. Through bleaching and tsunami: Coral reef recovery in the Maldives.

    PubMed

    Morri, Carla; Montefalcone, Monica; Lasagna, Roberta; Gatti, Giulia; Rovere, Alessio; Parravicini, Valeriano; Baldelli, Giuseppe; Colantoni, Paolo; Bianchi, Carlo Nike

    2015-09-15

    Coral reefs are degrading worldwide, but little information exists on their previous conditions for most regions of the world. Since 1989, we have been studying the Maldives, collecting data before, during and after the bleaching and mass mortality event of 1998. As early as 1999, many newly settled colonies were recorded. Recruits shifted from a dominance of massive and encrusting corals in the early stages of recolonisation towards a dominance of Acropora and Pocillopora by 2009. Coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% by 2013. The 2004 tsunami had comparatively little effect. In 2014, the coral community was similar to that existing before the bleaching. According to descriptors and metrics adopted, recovery of Maldivian coral reefs took between 6 and 15years, or may even be considered unachieved, as there are species that had not come back yet. PMID:26228070

  12. Historical decline in coral reef growth after the Panama Canal.

    PubMed

    Guzman, Hector M; Cipriani, Roberto; Jackson, Jeremy B C

    2008-07-01

    The Panama Canal is near its vessel size and tonnage handling capacity, and Panamanians have decided to expand it. The expansion of the Canal may consider the historical long-lasting impacts on marine coastal habitats particularly on sensitive coral reefs. These potential impacts were discussed during the national referendum as were other equally important issues, such as its effects on forests, watersheds, and water supply. Coral growth rates provide a direct measure of coral fitness and past environmental conditions comparable to analyses of tree rings. We examined stable isotopes, metal geochemical tracers, and growth rates on a century-long (1880-1989) chronology based on 77 cores of the dominant reef-building coral Siderastrea siderea collected near the Caribbean entrance to the canal. Our results showed a gradual decline in coral growth unrelated to changes in sea surface temperature but linked to runoff and sedimentation to coastal areas resulting from the construction and operation of the Panama Canal. PMID:18828279

  13. Coral community response to bleaching on a highly disturbed reef

    PubMed Central

    Guest, J. R.; Low, J.; Tun, K.; Wilson, B.; Ng, C.; Raingeard, D.; Ulstrup, K. E.; Tanzil, J. T. I.; Todd, P. A.; Toh, T. C.; McDougald, D.; Chou, L. M.; Steinberg, P. D.

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  14. Coral community response to bleaching on a highly disturbed reef.

    PubMed

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  15. Connectivity, regime shifts and the resilience of coral reefs

    NASA Astrophysics Data System (ADS)

    Elmhirst, Toby; Connolly, Sean R.; Hughes, Terry P.

    2009-12-01

    Connectivity of larvae among metapopulations in open marine systems can be a double-edged sword, allowing for the colonization and replenishment of both desirable and undesirable elements of interacting species-rich assemblages. This article studies the effect of recruitment by coral and macroalgae on the resilience of grazed reef ecosystems. In particular, we focus on how larval connectivity affects regime shifts between alternative assemblages that are dominated either by corals or by macroalgae. Using a model with bistability dynamics, we show that recruitment of coral larvae erodes the resilience of a macroalgae-dominated ecosystem when grazing is high, but has negligible effect when grazing is low. Conversely, recruitment by macroalgae erodes the resilience of a coral-dominated ecosystem when grazing is low, leading to a regime shift to macroalgae. Thus, spillover of coral recruits from highly protected areas will not restore coral cover or prevent flips to macroalgae in the surrounding seascape if grazing levels in these areas are depleted, but may be pivotal for re-building coral populations if grazing is high. Fishing restrictions and the re-introduction of herbivores should therefore be a prime conservation objective for preventing undesirable regime shifts. Connectivity by some components of coral reef assemblages (e.g., macroalgae, pathogens, crown-of-thorns starfish) may be detrimental to sustaining reefs, especially where overfishing and other drivers have eroded their resilience, making them more vulnerable to a regime shift.

  16. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    PubMed

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to

  17. Assessing the sensitivity of coral reef condition indicators to local and global stressors with Bayesian networks

    EPA Science Inventory

    Coral reefs are highly valued ecosystems that are currently imperiled. Although the value of coral reefs to human societies is only just being investigated and better understood, for many local and global economies coral reefs are important providers of ecosystem services that su...

  18. CLIMATE CHANGE AND INTERACTING STRESSORS: IMPLICATIONS FOR CORAL REEF MANAGEMENT IN AMERICAN SAMOA (Final Report)

    EPA Science Inventory

    The purpose of this report is to provide the coral reef managers of American Samoa, as well as other coral reef managers in the Pacific region, with some management options to help enhance the capacity of local coral reefs to resist the negative effects of climate change.

  19. 76 FR 77779 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory....byers@noaa.gov . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a ]...

  20. 77 FR 12243 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Islands Region Coral Reef Ecosystems Permit Form AGENCY: National Oceanic and Atmospheric Administration... vessel to fish for Western Pacific coral reef ecosystem management unit species in the designated low-use... regulations; or (3) fishing for, taking, or retaining any Potentially Harvested Coral Reef Taxa in the...

  1. 76 FR 24050 - Coral Reef Restoration Plan, Final Programmatic Environmental Impact Statement, Biscayne National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... National Park Service Coral Reef Restoration Plan, Final Programmatic Environmental Impact Statement... Final Programmatic Environmental Impact Statement for the Coral Reef Restoration Plan, Biscayne National... Impact Statement for the Coral Reef Restoration Plan (Plan/FEIS) for Biscayne National Park, Florida....

  2. 77 FR 16211 - Availability of Seats for the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... Coral Reef Ecosystem Reserve Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS... the following vacant seats on the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve Advisory... . SUPPLEMENTARY INFORMATION: The NWHI Coral Reef Ecosystem Reserve is a marine protected area designed to...

  3. 76 FR 7579 - U.S. Coral Reef Task Force Public Meeting and Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... Fish and Wildlife Service U.S. Coral Reef Task Force Public Meeting and Public Comment AGENCY: Fish and... U.S. Fish and Wildlife Service (Service), announce a public business meeting of the U.S. Coral Reef...-mail: Andrew_Gude@fws.gov ); or Liza Johnson, U.S. Coral Reef Task Force Department of the...

  4. 77 FR 48504 - Proposed Information Collection; Comment Request; Economic Value of Puerto Rico's Coral Reef...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Value of Puerto Rico's Coral Reef Ecosystems for Recreation-Tourism AGENCY: National Oceanic and... values of Puerto Rico's coral reef ecosystems. Estimates will be made for all ecosystem services for the Guanica Bay Watershed and for recreation-tourism for all of Puerto Rico's coral reef ecosystems....

  5. 75 FR 47624 - U.S. Coral Reef Task Force Public Meeting and Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Fish and Wildlife Service U.S. Coral Reef Task Force Public Meeting and Public Comment AGENCY: Fish and... U.S. Fish and Wildlife Service (Service), announce a public meeting of the U.S. Coral Reef Task...: Andrew_Gude@fws.gov ); or Liza Johnson, U.S. Coral Reef Task Force Department of the Interior Liaison,...

  6. 77 FR 6786 - U.S. Coral Reef Task Force Public Meeting and Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... National Oceanic and Atmospheric Administration U.S. Coral Reef Task Force Public Meeting and Public..., Notice of public comment. SUMMARY: Notice is hereby given of a public meeting of the U.S. Coral Reef Task.... Coral Reef Task Force, provides a forum for coordinated planning and action among federal...

  7. 76 FR 52318 - U.S. Coral Reef Task Force Public Meeting and Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... National Oceanic and Atmospheric Administration U.S. Coral Reef Task Force Public Meeting and Public..., Notice of public comment. SUMMARY: Notice is hereby given of a public meeting of the U.S. Coral Reef Task... the U.S. Coral Reef Task Force, provides a forum for coordinated planning and action among...

  8. 77 FR 39724 - U.S. Coral Reef Task Force Public Meeting and Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Fish and Wildlife Service U.S. Coral Reef Task Force Public Meeting and Public Comment AGENCY: Fish and... U.S. Fish and Wildlife Service (Service), announce a public meeting of the U.S. Coral Reef Task... protect coral reef ecosystems. The Departments of Commerce and the Interior co-chair the USCRTF,...

  9. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    EPA Science Inventory

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  10. Quaternary raised coral-reef terraces on sumba island, indonesia.

    PubMed

    Pirazzoli, P A; Radtke, U; Hantoro, W S; Jouannic, C; Hoang, C T; Causse, C; Best, M B

    1991-06-28

    A spectacular sequence of coral-reef terraces (six steps broader than 500 meters and many minor substeps) is developed near Cape Laundi, Sumba Island, between an ancient patch reef 475 meters high and sea level. Several raised reefs have been dated with the electron spin resonance and the uranium-series dating methods. The uplift trend deduced from these reefs is 0.5 millimeter per year; most terraces, although polycyclic in origin, appear to correspond to specific interglacial stages, with the oldest terrace formed 1 million years ago. This puts them among the longest and most complete mid-Quaternary terrace sequences. PMID:17753260

  11. 50 CFR 665.160 - American Samoa precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false American Samoa precious coral fisheries. 665.160 Section 665.160 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... American Samoa Fisheries § 665.160 American Samoa precious coral fisheries....

  12. 50 CFR 665.160 - American Samoa precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false American Samoa precious coral fisheries. 665.160 Section 665.160 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... American Samoa Fisheries § 665.160 American Samoa precious coral fisheries....

  13. Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals

    NASA Astrophysics Data System (ADS)

    Little, Angela F.; van Oppen, Madeleine J. H.; Willis, Bette L.

    2004-06-01

    The relation between corals and their algal endosymbionts has been a key to the success of scleractinian (stony) corals as modern reef-builders, but little is known about early stages in the establishment of the symbiosis. Here, we show that initial uptake of zooxanthellae by juvenile corals during natural infection is nonspecific (a potentially adaptive trait); the association is flexible and characterized by a change in (dominant) zooxanthella strains over time; and growth rates of experimentally infected coral holobionts are partly contingent on the zooxanthella strain harbored, with clade C-infected juveniles growing two to three times as fast as those infected with clade D.

  14. Coral reef environmental science: truth versus the Cassandra syndrome

    NASA Astrophysics Data System (ADS)

    Grigg, Richard W.

    1992-12-01

    In 1970, coral reef science was warned that the crown-of-thorns starfish, Acanthaster planci, might cause the extinction of scleractinian corals in the Pacific Ocean. Now, 20 years later we can fortunately say that this alarm was almost certainly too severe. Many reefs were devastated by the starfish, but none are extinct, none have disappeared and many are in various stages of recovery. But now in the 1990's a new alarm is being sounded. This time the concern is over widespread destruction of coral reefs by elevated surface temperatures. Once again a few scientists have issued a dire warning that these events may represent a harbinger of ocean warming caused by the Greenhouse Effect. Has not Acanthaster taught coral reef science a lesson? The debate is far from over but this time the mood in general is not one of over-reaction. This time the Cassandras will be tested by the truth of careful experimentation, long-term monitoring and objective interpretation. Coral reef science appears to have come of age.

  15. Sewage pollution: mitigation is key for coral reef stewardship.

    PubMed

    Wear, Stephanie L; Thurber, Rebecca Vega

    2015-10-01

    Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage-based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef-focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution. PMID:25959987

  16. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    PubMed

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. PMID:27097927

  17. Measuring coral reef decline through meta-analyses

    PubMed Central

    Côté, I.M; Gill, J.A; Gardner, T.A; Watkinson, A.R

    2005-01-01

    Coral reef ecosystems are in decline worldwide, owing to a variety of anthropogenic and natural causes. One of the most obvious signals of reef degradation is a reduction in live coral cover. Past and current rates of loss of coral are known for many individual reefs; however, until recently, no large-scale estimate was available. In this paper, we show how meta-analysis can be used to integrate existing small-scale estimates of change in coral and macroalgal cover, derived from in situ surveys of reefs, to generate a robust assessment of long-term patterns of large-scale ecological change. Using a large dataset from Caribbean reefs, we examine the possible biases inherent in meta-analytical studies and the sensitivity of the method to patchiness in data availability. Despite the fact that our meta-analysis included studies that used a variety of sampling methods, the regional estimate of change in coral cover we obtained is similar to that generated by a standardized survey programme that was implemented in 1991 in the Caribbean. We argue that for habitat types that are regularly and reasonably well surveyed in the course of ecological or conservation research, meta-analysis offers a cost-effective and rapid method for generating robust estimates of past and current states. PMID:15814352

  18. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    PubMed

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs. PMID:22090385

  19. The importance of structural complexity in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Graham, N. A. J.; Nash, K. L.

    2013-06-01

    The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an

  20. Coral community change on a turbid-zone reef complex: developing baseline records for the central Great Barrier Reef's nearshore coral reefs

    NASA Astrophysics Data System (ADS)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle; Johnson, Kenneth

    2016-04-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. Coral reefs located within coastal inner-shelf zones are widely perceived to be most susceptible to declining water quality due to their proximity to modified river catchments. On the inner-shelf of Australia's Great Barrier Reef (GBR) the impacts and magnitude of declining water quality since European settlement (c. 1850 A.D.) still remain unclear. This relates to ongoing debates concerning the significance of increased sediment yields against the naturally high background sedimentary regimes and the paucity of long-term (>decadal) ecological datasets. To provide baseline records for interpreting coral community change within the turbid inner-shelf waters of the GBR, 21 cores were recovered from five nearshore reefs spanning an evolutionary spectrum of reef development. Discrete intervals pre- and post-dating European settlement, but deposited at equivalent water depths, were identified by radiocarbon dating, enabling the discrimination of extrinsic and intrinsic driven shifts within the coral palaeo-record. We report no discernible evidence of anthropogenically-driven disturbance on the coral community records at these sites. Instead, significant transitions in coral community assemblages relating to water depth and vertical reef accretion were observed. We suggest that these records may be used to contextualise observed contemporary ecological change within similar environments on the GBR.

  1. Diversity and stability of herbivorous fishes on coral reefs.

    PubMed

    Thibaut, Loic M; Connolly, Sean R; Sweatman, Hugh P A

    2012-04-01

    Biodiversity may provide insurance against ecosystem collapse by stabilizing assemblages that perform particular ecological functions (the "portfolio effect"). However, the extent to which this occurs in nature and the importance of different mechanisms that generate portfolio effects remain controversial. On coral reefs, herbivory helps maintain coral dominated states, so volatility in levels of herbivory has important implications for reef ecosystems. Here, we used an extensive time series of abundances on 35 reefs of the Great Barrier Reef of Australia to quantify the strength of the portfolio effect for herbivorous fishes. Then, we disentangled the contributions of two mechanisms that underlie it (compensatory interactions and differential responses to environmental fluctuations ["response diversity"]) by fitting a community-dynamic model that explicitly includes terms for both mechanisms. We found that portfolio effects operate strongly in herbivorous fishes, as shown by nearly independent fluctuations in abundances over time. Moreover, we found strong evidence for high response diversity, with nearly independent responses to environmental fluctuations. In contrast, we found little evidence that the portfolio effect in this system was enhanced by compensatory ecological interactions. Our results show that portfolio effects are driven principally by response diversity for herbivorous fishes on coral reefs. We conclude that portfolio effects can be very strong in nature and that, for coral reefs in particular, response diversity may help maintain herbivory above the threshold levels that trigger regime shifts. PMID:22690639

  2. The future of evolutionary diversity in reef corals

    PubMed Central

    Huang, Danwei; Roy, Kaustuv

    2015-01-01

    One-third of the world's reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures—phylogenetic diversity and phylogenetic species variability—we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs. PMID:25561671

  3. The future of evolutionary diversity in reef corals.

    PubMed

    Huang, Danwei; Roy, Kaustuv

    2015-02-19

    One-third of the world's reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures-phylogenetic diversity and phylogenetic species variability-we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs. PMID:25561671

  4. Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.

    PubMed

    Rowlands, Gwilym; Purkis, Sam; Riegl, Bernhard; Metsamaa, Liisa; Bruckner, Andrew; Renaud, Philip

    2012-06-01

    We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs. PMID:22480935

  5. Direct evaluation of macroalgal removal by herbivorous coral reef fishes

    NASA Astrophysics Data System (ADS)

    Mantyka, C. S.; Bellwood, D. R.

    2007-06-01

    Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.

  6. Climate-change refugia: shading reef corals by turbidity.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m(-2)  s(-1) , and predict that 16% of reef-coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. PMID:26695523

  7. 76 FR 63904 - Proposed Information Collection; Comment Request; Coral Reef Conservation Program Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Coral..., extension 150, or Jenny.Waddell@noaagov. SUPPLEMENTARY INFORMATION: I. Abstract The Coral Reef Conservation Act of 2000 (Act) was enacted to provide a framework for conserving coral reefs. The Coral...

  8. Growth study of branching coral Acropora formosa between natural reef habitats and in situ coral nurseries

    NASA Astrophysics Data System (ADS)

    Xin, Loke Hai; Hyde, Julian; Cob, Zaidi Che; Adzis, Kee Alfian Abdul

    2013-11-01

    Being a common reef building coral in Malaysian waters, growth of Acropora Formosa in natural reef habitat and coral nursery condition had been studied in aspects of extension growth, survival and proto-branch generation. The study sites took place at two separate islands with different environment conditions. In this study, A. formosa samples of natural reefs at Pangkor Island turbid waters recorded better growth in average extension rate (0.71 ±0.48 cm/month) and higher proto-branch generation rate (up to 52% after 6 months) than Tioman Island samples (0.38 ±0.34 cm/month, highest 17% after 6 months). However, Tioman Island natural reef samples maintained 100% survival throughout the study period. Then, branch fragments or nubbins of A. formosa were transplanted into two coral nursery sites at Tioman Island. Among these two coral nurseries, the Tekek site had better growth in all three aspects than Air Batang site. This was believed due to Tekek nursery had been setup with nubbins for more than 6 months before Air Batang nursery, thus the Tekek samples were conditioned long enough for growing in the coral nursery environment. The results of this study documented the growth of this particular coral species in two islands of Peninsular Malaysia, and demonstrated the potential application of A. Formosa for coral transplant, in situ nursery and active reef restoration.

  9. Alkalinity Enrichment Enhances Net Calcification of a Coral Reef Flat

    NASA Astrophysics Data System (ADS)

    Albright, R.; Caldeira, K.

    2015-12-01

    Ocean acidification is projected to shift reefs from a state of net accretion to one of net dissolution sometime this century. While retrospective studies show large-scale changes in coral calcification over the last several decades, it is not possible to unequivocally link these results to ocean acidification due to confounding factors of temperature and other environmental parameters. Here, we quantified the calcification response of a coral reef flat to alkalinity enrichment to test whether reef calcification increases when ocean chemistry is restored to near pre-industrial conditions. We used sodium hydroxide (NaOH) to increase the total alkalinity of seawater flowing over a reef flat, with the aim of increasing carbonate ion concentrations [CO32-] and the aragonite saturation state (Ωarag) to values that would have been attained under pre-industrial atmospheric pCO2 levels. We developed a dual tracer regression method to estimate alkalinity uptake (i.e., calcification) in response to alkalinity enrichment. This approach uses the change in ratios between a non-conservative tracer (alkalinity) and a conservative tracer (a non-reactive dye, Rhodamine WT) to assess the fraction of added alkalinity that is taken up by the reef as a result of an induced increase in calcification rate. Using this method, we estimate that an average of 17.3% ± 2.3% of the added alkalinity was taken up by the reef community. In providing results from the first seawater chemistry manipulation experiment performed on a natural coral reef community (without artificial confinement), we demonstrate that, upon increase of [CO32-] and Ωarag to near pre-industrial values, reef calcification increases. Thus, we conclude that, the impacts of ocean acidification are already being felt by coral reefs. This work is the culmination of years of work in the Caldeira lab at the Carnegie Institution for Science, involving many people including Jack Silverman, Kenny Schneider, and Jana Maclaren.

  10. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    ,000 individual deep-water lithoherms may occur on the Blake Plateau and Straits of Florida, perhaps exceeding the areal extent of all the shallow-water reefs of the southeastern U.S. Our research program has provided data on the status of knowledge concerning these deep-reef habitats to the South Atlantic Fishery Management Council (SAFMC). Currently pending is a proposal by the SAFMC for a deep- water coral Habitat Area of Particular Concern (HAPC) that would extend from North Carolina to south Florida (78,888 km2) to protect these diverse and irreplaceable resources from destructive fishing activities such as bottom trawling. Deep-water reefs worldwide have been severely impacted by bottom trawling, including the deep-water Oculina coral reefs off central eastern Florida, which are structurally similar to the Lophelia reefs. Over a 30-year period, up to 99% of unprotected portions of the Oculina reefs were destroyed by rock shrimp trawling, whereas reefs designated as the Oculina HAPC in 1984 were protected from trawling and long-lines and are still relatively healthy. Numerous fisheries may target the deep-water Lophelia reef habitat including royal red shrimp, golden crab, and various fin fish.

  11. High Macroalgal Cover and Low Coral Recruitment Undermines the Potential Resilience of the World's Southernmost Coral Reef Assemblages

    PubMed Central

    Hoey, Andrew S.; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32′S, 159°04′E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m−2), however, were 5–200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha−1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. PMID:21991366

  12. Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats

    PubMed Central

    Doropoulos, Christopher; Ward, Selina; Roff, George; González-Rivero, Manuel; Mumby, Peter J.

    2015-01-01

    Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation

  13. CORAL CONDITION: HOW TO FATHOM THE DECLINE OF CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Coral reefs have experienced unprecedented levels of bleaching, disease and mortality during the last three decades. The goal of EPA-ORD research is to identify the culpable stressors in different species, reefs and regions using integrated field and laboratory studies.

  14. Monitoring Growth of Hard Corals as Performance Indicators for Coral Reefs

    ERIC Educational Resources Information Center

    Crabbe, M. James; Karaviotis, Sarah; Smith, David J.

    2004-01-01

    Digital videophotography, computer image analysis and physical measurements have been used to monitor sedimentation rates, coral cover, genera richness, rugosity, and estimated recruitment dates of massive corals at three different sites in the Wakatobi Marine National Park, Indonesia, and on the reefs around Discovery Bay, Jamaica.…

  15. Marine protected areas increase resilience among coral reef communities.

    PubMed

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. PMID:27038889

  16. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    PubMed

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results. PMID:25708511

  17. Additive Partitioning of Coral Reef Fish Diversity across Hierarchical Spatial Scales throughout the Caribbean

    PubMed Central

    Francisco-Ramos, Vanessa; Arias-González, Jesús Ernesto

    2013-01-01

    There is an increasing need to examine regional patterns of diversity in coral-reef systems since their biodiversity is declining globally. In this sense, additive partitioning might be useful since it quantifies the contribution of alpha and beta to total diversity across different scales. We applied this approach using an unbalanced design across four hierarchical scales (80 sites, 22 subregions, six ecoregions, and the Caribbean basin). Reef-fish species were compiled from the Reef Environmental Education Foundation (REEF) database and distributions were confirmed with published data. Permutation tests were used to compare observed values to those expected by chance. The primary objective was to identify patterns of reef-fish diversity across multiple spatial scales under different scenarios, examining factors such as fisheries and demographic connectivity. Total diversity at the Caribbean scale was attributed to β-diversity (nearly 62% of the species), with the highest β-diversity at the site scale. α¯-diversity was higher than expected by chance in all scenarios and at all studied scales. This suggests that fish assemblages are more homogenous than expected, particularly at the ecoregion scale. Within each ecoregion, diversity was mainly attributed to alpha, except for the Southern ecoregion where there was a greater difference in species among sites. β-components were lower than expected in all ecoregions, indicating that fishes within each ecoregion are a subsample of the same species pool. The scenario involving the effects of fisheries showed a shift in dominance for β-diversity from regions to subregions, with no major changes to the diversity patterns. In contrast, demographic connectivity partially explained the diversity pattern. β-components were low within connectivity regions and higher than expected by chance when comparing between them. Our results highlight the importance of ecoregions as a spatial scale to conserve local and regional

  18. Additive partitioning of coral reef fish diversity across hierarchical spatial scales throughout the Caribbean.

    PubMed

    Francisco-Ramos, Vanessa; Arias-González, Jesús Ernesto

    2013-01-01

    There is an increasing need to examine regional patterns of diversity in coral-reef systems since their biodiversity is declining globally. In this sense, additive partitioning might be useful since it quantifies the contribution of alpha and beta to total diversity across different scales. We applied this approach using an unbalanced design across four hierarchical scales (80 sites, 22 subregions, six ecoregions, and the Caribbean basin). Reef-fish species were compiled from the Reef Environmental Education Foundation (REEF) database and distributions were confirmed with published data. Permutation tests were used to compare observed values to those expected by chance. The primary objective was to identify patterns of reef-fish diversity across multiple spatial scales under different scenarios, examining factors such as fisheries and demographic connectivity. Total diversity at the Caribbean scale was attributed to β-diversity (nearly 62% of the species), with the highest β-diversity at the site scale. [Formula: see text]-diversity was higher than expected by chance in all scenarios and at all studied scales. This suggests that fish assemblages are more homogenous than expected, particularly at the ecoregion scale. Within each ecoregion, diversity was mainly attributed to alpha, except for the Southern ecoregion where there was a greater difference in species among sites. β-components were lower than expected in all ecoregions, indicating that fishes within each ecoregion are a subsample of the same species pool. The scenario involving the effects of fisheries showed a shift in dominance for β-diversity from regions to subregions, with no major changes to the diversity patterns. In contrast, demographic connectivity partially explained the diversity pattern. β-components were low within connectivity regions and higher than expected by chance when comparing between them. Our results highlight the importance of ecoregions as a spatial scale to conserve local

  19. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae

    PubMed Central

    Barott, Katie L.; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L.; Vermeij, Mark J. A.; Smith, Jennifer E.; Rohwer, Forest L.

    2012-01-01

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral–CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs. PMID:22090385

  20. Associations among coral reef macroalgae influence feeding by herbivorous fishes

    NASA Astrophysics Data System (ADS)

    Loffler, Z.; Bellwood, D. R.; Hoey, A. S.

    2015-03-01

    Benthic macroalgae often occur in close association with other macroalgae, yet the implications of such associations on coral reefs are unclear. We selected three pairs of commonly associated macroalgae on inshore reefs of the Great Barrier Reef and exposed them, either independently or paired, to herbivore assemblages. Pairing the palatable alga Acanthophora with the calcified and chemically defended Galaxaura resulted in a 69 % reduction in the consumption of Acanthophora, but had no effect on the consumption of Galaxaura. The reduced consumption of Acanthophora was related to 53-85 % reductions in the feeding rates of two herbivorous fish species, Kyphosus vaigiensis and Siganus doliatus. Neither Acanthophora nor Sargassum were afforded protection when paired with the brown macroalga Turbinaria. Although limited to one of the three species pairings, such associations between algae may allow the ecological persistence of palatable species in the face of intense herbivory, enhancing macroalgal diversity on coral reefs.

  1. Fish-derived nutrient hotspots shape coral reef benthic communities.

    PubMed

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  2. Reversal of ocean acidification enhances net coral reef calcification.

    PubMed

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth. PMID:26909578

  3. Reversal of ocean acidification enhances net coral reef calcification

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; MacLaren, Jana K.; Mason, Benjamin M.; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L.; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-01

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32‑]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32‑], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  4. African dust and the demise of Caribbean Coral Reefs

    NASA Astrophysics Data System (ADS)

    Shinn, Eugene A.; Smith, Garriet W.; Prospero, Joseph M.; Betzer, Peter; Hayes, Marshall L.; Garrison, Virginia; Barber, Richard T.

    2000-10-01

    The vitality of Caribbean coral reefs has undergone a continual state of decline since the late 1970s, a period of time coincidental with large increases in transatlantic dust transport. It is proposed that the hundreds of millions of tons/year of soil dust that have been crossing the Atlantic during the last 25 years could be a significant contributor to coral reef decline and may be affecting other ecosystems. Benchmark events, such as near synchronous Caribbean-wide mortalities of acroporid corals and the urchin Diadema in 1983, and coral bleaching beginning in 1987, correlate with the years of maximum dust flux into the Caribbean. Besides crustal elements, in particular Fe, Si, and aluminosilicate clays, the dust can serve as a substrate for numerous species of viable spores, especially the soil fungus Aspergillus. Aspergillus sydowii, the cause of an ongoing Caribbean-wide seafan disease, has been cultured from Caribbean air samples and used to inoculate sea fans.

  5. African dust and the demise of Caribbean coral reefs

    USGS Publications Warehouse

    Shinn, E.A.; Smith, G.W.; Prospero, J.M.; Betzer, P.; Hayes, M.L.; Garrison, V.; Barber, R.T.

    2000-01-01

    The vitality of Caribbean coral reefs has undergone a continual state of decline since the late 1970s, a period of time coincidental with large increases in transatlantic dust transport. It is proposed that the hundreds of millions of tons/year of soil dust that have been crossing the Atlantic during the last 25 years could be a significant contributor to coral reef decline and may be affecting other ecosystems. Benchmark events, such as near synchronous Caribbean-wide mortalities of acroporid corals and the urchin Diadema in 1983, and coral bleaching beginning in 1987, correlate with the years of maximum dust flux into the Caribbean. Besides crustal elements, in particular Fe, Si, and aluminosilicate clays, the dust can serve as a substrate for numerous species of viable spores, especially the soil fungus Aspergillus. Aspergillus sydowii, the cause of an ongoing Caribbean-wide seafan disease, has been cultured from Caribbean air samples and used to inoculate sea fans.

  6. Contrasting responses of coral reef fauna and foraminiferal assemblages to human influence in La Parguera, Puerto Rico

    EPA Science Inventory

    Coral reef biota including stony corals, sponges, gorgonians, fish, benthic macroinvertebrates and foraminifera were surveyed in coastal waters near La Parguera, in southwestern Puerto Rico. The goal was to evaluate sensitivity of coral reef biological indicators to human distur...

  7. Calcium carbonate production, coral reef growth, and sea level change.

    PubMed

    Smith, S V; Kinsey, D W

    1976-11-26

    Shallow, seaward portions of modern coral reefs produce about 4 kilograms of calcium carbonate per square meter per year, and protected areas produce about 0.8 kilogram per square meter per year. The difference is probably largely a function of water motion. The more rapid rate, equivalent to a maximum vertical accretion of 3 to 5 millimeters per year, places an upper limit on the potential of modern coral reef communities to create a significant vertical structure on a rising sea. PMID:17748553

  8. Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    PubMed Central

    Kittinger, John N.; Pandolfi, John M.; Blodgett, Jonathan H.; Hunt, Terry L.; Jiang, Hong; Maly, Kepā; McClenachan, Loren E.; Schultz, Jennifer K.; Wilcox, Bruce A.

    2011-01-01

    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311

  9. Historical reconstruction reveals recovery in Hawaiian coral reefs.

    PubMed

    Kittinger, John N; Pandolfi, John M; Blodgett, Jonathan H; Hunt, Terry L; Jiang, Hong; Maly, Kepā; McClenachan, Loren E; Schultz, Jennifer K; Wilcox, Bruce A

    2011-01-01

    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (~AD 1400-1820) and an ongoing recovery in the NWHI (~AD 1950-2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>10(3) km(2)). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311

  10. The reality, use and potential for cryopreservation of coral reefs.

    PubMed

    Hagedorn, Mary; Spindler, Rebecca

    2014-01-01

    Throughout the world coral reefs are being degraded at unprecedented rates. Locally, reefs are damaged by pollution, nutrient overload and sedimentation from out-dated land-use, fishing and mining practices. Globally, increased greenhouse gases are warming and acidifying oceans, making corals more susceptible to stress, bleaching and newly emerging diseases. The coupling of climate change impacts and local anthropogenic stressors has caused a widespread and well-recognized reef crisis. Although in situ conservation practices, such as the establishment and enforcement of marine protected areas, reduce these stressors and may help slow the loss of genetic diversity on reefs, the global effects of climate change will continue to cause population declines. Gamete cryopreservation has already acted as an effective insurance policy to maintain the genetic diversity of many wildlife species, but has only just begun to be explored for coral. Already we have had a great deal of success with cryopreserving sperm and larval cells from a variety of coral species. Building on this success, we have now begun to establish genetic banks using frozen samples, to help offset these threats to the Great Barrier Reef and other areas. PMID:25091915

  11. Coral reef recovery in Florida and the Persian Gulf

    USGS Publications Warehouse

    Shinn, Eugene A.

    1976-01-01

    Long-term observations and study of coral reef destruction by hurricanes in the Florida Keys show, surprisingly, that although corals are devastated on a grand scale during storms, recovery is rapid. Recovery occurs because of the widespread scattering of live fragments, many of which become growth sites of new colonies. Reef recovery from death by chilling in the Persian Gulf was well under way when last observed, but it is not yet known if the recovery rate was as rapid as recovery from the storm destruction in Florida. Recovery from death by chilling requires settlement of transported coral larvae and a substrate suitable for larval attachment. Such resettlement is subject to the effects of currents, predators, pollution, and competition for substrate. A growth rate of 10 cm per year combined with geometrical progression of branch formation accounts for rapid recovery. Although calculated coral proliferation seems unusually high, it has been confirmed by serial underwater photographs spanning ten years. More precise measurements of growth and branching are needed, along with growth data for other common reef-building corals. Such data would be useful for predicting standing crop of a restocked or transplanted reef.

  12. Advancing Ocean Monitoring Near Coral Reefs

    NASA Astrophysics Data System (ADS)

    Heron, Scott F.; Steinberg, Craig R.; Heron, Mal L.; Mantovanelli, Alessandra; Jaffrés, Jasmine B. D.; Skirving, William J.; McAllister, Felicity; Rigby, Paul; Wisdom, Daniel; Bainbridge, Scott

    2010-10-01

    Corals, the foundation of tropical marine ecosystems, exist in a symbiotic relationship with zooxanthellae (algae). The corals obtain much of their energy by consuming compounds derived from photosynthesis by these microorganisms; the microorganisms, which reside in the coral tissue, in turn use waste products from the corals to sustain photosynthesis. This symbiosis is very sensitive to subtle changes in environment, such as increased ocean acidity, temperature, and light. When unduly stressed, the colorful algae are expelled from the corals, causing the corals to “bleach” and potentially die [e.g., van Oppen and Lough, 2009].

  13. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  14. The preparation of the rice coral Montipora capitata nubbins for application in coral-reef ecotoxicology.

    PubMed

    Vijayavel, K; Richmond, R H

    2012-04-01

    Securing adequate and appropriate source material for coral-reef ecotoxicology studies is a significant impediment to conducting various experiments supporting the goal of conserving coral-reef ecosystems. Collecting colonies from wild stocks may be counter to protecting coral reef populations. To address this issue the rice coral Montipora capitata was used to generate sufficient genetically identical nubbins for research purposes. Growth and survival rates of these laboratory-prepared M. capitata nubbins were studied over a period of 90 days. The resulting data support the conclusion that the laboratory-prepared M. capitata nubbins showed successful growth and survival rates and are the best solution to solve the source material issue for lab experimentation. This paper describes the laboratory method used for the preparation and maintenance of these M. capitata nubbins and discusses the benefits and difficulties of using these nubbins in ecotoxicity studies. PMID:22218977

  15. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    PubMed

    Dell, Claire L A; Longo, Guilherme O; Hay, Mark E

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds. PMID:27186979

  16. Assessing environmental correlates of fish movement on a coral reef

    NASA Astrophysics Data System (ADS)

    Currey, Leanne M.; Heupel, Michelle R.; Simpfendorfer, Colin A.; Williams, Ashley J.

    2015-12-01

    Variation in dispersal and movement patterns of coral reef fishes is likely linked to changes in environmental conditions. Monitoring in situ environmental parameters on coral reefs in conjunction with the movements of fishes can help explain the relationship between exploited populations and their environment. Sixty adult Lethrinus miniatus were acoustically tagged and monitored along a coral reef slope for up to 1 yr. Individuals occurred more often on the reef slope during days of cooler temperatures, suggesting a thermal tolerance threshold may exist. Results indicate that individuals responded to elevated temperatures by moving away from the reef slope to deeper adjacent habitats, thus shifting their position in the water column to remain at a preferred temperature. Space use within the water column (vertical activity space) was not influenced by environmental parameters or fish size, but this result was possibly influenced by use of deeper habitat outside the acoustic array that was not monitored. With elevation of ocean temperature, L. miniatus may need to adapt to warmer waters or disperse into cooler habitats, by either shifting their distribution deeper or towards higher latitudes. Identifying key environmental drivers that affect the distribution of reef fishes is important, and may allow managers to predict the effect of these changes on exploited species.

  17. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs

    PubMed Central

    Dell, Claire L. A.; Longo, Guilherme O.

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds. PMID:27186979

  18. Modern coral reefs of western Atlantic: new geological perspective

    SciTech Connect

    MacIntyre, I.G.

    1988-11-01

    Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during the postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.

  19. Isochron dating of diagenetically altered fossil reef corals

    NASA Astrophysics Data System (ADS)

    Scholz, D.; Mangini, A.; Felis, T.

    2003-04-01

    To reconstruct global sea-level changes in the past mainly U-series dating of exposed fossil reef corals is used. With the development of the TIMS technology, on the one hand the analytical precision improved by several orders of magnitude, on the other hand another problem appeared: Up to 90% of the corals show initial (234U/238U) activity ratios (denoted as δ234U(T)) significantly higher than the ratio measured on modern day seawater and recent corals. This is ascribed to post depositional diagenesis and clear evidence for open system behavior. Therefore the established opinion is that the accuracy of U-series ages of fossil corals is more limited due to isotopic anomalies than to analytical precision. Several workers have tried to identify disturbed corals by mineralogical characteristics, but the isotopic systems seem to be more sensitive to diagenetic change than any other geochemical parameter. It has also been tried to find correlations between the δ234U(T) values and other isotopic parameters and various scenarios that produce elevated δ234U(T) values have been developed, but until now all those models have neither been validated nor disproved. For this reason only U-series ages of corals with δ234U(T) lying within a specific range of 149 ± 4 ppm or concordant 231Pa-ages are assumed to be strictly reliable, but even when corals as pristine as possible are sampled, only a few meet this criterion. We developed a model where elevated δ234U(T) values are explained by exchange of dissolved uranium between the coral and the waters percolating through the reef. By varying degree of alteration in different pieces of one and the same coral the model produces characteristic isochrones and enables to calculate an isochron age that is in accordance with the true age of the coral. The model was verified with six Porites corals collected from two fossil reef terraces at Aqaba, Jordan (northern Red Sea). These corals show a high degree of alteration and TIMS

  20. Measuring the coral reef distribution of Kuroshima Island by satellite remote sensing

    SciTech Connect

    Miyazaki, Tadakuni; Harashima, Akira; Nakatani, Yukihiro

    1995-12-31

    Coral reefs are the major sites for photo-synthesis and calcification in the present ocean. Estimating the production rate of calcification by the coral reefs or investigating the sink/source mechanism of CO{sub 2} by the coral reefs in the ocean, the distribution of the coral reefs in the world wide must be identified. Measuring the spectral signatures of underwater coral reefs and mapping of coral reefs by satellite remote sensing are described. The spectral signatures of different species of the coral reefs were measured using a spectroradiometer at off Kuroshima Island, Okinawa, Japan and investigated spectral difference between different species of the coral reefs. As well as the field experiments, laboratory experiments for measuring the spectral signatures of 9 different species of coral reefs were carried out with the same spectroradiometer. The spectral reflectance of each coral reef showed a significant result that a narrow absorption band exists in the spectral region between 660 and 680 nm, and very strong spectral reflectance from about 700 nm towards the longer wavelength range. On the other hand, absorption and the high reflectance region were not observed from the bottom sands or bare rocks underwater. These experiments suggested that there is a significant spectral difference between coral reefs and bottom sands or bare rocks and so the best spectral range for separating the coral reefs from other underwater objects in the ocean would be between 700 and 800 nm. As well as the basic spectral measurement either in the field or at the laboratory, SPOT satellite imageries were used to classify the underwater coral reefs. Classification methods used here were the principal component analysis, and the maximum likelihood. Finally, the evaluation of classification method for extracting the coral reefs was introduced.

  1. Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Erler, Dirk; Tait, Douglas; Eyre, Bradley D.

    2010-12-01

    Coral reefs are characterized by high gross productivity in spite of low nutrient concentrations. This apparent paradox may be partially reconciled if seawater recirculation in permeable sediments over large (meters) and long (hours to days) scales is an important source of recycled nitrogen and phosphorus to coral reefs. In this paper we use radon (222Rn, a natural tracer) to quantify tidally driven pore water (or groundwater) exchange between (1) an offshore coral cay island and its fringing reef lagoon and (2) a reef lagoon and the surrounding ocean. As seawater infiltrates Heron Island at high tide, it acquires a radon signal that can be detected when pore waters emerge from carbonate sands at low tide. A nonsteady state model indicated that vertical pore water upwelling rates (or saline submarine groundwater discharge) were >40 cm/d within the reef lagoon and >100 cm/d outside the lagoon at low tide. Within the lagoon, tidal pumping and temperature-driven convection were the main driving forces of pore water advection. At low tide, the reef lagoon level is about 1 m higher than the surrounding ocean. As a result, a steep hydraulic gradient develops at the reef edge, driving unidirectional filtration through the reef framework. Groundwaters were highly enriched in nitrate (average of 530 μmol, likely influenced by bird guano) relative to lagoon waters (1.9 μmol). Rough but conservative estimates indicated that groundwater-derived nitrate fluxes (7.9 mmol/m2/d) can replace the entire lagoon nitrate inventory every <19 days. We speculate that as offshore coral islands "breath" (inhale seawater at high tide and exhale groundwater at low tide), they release nutrients that lead to sustained productivity within coral reefs.

  2. Rapid Smothering of Coral Reef Organisms by Muddy Marine Snow

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Wolanski, E.

    2000-01-01

    Estuarine mud, when resuspended in nutrient-rich near-shore water, aggregates to marine snow, and within minutes to hours can exert detrimental or even lethal effects on small coral reef organisms. In a pilot study, estuarine mud was suspended in near-shore and off-shore waters of the Great Barrier Reef to a final concentration of 170 mg l -1. The short-term responses of a coral ( Acropora sp.) and coral-inhabiting barnacles (subfamily Pyrgomatidae), exposed to either near-shore or off-shore water, were microscopically observed and video recorded. In the off-shore water treatment, flocculation was minor, and aggregate sizes were c. 50 μm. The organisms were able to clean themselves from these small settling aggregates at low siltation (<0·5 mg cm -2), and struggled and produced mucus only at high siltation (4-5 mg cm -2). In contrast, in near-shore, nutrient-enriched waters, the suspended mud aggregated into large sticky flocs of marine snow (200-2000 μm diameter). The organisms responded to a thin coat of deposited flocs with vigorous cleaning by cirri and tentacle beating. After 5 min struggle, the barnacle stopped moving, calanoid copepods were entangled in the aggregates, and thick layers of mucus were exuded by the coral polyps. Both barnacle and copepods died after <1 h exposure; a short time compared with natural occurrences of marine snow deposition on coral reefs. Enhanced nutrient concentrations are known to contribute to enhance biologically mediated flocculation. This pilot study suggests that the concentration of suspended mud, and extent of stickiness and flocculation, can synergistically affect reef benthos organisms after short exposure. The enclosed macro video recordings clearly visualize these effects, and help convey the important implications for managers: that inshore reefs of the Great Barrier Reef cannot be sustainably managed without managing the adjacent land.

  3. Taphonomy of coral reefs from Southern Lagoon of Belize

    SciTech Connect

    Westphall, M.J.; Ginsburg, R.N.

    1985-02-01

    The Southern Lagoon of the Belize barrier complex, an area of some 600 km/sup 2/, contains a tremendous number of lagoon reefs, which range in size from patches several meters across to rhomboidal-shaped structures several kilometers in their long dimension. These lagoon reefs are remarkable because they have Holocene sediment accumulations in excess of 13 m consisting almost entirely of coral debris and lime mud and sand, and rise up to 30 m above the surrounding lagoon floor with steeply sloping sides (50-80/sup 0/), yet are totally uncemented. The reef-building biota and their corresponding deposits were studied at a representative reef, the rhomboidal complex of Channel Cay. As with many of the reefs in this area, the steeply sloping flanks of Channel Cay are covered mainly by the branched staghorn coral Acropora cervicornis and ribbonlike and platy growth of Agaricia spp. The living corals are not cemented to the substrate, but are merely intergrown. Fragmented pieces of corals accumulate with an open framework below the living community; this open framework is subsequently infilled by lime muds and sands produced mainly from bioerosion. Results from probing and coring suggest that the bafflestone fabric of coral debris and sediment extends at least 13 m into the subsurface. Radiocarbon-age estimates indicate these impressive piles of coral rubble and sediment have accumulated in the past 9000 yr (giving a minimum accumulation rate of 1.4 m/1000 yr) and illustrate the potential for significant carbonate buildups without the need for early lithification.

  4. 77 FR 21955 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    .... The final rule for Amendment 5 to the FMP for the Shrimp Fishery of the Gulf of Mexico (56 FR 22827..., Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Red Snapper Management... management measures described in a regulatory amendment to the Fishery Management Plan for the Reef...

  5. Linking habitat mosaics and connectivity in a coral reef seascape.

    PubMed

    McMahon, Kelton W; Berumen, Michael L; Thorrold, Simon R

    2012-09-18

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes. PMID:22949665

  6. Linking habitat mosaics and connectivity in a coral reef seascape

    PubMed Central

    McMahon, Kelton W.; Berumen, Michael L.; Thorrold, Simon R.

    2012-01-01

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes. PMID:22949665

  7. Catastrophe and the life span of coral reefs.

    PubMed

    Aronson, Richard B; Precht, William F; Macintyre, Ian G; Toth, Lauren T

    2012-02-01

    A strong earthquake in the western Caribbean in 2009 had a catastrophic impact on uncemented, unconsolidated coral reefs in the central sector of the shelf lagoon of the Belizean barrier reef. In a set of 21 reef sites that had been observed prior to the earthquake, the benthic assemblages of 10 were eradicated, and one was partially damaged, by avalanching of their slopes. Ecological dynamics that had played out over the previous 23 years, including the mass mortalities of two sequentially dominant coral species and a large increase in the cover of an encrusting sponge, were instantaneously rendered moot in the areas of catastrophic reef-slope failure. Because these prior dynamics also determined the benthic composition and resilience of adjacent sections of reef that remained intact, the history of disturbance prior to the earthquake will strongly influence decadal-scale recovery in the failed areas. Geological analysis of the reef framework yielded a minimum return time of 2000-4000 years for this type of high-amplitude event. Anthropogenic degradation of ecosystems must be viewed against the backdrop of long-period, natural catastrophes, such as the impact of strong earthquakes on uncemented, lagoonal reefs. PMID:22624312

  8. Key herbivores reveal limited functional redundancy on inshore coral reefs

    NASA Astrophysics Data System (ADS)

    Johansson, C. L.; van de Leemput, I. A.; Depczynski, M.; Hoey, A. S.; Bellwood, D. R.

    2013-12-01

    Marine ecosystems are facing increasing exposure to a range of stressors and declines in critical ecological functions. The likelihood of further loss of functions and resilience is dependent, in part, on the extent of functional redundancy (i.e. the capacity of one species to functionally compensate for the loss of another species) within critical functional groups. We used multiple metrics; species richness, generic richness, abundance and reserve capacity (i.e. the relative number of individuals available to fulfil the function if the numerically dominant species is lost), as indicators to assess the potential functional redundancy of four functional groups of herbivorous fishes (browsers, excavators, grazers and scrapers) in two of the worlds' most intact coral reef ecosystems: the Great Barrier Reef (GBR) and Ningaloo Reef in Western Australia. We found marked variations in potential redundancy among habitats within each reef system and functional groups. Despite negligible fishing of herbivorous fishes, coastal habitats in both reef systems had lower functional redundancy compared to offshore locations for all herbivorous fishes collectively and the four functional groups independently. This pattern was consistent in all four indicators of redundancy. The potential vulnerability of these coastal habitats is highlighted by recent shifts from coral to macroalgal dominance on several coastal reefs of the GBR. Our approach provides a simple yet revealing evaluation of potential functional redundancy. Moreover, it highlights the spatial variation in potential vulnerability and resilience of reef systems.

  9. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    PubMed

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-01

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation. PMID:25607371

  10. Anthropogenic biogeochemical impacts on coral reefs in the Pacific Islands—An overview

    NASA Astrophysics Data System (ADS)

    Morrison, R. J.; Denton, G. R. W.; Bale Tamata, U.; Grignon, J.

    2013-11-01

    Coral reefs dominate the coastal environment in many Pacific Islands, being present as atolls, coral platforms, barrier and fringing reefs. With ever increasing populations and migration of people to the coast, the anthropogenic impacts on these reefs have increased dramatically in the last 30 years. While research on these impacts has been limited, some important progress has been made. This paper reviews some of the completed studies, with outcomes from American Samoa, Fiji, French Polynesia, Guam, Saipan, New Caledonia and Tonga presented. These studies indicate that the most significant impacts have been found in locations close to major urban centres or industrial and mining activities. The extent of impact varies from place to place with minimal impacts in the more isolated and less industrialised communities. Common anthropogenic impacts are contamination caused by inadequate sewage treatment, erosion from adjacent agricultural and urban expansion activities, poor waste management, eutrophication, inefficient and/or inappropriate pesticide use and hydrocarbons use, storage and management. The outcomes include contaminated sediments (trace metals, pesticides, PCBs, hydrocarbons) with some impacts on resident biota. In some instances, the edible quality of local fisheries resources has been significantly compromised.Even in locations with small populations, increasing populations and poor economic conditions have resulted in noticeable effects on the adjacent fringing reefs, including dramatic algal proliferation and declines in fish numbers resulting from increasing nutrient discharges and increased herbivore fish catches. Recovery measures including fishing bans and alternative fishing practices have been implemented to address these issues in some areas.

  11. Distributions of coral reef macroalgae in a back reef habitat in Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Poray, A. K.; Carpenter, R. C.

    2014-03-01

    On tropical reefs where macroalgae are subjected to continuous herbivore pressure, spatial refuges typically are identified as large-scale, landscape interfaces that limit foraging behavior. However, algal distributions and community assemblages may also rely on the availability of smaller scale spatial refuges within the reef. The results of this study demonstrate that the patterns of macroalgal distribution across the back reef of Moorea, French Polynesia, are maintained by herbivores interacting with the small-scale structural complexities of the coral reef landscape. Although the majority of space available for colonization is composed of exposed surfaces, macroalgae rarely are found in the open. Instead, macroalgal occurrence is highest in the protected narrow crevices and hole microhabitats provided by massive Porites spp. coral heads. These distributions are determined initially by post-settlement mortality of young algal recruits in exposed habitats. Rates of consumption for two of the most common macroalgal species found in refuges across the back reef, Halimeda minima and Amansia rhodantha, indicate that algal recruits in exposed habitats are limited by herbivory. While algal abundance and community structure are highly dependent upon herbivore grazing, the availability of small-scale spatial refuges ultimately shapes the distinct community patterns and distributional boundaries of coral reef macroalgae in the back reefs of Moorea.

  12. Relationships between benthic cover, current strength, herbivory, and a fisheries closure in Glovers Reef Atoll, Belize

    NASA Astrophysics Data System (ADS)

    McClanahan, T.; Karnauskas, M.

    2011-03-01

    Benthic cover, current strengths, and fish abundance and diversity were examined on 150 lagoonal patch reefs and mapped to determine their distribution, inter-relationships, and relationship to the fisheries closure in Glovers Reef Atoll. Current strength was highest at both the northern and southern ends of the atoll and largely controlled by local wind and weakly by tidal forcing. Benthic functional group distributions varied throughout the atoll and had distinct areas of dominance. In contrast, dominance of coral species was weaker, reflecting the lost cover and zonation of Acropora, Porites, and Montastraea that were reported in the 1970s. Hard and soft corals dominated the windward rim, while the central and leeward lagoon had lower current strengths and sea grass and fleshy green algae were relatively more abundant. Brown erect algae were relatively more common in the north and calcifying green and red algae the southern ends of the atoll. Only Montastraea- Agaricia agaricites distributions were similar to reports from the 1970s with high relative dominance in the southern and northeast atoll. The central-northern zone, which was described as an Acropora zone in the 1970s, was not recognizable, and Porites porites, P. astreoides, Millepora alcicornis, and Favia fragum were the most abundant species during this survey . Hard and soft coral cover abundance declined away from the reef rim and tidal channels and was associated with fast seawater turnover and high surgeonfish abundance. Consequently, the windward rim area has retained the most original and persistent hard-soft coral and surgeonfish community and is considered a priority for future management, if the goal is to protect coral from fishing impacts.

  13. 76 FR 2665 - Caribbean Fishery Management Council; Scoping Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Plants and Invertebrates of Puerto Rico and the U.S. Virgin Islands; Amendment 5 to the Fishery... listed in the Fishery Management Plan for Corals and Reef Associated Plants and Invertebrates of Puerto... listed in the Fishery Management Plan for Corals and Reef Associated Plants and Invertebrates of...

  14. Chemotaxis by natural populations of coral reef bacteria.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont. PMID:25615440

  15. Coral Reef Early Warning System (CREWS) RPC Experiment

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.; Hall, Callie

    2007-01-01

    This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.

  16. TEMPORAL TRENDS IN THE HEALTH OF SOUTH FLORIDA CORAL REEFS

    EPA Science Inventory

    Barron, M.G., D.L. Santavy, L. MacLaughlin, E. Mueller, E. Peters, B. Quarles and J. Campbell. In press. Temporal Trends in the Health of South Florida Coral Reefs (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R100...

  17. Ecology: The Upside-Down World of Coral Reef Predators.

    PubMed

    Simpfendorfer, Colin A; Heupel, Michelle R

    2016-08-01

    Examination of a large aggregation of sharks demonstrates that trophic pyramids with greater amounts of high-level predators than prey can occur on coral reefs. This is possible because the high-level predators obtain food from sources outside their home location. PMID:27505241

  18. The Coral Reef Alphabet Book for American Samoa.

    ERIC Educational Resources Information Center

    Madrigal, Larry G.

    This book, produced for the American Samoa Department of Education Marine Enhancement Program, presents underwater color photography of coral reef life in an alphabetical resource. The specimens are described in English, and some are translated into the Samoan language. A picture-matching learning exercise and a glossary of scientific and oceanic…

  19. Biological Criteria for Protection of U.S. Coral Reefs.

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  20. Biological Criteria for Protection of U.S. Coral Reefs

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  1. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    PubMed Central

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987

  2. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs

    PubMed Central

    Velásquez, Johanna; Sánchez, Juan A.

    2015-01-01

    Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral

  3. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Li, Angang; Reidenbach, Matthew A.

    2014-09-01

    Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.

  4. Measuring coral reef community metabolism using new benthic chamber technology

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2003-01-01

    Accurate measurement of coral reef community metabolism is a necessity for process monitoring and in situ experimentation on coral reef health. Traditional methodologies used for these measurements are effective but limited by location and scale constraints. We present field trial results for a new benthic chamber system called the Submersible Habitat for Analyzing Reef Quality (SHARQ). This large, portable incubation system enables in situ measurement and experimentation on community- scale metabolism. Rates of photosynthesis, respiration, and calcification were measured using the SHARQ for a variety of coral reef substrate types on the reef flat of South Molokai, Hawaii, and in Biscayne National Park, Florida. Values for daily gross production, 24-h respiration, and net calcification ranged from 0.26 to 6.45 g O2 m-2 day-1, 1.96 to 8.10 g O2 m-2 24 h-1, and 0.02 to 2.0 g CaCO3 m -2 day-1, respectively, for all substrate types. Field trials indicate that the SHARQ incubation chamber is an effective tool for in situ isolation of a water mass over a variety of benthic substrate types for process monitoring, experimentation, and other applications.

  5. Evaluating coral reef health in American Samoa

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.

    2005-01-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  6. Mapping and monitoring the health and vitality of coral reefs from satellite: a biospheric approach.

    PubMed

    Dustan, P; Chakrabarti, S; Alling, A

    2000-01-01

    Biospheric studies of coral reefs require a planetary perspective that only remote sensing from space can provide. This article reviews aspects of monitoring and mapping coral reefs using Landsat and Spot satellite images. It details design considerations for developing a sensor for equatorial orbiting spacecraft, including spectral characteristics of living corals and the spatial resolution required to map coral reef communities. Possible instrumentation choices include computer techniques, filtered imagers, push-broom spectral imagery, and a newly developed hyperspectral imaging scheme using tomographic reconstruction. We compare the salient features of each technique and describe concepts for a payload to conduct planetary-scale coral reef monitoring. PMID:11543553

  7. Influence of reef geometry on wave attenuation on a Brazilian coral reef

    NASA Astrophysics Data System (ADS)

    Costa, Mirella B. S. F.; Araújo, Moacyr; Araújo, Tereza C. M.; Siegle, Eduardo

    2016-01-01

    This study presents data from field experiments that focus on the influence of coral reef geometry on wave transformation in the Metropolitan Area of Recife (MAR) on the northeast coast of Brazil. First, a detailed bathymetric survey was conducted, revealing a submerged reef bank, measuring 18 km long by 1 km wide, parallel to the coastline with a quasi-horizontal top that varies from 0.5 m to 4 m in depth at low tide. Cluster similarity between 180 reef profiles indicates that in 75% of the area, the reef geometry has a configuration similar to a platform reef, whereas in 25% of the area it resembles a fringing reef. Measurements of wave pressure fluctuations were made at two stations (experiments E1 and E2) across the reef profile. The results indicate that wave height was tidally modulated at both experimental sites. Up to 67% (E1) and 99.9% (E2) of the incident wave height is attenuated by the reef top at low tide. This tidal modulation is most apparent at E2 due to reef geometry. At this location, the reef top is only approximately 0.5 m deep during mean low spring water, and almost all incident waves break on the outer reef edge. At E1, the reef top depth is 4 m, and waves with height ratios smaller than the critical breaking limit are free to pass onto the reef and are primarily attenuated by bottom friction. These results highlight the importance of reef geometry in controlling wave characteristics of the MAR beaches and demonstrate its effect on the morphology of the adjacent coast. Implications of differences in wave attenuation and the level of protection provided by the reefs to the adjacent shoreline are discussed.

  8. Global disparity in the resilience of coral reefs.

    PubMed

    Roff, George; Mumby, Peter J

    2012-07-01

    The great sensitivity of coral reefs to climate change has raised concern over their resilience. An emerging body of resilience theory stems largely from research carried out in a single biogeographic region; the Caribbean. Such geographic bias raises the question of transferability of concepts among regions. In this article, we identify factors that might predispose the Caribbean to its low resilience, including faster rates of macroalgal growth, higher rates of algal recruitment, basin-wide iron-enrichment of algal growth from aeolian dust, a lack of acroporid corals, lower herbivore biomass and missing groups of herbivores. Although mechanisms of resilience are likely to be ubiquitous, our analysis suggests that Indo-Pacific reefs would have to be heavily degraded to exhibit bistability or undergo coral-macroalgal phase shifts. PMID:22658876

  9. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Carroll, A.; Harrison, P.; Adjeroud, M.

    2006-03-01

    Little information is available on reproductive processes among corals in isolated central Pacific reef regions, including French Polynesia. This study examined the timing and mode of sexual reproduction for Acropora reef corals at Moorea. Spawning was observed and/or inferred in 110 Acropora colonies, representing 12 species, following full moon periods in September through November 2002. Gamete release was observed and inferred in four species of Acropora between 9 and 13 nights after the full moon (nAFM) in September 2002. Twelve Acropora spp. spawned gametes between 5 and 10 nAFM in October 2002, with six species spawning 7 nAFM and four species spawning 9 nAFM. In November 2002, spawning of egg and sperm bundles was observed and inferred in 27 colonies of Acropora austera, 6 nAFM. These are the first detailed records of spawning by Acropora corals in French Polynesia.

  10. Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody

    2012-01-01

    Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used

  11. Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai

    USGS Publications Warehouse

    Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.; Presto, M.K.; Draut, A.E.

    2009-01-01

    Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.

  12. 77 FR 23632 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Generic Annual Catch Limits...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... implement the Generic ACL Amendment to the FMPs (76 FR 82044). In part, that final rule removed ] species... Amendment) to the Red Drum, Reef Fish Resources, Shrimp, and Coral and Coral Reefs Fishery Management Plans... for the Gulf Coral and Coral Reefs FMP was inadvertently removed from Table 1 in Sec. 622.1....

  13. Coastal nutrification and coral health at Porto Seguro reefs, Brazil

    NASA Astrophysics Data System (ADS)

    Costa, O.; Attrill, M.; Nimmo, M.

    2003-04-01

    correlation between zoanthids and algal abundance and a positive correlation with the amount of available space for settlement. On the offshore reef, correlation of algal cover with both zoanthids and available space were negative, suggesting that hard substrate may be the primary limiting factor for algal settlement and growth in the nearshore reefs. Highly variable physical disturbances (like wave energy and low tide exposure) between landward and seaward reef sides appear to be the factors controlling algal distribution in the offshore reef. Highly spatial variability in coral cover ultimately reflects the patchy distribution of stony corals over the reefs.

  14. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    NASA Astrophysics Data System (ADS)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  15. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys.

    PubMed

    Kenkel, Carly D; Almanza, Albert T; Matz, Mikhail V

    2015-12-01

    Despite decades of monitoring global reef decline, we are still largely unable to explain patterns of reef deterioration at local scales, which precludes the development of effective management strategies. Offshore reefs of the Florida Keys, USA, experience milder temperatures and lower nutrient loads in comparison to inshore reefs yet remain considerably more degraded than nearshore patch reefs. A year-long reciprocal transplant experiment of the mustard hill coral (Porites astreoides) involving four source and eight transplant locations reveals that corals adapt and/or acclimatize to their local habitat on a < 10-km scale. Surprisingly, transplantation to putatively similar environmental types (e.g., offshore corals moved to a novel offshore site, or along-shore transplantation) resulted in greater reductions in fitness proxies, such as coral growth, than cross-channel transplantation between inshore and offshore reefs. The only abiotic factor showing significantly greater differences between along-shore sites was daily temperature range extremes (rather than the absolute high or low temperatures reached), providing a possible explanation for this pattern. Offshore-origin corals exhibited significant growth reductions at sites with greater daily temperature ranges, which explained up to 39% of the variation in their mass gain. In contrast, daily temperature range explained at most 9% of growth variation in inshore-origin corals, suggesting that inshore corals are more tolerant of high-frequency temperature fluctuations. Finally, corals incur trade-offs when specializing to their native reef. Across reef locations the coefficient of selection against coral transplants was 0.07 ± 0.02 (mean ± SE). This selection against immigrants could hinder the ability of corals to recolonize devastated reefs, whether through assisted migration efforts or natural recruitment events, providing a unifying explanation for observed patterns of coral decline in this reef system

  16. Wide Field-of-View Fluorescence Imaging of Coral Reefs

    PubMed Central

    Treibitz, Tali; Neal, Benjamin P.; Kline, David I.; Beijbom, Oscar; Roberts, Paul L. D.; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys. PMID:25582836

  17. Wide Field-of-View Fluorescence Imaging of Coral Reefs

    NASA Astrophysics Data System (ADS)

    Treibitz, Tali; Neal, Benjamin P.; Kline, David I.; Beijbom, Oscar; Roberts, Paul L. D.; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys.

  18. Workshop on Biological Integrity of Coral Reefs August 21-22, 2012, Caribbean Coral Reef Institute, Isla Magueyes, La Parguera, Puerto Rico.

    EPA Science Inventory

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characterist...

  19. Contaminants assessment in the coral reefs of Virgin Islands National Park and Virgin Islands Coral Reef National Monument

    USGS Publications Warehouse

    Bargar, Timothy A.; Garrison, Virginia H.; Alvarez, David A.; Echols, Kathy

    2013-01-01

    Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17–0.31 ng/L 17-β-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.

  20. Context-Dependent Diversity-Effects of Seaweed Consumption on Coral Reefs in Kenya

    PubMed Central

    Humphries, Austin T.; McQuaid, Christopher D.; McClanahan, Tim R.

    2015-01-01

    Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya’s fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions. PMID:26673609

  1. Context-Dependent Diversity-Effects of Seaweed Consumption on Coral Reefs in Kenya.

    PubMed

    Humphries, Austin T; McQuaid, Christopher D; McClanahan, Tim R

    2015-01-01

    Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya's fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions. PMID:26673609

  2. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    PubMed Central

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  3. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    PubMed

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  4. Exploring 'knowns' and 'unknowns' in tropical seascape connectivity with insights from East African coral reefs

    NASA Astrophysics Data System (ADS)

    Berkström, Charlotte; Gullström, Martin; Lindborg, Regina; Mwandya, Augustine W.; Yahya, Saleh A. S.; Kautsky, Nils; Nyström, Magnus

    2012-07-01

    Applying a broader landscape perspective to understand spatio-temporal changes in local populations and communities has been increasingly used in terrestrial systems to study effects of human impact and land use change. With today's major declines in fishery stocks and rapid degradation of natural coastal habitats, the understanding of habitat configuration and connectivity over relevant temporal and spatial scales is critical for conservation and fisheries management of the seascape. Coral reefs, seagrass beds and mangroves are key-components of the tropical seascape. The spatial distribution of these habitat types may have strong influences on cross-habitat migration and connectivity patterns among organisms. However, the consequences of seascape fragmentation and ecological connectivity are largely unknown. Here, we review the literature to provide an overview of current knowledge with regards to connectivity and food-web interactions within the tropical seascape. We show that information on fish acting as mobile links and being part of nutrient transfer and trophic interactions is scarce. We continue by making an in-depth analysis of the seascape around Zanzibar (Eastern Africa) to fill some of the knowledge gaps identified by the literature survey. Our analysis shows that (i) fifty percent of all fish species found within the Zanzibar seascape use two or multiple habitat types, (ii) eighteen percent of all coral reef-associated fish species use mangrove and seagrass beds as juvenile habitat, and (iii) macrocarnivores and herbivores are highly represented among those coral reef fish species that use mangrove and seagrass beds as juvenile habitat. We argue that understanding the inter-linkages within and between habitat types is essential for successful management of the tropical seascape.

  5. Larval dispersal drives trophic structure across Pacific coral reefs.

    PubMed

    Stier, Adrian C; Hein, Andrew M; Parravicini, Valeriano; Kulbicki, Michel

    2014-01-01

    Top predators are a critical part of healthy ecosystems. Yet, these species are often absent from spatially isolated habitats leading to the pervasive view that fragmented ecological communities collapse from the top down. Here we study reef fish from coral reef communities across the Pacific Ocean. Our analysis shows that species richness of reef fish top predators is relatively stable across habitats that vary widely in spatial isolation and total species richness. In contrast, species richness of prey reef fish declines rapidly with increasing isolation. By consequence, species-poor communities from isolated islands have three times as many predator species per prey species as near-shore communities. We develop and test a colonization-extinction model to reveal how larval dispersal patterns shape this ocean-scale gradient in trophic structure. PMID:25412873

  6. Diseases leading to accelerated decline of reef corals in the largest South Atlantic reef complex (Abrolhos Bank, eastern Brazil).

    PubMed

    Francini-Filho, Ronaldo B; Moura, Rodrigo L; Thompson, Fabiano L; Reis, Rodrigo M; Kaufman, Les; Kikuchi, Ruy K P; Leão, Zelinda M A N

    2008-05-01

    Although reef corals worldwide have sustained epizootics in recent years, no coral diseases have been observed in the southwestern Atlantic Ocean until now. Here we present an overview of the main types of diseases and their incidence in the largest and richest coral reefs in the South Atlantic (Abrolhos Bank, eastern Brazil). Qualitative observations since the 1980s and regular monitoring since 2001 indicate that coral diseases intensified only recently (2005-2007). Based on estimates of disease prevalence and progression rate, as well as on the growth rate of a major reef-building coral species (the Brazilian-endemic Mussismilia braziliensis), we predict that eastern Brazilian reefs will suffer a massive coral cover decline in the next 50 years, and that M. braziliensis will be nearly extinct in less than a century if the current rate of mortality due to disease is not reversed. PMID:18348890

  7. A Trait-Based Approach to Advance Coral Reef Science.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H

    2016-06-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. PMID:26969335

  8. Water column correction for coral reef studies by remote sensing.

    PubMed

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  9. Water Column Correction for Coral Reef Studies by Remote Sensing

    PubMed Central

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  10. Primary porosity and submarine diagenesis in Lower Cretaceous Coral-Rudist reefs

    SciTech Connect

    Cross, S.L.; Lighty, R.G.

    1986-05-01

    Coral-rudist reefs of the Lower Cretaceous Mural limestone, southeastern Arizona, show a pronounced relationship between specific reef facies, primary porosity, and early submarine diagenesis. These large open-shelf reefs differ from the well-studied low-relief rudist buildups, and provide an alternate analog for many Cretaceous reef reservoirs. Arizona buildups have diverse corals, high depositional relief, and a well-developed facies zonation from fore reef to back reef: skeletal grainstone talus, muddy fore reef with branching and lamellar corals, massive reef crest with abundant lamellar corals and sandy matrix, protected thickets of delicate branching corals and large rudist mounds, and a wide sediment apron of well-washed coral, rudist, and benthic foraminiferal sands. These well-exposed outcrops permit a detailed facies comparison of primary interparticle porosity. Porosity as high as 40% in grainstones was occluded by later subsurface cements. Reef-framework interparticle porosity was negligible because fore-reef coral and back-reef rudist facies were infilled by muds, and high-energy reef-crest frameworks were filled by peloidal submarine cement crusts and muddy skeletal sands. These thick crusts coated lamellar corals in cryptic and open reef-crest areas, and are laminated with ripple and draped bed forms that suggest current influence. Similar peloidal crusts and laminated textures are common magnesium-calcite submarine cement features in modern reefs. By documenting specific facies control on early cementation and textural variability, patterns of late-stage subsurface diagenesis and secondary porosity may be more easily explained for Cretaceous reef reservoirs. Significant primary porosity might be retained between sands in back-reef facies and within coral skeletons.

  11. Decadal coral community reassembly on an African fringing reef

    NASA Astrophysics Data System (ADS)

    McClanahan, T. R.

    2014-12-01

    Changes in the cover of the dominant hard coral taxa were studied on seven Kenyan back reefs over 20 yr. All factors of time, taxa, site, and their interactions were statistically significant and the 1998 temperature anomaly caused the greatest community changes. The 1998 disturbance changes reflected a classic coral succession, which included partial or little mortality and persistence of stress tolerant (massive and submassive growth forms) and early colonization by weedy taxa (pocilloporids). Nevertheless, competitive taxa had high and full mortality and the expected dominance of acroporids was inhibited even ~13 yr after the disturbance. So, while total hard coral cover displayed the expected logistic recovery where maximum cover was reached <10 yr after the disturbance, the poor recovery of competitive dominants resulted in less than expected coral cover. A number of stress-resistant and weedy taxa (poritids, agaricidae, faviids, and pocilloporids) are expected to dominate the composition of these reefs in the future. Nevertheless, three submassive faviids and branching Porites began to decline toward the end of the time series, indicating further stress after 1998. Increased algal cover and other unstudied factors, including milder warming, may explain these changes. The patterns of change on this continental fringing reef differ from recovery of more remote, offshore islands. This probably reflects low acroporid dominance and recruitment limitations associated with greater anthropogenic influences of high sea urchin grazing and terrestrial runoff.

  12. Genomic and microarray approaches to coral reef conservation biology

    NASA Astrophysics Data System (ADS)

    Forêt, S.; Kassahn, K. S.; Grasso, L. C.; Hayward, D. C.; Iguchi, A.; Ball, E. E.; Miller, D. J.

    2007-09-01

    New technologies based on DNA microarrays and comparative genomics hold great promise for providing the background biological information necessary for effective coral reef conservation and management. Microarray analysis has been used in a wide range of applications across the biological sciences, most frequently to examine simultaneous changes in the expression of large numbers of genes in response to experimental manipulation or environmental variation. Other applications of microarray methods include the assessment of divergence in gene sequences between species and the identification of fast-evolving genes. Arrays are presently available for only a limited range of species, but with appropriate controls they can be used for related species, thus avoiding the considerable costs associated with development of a system de novo. Arrays are in use or preparation to study stress responses, early development, and symbiosis in Acropora and Montastraea. Ongoing projects on several corals are making available large numbers of expressed gene sequences, enabling the identification of candidate genes for studies on gamete specificity, allorecognition and symbiont interactions. Over the next few years, microarray and comparative genomic approaches are likely to assume increasingly important and widespread use to study many aspects of the biology of coral reef organisms. Application of these genomic approaches to enhance our understanding of genetic and physiological correlates during stress, environmental disturbance and disease bears direct relevance to the conservation of coral reef ecosystems.

  13. Coral reef soundscapes may not be detectable far from the reef

    PubMed Central

    Kaplan, Maxwell B.; Mooney, T. Aran

    2016-01-01

    Biological sounds produced on coral reefs may provide settlement cues to marine larvae. Sound fields are composed of pressure and particle motion, which is the back and forth movement of acoustic particles. Particle motion (i.e., not pressure) is the relevant acoustic stimulus for many, if not most, marine animals. However, there have been no field measurements of reef particle motion. To address this deficiency, both pressure and particle motion were recorded at a range of distances from one Hawaiian coral reef at dawn and mid-morning on three separate days. Sound pressure attenuated with distance from the reef at dawn. Similar trends were apparent for particle velocity but with considerable variability. In general, average sound levels were low and perhaps too faint to be used as an orientation cue except very close to the reef. However, individual transient sounds that exceeded the mean values, sometimes by up to an order of magnitude, might be detectable far from the reef, depending on the hearing abilities of the larva. If sound is not being used as a long-range cue, it might still be useful for habitat selection or other biological activities within a reef. PMID:27550394

  14. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Schaffelke, B.

    2001-05-01

    Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO4 3- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO4 3- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.

  15. Coral reef soundscapes may not be detectable far from the reef.

    PubMed

    Kaplan, Maxwell B; Mooney, T Aran

    2016-01-01

    Biological sounds produced on coral reefs may provide settlement cues to marine larvae. Sound fields are composed of pressure and particle motion, which is the back and forth movement of acoustic particles. Particle motion (i.e., not pressure) is the relevant acoustic stimulus for many, if not most, marine animals. However, there have been no field measurements of reef particle motion. To address this deficiency, both pressure and particle motion were recorded at a range of distances from one Hawaiian coral reef at dawn and mid-morning on three separate days. Sound pressure attenuated with distance from the reef at dawn. Similar trends were apparent for particle velocity but with considerable variability. In general, average sound levels were low and perhaps too faint to be used as an orientation cue except very close to the reef. However, individual transient sounds that exceeded the mean values, sometimes by up to an order of magnitude, might be detectable far from the reef, depending on the hearing abilities of the larva. If sound is not being used as a long-range cue, it might still be useful for habitat selection or other biological activities within a reef. PMID:27550394

  16. Measuring, interpreting, and responding to changes in coral reefs: A challenge for biologists, geologist, and managers

    USGS Publications Warehouse

    Rogers, Caroline S.; Miller, Jeff

    2016-01-01

    What, exactly, is a coral reef? And how have the world’s reefs changed in the last several decades? What are the stressors undermining reef structure and function? Given the predicted effects of climate change, do reefs have a future? Is it possible to “manage” coral reefs for resilience? What can coral reef scientists contribute to improve protection and management of coral reefs? What insights can biologists and geologists provide regarding the persistence of coral reefs on a human timescale? What is reef change to a biologist… to a geologist?Clearly, there are many challenging questions. In this chapter, we present some of our thoughts on monitoring and management of coral reefs in US national parks in the Caribbean and western Atlantic based on our experience as members of monitoring teams. We reflect on the need to characterize and evaluate reefs, on how to conduct high-quality monitoring programs, and on what we can learn from biological and geological experiments and investigations. We explore the possibility that specific steps can be taken to “manage” coral reefs for greater resilience.

  17. Benthic buffers and boosters of ocean acidification on coral reefs

    NASA Astrophysics Data System (ADS)

    Anthony, K. R. N.; Diaz-Pulido, G.; Verlinden, N.; Tilbrook, B.; Andersson, A. J.

    2013-02-01

    Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (pn) and calcification (gn). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in seawater aragonite saturation state (Ωa). Results of flume studies showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350-450 μatm), macroalgae (Chnoospora implexa), turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h-1 - normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560-700 μatm) and high flow (35 compared to 8 cm s-1). In contrast, branching corals (Acropora aspera) increased Ωa by 0.25 h-1 at ambient CO2 (350-450 μatm) during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6-0.8 h-1) and exacerbated by acidification. Calcifying macroalgae (Halimeda spp.) raised Ωa by day (by around 0.13 h-1), but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from four different benthic compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water residence times in neighbouring areas dominated by turfs, macroalgae and potentially sand.

  18. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes.

    PubMed

    Price, S A; Holzman, R; Near, T J; Wainwright, P C

    2011-05-01

    Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future. PMID:21385297

  19. Molecular reproductive characteristics of the reef coral Pocillopora damicornis.

    PubMed

    Rougée, Luc R A; Richmond, Robert H; Collier, Abby C

    2015-11-01

    Coral reefs are an indispensible worldwide resource, accounting for billions of dollars in cultural, economic, and ecological services. An understanding of coral reproduction is essential to determining the effects of environmental stressors on coral reef ecosystems and their persistence into the future. Here, we describe the presence of and changes in steroidal hormones along with associated steroidogenic and steroid removal enzymes during the reproductive cycle of the brooding, pan-Pacific, hermaphroditic coral, Pocillopora damicornis. Detectable levels of 17β-estradiol, estrone, progesterone and testosterone were consistently detected over two consecutive lunar reproductive cycles in coral tissue. Intra-colony variation in steroid hormone levels ranged between 1.5- and 2.2-fold and were not statistically different. Activities of the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and cytochrome P450 (CYP) 17 dehydrogenase were detectable and did not fluctuate over the reproductive cycle. Aromatase-like activity was detected during the lunar reproductive cycle with no significant fluctuations. Activities of regeneration enzymes did not fluctuate over the lunar cycle; however, activity of the clearance enzyme UDP-glucuronosyl transferases increased significantly (ANOVA, post hoc p<0.01) during the two weeks before and after peak larval release (planulation), suggesting that the activity of this enzyme family may be linked to the reproductive state of the coral. Sulfotransferase enzymes could not be detected. Our findings provide the first data defining normal physiological and lunar/reproductive variability in steroidal enzymes in a coral species with respect to their potential role in coral reproduction. PMID:26231839

  20. New maps, new information: Coral reefs of the Florida keys

    USGS Publications Warehouse

    Lidz, B.H.; Reich, C.D.; Peterson, R.L.; Shinn, E.A.

    2006-01-01

    A highly detailed digitized map depicts 22 benthic habitats in 3140.5 km2 of the Florida Keys National Marine Sanctuary. Dominant are a seagrass/lime-mud zone (map area 27.5%) throughout Hawk Channel and seagrass/carbonate-sand (18.7%) and bare carbonate-sand (17.3%) zones on the outer shelf and in The Quicksands. A lime-mud/seagrass-covered muddy carbonate-sand zone (9.6%) abuts the keys. Hardbottom communities (13.2%) consist of bare Pleistocene coralline and oolitic limestone, coral rubble, and senile coral reefs. Smaller terrestrial (4.0%) and marine habitats, including those of live coral (patch reefs, 0.7%), account for the rest (13.7%) of the area. Derived from aerial photomosaics, the seabed dataset fits precisely when transposed onto a newly developed National Geophysical Data Center hydrographic-bathymetry map. Combined, the maps point to new information on unstudied seabed morphologies, among them an erosional nearshore rock ledge bordering the seaward side of the Florida Keys and thousands of patch-reef clusters aligned in mid-Hawk Channel. Preliminary indications are that the ledge may represent the seaward extent of the 125-ka Key Largo and Miami Limestone that form the keys, and the patch reefs colonized landward edges of two noncoralline, non-dune-ridge topographic troughs. The troughs, their substrate, and inner-shelf location along the seaward side of the Hawk Channel bedrock depression are the first of that type of nuclei to be recognized in the Florida reef record. Together, the map datasets establish the efficacy and accuracy of using aerial photographs to define in extraordinary detail the seabed features and habitats in a shallow-reef setting.

  1. Uncovering the connectivity of coral reef systems via Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Leclair, Matthieu; Lowe, Ryan; Zang, Zhenlin; Ivey, Gregory; Peacock, Thomas

    2015-04-01

    There has been a staggering decline in the health of coral reef ecosystems worldwide over the past century, driven by anthropogenic influences, natural processes, and overall climate change. The future of coral reefs depends largely on their ability to recover from catastrophic events, which in turn crucially relies on the ability of reef larval populations to supply and restore damaged reefs. Improving quantitative predictions of reef larval transport and connectivity has thus emerged as a high priority research area in coral reef science. Ocean circulation models are being increasingly utilized in conjunction with particle tracking methods to provide spatially explicit predictions of larval transport within reef systems. The current major drawback of this approach is that it does not elucidate the underlying yet dynamic flow structures that drive reef connectivity. Recently, however, novel Lagrangian-based analysis approaches have been developed to identify the hidden coherent structures that govern material transport in spatiotemporally complex flow fields. Here we apply these methods to investigate the connectivity within a complex coral reef system, using the UNESCO World Heritage Ningaloo Reef in Australia as a case study. Our study demonstrates how this new approach identifies the dominant flow structures present on the reef, thereby uncovering connectivity and advocating a new practical framework for investigating and understanding how ocean processes shape the ecological transport in and around coral reefs. The technique can prove particularly valuable in supporting the design of Marine Protected Areas that are intended to safeguard the future of coral reefs and other ocean ecosystems.

  2. The Micronesia Challenge: Assessing the Relative Contribution of Stressors on Coral Reefs to Facilitate Science-to-Management Feedback.

    PubMed

    Houk, Peter; Camacho, Rodney; Johnson, Steven; McLean, Matthew; Maxin, Selino; Anson, Jorg; Joseph, Eugene; Nedlic, Osamu; Luckymis, Marston; Adams, Katrina; Hess, Don; Kabua, Emma; Yalon, Anthony; Buthung, Eva; Graham, Curtis; Leberer, Trina; Taylor, Brett; van Woesik, Robert

    2015-01-01

    Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA) networks in statistical models did little to improve the models' predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i) grazing by large herbivores, (ii) high functional diversity of herbivores, and (iii) high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem services that coral

  3. The Micronesia Challenge: Assessing the Relative Contribution of Stressors on Coral Reefs to Facilitate Science-to-Management Feedback

    PubMed Central

    Houk, Peter; Camacho, Rodney; Johnson, Steven; McLean, Matthew; Maxin, Selino; Anson, Jorg; Joseph, Eugene; Nedlic, Osamu; Luckymis, Marston; Adams, Katrina; Hess, Don; Kabua, Emma; Yalon, Anthony; Buthung, Eva; Graham, Curtis; Leberer, Trina; Taylor, Brett; van Woesik, Robert

    2015-01-01

    Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA) networks in statistical models did little to improve the models’ predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i) grazing by large herbivores, (ii) high functional diversity of herbivores, and (iii) high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem services that coral

  4. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    PubMed Central

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  5. Evidence for multiple stressor interactions and effects on coral reefs.

    PubMed

    Ban, Stephen S; Graham, Nicholas A J; Connolly, Sean R

    2014-03-01

    Concern is growing about the potential effects of interacting multiple stressors, especially as the global climate changes. We provide a comprehensive review of multiple stressor interactions in coral reef ecosystems, which are widely considered to be one of the most sensitive ecosystems to global change. First, we synthesized coral reef studies that examined interactions of two or more stressors, highlighting stressor interactions (where one stressor directly influences another) and potentially synergistic effects on response variables (where two stressors interact to produce an effect that is greater than purely additive). For stressor-stressor interactions, we found 176 studies that examined at least 2 of the 13 stressors of interest. Applying network analysis to analyze relationships between stressors, we found that pathogens were exacerbated by more costressors than any other stressor, with ca. 78% of studies reporting an enhancing effect by another stressor. Sedimentation, storms, and water temperature directly affected the largest number of other stressors. Pathogens, nutrients, and crown-of-thorns starfish were the most-influenced stressors. We found 187 studies that examined the effects of two or more stressors on a third dependent variable. The interaction of irradiance and temperature on corals has been the subject of more research (62 studies, 33% of the total) than any other combination of stressors, with many studies reporting a synergistic effect on coral symbiont photosynthetic performance (n = 19). Second, we performed a quantitative meta-analysis of existing literature on this most-studied interaction (irradiance and temperature). We found that the mean effect size of combined treatments was statistically indistinguishable from a purely additive interaction, although it should be noted that the sample size was relatively small (n = 26). Overall, although in aggregate a large body of literature examines stressor effects on coral reefs and coral

  6. Reef-coral refugia in a rapidly changing ocean.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2015-06-01

    This study sought to identify climate-change thermal-stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k-fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1°C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some 'winners' at local scales will likely become 'losers' at regional scales. We predicted that nine of the 12 species examined will lose 24-50% of their current habitat. Most reductions are predicted to occur between the latitudes 5-15°, in both hemispheres. Yet when we modeled a 1°C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef-coral refugia deserve high-conservation status. PMID:25646684

  7. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Holles, Sophie; Ferarri, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    After a pelagic larval phase, settlement-stage coral reef fish must locate a suitable reef habitat for juvenile life. Reef noise, produced by resident fish and invertebrates, provides an important cue for orientation and habitat selection during this process, which must often occur in environments impacted by anthropogenic noise. We adapted an established field-based protocol to test whether recorded boat noise influenced the settlement behavior of reef fish. Fewer fish settled to patch reefs broadcasting boat + reef noise compared with reef noise alone. This study suggests that boat noise, now a common feature of many reefs, can compromise critical settlement behavior of reef fishes. PMID:26611066

  8. U-series dating of diagenetically altered fossil reef corals

    NASA Astrophysics Data System (ADS)

    Scholz, Denis; Mangini, Augusto; Felis, Thomas

    2004-01-01

    Initial ( 234U/ 238U) activity ratios higher than those expected from closed system evolution of seawater are an outstanding problem in U-series dating of fossil reef corals. The increased activity ratios are ascribed to post-depositional diagenesis. We analysed six Last Interglacial and one Holocene coral of the genus Porites collected near the northern end of the Gulf of Aqaba (northern Red Sea) together with three recent corals from this location as a modern reference. While the values measured on the recent samples show no deviation from expected values, the Holocene and Last Interglacial corals display highly elevated ( 234U/ 238U) activity ratios as well as increased 238U and 232Th concentrations. ( 234U/ 238U) activity ratios are strongly correlated with ( 230Th/ 238U) and total uranium content. A model assuming different degrees of uranium addition and subsequent loss in different sub-samples of one coral produces straight lines (isochrons) on a ( 234U/ 238U)-( 230Th/ 238U) plot and predicts that the true age of the coral can be calculated by intersecting this isochron with the seawater evolution curve. We used the strong correlation detected in the Aqaba corals to calculate isochron ages. The isochron age of the Holocene coral (3116 +167 -156 yr) is concordant with its calibrated 14C age (2963 +92 -103 yr). The ages of the Last Interglacial corals are between 121 (+6.7 -5.3) and 121.9 (+7.0 -6.3) kyr for a higher terrace (7-10 m asl) and 106.4 (+8.9 -8.1) and 117.1 (+19.7 -15.3) kyr for a lower terrace (4-5 m asl). One Last Interglacial coral with an aragonite content of ˜85% could not be dated. The elevation and ages of the fossil terraces are consistent with existing sea level reconstructions from the Red Sea.

  9. Protection of fish spawning habitat for the conservation of warm-temperature reef-fish fisheries of shelf-edge reefs of Florida

    USGS Publications Warehouse

    Koenig, Christopher C.; Coleman, Felicia C.; Grimes, Churchill B.; Fitzhugh, Gary R.; Scanlon, Kathyryn M.; Gledhill, Christopher T.; Grace, Mark

    2000-01-01

    We mapped and briefly describe the surficial geology of selected examples of shelf-edge reefs (50–120 m deep) of the southeastern United States, which are apparently derived from ancient Pleistocene shorelines and are intermittently distributed throughout the region. These reefs are ecologically significant because they support a diverse array of fish and invertebrate species, and they are the only aggregation spawning sites of gag (Mycteroperca microlepis), scamp (M. phenax), and other economically important reef fish. Our studies on the east Florida shelf in the Experimental Oculina Research Reserve show that extensive damage to the habitat-structuring coral Oculina varicosa has occurred in the past, apparently from trawling and dredging activities of the 1970s and later. On damaged or destroyed Oculina habitat, reef-fish abundance and diversity are low, whereas on intact habitat, reef-fish diversity is relatively high compared to historical diversity on the same site. The abundance and biomass of the economically important reef fish was much higher in the past than it is now, and spawning aggregations of gag and scamp have been lost or greatly reduced in size. On the west Florida shelf, fishers have concentrated on shelf-edge habitats for over 100 yrs, but fishing intensity increased dramatically in the 1980s. Those reefs are characterized by low abundance of economically important species. The degree and extent of habitat damage there is unknown. We recommend marine fishery reserves to protect habitat and for use in experimentally examining the potential production of unfished communities.

  10. Biology and ecology of the hydrocoral millepora on coral reefs.

    PubMed

    Lewis, John B

    2006-01-01

    Millepores are colonial polypoidal hydrozoans secreting an internal calcareous skeleton of an encrusting or upright form, often of considerable size. Defensive polyps protruding from the skeleton are numerous and highly toxic and for this reason millepores are popularly known as "stinging corals" or "fire corals." In shallow tropical seas millepore colonies are conspicuous on coral reefs and may be locally abundant and important reef-framework builders. The history of systematic research on the Milleporidae and the sister family Stylasteridae is rich and full with the works of early naturalists beginning with Linnaeus. Seventeen living millepore species are recognised. Marked phenotypic variation in form and structure of colonies is characteristic of the genus Millepora. The first published descriptions of the anatomy and histology of millepores were by H. N. Moseley in one of the Challenger Expedition reports. These original, detailed accounts by Moseley remain valid and, except for recent descriptions of the ultrastructure of the skeleton and skeletogenic tissues, have not needed much modification. Millepores occur worldwide on coral reefs at depths of between 1 and 40 m and their distribution on reefs is generally zoned in response to physical factors. Colonies may be abundant locally on coral reefs but usually comprise <10% of the overall surface cover. Growth rates of colonies are similar to the measured rates of branching and platelike scleractinian corals. Millepores are voracious zooplankton feeders and they obtain part of their nutrition from autotrophic sources, photosynthetic production by symbiotic zooxanthellae. Reproduction in millepores is characterised by alternation of generations with a well-developed polypoid stage that buds off planktonic medusae. Sexual reproduction is seasonal for known species and the medusae have a brief planktonic life. Asexual production is achieved by sympodial growth, the production of new skeleton and soft tissue along

  11. A geological perspective on the degradation and conservation of western Atlantic coral reefs.

    PubMed

    Kuffner, Ilsa B; Toth, Lauren T

    2016-08-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs-as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species-cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources

  12. Abundance and diel migration of demersal plankton on a tropical coral reef: An acoustic pilot study

    NASA Astrophysics Data System (ADS)

    Ortner, Peter B.; Stamates, S. Jack; Cummings, Shailer R.; Smith, Sharon L.; Lane, Peter V.

    2001-05-01

    Coral reefs serve as the habitat for demersal mesozooplankton and small fishes that migrate into overlying waters at night but spend daylight hours within the reef in part because that habitat provides protection against visual predators. These movements structure energy, mass, and nutrient exchange between the reef habitat and the surrounding waters. Information to date has, however, been predominately qualitative and has not taken advantage of recent advances in biological oceanographic sampling instrumentation. Moreover, what sampling has been done has not been rigorously coupled to synoptic time series of ambient oceanographic conditions. To begin to fill this critical gap we deployed for two 1-month-periods multi-frequency acoustic (TAPS) and optical integrated environmental sensor packages to continuously measure and record the abundance and size distribution of organisms while concomitantly measuring water column chlorophyll, fluorescence, transmittance, temperature, and salinity. During the two periods of high-resolution sampling, and in the intervening six months, we also deployed bottom-mounted ADCP units yielding both vertical current structure and backscatter amplitude distributions. Both video footage and traditional net or pump samples were obtained for ground-truth purposes. [Support provided by the National Marine Fisheries Service/Southeast Fisheries Science Center.

  13. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    PubMed Central

    Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs. PMID:25276504

  14. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    PubMed

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs. PMID:25276504

  15. Climate Change and Its Effect on Coral Reefs

    NASA Astrophysics Data System (ADS)

    Weston, Ralph E., Jr.

    2000-12-01

    The viability of coral reefs has been linked to the extent to which the overlying sea water is supersaturated with respect to calcium carbonate, which in turn depends on the concentration of dissolved carbon dioxide. Projections of a future increase in carbon dioxide emissions indicate that the health of coral reefs may be seriously endangered, and trends in this direction already have been observed. The equilibria involved in this chemical system demonstrate several important concepts in elementary physical chemistry: Henry's law of gas solubility, solubility products of solids, and acid-base equilibria and dissociation constants. The calcium carbonate-water-carbon dioxide system is discussed in terms of these elementary concepts. Then a computer program available on the Internet is used, together with realistic parameters for tropical seawater, to calculate the extent of calcium carbonate supersaturation with the current atmospheric concentration of carbon dioxide and that predicted for the beginning of the next century.

  16. Patterns of relative species abundance in rainforests and coral reefs.

    PubMed

    Volkov, Igor; Banavar, Jayanth R; Hubbell, Stephen P; Maritan, Amos

    2007-11-01

    A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in ecological communities is not completely known. Although most contemporary theories in ecology start with the basic premise that species interact, here we show that a theory in which all interspecific interactions are turned off leads to analytical results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are weak in the stationary states in species-rich communities such as tropical forests and coral reefs. PMID:17972874

  17. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    PubMed

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs. PMID:25945305

  18. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals

    PubMed Central

    Loh, Tse-Lynn; McMurray, Steven E.; Henkel, Timothy P.; Vicente, Jan

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs. PMID:25945305

  19. The dynamics of architectural complexity on coral reefs under climate change.

    PubMed

    Bozec, Yves-Marie; Alvarez-Filip, Lorenzo; Mumby, Peter J

    2015-01-01

    One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate-driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species-specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony-scale (1-10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas

  20. 77 FR 42251 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ...NMFS proposes regulations to implement management measures described in Amendment 34 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico Fishery Management Council (Council). If implemented, this rule would remove the income qualification requirements for renewal of Gulf of Mexico (Gulf) commercial reef fish permits and increase......

  1. 78 FR 49440 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ..., Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Red Snapper Management...). If implemented, this rule would increase the 2013 commercial and recreational quotas for red snapper in the Gulf of Mexico (Gulf) reef fish fishery and re-open the red snapper recreational season...

  2. 78 FR 46292 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... abbreviated framework and requested public comment (78 FR 37500). The proposed rule and abbreviated framework... framework to the Fishery Management Plans (FMPs) for the Reef Fish Resources of the Gulf of Mexico prepared... fisheries are managed under their respective FMPs. The Gulf reef fish FMP was prepared by the Gulf...

  3. ASSESSING UV IRRADIANCE IN CARIBBEAN REEF CORAL AND DNA DAMAGE IN THEIR CORAL AND ZOOXANTHELLAE

    EPA Science Inventory

    UV penetration into the water near coral reefs may be increasing as a consequence of global climate change. Calm waters associated with ENSO conditions can enhance stratification that increases the amount of photobleaching of chromophoric dissolved organic matter (CDOM) in surfa...

  4. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    USGS Publications Warehouse

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  5. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.

    PubMed

    Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura

    2014-01-01

    The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660

  6. Environmentally controlled succession in a late Pleistocene coral reef (Sinai, Egypt)

    NASA Astrophysics Data System (ADS)

    Mewis, H.; Kiessling, W.

    2013-03-01

    The concept of ecological succession has been frequently applied in the study of ancient reefs. Whereas Paleozoic and Mesozoic reefs are commonly thought to reveal an autogenic primary—climax zonation, patterns in Neogene and Quaternary reefs are much more diverse. Here, we describe a well-preserved late Pleistocene coral reef from Dahab on Sinai Peninsula (Egypt), which shows a distinct zonation that resembles an ecological succession. In contrast to classical examples of ecological successions, species composition, paleoenvironmental conditions, and coral biodiversity of the Dahab reef indicate an allogenic, sea-level controlled community change, from marginal marine to reef slope and back reef. A review of the literature confirms that autogenic, short-term successions are virtually absent in Quaternary reefs. We predict that long generation times of corals make it unlikely that classical autogenic successions develop in reefs at all, unless environmental conditions are unusually stable.

  7. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    PubMed Central

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660

  8. 78 FR 25956 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Management Council will convene a workshop of subject matter experts on Interrelationships between Coral Reef...; telephone: (813) 348-1630. SUPPLEMENTARY INFORMATION: The workshop on Interrelationships between Coral Reefs and Fisheries will examine topics related to linkages between corals and fisheries,...

  9. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    NASA Astrophysics Data System (ADS)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  10. Environmental controls on uranium in reef corals

    NASA Astrophysics Data System (ADS)

    Shen, Glen T.; Dunbar, Robert B.

    1995-05-01

    A survey of corals from a variety of tropical settings reveals previously unseen seasonal variations in skeletal U/Ca. Based upon two corals from the Galapagos Islands, a comparison of U/Ca with δ180 suggests a possible temperature dependence of +3-4% per degree centigrade cooling. An overall range in U/Ca of 1.03-1.37 μmol U/mol Ca (2.45-3.25 ppm) between corals from warm and cool water settings supports this interpretation. An alternative control, however, cannot be ruled out. Changes in the carbonate ion content of surface waters are sufficient to drive comparable variations, provided uranium is incorporated as UO 22+ or a carbonate complex thereof. In addition to these possible controls, we identify a probable salinity influence on coral U/Ca which suggests that uranium uptake depends upon [U] seawater and not [ U/Ca] seawater. Within individual corals, artifacts associated with "vital" influences appear minimal. Extension/calcification rate effects as assessed via comparisons of contemporaneous growth trajectories in individual colonies appear small relative to typical seasonal U/Ca variations of 10-20%. Excluding corals from the Galápagos cool regime, five species from warmer tropical settings exhibit remarkably little variability in mean U/Ca (1.03-1.09 μmol U/mol Ca). Our findings suggest that the range of U/Ca in modern corals defined by published data reflects a combination of interspecific variability and environmental control. The possibility that coral U/Ca is associated with temperature, alkalinity, and salinity suggests many uses for this new paleotracer. Rapid and precise measurement of uranium by isotope dilution ICP-MS will expedite future development and application. Key among the next steps must be studies to isolate the influences of the above mentioned environmental parameters. Additionally, potential microsampling artifacts (e.g., caused by drilling) and an apparent 6% "leachable" uranium fraction in a single test coral should be

  11. Density-associated recruitment mediates coral population dynamics on a coral reef

    NASA Astrophysics Data System (ADS)

    Bramanti, Lorenzo; Edmunds, Peter J.

    2016-06-01

    Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.

  12. Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean

    PubMed Central

    Guan, Yi; Hohn, Sönke; Merico, Agostino

    2015-01-01

    Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7—29.6 °C for temperature, 28.7—40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed. PMID:26030287

  13. Insights Into Nitrogen Isotope Fractionation in Coral Reefs

    NASA Astrophysics Data System (ADS)

    Lamb, K. A.; Swart, P. K.; Ellis, G. S.

    2002-12-01

    Environmental integrity in the Florida Reef tract and the Caribbean has been the center of concern for the past 15-20 years. Both the recreational and scientific communities alike have noticed an overall decline in coral reef health. This decline has manifested itself in the form of increased fleshy macroalgae growth and reduced coral cover, and in some cases, wide-scale coral mortality. Given the increasing dependence on a tourism-oriented economy in both South Florida and the Caribbean, much attention has been focused on maintaining reef longevity. A high nutrient load is believed to be the leading cause of degradation in the predominantly oligotrophic environment. Various studies have cited increased run off and input of anthropogenic wastes as the origin of these nutrients. It has also been suggested that the stable isotopes of nitrogen may provide a tracer with which to recognize the impact of anthropogenic nutrients within the coral reefs ecosystem. However, in utilizing both nitrogen and carbon stable isotopic methods on samples of particulate organic matter (POM) taken over the last three years, we find little evidence of the input of anthropogenic waste. δ15N values of POM fluctuate between +1 and +9 per mille, but usually remain in the +4 to +6 per mille range. Additionally, δ13C values are even more consistent, maintaining a balance between -19 to -21 per mille. These data are consistent with natural open-ocean values for δ15N and δ13C, indicating a lack of intense and prolonged exposure to anthropogenic wastes in the Florida Keys.

  14. Effects of seawater acidification on a coral reef meiofauna community

    NASA Astrophysics Data System (ADS)

    Sarmento, V. C.; Souza, T. P.; Esteves, A. M.; Santos, P. J. P.

    2015-09-01

    Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.

  15. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    PubMed

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-01-01

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. PMID:27270557

  16. Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery

    PubMed Central

    Diaz-Pulido, Guillermo; McCook, Laurence J.; Dove, Sophie; Berkelmans, Ray; Roff, George; Kline, David I.; Weeks, Scarla; Evans, Richard D.; Williamson, David H.; Hoegh-Guldberg, Ove

    2009-01-01

    Background Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. Methodology/Principal Findings In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. Conclusions/Significance These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change. PMID:19384423

  17. Erosion vs. recovery of coral reefs after 1998 El Niño: Chagos reefs, Indian Ocean.

    PubMed

    Sheppard, Charles R C; Spalding, Mark; Bradshaw, Clare; Wilson, Simon

    2002-02-01

    Three years after most corals died on the central Indian Ocean reefs of Chagos, erosion and recovery were studied to 30 m depth. Mortality was near-total to 15 m deep in northern atolls, and to > 35 m in central and southern atolls. Some reef surfaces have 'dropped' 1.5 m due to the loss of dense coral thickets. Coral bioerosion is substantial, reducing 3-D reef 'structure' and forming unconsolidated rubble. Juvenile corals are abundant, though mostly on eroding or unstable substrates, and are of less robust species. Reef fish abundance and diversity at 15 m depth remains high; species dependent on corals have diminished, while some herbivores and detritivores have increased. A new sea surface temperature (SST) data set shows that mean SST has risen 0.65 degree C since 1950. The critical SST causing the mortality in Chagos was 29.9 degrees C. PMID:11928357

  18. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Toth, Lauren

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  19. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    EPA Science Inventory

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  20. Waves and wave-driven flow on a coral reef

    NASA Astrophysics Data System (ADS)

    Monismith, Stephen

    2012-11-01

    It has been long appreciated that surface wave breaking is a primary mechanism for driving flows over coral reefs and so influences a wide variety of reef ecological processes. In this talk I will discuss measurements of waves and wave-driven flows made on the north shore of Moorea, FP. Despite the steep slope and large wave steepness, integral properties of the waves we observe match linear longwave theory to a remarkable extent, although their vertical structure does seem to differ from what is expected from theory. Our observations also show that the net transport over the reef is carried by both Stokes drift and a mean Eulerian flow, although the portioning changes as the waves shoal, break and dissipate. The balance between mean setup due to breaking, which also matches simple theory, and friction inshore of the surfzone/reef crest sets the overall flow rate. While simple theories match the observations quite well, their predictive value is somewhat reduced by the fact that they include 3 parameters that must be found empirically because they involve the basic geometry of the reef and the complex nature of frictional resistance associated with reef roughness. 0622967 for their support.

  1. Ophiuroidea (Echinodermata) from coral reefs in the Mexican Pacific

    PubMed Central

    Granja–Fernández, Rebeca; Herrero-Pérezrul, María D.; López-Pérez, Ramón A.; Hernández, Luis; Rodríguez-Zaragoza, Fabián A.; Jones, Robert Wallace; Pineda-López, Rubén

    2014-01-01

    Abstract There are numerous and important coral reefs in the Mexican Pacific, but scarce studies of brittle stars conducted in these ecosystems. In this regard, this work provides the first annotated checklist of brittle stars associated with coral communities and reefs in the Mexican Pacific and an illustrated key to identify the species. We also provide taxonomic descriptions, spatial and bathymetric distributions and some important remarks of the species. We report a total of 14 species of brittle stars belonging to nine genera and seven families. Ophiocnida hispida in Jalisco, Ophiophragmus papillatus in Guerrero, and Ophiothrix (Ophiothrix) spiculata and Ophiactis simplex in Colima are new distribution records. The record of O. papillatus is remarkable because the species has not been reported since its description in 1940. The brittle stars collected in this study, represent 22.2% of the total species previously reported from the Mexican Pacific. Presently, anthropogenic activities on the coral reefs of the Mexican Pacific have increased, thus the biodiversity of brittle stars in these ecosystems may be threatened. PMID:24843284

  2. Potential contribution of fish restocking to the recovery of deteriorated coral reefs: an alternative restoration method?

    PubMed Central

    Obolski, Uri; Hadany, Lilach

    2016-01-01

    Counteracting the worldwide trend of coral reef degeneration is a major challenge for the scientific community. A crucial management approach to minimizing stress effects on healthy reefs and helping the recovery of disturbed reefs is reef protection. However, the current rapid decline of the world’s reefs suggests that protection might be insufficient as a viable stand-alone management approach for some reefs. We thus suggest that the ecological restoration of coral reefs (CRR) should be considered as a valid component of coral reef management, in addition to protection, if the applied method is economically applicable and scalable. This theoretical study examines the potential applicability and outcomes of restocking grazers as a restoration tool for coral reef recovery—a tool that has not been applied so far in reef restoration projects. We studied the effect of restocking grazing fish as a restoration method using a mathematical model of degrading reefs, and analyzed the financial outcomes of the restocking intervention. The results suggest that applying this restoration method, in addition to protection, can facilitate reef recovery. Moreover, our analysis suggests that the restocking approach almost always becomes profitable within several years. Considering the relatively low cost of this restoration approach and the feasibility of mass production of herbivorous fish, we suggest that this approach should be considered and examined as an additional viable restoration tool for coral reefs. PMID:26966666

  3. Effect of Phase Shift from Corals to Zoantharia on Reef Fish Assemblages

    PubMed Central

    Cruz, Igor C. S.; Loiola, Miguel; Albuquerque, Tiago; Reis, Rodrigo; de Anchieta C. C. Nunes, José; Reimer, James D.; Mizuyama, Masaru; Kikuchi, Ruy K. P.; Creed, Joel C.

    2015-01-01

    Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated. PMID:25629532

  4. Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya.

    PubMed

    McClanahan, Tim R; Graham, Nicholas A J; Calnan, Jacqulyn M; MacNeil, M Aaron

    2007-06-01

    Identifying the rates of recovery of fish in no-take areas is fundamental to designing protected area networks, managing fisheries, estimating yields, identifying ecological interactions, and informing stakeholders about the outcomes of this management. Here we study the recovery of coral reef fishes through 37 years of protection using a space-for-time chronosequence of four marine national parks in Kenya. Using AIC model selection techniques, we assessed recovery trends using five ecologically meaningful production models: asymptotic, Ricker, logistic, linear, and exponential. There were clear recovery trends with time for species richness, total and size class density, and wet masses at the level of the taxonomic family. Species richness recovered rapidly to an asymptote at 10 years. The two main herbivorous families displayed differing responses to protection, scarids recovering rapidly, but then exhibiting some decline while acanthurids recovered more slowly and steadily throughout the study. Recovery of the two invertebrate-eating groups suggested competitive interactions over resources, with the labrids recovering more rapidly before a decline and the balistids demonstrating a slower logistic recovery. Remaining families displayed differing trends with time, with a general pattern of decline in smaller size classes or small-bodied species after an initial recovery, which suggests that some species- and size-related competitive and predatory control occurs in older closures. There appears to be an ecological succession of dominance with an initial rapid rise in labrids and scarids, followed by a slower rise in balistids and acanthurids, an associated decline in sea urchins, and an ultimate dominance in calcifying algae. Our results indicate that the unfished "equilibrium" biomass of the fish assemblage > 10 cm is 1100-1200 kg/ha, but these small parks (< 10 km2) are likely to underestimate pre-human influence values due to edge effects and the rarity of taxa

  5. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    PubMed

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  6. Determining the Extent and Characterizing Coral Reef Habitats of the Northern Latitudes of the Florida Reef Tract (Martin County)

    PubMed Central

    Walker, Brian K.; Gilliam, David S.

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25–27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km2 seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  7. Late Quaternary folding of coral reef terraces, Barbados

    NASA Astrophysics Data System (ADS)

    Taylor, Frederick W.; Mann, Paul

    1991-02-01

    Uplifted late Ouaternary coral reefs on the island of Barbados record folding of the emergent crest of the Lesser Antilles accretionary prism (Barbados Ridge complex) since ca. 1 Ma. Three northeast striking folds are defined by systematic changes in altitudes in the crest of First High Cliff, a mostly constructional reef terrace about 125 ka, and Second High Cliff, a partially erosional reef terrace about 500 ka. The folds have wavelengths of 6 to 8 km and fold axes extend about 10 km. The largest anticline rises to the northeast, where it has been breached by erosion exposing highly deformed Eocene to lower Miocene rocks of the Scotland District. Uplift rates based on heights of the last interglacial First High Cliff range from 0.07 to 0.44 mm/yr. Quaternary folding on Barbados indicates that the crest of the accretionary prism continues to be an active fold belt undergoing northwestsoutheast shortening.

  8. Rapid Recent Warming of Coral Reefs in the Florida Keys

    PubMed Central

    Manzello, Derek P.

    2015-01-01

    Coral reef decline in the Florida Keys has been well-publicized, controversial, and polarizing owing to debate over the causative agent being climate change versus overfishing. The recurrence of mass bleaching in 2014, the sixth event since 1987, prompted a reanalysis of temperature data. The summer and winter of 2014 were the warmest on record. The oldest known in-situ temperature record of any coral reef is from Hens and Chickens Reef (H&C) in the Florida Keys, which showed significant warming from 1975–2014. The average number of days ≥31.5 and 32oC per year increased 2670% and 2560%, respectively, from the mid-1990 s to present relative to the previous 20 years. In every year after 1992 and 1994, maximum daily average temperatures exceeded 30.5 and 31°C, respectively. From 1975–1994, temperatures were <31 °C in 61% of years, and in 44% of the years prior to 1992 temperatures were <30.5 °C. The measured rate of warming predicts the start of annual bleaching between 2020 and 2034, sooner than expected from climate models and satellite-based sea temperatures. These data show that thermal stress is increasing and occurring on a near-annual basis on Florida Keys reefs due to ocean warming from climate change. PMID:26567884

  9. Organic matter oxidation and aragonite diagenesis in a coral reef

    SciTech Connect

    Tribble, G.W. Univ. of Hawaii, Honolulu )

    1993-05-01

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a stronger tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.

  10. Rapid Recent Warming of Coral Reefs in the Florida Keys.

    PubMed

    Manzello, Derek P

    2015-01-01

    Coral reef decline in the Florida Keys has been well-publicized, controversial, and polarizing owing to debate over the causative agent being climate change versus overfishing. The recurrence of mass bleaching in 2014, the sixth event since 1987, prompted a reanalysis of temperature data. The summer and winter of 2014 were the warmest on record. The oldest known in-situ temperature record of any coral reef is from Hens and Chickens Reef (H&C) in the Florida Keys, which showed significant warming from 1975-2014. The average number of days ≥31.5 and 32(o)C per year increased 2670% and 2560%, respectively, from the mid-1990 s to present relative to the previous 20 years. In every year after 1992 and 1994, maximum daily average temperatures exceeded 30.5 and 31°C, respectively. From 1975-1994, temperatures were <31 °C in 61% of years, and in 44% of the years prior to 1992 temperatures were <30.5 °C. The measured rate of warming predicts the start of annual bleaching between 2020 and 2034, sooner than expected from climate models and satellite-based sea temperatures. These data show that thermal stress is increasing and occurring on a near-annual basis on Florida Keys reefs due to ocean warming from climate change. PMID:26567884

  11. Predators alter community organization of coral reef cryptofauna and reduce abundance of coral mutualists

    NASA Astrophysics Data System (ADS)

    Stier, A. C.; Leray, M.

    2014-03-01

    Coral reefs are the most diverse marine systems in the world, yet our understanding of the processes that maintain such extraordinary diversity remains limited and taxonomically biased toward the most conspicuous species. Cryptofauna that live deeply embedded within the interstitial spaces of coral reefs make up the majority of reef diversity, and many of these species provide important protective services to their coral hosts. However, we know very little about the processes governing the diversity and composition of these less conspicuous but functionally important species. Here, we experimentally quantify the role of predation in driving the community organization of small fishes and decapods that live embedded within Pocillopora eydouxi, a structurally complex, reef-building coral found widely across the Indo-Pacific. We use surveys to describe the natural distribution of predators, and then, factorially manipulate two focal predator species to quantify the independent and combined effects of predator density and identity on P. eydouxi-dwelling cryptofauna. Predators reduced abundance (34 %), species richness (20 %), and modified species composition. Rarefaction revealed that observed reductions in species richness were primarily driven by changes in abundance. Additionally, the two predator species uniquely affected the beta diversity and composition of the prey assemblage. Predators reduced the abundance and modified the composition of a number of mutualist fishes and decapods, whose benefit to the coral is known to be both diversity- and density-dependent. We predict that the density and identity of predators present within P. eydouxi may substantially alter coral performance in the face of an increased frequency and intensity of natural and anthropogenic stressors.

  12. Regional Endothermy in a Coral Reef Fish?

    PubMed Central

    Welsh, Justin Q.; Bellwood, David R.

    2012-01-01

    Although a few pelagic species exhibit regional endothermy, most fish are regarded as ectotherms. However, we document significant regional endothermy in a benthic reef fish. Individual steephead parrotfish, Chlorurus microrhinos (Labridae, formerly Scaridae) were tagged and their internal temperatures were monitored for a 24 h period using active acoustic telemetry. At night, on the reef, C. microrhinos were found to maintain a consistent average peritoneal cavity temperature 0.16±0.005°C (SE) warmer than ambient. Diurnal internal temperatures were highly variable for individuals monitored on the reef, while in tank-based trials, peritoneal cavity temperatures tracked environmental temperatures. The mechanisms responsible for a departure of the peritoneal cavity temperature from environmental temperature occurred in C. microrhinos are not yet understood. However, the diet and behavior of the species suggests that heat in the peritoneal cavity may result primarily from endogenous thermogenesis coupled with physiological heat retention mechanisms. The presence of limited endothermy in C. microrhinos indicates that a degree of uncertainty may exist in the manner that reef fish respond to their thermal environment. At the very least, they do not always appear to respond to environmental temperatures as neutral thermal vessels and do display limited, but significant, visceral warming. PMID:22403736

  13. The Coral Reef pH-stat: An Important Defense Against Ocean Acidification? (Invited)

    NASA Astrophysics Data System (ADS)

    Andersson, A. J.; Yeakel, K.; Bates, N.; de Putron, S.; Collins, A.

    2013-12-01

    Concerns have been raised on how coral reefs will be affected by ocean acidification (OA), but there are currently no direct predictions on how seawater CO2 chemistry and pH within coral reefs might change in response to OA. Projections of future changes in seawater pH and aragonite saturation state have only been applied to open ocean conditions surrounding coral reef environments rather than the reef systems themselves. The seawater CO2 chemistry within heterogenous coral reef systems can be significantly different from that of the open ocean depending on the residence time, community composition and the major biogeochemical processes occurring on the reef, i.e., net ecosystem organic carbon production and calcification, which combined act to modify the seawater chemistry. We argue that these processes and coral reefs in general could as a pH-stat, partly regulating seawater pH on the reef and offsetting changes in seawater chemistry imposed by ocean acidification. Based on observations from the Bermuda coral reef, we show that a range of anticipated biogeochemical responses of coral reef communities to OA by the end of this century could partially offset changes in seawater pH by an average of 12% to 24%.

  14. Satellite Remote Sensing of Coral Reefs: By Learning about Coral Reefs, Students Gain an Understanding of Ecosystems and How Cutting-Edge Technology Can Be Used to Study Ecological Change

    ERIC Educational Resources Information Center

    Palandro, David; Thoms, Kristin; Kusek, Kristen; Muller-Karger, Frank; Greely, Teresa

    2005-01-01

    Coral reefs are one of the most important ecosystems on the planet, providing sustenance to both marine organisms and humans. Yet they are also one of the most endangered ecosystems as coral reef coverage has declined dramatically in the past three decades. Researchers continually seek better ways to map coral reef coverage and monitor changes…

  15. Comparing Coral Reef Survey Methods. Unesco Reports in Marine Science No. 21 Report of a Regional Unesco/UNEP Workshop on Coral Reef Survey Management and Assessment Methods in Asia and the Pacific (Phuket, Thailand, December 13-17, 1982).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    This report includes nine papers prepared for a workshop on coral reef survey management and assessment methods in Asia and the Pacific. The papers are: "A Contrast in Methodologies between Surveying and Testing" (Charles Birkeland); "Coral Reef Survey Methods in the Andaman Sea" (Hansa Chansang); "A Review of Coral Reef Survey and Management…

  16. Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis

    SciTech Connect

    Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra; Coffroth, MaryAlice; Szmant, Alina; Medina, Monica

    2005-03-01

    Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examined simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.

  17. Lost opportunities: coral recruitment does not translate to reef recovery in the Florida Keys.

    PubMed

    van Woesik, Robert; Scott, William J; Aronson, Richard B

    2014-11-15

    We tested the hypothesis that the poor recovery of the coral populations on reefs in the Florida Keys is related to low coral recruitment. In the summer of 2011, we deployed 240 terracotta tiles at eight study sites in a balanced design: (i) among three depths; and (ii) between fished and unfished reefs. Corals recruited to ∼ 40% of the deployed tiles, with more corals settling on tiles on unfished reefs than on fished reefs. The apparent effect of protection was not a consequence of different densities of herbivorous fishes, but was more likely related to local hydrography and the tendency of the no-take reserves to act as larval sinks, particularly in the lower Florida Keys. There was a mismatch between the coral taxa that recruited and the adult coral assemblages, suggesting that recruits were arriving but not surviving to contribute to coral recovery. PMID:25266950

  18. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contaminants such as hydrocarbons into the water column, by reducing light penetration through the water, and by increasing the level of suspended particulates. Coral organisms are extremely sensitive to even slight reductions in light penetration or increases in suspended particulates. These adverse effects...

  19. DISEASES OF CORALS: RESEARCH PROGRESS, REEF PROSPECTS

    EPA Science Inventory

    Scleractinian corals have been the subject of intensive research during the past few decades to improve understanding of their role in supporting diverse tropical and subtropical marine communities and to examine factors responsible for their decline and loss of community biodive...

  20. Sea level record obtained from submerged the Great Barrier Reef coral reefs

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Esat, T. M.; Thompson, W. G.; Thomas, A. L.; Webster, J.; Miyairi, Y.; Matsuzaki, H.; Okuno, J.; Fallon, S.; Braga, J.; Humblet, M.; Iryu, Y.; Potts, D. C.

    2013-12-01

    The last glacial is an interesting time in climate history. The growth and decay of large northern hemisphere ice sheets acting in harmony with major changes in ocean circulation amplified climate variations and resulted in severe and rapid climate swings throughout this time. The variability is not limited to climate but includes rapid, large scale changes in sea level recorded by tropical corals (eg., Yokoyama and Esat, 2011 Oceanography). Research done in the last decade using corals provides a better picture of the climate system, though only a few samples older than 15 ka are available. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recover fossil coral reef deposits. We recovered reef materials from water depth to 126 m that ranged in age from 9,000 years to older than 30,000 years ago covering several paleoclimatologically important events, including the Last Glacial Maximum. Two transects separated more than 600 km apart show an identical sea-level history thereby verifying the reliability of the records. Radiometrically dated corals and coralline algae indicate periods of rapid sea-level fluctuation at this time, likely due to complex interactions between ocean currents and ice sheets of the North Atlantic.

  1. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings

    PubMed Central

    Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.

    2016-01-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km2), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R2 = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances. PMID:27432782

  2. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings.

    PubMed

    Morgan, Kyle M; Perry, Chris T; Smithers, Scott G; Johnson, Jamie A; Daniell, James J

    2016-01-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km(2)), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R(2) = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances. PMID:27432782

  3. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.

    2016-07-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km2), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R2 = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.

  4. Benthic buffers and boosters of ocean acidification on coral reefs

    NASA Astrophysics Data System (ADS)

    Anthony, K. R. N.; Diaz-Pulido, G.; Verlinden, N.; Tilbrook, B.; Andersson, A. J.

    2013-07-01

    Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state (Ωa). Results of flume studies using intact reef habitats (1.2 m by 0.4 m), showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350-450 μatm), macroalgae (Chnoospora implexa), turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h-1 - normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560-700 μatm) and high flow (35 compared to 8 cm s-1). In contrast, branching corals (Acropora aspera) increased Ωa by 0.25 h-1 at ambient CO2 (350-450 μatm) during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6-0.8 h-1) and exacerbated by acidification. Calcifying macroalgae (Halimeda spp.) raised Ωa by day (by around 0.13 h-1), but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from benthic communities with four different compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water-residence times in neighbouring areas dominated by turfs, macroalgae and carbonate sand.

  5. Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis.

    PubMed

    Barott, Katie L; Rodriguez-Brito, Beltran; Janouškovec, Jan; Marhaver, Kristen L; Smith, Jennifer E; Keeling, Patrick; Rohwer, Forest L

    2011-05-01

    The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae. PMID:21272183

  6. Coral-Bacterial Communities before and after a Coral Mass Spawning Event on Ningaloo Reef

    PubMed Central

    Ceh, Janja; Raina, Jean-Baptiste; Soo, Rochelle M.; van Keulen, Mike; Bourne, David G.

    2012-01-01

    Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction. PMID:22629343

  7. Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates

    PubMed Central

    Edmunds, Peter J.; Adjeroud, Mehdi; Baskett, Marissa L.; Baums, Iliana B.; Budd, Ann F.; Carpenter, Robert C.; Fabina, Nicholas S.; Fan, Tung-Yung; Franklin, Erik C.; Gross, Kevin; Han, Xueying; Jacobson, Lianne; Klaus, James S.; McClanahan, Tim R.; O'Leary, Jennifer K.; van Oppen, Madeleine J. H.; Pochon, Xavier; Putnam, Hollie M.; Smith, Tyler B.; Stat, Michael; Sweatman, Hugh; van Woesik, Robert; Gates, Ruth D.

    2014-01-01

    The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past. PMID:25272143

  8. Tectonic subsidence provides insight into possible coral reef futures under rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Saunders, Megan I.; Albert, Simon; Roelfsema, Chris M.; Leon, Javier X.; Woodroffe, Colin D.; Phinn, Stuart R.; Mumby, Peter J.

    2016-03-01

    Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less

  9. Persistence and change in community composition of reef corals through present, past, and future climates.

    PubMed

    Edmunds, Peter J; Adjeroud, Mehdi; Baskett, Marissa L; Baums, Iliana B; Budd, Ann F; Carpenter, Robert C; Fabina, Nicholas S; Fan, Tung-Yung; Franklin, Erik C; Gross, Kevin; Han, Xueying; Jacobson, Lianne; Klaus, James S; McClanahan, Tim R; O'Leary, Jennifer K; van Oppen, Madeleine J H; Pochon, Xavier; Putnam, Hollie M; Smith, Tyler B; Stat, Michael; Sweatman, Hugh; van Woesik, Robert; Gates, Ruth D

    2014-01-01

    The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past. PMID:25272143

  10. Predictive modeling of coral disease distribution within a reef system.

    PubMed

    Williams, Gareth J; Aeby, Greta S; Cowie, Rebecca O M; Davy, Simon K

    2010-01-01

    Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We tested the hypotheses that: 1) coral diseases show distinct associations with multiple environmental factors, 2) incorporating interactions (synergistic collinearities) among environmental variables is important when predicting coral disease spatial patterns, and 3) modeling overall coral disease prevalence (the prevalence of multiple diseases as a single proportion value) will increase predictive error relative to modeling the same diseases independently. Four coral diseases: Porites growth anomalies (PorGA), Porites tissue loss (PorTL), Porites trematodiasis (PorTrem), and Montipora white syndrome (MWS), and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT) within a reef system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall disease prevalence as the model response), led to an average six-fold increase in cross-validation predictive deviance over modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to have etiologies that respond in a similar manner to particular

  11. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    PubMed

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  12. Developing the Biological Condition Gradient (BCG), as a Tool for Describing the Condition of US Coral Reefs

    EPA Science Inventory

    Understanding effects of human activity on coral reefs requires knowing what characteristics constitute a high quality coral reef and identifying measurable criteria. The BCG is a conceptual model that describes how biological attributes of coral reefs change along a gradient of ...

  13. 50 CFR 665.160 - American Samoa precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false American Samoa precious coral fisheries. 665.160 Section 665.160 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  14. 50 CFR 665.160 - American Samoa precious coral fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false American Samoa precious coral fisheries. 665.160 Section 665.160 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  15. 50 CFR 665.160 - American Samoa precious coral fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false American Samoa precious coral fisheries. 665.160 Section 665.160 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  16. Simplification of Caribbean Reef-Fish Assemblages over Decades of Coral Reef Degradation

    PubMed Central

    Alvarez-Filip, Lorenzo; Paddack, Michelle J.; Collen, Ben; Robertson, D. Ross; Côté, Isabelle M.

    2015-01-01

    Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function. PMID:25875218

  17. Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation.

    PubMed

    Alvarez-Filip, Lorenzo; Paddack, Michelle J; Collen, Ben; Robertson, D Ross; Côté, Isabelle M

    2015-01-01

    Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function. PMID:25875218

  18. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales

    PubMed Central

    Zaneveld, Jesse R.; Burkepile, Deron E.; Shantz, Andrew A.; Pritchard, Catharine E.; McMinds, Ryan; Payet, Jérôme P.; Welsh, Rory; Correa, Adrienne M. S.; Lemoine, Nathan P.; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A.; Thurber, Rebecca Vega

    2016-01-01

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. PMID:27270557

  19. Long-term monitoring of reef corals at the Flower Garden Banks (northwest Gulf of Mexico): Reef coral population changes and historical incorporation of barium in Montastrea annularis

    SciTech Connect

    Deslarzes, K.J.P.

    1992-01-01

    Reef coral populations were monitored from 1988 to 1991 at the Flower Garden Banks located in the northwestern Gulf of Mexico. The status of reef coral populations, and natural or man-made factors potentially affecting their well-being were determined. Man-made chronic disturbances are degrading coral reef resources on a global scale. Yet, the Flower Garden coral reefs seem to have been sheltered from the effects of regional stresses generated by population growth and increased industrial activity. Since 1974, reef coral population levels have remained unchanged in the Montastrea-Diploria Zones at the Flower Garden Banks. Live coral cover ranges between 46 and 46.5%. Montastrea annularis and Diploria strigosa comprise 80% of the coral cover on either bank. The remainder of the cover is mostly shared by eight other taxa. Coral taxa appear to be more homogeneously distributed on the West Bank. The relatively greater number of Agaricia spp., Madracis decastis, and P. astreoides colonies on the East Bank may be the source of a decreased evenness. The health of reef corals was assessed using repetitive and non-repetitive photographic methods, and accretionary growth measurements of M. annularis. Reef corals have undergone small scale changes at the Flower Gardens probably reflecting natural disturbance, predation, disease, and inter-specific competition. White mat disease (ridge disease) is shown to generate more tissue loss than any of the three bleaching events that took place at the Flower Gardens (1989, 1990, and 1991). Advance to retreat linear ratios of encrusting growth revealed a net tissue gain on the East Bank and a net tissue loss on the West Bank. Growth rates of M. annularis were highly variable. The annual barium content from 1910 in 1989 in a M. annularis colony from the West Flower Garden did not reveal trends associated with the extensive oil and gas exploration in the northern Gulf of Mexico.